
ABSTRACT

Title of Dissertation: SPARSE REPRESENTATION,
DISCRIMINATIVE DICTIONARIES
AND PROJECTIONS
FOR VISUAL CLASSIFICATION

Ashish Shrivastava, Doctor of Philosophy, 2015

Dissertation directed by: Professor Rama Chellappa
Department of Electrical and Computer
Engineering

Developments in sensing and communication technologies have led to an explo-

sion in the availability of visual data from multiple sources and modalities. Millions

of cameras have been installed in buildings, streets, and airports around the world

that are capable of capturing multimodal information such as light, depth, heat

etc. These data are potentially a tremendous resource for building robust visual

detectors and classifiers. However, the data are often large, mostly unlabeled and

increasingly of mixed modality. To extract useful information from these heteroge-

neous data, one needs to exploit the underlying physical, geometrical or statistical

structure across data modalities. For instance, in computer vision, the number of

pixels in an image can be rather large, but most inference or representation mod-

els use only a few parameters to describe the appearance, geometry, and dynamics

of a scene. This has motivated researchers to develop a number of techniques for

finding a low-dimensional representation of a high-dimensional dataset. The dom-

inant methodology for modeling and exploiting the low-dimensional structure in

high dimensional data is sparse dictionary-based modeling. While discriminative

dictionary learning have demonstrated tremendous success in computer vision ap-

plications, their performance is often limited by the amount and type of labeled data

available for training. In this dissertation, we extend the sparse dictionary learning

framework for weakly supervised learning problems such as semi-supervised learning,

ambiguously labeled learning and Multiple Instance Learning (MIL). Furthermore,

we present nonlinear extensions of these methods using the kernel trick. We also

address the problem of choosing the optimal kernel for sparse representation-based

classification using Multiple Kernel Learning (MKL) methods. Finally, in order to

deal with heterogeneous multimodal data, we present a feature level fusion method

based on quadratic programing. The dissertation has been divided into following

four parts:

1) In the first part, we develop a discriminative non-linear dictionary learning

technique which utilizes both labeled and unlabeled data for learning dictionaries.

We compute a probability distribution over class labels for all the unlabeled samples

which is updated together with dictionary and sparse coefficients. The algorithm is

also extended for ambiguously labeled data when part of the data contains multiple

labels for a training sample.

2) Using non-linear dictionaries, we present a multi-class Multiple Instance

Learning (MIL) algorithm where the data is given in the form of bags. Each bag

contains multiple samples, called instances, out of which at least one belongs to

the class of the bag. We propose a noisy-OR model and a generalized mean-based

optimization framework for learning the dictionaries in the feature space. The pro-

posed method can be viewed as a generalized dictionary learning algorithm since it

reduces to a novel discriminative dictionary learning framework when there is only

one instance in each bag.

3) We propose a Multiple Kernel Learning (MKL) algorithm that is based on

the Sparse Representation-based Classification (SRC) method. Taking advantage

of the non-linear kernel SRC in efficiently representing the non-linearities in the

high-dimensional feature space, we propose an MKL method based on the kernel

alignment criteria. Our method uses a two step training method to learn the kernel

weights and the sparse codes. At each iteration, the sparse codes are updated first

while fixing the kernel mixing coefficients, and then the kernel mixing coefficients

are updated while fixing the sparse codes. These two steps are repeated until a

stopping criteria is met.

4) Finally, using a linear classification model, we study the problem of fusing

information from multiple modalities. Many current recognition algorithms combine

different modalities based on training accuracy but do not consider the possibility

of noise at test time. We describe an algorithm that perturbs test features so that

all modalities predict the same class. We enforce this perturbation to be as small

as possible via a quadratic program (QP) for continuous features, and a mixed

integer program (MIP) for binary features. To efficiently solve the MIP, we provide

a greedy algorithm and empirically show that its solution is very close to that of a

state-of-the-art MIP solver.

SPARSE REPRESENTATION, DISCRIMINATIVE

DICTIONARIES AND PROJECTIONS
FOR VISUAL CLASSIFICATION

by

Ashish Shrivastava

Dissertation submitted to the Faculty of the Graduate School of the
University of Maryland, College Park in partial fulfillment

of the requirements for the degree of
Doctor of Philosophy

2015

Advisory Committee:
Professor Rama Chellappa, Chair/Advisor
Professor Larry S. Davis
Professor Jonathan Simon
Professor Amitabh Varshney
Dr. Vishal M. Patel

c© Copyright by

Ashish Shrivastava
2015

Acknowledgments

I owe my gratitude to all the people who have made this dissertation possible

and because of whom my graduate experience has been one that I will cherish

forever.

First and foremost I’d like to thank my advisor, Professor Rama Chellappa

for giving me an invaluable opportunity and freedom to work on challenging and

extremely interesting problems over the past five years. He has always made himself

available for help and advice and there has never been an occasion when I’ve knocked

on his door and he hasn’t given me time. His outstanding support and encouraging

words have always inspired me to work hard and stay focused on my research. It

has been a pleasure to work with and learn from such an extraordinary individual.

I would also like to thank research associate Dr. Vishal Patel, who helped me

with many technical ideas and taught me a great deal on writing papers. Without

his fantastic ideas and expertise, this dissertation would have been a distant dream.

Thanks are due to Professor Larry Davis, Professor Jonathan Simon and Professor

Amitabh Varshney for agreeing to serve on my thesis committee and for sparing

their invaluable time reviewing the manuscript. My special thanks to Professor

Larry Davis for his extremely useful comments and suggestions on my multi-modal

learning work.

I would like to thank all my colleagues at ECE and UMIACS who have enriched

my graduate life in many ways. My co-author and a great friend Jai Pillai deserves

special mention for helping me with my first paper and participating in multiple

ii

useful discussions.

I owe my deepest thanks to my parents who have always stood by me and

motivated me through my career. Words cannot express the gratitude I owe them.

My special gratitude to my wife Prathyusha for her constant encouragement and

support. Last but not the least, I am grateful to my friends and roommates who

have been a crucial factor in my finishing smoothly.

iii

Table of Contents

List of Tables vii

List of Figures viii

1 Introduction 1
1.1 Proposed Algorithms and their Contributions 6
1.2 Organization . 9

2 Non-Linear Dictionary Learning with Partially Labeled Data 10
2.1 Introduction . 10
2.2 Problem Formulation . 13

2.2.1 Linear Dictionary Learning with Partially Labeled Data . . . 13
2.2.2 Non-Linear Dictionary Learning 17

2.3 Optimization of the Proposed Formulation 18
2.3.1 Optimization of the Dictionary A 19
2.3.2 Optimization of the Coefficient Matrix X 21
2.3.3 Optimization of the Probability Matrix P 24
2.3.4 Dictionary Learning with Ambiguously Labeled Data 25
2.3.5 Classification . 29

2.4 Experimental Results . 29
2.4.1 Digit Recognition . 31
2.4.2 Object Recognition . 34
2.4.3 Ambiguously Labeled Data 35

2.5 Conclusion . 38

3 Generalized Dictionaries for Multiple Instance Learning 39
3.1 Introduction . 39
3.2 Background . 44

3.2.1 Sparse Coding . 44
3.2.2 Dictionary Learning . 45
3.2.3 Discriminative Dictionary Learning 46
3.2.4 Non-Linear Dictionary Learning 47

iv

3.3 Overview and Problem Formualtion 49
3.3.1 Overview of the Proposed Approach 50
3.3.2 Problem Formulation . 54

3.4 Optimization Approach . 57
3.4.1 Instance Probabilities pij in terms of ak 58
3.4.2 Atom Update . 59
3.4.3 Coefficient Update . 60
3.4.4 Connection to the Traditional Dictionary Learning 62

3.5 Classification . 63
3.6 Experimental Results . 65

3.6.1 Synthetic Experiment . 66
3.6.2 MIL Benchmark Datasets . 68
3.6.3 Corel Dataset . 69
3.6.4 Pain detection . 71
3.6.5 USPS digit experiment . 75
3.6.6 MSR2 Action Recognition . 79
3.6.7 Timing and Convergence of the proposed method 80

3.7 Conclusion . 81

4 Multiple Kernel Learning for Sparse Representation-based Classification 83
4.1 Introduction . 83

4.1.1 Organization of the chapter 84
4.2 Background . 85

4.2.1 Sparse Representation-based Classification 85
4.2.2 Kernel SRC . 87
4.2.3 Multiple Kernel Learning . 89

4.3 Multiple Kernel Learning for SRC . 92
4.3.1 Problem Formulation . 92
4.3.2 Ordered Kernel Alignment Scores 95
4.3.3 Computing Kernel Function Weights η 96
4.3.4 Classification . 100

4.4 Experimental Results . 100
4.4.1 Analysis on Synthetic Data 102
4.4.2 Object Recognition . 104
4.4.3 Object Recognition using Intensity and Depth Data 109
4.4.4 Gender Recognition . 112
4.4.5 On the Convergence of the Proposed Method 113

4.5 Conclusion . 115

5 Class Consistent Multimodal Learning 116
5.1 Introduction . 116
5.2 Class Consistent Multi-Modal Fusion (CCMM) 120

5.2.1 CCMM for binary features . 123
5.2.2 Extension to Multiple Modalities 129

5.3 Experiments . 130

v

5.3.1 RGB-D data . 132
5.3.2 WVU dataset . 133
5.3.3 CASIA Fingerprints dataset 136
5.3.4 Pascal-Sentence Dataset . 139

5.4 Conclusion . 139

6 Summary and Directions for Future Work 141
6.1 Summary . 141
6.2 Directions for Future Work . 141

Bibliography 143

vi

List of Tables

2.1 Comparison on USPS digit dataset 32
2.2 Comparison on shape recognition task 34
2.3 Comparison on Caltech101 dataset 35
2.4 Comparison on TV LOST dataset . 37

3.1 Summary of key notations. 54
3.2 Average accuracy on the benchmark datasets 69
3.3 Average accuracy on Corel dataset 70
3.4 Classification accuracy pain dataset 74
3.5 Classification accuracy on the USPS digit dataset 78
3.6 Classification accuracy on the USPS digit dataset without the label

noise . 79
3.7 Classification accuracy on the MSR2 action dataset 80
3.8 Classification accuracy on the MSR2 action dataset without label noise 80
3.9 Timing comparisons of the proposed method 81

4.1 Classification accuracy on the synthetic data 104
4.2 Classification accuracy on Caltech101 dataset 107
4.3 Classification accuracy on the RGBD dataset 112
4.4 Classification accuracy on the gender recognition task 113

5.1 Classification Accuracy for RGB-D data 132
5.2 Rank-one recognition of single modalities for WVU data 133
5.3 Comparison of Rank-one recognition performance on WVU dataset

for different combinations of modalities 135
5.4 Comparison of rank-one recognition performance on multi-modal CA-

SIA fingerprint data . 137
5.5 Classification Accuracy for Pascal-Sentence dataset 138

vii

List of Figures

2.1 Block diagram illustrating semi-supervised dictionary learning. 11
2.2 Pre-images of the learned atoms of USPS digits 32
2.3 Accuracy on noisy USPS digit dataset 33
2.4 Pre-images of dictionary atoms for TV LOST dataset. 37
2.5 Convergence of probability matrices for TV LOST dataset 37
2.6 Convergence of cost over iterations for TV LOST dataset 38

3.1 Motivation for dictionary based MIL 41
3.2 An overview of the proposed MIL dictionary learning framework. . . 43
3.3 Block diagram of the proposed GD-MIL method. 53
3.4 Synthetic experiment . 67
3.5 Synthetic experiment comparison . 67
3.6 Confusion matrix for Corel-1000 image dataset 71
3.7 Classification accuracy vs number of atoms for corel1000 dataset. . . 71
3.8 Frame scores of UNBC-McMaster pain dataset 76
3.9 Visual comparisons of dictionary atoms 78
3.10 Empirical convergence of cost . 81

4.1 Overview of the proposed method. 85
4.2 Updating kernel weights in each iteration. 100
4.3 Synthetic experiment 1 . 103
4.4 Synthetic experiment 2 . 104
4.5 Sparse coefficients for Caltech101 dataset 106
4.6 Learned kernel weights for the Caltech101 108
4.7 Results on the Caltech 101 object dataset 108
4.8 Example images from Caltech101 dataset 109
4.9 Example images from the RGBD dataset 110
4.10 Learned kernel weights for RGBD dataset 110
4.11 Convergence of kernel weights . 113
4.12 Classification accuracy over iterations 114

5.1 Overview of the proposed CCMM method 117
5.2 Example of most violated constraint 128

viii

5.3 The proposed greedy algorithm vs Gurobi MIP solver 132
5.4 Example images of the RGBD dataset 133
5.5 The CMC curves for WVU dataset 134
5.6 Challenging fingerprints and iris images from WVU dataset 136
5.7 Example images of CASIA v5 dataset 137

ix

Chapter 1: Introduction

In computer vision and machine learning applications, the data is often very

high dimensional and usually corrupted by noise. This requires us to develop robust

models for data representation to mitigate the effects of curse of dimensionality. Re-

cently, researchers have shown that sparse representation-based methods can achieve

state-of-the-art performance in many signal and image processing applications. The

success of sparse representation and dictionary-based algorithms is essentially due

to the fact that the signals or images of interest, though high dimensional, can

often be coded using a few representative atoms in some dictionary. This has re-

sulted in rapid development, both in theory and in algorithms, of the field of sparse

representation in recent years [1–4].

While discriminative dictionary learning algorithms have demonstrated tremen-

dous success for image classification, their performance is often limited by the

amount and type of labeled data available for training. Furthermore, the avail-

able labels might be erroneous due to monotonous nature of labeling process. In

many cases, the labeling efforts can be significantly reduced by allowing some noise

in the labeling process. For example, for an object classifier, instead of drawing

a bounding box around an object, it’s easier to indicate the presence or absence

1

of the object in the image. In this dissertation, we present various approaches to

extend sparse dictionary learning framework for weakly supervised learning prob-

lems such as semi-supervised learning, ambiguously labeled learning and Multiple

Instance Learning (MIL). Furthermore, we present non-linear extensions of these

methods using the kernel trick. The choice of kernel for non-linear methods is often

made using cross-validation. However, joint learning of the kernel and the classifica-

tion model often improves the performance of the non-linear model. We develop an

algorithm for choosing the optimal kernel for sparse representation-based classifica-

tion using Multiple Kernel Learning (MKL) methods. Finally, in order to deal with

heterogeneous multimodal data, we present a feature level fusion method based on

quadratic programing.

Next, we give an overview of sparse representation and dictionary learning.

Let D be a redundant dictionary with K atoms in R
d

D = [d1, . . . ,dK] ∈ R
d×K .

The atoms have unit Euclidean norm i.e., ‖di‖ = 1 ∀i. Given a signal y ∈ R
d, find-

ing the sparsest representation of y in D entails solving the following optimization

problem

x = argmin
z
‖z‖0 subject to y = Dz, (1.1)

where the ‖z‖0 := #{j : zj 6= 0}, which is a count for the number of nonzero

elements in z. Problem (1.1) is NP-hard and cannot be solved in a polynomial

time. Hence, approximate solutions are usually sought [3, 5–7]. For instance, Basis

2

Pursuit [5] offers the solution via ℓ1-minimization as

x = argmin
z
‖z‖1 subject to y = Dz, (1.2)

where ‖ · ‖p for 0 < p <∞ is the ℓp-norm defined as

‖z‖p =

(

d
∑

j=1

|zj |
p

)

1
p

.

The sparsest recovery is possible provided when certain conditions are met [8], [4].

One can adapt the above framework to a more practical noisy setting, where the

measurements are contaminated with an error n obeying ‖n‖2 < ǫ, that is

y = Dx+ n for ‖n‖2 < ǫ. (1.3)

A stable solution can be obtained by solving the following optimization problem [4]

x = argmin
z
‖z‖1 subject to ‖y −Dz‖2 < ǫ. (1.4)

One of the major challenges in sparse modeling of the signal is to find an

appropriate dictionary D in which data is well represented with sparse coefficients.

This dictionary can be analytic such as overcomplete wavelets, curvelets, contourlets

etc. or it can be learned using data. Predetermined dictionaries are appealing due

to their simplicity and can lead to fast algorithms for computation of the sparse

coefficients. However, it has been observed that learning dictionary directly from

data usually leads to better performance. One of the effective methods to learn

dictionary using data is called Method of Optimal Directions (MOD) [9] which

iteratively updates D by reducing the mean square error (MSE) at each iteration.

Let Y = [y1, . . . ,yN] be the data matrix of N samples, and X = [x1, . . . ,xN] be the

3

the matrix consisting of corresponding N coefficients. The goal in MOD algorithm,

at each iterations, is to update D such that the sum of error norms ri := yi −Dxi

is minimized. This can be achieved by minimizing the following cost,

E = ‖Y −DX‖2F , (1.5)

where ‖.‖2F denotes the Frobenius norm. By setting derivative of E to zero, one

obtains the following update rule for the dictionary at (t + 1)th iteration,

D(t+1) = YX(t)T (X(t)X(t)T)−1, (1.6)

where, X(t) is the coefficient matrix at tth iteration. Due to matrix inversion op-

eration in (1.6), this method is impractical for very large number of dictionary

columns. Another popular method to learn the dictionary is K-SVD [10] which,

similar to MOD, iteratively updates D and X, however, within an iteration, each

atom is sequentially updated using singular value decomposition (SVD). To update

kth atom dk, we seek to minimize

E = ‖Y −
∑

j 6=k

djx
j
T − dkx

k
T ‖

2
F = ‖Ek − dkx

k
T‖

2
F (1.7)

with respect to dk and xk
T , simultaneously. Here, xi

T is the ith row of the coefficient

matrix X. The optimization can be performed by computing the SVD of the matrix

Ek. Furthermore, in order to preserve the sparsity of X, only those samples are

considered that use the atom dk, i.e. those columns of Ek are removed that have

corresponding zeros coefficients in xk
T .

It has been shown that sparse representation and dictionary learning meth-

ods work well in many inverse problems where the original signal yt needs to be

4

reconstructed as accurately as possible, such as denoising, deconvolution and image

inpainting [11–16]. The focus of this dissertation is classification task where the goal

is to learn a model that can predict the class of a novel data sample. Various sparse

representation-based methods have been used for classifying an unseen test sample

into one of the numerous classes [2, 17–20]. Using labeled data, one can learn dic-

tionary Dc for each class c = 1, . . . C, where C is the total number of classes. Then,

given a novel test sample yt, its class can be determined by computing its sparse rep-

resentation in each dictionary separately and computing the residue rtc = yt−Dxt.

Then, the class of yt is the one that results in minimum residue norm, i.e.,

class of yt = argmin
c
‖rtc‖2. (1.8)

There are various approaches for learning dictionary-based classification meth-

ods and predicting the class of novel test sample, which have been described or

referred to in subsequent chapters. The success of all classification methods rely

on the availability of the labeled data. However, collecting labeled data is very

expensive and monotonous while unlabeled data can easily be obtained from the In-

ternet or various publicly available datasets. Hence, we develop dictionary learning

algorithms with limited labeled data and show that they can out perform existing

methods in many applications. Specifically, in the first part of the dissertation, we

develop a dictionary learning approach that uses labeled as well as unlabeled data to

learn a classification model. Furthermore, linear models are not always the best way

to represent the data and this motivates us to extend this to its non-linear version.

Next, we note that in many applications, labeling may be provided for the collec-

5

tion of samples called bags. This falls under the realm of multiple instance learning

(MIL) framework [21, 22] and we demonstrate that dictionary-based methods can

be adopted to achieve state-of-the-art performance under this setting. The non-

linear sparse and dictionary methods, need to choose a kernel function to compute

the kernel matrix. This choice is generally made with cross validation. However,

it has been shown that using the linear combination of multiple kernels can lead

to better performance. Inspired by multiple kernel learning (MKL) approaches, we

develop a method for sparse representation-based classification (SRC) using MKL

techniques. Finally, we focus on combining information from multiple sources using

linear classification models. We present a perturbation-based model that predicts

the consistent label from all the available modalities. We introduce the proposed

algorithms and their contributions below:

1.1 Proposed Algorithms and their Contributions

We describe the methods introduced in the dissertation and their key contri-

butions below:

1. Non-Linear Dictionary Learning with Partially Labeled Data:

In the first part of the dissertation, we consider the problem of utilizing un-

labeled and ambiguously labeled data for visual classification. It has been

established in semi-supervised literature [23–25] that the labels from labeled

data can be propagated to the unlabeled samples in their proximity. We in-

corporate this fact by introducing a probability distribution over classes for

6

each unlabeled sample. Based on these distributions, a dictionary-based clas-

sification model is learned with both labeled and unlabeled data, and, using

this model, the distributions of unlabeled samples are updated. The process

is repeated until a stopping criterion is met.

Contributions: Researchers have explored dictionary learning methods for

supervised and unsupervised methods, however, discriminative dictionary learn-

ing for semi-supervised remains largely unexplored. To the best of our knowl-

edge, the proposed method is the first work that develops dictionary-based

semi-supervised framework which directly uses the unlabeled samples based

on their probability distribution. It significantly improves the classification

performance compared to using labeled data alone as well as outperforms

competing algorithms using partially labeled data.

2. Generalized Dictionaries for Multiple Instance Learning:

Many object detection and classification algorithms are supervised in nature

requiring large amount of training data to learn a good model. However, la-

bels are provided by human annotator and, in many cases, can be slightly

inaccurate that can have an adverse impact on the learned model. Also, label-

ing individual instances requires significantly more effort compared to labeling

the sets of them. For example, indicating the presence or absence of an object

in an image is much easier than drawing a bounding box around the object.

Learning a classification model, when labels are provided for set of instances,

is known as multiple instance learning.

7

Contributions: We develop a novel MIL method based on non-linear dictio-

nary learning algorithm. The proposed method generalizes the discriminative

dictionary learning framework using diverse-density criterion. Furthermore,

we present the non-linear version of this algorithm that improves over the

linear one.

3. Multiple Kernel Learning for Sparse Representation-based Classifi-

cation

The non-linear sparse representation and dictionary learning based algorithms

compute the kernel matrices using a kernel function that is usually chosen with

cross validation. We develop an algorithm for choosing an optimal kernel based

on linear combination of multiple kernels known as Multiple Kernel Learning

(MKL).

Contributions: We propose a kernel sparse representation-based classifica-

tion method based on MKL where multiple kernel functions are combined to

obtain a better solution. Our method uses a two step training method using

the SRC as the base learner. At each iteration, first the combination func-

tion parameters are updated while fixing the base learner parameters, and

then the base learner parameters are updated while fixing the combination

function parameters. These two steps are repeated until convergence.

4. Class Consistent Multimodal Learning

Availability of information from multiple sources enables us to employ effec-

tive schemes to combine them in various machine learning tasks. Most of the

8

existing multi-modal fusion algorithms have been designed for continuous fea-

tures and are not appropriate for binary features. Binary features help save

storage and time, and are more robust to noise. As a result, they have shown

remarkable performance in computer vision applications with large datasets.

