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Legitimate web browser redirection is often used to take users to web pages 

that have moved or to help users find the correct website when they have entered the 

web address incorrectly.  Unfortunately, computer network attackers can use web 

browser redirection to manage malware-serving hosts and conceal their activity.  An 

analysis of network flow records yields heuristics for flow size, flow duration, and 

inter-flow duration that indicate flows where web browser redirection is likely to have 

occurred.  Results show that flows matching these redirection heuristics are indeed 

several times more likely to communicate with Internet hosts that have exhibited a 

history of malicious behavior.  A network security administrator can thus filter large 

sets of network flow records to reveal flows most likely to contain web browser 

redirection.  This capability reduces the sample space when looking for evidence of 

malicious activity targeting web browsers and contributes more generally to the 

expanding field of flow-based application recognition. 
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Preface 

 

I would like to step back to discuss some of my philosophical observations of 

the field of network intrusion detection in 2013.  Some of these observations may be 

obvious—if not outright tautological—but I take a moment of pause nonetheless. 

Intrusions happen because intruders intrude.  This is the causal relationship, 

which should not be forgotten.  Specific times and targets of computer attack can be 

influenced by external factors ranging from prominent geopolitical exigencies to 

novice school-aged hackers with too much time on their hands during the summer.  

Research methods and models may necessarily abstract away these uncontrollable 

exogenous factors, but we should not forget about them and then be surprised when 

our expectations and results aren’t fully aligned.  It is tantalizing for statisticians to 

analyze data, track trends, and even make predictions.  Indeed, this thesis will 

introduce statistical distributions and models for inference—almost obligatory in the 

field of network intrusion detection.  But like those of other intrusion detection 

efforts, these models are built upon prior events and assumptions that may not last 

long into the future.  In short, such models work well…until they don’t.  Even with 

all external factors accounted for, intruder techniques and the underlying technology 

will change over time, and even the best prior models will need to be adapted or 

abandoned. 

There’s a paradox in detecting malicious activity.  For example, the research 

in this thesis points to an association between web browser redirection and malicious 

activity.  But in order to study these events and make this association, malicious 
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activity must first be recognized somehow.  (Herein, we use a blacklist of IP 

addresses.)  So, if we can already recognize the malicious activity enough to label it 

malicious or benign, then why don’t we just use that technique for intrusion detection 

to begin with?  After careful thought, the answer is scale and automation.  Network 

security administrators want intrusion detection systems that will tune themselves, 

discover new attacks, and do it all without too many false positives.  The work 

continues. 

Information that’s helpful to the defender can be helpful to the intruder.  

When we publish our work as computer security researchers, the information can be 

just as valuable to attackers as it is to defenders—if not more so.  In cases of new, 

provable security solutions, this problem lessens, but such solutions may be further 

and fewer between.  In the more frequent instances of intrusion discovery, where a 

new intrusion detection technique is developed and subsequently published, the 

intruders invariably take little time to adjust.  In fact, computer security researchers 

often point out weaknesses and limitations in their own detection methodologies—

even within the ‘limitations’ section of the original paper in which these discoveries 

are published.  This knowledge of an intrusion detection method’s limitations makes 

it easier for attackers to evade the method.  In a similar way, it is not uncommon for 

system vulnerabilities to be disclosed before patches are available.  Certainly 

attackers can and do misuse such information. 

So the game of cat-and-mouse continues between defender and intruder, 

between publisher and the keyboard miscreant, both with fingers at the keyboard—
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one typing works for publication, the other typing commands for intrusion.  The 

works and the fingers continue.  And both will press on. 
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Chapter 1: Introduction 

 

As computer systems remain vulnerable to attackers and malware, network 

security administrators and security-conscious users seek improved ways to detect 

and respond to threats.  One such threat is malware that can be spread to users’ 

computers through ordinary web browsing.  Often, these browser-based incidents of 

malware infection involve web browser redirection.  This thesis presents heuristics 

for inferring web browser redirection in network flow records and shows that such 

flows are more likely to be associated with malicious activity.  The rest of this chapter 

will discuss the motivation for this research with respect to web-based malware, 

network flows, and redirects; it will discuss the contribution of this thesis; and it will 

discuss the outline of remaining chapters. 

Motivation for Researching Web-based Malware 

The motivation for researching the behavior of web-based malware includes 

that it is widespread and difficult to defend against.  These negative aspects imply 

there is much need for research in detecting it, as a first step toward reducing its 

negative impact.   

Web-based malware is so widespread that as much as 90% of malware is 

delivered via the web, according to a 2013 report by Palo Alto Networks [9][37].  The 

threat of web-based malware also persists across the continuum of attacker skills.  
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Novice attackers can set up malicious websites and lure victims through fraudulent 

email links; meanwhile, more sophisticated attackers may compromise legitimate 

websites to deliver malicious content. 

Web-based malware is difficult to defend against because web browsing is the 

de facto way most users access the Internet.  Furthermore, many Internet 

applications—ranging from email services and chat clients, to social networking 

applications and VPN clients—all employ web browser interfaces.  This non-

traditional use of many different application services on the same TCP port means 

that network administrators can no longer block application-specific ports as an 

effective way to block applications that have traditionally posed the greatest threat to 

security.  To make matters worse, the development of complex web applications has 

encouraged more complex frameworks and program interactions on both the client-

side and the server-side, opening the way for more software vulnerabilities to be 

exploited by attackers and further compounding the problem. 

Motivation for Researching Network Flows 

There are several motivations for researching network flow records.  First, 

network flow records’ storage and analysis requires much less space and processing 

power than would be required to store and analyze payload content.  Second, since 

having network flow records does not require access to the underlying content, flow-

based techniques can be used in environments where encryption is present.  This 

benefit will be discussed in the context of previous work in Chapter 3.  Finally, not 
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having access to the payload content allows network flow analysis to occur in 

environments that it otherwise wouldn’t due to privacy concerns of users. 

Motivation for Researching Redirects 

Web browser redirection is a behavioral feature commonly associated with 

malware delivered by web browsing [19].  In some instances redirection techniques 

are even used by online criminal enterprises [28].  The reason for using one or more 

layers of redirection is that attackers or criminals receive benefits such as flexibility 

in directing victims to malicious websites and a means of avoiding detection [39] 

[38].  Studying the methodologies of attackers provides insight into how to best detect 

and prevent their actions.  Ideally, a network security administrator would want to 

detect the malware, itself, but if this is not possible due to network-layer encryption 

or due to there being no known signature for the malware, then an alternative 

detection mechanism is to detect a closely linked event.  In many cases, this closely 

linked event is a web browser redirection. 

Contribution 

This thesis describes a novel methodology for detecting web browser 

redirection in network flow records.  The methodology builds on a foundation of 

work published by Hu, Knysz, and Shin [20], but this thesis provides more detailed 

investigation in some areas and a simpler approach in other areas.  First, we validate 

the fundamental premise that web browser redirection is associated with malicious 
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activity.  We conduct a novel experiment on the University of Maryland campus 

network with our own flow records to quantify the proportion of malicious activity 

associated with redirect flows.  We label data as malicious using a simpler blacklist 

method that does not require DNS logs as is not limited to botnet detection as in [20].  

We derive optimal threshold values from the heuristics and data presented in [20] but 

do not require sequential testing.  The result is a faster determination of likely 

redirects with fewer computational resources by accepting the tradeoff of a higher 

false positive rate.  We are more rigorous in specifying the directionality and 

delineation of flows that allows greater confidence in our experimental methods and 

in the reproducibility of our work.  Finally, we thoroughly investigate parametric 

modeling of inter-flow duration time of web browser redirects.  This novel analysis 

uncovers a better fitting probability distribution that more closely models the 

underlying phenomenon of web browser redirection. 

Outline 

The rest of this thesis is organized in the following way.  Chapter 2 discusses 

background in NetFlow (the protocol used to collect and manage network flow 

records) and web browser redirection.  Both topics are used extensively in the ensuing 

chapters.  Chapter 3 discusses previous work.  Chapter 4 presents the methodology 

for detecting web browser redirection in NetFlow.  Chapter 5 presents the 

methodology for labeling flows as malicious or non-malicious.  Chapter 6 explains 
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the data and results of our experiments.  Chapter 7 provides an in-depth exploration 

of discovering the best parametric model for inter-flow duration of redirects.    
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Chapter 2: Background and Definitions 

 

 The research in this thesis makes detailed use of network flow records (in 

NetFlow format) and the nuances of web browser redirection.  This chapter explains 

these protocols and decomposes them into subcomponents to allow for analysis in 

ensuing chapters. 

NetFlow 

NetFlow is a Cisco-developed protocol for collecting and maintaining records 

about network connection events.  Typically a network administrator enables 

NetFlow collection on the organization’s gateway router, where a process monitors 

network connection activity.  This NetFlow exporter sends the logs to another device, 

the NetFlow collector, which writes the logs to storage.  The network administrator 

typically accesses the records through the NetFlow collector, which reads the logs 

back from storage.  NetFlow records do not contain information that was actually 

transmitted; they only contain information about the connection, itself.  Such 

information varies depending upon the version and settings of the particular flow 

record protocol in use [6][7].  Typical NetFlow fields include the following: date, 

time, duration, protocol, source IP address, destination IP address, source port, 

destination port, number of packets, number of flows, bytes per second, packets per 

second and TCP flags.  The TCP flags field is the union of all TCP flags that were set 
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at any point in the connection and only applies if the connection was TCP.  Fig.  1 

shows a sample of two NetFlow records printed to the terminal screen in text format 

using the command-line tool nfdump. 

