Stochastic Monotonicity of the
Output Process of Parallel Queues

by P. Tsoucas

TECHNICAL
RESEARCH
REPORT

Supported by the
National Science Foundation
Engineering Research Center

Program (NSFD CD 8803012),
Industry and the University

TR 89-56



STOCHASTIC MONOTONICITY OF THE OUTPUT PROCESS OF PARALLEL QUEUES

by
Pantelis Tsoucas

Systems Research Center
University of Maryland
College Park, MD 20742

ABSTRACT

This paper considers the output process of a system of K - /M /1 queues in parallel with Bernoulli routing of
jobs upon arrival. It is shown that the output process is stochastically increasing as the routing probabilities
approach 1/K in a certain sense. The proof crucially depends on the fact that the absolute value of a simple
random walk is a time-homogeneous birth and death process.






1. Introduction

Jobs arrive at a service system at fixed instants (an)a2;. The service system consists of two -/M/1
queues in parallel, i.e., there is one server in each queue and the service times are exponential. Let the
service rates in both queues be equal to u and assume that the system is initially empty Upon arrival, a job
is routed to queue 1 with probability p > 1/2 and to queue 2 with probability q 1~ p. Denote by (D)
the departure process of queue i (i = 1,2) and set Dy = D} + D?. The aim of this paper is to show

Theorem 1.1: (D) is stochastically decreasing with increasing p.

The fact that choosing equal routing probabilities in a system of identical M/G/1 parallel queues in
order to maximize the throughput in steady state is well known. See Giin and Jean-Marie [G]] and references
therein. In [GJ] the result is shown to hold in the case where a resequencing buffer is added at the output
of the system. Our Theorem 1.1 continues to hold in this case too.

This problem was posed to the author by Professor G. Shantikumar as a “dual” of the problem considered
in Lehtonen [Le]. There, service rates py and pp (p3 > p2), subject to the constraint py + p2 = p, are
allocated to two -/M/1 queues in tandem. It was shown that the departure process of the second queue for
an initially empty system is stochastically decreasing with increasing p;. An alternate proof of that was
given in [TW], using properties of an embedded random walk. Another “dual” version of the problem in
[Le] is the following. Service rates u; and pa (41 > p2), subject to the constraint pj + g2 = y, are allocated
to two -/M/1 queues in parallel. Arriving jobs are routed to each node with equal probability. It can be
shown by arguments similar to the ones employed in Section 3 that the departure process of the system is
stochastically decreasing with increasing u. Partial results on this problem are reported in [Be].

Let zi be the number of jobs at queue i (i = 1,2) at time ¢ > 0. Consider the quantities

2 z} - 22, (1.1)
n S 2l + 22 (1.2)

Our proof relies on the observation that the distribution of z, given y. Iz,l, 8 <t,and n,, 8 <t, depends
only on g;. In turn, this is implied by the fact that the absolute value of a simple random walk is a Markov
process.

In Section 2 some properties of the absolute value of a simple random walk are presented. Theorem 1.1
is proved in Section 3, and a generalization of it is stated and proved in Section 4.

2. The absolute value of a simple random walk

Let (&):2; be a sequence of i.i.d. random variables where

& = +1, wp.p
T l-1, wp.¢g=1-p,

and assume that p > ¢.

Set Xo=0, X, =& 4+...+ &, forn>landlet.Y,.d.e.r
Pitman that (Y;) is a Markov chain.

Rogers and Pitman [RP)] give a sufficient condition for a function of a Markov process to be Markov.
For a discrete Markov chain the result specializes to the following. (See condition (b) of Theorem 2 in [RP].)

|Xn|. We first present the well known result of

Fact 2.1: Let (U,) be a Markov chain on a set Sy and let f : Sy — Sv be a function onto a set Sy.
Then, the process V, ef F(Uy) is a Markov chain on Sy if the following condition is satisfied for n > 1 and
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all v, € Sy, un41 € Su.

P{Un+l = “n+l!Vn+1 = f(“n+l)}P{Vn+l = f(un+l)lvn = vn} =

= Z P{Uu.’.l = un+]|U" = un} P {Un = unIVn = U”} . (2'1)
un€S=(va) '

Proof: It suffices to show that (2.1) implies that
P{Un = “nIVn = Up, Vol = Vg, Voo, = vn-a} = P{Un = unIVn = ”n} ’ (2-2)

for all u, € Sv, vn-i € Sv, i=0,...,s Condition (2.2) implies that the process (¥;,) is Markov (see Kelly
[Ke]). O

For the processes (X,) and (Y,) defined above, a simple calculation gives

AR E PO = k=8 ={ () by ), Ko s 23)
def 1, : k=0
Qri+1(p) = P{Yo1=k+1|Ya=k}= { (P 4+ gt ) /(4 ¢f), k=1,2,... (24

From (2.3) and (2.4) condition (2.1) is seen to be satisfied. It follows that process (Y,) is a time-homogeneous
birth and death process with transition probabilities given by (2.4).