Furthermore, the current recognition algorithms generally combine different

modalities based on training accuracy and do not consider the possibility of

noise at test time. For the recognition problem, we propose to perturb the

test features in a way that all modalities predict the same class.

Contributions: We enforce class consistency across all available modalities in

a perturbation model to determine the class of multi-modal data item. Based

on this notion of class consistency, we develop an efficient binary feature fusion

algorithm.

1.2 Organization

The dissertation is organized as follows. In Chapter 2 we present a semi-

supervised dictionary learning algorithm. Next, we develop the dictionary learning

algorithm for multiple instance learning problem in Chapter 3. A multiple kernel

learning-based sparse representation method is presented in Chapter 4. We develop a

perturbation model-based multi-modal fusion algorithm for classification in Chapter

5. Finally, we conclude the dissertation and provide future directions in Chapter 6.

9

Chapter 2: Non-Linear Dictionary Learning with Partially Labeled

Data

2.1 Introduction

While dictionaries are often trained to obtain good reconstruction, training

supervised dictionaries with a specific discriminative criterion has also been con-

sidered. For instance, linear discriminant analysis (LDA)-based basis selection and

feature extraction algorithm for classification using wavelet packets was proposed

by Etemand and Chellappa [17] in the late nineties. Recently, similar algorithms

for simultaneous sparse signal representation and discrimination have also been pro-

posed [26], [27], [28] [29], [30], [31], [32], [19], [33].

Sparse representation and dictionary learning methods for unsupervised learn-

ing have also been proposed. In [34], a method for simultaneously learning a set

of dictionaries that optimally represent each cluster is proposed. To improve the

accuracy of sparse coding, this approach was later extended by adding a block

incoherence term in their optimization problem [35]. Some of the other sparsity

motivated clustering and subspace clustering methods include [36], [37].

The performance of a supervised classification algorithm is often dependent

10

Figure 2.1: Block diagram illustrating semi-supervised dictionary learning.

on the quality and diversity of training images, which are mainly hand-labeled.

However, labeling images is expensive and time consuming due to the significant

human effort involved. On the other hand, one can easily obtain large amounts

of unlabeled images from public image datasets like Flickr or by querying image

search engines like Bing. This has motivated researchers to develop semi-supervised

algorithms, which utilize both labeled and unlabeled data for learning classifier

models. Such methods have demonstrated improved performance when the amount

of labeled data is limited. See [25] for an excellent survey of recent efforts on semi-

supervised learning.

Two of the most popular methods for semi-supervised learning are Co-Training [38]

and Semi-Supervised Support Vector Machines (S3VM) [24]. Co-Training assumes

the presence of multiple views for each feature and uses the confident samples in one

view to update the other. However, in applications such as image classification, one

often has just a single feature vector and hence it is difficult to apply Co-Training.

S3VM considers the labels of the unlabeled data as additional unknowns and jointly

optimizes over the classifier parameters and the unknown labels in the SVM frame-

11

work [39].

Using the kernel trick, several methods have been proposed in the literature

that exploit sparsity of data in the high dimensional feature space. In these methods,

a preselected Mercer kernel is used to map the input data onto a features space

where dictionaries are trained. It has been shown that such non-linear dictionaries

can provide better discrimination than their linear counterparts [40], [41], [42].

Motivated by the success of non-linear dictionary learning methods [40], [41],

we propose a novel method to learn kernel discriminative dictionaries for classifica-

tion in a semi-supervised manner. Fig. 2.1 shows the block diagram of the proposed

approach which uses both labeled and unlabeled data. While learning a dictionary,

we maintain a probability distribution over class labels for each unlabeled data. The

discriminative part of the cost is made proportional to the confidence over the as-

signed label of the participating training sample. This makes the proposed method

robust to label assignment errors.

This chapter makes the following contributions:

1. We propose a discriminative dictionary learning method that utilizes both

labeled and unlabeled data.

2. Using the kernel trick, we extend the formulation for learning linear dictionar-

ies with labeled and unlabeled data to the non-linear case. An efficient opti-

mization procedure is proposed for solving this non-linear dictionary learning

problem.

3. We show how the proposed method can be extended to ambiguously labeled

12

data where each training sample has multiple labels and only one of them is

correct.

The methods proposed in [43] is different from the one proposed in this chapter.

Specifically, in [43] two linear methods are proposed - one based on soft decision rules

and the other based on hard decision rules. In contrast to linear reconstructive

dictionary leaning methods in [43] and [29], we propose a general discriminative

non-linear kernel dictionary learning method for partially labeled data.

The rest of the chapter is organized as follows. In Section 2.2, we formulate

the problem of non-linear dictionary learning with partially labeled data. The op-

timization of the proposed framework is presented in Section 2.3. Experimental

results are presented in Section 2.4, and Section 2.5 concludes the chapter with a

brief summary and discussion.

2.2 Problem Formulation

In this section, we formulate the optimization problem for learning discrimina-

tive dictionaries with partially labeled data. We first present the linear formulation.

We then extend it to the non-linear case.

2.2.1 Linear Dictionary Learning with Partially Labeled Data

Let Y = [y1, . . . ,yN] ∈ R
d×N be the data matrix where d is the dimension of

each data sample yi and N is the total number of training samples. We assume that

the data is partially labeled and denote the label of the ith sample by li. When the

13

sample yi is not labeled, we set li to 0, i.e., li ∈ {0, 1, . . . C}, where C is the total

number of classes.

Our goal is to learn a dictionary D ∈ R
d×K , where K is the number of unit

norm atoms. We represent this dictionary as the concatenation of all the classes’

dictionary, i.e. D , [D1| . . . |DC] such that each Dc ∈ R
d×Kc can represent the

cth class data well while not economically representing the other class data. Here,

Kc is the number of atoms in dictionary Dc, and hence, K =
∑C

c=1Kc. Enforcing

each Dc to represent only its own class c improves the discriminative capability of

the learned dictionary. We represent each sample yi by sparse linear combination

of dictionary D’s atoms and represent the sparse coefficient of the ith sample by

xi. Furthermore, we denote the coefficient matrix for all the samples by X, i.e.,

X , [x1, . . . ,xN].

In order to deal with unlabeled data, we introduce a probability matrix P ∈

R
C×N such that each column of P represents the class distribution of the correspond-

ing data sample. In other words, (c, i)th element Pci of P denotes the probability of

the ith sample belonging to class c. Hence, by definition,

Pci = 1 if yi is labeled with one class and li = c.

Pci = 0 if yi is labeled with one class and li 6= c.

0 ≤ Pci ≤ 1 if yi is unlabeled or ambiguously labeled. (2.1)

We denote the probability of all the samples belonging to class c by a diagonal

matrix Pc ∈ R
N×N such that Pc(i, i) = Pci and the non-diagonal elements of Pc are

14

set equal to zeros. Also, we define a matrix Qc , 1−Pc to denote the probability of

all the samples not belonging to the cth class. Furthermore, we define Psqrt
c andQsqrt

c

the square root of Pc andQc, respectively, i.e., Pc = Psqrt
c Psqrt

c andQc = Qsqrt
c Qsqrt

c .

The Frobenius norm and the sparsity promoting ℓ1 norm of a matrix A are denoted

as ‖A‖F and ‖A‖1 , respectively.

Equipped with these notations, we formulate the dictionary learning problem

as one of optimizing

J0(D,X,P) = F0(Y,D,X,P) +H(X,P) + λ1‖X‖1, (2.2)

where,

F0(Y,D,X,P) = ‖Y −DX‖2F

+ τ1

C
∑

c=1

‖
(

Y −DcX
c
)

Psqrt
c ‖

2
F

+ τ2

C
∑

c=1

‖DcX
cQsqrt

c ‖
2
F , (2.3)

H(X,P) = λ2

(

tr(Sw(X,P)− Sb(X,P))
)

+ η‖X‖2F , (2.4)

andXc is the coefficient matrix corresponding to the cth class. Here, the first term of

F0 encourages D to be a good representative of the data matrix Y without needing

any label information. The second term of F0 enforces that the cth class dictionary

Dc represents well those samples which are likely to belong to class c. Note that

Psqrt
c is a diagonal matrix and hence the contribution of each sample in this part

of the cost is proportional to the probability of it having come from the cth class.

The third part of F0 enlarges the reconstruction error of those samples which are

15

less likely to have come from the cth class. The parameters τ1 and τ2 control the

discriminative capability of the learned dictionary.

The second term H of J0 in (2.2) makes the sparse coefficients of samples

discriminative by decreasing the trace of within-class scatter matrix

Sw =
C
∑

c=1

∑

i:li=c

(xi −mc)(xi −mc)
T

and increasing the trace of between-class scatter matrix

Sb =
C
∑

c=1

Nc(mc −m)(mc −m)T ,

where mc is the average of the cth class coefficients, m is the average of all the

coefficients and Nc is the number of samples in class c. However, when the label

information is available in the form of probability matrix, these scatter matrices can

be defined as follows

Sw(X,P) =

C
∑

c=1

(X−Mc)Pc(X−Mc)
T

=
C
∑

c=1

(X−XEc)Pc(X−XEc)
T , (2.5)

where Ec ∈ R
N×N has N repeated column and each of them, denoted by ec, has the

following form,

ec(i) =
Pci

wc
, where wc =

N
∑

i=1

Pci, (2.6)

and

Sb(X,P) =
C
∑

c=1

wc(Xec −Xb)(Xec −Xb)T , (2.7)

where, b(i) = 1
N
, ∀i = 1, . . . , N . Note that Xec is the average of the cth class

coefficients and Xb is the average of all the coefficients.

16

In (2.4), tr(.) denotes the matrix trace operator and an elastic term ‖X‖2F is

added to make the cost with respect to X convex and stable. Similar formulations

have been used in [17, 32]. The last term of J0 enforces the sparsity of coefficients.

Finally, λ1, λ2 and η are the parameters controlling sparsity of coefficients, discrim-

inability of sparse codes and elastic term, respectively.

2.2.2 Non-Linear Dictionary Learning

Let Φ : R
d → G be a non-linear mapping from d-dimensional space into

a dot product space G. Dictionary learning algorithm can be formulated in the

feature space by writing D = Φ(Y)A, where A ∈ R
N×K is a matrix with K

columns [40], [41]. By changing the columns of A, we can learn the dictionary

atoms in the feature space. Hence, the columns of A are referred to as atoms and

denoted by ak, with k = 1, . . . , K. The kth atom in the feature space can be written

as Φ(Y)ak. In order to enforce unit norm constraint on the atoms in the feature

space, akKak should be equal to 1 for all k. Also, we define A as the concatenation

of C matrices, one for each class, i.e., A = [A1| . . . |AC]. Next, we can change F0

and denote it by F such that,

F(Y,A,X,P) = ‖Φ(Y)−Φ(Y)AX‖2F

+ τ1

C
∑

c=1

‖
(

Φ(Y)−Φ(Y)AcX
c
)

Psqrt
c ‖

2
F

+ τ2

C
∑

c=1

‖
(

Φ(Y)AcX
c
)

Qsqrt
c ‖

2
F . (2.8)

17

As we will see later, each of the terms in F containing Φ(Y) can be written

in terms of the dot products Φ(Y)TΦ(Y). This allows us to use the kernel trick

by writing Φ(Y)TΦ(Y) = K(Y,Y) ∈ R
N×N , where, K is the kernel matrix whose

(i, j)th element measures the similarity between yi and yj by means of a mercer

kernel function denoted by κ(yi,yj) : R
d × R

d → R. Some commonly used kernels

include polynomial kernels

κ(yi,yj) = (yT
i yj + a)b

and Gaussian kernels

κ(yT
i yj) = exp

(‖yi − yj‖
2

c

)

,

where a, b and c are the parameters of the kernel functions. The overall cost for the

non-linear dictionary learning can be written as follows

J (A,X,P) = F(Y,A,X,P) +H(X,P) + λ1‖X‖1. (2.9)

Having proposed the formulation for learning non-linear dictionaries with par-

tially labeled data, we describe our approach to optimize the cost in (2.9).

2.3 Optimization of the Proposed Formulation

Our optimization problem is to minimize the cost in (2.9) with respect to

dictionary A, sparse coefficient matrix X and probability matrix P,

Â, X̂, P̂ = arg min
A,X,P

J (A,X,P)

subject to aT
kKak = 1, ∀k = 1, . . . , K. (2.10)

18

Equation (2.10) is jointly non-convex in all the three variable. Hence, we resort to

optimizing one variable at a time, while keeping the other two fixed.

2.3.1 Optimization of the Dictionary A

When the coefficient matrix X and the probability matrix P are fixed, we

optimize A one class at a time. To optimize the cth class dictionary, we write the

cost J with respect to Ac as

JAc
= ‖Φ(Y)−Φ(Y)AcX

c −Φ(Y)AoX
o‖2F

+ τ1‖
(

Φ(Y)−Φ(Y)AcX
c
)

Psqrt
c ‖

2
F

+ τ2‖
(

Φ(Y)AcX
c
)

Qsqrt
c ‖

2
F , (2.11)

where, Yo and Ao denote the other class (i.e. not c) data matrix and dictionary,

respectively. Xo denotes the coefficient matrix corresponding to Ao. These matrices

are defined as,

Yo , [Y1, . . . ,Yc−1,Yc+1, . . . ,YC], (2.12)

Ao , [A1, . . . ,Ac−1,Ac+1, . . . ,AC], (2.13)

Xo , [X1T , . . . ,Xc−1T ,Xc+1T , . . . ,XCT
]T , (2.14)

where Yc ∈ R
d×Nc is part of the data matrix consisting of samples from the cth class.

To update A, we solve the following optimization problem for all c = 1, . . . , C,

Âc = argmin
Ac

JAc
(2.15)

subject to aT
kKak = 1, ∀k = 1, . . . , Kc, (2.16)

19

where ak is the kth columns of Ac.

Next, we optimize one atom at a time while keeping the others fixed. The cost

with respect to ak can be written as

Jak
= ‖ZΦ

c −Φ(Y)akx
k‖2F + τ1‖(U

Φ
c −Φ(Y)akx

k)Psqrt
c ‖

2
F

+ τ2‖Φ(Y)(akx
k +Wc)Q

sqrt
c ‖

2
F , (2.17)

where,

Wc :=
∑

j 6=k

Ac(:, j)X
c(j, :),

ZΦ
c := Φ(Y)−Φ(Y)AoX

o −Φ(Y)Wc, and

UΦ
c := Φ(Y)−Φ(Y)Wc.

(2.18)

Writing Jak
in kernel form (and ignoring the terms independent of ak), we get

Jak
= tr[xkxkTaT

kKak − 2aT
k

(

K−KAoX
o −KWc

)

xkT]

+ τ1 tr[a
T
kKakx

kPcx
kT − 2aT

k

(

K−KWc

)

Pcx
kT]

+ τ2 tr[a
T
kKakx

kQcx
kT + 2aT

kKWcQcx
kT]. (2.19)

To optimize, Jak
, subject to akKak = 1, we write the Lagrange function as

L(ak, γ) = Jak
+ γ(akKak − 1), (2.20)

where, γ is a Lagrange multiplier. Next, we take the derivative of L(.) with respect

20

to ak and set it equal to zero

α.Kak =[K−KAoX
o −KWc]x

kT

+ τ1[K−KWc]Pcx
kT − τ2KWcQcx

kT , (2.21)

where α is a scalar constant. Denoting the right hand side of the above equation by

Kv, we get α.ak = v, where,

v , [I−AoX
o −Wc]x

kT + τ1[I−Wc]Pcx
kT − τ2WcQcx

kT ,

and along with the constraint aT
kKak = 1, we choose the dual variable γ, and hence

α, such that the condition is satisfied. In other words,

ak =
v

‖v‖2
. (2.22)

2.3.2 Optimization of the Coefficient Matrix X

With the fixed dictionary A, and the probability matrix P, the cost in (2.9)

can be re-written with respect to X as,

JX =F1(X) + τ1F2(X) + τ2F3(X)+

λ2H1(X) + λ2H2(X) + η‖X‖2F + λ1‖X‖1, (2.23)

21

where,

F1 = ‖Φ(Y)−Φ(Y)AX‖2F ,

F2 =

C
∑

c=1

‖
(

Φ(Y)−Φ(Y)AcX
c
)

Psqrt
c ‖

2
F ,

F3 =
C
∑

c=1

‖
(

Φ(Y)AcX
c
)

Qsqrt
c ‖

2
F ,

H1 = tr[

C
∑

c=1

(X−XEc)Pc(X−XEc)
T], and

H2 = −tr[
C
∑

c=1

wc(Xec −Xb)(Xec −Xb)T].

The problem of updating X can be written as

X̂ = argmin
X
JX. (2.24)

In order to minimize JX with respect to X, we use the Iterative Projection

Method (IPM) that minimizes a cost consisting of a convex term with an additional

ℓ1 regularizer [32, 44]. IPM is an iterative algorithm that computes the derivative

of all the terms except the ℓ1 part of the cost and takes a gradient descent step at

each iteration. Followed by this gradient descent at each iteration, the values of X

are soft thresholded [44]. The required derivative of all the terms in (2.23) can be

22

computed as follows

∂F1

∂X
= 2AT

KAX− 2AT
K, (2.25)

∂F2

∂Xc
=

∂

∂Xc
tr[AT

c KAcX
cPcX

cT −AT
c KPcX

cT] (2.26)

= 2AT
c KAcX

cPc − 2AT
c KPc, (2.27)

∂F3

∂Xc
= 2AT

c KAcX
cQc. (2.28)

Note that H1(X) =
∑C

c=1 tr[X
TScX], where Sc := (I− Ec)Pc(I− Ec)

T . Hence,

∂H1

∂X
=

C
∑

c=1

2XSc. (2.29)

Similarly,

∂H2

∂X
= −

∂

∂X

C
∑

c=1

tr[XTcX
T] (2.30)

= −
C
∑

c=1

2XTc, (2.31)

where, Tc := wc(ec − b)(ec − b)T .

23

2.3.3 Optimization of the Probability Matrix P

With the fixed dictionary A, and the coefficient matrix X, the cost in (2.9)

can be re-written with respect to P as,

JP =τ1

C
∑

c=1

N
∑

i=1

Pci‖Φ(yi)−Φ(Y)Acx
c
i‖

2
2 + τ2

C
∑

c=1

N
∑

i=1

(1− Pci)‖Φ(Y)Acx
c
i‖

2
2

+ λ2

C
∑

c=1

N
∑

i=1

Pci‖xi −mc‖
2
2 − λ2

C
∑

c=1

Nc‖mc −m‖22. (2.32)

We can solve the above problem by optimizing for the class probabilities for the

ith sample pi independently, where pi = [P1i, . . . , PCi]
T , provided that mc does not

change much with each update. Hence, the cost with respect to pi is given by

Jpi
= pT

i vi, (2.33)

where the cth element of vi is given by,

vi(c) =τ1‖Φ(yi)−Φ(Y)Acx
c
i‖

2
2

− τ2‖Φ(Y)Acx
c
i‖

2
2 + λ2‖xi −mc‖

2
2. (2.34)

The goal is to, minimize Jpi
subject to pT

i 1 = 1,pi ≥ 0. To minimize a

linear cost subject to linear constraints is a linear programming (LP) optimization

problem whose solution is on one of the vertices. In other words, the element of

pi corresponding to minimum value in vi would be 1 and other elements would be

zeros. This is to say that each sample will be assigned to a fixed class rather than a

class distribution. Hence, instead of solving this LP, we compute the probability of

each sample based on the reconstruction error eci of the ith sample on the cth class

24

dictionary, defined as

eci = ‖Φ(yi)−Φ(Y)Acx
c
i‖

2
2

= K(yi,yi) + (xc
i)

TAKAxc
i −K(yi,Y)Acx

c
i , (2.35)

where xc
i is the sparse coefficient of the ith sample corresponding to dictionary Ac.

Now, the probability of the ith sample belonging to the cth class can be defined as

Pci =



















exp {−
eci
σ

}
∑C

c=1 exp {−
eci
σ

}
if

exp {−
eci
σ

}
∑C

c=1 exp {−
eci
σ

}
> θ,

0 otherwise.

(2.36)

Here, σ is a parameter that controls how sharp the probability distributions are.

Furthermore, we want to add only those samples which are quite confident about

its class and remove the ones that have similar probability of having come from

multiple classes. This is achieved by setting the probability of those samples to zero

which are less than a certain parameter θ. Furthermore, instead of updating P at

each iteration, we skip a few iteration(s) (typically 1− 5) before updating the prob-

ability matrix. This gives some time for the learned dictionary to converge before

adding more samples. The proposed method for learning dictionary is summarized

in Algorithm 1.

2.3.4 Dictionary Learning with Ambiguously Labeled Data

In many practical situations there might be multiple labels available for each

training sample. For example, given a picture with multiple faces and a caption

specifying who are in the picture, the reader may not know which face goes with

25

Algorithm 1: Algorithm for learning non-linear dictionary A by solving (2.9).

Input: Training Data Y, Partial Labels li, ∀i = 1, . . .N , Kernel Function κ.

Output: Dictionary A.

Initialize Dictionary A, sparse Coefficient matrix X and Probability matrix

P.

itr = 0

repeat

itr = itr + 1

Update sparse coefficient matrix X by solving (2.24).

if mod(itr, skipItr)=0 then

Update Probability matrix P using (2.36)

end

for c = 1, . . . , C do

for k = 1, . . . , Kc do

Update atom ak using (2.22).

end

end

until convergence or maximum iterations ;

return A.

26

the names in the caption. The problem of learning identities where each example is

associated with multiple labels, when only one of which is correct is often known as

ambiguously labeled learning [45].

This ambiguously labeled data can be easily handled using the proposed for-

mulation by giving equal probabilities to each of the given class for that sample. For

example, if a sample yi has labels 1, 4, 5, 7, we can set P(c, i) = 0.25, for c = 1, 4, 5, 7.

However, a major challenge in handling such ambiguously labeled data is to learn

an initial dictionary [43]. For the cases where data is either unambiguously labeled

or completely unlabeled, we can use the unambiguously labeled data to learn an

initial dictionary for each class. However, when each sample has multiple labels,

we first need to cluster the data into different classes to make sure that the learned

dictionary for each class is not influenced by the samples of the other classes.

Let yi have multiple labels denoted by the set Li and the number of ambiguous

labels be denoted by Ci , |Li|. In order to assign one cluster label to yi, we learn

Ci dictionaries, one for each ambiguous class label, using all the samples excluding

yi. While learning the cth class dictionary Dci, where c ∈ Li, for the ith sample, we

use all the samples excluding yi and with at least one class label as c. Let the set of

these samples be denoted by Yci. We learn a dictionary Dci with the data matrix

Yci using the KSVD algorithm [10] for each c ∈ Li. The reconstruction error of yi

is computed on Dci as follows,

rci = ‖yi −Dcix‖2, (2.37)

where, x = (DT
ciDci)

−1DT
ciyi. Next, yi is assigned to the cluster c with the minimum

27

reconstruction error rci. These steps are summarized in Algorithm 2.

Algorithm 2: Algorithm for clustering ambiguously labeled data into C clusters.

Input: Training Data Y, Partial Labels Li, ∀i = 1, . . .N .