 

 

Fig.  1.  Two sample NetFlow records are printed to the terminal screen using nfdump. 

 

NetFlow records are stored in a binary format to save space.  Tools like 

nfdump can manipulate the binary files and print the contents to a terminal as shown 

above. 

The definition of a flow is a unique 7-tuple composed of the following 

elements: 

1) source IP address, 
2) destination IP address, 
3) source port, 
4) destination port, 
5) next protocol, 
6) type-of-service field, and 
7) inbound router interface. 

 
The first five elements are commonly used for defining a socket in network 

programming or a conversation in a protocol analyzer.  The last two elements deserve 

additional attention.  The type-of-service field is deprecated and rarely used, but since 

it is one of the elements that define a flow, a change in its value will delineate the 

start of a new flow as far as the NetFlow exporter is concerned.  Stated slightly 
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differently, the same source host traffic communicating with the same destination 

host over the same ports will be defined as a new flow each and every time one of the 

packets in that flow changes the value of the type-of-service field in the header of any 

IP datagram.  The last element of the 7-tuple, the inbound interface of the NetFlow-

exporting router is not part of the header of an IP datagram; instead, it is a value 

maintained by the capture process running on the exporter.  This element adds ground 

truth to the directionality of flows, since it uses the hardware interface on the router 

and not a “soft” field in an IP header. 

Redirect 

The term “redirection” (or “redirect” for short) refers to an event where a 

user’s web browser gets content from an initial server (Server 1) and then 

automatically accesses a second server (Server 2) based upon the content received 

from Server 1.  Fig.  2 enumerates the four flows that occur in a typical redirection 

scenario.  These flows are labeled as flow (a) through flow (d) and will be referred to 

in subsequent chapters.  This thesis uses the term “redirect flow” to refer to a flow 

associated with a redirect. 
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Fig.  2.  The redirect sequence of four flows, labeled in order (a)-(d). 

 

Unless otherwise specified, flows are unidirectional.  That is, a flow contains all the 

packets from one host to another in a given direction; meanwhile, a separate flow 

contains the packets in the reverse direction.  This definition is per the NetFlow and 

IPFIX specifications [6][7].  It is common for NetFlow analysis systems to assemble 

opposing flows between two hosts (i.e., where the source and destination IPs and 

ports are swapped), but it is useful to preserve uni-flow granularity—albeit while 

maintaining awareness that the opposite sides are bi-directionally related.  We call the 

(a) 

(b) (c) 

(d) 

Redirection Server 
(Server 1) 

Terminal Server 
(Server 2) 

Client 
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aggregation of both associated flows a bi-directional flow or bi-flow.  The packets 

contained in the four flows (a, b, c, d) and two bi-flows are described as follows: 

 

a) Client to Server 1 (SYN, HTTP GET Request, … , [FIN, ACK]);  

b) Server 1 to Client (SYN/ACK, HTTP 301/302 Redirect, [FIN, ACK]);  

c) Client to Server 2 (SYN, HTTP GET Request, … , [FIN, ACK]); and  

d) Server 2 to Client (SYN/ACK, HTTP 200 Response, …, [FIN, ACK]). 

 

Flows (a) and (b) comprise the bi-flow between the Client and Server 1.  Flows (c) 

and (d) comprise the bi-flow between the Client and Server 2.  The packets associated 

with each flow are shown in parentheses, and the FIN/ACK segments are in brackets 

to indicate that they may or may not be included, depending upon the circumstances.  

Fig. 3 shows a detailed specification of an HTTP 301 web browser redirection with 

granularity of each packet in its corresponding flow.  The two bidirectional flows (a-

b) and (c-d) are drawn next to each other for compactness and to demonstrate their 

duality but do not represent their actual timing.  In an implementation setting flows 

(c) and (d) will begin very shortly after flows (a) and (b) begin, and flows (a) and (b) 

may not terminate until much later—well after the redirect event has ended. 
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Fig.  3.  Full redirect sequence of packet exchanges for all four flows and both bi-flows between 
the client and both servers. 
 

A final note concerning terminology is the use of the term “normal” to 

distinguish non-redirect flows from redirect flows.  When compared to redirection, 

the term “normal” refers to events, flows, URLs, or servers that are not associated 

with redirection.  It a later context, when compared to malicious, “normal” refers to 

!



 

 

12 

 

events, flows, or URLs that are benign.  The meaning should be clear from the 

context, but the terms “benign redirect” or “malicious non-redirect” will be 

specifically stated where necessary to avoid ambiguity.  
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Chapter 3: Related Work 

 

 The field of network intrusion detection is full of creative approaches for 

improving current and future capabilities.  Since this thesis focuses on using NetFlow 

to detect web-based malware, we focus of some of the previous literature related to 

these topics.  First we discuss how encryption of payload content has caused trouble 

for some intrusion detection methods, noting that NetFlow-based methods are not 

affected.  Second, we discuss previous work that focuses on security concerns 

presented by web browser redirection.  Third, we discuss work that uses NetFlow to 

detect botnets.  Fourth, we take a closer look at the paper by Hu et al., explaining 

more of its intricacies.  Last, we set the direction for the analysis and experimental 

methods of this thesis. 

Intrusion Detection Difficulties with Encryption 

Increased use of encryption in network traffic prevents traditional network 

sensors from evaluating payload contents. As a result, sensors relying solely on deep-

packet inspection or payload signatures will fail to detect malicious activity.  Since 

the use of encryption is likely to increase, much research focuses on the use of 

techniques to classify and analyze traffic without knowledge of packet contents.  

NetFlow is one possible solution (and is used in this thesis), but other possible 

solutions have warranted consideration as well. 
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To get around the problem that cipher text causes for IDSes, Joglekar et al. 

[22] introduce software libraries to be shared between the software that invokes the 

cryptographic protocol and a software monitoring solution. This approach includes 

anomaly-based and specification-based intrusion detection for some attacks and can 

be used in situations where it is appropriate to deploy such client stubs onto the hosts.  

Goh et al. [15] likewise introduce an approach to provide plaintext to a monitoring 

system, while maintaining cipher text between endpoints.  Their solution is a protocol 

that provides the network-based IDS its own un-enciphered copy of the content with 

use of a VPN. 

Rather than attempting a workaround to inspect plaintext from otherwise 

encrypted traffic as described above, Foroushani et al. [14] analyze traffic externals 

such as size and timing and put this data into an adaptive state matrix.  The authors 

infer underlying activity such as scanning and HTTP GET requests due to the small 

size of these packets.  On the other hand, they infer buffer overflows as having 

unusually large request sizes.  They infer flooding by introducing a counter and 

recognition table.  The challenge of this approach is a large false positive rate.  Koch 

and Rodosek [26] propose a method for detecting malicious activity in encrypted 

command shells.  The authors build a catalog of commands and responses that could 

be used by an attacker and statistically infer these command-response combinations 

by analyzing size and timing of the encrypted payload.  This technique is naturally 

limited to instances where an attacker is interactively hacking into a system based 
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upon commands at a command prompt and does not account for more contemporary 

techniques such as malware intended for web browsers [9]. 

Redirection-focused Work 

When it comes to delivering web-based malware, the use of web browser 

redirection is well documented.  There is a catalog entry in MITRE Corporation’s 

common weakness enumeration (CWE) database [11], and the special case of the 

"open redirect" makes the SANS Institute's top-25 list of most dangerous software 

errors [Lam].  Shue et al. discuss the prevelance and mitigation strategies of these 

redirects on both the client and server-side [39].  In spite of these efforts, the threat of 

web browser redirection remains widespread, and attackers are using it actively.  

According to a white paper published by the Sophos Internet security company, the 

use of this technique is increasingly common and has been seen in as much as 60% of 

web-based threats seen in commercial security research [19].  The threat is 

particularly difficult in situation where attackers are adept at hiding the redirection 

mechanism.  Mavrommatis and Provos describe the use of hidden iFRAMEs in 

webpages that use web browser redirects to send unsuspecting users’ browsers to 

malware-hosting sites [33]. 

Detecting Botnets with NetFlow 

Flow data analysis is quickly becoming a popular method for detecting 

botnets.  As botnet structures become more complicated in attempts to evade traffic 
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pattern analysis [40], the tools required to detect them need to be robust enough to 

handle these aberrations.  Specifically, works by Iliofotou et al. [21] and Nagaraja et 

al. [35] have shown that the level of abstraction provided by flows allows a traffic 

graph to be built.  Both of these works utilize ISP-level flow records to build traffic 

graphs and infer botnet activity based on the graph.  Coskun et al. [10] use flow-

derived graphs to detect botnet activity at the edge router of enterprise networks.  

These approaches detect decentralized communication graphs in different ways but 

all require the existence of at least one known-malicious host in the communication 

graph in order to label the overall communication structure as being affiliated with a 

botnet or being otherwise malicious. 

Bilge et al. counter the trend of needing a priori insight into a botnet by 

developing NetFlow heuristics that do not require knowledge about the command and 

control of the botnet.  Their method uses a supervised machine-learning algorithm 

that is trained on high quality data supplied by a security company.  They introduce 

several features relating to flow size, access patterns, and time intervals—all very 

promising for detecting botnets when combined with a high-quality training set 

data [5]. 