Remark 2.1: Fact 2.1 implies the stronger result that process (Y, ) is Markov if the distribution of Xp
is A(p, Yo).

As will be shown in Section 3, the stochastic ordering results are implied by the following lemma which
is a result of easy caleulations. '

Lemma 2.1: One has the monotonicity properties:
(a) Qk,k+1(p) is an increasing function of p for k= 0,1,....
(b) Que+1(P) < Qe4r,42(p), forall 0 < p< 1, k=1,2,....

3. Proof of the main result

We now consider the process (2}, ) defined in Section 1. By (S}) denote the virtual service process of
queue i (i = 1,2) and set S; & S1+S2. Let (on) be the set of points of process (S;) and set (1) = (an)U(0n).
In what follows we condition on (¢,,) and only consider the processes (z},2?), (z:,7:) and (1) at instants
(7a). They are denoted by (z},23), (zn, 7) and (ya).

The probability distribution of the conditional transitions of (), and a result corresponding to relation
(2.2) are the key to the proof of Theorem 1.1. They are given next.

Lemma 3.1: For k > 0, n > 0, and some [ > 0, one has
(@) P{yn41 =k + 1(ym)m), m S niyn = k5 Tag1 = a1} = Qre41(p),

(b)
: 1, k=0
P{tnsr =k +1U(ymim), m<n; pn =k T =01} = { 1/2, na>k>0
0, e = k.

(¢) P{zn = kl(ym,m), m < n; yo = k} = A(p, k).
Proof: It is done by induction on n simultaneously on Parts (a)-(c). At each step of the induction Part
(¢) follows from Parts (a) and (b). : : 0



In the same queueing system increase the routing probability p to p’ € (p, 1] and denote by (z,n;) and
(3£,) the processes corresponding to (zn,7n) and (yn)-

Lemma 3.2: Processes (Yn,7n) and (¥, 7,) can be constructed on the same sample space such that

(¥n17) € (nsM), n=0,1,..., as. (3.1)

Proof: Making use of Lemma 2.1 one shows that (3.1) is satisfied in the “naive” coupling construction.
The details are as follows. At 7, = a1, (y1,m) = (¥, 7;) = (1,1). Assume that (3.1) is satisfied in some
construction of the processes (yn,7s) and (¥,,7,) up to some n > 1. Then, if Tay1 = ay, it follows that
sl = M + 1, Mhyy = 0, + 1. There are two cases. If y, > 0 from Lemma 3.1 and Lemma 2.1 (a) and (b)
one picks ¥, 41, Yn+1 such that yn41 — Un < Ypy1 — .. If however y, = 0 then yo41 =1 and (3.1) is not
violated if g, ,is chosen according to (2.4). It is easy to see how to finish the construction such that (3.1)
is satisfied in the remaining case when 7,41 = 01. O

It now remains to note that processes (zn,7s) and (25, 7;) can be easily constructed from the processes
(¥n,7n) and (¥}, 7,), respectively, of Lemma 3.3. Specifically, the process (zn,7n) is completely determined
between successive visits of (yn) to 0, given the first transition of z, after such a visit. If y, = 0 and
Ta41 = ai, then Zn41 = 1 (respectively -1) with probability p (respectively ¢). If yo =0 and 7,41 = o1, then
Tny1 = 1 (zespectively -1) with probability 1/2 (respectively 1 /2). Process (z/,,7,), is constructed similarly.
Moreover, in this construction one has D; > Dj, t > 0, almost surely. This establishes Theorem 1.1.

4. A generalization

Theorem 1.1 can be generalized by considering K > 2 -/M/1 queues in parallel fed again by an input
stream arriving at instants (a,). An arriving job is routed to queue i with probability p;, i = 1,..., K,
and Ef._! pi = 1. Such a vector p is called a routing vector. A result can be formulated and proved to the
effect that the total departure process from the system, denoted by (D), stochastically increases as the p;’s
become more homogeneous. The situation is entirely similar to Section 4 in Lehtonen [Le] and the same
approach is followed here. This section is included mainly for completeness.

Definitions: For a routing vector p denote by ppj > ... 2 px) the decreasing rearrangement of the
coordinates.. A routing vector p’ is said to majorize vector p if Z:-;l Py < ELI pf,-], k=1,...,K-1
Then, one writes p < p’. (See Marshall and Olkin [MO}.)

By (D)) denote the departure process from the system when the arrival process is (a,) and the routing
vector is p’.

Theorem 4.1: If p’ > p, then (D)) <,: (D) (st denotes stochastic ordering.)

Proof: For a routing vector q define
T(Q) déf (qlr .. ')Aqi' + (1 - ’\)QJ’ .. w(l . ’\)ql + qul . 'qu)' (41)

Then, since p' > p, p can be obtained from p’ be a finite number of successive transformations of the
type (4.1) (see Marshall and Olkin [MO], p. 21). It therefore suffices to show that (D) <, (D:) when
p=(p, .., At + (1= Np},....,A=Npl + Ap},...,pi). But this is a corollary of Theorem 1.1. M
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