Output: Cluster labels hi ∈ {1, . . . , C} for each sample yi, for all

i = 1, . . . , N .

for i = 1, . . . , N do

for j = 1, . . . , Ci do

c = Li(j)

Collect all the samples except yi with at least one class label as c into

data matrix Yci.

Learn dictionary Dci with Yci using KSVD algorithm.

x = (DT
ciDci)

−1DT
ciyi.

rci = ‖yi −Dcix‖2.

end

Cluster label hi = argminc∈Li
rci

end

return hi, ∀i = 1, . . . , N .

For each class, an initial dictionary D
(0)
c is learned with samples in the cth

cluster using the KSVD algorithm. Finally, initial non-linear dictionary A
(0)
c is

computed using D
(0)
c as

A(0)
c = pinv(Y)D(0)

c , (2.38)

where pinv(Y) is the pseudo-inverse of the data matrix Y.

28

2.3.5 Classification

Having learned the non-linear dictionary A, we classify a given test sample yt

by first computing its sparse code xt by solving the following optimization problem,

xt = argmin
x
‖Φ(yt)−Φ(Y)Ax‖22 + λ‖x‖1 (2.39)

= argmin
x

(

κ(yt,yt) + xTAT
K(Y,Y)Ax

− 2K(yt,Y)Ax+ λ‖x‖1

)

. (2.40)

The above problem in (2.40) is solved using the IPM. Next, to determine the class

of the test sample, we compute the reconstruction error for each class as

rc = ‖Φ(yt)−Φ(Y)Acx
c‖22 (2.41)

= κ(yt,yt) + (xc)TAT
c K(Y,Y)Acx

c

− 2K(yt,Y)Acx
c. (2.42)

Finally, the test sample is assigned the class corresponding to the minimum recon-

struction error as

class of yt = argmin
c

rc. (2.43)

2.4 Experimental Results

To illustrate the effectiveness of our method, we present experimental results

on some of the publicly available databases such as the USPS digit dataset [46], the

Kimia’s object dataset [47] and TV LOST dataset [48, 49] that consists of cropped

29

face images from TV series ‘LOST’. A comparison with other existing object recog-

nition methods in [32] suggests that the discriminative dictionary learning algo-

rithm known as Fisher Discriminant Dictionary Learning (FDDL) is among the

best dictionary-based method for classification. Hence, we use FDDL and a semi-

supervised dictionary learning algorithm S2D2 [50] to compare the performance on

semi-supervised experiments. We also compare our method with that of Support

Vector Machines (SVM) as well as a semi-supervised extension of SVM known as

(S3VM) [24]. Also, we compare our method with recently proposed Pseudo Multi-

view Automatic Feature Decomposition for Co-training (PMC) method [51]. In all

of our experiments, λ is set equal to 0.05 and η is set equal to 0.001. The number

of iterations are set to a maximum value of 30. All the other parameters are set

using cross-validation separately for each experiment. For big training datasets,

they can be optimized on a small validation dataset to reduce training time. In our

experiments, we optimized the sparsity parameter over the set {0.01, 0.05, 0.1, 0.5}.

The discriminative parameters τ1 and τ2 were optimized over the set {0.1, 1, 5, 10}.

We skipped a few iterations when updating P to ensure the convergence of the cost

function. This allows dictionary atoms to converge before using them to compute

the probability matrix. Furthermore, the parameter σ controls the sharpness of

probability distribution. Although, this can be computed in each iteration as the

average reconstruction error as was done in [43], we set this equal to 1 for simplicity.

If the probability distributions appear very flat, we reduce it to a smaller value.

30

2.4.1 Digit Recognition

The USPS digit dataset [46] consists of gray images of hand written digits

from 0 to 9. This dataset contains 7291 training samples and 2007 test samples.

From the training data, four samples from each class are randomly chosen as the

labeled samples and the rest of the training data is used as the unlabeled data. The

original images are of size 16× 16 which forms the feature vector of dimension 256.

We added a maximum of 10 unlabeled samples per class at each iterations. For

this experiment we used polynomial kernel of degree 4, and set sparsity parameter

λ1 = 0.01. Furthermore, to avoid low confidence samples we set θ = 0.5.

We compare the recognition accuracies of the proposed method with other

methods in Table 2.1. The parameters τ1 and τ2 were set equal to 10 and 0.1,

respectively, for this dataset. Observe that the proposed method outperforms the

other methods by more than 5%. The major difference between S2D2 and the

proposed method is the use of non-linear kernel. This confirms the importance of

non-linear kernels in dictionary learning methods. The improvement in performance

compared to SVM and FDDL is due to the fact that we utilize the unlabeled data

for updating dictionaries in the training stage. Being supervised techniques, the

performance of SVM and FDDL reduces when the available labeled samples are

small. Unlike S3VM which assigns hard labels to the unlabeled data points at

each iteration, the proposed method assigns only a soft probability of class for each

unlabeled data.The reason why the proposed method performs better than S3VM

is because the soft assignment approach is more robust to labeling errors when

31

Algorithms Accuracy(%)
SVM 74.47

S3VM [24] 75.61
FDDL [32] 79.24
PMC [51] 79.78
S2D2 [50] 85.61

Proposed Method 90.60

Table 2.1: Recognition accuracy for the proposed method on USPS Digit dataset.

compared to the hard assignment.

Pre-Images of the learned dictionary atoms: Recall that the kth atom of

the learned non-linear dictionary is represented as Φ(Y)ak with respect to the base

Φ(Y) in the feature space G. Since G is large, and possibly of infinite dimension,

we visualize the pre-image [52] of dictionary atoms. The pre-image of a dictionary

atom Φ(Y)ak is obtained by seeking a vector dk in input space R
d that minimizes

the cost function ‖Φ(dk)−Φ(Y)ak‖2. Due to various noise effects and the generally

non-invertible mapping Φ, pre-image does not always exist. However, an approx-

imated pre-image can be reconstructed without venturing into feature space using

techniques described in [52]. In Fig. 2.2, we show the pre-images of some of the

learned dictionary atoms from each class.

Figure 2.2: Pre-images of the learned atoms of USPS digits. Columns show the
learned dictionary atoms for each class.

Performance in the presence of missing and noisy pixels: To further evaluate

32

the robustness of the proposed method, we computed the recognition performance

of the proposed method when pixels in the image are either missing or corrupted

by noise. In the missing data experiment, we set pixels at random locations to

zero for test images in the digit recognition application. The number of corrupted

pixels was varied and we plot the corresponding accuracy in Fig. 2.3(a). Note that

the recognition accuracy falls as expected when the amount of missing pixels is

increased. But the fall in accuracy is much lower for the proposed technique when

compared to the other methods. This clearly demonstrates the improved robustness

of the proposed method compared to the competing methods. Similarly to study

the robustness of our method in the presence of noise, we added independent and

identically distributed Gaussian noise to the pixels. We varied the variance of the

added noise and compute the recognition accuracy for all the methods. The results

are shown in Fig. 2.3(b). We observed a similar improvement in robustness of the

proposed technique.

0 0.2 0.4 0.6 0.8

55

60

65

70

75

80

85

90

95

Fraction of mission pixels (%)

A
cc

ur
ac

y
(%

)

SVM FDDL S3VM S2D2 Proposed

0 0.1 0.2 0.3 0.4
70

75

80

85

90

95

Gaussian noise var

A
cc

ur
ac

y
(%

)

SVM FDDL S3VM S2D2 Proposed

(a) (b)

Figure 2.3: Accuracy for two kinds of corruption for digit recognition. (a) accuracy
vs missing data. (b) Accuracy vs noise variance.

33

Algorithms Accuracy(%)
SVM 84.26

S3VM [24] 84.26
FDDL [32] 86.11
PMC [51] 88.89
S2D2 [50] 87.96

Proposed Method 92.59

Table 2.2: Recognition accuracy for the proposed method, compared to competing
ones for shape recognition.

2.4.2 Object Recognition

In the next set of experiments, we use Kimia’s object dataset [47] which has

18 object categories each with 12 binary shapes. We randomly chose six images

per class for training and the remaining six for testing. Furthermore, we randomly

picked four images per class as the labeled data and the remaining two as the

unlabeled data. Each image was resized to 16 × 16 and intensity values were used

as features. The classification rates for all the algorithms are compared in Table

2.2. We see that the proposed method performs better than the other methods. In

this experiment we used polynomial kernel of degree 2. We set sparsity parameter

λ1 = 0.5, τ1 = 0.1 and τ2 = 1. Furthermore, to avoid low confidence samples we set

θ = 0.5. These results clearly demonstrate that the performance of discriminative

dictionary learning methods can be improved significantly by using unlabeled data,

when the available labeled data is limited. Furthermore, the use of non-linear kernel

can improve the performance of dictionary learning methods for classification.

Caltech101 object recognition: The Caltech101 dataset contains 102 object cat-

egories and each category has about 40 to 80 images downloaded from Internet. We

34

Algorithms Accuracy(%)
SVM 60.8

FDDL [32] 61.1
PMC [51] 58.4
S3VM [24] 65.6

Proposed Method 66.4

Table 2.3: Recognition accuracy for the proposed method on Caltech101 dataset.

randomly selected 10 labeled and 10 unlabeled training images from each category

to evaluate the proposed algorithm. To evaluate our method on this dataset, we

used spatial pyramid features [30]. For each image, dense SIFT descriptors were

extracted from 16 × 16 patches, separated by 6 pixels. To train the codebook for

spatial pyramid, standard k-means clustering with k = 1024 was used. Finally, the

dimension of spatial pyramid features were reduced to 3000 dimensions by PCA.

The results of our comparison are provided in Table 2.3. As can be seen from this

table, the proposed method compares favorably even on the large dataset.

2.4.3 Ambiguously Labeled Data

In order to test our algorithm on ambiguously labeled data we chose the TV

LOST dataset as used by [43]. This dataset consists of face images from TV series

‘LOST’. In original dataset, there are 1122 registered face images corresponding to

a total of 14 subjects, each containing from 18 to 204 images. In our experiment, we

followed the same setting as [43] and chose 12 subjects with at least 25 face images

per subject. For each subject, first 25 images were selected to evaluate our method.

Each image was resized to 30 × 30 pixels, and histogram-equalized intensities were

used as features. This experiment was conducted under transductive setting, mean-

35

ing all the data was available at training time. We ambiguously labeled 85% of the

data and remaining 15% of the data was correctly labeled. For each ambiguously

labeled sample, we assigned one correct label and 3 randomly chosen incorrect class

labels. We compare our method with the Convex Learning from Partial Labels

(CLPL) presented in [49], and various dictionary learning-based methods proposed

in [43]. DLHD [43] clusters training data into various clusters based on the recon-

struction error, and then learn dictionary for each cluster. DLSD [43] assigns a soft

label to each sample based on the the reconstruction error and learns a dictionary

for each class based on the assigned soft labels. Equally-weighted K-SVD [43] learns

a dictionary using K-SVD for each class by giving equal weight to each ambiguous

class. We compare our method with the other methods in Table 2.4. We use a

polynomial kernel of degree 4 and set sparsity parameter λ1 = 0.05. Furthermore,

discriminative parameters τ1, and τ2 are set equal to 1 and 0.1, respectively. In

order to visualize the dictionary atoms, we plot pre-images of the dictionary atoms

for each class in Figure 2.4. As we can see the learned dictionary atoms capture the

variations present in each class. Furthermore, we analyze the convergence of our

algorithm. In Figure 2.5, we display the probability matrices at the start, end and

intermediate iterations. We can clearly visualize how the label accuracy improves

over iterations. We also plot the total cost over iterations in Figure 2.6. As can be

seen from this figure, our cost decreases with increase in iterations.

36

Algorithms Accuracy(%)
CLPL [49] 78.53

Equally-Weighted K-SVD [43] 81.67
DLHD [43] 86.17
DLSD [43] 86.63

Proposed Method 88.33

Table 2.4: Recognition accuracy for the proposed method, compared to competing
ones for TV LOST dataset.

Figure 2.4: Pre-images of dictionary atoms for TV LOST dataset.

Data

C
la

ss
 L

ab
el

s

50 100 150 200 250 300

2

4

6

8

10

12

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Data

C
la

ss
 L

ab
el

s

50 100 150 200 250 300

2

4

6

8

10

12

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a) (b)

Data

C
la

ss
 L

ab
el

s

50 100 150 200 250 300

2

4

6

8

10

12

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Data

C
la

ss
 L

ab
el

s

50 100 150 200 250 300

2

4

6

8

10

12

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(c) (d)

Figure 2.5: Convergence of probability matrices for TV LOST dataset. Figures (a),
(b), (c), (d) show the probability matrix P at intermediate iterations.

37

5 10 15 20

0.2

0.3

0.4

0.5

0.6

0.7

Iteration count

C
os

t V
al

ue

Cost vs Iteration Count

Figure 2.6: Convergence of cost over iterations for TV LOST dataset

2.5 Conclusion

We proposed a method that utilizes unlabeled and ambiguously labeled train-

ing data for learning non-linear discriminative dictionaries. The proposed method

iteratively estimates the confidence of unlabeled samples belonging to each of the

classes and uses it to refine the learned dictionaries. Experiments using various

publicly available datasets demonstrate the improved accuracy and robustness to

noise and missing information of the proposed method compared to state-of-the-art

dictionary learning techniques.

38

Chapter 3: Generalized Dictionaries for Multiple Instance Learning

3.1 Introduction

Machine learning has played a significant role in developing robust computer

vision algorithms for object detection and classification. Most of these algorithms

are supervised learning methods, which assume the availability of labeled training

data. Label information often includes the type and location of the object in the

image, which are typically provided by a human annotator. The human annotation

is expensive and time consuming for large datasets. Furthermore, multiple human

annotators can often provide inconsistent labels which could affect the performance

of the subsequent learning algorithm [53]. However, it is relatively easy to obtain

weak labeling information either from search queries on Internet or from amateur

annotators providing the category but not the location of the object in the image.

This necessitates the development of learning algorithms from weakly labeled data.

A popular approach to incorporate partial label information during training is

through Multiple Instance Learning (MIL). Unlike supervised learning algorithms,

MIL framework does not require label information for each training instance, but

just for collection of instances called bags. A bag is positive if at least one of its

instances is a positive example otherwise the bag is negative. One of the first al-

39

gorithms for MIL, named the Axis-Parallel Rectangle (APR), was proposed by [21]

which attempts to find an APR by manipulating a hyper rectangle in the instance

feature space to maximize the number of instances from different positive bags en-

closed by the rectangle while minimizing the number of instances from the negative

bags within the rectangle. The basic idea of APR led to several interesting MIL al-

gorithms. A general framework, called Diverse Density (DD), was proposed by [22]

which measures the co-occurrence of similar instances from different positive bags.

The idea is to learn the desired concept by maximizing the DD function. An ap-

proach based on Expectation - Maximization and DD, called EM-DD, for MIL was

proposed by [54]. EM-DD was later extended by [55], called DD-SVM, that essen-

tially trains an SVM in a feature space constructed from a mapping defined by the

maximizers and minimizers of the DD function. More recently, an MIL algorithm for

randomized trees, named MIForest, was proposed by [56]. An interesting approach,

called Multiple Instance Learning via Embedded instance Selection (MILES), was

proposed by [57]. This method converts the MIL problem to a standard supervised

learning problem that does not impose the assumption relating instance labels to

the bag labels.

In this chapter, we develop a general DD-based dictionary learning framework

for MIL where labels are available only for the bags, and not for the individual

samples. In recent years, sparse coding and dictionary learning-based methods have

gained a lot of traction in computer vision and image understanding fields [2], [1],

[19], [58], [59]. Dictionary-based algorithms have produced state-of-the-art results in

many practical problems such as object recognition, object detection and tracking [2,

40

Figure 3.1: Motivation behind the proposed DD-based MIL dictionary learning
framework.

19]. In particular, non-linear dictionaries have been shown to produce better results

than the linear dictionaries in object recognition tasks [60–62]. While the MIL

algorithms exist for popular classification methods like Support Vector Machines

(SVM) [63] and decision trees [56], such algorithms have been studied only recently

in the literature using the dictionary learning framework.

A dictionary-based MIL algorithm was recently proposed for event detection

by [64] that iteratively prunes negative samples from positive bags based on the

dictionary learned from the negative bags. One of the limitations of this approach

is that, it may not generalize well for multi-class classification where computing

a negative dictionary might be difficult. Another max-margin dictionary learning

algorithm was proposed for computing spatial pyramid features from gray images

for object and scene recognition by [65] . This dictionary consists of rows contain-

ing SVM weight vectors computed using the approach similar to MI-SVM. This

dictionary is pre-multiplied to the dense features and the resulting coefficients are

max-pooled. This algorithm takes dense features as its input and does not address

41

general image features.

Figure 3.1 provides the motivation behind the proposed method. Instances in

a bag are points in feature space. Our goal in learning a positive concept is to find

a point in the feature space that can represent at least one instance in each positive

bag and does not represent any of the negative instances. In practical applications,

with high dimensional feature space, it is difficult to represent each bag with just

one such point. We seek to represent multiple such points as dictionary atoms. In

this figure, we show instances from one negative bag and 3 positive bags. They

can be imagined intersecting at different locations. From the problem definition,

the negative bag contains only negative class samples, hence the region around the

negative instances is very likely to be a negative concept, even if it intersects with

the positive bags. However, the intersection of positive bags, is likely to belong to

the positive concept. Traditional diverse density based approaches [22] can find only

one positive concept that is close to the intersection of positive bags and away from

the negative bags. Since one point in the feature space can not describe the positive

class distribution, these approaches tend to compute different positive concepts with

multiple initializations. In this work, we show that the multiple concepts are nat-

urally captured by dictionary atoms and lead to a better performance. Figure 3.2

shows an overview of the proposed MIL dictionary learning method.

Key contributions of this chapter are as follows:

1. We propose a general dictionary learning and sparse coding based framework

for MIL by learning a representation for the components common in the in-

42

Figure 3.2: An overview of the proposed MIL dictionary learning framework.

stances of the same class bags and different for different class bags.

2. Under the MIL setting, we propose to exploit the non-linearity of data by

learning a dictionary in the high dimensional feature space using a predeter-

mined kernel function.

3. We propose two models for learning the sparse features of positive bags under

the MIL setting; one is based on the noisy-OR model and the other is based

on the Generalized Mean (GM) model.

4. We evaluate our method on various standard MIL datasets and advance the

state-of-the-art on pain detection.

This chapter is organized as follows. Background discussion on sparse coding

and dictionary learning are given in Section 3.2. Section 3.3 gives an overview of the

proposed method and formulates the proposed MIL dictionary learning problem.

43

The details of the optimization steps are given in Section 3.4. The classification

procedure using the learned dictionaries is described in Section 3.5. Experimental

results are presented in Section 3.6 and Section 3.7 concludes the chapter with a

brief summary and discussion.

3.2 Background

In this section, we give a brief background on sparse coding and dictionary

learning.

3.2.1 Sparse Coding

Let D be a redundant (overcomplete) dictionary with K elements in R
d

D = [d1, . . . ,dK] ∈ R
d×K . (3.1)

The elements of D (also known as atoms) are normalized to unit Euclidean norm

i.e., ‖di‖ = 1 ∀i. Given a signal yt ∈ R
d, finding the sparsest representation of yt

in D entails solving the following optimization problem

xt = argmin
x
‖x‖0 subject to yt = Dx, (3.2)

where ‖x‖0 := #{j : xj 6= 0}, is a count of the number of nonzero elements in

x. Problem (3.2) is NP-hard and cannot be solved in a polynomial time. Hence,

approximate solutions are usually sought. For instance, a stable solution can be

obtained by solving the following optimization problem, provided certain conditions

44

are met [4]

xt = argmin
x
‖yt −Dx‖2 + λ‖x‖1, (3.3)

where λ is a regularization parameter and ‖·‖p for 0 < p <∞ is the ℓp-norm defined

as

‖x‖p =

(

d
∑

j=1

|xj|
p

)

1
p

. (3.4)

3.2.2 Dictionary Learning

Traditionally, the dictionaryD in (3.1), is predetermined; e.g., wavelets. It has

been observed [66] that learning a dictionary directly from the training data rather

than using a predetermined dictionary usually leads to a more compact represen-

tation and hence can provide improved results in many practical computer vision

applications [2, 4, 58].

Several algorithms have been developed for the task of learning a dictionary

from data samples [4, 10]. One of the most well-known algorithms is the KSVD

algorithm proposed by [10]. Given a data matrix Y ∈ R
d×N with its columns as

data samples yi, i = 1, . . . , N , the goal of the KSVD algorithm is to find a dictionary

D and a sparse matrix X that minimize the following representation error

(D̂, X̂) = argmin
D,X
‖Y −DX‖2F such that ‖xi‖0 ≤ T0 ∀i, (3.5)

where xi’s denote the columns ofX, ‖.|F denotes the Frobenius norm and T0 denotes

the sparsity level. The KSVD algorithm is an iterative method and alternates

between sparse-coding and dictionary update steps. First, a dictionary D with

45

ℓ2 normalized columns is initialized. Then, the main iteration is composed of the

following two stages:

• Sparse coding : In this step, D is fixed and the following optimization prob-

lem is solved to compute the representation vector xi for each sample yi, i =

1, · · · , N ,

min
xi

‖yi −Dxi‖
2
2 such that ‖xi‖0 ≤ T0. (3.6)

Any standard technique can be used to solve this problem. In fact, approxi-

mate solutions can be obtained by solving problems similar to (3.3).

• Dictionary update: In KSVD, the dictionary update is performed atom-by-

atom in a computationally efficient way rather than using a matrix inversion.

For a given atom l, the quadratic term in (3.5) can be rewritten as

‖Y −
∑

i 6=l

dix
T
i − dlx

T
l ‖

2
F = ‖El − dlx

T
l ‖

2
F , (3.7)

where El is the residual matrix, dl is the lth atom of the dictionary D and xT
i

are the rows of X. The atom update is obtained by minimizing (3.7) for dl

and xT
l through a simple rank-1 approximation of El [10].

3.2.3 Discriminative Dictionary Learning

Given a data matrix Y, the general cost function for learning a dictionary

takes the following form

min
D,X

‖Y −DX‖2F + λΨ(X), (3.8)

46

where λ is a parameter and columns ofY, D, andX contain the training signals, the

dictionary atoms, and their coefficients, respectively. While these approaches are

purely generative, the design of supervised discriminative dictionaries has also gained

a lot of traction in recent years [2], [19]. The design of such dictionaries entails mod-

ification of the function Ψ(X) in (3.8) so that not only sparsity is enforced but dis-

crimination is also maintained. This is often done by introducing linear discriminant

analysis type of discrimination on the sparse coefficients which essentially enforces

separability among dictionary atoms of different classes [67], [31], [30], [29], [32], [68].

Manipulation of Ψ(X) so that it enforces group sparsity can also lead to the design

of hierarchical dictionaries.