Lee et al. [2] has demonstrated through their system Kopis, the ability to 

detect previously undiscovered malware domains with a low false positive rate, even 

without having access to the associated malware.  Kopis works by analyzing DNS 

resolution patterns at the ISP level.  Kopis is particularly powerful at identifying new 

botnets.  Meanwhile, Leontiadis et al. [28] infer the architecture of cybercriminal 
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networks that use a popular redirection scheme, where certain nodes participating in 

unlicensed online pharmaceutical sales scams act as concentrators to redirect users to 

the drug sales servers.  The redirection component in these schemes offers the 

perpetrator advantages, such as hiding their underlying infrastructure and allowing it 

to scale by serving multiple sites with one concentrator. 

Combining Redirects, Botnets, and NetFlow 

Hu, Knyz and Shin published a paper titled RB-Seeker: Auto-detection of 

Redirection Botnets in 2009 [20].  Their approach uniquely combines the 

aforementioned topics of redirects, botnets, and NetFlow.  Much of the work in this 

thesis is built upon their prior work.  Their approach is to seek out web browser 

redirection traffic from servers that are suspected to be hosted on botnet nodes and 

classify them as malicious based upon DNS behavior.  Their solution is a three-part 

system. The first part, known as the Spam Source Subsystem (SSS), detects 

redirection domains by following URLs harvested from spam emails.  The second 

subsystem, the NetFlow Analysis Subsystem (NAS), uses a statistical analysis 

technique known as sequential hypothesis testing (SHT) to determine if a sample seen 

in a NetFlow record is a redirection flow.  The final subsystem uses the database from 

the previous two subsystems over time to probe the suspect domains and collect 

attributes, which a machine-learned decision function uses to categorize the domain 

as malicious or benign. 
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Direction of this Thesis 

The work in this thesis begins with the notion of detecting web browser 

redirection in NetFlow as done in [20].  However, the ideas in this thesis decouple the 

threat of botnets from the threat of malicious web browser redirection.  It is true that 

botnets may control infrastructure that host malicious redirection servers and malware 

servers, but such malicious servers can exist on standalone servers, without the 

presence of botnets.  Malicious redirection servers can also exist in cases where an 

attacker has compromised a legitimate website. 

We apply the pertinent methods in [20] for detecting web browser redirection 

and show that this work can be extended to a different campus network four years 

after the initial application of the ideas and maintain relevance despite the many 

changes in the Internet and in web standards.  We validate the association of 

malicious activity with web browser redirection by using a different method than in 

[20], which adds rigor to the conclusion that there is an association between malicious 

activity and web browser redirection.  The method we use is a blacklist of IP 

addresses researched and compiled by external security organizations.  This method 

takes the subjectivity out of the determination of maliciousness (at least from our 

point of view) and simplifies our decision as a Boolean determination. 

Using a blacklist of IP addresses is also extremely convenient for NetFlow 

analysis because IP addresses are available in NetFlow records, whereas domain 

names and URLs are not. The IP address is thus the most likely field of a NetFlow 
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record that could intrinsically indicate malicious activity.  The reasoning is that there 

is nothing intrinsically malicious about other fields, such time stamps and byte counts 

from a single host, because benign traffic could be constructed that could result in 

almost any value for these fields.  Using IP addresses is more robust because IP 

addresses must be registered with a central authority, so there is at least a starting 

point for validating the legitimacy of content hosted by a given server using a specific 

IP address.  More importantly, if an IP address cannot be verified at all, then that is all 

the more reason for it to be suspicious.  It is true that there are limitations to this 

method—not the least of which is that IP addresses may not be isolated to individual 

entities.  These limitations are discussed more in depth at the end of Chapter 5. 

Two fundamental questions are addressed in the next two chapters.  First, can 

we infer that a web browser redirect is occurring by examining external size and 

timing information for a flow?  This question applies to all redirections—both 

malicious and benign.  This question is addressed in Chapter 4.  Second, can we 

determine whether a given redirect is benign or malicious?  This second question is 

addressed in Chapter 5. 
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Chapter 4: Detecting Web Browser Redirection in NetFlow 

 

The first step of the two-step strategy is detecting that a redirect has occurred.  

(The second step is determining whether or not that redirect is malicious.  This 

second step will be discussed in the next chapter.)  The detection of a redirect in 

NetFlow is actually an inference because NetFlow records do not maintain 

application-layer content that would be necessary to verify the redirect with absolute 

certainty.  But since the NetFlow records are intentionally filtered by destination port 

80, it is reasonable to assume that the flows generally correspond to web browsing 

activity of some type.  Under this assumption, three features are useful for further 

filtering the NetFlow records as being redirects.  These three features are 1) short 

flow duration, 2) short inter-flow duration, and 3) small flow size.  We then create a 

filter using these features and apply it to the network at the University of Maryland. 

Short Flow Duration 

 Flow duration refers to the duration of flow (b).  It can be a difficult indicator 

to apply because some servers do not terminate their TCP connections after 

redirecting clients through HTTP 301/302 redirects.  Although short flow duration is 

a highly informative feature in theory—because a server does not need much time to 

transmit the redirect—this feature is somewhat limited in practice because there is no 
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guarantee that the server will close the TCP connection and thereby terminate the 

flow after the redirect is served [20]. 

 TABLE 1 below shows values from the previous work by Hu et al., which has 

characterized features for classifying redirect vs. non-redirect flows.  The top third of 

the table gives first- and second-order statistics for flow duration at a large university 

network. 

 

TABLE 1  Previously published values for flow duration, inter-flow duration, and flow size on a 
large university campus network and broken out by redirection vs. normal activity 

 
 Mean Median Std dev 

Flow duration (ms) Redirection 305.5 128.6 2159.2 
Normal  33042.3 10028.8 91912.5 

Inter-flow duration (ms) Redirection 392.7 154.4 872.4 
Normal 40132.9 1345.5 87281.0 

Flow size (bytes) Redirection 2401 629 44530 
Normal 51495 4852 192431 

Data values reproduced from RB-Seeker. Hu, Knysz, and Shin. NDSS. 2009. 

 

The mean value is just over 300 milliseconds for redirects and over 33,000 

milliseconds for normal traffic.  With two orders of magnitude separating the means, 

I choose 500 milliseconds as a reasonable static threshold for filtering out redirects 

from non-redirects.  This value allows for a comfortable 200-millisecond cushion 

between the redirect mean value and the cut-off threshold. 
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Short Inter-flow Duration 

Short inter-flow duration refers to the time between the start of flow (a) and 

the start of flow (c).  It is the most important feature for inferring redirects—

especially malicious redirects—because it is necessary for a redirect to be short to be 

less intrusive to the user.  That being said, short inter-flow duration is not an adequate 

feature by itself for inferring redirects because web sites that load external content 

such as images (or even ads) from other sites will have a similar flow pattern of short 

inter-flow duration. 

Fig.  4 from [20] shows the cumulative distribution functions for redirect 

flows and non-redirect flows on the University of Michigan network.  Using this 

finding as a baseline measurement for choosing a static threshold to separate redirects 

from normal traffic, I choose a value of time where the separation between the CDFs 

is relatively high.  Visual inspection results in the red dashed line, which is located at 

approximately 1200 milliseconds.  There is reason to err on the side of a slightly 

longer threshold in order to include more redirects.  The first reason is that redirects 

make up a relatively small portion of overall network traffic, so having a larger 

sample helps reduce the base rate fallacy error [3].  The second reason is that if an 

attacker does try to evade this technique by introducing a delay in the redirect, the 

delay is typically an integer-number of seconds.  A delay of one second would be 

acceptable to pass through the 1200ms filter and still leave 200ms or network latency 

(a reasonable round-trip time for an Internet host). 
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Fig.  4.  The red vertical dashed line is overlaid at approximately 1200 milliseconds to indicate a 
relative maximum between the CDFs of the inter-flow duration times corresponding to the 
normal vs. redirection flows.  (The original figure is courtesy of Hu, Knysz, and Shin. RB-Seeker. 
NDSS. 2009.) 
 

Small Flow Size 

Intuitively, the size of flow (b) is small in the case of redirects because all that 

is needed is a small HTTP 301/302 message.  This small size should distinguish from 

a concurrent connection loading external content, which should be presumed to be 

much larger.  Exceptions to this small size of flow (b) could be caused by javascript 

redirects or HTML meta-tag redirects that could be included with a large web page. 

!
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Referring back to TABLE 1, the mean value of redirect flows is just over 2400 bytes 

and over 51,000 for normal flows.  This is still a large difference but not two orders 

of magnitude as for the other two features.  I choose 2,500 bytes to allow a small 

cushion to the upper side of the mean in order to respect the smaller sized non-

redirect flows that will inadvertently pass through this static threshold filter.  Again, it 

is preferred to err on the side of a more generous filter for redirects to include more 

true positive samples and reduce the impact of the base-rate fallacy [3]. 

Applying the filters 

The three static thresholds are applied to the campus NetFlow records.  

Intuitively, smaller values for these features are associated with redirects since a 

Server 1 redirect provides a small amount of information to the client in a short 

amount of time, after which the client usually proceeds immediately to Server 2.  The 

thresholds are as follows: 

 
1) Flow Duration <= 500 ms AND 
2) Inter-flow duration <= 1200 ms AND 
3) Flow size <= 2500 bytes. 

