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Abstract

Different norms are considered to replace the Euclidean norm in an algorithm given by Fan
and Tits (IEEE Trans. Automat. Contr., AC-33, pp.284-289, 1988) which is used for the
computation of the structured singular value of any matrix. It is shown that the ¢;-norm

1s the best possible norm in a certain sense.



Recently, there has been a considerable amount of interest in the study of the struec-
tured singular value, the concept of which was originated by Doyle {1] and is used as a tool
for the analysis and synthesis of feedback systems with structured uncertainties (e.g., see

[2,3] and their references).

Let M be an n X n complex matrix, and K = (ky,...,kn) an m-tuple of positive
integers which satisfies Z:’;l ki = n. For: = 1,...,m, denote the th-block-projection
matrix by P; = block diag (Ok,,..., Ok;_vy Tty Okiprse-oy Ok, ), where Op and I
are the zero matrix and identity matrix, respectively, of order k x k for any positive

integer k . Then the structured singular value of M with respect to the block-structure

K is the nonnegative scalar

w(M) = max {|[Ma]|  [|Piz]| [Me]| = [|PiMz,i=1,...,m},

where ||-|| denotes the Euclidean (43 -) norm in €™ and 0B the corresponding unit sphere.
One major issue in the study of p(M) is the computation of it. In [2], the authors devise
an algorithm (2, Algorithm 1], which we shall explain immediately, to compute pu(M) .

They first define, for any real number «, the hermitian matrices
Ai(a) = aP; — MIPM, for 1 = 1,...,m,
and the m-form numerical range associated with A;(a),...,An(a)

W(a) = {(vl,...,vm) € R™ :3dz € 0B such that v; = a:HA,'(a)a: for all é} .

A function ¢(-): R — R, which depends on M and K, is then defined by
c(a) = min{||v| : v € W(a)},

where ||| denotes again the Euclidean norm (on IR™ this time). Then they show [2.

Corollary 1 and Proposition 1] that, for any matrix M with structure K, c(-) satisfies

—

c(+) is continuous, (

)
c(p®) = 0, ¢(a) >0 for all & > u?, (2)
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and

cla + s) < c¢(a) + sforall s >0 and real a, (3)

where p = p(M). The initial step in Algorithm 1 of [2] is to set ap = &%(M), where
(M) 1is the largest singular value of M . The iteration step is to set az41 = ar — c(ay)
fork = 0,1,2,.... The authors show in [2, Theorem 2] that, since ¢(-) satisfies (1) through

(3), Algorithm 1 will generate a monotonic decreasing sequence {a;} with Llim ay = p2.
oo

The structured singular value p can thus be obtained. They also remark in the footnote
that the Euclidean norm in the definition of ¢(-) can be replaced by the ¢; -norm to get
the strongest version of Proposition 1. The purpose of the present note is to elaborate this

remark.

Suppose we consider any norm N(-) on R™ instead of the Euclidean norm. Similar
to the case of ¢(-), we may define a function ¢y : R — R (which also depends on M
and K) by
en(e) = min{N(v):v € W(a)}.

It is not hard to see that cn(-) always satisfies (1) and (2) ; and if in addition cn(-) satisfies
(3) then the function ¢(-) in Algorithm 1 can be replaced by cn(-). Let
N = {N(-): N(-) is a norm on R™and cy(-) satisfies

condition (3) for all matrices M with structure K } .

Then Algorithm 1 will work with ¢(-) being replaced by any cy(-) where N(.) € M. In
view of the iteration step of the algorithm, we may want to choose a norm Ny(.) € N
such that

en,(a) > en(a) for all N(-) € M and a > p?,

so that the resulting algorithm has the fastest convergent rate and is thus the most efficient.

The following result shows that || - ||1, i.e., the #;-norm on R™ defined by

ol = ) |oi| forallo = (v1,...,vm) € R™,
i=1
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will give such a “best possible” norm.

Theorem. Let X = (ky,..., k) be a given block structure. Then
(a) || -]l € M, and
(b) for any N(-) € N, |lv|ly > N(v) for all v € R™,

so that
ca(a) :=min{|v||i : v€ W(a)} 2 en(a)
for any real @ and complex matrix M with block structure K.

Proof. (a) The proof of the fact that ¢;(-) satisfies (3) is similar to (and simpler than)
that of ¢(-) given in the proof of Proposition 1 in [2]. Hence || - ||; € V.

(b) We prove by contradiction. Suppose N(-) € N but N(v) > ||v||; for some v € R™.