3.2.4 Non-Linear Dictionary Learning

Kernel-based non-linear sparse coding and dictionary learning methods have

also been proposed in the literature [40, 41, 69]. These methods essentially map

the input data onto a high dimensional feature space using a predetermined kernel

function. Sparse codes and dictionaries are then trained on the feature space for

better representation and discrimination. Let Φ(.) : Rd → G be a mapping from

a d-dimensional space into a dot product space G. A non-linear dictionary can be

trained in the feature space G by solving the following optimization problem

(Â, X̂) = argmin
A,X
‖Φ(Y)−Φ(Y)AX‖2F subject to

‖xi‖0 ≤ T0 ∀i (3.9)

47

where

Φ(Y) = [Φ(y1), · · · ,Φ(yN)].

Since the dictionary lies in the linear span of the samples Φ(Y), in (3.9) we have

used the following model for the dictionary in the feature space,

Φ(D) = Φ(Y)A,

where A ∈ R
N×K is a matrix with K atoms [40, 60],

Φ(D) = [Φ(d1), . . . ,Φ(dK)].

This model provides adaptivity via modification of the matrix A. Through some

algebraic manipulations, the cost function in (3.9) can be rewritten as,

‖Φ(Y)−Φ(Y)AX‖2F

= tr((I−AX)TK(Y,Y)(I−AX)), (3.10)

where K(Y,Y) is a kernel matrix whose elements are computed from

κ(i, j) = Φ(yi)
TΦ(yj).

It is apparent that the objective function is feasible since it only involves a matrix of

finite dimension K ∈ R
N×N , instead of dealing with a possibly infinite dimensional

dictionary.

An important property of this formulation is that the computation of K only

requires dot products. Therefore, one can employ Mercer kernel functions to com-

pute these dot products without carrying out the mapping Φ. Some commonly used

48

kernels include polynomial kernels

κ(x,y) = 〈(x,y〉+ a)b

and Gaussian kernels

κ(x,y) = exp

(

−
‖x− y‖2

c

)

,

where a, b and c are the parameters.

Similar to the optimization of (3.5) using the linear KSVD algorithm, the op-

timization of (3.9) involves sparse coding and dictionary update steps in the feature

space which results in the kernel KSVD algorithm. Details of the optimization can

be found in the paper by [40].

Supervised dictionary learning methods (both linear and nonlinear) have shown

to produce sate-of-the-art results in many classification tasks. However, in the pres-

ence of label ambiguity such is the case in MIL, supervised dictionary learning

methods are no longer applicable and don’t work well in practice. As a result, a

new dictionary learning framework for MIL is necessary.

3.3 Overview and Problem Formualtion

In this section, we give an overview of the proposed MIL dictionary learning

framework. We then formulate the proposed multi-class MIL dictionary learning

problem.

49

3.3.1 Overview of the Proposed Approach

Assume that we are given N labeled bags Yi and their corresponding labels

li for all i = 1, . . . N . Each label can be from one of the C classes, i.e. li ∈

{1, . . . , C}. A bag Yi can have one or more samples, called instances, denoted by

yij , j = 1, . . .Mi where Mi is the number of instances in the ith bag. In multi-class

MIL setting, if the label of a bag is li, at least one of its instances should belong to

class li. In many computer vision applications a bag corresponds to an image and

its instances can be created by varying the scale, position or region of interest. For

example, in tracking by detection application [70] multiple overlapping patches are

used as instances and in object recognition application multiple regions of an image

are treated as instances [55, 56, 71].

The main focus of this work is to obtain a good representation by learning a

dictionary for each class with the given labeled training bags. We represent each

instance as a sparse linear combination of the dictionary atoms that are represen-

tative of the true class. However, when learning the underlying structure in each

class, it is important to consider only those instances which belong to the bag’s class

and disregard the instances from other classes. Existing algorithms for dictionary

learning need samples as input and can not work with bags. Hence, in this work

we propose a general DD-based dictionary learning algorithm that can learn the

representation of each class from bags under the MIL setting.

Our approach relies on learning a dictionary

Φ(Dc) = Φ(Yc)Ac

50

for each class c in high-dimensional feature space, where the matrix Yc contains

all the instances of the cth class bags, and Ac is a matrix that we want to learn as

a part of the non-linear dictionary learning process. We learn Φ(Dc) by adapting

columns of Ac. The instances in bag Yc that truly have the bag label c, should

be well represented by this dictionary. Towards achieving this goal, we define the

probability of an instance yij belonging to the cth class as,

pij := exp (−‖Φ(yij)−Φ(Yc)Acxij‖
2
2/σ), (3.11)

where xij is the sparse coefficient corresponding to yij and ‖Φ(yij)−Φ(Yc)Acxij‖2

is the reconstruction error in the feature space. The hyperparameter σ is usually

set to 1 for learning dictionaries.

Our goal is to learn Φ(Dc) via Ac for which at least one instance in each bag

of class c is well represented (i.e., the probability is high) and the bags of all the

other classes (i.e., not c) are poorly represented. This objective can be captured by

computing positive bag probabilities as the maximum probability of its instances

J̃ =
∏

i:li=c

(

max
j

pij

)

∏

i:li 6=c

(

Mi
∏

j=1

(1− pij)
)

. (3.12)

Note that, for J̃ to be high, at least one instance from each bag of class c should

have high pij , while all the instances in the bags of the other classes should have

low probability. If we maximize the above cost with respect to the matrix Ac, we

can learn the structure common to all the cth class bags and absent from the bags of

other classes. Since max operation is highly non-smooth, we need to approximate it

with a smooth function to be able to optimize the cost. A popular choice explored

51

in many MIL works [22, 54, 72] is to approximate the max function with a smooth

noisy-OR (NOR) model defined as

SNOR(pi) = 1−

Mi
∏

j=1

(1− pij), (3.13)

where pi := [pi1, . . . , piMi
]T . Note that if one instance in the ith bag is positive with

a very high probability, the product term is going to be close to zero and the bag

probability will be close one. One limitation of this model is that the probability

is biased to bag size and for a large bag the product term diminishes very fast

even if each instance has very low probability. For example a bag of 100 instances

each with probability 0.05 will result in SNOR(pi) = 0.9941 which is very high

considering that true maxj pij = 0.05. Another approximation of the max function

can be formulated in the form of generalized mean as explored by [72] and [73]. This

model is not sensitive to bag size but averages out the instance probabilities after

raising them to a high power as defined by

SGM (pi) =
(1

Mi

Mi
∑

j=1

prij

)1/r

, (3.14)

where r is a parameter that controls the approximation of SGM to the true max

function. A higher value of r results into a better approximation. However, a very

high value can result in numerical instability. In our experiments, we set it equal to

10. The GM approximation under-estimates the true max value while NOR model

over-estimates it. For a smaller bag size where a few instances have much higher

probability compared to the rest of them, NOR model is a better approximation. For

example, consider a case where a positive bag has two instances with their respective

probabilities of belonging to positive class as 0.9 and 0.1. A GM approximation in

52

this case is 0.84 while NOR results in a better approximation of 0.91. Let us denote

this general soft-max function by S, where S can be replaced by either SNOR or

SGM , i.e.,

max
j

pij ≈ S(pi).

Hence, the objective (3.12) can be approximated as

J̃ =
∏

i:li=c

S(pi)
∏

i:li 6=c

(

Mi
∏

j=1

(1− pij)
)

. (3.15)

Once the dictionaries are learned for each class by minimizing the above ob-

jective with the sparsity constraint, one can concatenate them to form a global

dictionary and compute the representation of the instances using this dictionary.

Features can be computed for each bag from this representation and classified using

the popular classification algorithms such as Support Vector Machine (SVM). Fig-

ure 3.3 presents an overview of our method. We refer to this method as Generalized

Dictionaries for MIL (GD-MIL).

Figure 3.3: Block diagram of the proposed GD-MIL method.

Table 3.1 summarizes the notations used in this chapter. We would like to

53

draw the reader’s attention to subtle but important difference between subscript and

superscript of Y and M , where subscript refers to the bag index while superscript

refers to the class index.

Notation Description
N Total number of bags
C Number of classes

li ∈ {1, . . . , C} Label of the ith bag
Mi Number of instances in the ith bag
d Dimension of each instance
M Total number of instances in all the bags
M c Total number of instances in all the cth class bags

Y ∈ R
d×M Data matrix with columns as instances from all the bags

Yc ∈ R
d×Mc

Data matrix with columns as instances from all the cth class
bags

Yi ∈ R
d×Mi Matrix with columns as instances from the ith bag

yij ∈ R
d jth instance of the ith bag

Ac ∈ R
Mc×Kc Matrix whose columns control the dictionary atoms in fea-

ture space. It is also referred to as cth class dictionary
Kc Number of atoms (or columns) in the cth class dictionary Ac

X ∈ R
Kc×M Sparse coefficient matrix of all instances corresponding to

dictionary Ac

Xi ∈ R
Kc×Mi Sparse coefficient matrix ith bag instances corresponding to

dictionary Ac

xij jth coefficient vector of the ith bag. Vector length depends
on implicit dictionary size it is computed with

xijk kth element of xij

pij Probability that the jth instance of the ith bag belongs to a
positive (cth) class

pi ∈ R
Mi Vector containing the probabilities of all the instances in the

ith bag, i.e., pi := [pi1, . . . , piMi
]

K(Yc,Yc) ∈ R
Mc×Mc

Kernel matrix computed from the cth class instances
κ Kernel function used to compute the elements of the kernel

matrix

Table 3.1: Summary of key notations.

3.3.2 Problem Formulation

We denote the data matrix by Y = [Y1, . . . ,YN] ∈ R
d×M . Here, M = M1 +

· · ·+MN is the total number of instances in all the bags,Mi is the number of instances

54

in the ith bag and d is the dimension of the features for each instance. Let Yc be the

concatenation of all the cth class bags, i.e, Yc = [Yi : li = c] ∈ R
d×Mc

. Note that the

subscript i in Yi denotes the bag index and superscript c in Yc denotes the matrix

of all the bags that belong to class c. Similarly, M c is the total number of instances

in all the cth class bags, i.e. M c =
∑

i:li=c Mi. For the simplicity of notation, we

re-index instances of all the cth class bags and write Yc = [yc
1, . . . ,y

c
Mc], where yc

i

is the ith instance of the cth class after re-indexing.

Our objective is to learn a dictionary Φ(Dc) defined as Φ(Yc)Ac for each

class in the feature space, where columns of Ac ∈ R
Mc×Kc are optimized to learn

the non-linear dictionary. For simplicity, we refer to Ac as the dictionary for the cth

class. Given Ac, we can represent an instance y as a sparse linear combination of

the columns of Φ(Yc)Ac in the feature space as follows

Φ(y) = Φ(Yc)Acx+ ǫ, (3.16)

where Φ(Yc) = [Φ(yc
1), . . . ,Φ(yc

Mc)] and ǫ is the error term. The sparse coefficient

x can be obtained by solving the following optimization problem [67]

x = argmin
z
‖Φ(y)−Φ(Yc)Acz‖

2
2 + λ‖z‖1. (3.17)

Next, we represent the jth instance of the ith bag using the dictionary Ac and

write its probability pij in terms of the representation error as follows,

pij(Ac,xij) = exp
(

− ‖Φ(yij)−Φ(Yc)Acxij‖
2
2

)

= exp
(

−K(yij ,yij)− xT
ijA

T
c K(Yc,Yc)Acxij

+ 2K(yij ,Y
c)Acxij

)

, (3.18)

55

where xij is the sparse coefficient of yij ,

[K(Yc,Yc)]i,j = [〈Φ(Yc),Φ(Yc)〉]i,j

= Φ(yc
i)

TΦ(yc
j) = κ(yc

i ,y
c
j),

K(yij ,yij) = κ(yij ,yij), and

K(yij ,Y
c) = [κ(yij,y

c
1), . . . , κ(yij ,y

c
Mc)] ∈ R

1×Mc

.

In order to learn the dictionary Ac = [a1, · · · , aKc
] for class c, we need to

optimize the cost in (3.15) with respect to Ac and all the sparse coefficients xij .

We denote all the sparse coefficients for the cth class dictionary by the matrix X =

[X1, . . . ,XN] ∈ R
Kc×M where Xi = [xi1, . . . ,xiMi

] ∈ R
Kc×Mi. In other words, Xi

contains the sparse coefficients for all the instances of the ith bag and X contains

all the sparse coefficients from all the bags. Note that, for notational simplicity, we

have not used any subscript/superscript c with X, Xi and xij to indicate that these

sparse coefficients are computed using the cth class dictionary. Next, we take the

negative log of the cost J̃ in (3.15), and introduce a parameter α that controls the

influence of the non-cth class bags,

J (Ac,X) = −
∑

i:li=c

logS(pi)

− α
∑

i:li 6=c

Mi
∑

j=1

log(1− pij). (3.19)

The resulting problem of learning the non-linear dictionaries can be captured

in following optimization problem,

Âc, X̂ = arg min
Ac,X
J (Ac,X) + λ‖X‖1, (3.20)

56

where ‖X‖1 =
∑

n ‖xn‖1. Note that J (Ac,X) is a function of pij . The atoms of

a dictionary are normalized to unit norm. This can be enforced by adding the

following constraint in the optimization problem (3.20),

(Φ(Yc)am)
T (Φ(Yc)am) = aT

mK(Yc,Yc)am = 1.

Hence, the overall optimization problem (3.20) can be re-written as

Âc, X̂ = arg min
Ac,X
J (Ac,X) + λ‖X‖1,

subject to

aT
mK(Yc,Yc)am = 1, m = 1, . . . , Kc. (3.21)

3.4 Optimization Approach

In this section, we develop an approach to solve (3.21) by alternatively optimiz-

ing the dictionary Ac and coefficient matrix X. Similar to the KSVD approach [10],

for updating the dictionary, we optimize one atom at a time while keeping the others

fixed. To satisfy the unit norm constraint on the atoms, we re-normalize the atom

at each step of the proposed gradient descent algorithm. We first write instance

probabilities pij as a function of ak, and then utilize it to update ak.

57

3.4.1 Instance Probabilities pij in terms of ak

Using (3.18), we can re-write pij as a function of the kth atom ak as

pij(ak, xijk) = exp
(

− ‖Φ(yij)−Φ(Yc)Acxij‖
2
2

)

= exp
(

− ‖Φ(yij)−Φ(Yc)
Kc
∑

m=1
m6=k

amxijm

−Φ(Yc)akxijk‖
2
2

)

= exp (−‖Φ(rij)−Φ(Yc)akxijk‖
2
2). (3.22)

Here, xijk is the kth element of the sparse vector xij and

Φ(rij) = Φ(yij)−Φ(Yc)
Kc
∑

m=1
m6=k

amxijm.

One can clearly see the similarity between this expression and the one in (3.7).

After a few algebraic manipulations, pij in (3.22) can be rewritten in terms of

the kernel matrices as follows

pij(ak, xijk) = exp
(

−K(rij, rij)− x2
ijka

T
kK(Yc,Yc)ak

+ 2xijkK(rij,Y
c)ak

)

, (3.23)

where,

K(rij , rij) = K(yij,yij) +

Kc
∑

m=1
m6=k

x2
ijma

T
mK(Yc,Yc)am

− 2
Kc
∑

m=1
m6=k

xijma
T
mK(Yc,yij), and (3.24)

K(rij ,Y
c) = K(yij ,Y

c)−
Kc
∑

m=1
m6=k

xijma
T
mK(Yc,Yc). (3.25)

58

3.4.2 Atom Update

We propose a gradient descent method to optimize the kth atom ak. Recall

that we denote the coefficient of the jth instance of ith bag corresponding to the kth

atom by xijk. Now, we collect the coefficients of all the instances in ith bag into a

vector xk
i := [xi1k, . . . , xiMik]. Denote the cost for optimizing ak by Jak

. Note that

Jak
, from (3.19), is a function of pij and, together with the definition of pij in (3.23),

can be written as,

Jak
(ak) = −

∑

i:li=c

logS
(

pi(ak,x
k
i)
)

− α
∑

i:li 6=c

Mi
∑

j=1

log(1− pij
(

ak, xijk)
)

. (3.26)

Hence, the optimization problem (3.21) can be reformulated for the kth atom as,

âk = argmin
ak

Jak
(ak), (3.27)

subject to aT
kK(Yc,Yc)ak = 1. (3.28)

Optimization of ak in (3.27) can be viewed as minimizing the negative log

likelihood and it can be solved using the gradient descent method. To perform

gradient descent on Jak
, we need to compute the derivatives of the softmax functions

with respect to ak. For the NOR model, we get

∂ logSNOR

∂ak
=

1− bi
bi

Mi
∑

j=1

(1

1− pij

∂pij
∂ak

)

, (3.29)

where

bi := 1−

Mi
∏

j=1

(1− pij),

59

and
∂pij
∂ak

is the partial derivative of the instance probability with respect to the atom.

Similarly, for the GM model, we get

∂ log SGM

∂ak
=

1
∑Mi

j=1 pij

Mi
∑

j=1

(

pr−1
ij

∂pij
∂ak

)

. (3.30)

The derivative of pij with respect to ak is calculated as follows

∂pij
∂ak

= 2pij[K(rij,Y
c)ak −K(Yc,Yc)akxijk]. (3.31)

The derivative of the part that involves the negative instances in (3.26) with respect

to ak is computed in a straight forward manner as,

∂

∂ak

log(1− pij) = −
1

1 − pij

∂pij
∂ak

. (3.32)

Finally, from (3.26) the derivative of Jak
is computed as

∂Jak

∂ak

= −
∑

i:li=c

∂ log S(pi)

∂ak

− α
∑

i:li 6=c

Mi
∑

j=1

∂

∂ak

log(1− pij), (3.33)

where, S can be replaced with either SNOR or SGM depending on the choice of the

soft-max function.

3.4.3 Coefficient Update

In this sub-section, we describe how to update the sparse coefficients for dif-

ferent instances. Note that in (3.19) the probabilities of the instances from negative

bags are separable while that of the instances from positive bags are not. Hence,

we update the coefficients of the negative bags instances and the positive bags in-

stances differently. From (3.19), for each negative instance coefficient, the cost can

60

be written as,

J −
xij

(xij) = − log(1− pij(xij)) + λ‖xij‖1. (3.34)

Since the positive instances are not separable, we update ith bag coefficient matrix

Xi, if li = c, by minimizing (3.19) w.r.t. Xi. Lets denote this cost for c
th class bags

by J +
Xi

which can be defined as,

J +
Xi
(Xi) = − log S(pi(Xi)) + λ‖Xi‖1. (3.35)

Note that the cost in (3.34) and (3.35) are non-differentiable due to the ℓ1

regularization term. Multiple approaches have been developed to minimize such

functions [74,75] when the cost without ℓ1 regularization is smooth. In particular, we

use the active set method described by [75]. This method requires the computation

of the derivative of the smooth part of the cost. For the positive bags, it can be

computed similar to (3.29) or (3.30) depending on the choice of the softmax function.

The only difference is that we need to compute
∂pij
∂Xi

instead of
∂pij
∂ak

which is done as

follows

∂pij
∂Xi

= 2
[

AT
c K(Yc,Yi)

−AT
c K(Yc,Yc)AcXi

]

Pi, (3.36)

where Pi is a diagonal matrix with instance probabilities of the ith bag in its diagonal

Pi :=

















pi1

. . .

piMi

















. (3.37)

61

The derivative of J −
xij

w.r.t. xij is computed similar to (3.32). For faster implemen-

tation, we collect the derivative of all the instances from positive as well as negative

bags to compute ∂J
∂X

, and optimize J to update X.

Different steps of the optimization for Ac are summarized in Algorithm 3.

Algorithm 3: Algorithm for Learning cth Class Dictionary Ac

Input: Bags Yi, Labels li, ∀i = 1, . . . N , Kernel Function κ, Parameters

α, λ,Kc, maxItr.

Output: Ac.

for itr = 1, . . . , maxItr do

for k = 1, . . . , Kc do

1. Update ak by solving (3.27) with the gradient descent method.

2. Update K(rij , rij) and K(rij,Y
c) using (3.24) and (3.25),

respectively.

end

Update the coefficient matrix X as described in section 3.4.3.

end

return Ac.

3.4.4 Connection to the Traditional Dictionary Learning

It is interesting to note that first part of our cost J in (3.19) is identical to

the traditional dictionary learning cost in the feature space [60], [10], when there is

only one instance in each bag. Let this first part of the cost be denoted by J1. By

62

setting Mi = 1, ∀i it becomes,

J1 = −
∑

i:li=c

log
(

1−

Mi
∏

j=1

(1− pij)
)

= −
∑

i:li=c

log pi1

= −
∑

i:li=c

log exp
(

− ‖Φ(yi1)−Φ(Yc)Acxi1‖
2
2

)

=
∑

i:li=c

‖Φ(yi1)−Φ(Yc)Acxi1‖
2
2. (3.38)

Hence, in the case of one instance per bag, our problem formulation can also be

viewed as a discriminative dictionary learning approach where the first part J1

ensures that the instances are well represented by the dictionary of the corresponding

class, and the second part of the cost J in (3.19) ensures that the samples of the

non-cth classes are not represented well by the dictionary Ac .

3.5 Classification

Having computed the dictionaries Ac, c = 1, . . . , C , for all the classes using

method summarized in Algorithm 3, we combine them before computing the sparse

codes for learning a classification model. We denote the combined dictionary in the

feature space as Φ(Ỹ)A, where

Φ(Ỹ) := [Φ(Y1), . . .Φ(YC)]

and

A :=

















A1,

. . .

AC

















.

63

This is same as concatenating the dictionaries in feature space, i.e.,

Φ(D) = [Φ(D1), . . . ,Φ(DC)].

We compute the sparse coefficients of all the training instances on the combined

dictionary by solving the following problem [67]

xij = argmin
z
‖Φ(yij)−Φ(Ỹ)Az‖22 + λ‖z‖1. (3.39)

We then compute the probability pij of this instance by (3.23) after replacing Ac

by A and Yc by Ỹ. The sparse representation of the training bags Yi is obtained

as the weighted combination of the sparse coefficients of its instances. For example,

the sparse representation of the ith training bag, denote by xi is computed as

xi =

Mi
∑

j=1

pijxij .

Once we obtain the sparse codes for the training bags, any classification algorithm

can be used to classify the samples. In this chapter, we utilize an SVM for classifi-

cation.

Instance Classification: If the task is to classify the individual instances, we

propose to use reconstruction error for classificatino. Given a test sample yt, we

compute the sparse coefficient xt on dictionary A. The class of the test instance is

given by,

class of yt = argmin
c
‖Φ(yt)−Φ(Yc)Acx

c
t‖

2
2, (3.40)

where xc
t part of xt corresponding to dictinary Ac.

64

3.6 Experimental Results

In this section, we first analyze our algorithm using a synthetic dataset to gain

additional insights. We then evaluate our method on popular datasets for MIL like

the Tiger, Fox, Elephant [63], Musk [21] and the Corel dataset [57]. Furthermore,

we employ the proposed method for the pain detection task [76]. In our previous

studies based on kernel dictionary learning [40], [42], we have found that the poly-

nomial kernel performs well on various image classification problems. As a result,

we used a polynomial kernel of degree 4 in our experiments. Several methods have

been proposed in the literature for optimizing the choice of kernel and kernel pa-

rameters such as cross validation and multiple kernel learning [77]. However, these

methods tend to make the optimization problem very complex and time consuming.