 
 

These values are chosen to maximize the number of redirect flows and minimize 

the number of normal flows for each metric as previously indicated by the red arrows 

in Fig.  4.  When combined, they empirically filter out an average of 0.15% of the 

University of Maryland campus network traffic as redirects.  The methodology of this 

calculation is explained in Chapter 5.  The expected percentages of the individual 
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thresholds are given in TABLE 3, but first we will describe the parametric models 

that provide those values.  The models are built from the values in TABLE 2, which 

are reproduced from [20].  This work concludes that the probability distributions for 

the three features follow lognormal distributions.  The reasoning of the authors is 

based upon a visual inspection of histograms of the data, where the values form a 

non-negative, heavy-tailed, bell-shaped curve.  The maximum likelihood estimates 

from the previous work are shown below for the inter-flow duration and size features 

for redirects (R) and normal (N) traffic. 

 

TABLE 2  Maximum likelihood estimates and confidence intervals for an assumed lognormal fit 
 
 µ 95% C.I. of µ σ 95% C.I. of σ 

Inter-R 5.270 [5.260, 5.281] 0.974 [0.966, 0.9812] 
Inter-N 7.982 [7.896, 8.067] 2.512 [2.454, 2.574] 
Size-R 6.529 [6.517, 6.542] 0.956 [0.948, 0.965] 
Size-N 8.423 [8.380, 8.466] 2.093 [2.063, 2.125] 

Data values reproduced from RB-Seeker. Hu, Knysz, and Shin. NDSS. 2009. 

 

The flow duration statistics are not included in the prior work.  The flow 

duration is considered the least valuable feature due to the problem of servers not 

closing out sessions after the redirect is served.  This thesis validates and quantifies 

that claim by reconstructing the distributions from the second-order statistics above 

and comparing the values of the respective cumulative distribution functions at the 

filter threshold values.  The results are depicted below in TABLE 3. 
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TABLE 3  Percentages of traffic captured based on thresholds 

Estimated Percentage of Traffic Captured   
 

  Thresholds Redirection Non-Redirect 
  Flow duration               500 (ms) 
  Inter-flow Duration     1200 (ms) 

53.59%*** 
96.92% 

36.16%*** 
36.13% 

  Flow size                     2500 (bytes) 91.22% 38.74% 
(***  Corresponds to a normal distribution, not lognormal) 

 

Indeed, the flow duration feature provides the least differentiation between 

redirects and non-redirects, with only a 17-percentage-point spread.  Meanwhile, the 

inter-flow duration and flow size parameters enjoy a much more comfortable 50- to 

60-percentage-point spread.  In particular, this difference is due to the redirection 

flow duration being relatively low (less than 54%) rather than to the non-redirect 

percentage being at a higher percentile.  This result is relevant because the flow 

duration threshold value of 500 milliseconds is generous in allowing flows to pass 

through the redirect filter.  (Recall, the mean value is just over 300 milliseconds.)  

The implication is that even with a more generous threshold, fewer flows passed 

through the redirect filter based upon flow duration than based upon the other two 

features.  This observation is consistent with the theory that valid redirects are missed 

with respect to flow duration due to servers not closing out TCP connections after 

serving redirects.  Due to this phenomenon, the authors in [20] do not include flow 

duration as a mandatory filtering criterion in their NetFlow analysis system for 

redirects.  Accordingly, they do not include the maximum likelihood estimates for the 
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first- and second-order statistics for flow duration in their second table, providing 

estimates and confidence intervals only for inter-flow duration and flow size.  

Without having the original data set, we revert to the sample mean and standard 

deviation values in TABLE 1 and model them with a normal distribution as indicated 

by the double asterisk in TABLE 3.     

Because this research focuses on web browser redirection, the set of campus 

NetFlow records from the gateway router are filtered to outbound flows with TCP 

port 80 to restrict the sample space to web browsing.  Flows with less than three 

packets are also filtered out because this is the minimum number of packets from the 

client to establish a TCP session and request a web page.  These filters are 

implemented directly from a standard NetFlow capture utility such as nfdump. 

The more difficult step is filtering the flows based upon inter-flow duration 

because unlike flow size and flow duration, inter-low duration is not directly stored in 

NetFlow records nor is it computed by standard NetFlow command line tools.  A 

custom analysis script is used to analyze the output from an nfdump log to identify 

redirects or normal traffic based on flow duration, flow size and inter-flow duration. 

Flow duration and flow size are straightforward parameters by which to filter the 

campus NetFlow records since they are standard NetFlow features and can be filtered 

by nfdump.  The inter-flow duration is not maintained in standard NetFlow records, 

so it is computed in post-processing.  The flow records are grouped by source IP 

address of the client and sorted by time.  Two consecutive flows initiated by the same 
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host IP address within the inter-flow duration threshold value (1,200 ms) are 

considered to be a redirect with respect to this feature. 
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Chapter 5: Labeling Malicious Flows 

 

 The second step of the two-step strategy is determining whether or not a given 

flow is malicious.  (The first step is determining whether or not a flow is a redirect as 

discussed in the previous chapter.)  We are primarily concerned with the 

maliciousness of redirect flows, but it is necessary to evaluate the maliciousness of all 

flows (redirect or not) when building performance metrics.  Our motivation is such 

that if we validate the assumption that redirect flows have a higher probability of 

being malicious, then it may be helpful for the security community or an 

overwhelmed system administrator to focus more attention on this subset of activity.  

The method used in this research is to label flows malicious if the remote IP 

address of a flow matches an IP address on a blacklist aggregated from several well-

known IP address reputation services [12][18][41].  The set of malicious IP addresses 

B is the union of the IP addresses in each of the publicly available blacklists B1, 

B2, B3. 

B = B1!B2!B3  

This method reduces the analysis to a simple Boolean determination, which 

aids simplicity.  Either the IP address being considered is an element of B or it is not.  

This emphasis on simplicity is intentional.  Since we are researching the association 

of redirects with malicious activity we do not want to confound the experiment by 

introducing uncertainty in the way maliciousness is determined.  For example, 
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maliciousness could be determined by whether or not the corporate intrusion 

detection firewall alerted the activity, but such an IDS is, itself, imperfect and creates 

many false-positive alerts.  In fact, most commercial IDSes have a variable setting 

used to turn down the sensitivity of the system to a rate of false positives that is 

manageable for the network administrator.  In fact, from a philosophical perspective it 

could be argued that the mechanism for determining maliciousness is necessarily 

imperfect.  If it were not, we would simply have used that mechanism for security 

monitoring to begin with, and there would not be a need for intrusion detection 

research.  A recently published work states this conclusion best by saying, “[G]iven 

the relative immaturity of the cyber research domain, there is significant value and 

importance in the simplest approaches” [24]. 

Other authors who have studied redirects in network flows use a more 

complicated mechanism for determining maliciousness.  They study the relationships 

among IP addresses, domain names, and autonomous systems to separate out 

malicious activity, and their approach is particularly tailored to the activities of 

botnets [20].  The blacklist method used in this thesis confirms the association 

between redirects and malicious web browsing without requiring follow-on analysis 

of DNS records and is not necessarily limited to botnets.  The advantages of the 

blacklist method are thus simplicity, generality, better privacy, and less data storage.  

The black list method is simpler because the determination is either true or false 

(match or no match).  This clarity is preferred because it reduces the amount of 

inference, improves reproducibility, and reduces possibilities for error.  The 
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determination is also more general in that it is not specific to botnet behavior.  A 

malicious site can be added to the blacklist because it is serving malicious web pages 

irrespective of whether or not that side is controlled through botnet infrastructure.  

Finally, the blacklist method allows for more privacy for users and requires less 

storage because it does not require the use of large DNS logs that contain lists of sites 

visited by users.  These last two issues are legitimate constraints that can limit 

research using DNS logs for research or security purposes at large organizations 

concerned about user privacy. 

Complications and Limitations 

The limitations of using a blacklist for determining maliciousness are relying 

on an outside source to make the determination.  There is no guarantee how often a 

site reputation service will update its list or how accurate the determination will be.  

There is still potential for false positives as well as false negatives.  False positives 

would most likely occur due to outdated information if, for example, a legitimate 

webserver had been compromised to serve exploits but had subsequently been 

cleaned.  Incorporating multiple blacklist sources into a single master blacklist helps 

combat false negatives.  There is greater likelihood that at least one source will 

correctly mark a deserving site as malicious. 

The biggest limitation of using IP addresses as the feature for a blacklist is 

that publicly routable IP addresses can be shared by many hosts through dynamic host 

configuration protocol (DHCP) and network address translation (NAT), so there is no 
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guarantee that a given IP address will always correspond to the same host.  Also, 

many websites can be hosted by the same infrastructure and share the same IP 

address, so it is possible that a malicious website could blend in with legitimate sites 

or that one malicious website could generate false positive indications for legitimate 

sites hosted on the infrastructure. 

Increasingly common client-side code can also create difficulties in detecting 

malicious redirects.  For example, if javascript or HTML meta-tags are used to 

redirect the client, then the attacker could also include a delay to throw off the short 

inter-flow duration parameter.  But such a delay would slow the loading of the final 

page, making the overall attack less discreet to the user. 

Even without purposeful evasion by an attacker, flow size, flow duration, and 

inter-flow duration can vary from one network to another due to various factors such 

as geography, available bandwidth, and congestion.  Using these parameters in a 

different campus network explores how they may need to be adapted to varying 

network environments and adjusted over time as technology and attacker techniques 

change. 
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Chapter 6:  Data and Results 

 

 This chapter presents the experiment and the empirical data that was collected 

from the experiment in order to show that web browser redirects occur in higher 

proportion in malicious traffic than in normal traffic.  We present the data and the 

method of analysis that we use to reach our conclusion.  At the end of the chapter we 

discuss some challenges and limitations of the experiment. 