Let {e1,...,em} be the standard basis for R™. Without loss of generality we may assume
N(er) = 1+¢ > [l = 1
for if N(e;) < |lei|l forall ¢ = 1,...,m, then

N(v) = N (Z v,-e,-) <Y o[ NE) <Y vl lledlls = vl
i=1 i=1

1=1

for all v = (v1,...,vm) € R™, which contradicts the assumption. Let

L ={veR":v; + wavg + -+ +wnvy, = 1}

be a supporting hyperplane to the ball in IR™ with respect to N(-) with radius (1+¢).
As €; is on L, we have
minN(v) = N(e;) = 1+4q.

vEL

Note that some of the w;’s may be zero. However, for any € > 0, we can choose nonzero

!

wh,...,wh, € R which are arbitrary close to ws,...,w, respectively, such that if

L' = {velR™: vy+whve +-+-+w vy, = 1
2 m
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then

iléllI} N(v) > N(er) —e.

Now choose A, fy,...,0m € R suchthat A\—=f$7 =1 and A— % = 1/w! for 1 =2,...

1

Then, by defining

(which depends on €, because f;’s depend on €), we have, for any real «,

Ai(a) = aP; — (Z 511’1) P; (Z ﬂij)

= (a~B)P;, fori=1,...,m

and
en(a) = min {N(v):v; = A a)z, i=1,...,m, a € 63}
= min{N(v) cvp=(a—fBHa;, a; >0, i=1,...,m,
aj+ - tam =1}
Hence

en(A=1)= min{N(v):vi = (A=1-p9a;, a; >0, i=1,....m,
ai+ -+ am =1}
:min{]\’(v):vl =0, vi=(A-1-p8%a;, a; >0,

i=2,...,m, a1 >0, a1+ +a, =1} .
By putting (ai,...,am) = €1, we get

en(A—1) = N(0) = 0.

)



Also,

en(A) :min{N(v): vi=(A=PBHa;, a; >0, 1=1,...,m,

a1+---+am:1}

= min{N(v): vi =a; 20, v; = a;/w!, a; >0, 1 =2,...,m,
a; + -+ am =1}

= min{N(v): vy + wjvy + -+ wh, vy, =1, vy >0,
wivi 20, i=2,...,m}

> min{N(v): velL}

> N(ey) — €

= (1 + q) — ¢

= (1+¢) + en(A-1) — €

As € > 0 is arbitrary, we may choose 0 < € < ¢ so that, for the matrix M defined in (4)

?

we have

CN ((/\—1)+1) = CN(/\) > CN()\—I) + 1.

As aresult, cn(-) does not satisfy (3) for this matrix M, and hence N(-) € M. Thus,
if N(-) € N then we must have

lv]]i > N(v) for all v € R™,

and hence
c1(a) = min {|jv|}y : v € W(a)}
> min {N(v) : v € W(a)}

= c¢ny(a) for any real o

O

Now the problem remains to devise a method for computing ¢;(a), so that the

algorithm can be implemented. The computation of ¢;j(«) (or c(a)) for any given M
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and K can be, in general, difficult. However, similar to the case of ¢(«), there are existing

methods for computing the value

cy(a) := min{||v]|; : v € co W(a)},

where co W(a) denotes the convex hull of W(a) . Let < -,- > denote the usual inner

product in R™. Since the foo-norm ( || ||eo ) is the dual norm of the #;-norm, we have
' .
ci(a)= min v
(@) vecuvunllnl
= min max <v,a>. (5)
vEcoW(a) ,eIR™
llelloo <1

As co W(a) and {a € R™ : ||al]|lcc < 1} are convex sets, and < -,- > 1is bilinear, the
max and min in (5) can be interchanged to yield
ci(a) = max min < wv,a>

cR™ vE€coW(a)
fallos €1

m

= max min aiz Ai(a)z
jai]<12€0B £

m
= max min z E a;Ai(a) | z
lai|<1 2€9B

=1

= maX )‘min aiAi @
la¢|<1 (; ( ))
= - in A max 1414 3
!(I}:lllsr-ll max (;a Az(a)> (6)

where Apin and Apax denote respectively the smallest and largest eigenvalue. Several
existing algorithms are available for solving the convex problem (6). We refer to a recent
paper by Boyd and Yang [4, Section 7] the discussion on the details, including the advan-
tages and disadvantages, of these numerical algorithms. As a result, if W(«a) is convex
(which is always the case when m < 3; see [5] for example), ¢i(a) (= ¢j(a)) could be

computed with any of these algorithms. If m >4, then W(a) may not be convex. In
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this case, replacing ¢(-) by ¢{(-) in Algorithm 1 of [2] will result in a sequence {,/ax}

with limit

p' = inf{Va:c(B)>0forall B> a},

which is clearly an upper bound for p(M). This is exactly the same situation as the case

of ¢(-) and ¢'(-) discussed in [2].
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