We have included two baselines using two different discriminative dictionary algo-

rithms to compute sparse codes, followed by the SVM for classification. We used

the DKSVD [29] method and the LCKSVD [30] method instead of the proposed dic-

tionary learning algorithm. Since these discriminative dictionary algorithms need

labels for each training sample, we assigned the label of the bag to each training

instance. The classification on the sparse code was done similar to the proposed

method by learning a SVM on the bag features. We denote these methods by

DKSVD* and LC-KSVD* in the classification tables.

65

3.6.1 Synthetic Experiment

We analyze our algorithm using a three class synthetic dataset. We create 50

bags for each class by first drawing one sample per bag from three different Gaussian

distributions (one for each class) with means [1, 0, 0]T , [0, 1, 0]T and [0, 0, 1]T and

following covariance matrix

















0.051 0.01 0.01

0.01 0.051 0.01

0.01 0.01 0.051

















.

Then, in each bag, we add 3 more samples from uniformly distributed noise as shown

in Figure 3.4(a). After learning the dictionary for each class using noisy bags, we

project all the instances on the dictionaries of their respective classes and compute

the probability for each instance using (3.18). The color coded probabilities are

displayed in Figure 3.4(b) and (c). As can be observed from this figure, the instances

from Gaussian distributions have higher probabilities (depicted by red color) and

instances from noise distributions have lower probabilities (blue color). This clearly

demonstrates that the proposed method learns the true representations of each class

and reconstructs them well, despite the presence of multiple noise samples in each

bag. Furthermore, the method does not learn the structure in the noise samples and

hence gives high reconstruction errors for them.

To compare it with other dictionary learning methods we computed the prob-

abilities of true positive samples on DKSVD [29] and LC-KSVD [30] dictionaries.

These probabilities are plotted and compared with the proposed method in Figure

66

−0.5
0

0.5
1

1.5

−0.5
0

0.5
1

1.5

−0.5
0

0.5
1

1.5

X

All Class (Noisy) Data

Y

Z

Class 1
Class 2
Class 3
Noise

−0.5
0

0.5
1

1.5

−0.5
0

0.5
1

1.5

−0.5
0

0.5
1

1.5

X

Color Coded Probability of True Data

Y

Z

0.2

0.4

0.6

0.8

−0.5
0

0.5
1

1.5

−0.5
0

0.5
1

1.5

−0.5
0

0.5
1

1.5

X

Color Coded Probability of Noise

Y

Z

0.2

0.4

0.6

0.8

(a) (b) (c)

Figure 3.4: Demonstrating the probabilities of instances after projecting them onto
their respective dictionaries: (a) Original noisy bags. Each bag contains one in-
stance from a Gaussian distribution of its class and 3 instances from the uniformly
distributed noise. (b) Color coded probabilities of instances from three Gaussian
distributions, (c) Color coded probabilities of the uniformly distributed noise. Note
that the probabilities of true instances are much higher than that of the noise.

−0.5
0

0.5
1

1.5

−0.5
0

0.5
1

1.5

−0.5
0

0.5
1

1.5

X

Color Coded Probability of True Data

Y

Z

0.2

0.4

0.6

0.8

−0.5
0

0.5
1

1.5

−0.5
0

0.5
1

1.5

−0.5
0

0.5
1

1.5

X

Color Coded Probability of True Data

Y

Z

0.2

0.4

0.6

0.8

−0.5
0

0.5
1

1.5

−0.5
0

0.5
1

1.5

−0.5
0

0.5
1

1.5

X

Color Coded Probability of True Data

Y

Z

0.2

0.4

0.6

0.8

(a) (b) (c)

Figure 3.5: Comparing the probabilities of instances from three Gaussian distri-
butions, corresponding to three different classes. (a) Probabilities using GD-MIL,
(b) Probabilities using DKSVD, (c) Probabilities using LC-KSVD. Note that the
proposed method is able to handle well the noise in bags while the discriminative
dictionaries are not able to represent the classes well.

3.5. Although the synthetic data seems simple, note that labels are very noisy and

it is hard to learn a discriminative dictionary with so much noise. The traditional

discriminative dictionary methods try to represent every sample (instead of just one)

in each bag, the atoms are not very discriminative due to noise. We tried different

values of the discriminative parameters, but it was hard to compute a dictionary

with discriminative atoms. On the contrary, the proposed method tries to represent

only one instance from each bag using softmax functions which can handle the noisy

67

bags effectively.

Atoms are learned by the proposed method to capture the common structure

across all the bags of a class, at the same time suppressing the structure of other

classes. Thus, the linear combination of these atoms will reconstruct the true sam-

ples of the class where as the background or noise is subdued. Since the classifier

is learned over the reconstructed signal, it can discriminate the classes well despite

the presence of noisy samples in the training bags.

3.6.2 MIL Benchmark Datasets

In this section, we evaluate the proposed approach on benchmark MIL datasets

namely Tiger, Elephant and Fox introduced by [63], and the Musk1 and Musk2

proposed by [21]. Each of the Tiger, Elephant, and Fox datasets have 100 positive

and 100 negative bags. A positive bag corresponds to the true image of an animal

and negative bags are randomly drawn from the pool of other animals. The instances

in each bag are created by segmenting the images. Color, texture, and shape features

are used as described by [63]. The Musk1 and Musk2 datasets are publicly available

datasets that were introduced in drug activity problem proposed by [21]. A bag

in these datasets represent a drug molecule that can be represented by multiple

features corresponding to different low-energy conformations. We use the same

features and experimental set up as used by [63] and compare our results in Table

3.2. The numbers in the table for the competing methods, except PPMM, have

been quoted from [56]. In this experiment, dictionaries are learned with 40 atoms

68

per class. The sparsity parameter λ = 0.001 and regularization parameter α =

0.01 were used for dictionary learning for all the datasets. These two parameters

were found using 5-fold cross-validation. Since many competing algorithms in Table

3.2 use NOR model, for fair comparison, we also use the same model to report

the classification accuracies. We believe that the main reason why our method

performs better is that we learn dictionary in such a way that the learned atoms

can represent well the commonalities among the bags of the same class while they

result in high reconstruction error for the non-common structure. By translating

these reconstruction error into probabilities we are able to reduce the effect of the

background of each image while computing the bag features.

Algorithms Elephant Fox Tiger Musk1 Musk2
mi-SVM [63] 82 58 79 87 84
MI-SVM [63] 81 59 84 78 84
MILES [57] 81 62 80 88 83
SIL-SVM 85 53 77 88 87

AW-SVM [78] 82 64 83 86 84
AL-SVM [78] 79 63 78 86 83
EM-DD [54] 78 56 72 85 85

MILBoost-NOR [72] 73 58 56 71 61
MIForests [56] 84 64 82 85 82
DKSVD* [29] 72 59 78 87 88
LC-KSVD* [30] 82 63 72 84 88

GD-MIL 89 69 91 93 92

Table 3.2: Average accuracy of five random splits on the benchmark datasets.

3.6.3 Corel Dataset

The Corel dataset consists of 20 object categories with 100 images per category.

These images are taken from CD-ROMs published by the COREL Corporation.

Each image is segmented into regions and each region is then called an instance [57].

69

The regions of an image can greatly vary depending on its complexity. We use the

same instance features as used by [57] and report our result in Table 3.3. The

numbers for the competing methods have been quoted from [57]. Here, we perform

two categorization tasks: first on 10 object categories (corel-1000) and then on all the

20 object categories (corel-2000). For corel-1000 task, we analyze the class accuracy

for each category using the confusion matrix in Figure 3.6. Each column in the

confusion matrix corresponds to the predicted accuracy of the test samples. As we

can see from the figure, class 2 (‘Beach’) is confused mostly with class 9 (‘Mountains

and glaciers’) which is possibly due to their similar appearances. In both tasks the

sparsity parameter is set equal to λ = 0.001 , and α = 0.001. Dictionaries are learned

with 40 atoms per class. As before, λ and α were selected by 5-fold cross-validation.

Algorithms 1000-Image Dataset 2000-Image Dataset 2
MILES [57] 82.6 : [81.4, 83.7] 68.7 : [67.3, 70.1]
MI-SVM [63] 74.7 : [74.1, 75.3] 54.6 : [53.1, 56.1]
DD-SVM [55] 81.5 : [78.5, 84.5] 67.5 : [66.1, 68.9]

k-means-SVM [79] 69.8 : [67.9, 71.7] 52.3 : [51.6, 52.9]
DKSVD* [29] 80.1 : [79.4, 80.8] 64.7 : [63.1, 66.6]
LC-KSVD* [30] 76.4 : [75.2, 77.6] 61.1 : [59.9, 62.2]

GD-MIL 84.3 : [83.1, 85.5] 72.6 : [71.5, 73.7]

Table 3.3: Average accuracy along with the 95 percent confidence interval over five
random test sets of Corel Dataset.

Furthermore, to study the effect of dictionary size on classification accuracy, we

plot accuracy vs number of atoms for one of the splits of the corel1000 experiment in

Figure 3.7. As can be seen from this plot that the results are not very sensitive when

the number of atoms range from 30 to 45. Experiments have shown that increasing

the number of atoms beyond 50 generally decreases the performance. This is not

surprising because as more atoms are retained, the representation gets more exact,

70

74
2
0
2
2
12
6
0
0
2

4
64
6
2
0
2
2
0
20
0

4
2
76
0
0
10
0
0
6
2

0
6
0
88
0
0
4
0
0
2

0
0
0
0

100
0
0
0
0
0

0
4
0
0
0
88
0
2
6
0

2
0
0
0
0
0
98
0
0
0

0
0
0
0
0
0
0
98
2
0

2
20
2
2
4
0
0
0
70
0

4
0
0
2
0
0
0
2
0
92

True Test Labels
P

re
di

ct
ed

 T
es

t L
ab

el
s

2 4 6 8 10

2

4

6

8

10

Figure 3.6: Confusion matrix for one of the splits of Corel-1000 image dataset.

and it has to deal with all the noise present in the data. Whereas with the fewer

number of dictionary atoms, a more accurate description of the internal structure of

the class is captured and robustness to noise is realized [26, 80, 81]. A similar trend

is also observed with the other datasets.

0 10 20 30 40 50

78

80

82

84

86

Number of Atoms

A
cc

ur
ac

y

Figure 3.7: Classification accuracy vs number of atoms for corel1000 dataset.

3.6.4 Pain detection

In the final set of experiments, we address an important issue of detecting pain

from a video sequence that has a very useful application in medical care. In certain

scenarios, patient may not able to communicate his pain through verbal means or

71

does not know when to call for help due to his inability to judge the severity of the

pain. For example, in the case of a child care or after an operation it is convenient

to monitor the patient through a camera and alert the nurse when patient is in pain.

We use image data from the UNBC-McMaster Pain Shoulder Archive as proposed

by [76]. This dataset consists of 200 video sequences from 25 subjects suffering from

shoulder pain due to various medical conditions. Each frame in a video sequence

contains the face of the subject with varying expressions indicating the degree of

pain he or she is experiencing due to various active and passive movements of their

limbs. Each video sequence has been rated with Observer Pain Intensity (OPI) index

ranging from 0 − 5, with 0 being no pain and 5 being maximum pain. Following

the protocols proposed by [73, 82, 83] the video sequences were divided into two

categories : (1) ‘pain’ category or positive class with OPI rating greater than or

equal to 3, (2) ‘no-pain’ category or negative class with OPI rating equal to 0. The

sequences with intermediate ratings of 1 and 2 were omitted as per the protocol.

Also, we included only those subjects that have atleast one positive class video and

one negative class video sequence. This resulted in 146 video sequences from 22

subjects. The goal is to predict the class of a given video sequence of an unseen

subject.

Many approaches have been proposed in literature to address this problem. [83]

use active appearance model (AAA) to decouple shape and appearance parameters

from face images. Based on the AAM features frames were clustered into multiple

groups using K-means. Each of these clusters was given to train a SVM classifier

for pain detection. At the testing time, the score of each video frame was predicted

72

using the learned SVM and then average score was used to predict the class of the

video sequence. [82] use the AAM-SVM based approach as the baseline and improve

its performance by compressing the image signal in spatial domain. An MIL based

approach for pain detection was recently proposed by [73] where each video sequence

was segmented into multiple segments of contiguous frames and each segment was

considered an instance and the whole video sequence was considered a bag under

MIL setting. An off-the-shelf MIL algorithm was applied to predict the label of the

video sequence.

Similar to the approach taken by [73], we divide each video sequence into dif-

ferent segments. In order to do that, first a spatial pyramid feature is computed for

each frame by max pooling the multi-scale dense SIFT features. The video sequence

is divided into multiple segments by following the approach proposed by [84] where

an image is segmented into many clusters using multiple stable segmentation. The

segments are obtained by varying the parameters of a normalized cut. In the case of

a video sequence, the weight matrix for the normalized cut is defined to capture sim-

ilarity between frames. To restrict the segments to contain only contiguous frames,

the similarity between each frame was defined to incorporate the distance between

the time index of two frames along with their feature similarity. Recall that each

cluster of frames is treated as an instance under MIL setting. Hence, the spatial

pyramid features of each frame within a segment are max-pooled to compute the

instance feature.

We have followed the protocol used by previous work to report the total clas-

sification rate computed at Equal Error Rate (EER) on the receiver operation curve

73

(ROC). Our results are summarized in Table 3.4 which were conducted using a leave-

one-subject-out cross validation strategy. The numbers for the competing methods

have been quoted from [73]. For each split of training and testing data, training data

contained video sequences from all but one subject while the testing data contained

the video sequences from the left out subject. Thus, there was no overlap between

subjects in training and testing video sequences. In this experiment, we learned

dictionaries with 40 atoms, sparsity parameter λ was set equal to 0.001 and dis-

criminative parameter was set equal to 1. This parameters were slightly optimized

for the performance on one of the splits (i.e. for one subject) and then the same

parameters were used for all the data splits. Since the bag size varies a lot in this

dataset, we use the GM model to reduce bias of bag size.

Algorithms Accuracy (at EER)
ML-SVMavg 70.75
ML-SVMmax 76.19

[83] 81.21
[83] (shown by [82]) 68.31

[82] 80.99
[73] 83.7

DKSVD* [29] 77.01
LC-KSVD* [30] 79.34

GD-MIL 88.18

Table 3.4: Classification accuracy (at EER) on pain dataset [76].

To qualitatively evaluate our method, we compute the frame score from in-

stance probabilities using the approach proposed by [73]. Let the set of frames that

constitute feature yij be denoted by sij. The instance probability pij is distributed

to all the frames contained in sij by employing a Hamming window. If a frame

belongs to multiple segments, then its score is computed as the maximum from all

74

the segments. If the kth frame in the ith video sequence is denoted by fk
i , its score

pfk
i
is computed as,

pfk
i
= max

j
(w(sij) ∗ pij |f

k
i ∈ sij), (3.41)

where w is a hamming window function centered at segment sij and ∗ is scalar

multiplication. We plot these scores for multiple subject in Figure 3.8 along with

face image to display facial expressions of key frames. Along with our score, we also

plot the Prkachin and Solomon Pain Intensity (PSPI) score, described by [76], for

each frame. In Figure 3.8(a), we show an instance of multiple pain occurrences in

the video sequence. We are able to accurately localize the pain as shown by key

face images as well as the corresponding PSPI score. In Figures 3.8(b) and (c), we

plot the frame scores of a video sequence where it is localized at just one place. In

Figure 3.8(b), the PSPI score is small compared to our frame. However, we can

see a facial expression that corresponds to significant pain. Figure 3.8(d) displays

a case where the intensity of pain around the frame index 300 is predicted much

more than around frame index 100. Even facial expressions around frame index 300

seem to indicate less pain. However, we believe that the detection of pain with high

intensity around frame 300 is due to large head movements. We provide multiple

video sequences in the supplementary material to support our claim.

3.6.5 USPS digit experiment

We evaluate our method on the USPS digit dataset and provide detailed anal-

ysis of this experiment to gain some meaningful insights regarding our method. The

75

(a) (b)

(c) (d)

Figure 3.8: Frame score of multiple video sequences and comparison with PSPI
rating. Please see text for details.

USPS digit dataset consists of total 9298 hand written digit images from 0 to 9.

Each digit image is of size 16× 16 pixels and raw pixels are used as features for all

the methods compared in this chapter. To evaluate our method for the multi-class

setting, we create 50 training bags for each class. Each training bag of class c con-

sists of 4 instances out of which one is from the cth class while the remaining 3 are

randomly chosen from the other classes. Our test data consists of 2000 samples, 200

from each class. Furthermore, for a fair comparison with the other dictionary learn-

ing algorithms that do no use an explicit SVM, classification of digits is performed

using the reconstruction error. Without learning the common structure present in

76

the positive class, reconstruction error-based classification method would not work

well. As a result, a good classification accuracy suggests that the dictionary of each

class would have learned the common internal structure present in the positive bags.

Note that in this experiment, we evaluated our method only on the instances be-

cause a test bag with samples from different classes would have an ambiguity in the

ground truth class label.

We compare our method with three discriminative dictionary based algorithms

- DKSVD [29], LC-KSVD [30] and FDDL [32] and one MIL-based algorithm mi-

SVM [63] with polynomial kernel of degree 4, the same as our method. For the

discriminative dictionary learning algorithms, each training instance is given the

class of the bag. As can be seen from Table 3.5, these algorithms do not perform

well because the labels are very noisy. To gain additional insight, we plot the pre-

images of the dictionary atoms of the GD-MIL method in Figure 3.9(a) and compare

them with the dictionary atoms of the FDDL method in Figure 3.9(b). The pre-

image of Φ(Y)ak is obtained by seeking a vector dk ∈ R
d in the input space that

minimizes the cost function ‖Φ(dk) − Φ(Y)ak‖2 . Due to various noise effects and

the generally non-invertible mapping Φ, the exact pre-image does not always exist.

However, the approximated pre-image can be reconstructed without venturing into

the feature space using the techniques described in [52]. Note that the DKSVD

method and the LC-KSVD method do not label the dictionary atoms, hence, we

compare our method only with the FDDL method. However, we believe without

considering the noise in bags, it is difficult to learn the common structure present

in positive class. As can be seen from Figure 3.9, our dictionary atoms look very

77

similar to the digits for the corresponding classes, compared to the FDDL dictionary

atoms that look very noisy due to the label noise.

Algorithms Accuracy (%)
DKSVD [29] 56.4
LCKSVD [30] 37.4
FDDL [32] 44.4
mi-SVM [63] 78.7
GD-MIL 83.4

Table 3.5: Classification accuracy (%) on the USPS digit dataset.

(a) (b)

Figure 3.9: Visualization of the dictionary atoms learned on the USPS digit dataset.
(a) Dictionary atoms of the GD-MIL method and (b) the FDDL method. Each row
corresponds to the dictionary atoms of a class, i.e. digits from 0 to 9.

Furthermore, to compute the “upper bound” of the proposed method, we

compute the classification accuracy of the three dictionary learning algorithms in

the absence of any label noise. That is, noisy labels from the positive bags are

removed before learning the dictionaries. The performance of the dictionary learning

algorithms without any label noise has been presented in Table 3.6. As can be seen

from this table, our algorithm is able to perform quiet close to this empirical “upper

bound” despite significant label noise.

78

Algorithms Accuracy (%)
DKSVD [29] 86.7
LCKSVD [30] 84.9
FDDL [32] 87.2

Table 3.6: Classification accuracy (%) on the USPS digit dataset without the label
noise. This can be considered as an empirical “upper bound” for the proposed
method.

3.6.6 MSR2 Action Recognition

The MSR2 action dataset has in total 54 video sequences and each video

sequence consists of one or more of the following three actions: (1) Clapping, (2)

Hand Waving and (3) Boxing. We randomly select 27 videos for training and the

remaining ones for testing. Each action sample is a spatio-temporal cuboid and the

most of the video sequences have just one or two such action cuboids per class. For

each action cuboid, we added two more cuboids with the same spatial co-ordinates

overlapped by 50% in the temporal dimension. Most of the bags of class c contained

2 action cuboids of the cth class and 1 from a different class. The exact number of

instances in each bag varies depending on the action cuboids of its class present in

the video sequence. To compute the features for each action cuboid, we use bag-of-

words of dense spatial temporal interest points (STIP) features [85]. Similar to the

USPS digit experiment, we compare our method with three discriminative dictionary

learning algorithms and one MIL algorithm in Table 3.7. As we can see from this

table, the performance improves significantly by considering the MIL structure of the

bag instead of relying only on the discriminative capability of the dictionary learning

algorithm. Furthermore, we also compute the classification accuracy without any

label noise in the training bags in Table 3.8. As can be seen, the accuracy of the

79

proposed method is within 4% of this “upper bound”.

Algorithms Accuracy (%)
DKSVD [29] 65.9
LCKSVD [30] 71.8
FDDL [32] 72.3
mi-SVM [63] 75.7
GD-MIL 79.3

Table 3.7: Classification accuracy (%) on the MSR2 action dataset.

Algorithms Accuracy (%)
DKSVD [29] 82.6
LCKSVD [30] 83.1
FDDL [32] 80.5

Table 3.8: Classification accuracy (%) on the MSR2 action dataset without label
noise. This can be considered as an empirical “upper bound” for the proposed
method.

3.6.7 Timing and Convergence of the proposed method

As summarized in Algorithm 3, the proposed algorithm iteratively updates the

dictionary and the coefficient matrix. Updating a dictionary involves minimizing a

smooth function while a coefficient matrix is updated by minimizing a smooth cost

along with the ℓ1 regularizer. Hence, a legitimate question of convergence of the

cost arises. To show the empirical convergence of our method, we plot the cost in

(3.19) as a function of iterations for some of the experiments with different datasets

in Figure 3.10. As can be seen from these figures, the proposed method converges

in a few iterations.

The training time depends on the number of atoms and the training data.

We implemented our method in MATLAB on a 8 core computer with 8GB RAM.

The code can be made more efficient by implementing it in C/C++. With the

80

0 2 4 6 8 10
4

4.5

5

5.5

6

Iteration count

C
os

t

0 2 4 6 8 10
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Iteration count

C
os

t

0 5 10 15 20
50

55

60

65

70

75

80

Iteration count

C
os

t

(a) (b) (c)

Figure 3.10: Empirical convergence of cost for multiple experiments. (a) Tiger
dataset (b) Corel1000 dataset (c) Pain dataset.

current implementation in MATLAB, the training and testing times on the USPS

digits experiment are given in Table 3.9. We compare the proposed method with

the kernel mi-SVM method which uses a highly optimized C/C++ implementation

of the SVM library. In our method, the main computation time is taken by the

gradient descent algorithm for the atoms update step. Note that compared to the

mi-SVM algorithm, our method is efficient at the test time.

Algorithms Training Time (sec) Test Time (sec)
mi-SVM 442 8.2
GD-MIL 784 2.4

Table 3.9: Timing comparisons of the proposed method and the mi-SVM method
on the USPS digit dataset.