Data 

The experiment considers full-take (i.e. un-sampled) NetFlow records 

captured in 20-minute durations twice a day for 12 consecutive days on the 

university’s gateway router.  The first sample was taken beginning at 1 pm, and the 

second sample was taken beginning at 11 pm on each of the 12 days.  The reason for 

choosing these two times was to account for any difference in data between business 

hours and non-business hours at the university.  Each 20-minute sample contained, on 

average, 36 million total web flows and 55,000 redirect flows (i.e. flows that matched 

the three-threshold filter).  On average, 9,000 flows were associated with malicious 

activity (i.e. had destination IP addresses matching the blacklist), which is 

approximately 0.025% of the total traffic. 
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Analysis 

The goal of our first phase of research is to confirm whether or not redirects 

are still a relevant indicator of malicious activity (e.g. drive-by download attacks).  To 

make this determination we measure the ratio of malicious flows out of redirect flows 

and compare that value to the ratio of malicious flows out of all flows.  We validate 

this condition by applying the inequality 

(Br / R) > (B / A), 

where the variables are defined as follows: 

Br is the number of malicious flows out of those marked as redirects by our filter (for 
the given time sample); 
 
R is the total number of redirects (as marked by our filter for the given time sample); 
 
B (bad) is the total number of malicious flows, defined as those going to external IP 
addresses on the master blacklist; and 
 
A (all) is total number of flows passing through the gateway NetFlow router during 
the given time interval. 
 

If the inequality is true, then there is a higher proportion of malicious flows in 

redirects than there is in the general population of flows.  To evaluate the relationship 

above, we derived a performance factor, which is the ratio of the fraction of malicious 

traffic in the redirect subset to fraction of malicious traffic in the overall subset.  

Performance Factor = (Br / R) / (B / A) 

If the performance factor is greater than 1, then the assumption that redirect traffic is 

more likely to be malicious holds.   
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Results 

Fig. 2 is a chart of the base-10 logarithm of the performance factors for each 

of the 24 20-minute NetFlow samples taken over 12 days.  Positive values for a 

sample indicate a higher concentration of malicious activity in redirect flows than in 

non-redirect flows for that sample.  Negative values indicate the reverse. 

 

 

Fig.  5.  The log of the performance factor of each sample illustrating the association of redirects 
with malicious activity. 
 

As shown in TABLE 4 there were, on average, 6.9 times as many redirect 

flows communicating with IP addresses on the blacklist than there were non-redirect 

flows communicating with those same IP addresses over the 12-day interval.  This 
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result confirms the belief that redirect flows are associated with malicious activity 

(assuming the three-threshold redirect filter is working as intended). 

 

TABLE 4  Br, R, B, and performance factor values over all 24 samples 

 

 

  Date/Time 
Total     
Malicious  
Redirects 

Total 
Redirects 

Total 
Malicious 
Flows 

Performance 
Factor 

  2012-12-03-1300 196 145161 11147 5.1838 
  2012-12-03-2300 130 87089 8890 5.8397 
  2012-12-04-1300 236 85017 19439 6.2383 
  2012-12-04-2300 37 47822 6945 3.7846 
  2012-12-05-1300 162 50971 16143 8.7356 
  2012-12-05-2300 140 111621 6870 6.2897 
  2012-12-06-1300 136 48608 11832 10.7016 
  2012-12-06-2300 19 22983 7153 4.0898 
  2012-12-07-1300 26 72298 8897 1.7219 
  2012-12-07-2300 17 16189 4630 6.3053 
  2012-12-08-1300 43 19249 5552 12.4815 
  2012-12-08-2300 22 18401 5459 6.1397 
  2012-12-09-1300 6 21696 6370 1.2994 
  2012-12-09-2300 122 86643 9342 5.2550 
  2012-12-10-1300 119 66388 14016 5.6742 
  2012-12-10-2300 48 54097 5970 5.2896 
  2012-12-11-1300 18 19045 11786 3.4409 
  2012-12-11-2300 61 46710 7388 5.9650 
  2012-12-12-1300 153 81044 9617 8.1918 
  2012-12-12-2300 415 73713 7257 27.8010 
  2012-12-13-1300 95 82925 9441 4.9148 
  2012-12-13-2300 85 46919 7444 8.0712 
  2012-12-14-1300 0 8666 5742 0 
  2012-12-14-2300 1 24195 6768 0.1874 
  Overall 
Performance  
  Factor 

   
6.9378 
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Only two samples do not have performance factors greater than 1.  Of these 

two, the first has no flows browsing to a blacklist, so the performance factor is zero.  

The second has only one flow browsing to an IP on the blacklist.  These are the two 

smallest instances of malicious flows out of redirect flows, so this outlier behavior is 

most likely the reason for performance factors less than 1.  The next smallest value in 

any 20-minute sample is six, which was large enough to provide adequate sampling in 

the experiment to result in a performance factor greater than 1 (1.3 to be exact). 

Visual inspection of the data does not indicate significant differences or any 

observable trends between the 1pm and the 11pm samples in terms of the 

performance factor or the absolute numbers of malicious or redirect flows.  So there 

is no reason to conclude that there is more or less malicious activity occurring at a 

specific time of the day. 

Challenges and Limitations 

 One of the challenges of conducting a research experiment involving an entire 

cross-section of flows at the gateway router of a relatively large campus network is 

managing the data and the infrastructure needed to support calculations on such 

relatively large data sets.  A sampling interval is often used when collecting NetFlow 

records so that a flow will be collected for only one out of every N packets, where N 

is a configurable value that may or may not have a random component [43].  This 

research used full-take (un-sampled) NetFlow in order to maintain the rigor of a 

complete sample set and so as not to bias the sample.  The average size of a 
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compressed five-minute NetFlow file used in this research is 134.3 MB, with sizes 

during peak hours exceeding 400 MB.  Each file averaged over 13,248 flows.  Even 

with filtering to remove network traffic not on port 80 and with preprocessing to 

remove traffic that was not relevant, uncompressed file sizes for the 20-minute 

exceed 2 gigabytes.  The compressed files pertaining to the experiment used 1.7 TB 

of network storage.  The impact of the relatively large data set is limited agility in 

manipulating the data.  Filtering and labeling the data required hours of computation 

time to compute data points, which limits exploratory and ad hoc manipulation of the 

data. 
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Chapter 7:  Parametric Probability Distribution Fitting of the 
Inter-flow Duration Time for Web Browser Redirects 

 

 Prior work has modeled the probability distribution function (PDF) of the 

inter-flow duration time of web browser redirects in order to conduct sequential 

hypothesis testing of redirection for individual servers [20].  This prior work found 

the lognormal parametric model to provide the best fit out the three models they 

tested.  This chapter explores the fits of other parametric models and concludes that a 

generalized extreme value model provides the best fit and best representation of the 

underlying phenomenon for the over 4,000 timing samples taken for interflow 

duration at the University of Maryland in 2013.  The methods considered for 

determining the best distribution are maximum likelihood estimation, the Pearson 

method of moments, the Johnson method of quantiles, and the shape properties of 

each distribution.  We also include Kolmogorov-Smirnoff statistics and chi-square 

goodness-of-fit statistics, which further support the conclusion that the generalized 

extreme value function provides the best fit for modeling inter-flow duration time for 

web browser redirects.  In this chapter we use MATLAB for much of the analysis and 

refer to equations from the software documentation [30][31][32]. 

Maximum Likelihood Estimation 

 Given the 4,424 data points corresponding to inter-flow duration samples, we 

wish to model a PDF fX (x)  for this empirical data using an appropriate parametric 
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model.  Specifically, given the data samples in a vector x, we wish to compute the 

values for θ  that maximize the likelihood function L(θ), where θ  is a vector of the 

parameters of the parametric distribution being tested.  The step of multiplying the 

probabilities assumes that the random trials are independent. 

 

L(! ) = f (! | x)
x!X
"  

 

We then take the log of the likelihood function so that the product of the 

probabilities does not approach zero as the number of data point becomes large.  The 

parameter values of θ  corresponding to the maximum of the log-likelihood function 

also correspond to maximum of the likelihood function.  This test is computed 

numerically for fourteen possible candidates of distribution functions.  TABLE 5 

shows the log-likelihood values corresponding to each of the candidate distributions.  

The maximum log-likelihood value has the smallest absolute value because log-

likelihood values are always non-positive.  This smallest magnitude of the negative 

values corresponds to the distribution with the best fit for this data (under the under 

the maximum likelihood test). 

The probability distribution with the best fit is the generalized extreme value 

distribution.  Interestingly, the probability distribution above with the worst fit is the 

extreme value distribution in its non-generalized form.  The next two sections will 

discuss these distributions specifically. 
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TABLE 5  Log-Likelihood Values of each distribution in order of best fit 

 
  Distribution 
 

 
Log-Likelihood Value 

  Generalized Extreme Value -7.8988e+03 
  Log-logistic -7.9222e+03 
  Gamma -8.3777e+03 
  Logistic -8.6201e+03 
  Weibull -8.7264e+03 
  Lognormal -8.7660e+03 
  Rayleigh -8.9333e+03 
  Rician -8.9333e+03 
  Generalized Pareto -9.5885e+03 
  Exponential -9.6720e+03 
  Normal -9.7444e+03 
  Birnbaum-Saunders -1.1331e+04 
  Inverse Gaussian -1.1933e+04 
  Extreme Value -1.2912e+04 

 

Previous research examined the parametric fits of lognormal, Weibull, and 

Pareto distributions for inter-flow duration times due to these distributions’ 

qualitative features of having non-negative values and long tails for positive values.  

These qualities are intuitive because inter-flow duration times cannot be negative and 

have relatively rare (but existent) high values that occur when the redirect is delayed.  

We examine how well PDFs of these parametric models fit with respect to the 

University of Maryland data.  As can be seen in Fig.   6, the lognormal and Weibull 

distributions can be shifted and scaled such that their bell shapes roughly match the 

bulk of the empirical inter-flow duration samples.  However, a close look reveals that 

there is considerable improvement for having a tighter fit, particularly at the smaller 
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time values where the lognormal fit and the Weibull fit flare outside the data.  (Note: 

The Pareto distribution was also considered in [20], but that PDF is omitted because 

it’s fit to our data is extremely poor and detracts aesthetically from the resulting 

chart.)  In addition, these two distributions do not rise as high at the peak of the 

empirical data, nor are they as well centered with the rise in the empirical data, as is 

the generalized-extreme-value-fitted curve.  Let us then examine the generalized 

extreme value distribution and its special subcase, the extreme value distribution. 

 

 

Fig.   6.  PDFs of Inter-flow duration measurements are shown for over 4,000 samples from the 
university network.  The Weibull fit (green dashed curve) and lognormal fit (yellow dashed 
curve) are not as tight fitting to the empirical data (blue bars) as the generalized extreme value 
curve (solid red line). 
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Extreme Value Distribution  

The extreme value distribution is useful for modeling situations where the 

outlying observation of a block of observations is the object of focus.  There are both 

maximum and minimum extreme value cases.  More specifically, the extreme value 

distribution can be used to model the smallest or largest value among a large set of 

independent, identically distributed values of measurements. The breaking tension of 

a chain, which occurs at the minimum breaking tension of the weakest link, is an 

example of an application for the minimum extreme value distribution.  The highest 

daily return on a stock could be an example of a maximum extreme value case.  The 

minimum extreme value curve is skewed to the left (i.e. mean < median < mode), 

whereas the maximum extreme value curve is skewed to the right (i.e. mode < median 

< mean) [17].  The probability density function of the extreme minimum value 

distribution is expressed below. 
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The PDF of the extreme maximum value distribution is found by taking the negative 

of the two (x-µ)/σ terms above.  Both functions have a location parameter µ and a 

scale parameter σ.  As can be seen by the presence of the base of the natural exponent 

in the equation above, the extreme value distribution is best suited for modeling the 
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extreme values of phenomena whose tails decay exponentially fast—similarly to the 

tails of the normal distribution or the exponential distribution.  Since the Weibull 

distribution was previously mentioned, it is worth noting that the extreme value PDF 

can be related to the Weibull distribution as follows:  If a random variable T has a 

Weibull distribution with scale parameter α and shape parameter β, then ln T has an 

extreme value distribution with parameters µ = ln α and σ = 1/β. 

The notion of a maximum extreme value is particularly intuitive for our model 

of inferring web browser redirection because it relates nicely to the maximum 

allowable threshold (1200ms) in the initial work for the inter-flow duration filter.  

The false negatives (undetected redirects) correspond to flows with inter-flow 

durations in the “long-tail” region of the maximum extreme value PDF. 

Next, we will see how the extreme value intuition can be maintained and the 

fit improved by expanding our model to the generalized extreme value model.  Recall 

that the measurement of inter-flow duration is an observation of the measured time 

between the start of flow (a) to the redirection server and the start of flow (b) to the 

termination server.  If we let m designate the theoretical best-case round-trip time 

between a given client and a typical web server on the Internet during a non-

congested window of time when throughput is highest, then m could loosely represent 

a minimum bound on the maximum extreme value of a web browser redirection 

event.  The type II generalized extreme value distribution meets this property and is 

described next. 
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Generalized Extreme Value 

The generalized extreme value (GEV) function introduces a third parameter, 

k, to designate the shape of the GEV PDF.  The probability density function for the 

generalized extreme value distribution with location parameter µ, scale parameter σ, 

and shape parameter k ≠ 0 is 
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The function above is also subject to the constraint below. 

1+ k x !µ
!

> 0   

The condition k > 0 corresponds to the type II case, while k < 0 corresponds to the 

type III case.  The condition k = 0 corresponds to the type I case, which reduces to the 

non-general form of the maximum extreme value PDF, below. 
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Like the extreme value distribution, the generalized extreme value distribution 

can be used to model the smallest or largest value among a large set of independent, 
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identically distributed observations of a random phenomenon.  The generalized 

extreme value model unites the three simpler distributions into a single form that 

allows for a continuous range of shapes composed of any of the three simpler 

distributions.  Types I, II, and III are sometimes also referred to as the Gumbel, 

Fréchet, and Weibull types.  The type II (Fréchet) case is equivalent to taking the 

reciprocal of values from a standard Weibull distribution. 

The domain of the generalized extreme value distribution is (-∞, ∞), but it is 

worth noting the differences in the domains of each of the three generalized extreme 

value types.  The maximum GEV domains are as follows: the type I has domain (-∞, 

∞); the type II has domain (m, ∞); and the type II has domain (-∞, M).  The values m 

and M are used to represent the finite values of the minimum and maximum, 

respectively.  It is easily shown that for a type II GEV distribution 

 

m = !
!
k
+µ , where k > 0. 

 

Similarly, for a type III GEV distribution 

M = !
!
k
+µ , where k < 0. 

 

The following figure shows the “standard” GEV of maximum values, that is 

with µ = 0 and σ = 1.  Values of -0.5, 0, and 0.5 are chosen for k to distinguish the 
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three types.  Accordingly, as can be seen below, the values of m and M occur at -2 

and 2, respectively for these sample plots of the standard GEV distribution. 

 

 

Fig.  7.  Samples of the three cases of Generalized Extreme Value PDFs normalized by (x-µ)/σ .  
The k values are -0.5, 0, and 0.5 for the Type III, Type I, and Type II, respectively. 
 

A final note about the generalized extreme value distribution is with respect to 

its qualitative properties.  When considering the tails, the type III distribution has a 

finite tail; the type I distribution has an exponentially decreasing tail; and the type II 

distribution’s tail decreases at a less extreme polynomial rate.  Since the empirical 

data has a fairly heavy tail with outliers that can last into the tens of seconds for inter-
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flow duration, we are not surprised that the type II distribution had the best fit when 

we consider the tail of the data.  More thought provoking, however, is the way that 

the model of the type II generalized extreme value distribution fits the underlying 

phenomenon for inter-flow duration.  As previously alluded to, the lower minimum 

limit, m, allows for the construction of a model where the minimum value of the 

maximum extreme value distribution cannot fall below a certain threshold.  In the 

context of a web browser redirection traversing a network this lower limit could be 

represented by a factor of two times the minimum round-trip from the client to nearby 

servers on a fast, uncongested link.  The factor of two occurs due to the fact that there 

are two round trips that occur during a typical web browser redirect, he first being 

from client to the redirection server and the second being from client to the target 

server. 

The Pearson Method 

The Pearson method of fitting a probability distribution to a set of data points 

uses the values of mean, standard deviation, skew, and kurtosis of the data.  These 

parameters come from first four moments of the data set.  These corresponding values 

for the inter-flow duration data are as follows: 

[mean = 3.2748]    [std. dev. =2.1898]    [skew = 4.6519]    [kurtosis = 40.0567]. 

Computing the Pearson coefficients using statistical software yields the following 

values: 

[c1 = 0.7756]    [c2 = 1.6299]    [c3 = 0.0748], 
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which correspond to the coefficients of the quadratic polynomial in the following 

equation, 

d
dx
ln(p(x)) = !(a+ x)

c0 + c1x + c2x
2 . 

 

The Pearson system tests which family of distributions best fits the data.  There are 

eight families as described below. 

 
0 — Normal distribution 
1 — Four-parameter beta distribution 
2 — Symmetric four-parameter beta distribution 
3 — Three-parameter gamma distribution 
4 — Not a typical distribution; the density is proportional to: 
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5 — Inverse gamma distribution with location and scale parameters 
6 — Snedecor’s F distribution with location and scale parameters 
7 — Student's t distribution with location and scale parameters 
 

Analysis of the empirical inter-flow duration data shows that the distribution family 

that fits the data best is number 6—the F distribution with added location and scale 

parameters.  The PDF of the standard F distribution for x>0 is provided below 
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where x is the ratio of two chi-square random variables  and ν1 and ν2 are the 

degrees of freedom of the numerator and denominator of that ratio.  Adding two 

additional parameters as done in the Pearson method to shift and scale x allows a very 

close fit to the empirical data.  Below is a figure of the cumulative distribution 

functions of the empirical CDF of the inter-flow duration data (blue) and the fitted 

CDF comprised by the Pearson-fitted F location-scale model (red). 

 

Fig.  8.  The best fitting Pearson model CDF (having an F location-scale distribution) is overlaid 
on the empirical inter-flow duration CDF.  The x-axis units are in seconds. 
 

The overall fit is good, providing confidence in the computed moments and derived 

statistical parameters, but the empirical CDF is not smooth at the beginning (up to 
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about the first 1.75 seconds).  If we zoom in to the early parts of the distribution we 

see that the empirical CDF increases approximately linearly from zero before 

beginning its steep ascension. 