3.7 Conclusion

We proposed a general diverse density-based dictionary learning method for

multiple instance learning. Two DD-based approaches were proposed for learning

dictionaries. It was shown that special case of our method reduces to a novel dis-

criminative dictionary learning formulation. Furthermore, the non-linear extension

of dictionary learning for MIL were presented. An efficient algorithm was proposed

81

for updating each atom of the dictionary and sparse coefficients of the instances.

Experiments on the standard MIL datasets and a pain dataset demonstrate the

effectiveness of the proposed method.

82

Chapter 4: Multiple Kernel Learning for Sparse Representation-based

Classification

4.1 Introduction

It has been shown that sparse representation works well in many inverse prob-

lems where the original signal yt needs to be reconstructed as accurately as possi-

ble, such as denoising, deconvolution and image inpainting. Sparse representation

framework has also been used for signal classification tasks [17], [18], [2], [19], [20].

In particular, Sparse Representation-based Classification (SRC) algorithm [18] has

gained a lot of attraction in recent years. This is mainly due to the fact that it is

robust to noise and occlusion [18], [86].

The SRC method is based on finding a linear representation of the data. How-

ever, linear representations are almost always inadequate for representing non-linear

structures of the data which arise in many practical applications. To deal with this

problem, non-linear SRC methods have been proposed in the literature [69], [87].

These algorithms essentially map the non-linear data into high-dimensional feature

space using the kernel trick so that data of the same distribution are easily grouped

together and are linearly separable. This may also allow one to easily find the sparse

83

representation of data and significantly reduce the reconstruction error [60], [88].

Kernel SRC methods have shown to produce better classification results than the

traditional SRC.

Kernel SRC methods [69], [87] require the use of a predetermined kernel func-

tion such as the polynomial kernel or the Gaussian kernel. Selection of the kernel

function and its parameters is an important issue in training when kernel SRC meth-

ods are used for classification. In general, cross validation is used to choose the best

kernel function among a set of kernel functions. Recently, Multiple Kernel Learning

(MKL) methods that allow one to use multiple kernels instead of using a specific

kernel function have been proposed in the literature [89].

In this chapter, we propose a kernel sparse representation-based classification

method based on MKL where multiple kernel functions are combined to obtained

a better solution. Our method uses a two step training method using the SRC

as the base learner. At each iteration, first the combination function parameters

are updated while fixing the base learner parameters, and then the base learner

parameters are updated while fixing the combination function parameters. These

two steps are repeated until convergence. Fig. 4.1 presents an overview of our

method.

4.1.1 Organization of the chapter

This chapter is organized as follows. In Section 4.2, we review some related

work on SRC, kernel SRC and MKL. Details of our MKL-based SRC method are

84

Figure 4.1: Overview of the proposed method.

given in Section 4.3. Experimental results are presented in Section 4.4 and Sec-

tion 4.5 concludes the chapter with a brief summary and discussion.

4.2 Background

In this section, we review some related work on SRC, kernel SRC and MKL.

4.2.1 Sparse Representation-based Classification

Suppose that we are given C distinct classes and a set of Nc training images

per class. We identify an l× p grayscale image as a d-dimensional vector which can

be obtained by stacking its columns. Let Yc = [yc
1, . . . ,y

c
Nc
] ∈ R

d×Nc be the matrix

of training images from the cth class. Define a new matrix, Y, as the concatenation

85

of training samples from all the classes as

Y = [Y1, . . . ,YC] ∈ R
d×N

= [y1
1, . . . ,y

1
N1
|y2

1, . . . ,y
2
N2
|......|yC

1 , . . . ,y
C
NC

]

, [y1,y2, . . . ,yN],

where N =
∑

cNc. We consider an observation vector yt ∈ R
d of unknown class as

a linear combination of the training vectors as

yt =

C
∑

c=1

Nc
∑

i=1

xc
iy

c
i (4.1)

with coefficients xc
i ∈ R. The above equation can be more compactly written as

yt = Yx, (4.2)

where

x = [x1
1, . . . , x

1
N1
|x2

1, . . . , x
2
N2
| . . . |xC

1 , . . . , x
C
NC

]T

, [x1, x2, . . . , xN]
T (4.3)

and .T denotes the transposition operation. One can make an assumption that given

sufficient training samples of the cth class, Yc, any new test image yt ∈ R
d that

belongs to the same class will approximately lie in the linear span of the training

samples from the class c. This implies that most of the coefficients not associated

with class c in (4.3) will be close to zero. As a result, assuming that observations

are noisy, one can recover this sparse vector by solving the following optimization

problem,

xt = argmin
x
‖x‖1 subject to ‖yt −Yx‖2 ≤ ǫ (4.4)

86

or equivalently the following formulation,

xt = argmin
x
‖yt −Yx‖2 + λ‖x‖1, (4.5)

where λ is a parameter. The sparse code xt can then be used to determine the class

of yt by computing the following error for each class,

ec = ‖yt −Ycx
c
t‖2, (4.6)

where, xc
t is the part of coefficient vector xt that corresponds to Yc. Finally, the

class c∗ that is associated to the test sample yt, can be declared as the one that

produces the smallest approximation error

c∗ = class of yt = argmin
c

ec. (4.7)

The SRC method was originally proposed for face biometric in [18]. It was then

extended for cancelable iris biometric in [86] and for automatic target recognition

in [90].

4.2.2 Kernel SRC

Many types of descriptors in computer vision such as the spatial pyramid

descriptor and the region covariance descriptor have intrinsic nonlinear similarity

measure functions. This has motivated researchers to develop non-linear kernel

sparse representations for object representation and classification [69], [87], [60],

[91], [92], [61], [42], [41].

In kernel SRC, essentially the idea is to map data in the high dimensional

feature space and solve (4.5) using the kernel trick [52]. Let Φ : Rd → G be a non-

87

linear mapping from d-dimensional space into a dot product space G. A non-linear

SRC can be performed by solving the following optimization problem,

xt = argmin
x
‖Φ(yt)−Φ(Y)x‖22 + λ‖x‖1, (4.8)

where

Φ(Y) , [Φ(y1
1), · · · ,Φ(y1

N1
)| · · · |Φ(yC

1), · · · ,Φ(yC
NC

)].

Denote the first term of (4.8) by Eκ as follows

Eκ(x;Y,yt) = ‖Φ(yt)−Φ(Y)x‖22

= Φ(yt)
TΦ(yt) + xTΦ(Y)TΦ(Y)x

− 2Φ(yt)
TΦ(Y)x

= K(yt,yt) + xT
K(Y,Y)x

− 2K(yt,Y)x, (4.9)

where K(Y,Y) ∈ R
N×N is a positive semidefinite kernel Gram matrix whose ele-

ments are computed as

[K(Y,Y)]i,j = [〈Φ(Y),Φ(Y)〉]i,j

= Φ(yi)
TΦ(yj) = κ(yi,yj),

K(yt,yt) = κ(yt,yt), and

K(yt,Y) , [κ(yt,y1), κ(yt,y2), · · · , κ(yt,yN)] ∈ R
1×N .

Here, κ : Rd × R
d → R is the kernel function.

It is apparent that the objective function is feasible since it only involves a

matrix of finite dimension. Furthermore, the computation of K only requires dot

88

products. Therefore, we are able to employ Mercer kernel functions to compute

these dot products without carrying out the mapping Φ. Some commonly used

kernels include polynomial kernels

κ(x,y) = 〈(x,y〉+ a)b

and Gaussian kernels

κ(x,y) = exp

(

−
‖x− y‖2

c

)

,

where a, b and c are the parameters. Note that κ in the subscript of Eκ stresses on

the fact that the error term depends on the choice of the kernel function. With the

above definitions, the kernel version of the SRC optimization problem in (4.5) can

be written as,

xt = argmin
x
Eκ(x;Y,yt) + λ‖x‖1. (4.10)

One can solve the optimization problem (4.10) by modifying the LARS algorithm

[93]. In the case, when ℓ1-norm is replaced by the ℓ0-norm in (4.10), kernel orthog-

onal matching pursuit algorithm can be used to solve the resulting optimization

problem [91], [60], [94].

4.2.3 Multiple Kernel Learning

In order to achieve good performance in object classification tasks, it is impor-

tant to combine inputs from various image features. The large margin classifiers as

well as many other classifiers in computer vision are constructed based on similarity

measures between samples (or kernels). Finding appropriate feature combinations

89

entails designing good kernel functions among a set of candidate kernels. One way to

achieve this is by finding positive mixtures of predetermined base kernels. MKL is a

theoretically and technically very attractive way of determining the mixing weights

of multiple kernels [89], [95], [96], [97], [98], [99]. This method have also been used

to combine multiple features as explored by [100] and object detection [101]. MKL

learns the kernel weights and the classifier simultaneously.

Let κ1, · · · , κM be a set of base kernel functions that would be used to compute

kernel matrices. In the MKL framework, linear combinations of the base kernels are

considered

κ(yi,yj) =

M
∑

m=1

ηmκm(yi,yj),

and the mixing coefficients ηm are learned together with the model parameters, so

as to maximize the classification ability [89]. Various MKL algorithms have been

proposed in the literature that essentially differ in the training method, the base

learner, the functional form or the learning method [89].

For example, one can obtain a valid kernel by taking the summation or mul-

tiplication of M valid kernels

κ(yi,yj) =
M
∑

m=1

κm(yi,yj)

κ(yi,yj) =
M
∏

m=1

κm(yi,yj).

One can also select the kernel weights based on the performance of each kernel. The

following rule is proposed in [102] for the selection of kernel weights

ηm =
ξm − δ

∑M
l=1(ξl − δ)

,

90

where δ is the threshold that should be less than or equal to the minimum of the

accuracies obtained from single-kernel learners and ξm is the accuracy obtained using

only Km.

The notion of of kernel alignment which is a measure of similarity between two

kernel functions or between a kernel and a target function was introduced in [103].

Let K1 and K2 be the Gram matrices of kernel functions κ1 and κ2 for a set {yi}
N
i=1

of the inputs. Then, the alignment score A between the kernel matrices K1 and K2

is defined,

A(K1,K2) =
〈K1,K2〉F

√

〈K1,K1〉F 〈K2,K2〉F
, (4.11)

where,

〈K1,K2〉F =
N
∑

i=1

N
∑

j=1

κ1(yi,yj)κ2(yi,yj).

One can view kernel alignment as the cosine of the angle between K1 andK2. Kernel

alignment can be used to select the kernel weights. In [104], the following approach

is used for selecting the kernel weights

ηm =
A(Km,Kd)

∑M
l=1A(Kl,Kd)

∀m,

where Kd ∈ R
N×N is the ideal kernel matrix whose elements are defined as follows

[Kd](i,j) =



















1, if yi ∈ class c and yj ∈ class c

0, otherwise.

(4.12)

In other words, Kd is a block diagonal matrix which has 1’s where rows and columns

correspond to the same class and 0’s everywhere else. Suppose that we are given 3

classes and 2 samples per class, e.g., Yex = [y1
1,y

1
2,y

2
1,y

2
2,y

3
1,y

3
2], then the resulting

ideal matrix is the following block diagonal matrix

91

Kd(Yex,Yex) =

















1 1 0 0 0 0
1 1 0 0 0 0
0 0 1 1 0 0
0 0 1 1 0 0
0 0 0 0 1 1
0 0 0 0 1 1

















. (4.13)

A method for updating Gram matrices based on optimizing the alignment

A(K,Kd) was proposed in [103], where the definition of the ideal kernel was slightly

different. Many other methods have been proposed in the literature that use kernel

alignment or a variation of kernel alignment for learning the kernel weights. See [89]

for an excellent survey of different MKL algorithms.

4.3 Multiple Kernel Learning for SRC

In this section, we first present our formulation for Multiple Kernel Learning

for SRC (MKL-SRC). We then present the details of the optimization algorithm.

4.3.1 Problem Formulation

If we use the training matrix Y to predict the class of a training sample, then

the sparse code will always be all zeros but a single 1 at the location corresponding

to the training sample under consideration. This sparse code will always correctly

classify all the training samples and, hence, will not help in computing the optimal

kernel. In order to avoid this degenerate case, we set the corresponding column of

Y to 0 before computing the sparse code. This can be done as follows

x̂i = argmin
x
Eκ(xi; Ỹi,yi) + λ‖xi‖1, (4.14)

92

where,

Ỹi = [y1, . . . ,yi−1, 0,yi+1, . . . ,yN], (4.15)

and 0 is a d-dimensional vector with zeros as its entries. We stack up all the sparse

vectors xi in columns of a matrix X, i.e., X = [x1, . . . ,xN] ∈ R
N×N . Now, in order

to learn the optimal kernel κ, we write it as linear combination of M base kernels

as follows

κ(yi,yj) =
M
∑

m=1

ηmκm(yi,yj), (4.16)

where ηm is the weight of the mth base kernel and
∑M

m=1 ηm = 1. Using (4.16), Eκ

can be written as,

E(x,η; Ỹi,yi) =
∑

m

ηmKm(yi,yi)

+ xT
(

∑

m

ηmKm(Ỹ, Ỹ)
)

x− 2
∑

m

ηmKm(yi, Ỹ)x

=
∑

m

ηm

(

Km(yi,yi) + xT
Km(Ỹ, Ỹ)x

− 2Km(yi, Ỹ)x
)

,

where Km(Ỹ, Ỹ) can be computed by setting ith row and ith column of K(Y,Y)

to zeros, and Km(yi, Ỹ) by setting ith column of K(yi,Y) to zero. Let the kernel

mixing coefficients vector be denoted by η, i.e., η :=

[

η1, · · · , ηM

]T

. Note that we

have dropped the subscript κ and added the variable η to stress the dependency

of the cost on the coefficients η. In order to jointly learn the optimal sparse codes

X̂ and the kernel function coefficients η̂, the following MKL optimization problem

93

needs to be solved,

X̂, η̂ = argmin
X,η

N
∑

i=1

E(x,η; Ỹi,yi) + λ‖xi‖1

subject to
M
∑

m=1

ηm = 1, and η ≥ 0. (4.17)

To optimize (4.17), one can alternate between solving for X with fixed η and,

then, solving for η while keeping X fixed. With fixed η, the optimization problem

reduces to the standard kernel SRC which can be solved by using LARS [93] type

of algorithm. However, while solving for η (with fixed X), the problem reduces to

a linear programming (LP) problem and has the following two shortcomings:

1. The solution of the optimization problem finds the kernel that reduces the

reconstruction error of each sample but does not necessarily classify them in

correct classes.

2. The LP finds a solution at the vertex, which, in our problem, lies on the axes.

As a result, the optimization chooses just one kernel at each iteration and this

choice of kernel keeps changing over iterations. This makes the algorithm very

unstable.

In order to avoid these issues, we propose a kernel alignment-based algorithm

for kernel learning that focuses on classification error of the training samples. To

this end, our goal at the kernel learning stage is to learn the optimal kernel function

κ that results in the maximum training classification accuracy while avoiding over-

fitting. We first explain how this is done to avoid over-fitting. Then, we describe

our algorithm for computing the weights η.

94

4.3.2 Ordered Kernel Alignment Scores

We rank each base kernel based on how close the corresponding kernel matrix

of the training data is to the ideal kernel matrix Kd ∈ R
N×N that we defined in

(4.12). To avoid over-fitting, we give preference to a kernel matrix K that is “closer”

to the ideal matrix.

The notion of closeness between two kernel matrices is defined in terms of

kernel alignment criterion in (4.11). Kernel alignment score between a base kernel

matrix Km and the ideal kernel matrix can be computed as

Am(Km,Kd) =
〈Km,Kd〉F

N
√

〈Km,Km〉F
. (4.18)

A kernel function κm whose corresponding kernel matrix Km gives higher align-

ment score with the ideal kernel matrix, is ranked higher. Without loss of gener-

ality (w.l.o.g.) we assume that the alignment scores of the base kernel functions

κ1, . . . , κM are sorted as follows,

A1 ≥ A2 ≥ · · · ≥ AM . (4.19)

The assumption is true w.l.o.g. because if the alignment scores are not sorted, we

can re-index the base kernels so that they become sorted. Next, we explain how

we compute the weights ηm, m = 1, . . . ,M , for all the base kernels based on the

classification accuracy. Furthermore, we show how the ordering of kernels based on

alignment scores helps to avoid over-fitting.

95

4.3.3 Computing Kernel Function Weights η

Our MKL-SRC method alternates between learning sparse coefficients X and

kernel function weights η. Given sparse codes, we predict the labels of all the

training samples. Let hi be the predicted label of yi using the current kernel function.

To determine the prediction accuracy on the training samples, we define boolean

variables zi ∈ {0, 1}, i = 1, . . . , N , that is set to 1 if the predicted labels of yi is

correct and 0 otherwise. That is,

zi =



















1, if hi = li

0, otherwise.

(4.20)

We update the kernel weights η by adding a kernel that can help to classify the

samples correctly where zi = 0. We pre-compute the predicted labels of all the

training samples for each base kernel. Let gmi be the predicted label of the ith

sample with the mth base kernel and let,

zmi =



















1, if gmi = li

0, otherwise.

(4.21)

We choose the base kernel m if its prediction error is the smallest among all the

base kernel functions. At the same time, to avoid over-fitting, we want this chosen

kernel to have high alignment score. This ensures that we do not choose a kernel just

based on its training classification accuracy. In other words, taking the alignment

score of the kernel functions into consideration ensures generalization capability of

the classifier and, thus, avoids over-fitting. For the miss-classified samples, let the

96

accuracy for the mth base kernels be defined as

cm =

∑

{i:zi=0} z
m
i

∑N
i=1 (1− zi)

. (4.22)

We choose a kernel κm∗ , if it gives the best accuracy among all the kernels that have

lower alignment score than κm∗ , and its accuracy cm∗ is at least better by µ than

the accuracy of any kernel function that has higher alignment scores than that of

κm∗ . Formally,

choose km∗ such that



















cm∗ ≥ cm, if m ≤ m∗

cm∗ ≥ cm + µ, if m > m∗.

(4.23)

The parameter µ controls the over-fitting by favoring a kernel function that has

higher kernel alignment score. Note that the above choice of m∗ in (4.23) gives the

preference to the kernels with higher alignment score because they are assumed to

be sorted in decreasing order. After choosing the kernel κm∗ , we adjust the weights

of the kernel functions in proportion to their respective accuracies. In order to

compute the weights of the kernel functions, we consider only those samples whose

labels are incorrectly predicted by either the current kernel or the chosen kernel. By

the current kernel we mean the linear combination of all the kernel functions in the

previous iteration. Hence, the weight of the new kernel is given by,

wnewKernel =

∑N
i=1(z

m∗

i) ∧ (1− zi)
∑N

i=1(1− zi) ∨ (1− zm
∗

i)
, (4.24)

where ∧ is a logical ‘AND’ operator and ∨ is a logical ‘OR’ operator. The numerator

in (4.24) counts the number of samples where the new kernel predicts correct label

while the current kernel does not. Similarly, the denominator counts the number

97

of samples where either the current kernel or the new kernel does not predict the

correct label. Likewise, the weight for the current kernel is computed as,

wcurrKernel =

∑N
i=1(1− zm

∗

i) ∧ (zi)
∑N

i=1(1− zi) ∨ (1− zm
∗

i)
(4.25)

where, the numerator counts the number of samples whose labels are correctly pre-

dicted by the current kernel but not by the new kernel. The current kernel is the

linear combination of the kernels in the previous iteration. Let ηt = [ηt1, . . . , η
t
M] be

the kernel weights at the tth iteration. Then, the weights for the (t+ 1)th iteration

are computed as follows

ηt+1
m =



















wnewKernel if m = m∗

ηtm ∗ wcurrKernel otherwise.

(4.26)

The kernel weights are initialized such that all the weight is given to the kernel with

highest alignment score, i.e. η01 = 1 at the start of the first iteration. Finally, we

divide each kernel weight ηm by the sum of all the weights

ηm ←
ηm
s
, where s =

M
∑

m=1

ηm. (4.27)

As an example, consider an illustrative example of 10 samples as shown in

Fig. 4.2. The current kernel predicts correct labels of samples {1, 2, 3, 6, 7, 9, 10},

while the chosen kernel κm∗ predicts correct class of the samples {1, 2, 5, 8, 9}. Since

samples {1, 2, 9} are predicted correctly by both the kernels, we consider samples

{3, 4, 5, 6, 7, 8, 10}. Out of these 7 samples, current kernel predicts 4 correctly while,

the new kernel predicts 2 correctly. Hence, wcurrKernel = 4/7 and wnewKernel = 2/7.

Our approach for learning kernel weights is summarized in Algorithm 4.

98

Algorithm 4: Multiple Kernel Learning for SRC

Input: Data samples Y, labels l, kernel functions κm, parameters λ, µ,

maximum iteration count T , ǫ0.

Output: Kernel function weights η.

For each kernel function κm and sample yi compute the predicted label gmi ,

by computing the sparse code using (4.14).

Initialize ǫ1 ← ǫ0 + 1, t← 0, and compute kernel matrices Km(Y,Y).

while t ≤ T and ǫ1 ≥ ǫ0 do

for i = 1, . . . N do

Compute Km(Ỹi, Ỹi) by setting the ith row and the ith column of

Km(Y,Y) to 0.

Compute the sparse code xi using (4.14).

Compute the predicted label hi using xi.

end

Update ηtm, ∀m = 1, . . . ,M using (4.26).

Compute the sum of all weights s =
∑M

m=1 ηm.

ηm ← ηm/s, ∀m = 1, . . . ,M .

Set ǫ1 ← ‖η
t−1 − ηt‖2.

t← t + 1

end

return η

99

Figure 4.2: Updating kernel weights in each iteration.

4.3.4 Classification

In order to predict the class of a test sample yt, we compute the sparse code

by optimizing the following problem,

xt = argmin
x
Eκ(x;Y,yt) (4.28)

where, the learned linear weights η are used to compute the kernel function κ. Then,

the error for each class is computed as

eκc = Eκ(x
c
t ;Y,yt). (4.29)

Finally, the class of the sample yt is the one that results in the minimum error

c∗t = class of yt = argmin
c

eκc . (4.30)

4.4 Experimental Results

In this section, we present several experimental results demonstrating the effec-

tiveness of the proposed MKL-SRC method for classification tasks on both synthetic

100

and real datasets. In particular, we present classification results on the Caltech101

object dataset [105], University of Washington RGB-D dataset [106] and gender

recognition on the AR Face dataset [107]. We compare the results of our method

with that of SVM, linear SRC [18], kernel SRC [69], [87], and a multiple kernel

learning algorithm based on SVM (SVM-MKL) [108].

For all the experiments, we use a total of 50 base kernels κm(yi,yj) which are

described below

1. Two linear kernels, yT
i yj and (1 + yT

i yj).

2. Fifteen polynomial kernels, (a + yT
i yj)

b of degree b = 2, 3, 4, and constant

a = 0.5, 1.0, 1.5, 2.0, 2.5.

3. Ten tangent hyperbolic kernels, tanh(c1+ c2 ∗ (yT
i yj)) with (c1, c2) = (0.1, 1),

(0.2, 1), (0.3, 1), (0.4, 1), (0.5, 1), (0.5, 0.2), (0.5, 0.4), (0.5, 0.6), (0.5, 0.8), (0.5, 1).