 
Fig.  9.  The early rise of the empirical CDF is approximately linear before rising sharply at 
about 1.75 seconds.  
 

 The initial linear component in the rise of the empirical CDF comprises 

approximately 3.5% of the samples or about 150 redirects.  The notion behind this 

observation is that there was a small subset of URLs that were accessed in a relatively 

short period of time compared to the others.  Visual inspection of the source and 

target URLs accessed during this initial phase does not reveal any noticeable 

differences between these URLs and the overall population of probed URLs.  The 
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initial linear shape could be an experimental aberration, but it is more likely that it is 

the result of an underlying property of the network.  For example, the smaller subset 

of URLs could correspond to pages that were cached.  If the pages themselves were 

not cached, it is possible that DNS entries were cached. 

 Although the Pearson method can provide a very close fit in the form of the 

location-scale F distribution, it should be noted that there is nothing intrinsic about 

the distribution that matches the underlying phenomenon of inter-flow duration of 

web browser redirection.  Modeling a random variable as the ratio of two chi-square 

random variables does not have an obvious meaning in the context of explaining 

variation in network delay for web browsing.  Such logic leads to the conclusion that 

the Pearson method results in a highly correlated match that is not necessarily 

causally related.  We will continue the investigation into modeling inter-flow duration 

of redirects by examining how the empirical data might be explained by the Johnson 

method of distribution fitting. 

The Johnson Method 

 Similar to the Pearson method, the Johnson method of fitting a probability 

distribution to data incorporates four known statistical quantities about the data and 

maps any unique 4-tuple to a well-defined distribution.  Whereas the Pearson method 

uses moments, the Johnson method uses quantiles.  The quantile values are used to 

transform the normal distribution with either an exponential, logistic, or hyperbolic 

sine transform.  These transforms result in distributions traditionally referred to as 
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Johnson types SL, SB, or SU, respectively.  If the normal distribution is the best fit, 

then an identity transform is used and is designated as Johnson type SN.  The Johnson 

method makes use of the following equation. 
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The random variable under study is X; Z is a standard normal random 

variable; Γ is the appropriate transform (exponential, logistic, or hyperbolic sine); and 

ξ, λ, γ, and δ are the scale and location parameters.  Fitting a distribution to the inter-

flow duration times of the redirects results in the logistic transform providing the best 

fit, corresponding to a Johnson SB distribution.  This result is significant because prior 

research has modeled inter-flow duration with a lognormal PDF, which would 

correspond to a Johnson SL distribution.  But the Johnson method, when applied 

directly to the empirical data, discounts the value of the SL distribution in favor of the 

SB distribution.  It seems fairly conclusive that (at least for this data set) a lognormal 

distribution is not the best fit for characterizing the inter-flow duration phenomenon. 

 Below is a figure of the cumulative distribution functions of the empirical 

CDF of the inter-flow duration data (blue) and the fitted CDF comprised of the 

Johnson-fitted logistic model (red). 
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Fig.  10.  The best fitting Johnson model CDF (having a logistic transform) is overlaid on the 
empirical inter-flow duration CDF.  The x-axis units are in seconds. 
 

The resulting parameters for the Johnson-fitted model are as follows: 

[xi, lambda, gamma, delta] = [0.9244    0.4357    1.8802    5.1811], 

and the quantiles were computed using the following standard normal distribution 

values 

[-1.5    -0.5    0.5    1.5], 

which, in turn, correspond to the following values in seconds for the empirical inter-

flow duration times in seconds 

[1.90    2.07    3.30    5.97]. 
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By visual inspection of the fitted CDF with respect to the empirical data, the overall 

fit is good, providing confidence in the quantile values and derived statistical 

parameters. 

Additional Distribution Attributes  

 Adding one final round of analysis to the inter-flow duration data.  We check 

the Kolmogorov-Smirnov and chi-square statistics of the empirical data fitted to each 

of the candidate parametric models.  The results are shown in the chart below.  The 

distributions are ordered as they were in TABLE 5 by order of best log-likelihood fit. 

 

TABLE 6  Additional statistical, domain, and qualitative shape data for the distributions 

 
  Distribution 
 

 
Kolmogorov- 

Smirnov 
Chi-Square 

Domain 

Bell-
Shaped 

with 
Right 
Skew Stat Rank Stat Rank 

Gen. Extreme Val. 0.11067 1 2735.9 1 (a,∞) Yes 
Log-logistic 0.20960 10 2988.9 2 [0,∞) Yes 
Gamma 0.24603 14 5027.5 10 [0,∞) Yes 
Logistic 0.19363 7 6008.7 13 (-∞,∞) No 
Weibull 0.18723 6 5885.0 12 [0,∞) Yes 
Lognormal 0.20771 9 3010.9 3 (0,∞) Yes 
Rayleigh 0.17552 5 5601.4 11 [0,∞) Yes 
Rician 0.19514 8 3407.8 4 [0,∞) Yes 
Generalized Pareto 0.13910 3 n/a n/a [a,∞) No 
Exponential 0.38636 15 4778.2 8 [0,∞) No 
Normal 0.21322 11 4404.9 6 (-∞,∞) No 
Birnbaum- Saunders 0.39860 16 7171.8 14 (0,∞) Yes 
Inverse Gaussian 0.22770 12 4356.1 5 (0,∞) Yes 
Extreme Value 0.22818 13 4722.7 7 (-∞,∞) Yes 
Pearson Type VI 0.17447 4 4853.5 9 [0,∞) Yes 
Johnson SB 0.13835 2 n/a n/a [a,b] Yes 
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 The Kolmogorov-Smirnoff and chi-square columns provide absolute 

statistical values and relative ranking values so that the distributions can be compared 

accordingly.  Again, the Generalized Extreme Value distribution was the best fit, 

ranking first in both categories.  Statistical values are also provided at the bottom 

section of the table for the Pearson Type VI (the best-fitting Pearson distribution) and 

the Johnson SB distribution (the best-fitting Johnson distribution). 

 The last two columns in the table present values for the domain and the 

qualitative shape characteristics for each distribution.  Note that these values 

correspond to this specific data.  In general, many of the distributions have shape 

characteristics that can change widely from one family to another based upon the 

values of the parameters.  Since the empirical data is bell-shaped and skewed to the 

right, distributions that support that shape type naturally fit to that shape.  There were 

four exceptions that did not fit this shape.  The exponential and generalized Pareto 

distributions were not bell-shaped.  They only exist as decaying (monotonically 

decreasing) functions.  The logistic and normal distributions are necessarily 

symmetric and therefore do not match the right skew in the empirical data. 

 The domain of the empirical data was bounded at a minimum value greater 

than zero.  The generalized Pareto and Johnson SB distributions are the only other 

distributions that fit that criterion.  In addition, the Johnson SB distribution is the only 

distribution in the table that is bounded on the right by a maximum value. 
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Synthesis of Distribution-Fitting Results 

 The results of the distribution-fitting tests are very conclusive in that they all 

find the generalized extreme value distribution to provide the best fit to the data.  The 

maximum likelihood estimation, the Kolmogorov-Smirnov statistic test, and the chi-

square goodness-of-fit test all support this conclusion.  More importantly, however, is 

the notion that there is an underlying relationship in the mechanism of the web 

browser redirection and the properties of the network that may be causing the data to 

shape with the generalized extreme value distribution and not just correlate to it.  

Such a relationship is valuable because it provides greater confidence in the statistical 

model and in predicting how the model might change when underlying factors 

change. 

 One surprising result from the distribution-fitting analysis is how long the 

inter-flow duration times were.  The mean time of over 2000ms was longer than the 

devised threshold time of 1200ms.  The data samples were constructed by running a 

script that visits known-redirect URLs from inside the campus network, while the 

timing and size information is collected from the university’s gateway router.  It is 

possible that an unaccounted-for variable could have been introduced that delayed the 

times.  It is also possible that the longer times simply reflect a changing trend in 

malicious redirects.  This open question is discussed further in the future work section 

of the concluding chapter.  
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Chapter 8: Conclusion 

 

 This final chapter reviews the essential elements of this thesis and presents 

ideas for future work. 

Summary 

 In a network security environment where malware is increasingly delivered 

via web browsers, security researchers seek method to detect such web-based threats.  

If the malware, itself, cannot be detected due to encryption or unavailable IDS 

signatures, then alternative indicators are sought.  Web browser redirection is one 

indicator that has been linked to widespread web-based malware.  Meanwhile, 

NetFlow has become a useful tool for security awareness.  NetFlow provides the 

benefit of being unaffected by the use of encryption that hinders content-based 

intrusion detection systems. 

This thesis presented a method for using NetFlow to infer the presence of web 

browser redirection on a network.  We implemented a blacklist-based method for 

labeling malicious traffic and showed that this malicious traffic occurs 7 times more 

frequently in network traffic that meets the redirect filter heuristics—confirming the 

expectation that redirects and malicious activity have a relevant association. 

This thesis also presented an in-depth analysis of parametric models for the 

inter-flow duration time of web browser redirects.  We broadened the possible 
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distribution candidates for this paramount feature and conclude that the generalized 

extreme value distribution provides superior fit for the traffic samples studied on our 

university network.  This finding connects extreme value theory with intuition of 

round-trip-time extrema. 