4. One histogram intersection kernel.

5. Remaining 22 Gaussian kernels, exp
(

−‖x−y‖2

c

)

, with c from 0.1 to 2.2 in the

steps of 0.1.

As for the parameter selection, we have only two parameters: sparsity regularizer

λ and over-fitting regularizer µ. In all of our experiments, we set λ = 0.01 and

µ = 0.05 except for synthetic data where µ is set to 0.2.

101

4.4.1 Analysis on Synthetic Data

We thoroughly evaluate the basic behavior of the proposed MKL-SRC method

on two two-dimensional synthetic data sets. In both of the synthetic experiments,

we generate two classes of two dimensional data from the Gaussian distributions,

with different means but the same covariance matrices. In the first experiment, the

mean of class 1 is set to [1, 1]T and that of class 2 to [2, 2]T . The covariance matrix

for both of the classes is









0.51 0.049

0.049 0.51









. This generates the samples which are

approximately co-linear as shown in Fig. 4.3(a). To generate the test data in this

experiment, we change the covariance matrix to









0.51 0.01

0.01 0.51









which results in the

data as shown in Fig. 4.3(b). It is known that, with co-linear data, SRC algorithm

does not work well because both classes can be represented almost equally well by

the training samples of either class [69]. This results in a biased decision boundary as

shown in Fig. 4.3(c) and gives very poor accuracy of only 62.40%. In order to remove

the co-linearity of the data, one can represent the samples in a high dimensional

feature space and perform classification using the kernel SRC. However, choosing a

kernel based on classification accuracy of the training data alone, can result in over

fitting and non-optimal choice of kernel, as shown in Fig. 4.3(d). The kernel is non

optimal because it does not take into the consideration of the fact that test data

might be slightly different from the training data, and hence results in over-fitting.

On the other hand, the proposed method uses the alignment score of the kernel

matrices and computes the best composite kernel that gives good alignment score

102

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

2.5

3

Feature Dimension 1

F
ea

tu
re

 D
im

en
si

on
 2

Training Data

Class 1 Samples
Class 2 Samples

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

2.5

Feature Dimension 1

F
ea

tu
re

 D
im

en
si

on
 2

Test Data

Class 1 Samples
Class 2 Samples

(a) (b)

0.5 1 1.5 2 2.5

0.5

1

1.5

2

2.5

Feature Dimension 1

F
ea

tu
re

 D
im

en
si

on
 2

Decision Region for SRC

Class 1 Samples
Class 2 Samples
Class 1 Decision Region
Class 2 Decision Region

0.5 1 1.5 2 2.5

0.5

1

1.5

2

2.5

Feature Dimension 1

F
ea

tu
re

 D
im

en
si

on
 2

Decision Region for Kernel SRC

Class 1 Samples
Class 2 Samples
Class 1 Decision Region
Class 2 Decision Region

0.5 1 1.5 2 2.5

0.5

1

1.5

2

2.5

Feature Dimension 1

F
ea

tu
re

 D
im

en
si

on
 2

Decision Region for SD−MKL

Class 1 Samples
Class 2 Samples
Class 1 Decision Region
Class 2 Decision Region

(c) (d) (e)

Figure 4.3: First synthetic dataset. (a) Training Data. (b) Test Data. Decision
boundary with (c) SRC, (d) kernel SRC and (e) MKL-SRC.

as well as good training accuracy. The result is a classifier that can generalize well

on slightly different test data as shown in Fig. 4.3(e) and results in 100% accuracy.

In the second synthetic experiment, we generate class 1 data from a Gaussian

distribution with mean [1, 1]T and covariance matrix









0.07 0.00

0.00 0.07









and the second

class using a Gaussian distribution with mean [2, 2]T and the same covariance matrix.

The test data for class 1 is generated from the same Gaussian distribution as the

training data, however, we slightly change the mean of class 2 for test data to

[2, 2.5]T . The training and the test data for this experiment are shown in Fig. 4.4(a)

and (b), respectively. We show the decision boundary for SRC, kernel SRC and the

proposed method in Fig. 4.4(c), (d) and (e), respectively. This experiment shows

103

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

2.5

Feature Dimension 1

F
ea

tu
re

 D
im

en
si

on
 2

Training Data

Class 1 Samples
Class 2 Samples

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

2.5

3

Feature Dimension 1

F
ea

tu
re

 D
im

en
si

on
 2

Test Data

Class 1 Samples
Class 2 Samples

(a) (b)

0.5 1 1.5 2 2.5
0.5

1

1.5

2

Feature Dimension 1

F
ea

tu
re

 D
im

en
si

on
 2

Decision Region for SRC

Class 1 Samples
Class 2 Samples
Class 1 Decision Region
Class 2 Decision Region

0.5 1 1.5 2 2.5
0.5

1

1.5

2

Feature Dimension 1

F
ea

tu
re

 D
im

en
si

on
 2

Decision Region for Kernel SRC

Class 1 Samples
Class 2 Samples
Class 1 Decision Region
Class 2 Decision Region

0.5 1 1.5 2 2.5
0.5

1

1.5

2

Feature Dimension 1

F
ea

tu
re

 D
im

en
si

on
 2

Decision Region for SD−MKL

Class 1 Samples
Class 2 Samples
Class 1 Decision Region
Class 2 Decision Region

(c) (d) (e)

Figure 4.4: Second synthetic dataset. (a) Training Data, (b) Test Data. Decision
boundary with (c) SRC, (d) kernel SRC, (e) MKL-SRC.

that learning a kernel that avoids over-fitting can result in better decision boundaries

and hence better classification accuracy. Classification results on the synthetic data

are summarized in Table 4.1.

SRC Kernel SRC MKL-SRC
Synthetic data 1 62.40 80.00 100.0
Synthetic data 2 63.20 69.60 99.20

Table 4.1: Accuracy (%) on the synthetic data in Fig. 4.3 and 4.4.

4.4.2 Object Recognition

We perform the first set of object recognition experiments on the Caltech-101

database [105]. The Caltech101 dataset contains 102 categories including one back-

ground class. Each category has about 40 to 80 images and most of the categories

have about 50 images. The images have been downloaded from the internet us-

104

ing Google search engine (www.google.com). The database contains a diverse and

challenging set of images from buildings, musical instruments, animals and natural

scenes, etc.

To show the appropriateness of sparsity in our application, we plot sparse

coefficients when a test sample is represented as a sparse linear combination of

training samples in the feature space. In particular, we randomly select five classes

from the Caltech101 dataset to form a training matrix Y with fifteen samples from

each class. Then, given a test sample yt corresponding to one of the five classes

from the Caltech101 dataset, we solve the following problem in the feature space

using the polynomial kernel of degree two

xt = argmin
x
‖Φ(yt)−Φ(Y)x‖22 + λ‖x‖1. (4.31)

We repeat this procedure fifteen times with different test samples corresponding to

each class and take the average of sparse codes. We plot these spare representations

in Figure 4.5. From this figure, we see that most of the coefficients are clustered

around the class corresponding to the training samples. Furthermore, we ran mul-

tiple experiments with different kernel functions and obtained similar results. This

essentially shows that on average the data used in our application does have a sparse

representation in the feature space.

Following the common experimental set up on this dataset [30], we train on

j images, where j ∈ {5, 10, 15, 20, 25, 30}, and test on the rest. For fair compar-

ison, we use the same spatial pyramid features as used in [30]. Table 4.2 shows

the comparison of our classification accuracy with the state-of-the-art. Note that

105

0 20 40 60 80
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Training Samples

S
pa

rs
e

C
od

es

0 20 40 60 80
0

0.2

0.4

0.6

0.8

Training Samples

S
pa

rs
e

C
od

es

0 20 40 60 80
0

0.2

0.4

0.6

0.8

1

Training Samples

S
pa

rs
e

C
od

es

0 20 40 60 80
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Training Samples

S
pa

rs
e

C
od

es

0 20 40 60 80
0

0.2

0.4

0.6

0.8

Training Samples

S
pa

rs
e

C
od

es

Figure 4.5: Sparse coefficients corresponding to five classes from the Caltech101
dataset in the feature space.

106

Number of training
samples

5 10 15 20 25 30

Malik [109] 46.6 55.8 59.1 62.0 − 66.20
Lazebnik [110] − − 56.4 − − 64.6
Griffin [111] 44.2 54.5 59.0 63.3 65.8 67.60
Irani [112] − − 65.0 − − 70.40

Grauman [113] − − 61.0 − − 69.10
Venkatesh [114] − − 42.0 − − −
Gemert [115] − − − − − 64.16
Yang [116] − − 67.0 − − 73.20
Wang [117] 51.15 59.77 65.43 67.74 70.16 73.44
K-SVD [118] 49.8 59.8 65.2 68.7 71.0 73.2
D-KSVD [29] 49.6 59.5 65.1 68.6 71.1 73.0

LC-KSVD1 [30] 53.5 61.9 66.8 70.3 72.1 73.40
LC-KSVD2 [30] 54.0 63.1 67.1 70.5 72.3 73.40
SVM-MKL [108] 51.2 62.4 67.1 69.8 72.7 74.6

Kernel SRC 50.4 60.8 66.5 69.2 72.0 74.1
SRC [18] 48.8 60.1 64.9 67.7 69.2 70.7
MKL-SRC 54.6 64.9 69.3 72.0 74.2 75.7

Table 4.2: Accuracy (%) on the Caltech 101 object recognition dataset.

our method performs significantly better than the linear SRC. Furthermore, it is

interesting that our method outperforms the other discriminative approaches such

as LC-KSVD and D-KSVD.

In Fig. 4.6, we plot the learned kernel weights for the experiment when 30

samples per class are used for training. As can be seen from this plot, our method

is able to learn the optimal combinations of base kernels directly from data.

To further analyze our results, we plot the confusion matrix in Fig. 4.7(a) and

per class accuracy in Fig. 4.7(b) in the case when 30 samples per class are used for

training. There are in total 11 classes that result in 100% accuracy. These images

are shown in Fig. 4.8.

107

0 10 20 30 40 50
0

0.1

0.2

0.3

0.4

Base Kernels Indices

K
er

ne
l W

ei
gh

ts

Figure 4.6: Learned kernel weights for the Caltech101 (for 30 training samples).

F
ac

es
M

ot
or

bi
ke

s
an

ch
or

ba
ss

bo
ns

ai
bu

dd
ha

ca
nn

on
ce

llp
ho

ne
co

ug
ar

 b
od

y
cr

ay
fis

h
cu

p
do

lp
hi

n
el

ep
ha

nt
ew

er
fla

m
in

go
 h

ea
d

gr
am

op
ho

ne
he

ad
ph

on
e

ib
is

ka
ng

ar
oo

la
pt

op
lo

tu
s

m
en

or
ah

na
ut

ilu
s

pa
go

da
pi

zz
a

re
vo

lv
er

sa
xo

ph
on

e
sc

or
pi

on
so

cc
er

 b
al

l
st

eg
os

au
ru

s
su

nf
lo

w
er

um
br

el
la

w
he

el
ch

ai
r

w
re

nc
h

Faces
Motorbikes

anchor
bass

bonsai
buddha
cannon

cellphone
cougar body

crayfish
cup

dolphin
elephant

ewer
flamingo head

gramophone
headphone

ibis
kangaroo

laptop
lotus

menorah
nautilus
pagoda

pizza
revolver

saxophone
scorpion

soccer ball
stegosaurus

sunflower
umbrella

wheelchair
wrench 0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 20 40 60 80 100 120
0

10

20

30

40

50

60

70

80

90

100 windsor chair scissorsminaret dollar billbinocular Faces easyairplanes Leopardsrooster stop signrevolver okapibrain menorahsunflower strawberrytick rhinowild cat headphonebuddha euphoniumcougar face saxophonesoccer ball schoonerpigeon gramophonecamera hawksbillelephant chandeliercupmetronomeflamingo ceiling fanlotus water lillycrocodile head octopuskangaroo brontosaurusbutterfly emuanchor crocodilegerenukbeaverlobster sea horseant

Accuracy (%)

C
la

ss
 L

ab
el

s
(s

or
te

d
ac

cu
ra

cy
)

(a) (b)

Figure 4.7: Results on the Caltech 101 object dataset. (a) Confusion matrix. (b)
Per class accuracy.

108

Figure 4.8: Example images from 11 categories of the Caltech101 dataset that
achieve 100% accuracy. Category names (from left to right):accordion, binocu-
lar, car side, dollar bill, inline skate, minaret, pagoda, scissors, trilobite, wind-
sor chair, wrench

4.4.3 Object Recognition using Intensity and Depth Data

Recently, there has been a growing interest in using both the intensity and the

depth data for computer vision algorithms. For example, with Microsoft’s Kinect

camera one can capture videos of both color as well as corresponding depth data.

The purpose of this experiment is to demonstrate that our algorithm can naturally

be extended to the multi-modal features. We use the same set of base kernels for

intensity as well as depth images to compute the kernel matrices. This can be viewed

as a single modality but with twice as many number of base kernels.

In this experiment, we use the RGB-D dataset of University of Washington

[106] which consists of 51 categories. Few examples of pairs of color and depth

images from this dataset are shown in Fig. 4.9. Most of the depth images are noisy

109

as shown in the second row of the figure. Hence, we apply a recursive median filter to

remove the missing values. Processed images are shown in the third row of Fig. 4.9.

Figure 4.9: Example images of the RGBD dataset. First row shows the intensity
images, second row displays the corresponding depth images, and the third row is
the denoised version of the second row after applying the recursive median filter.

0 10 20 30 40 50
0

0.1

0.2

0.3

0.4

0.5

Base Kernels Indices

K
er

ne
l W

ei
gh

ts

0 10 20 30 40 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Base Kernels Indices

K
er

ne
l W

ei
gh

ts

0 20 40 60 80 100
0

0.05

0.1

0.15

0.2

0.25

Base Kernels Indices

K
er

ne
l W

ei
gh

ts

(a) (b) (c)

Figure 4.10: Learned kernel weights for RGBD dataset: (a) Intensity data. (b)
Depth data. (c) Intensity and depth data.

We test our algorithm on the subset of the dataset by randomly selecting 10

images for training and 10 images for testing from each category. As is common

in object recognition, we use bag-of-words (BoW) features for intensity as well as

depth images. For the intensity images, we use BoW of 128 dimensional SIFT

features [119] and 1000 clusters using the k-means algorithm for computing the

bags. For the depth features, we compute the dense spin image [120] features on

the depth data at each 3D point. We use the radius of 0.1 to compute neighbors at

110

each point, and bin size of 16 to compute the spin images. Finally, BoW features

are computed for each depth image with 1000 bags computed using the k-means

algorithm.

Comparison of all the methods using the intensity features alone are shown

in the second column of Table 4.3. As can be seen from this column, our method

performs more than 4% better than linear SRC. In this experiment, kernel SRC with

non-optimal choice of the kernel performs a little worse than linear SRC. Next, we

perform the same experiment on the depth data alone. Results of this experiment

are summarized in the third column of Table 4.3. Our method performs slightly

better than the other methods on the depth data as well. Next, we demonstrate

that multiple features can improve the performance of the classifier. To this purpose,

we compute BoW on HOG features and HSV color histograms of intensity images

and evaluate our algorithm against SRC and kernel SRC. Again, our algorithm can

naturally be extended to incorporate multiple features by computing kernel matrices

for each of these features. With 3 features and 50 base kernels for each of them, we

have total 150 kernel matrices and learned η is 150 dimensional weight vector. The

accuracy with these features combined have been shown in the parentheses in Table

4.3.

Finally, we demonstrate how our algorithm can be extended when both the

intensity and the depth features are available. For the non MKL based methods, we

concatenate the intensity and the depth features for classification. This is equivalent

to giving equal weights to both of the features. On the other hand, when we look

at the kernel matrices from both the modalities, we can view them as twice as

111

Algorithms Intensity
features

Depth features Intensity and
depth features

SVM 71.96 74.90 84.11
NN 69.80 75.88 86.08

SVM-MKL [108] 72.75 78.24 86.07
SRC 70.00(72.16) 79.80 86.27

Kernel SRC 69.80(72.54) 80.00 86.60
MKL-SRC 74.12(75.88) 81.37 87.65

Table 4.3: Accuracy (%) on the RGB-depth object dataset. In parentheses, we show
the accuracy for multiple features (see text for details).

many base kernel matrices. Since in our case we use 50 base kernels, combined

intensity and depth features results in 100 base kernel matrices. Learning weights

for each kernel matrix automatically learns the optimal weights for the modalities.

To further elaborate this point, we show the kernel weights in Fig. 4.10(a)-(c) for

the intensity, depth, and their combination, respectively. Fig. 4.10(c) has 100 base

kernel indices, out of which first 50 correspond to the intensity feature base kernels

while the last 50 are for the depth feature base kernels. As can be seen from this

figure, the weight given to the depth feature base kernels is more than the weights

for the intensity features. This can be explained by the observation that the depth

feature alone results in higher accuracy than the intensity feature. Results of the

combined features are shown in the fourth column of Table 4.3. Again, our method

performs better than the other methods on this combined dataset.

4.4.4 Gender Recognition

In the final set of experiments, we evaluate our algorithm on the gender recog-

nition task. Towards this purpose, we use the AR Face dataset [107] that consists

112

2 4 6 8
0

0.5

1

1.5

Iteration count

‖
η
t
−
η
t
−
1
‖
2

Convergence of Kernel Weights

2 4 6 8 10
0

0.1

0.2

0.3

0.4

0.5

0.6

Iteration count

‖
η
t
−
η
t
−
1
‖
2

Convergence of Kernel Weights

2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

Iteration count

‖
η
t
−
η
t
−
1
‖
2

Convergence of Kernel Weights

(a) (b) (c)

Figure 4.11: Convergence of kernel weights (‖ηt−ηt−1‖2): (a) Caltech 101 dataset.
(b) RGBD dataset. (c) Gender recognition on AR dataset.

of 126 individuals with frontal faces captured in two sessions with different illu-

minations, expressions and occlusions. We choose 50 male subjects and 50 female

subjects and 14 faces per subject from both sessions. Next, we train our algorithm,

with first 25 males subjects and 25 female subjects and test our method with the

remaining 25 male and 25 female subjects. The feature dimension was reduced to

300 using the principle component analysis. Comparison of our method with that of

different methods is summarized in Table 4.4. Note that our method not only out-

performs linear and non-linear SRC but it perform better than the state-of-the-art

discriminative dictionary learning method such as [29].

SVM NN SVM-
MKL [108]

DKSVD
[29]

Kernel
SRC

SRC MKL-SRC

92.4 90.7 93.1 86.1 94.1 93.0 95.4

Table 4.4: Accuracy (%) on the gender recognition task using the AR face dataset.

4.4.5 On the Convergence of the Proposed Method

The proposed method iterates until the kernel weights converge or the maxi-

mum number of iterations are reached. So, a natural question about the convergence

113

2 4 6 8 10

66

68

70

72

74

76

Iteration count

C
la

ss
ifi

ca
tio

n
A

cc
ur

ac
y(

%
)

Classification Accuracy vs Iteration Count

Figure 4.12: Improvement of classification accuracy over iterations (RGBD dataset
using intensity features).

of the algorithm arises. Do the kernel weights converge and whether the classifi-

cation accuracy actually improves over iterations? To answer these questions, let

us closely look at what happens at each iteration. At every iteration, a new kernel

is added only if it can correctly predict the labels of the subset of those samples

that are incorrectly predicted using current kernel. In case of multiple choices, we

pick the kernel with maximum accuracy. Intuitively, adding this new kernel should

complement the current kernel and improve the accuracy. However, it is likely that

the new kernel might wrongly predict the labels of those samples which are correctly

predicted by the current kernel. Hence, we adjust the weight of the current kernel

and the new kernel in proportion to the number of correctly predicted samples as

explained in section 4.3 and illustrated in Fig. 4.2. Although, there is no theoretical

guarantee that the combination of two kernels should improve upon the individual

kernels, we empirically observe that combining the kernel as proposed improves the

overall classification accuracy at each iteration, as shown in Fig. 4.12 for RGB-D

dataset.

Note that the kernel coefficients are updated at each iteration only if a new

114

kernel complements the current kernel by correctly predicting the labels of the those

samples where current kernel fails. As we add more kernels, the number of correctly

predicted samples increases which, intuitively, results in reduced scope of further

gain in later iterations. We can imagine that eventually, no kernel can correctly

predict any significant subset of training data which is not already done by current

kernel. This intuition is corroborated with experimental evaluation on all the three

datasets. In Fig. 4.11 we plot ‖ηt − ηt+1‖2 and observe the quick convergence of

kernel weights.

4.5 Conclusion

The SRC method works by computing the sparse coefficients of a test sample

directly from the training data and does not require any prior training. However,

for most of the applications, training can be useful provided that there is no over-

fitting. In this chapter, we have introduced a training stage to SRC that can learn

the optimal kernel and improve the classification performance of SRC. The resulting

algorithm alternates between learning sparse codes and kernel function weights.

Even though, in this chapter, we used a linear SRC as a base learner for

MKL, it is possible to learn discriminative SRC and kernel weights simultaneously

by adapting a discriminative SRC in our formulation. One can also adapt dictionary

learning methods in our MKL formulation. It remains an interesting topic for future

work to develop and analyze the accuracy of a discriminative dictionary learning-

based MKL algorithm for classification.

115

Chapter 5: Class Consistent Multimodal Learning

5.1 Introduction

Combining information from multiple sources - multiple sensor modalities or

multiple feature channels applied to a single sensor modality - is generally advanta-

geous for recognition problems. For example, a self-driving car can better navigate

its environment using multiple sensors including color cameras, depth sensors, in-

ertial sensors, etc. Using both color and depth cameras, instead of either, can

significantly improve the performance of computer vision tasks such as object cat-

egorization, detection, tracking, segmentation and others ([106], [121], [122]). In

biometrics, fingerprints from multiple fingers can be used, or fingerprint and iris can

be combined to determine identity. In this chapter, we consider classification by fus-

ing information from multiple modalities and present an algorithm for multi-modal

fusion by enforcing the intuitive constraint that the predicted class label should be

consistent across all modalities.

Fusing multiple modalities for classification has been explored in many com-

puter vision applications. These approaches can broadly be divided into three cate-

gories: (1) feature level fusion, (2) score level fusion, and (3) decision level fusion. In

feature level fusion, features from multiple modalities are combined before feeding

116

Figure 5.1: Overview of the proposed Class Consistent Multi-Modal (CCMM) fu-
sion. The proposed algorithm perturbs the input feature until all the input modal-
ities predict a consistent class.

them to the decision unit or a classifier, e.g., a support vector machine (SVM) [123].

A straight-forward way of combining the features is to concatenate them, which has

been used in biometrics ([124], [125], [126]), object recognition [127], scene clas-

sification [128] etc. Feature concatenation preserves the raw information so that

the classifier can utilize the correlation among modalities. However, these features

are often very high dimensional and hence simple concatenation can be inefficient.