Applications and Future Work 

The methods presented in this thesis could be used to filter web browsing 

traffic to send higher risk flows (i.e. probable redirects) to a specialized security 

system for follow-on processing.  This research may also be valuable to the field of 

network-based application recognition, where the activity in upper-layer protocols is 

inferred based upon behavioral analysis of network flows. 

Future work should incorporate samples of packet capture or similar “ground 

truth” verification methods to quantify the false positive rate and false negative rate 

of the redirection flow heuristic.  Having verified detection percentages, future work 

may also wish to experiment with additional detection thresholds and explore the 

sensitivity as the threshold is varied. 

The probability distributions of other key features, such as flow size and flow 

duration could be analyzed in depth, the way inter-flow duration was analyzed in 

Chapter 7.  These distribution models could also be tested for specificity to the 

networks of different organizations.  The goal would be to determine how universal 

the parameter thresholds are or understand how they vary among different networks.  
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The suspicion is that the heuristics will vary over time and across network 

topologies…much like the unsanctioned activities they seek to uncover. 

  



 

 

61 

 

Bibliography 

 

[1] Aitchison, J. and Brown, J. A. C.,(1957), The Log-normal distribution,  
Cambridge University Press, New York and London. 

[2] Antonakakis, M. et al. 2011. Detecting malware domains at the upper DNS 
hierarchy. Proceedings of the 20th USENIX Security Symposium, USENIX Security 
(2011), 27. 

[3] Axelsson, S. (1999). The Base-Rate Fallacy and its Implications for the Difficulty 
of Intrusion Detection. Proceedings of the 6th ACM conference on Computer and 
communications security - CCS  ’99, 1–7. 

[4] Beirlant, J; Y. Goegebeur; J. Segers; J. Teugels (2005): Statistics of 
Extremes. Theory and Applications. John Wiley & Sons Ltd. 490p 
 
[5] Bilge, Leyla, Davide Balzarotti, William Robertson, Engin Kirda, and Christopher 
Kruegel. "Disclosure: detecting botnet command and control servers through large-
scale NetFlow analysis." In Proceedings of the 28th Annual Computer Security 
Applications Conference, pp. 129-138. ACM, 2012. 

[6] Claise, B. 2004. Cisco systems NetFlow services export version 9. 

[7] Claise, B. 2008. Specification of the IP flow information export (IPFIX) protocol 
for the exchange of IP traffic flow information. 

[8] Coles, S (2001): An Introduction to Statistical Modeling of Extreme Values. 
Springer Series in Statistics. Springer Verlag London. 208p 

[9] Colon, M. 2013. New study finds malware variants skirting AV, mostly delivered 
via web. SC Magazine. 

[10] Coskun, B. and Dietrich, S. 2010. Friends of An Enemy  : Identifying Local 
Members of Peer-to-Peer Botnets Using Mutual Contacts Categories and Subject 
Descriptors. Proceedings of the 26th Annual Computer Security Applications 
Conference (2010), 131–140. 

[11] CWE-601: URL Redirection to Untrusted Site (’Open Redirect'): 2012. 
http://cwe.mitre.org/data/definitions/601.html. 



 

 

62 

 

[12] DNS-BH – Malware Domain Blocklist: White Paper: 
http://www.malwaredomains.com/?page_id=6#Summary. Accessed: 2013-02-15. 

[13] Embrechts, P., C. Klüppelberg, and T. Mikosch. Modelling Extremal Events for 
Insurance and Finance. New York: Springer, 1997. 

[14] Foroushani, V.A. et al. 2008. Intrusion detection in encrypted accesses with SSH 
protocol to network public servers. 2008 International Conference on Computer and 
Communication Engineering. (May. 2008), 314–318. 

[15] Goh, V.T. et al. 2010. Experimenting with an Intrusion Detection System for 
Encrypted Networks. International Journal of Business Intelligence and Data 
Mining. 5, 2 (2010), 172–191. 

[16] Gumbel, E. J. (1954), Statistical Theory of Extreme Values and Some Practical 
Applications, National Bureau of Standards Applied Mathematics Series 33, U.S. 
Government Printing Office, Washington, D.C. 
 
[17] Gupta, B. C. and Guttman, I.  Statistics and Probability with Applications for 
Engineers an Scientists. New Jersey: Wiley, 2012. 
 
[18] How are URLs Verified to be Malicious?: 
http://www.malwaredomainlist.com/forums/index.php?topic=1634.0. Accessed: 
2013-02-15. 

[19] Howard, F. 2012. Exploring the Blackhole exploit kit. NakedSecurity. 
http://sophosnews.files.wordpress.com/2012/03/blackhole_paper_mar2012.pdf 
Sophos Labs.  March (2012). 

[20] Hu, X., Knysz, M., and Shin, K.G. 2009. Rb-seeker: Auto-detection of 
redirection botnets. Proc. of 16th Annual Network & Distributed System Security 
Symposium (NDSS). (2009). 

[21] Iliofotou, M. et al. 2007. Network Monitoring using Traffic Dispersion Graphs ( 
TDGs ). Proceedings of the 7th ACM SIGCOMM conference on Internet 
measurement (2007), 315–320. 

[22] Joglekar, S.P. and Tate, S.R. 2005. ProtoMon  : Embedded Monitors for 
Cryptographic Protocol Intrusion Detection and Prevention. Journal of Universal 
Computer Science. 11, 1 (2005), 83–103. 

[23] Johnson, N. L., S. Kotz, and N. Balakrishnan. Continuous Univariate 
Distributions. Vol. 2, Hoboken, NJ: Wiley-Interscience, 1994. 



 

 

63 

 

 
[24] Kent, A. D., Liebrock, L. M., & Neil, J. 2013. Web Adoption  : An Attempt 
Toward Classifying Risky Internet Web Browsing Behavior. LASER 2013 
Workshop. 
 
[25] Kotz, S., and S. Nadarajah.Extreme Value Distributions: Theory and 
Applications. London: Imperial College Press, 2000. 

[26] Koch, R. and Rodosek, G.D. 2010. Command Evaluation in Encrypted Remote 
Sessions. 2010 Fourth International Conference on Network and System Security. 
(Sep. 2010), 299–305. 

[27] Lam, J.  Top 25 Series - Rank 23 - Open Redirect.  SANS Software Security 
Institute.  (2010 Mar.) [Online], Available: http://software-
security.sans.org/blog/2010/03/25/top-25-series-rank-23-open-redirect 

[28] Leontiadis, N. et al. 2011. Measuring and Analyzing Search-Redirection Attacks 
in the Illicit Online Prescription Drug Trade. Measurement. (2011), 1–17. 

[29] McHugh, J. (2000). Testing Intrusion detection systems: a critique of the 1998 
and 1999 DARPA intrusion detection system evaluations as performed by Lincoln 
Laboratory. ACM Transactions on Information and System Security, 3(4), 262–294. 

[30] Mathworks. (2013, Nov). Extreme Value Distribution (R2013) [Online], 
Available: http://www.mathworks.com/help/stats/extreme-value-distribution.html 
 
[31] Mathworks. (2013, Nov).  Generalized Extreme Value Distribution (R2013) 
[Online], Available: http://www.mathworks.com/help/stats/generalized-extreme-
value-distribution.html 
 
[32] Mathworks. (2013, Nov).  Modelling Data with the Generalized Extreme Value 
Distribution (R2013) [Online], Available: http://www.mathworks.com/help/stats/ 
examples/modelling-data-with-the-generalized-extreme-value-distribution.html 
 
[33] Mavrommatis, P. and Provos, N. 2008. All Your iFRAMEs Point to Us. USENIX 
Security  ’08 (San Jose, CA, 2008), 1–16. 

[34] McRee, R. 2008. Open Redirect Vulnerabilities: definition and prevention. 
INSECURE. Page 43. Issue 17. July 2008. 

[35] Nagaraja, S. et al. 2010. BotGrep  : Finding P2P Bots with Structured Graph 
Analysis. Proceedings of the 19th USENIX Conference on Security (2010). 



 

 

64 

 

[36] NIST/SEMATECH e-Handbook of Statistical Methods, 
http://www.itl.nist.gov/div898/handbook/, November, 2013. 
 
[37] Palo Alto Networks. (2013, Mar). The Modern Malware Review, 1st Edition.  
[Online] Available: http://media.paloaltonetworks.com/documents/The-Modern-
Malware-Review-March-2013.pdf 
 
[38] Selvan, Sabari. (2013, Nov). Another Mass IFrame Injection Attack | 350,000 
ASP Sites Infected. [Online], Available: 
http://www.ehackingnews.com/2011/10/another-mass-iframe-injection-attack.html 

[39] Shue, C.A. et al. 2008. Exploitable redirects on the web: Identification, 
prevalence, and defense. Proceedings of the 2nd conference on USENIX Workshop on 
offensive technologies (2008), 1–7. 

[40] Stover, S. et al. 2007. Analysis of the Storm and Nugache trojans: P2P is here. 
USENIX  ;login. 32, 6 (2007), 18–27. 

[41] The Carrot and the Stick Project: http://tcats.stop-spam.org/tcats/bnbl/. 
Accessed: 2013-02-20.  

[42] Random Sampled NetFlow. Cisco IOS Software Releases 12.3 T. 
http://www.cisco.com/en/US/docs/ios/12_0s/feature/guide/nfstatsa.html 
 
[43] Testing Whether the Shape Parameter is Zero in the Generalized Extreme-Value 
Distribution. J. R. M. Hosking. Biometrika , Vol. 71, No. 2 (Aug., 1984), pp. 367-374 