Another approach to feature level fusion is multiple kernel learning (MKL), which

learns a linear combination of multiple kernels. Finding appropriate feature com-

binations entails designing good kernel functions among a set of candidate ker-

nels. MKL is a powerful way of determining the mixing weights of multiple ker-

nels [89], [108], [100], [101]. For multi-modal fusion, each modality can be used to

form a kernel matrix; an optimal linear combination of kernel matrices translates

into optimal feature level fusion. When using only a linear kernel for each modality,

the MKL methods are similar to feature concatenation, except that the features

from each modality are weighted based on training accuracy. However, in order to

make a good decision at test time, it is important that we also determine the quality

117

of the test features from each modality. For example, from a training database of

depth and intensity images, we might conclude that both modalities are equally

useful for classification; however, at test time, the depth image may be noisy due to

specularity on the object’s surface. In such situations, it is useful to make the pre-

diction based on score level or decision level fusion and not rely entirely on training

accuracy. Score level fusion can be done by averaging the scores of decision functions

and decision level fusion can be performed by taking a majority vote from all the

modalities. Recently, [129] proposed a sparse representation-based multi-modal bio-

metric fusion method, which represents the test data by a sparse linear combination

of training data, while constraining the observations from different modalities of the

test subject to share their sparse representations. Effectively, they regularize the

joint sparse coefficient matrix with the ℓ{1,2} norm, which enforces the test feature

to be reconstructed from the training features of the same class. This method is the

closest to our approach in that it implicitly enforces that different modalities share

a common class at test time. However, [129] does not learn a classification model,

and training data for each class needs to be “paired” for each modality. That is,

the number of samples in each modality must be the same to enforce the ℓ{1,2} con-

straint on the joint sparse coefficient matrix. Furthermore, enforcing row sparsity

on the joint sparse coefficient matrix of a test sample makes the method susceptible

to the ordering of the training samples within each class. Also, sparse methods are

generally slow for large training matrices.

Most algorithms for feature fusion have been developed for continuous features.

Recently, with the the availability of large datasets, the need for efficient algorithms

118

that can work with big data has increased. One way to efficiently process large

number of features is to represent each of them as binary features. Binary codes are

attractive representations of data for similarity-based search and retrieval purposes,

due to their storage efficiency and computational efficacy ([130], [131], [132], [133]).

For example, 250 million images can be represented by 64 bit binary codes by

employing only 16 GB of memory. Hashing is a common method to convert high

dimensional features to binary codes whose Hamming distances preserve the original

feature space distances. Although shorter codes are more desirable due to direct

implementation in hash tables, longer binary descriptors of data have been shown to

be efficient for fast similarity search tasks. For example, [134] proposed a multi-index

hashing method, and [135] introduced a branch and bound approach to perform

exact k-nearest neighbors search in sub-linear time with long binary codes. To

the best of our knowledge, the method presented in this chapter is the first work

proposing multi-modal fusion using binary codes. We propose to modify the test

features in a way that all the modalities consistently agree on a common class label.

We call this approach class consistent multi-modal (CCMM) fusion. The key idea,

summarized in Fig. 5.1, is to minimize the magnitude of perturbations to feature

values for each modality to get to a point where all the modalities are predicting a

common class label. We develop this intuition into an optimization problem that can

be solved efficiently via quadratic programming for continuous features, and mixed

integer programming for binary features . We evaluate this algorithm on several

state-of-the-art datasets and results show that the method outperforms previous

methods consistently. The contributions of this chapter are as follows,

119

• We enforce class consistency across all available modalities in a perturbation

model to determine the class of multi-modal data item.

• Based on this notion of class consistency, we develop an efficient binary feature

fusion algorithm.

5.2 Class Consistent Multi-Modal Fusion (CCMM)

Our method relies on the intuition that when multiple modalities are available,

each of them should predict the same class. In case of discrepancy in the prediction

of a test sample, we employ a strategy that enforces consistency of the predicted

class across modalities. We achieve this consistency by perturbing the test sample

from each modality so that their predictions are consistent. This is formally posed as

an optimization problem which minimizes the perturbation to satisfy the constraint

that all modalities predict the same class label. In what follows, we establish our

notation and develop the algorithm, first for continuous features and then, for binary

features.

Assume that there are M modalities each with Nm labeled samples where m =

1, . . . ,M . Let the data matrix of the mth modality be denoted by Y(m) ∈ R
d×Nm ,

where each column of Y(m) is a d-dimensional data sample denoted by y
(m)
i ∈ R

d,

for i = 1, . . . , Nd. Let the class label of the ith sample in the mth modality be

denoted by l
(m)
i ∈ {1, . . . , C}, where C is the number of classes. Note that, for now,

we regard the features as continuous; subsequently we adapt our method for binary

features.

120

Let W(m) :=

















w
(m)
1

...

w
(m)
C

















, be the classifier matrix for all categories in modality m,

where the cth row vector w
(m)
c ∈ R

1×d denotes the parameters of a linear classifier

for the cth class, which we refer to as a classification weight vector. These weight

vectors are learned in a way that the class of a test sample y
(m)
p can be computed

as,

class of y(m)
p = argmax

c
w(m)

c y(m)
p . (5.1)

In our implementation we use an SVM ([136], [137]) to learn these classification

weight matrices W(m) for all modalities.

First, we describe the method for two modalities and then extend it to multiple

modalities. Denote a given test sample’s two modalities by y
(1)
p and y

(2)
p which by

construction belong to the same class. Our goal is to minimize the total perturbation

needed to reach the condition that the predicted classes using SVM matrices W(1)

and W(2) are identical. This is captured in the following optimization problem,

min
y(1),y(2)

‖y(1) − y(1)
p ‖2 + ‖y

(2) − y(2)
p ‖2

subject to, argmax
c

w(1)
c y(1) = argmax

c
w(2)

c y(2) (5.2)

The optimization problem in (5.2) is non-smooth and non-convex due to the argmax

functions. In order to solve it efficiently, we approximate it with a tractable convex

problem. To achieve this, we employ an alternative optimization approach. First,

we assume that the class predicted by the second modality is correct and optimize

for y(1), and then, we fix the class to the one predicted by the first modality and

121

optimize for y(2). When optimizing for the mth modality feature y(m), the class that

is assumed to be correct is called the target class and is denoted by tm , i.e.,

t1 := argmax
c

w(2)
c y(2)

p , (5.3)

and,

t2 := argmax
c

w(1)
c y(1)

p . (5.4)

We seek to perturb the feature y
(m)
p so that its predicted class is tm, which can be

achieved by solving the following problem,

min
y(m)
‖y(m) − y(m)

p ‖2

subject to, argmax
c

w(m)
c y(m) = tm. (5.5)

As explained later, the optimization problem in (5.5) is a quadratic program (QP).

Let the solution of (5.5) be denoted by ỹ
(m)
t . Finally, the consistent class, denoted

by lp, across both modalities is the target class of the modality that requires the

smallest change with respect to the original feature norm, i.e.,

lp = tm∗ , (5.6)

where,

m∗ = argmin
m

‖ỹ
(m)
p − y

(m)
p ‖2

‖y
(m)
p ‖2

. (5.7)

Next, we describe how the optimization problem in (5.5) can be written as a

122

quadratic convex program. The constraints in (5.5) can be re-written as,

argmax
c

w(m)
c y(m) = tm

⇒ w
(m)
tm y(m) ≥ w

(m)
i y(m), ∀i 6= tm

⇒ w
(m)
i y(m) −w

(m)
tm y(m) ≤ 0, ∀i 6= tm

⇒ Atmy
(m) ≤ 0, (5.8)

where, AtmR
C−1×d is a constraint matrix whose rows are computed as, [Atm]i,: =

w
(m)
i −wtm . Hence, the problem in (5.5) can be optimized by solving the following

QP program,

min
y(m)
‖y(m) − y(m)

p ‖2

subject to, Atmy
(m) ≤ 0. (5.9)

5.2.1 CCMM for binary features

As stated earlier, binary features are very useful for large scale classification

because they require smaller storage space and are efficient for classification. How-

ever, the optimization problem in (5.9) has been designed for continuous features.

For binary features, if we predict a consistent class by solving this problem, we may

not achieve good performance because the solution will not lie in a binary space.

In face recognition, for example, a binary feature may represent an image attribute

like sunglasses, which could be either present or not present in the image. Hence,

we optimize for the binary features over a binary space.

In this sub-section, we assume the features b
(m)
i ∈ {0, 1}d are d-dimensional

123

binary vectors. Furthermore, data matrices B(m) = [b
(m)
1 , . . . ,b

(m)
Nm

] ∈ {0, 1}d×Nm

are of size d × Nm with binary elements. As with continuous features, we learn

SVM weight matrices for each modality. The major difference in setting up our

optimization problem is that, in the case of binary features, we want the solution of

the optimization problem to lie in a binary space. We reformulate (5.9) for binary

features as:

min
b(m)
‖b(m) − b(m)

p ‖1

subject to,

Atmb
(m) ≤ 0

b(m) ∈ {0, 1}d. (5.10)

Note that for binary features, we minimize the ℓ1 instead of the ℓ2 norm because

the former counts the number of places in the binary vector where the solution

differs from the input feature. In other words, we minimize the Hamming distance

between the input feature and the solution. Minimizing the ℓ1 norm is a non-smooth

function; hence, we use an auxiliary variable z to make the cost differentiable,

min
b(m),z

‖z‖1

subject to,

Atmb
(m) ≤ 0

z = ‖b(m) − b(m)
p ‖1,

b(m) ∈ {0, 1}d, z ∈ {0, 1}d. (5.11)

The ℓ1 constraints involving z are difficult to optimize. In order to eliminate them,

124

we replace them with a set of linear constraints as follows. Let the ith element

of vectors z, b(m), and b
(m)
p be denoted by zi, b

(m)
i and b

(m)
pi , respectively. Next,

z = ‖b(m) − b
(m)
p ‖1 can be replaced by the following linear constraints,

zi ≥ (b
(m)
pi − bi) (5.12)

zi ≥ −(b
(m)
pi − bi). (5.13)

Now the optimization problem in (5.11) can be modified as,

min
b(m),z

d
∑

i=1

zi

subject to,

Atmb
(m) ≤ 0









−Id +Id

−Id −Id

















z

b(m)









≤









b
(m)
p

−b
(m)
p









b(m) ∈ {0, 1}d, z ∈ {0, 1}d. (5.14)

The optimization in (5.14) is a linear programming problem in b(m), z except for the

fact that the solution space is binary. Although this problem can be solved with a

mixed integer programming (MIP) solver, we propose an efficient greedy algorithm

and, later, empirically demonstrate that the solution of the greedy algorithm is close

to that of the MIP solver. In order to solve the problem in (5.14) or (5.10) greedily,

we first find a feasible solution, which can simply be one of the training samples

from the target class satisfying the constraints of problem (5.10). Now, starting

from this feasible solution, we move towards the test sample as much as possible

without leaving the feasible region. Let the initial feasible solution be denoted by

125

b0 and the running solution, which we will keep updating, be denoted by b. First

we initialize b to b0. Next, we find all the elements of b that are different from the

test sample b
(m)
p . Let this set of bit locations be denoted by S, i.e.,

S := {i | bi 6= b
(m)
pi },

where bi is the ith bit of vector b and b
(m)
pi is the ith bit of b(m). Our goal is to

change as many bits from this set S as possible because every change takes b one

step closer to the test feature b
(m)
p . Choosing the optimal subset of bits is an NP-

hard problem and, hence, we resort to an approximate greedy method. Next, we

present this greedy algorithm that changes one bit at a time from this set S. The

solution of the greedy algorithm can further be improved by various MIP solvers;

however, empirically we observe that the greedy solution is quite good. In order to

select a bit from S we flip all the bits in S and compute the following score,

si = min
c 6=t

(w
(m)
t b−w(m)

c bī), (5.15)

where bī is b with its ith bit flipped. Note that, since we start from a feasible

solution, si is bounded below by 0. Recall that w
(m)
c is the SVM weight vector for

the cth class of the mth modality. The score si is the difference of scores between the

target class and its closest one if the ith bit is flipped. In other words, si corresponds

to the constraint closest to the current solution b and is most likely to be violated if

b’s ith bit is changed. This is illustrated in Fig. 5.2. Now, our goal is to change that

bit which will keep the current solution in the feasible region as much as possible.

Hence, we change that bit of b that belongs to set S and for which the solution

remains as feasible as possible. Feasibility is measured by the maximum distance of

126

Algorithm 5: Greedy algorithm to optimize for binary feature

Input: Binary test data b
(m)
p , Classification matrices W(m), a feasible

solution b0, target class t

Output: b

Initialize b = b0, v = 1.

S ← {i | bi 6= b
(m)
pi }

while (v > 0) AND (S is not empty) do

1. bī ← b with ith bit flipped.

2. v ← maxi∈S minc 6=t(w
(m)
t b−w

(m)
c bī)

if v > 0 then

j ← argmaxi∈S minc 6=t(w
(m)
t b−w

(m)
c bī)

bj ← 1− bj

end

3. S ← {i | bi 6= b
(m)
pi }

end

return b

127

Figure 5.2: Example of most violated constraint. Both solutions a and b lie in target
class 2. Since a is likely to move to class 1, hyperplane 1 corresponds to the most
violated constraint. Similarly, if the current solution is b, hyperplane 3 corresponds
to the most violated constraint.

b from all the constraints. We denote the index of the bit to be flipped by j, and it

is computed as,

j = argmax
i

si. (5.16)

All the steps of the greedy algorithm are summarized in Algorithm 5. Having

computed the solution to the optimization problem in (5.14), we can compute the

consistent class lp from both modalities based on the perturbation as follows,

lp = tm∗ , (5.17)

where,

m∗ = argmin
m

‖b̃
(m)
p − b

(m)
p ‖1

‖b
(m)
p ‖1

. (5.18)

However, we find in our experiments that weighting the perturbations based on the

quality of the modalities, improves the performance. This is explained in the next

sub-section. Finally, we summarize all the steps to compute the consistent class

from two modalities in Algorithm 6.

128

Algorithm 6: Summary of CCMM for binary features

Input: Binary test data b
(m)
p , Classification matrices W(m), for m = 1, 2

Output: Class consistent label lp

1. Predict class labels l
(m)
p = argmaxcw

(m)
c b

(m)
p for individual modalities.

2. Compute target labels as t1 = l
(2)
p , t2 = l

(1)
p .

3. Compute b̃
(m)
p by solving optimization problem in (5.14) using greedy

Algorithm 5.

4. Predict class consistent label lp using (5.17) or (5.23).

return lp

5.2.2 Extension to Multiple Modalities

So far we have described how to predict a consistent class with two modalities.

For multiple modalities, we make a set of target labels for each modality. This set,

denoted by Z, consists of the labels predicted by all the modalities. Let the number

of modalities be denoted by M . We compute the score smc of the mth modality

based on the perturbation needed to predict the cth target class as follows,

smc =
exp(−ǫmc/σ)

∑

c∈Z exp(−ǫmc/σ)
, (5.19)

where,

ǫmc =
‖b̃

(m)
p − b

(m)
p ‖1

‖b
(mz)
p ‖1

,

and σ is a parameter that controls the sharpness of the distribution of the scores

over classes. For each class, we compute the combined score as a weighted sum of

129

each modality,

sc =

M
∑

m=1

ηm ∗ smc, (5.20)

where, ηm is the quality of the mth modality based on the training data. Although,

we could have given the same weight to each modality, i.e. set ηm = 1, ∀m, setting

these weights based on training data slightly improves performance. We compute

ηm based on the kernel alignment criterion [103] which has been shown to generalize

well for unseen test data and has been used for combining multiple kernels [89]. The

ηm is computed based on similarity between the the linear kernel matrix of the mth

modality, i.e. B(m)TB(m), and ideal kernel matrix Kdm ∈ R
Nm×Nm , defined as,

Kdm(i, j) =



















1, if l
(m)
i = l

(m)
j ,

0, otherwise.

(5.21)

The score ηm is computed as,

ηm =
〈Km,Kdm〉

√

〈Km,Km〉〈Kdm,Kdm〉
, (5.22)

where, Km := B(m)TB(m), and 〈., .〉 denotes the dot product between the argument

matrices. Finally, the class lp of the test input is predicted as the one with the

maximum score,

lp = argmax
c

sc. (5.23)

5.3 Experiments

We evaluate the method on publicly available computer vision datasets. First,

we use the fusion algorithm to combine image and depth data for object catego-

rization. Next, we apply the method to fuse multiple modalitites for biometrics

130

applications and demonstrate significant improvement over previous methods. Fi-

nally, we combine intensity and semantic features on the Pascal-Sentence dataset.

We compare the method to state-of-the-art multimodal fusion methods such as

recently proposed sparse multimodal biometric recognition (SMBR) [129], sparse

logistic regression (SLR) [138], support vector machine (SVM) [39] , and multiple

kernel learning (MKL) [108] algorithms. As SLR and SVM methods cannot handle

multiple modalities, [129] explored score-level and decision level fusion to combine

modalities. Score level fusion was achieved by adding probability outputs of all the

modalities to obtain a final score vector. Classification was performed by choosing

the class corresponding to the maximum score. For decision level fusion, the class

chosen by the maximum number of modalities was chosen. The score level fusion

using SLR is called SLR-Sum and the decision level fusion is called as SLR-Major;

for SVM, they are called SVM-Sum and SVM-Major, respectively. The parameter

σ is set to 0.01 for all our experiments. We implemented our algorithm in MATLAB

and used the Gurobi optimizer [139] for solving MIP and QP problems, for binary

features and continuous features, respectively. We observed that the performance of

the Gurobi optimizer was similar to the proposed greedy algorithm for biometrics

application, and slightly better for object categorization. We plot the normalized

difference between the solutions of the Gurobi and the greedy algorithm in Fig. 5.3,

for fusing two iris features. As can be seen from this figure, the greedy algorithm’s

solution is close to that of the Gurobi for most of the test samples. Hence, we report

results using only the greedy algorithm to solve the MIP for biometrics application,

and report results using the Gurobi optimizer initialized with the greedy solution

131

for object categorization. Furthermore, for classification or rank-one recognition, we

include the top 5 classes into target class set. We used the SVM model learned on

the joint features of both the modalities. In the following subsections, we describe

each of the datasets and present our results.

20 40 60 80 100
0

0.002

0.004

0.006

0.008

0.01

Randomly secleted test samples

N
or

m
al

iz
ed

 d
iff

. b
/w

 th
e

so
lu

tio
ns

of

 th
e

G
ur

ob
i a

nd
 th

e
gr

ee
dy

 a
lg

o.

Figure 5.3: The performance of the greedy algorithm compared to the Gurobi MIP
solver. For most of the test samples, the difference is less than 0.004 which corre-
sponds to approximately 2 bits. That is, loosely speaking, the greedy algorithm’s
solution is, on an average, within 2 bits of the sophisticated MIP solver.

CCMM SMBR SLR-
Sum

SLR-
Major

SVM-
Sum

SVM-
Major

MKL
Fu-
sion

Intensity
Features

70.1 64.7 64.3 64.3 70.1 70.1 68.4

Depth Features 64.9 61.1 63.6 63.6 64.9 64.9 61.8
Combined
Features

83.7 73.5 73.4 71.9 79.1 74.1 77.1

Table 5.1: Classification Accuracy for RGB-D data

5.3.1 RGB-D data

Recently, there has been a growing interest in using both intensity and depth

data for computer vision algorithms. For example, with Microsoft’s Kinect camera

132

one can capture videos of both color as well as corresponding depth data. The

purpose of this experiment is to evaluate CCMM on binary features computed using

color and depth data. We use the RGB-D dataset from the University of Washington

[106] which consists of 51 object categories. A few examples of pairs of color and

depth images from this dataset are shown in Fig. 5.4. Most of the depth images are

noisy. Hence, we apply a recursive median filter to fill in missing values. Processed

images are shown in the third row of Fig. 5.4.

Figure 5.4: Example images of the RGBD dataset. First row shows the color im-
ages, second row displays the corresponding depth images, and the third row is the
denoised version of the second row after applying the recursive median filter.

5.3.2 WVU dataset

Finger
1

Finger
2

Finger
3

Finger
4

Iris 1 Iris 2

CCMM 67.8 86.9 69.4 89.3 60.5 61.2
SMBR 68.1 88.4 69.2 87.5 60.0 62.1
SLR 67.4 87.9 66.0 87.5 57.1 57.9

Table 5.2: Rank-one recognition of single modalities for WVU data

The WVU biometrics dataset [140] consists of multiple biometrics such as fin-

gerprints, iris, palmprint, hand geometry and voice samples from different subjects.

133

50 100 150 200
70

75

80

85

90

95

100

Rank

C
um

ul
at

iv
e

R
ec

og
ni

tio
n

R
at

e
(%

)

CCMM
SMBR
SLR−Sum
SVM−Sum
SLR−Major
SVM−Major
MKLFusion

50 100 150 200
40

50

60

70

80

90

100

Rank

C
um

ul
at

iv
e

R
ec

og
ni

tio
n

R
at

e
(%

)

CCMM
SMBR
SLR−Sum
SVM−Sum
SLR−Major
SVM−Major
MKLFusion

(a) (b)

50 100 150 200
75

80

85

90

95

100

Rank

C
um

ul
at

iv
e

R
ec

og
ni

tio
n

R
at

e
(%

)

CCMM
SMBR
SLR−Sum
SVM−Sum
SLR−Major
SVM−Major
MKLFusion

(c)

Figure 5.5: The comparison of CMCs for different modality combinations of WVU
dataset. (a) Four fingers, (b) Two Irises, and (c) All the modalities (four fingers
and two irises).

134

CCMM SMBR SLR-
Sum

SLR-
Major

SVM-
Sum

SVM-
Major

MKL
Fu-
sion

4 Fingers 98.8 97.9 96.3 74.2 90.0 73.0 86.2
2 Irises 82.9 76.5 72.7 64.2 62.8 49.3 76.8
All

Modalities
99.6 98.7 97.6 84.2 94.9 81.3 89.8

Table 5.3: Comparison of Rank-one recognition performance on WVU dataset for
different combinations of modalities

Following the standard setting proposed in [129], we chose iris and fingerprint for

testing the method. Furthermore, the evaluation was done on the subset of 219

subjects having samples in both modalities. Some challenging examples of finger-

prints and iris images are shown in Fig. 5.6. We used the same Gabor features as

in [129] for fingerprints and iris images. Before computing these features a robust

pre-processing was applied to the images. Iris images were first segmented using

the method proposed in [141], and then, a 25 × 240 iris template was created us-

ing the publicly available code of Masek et al [142]. Fingerprint images were first

enhanced using filtering methods, then a core point was detected using algorithms

from [143]. Finally, Gabor features were computed around the detected core point.

Furthermore, to evaluate our algorithm on binary features, we computed the binary

features of size 512 for each of the modalities using the method from [133]. Table

5.2 shows the accuracy of individual modalities. As can be seen, the performance of

all the methods is comparable when only a single modality is considered. Next, we

evaluate CCMM on various combinations of modalities. Following standard settings

in [129], we compare the method on three combinations : (1) All the fingerprints (2)

both iris images (3) all modalities. We present the comparison of different multi-

135

modal fusion algorithms in Table 5.3, which shows that CCMM outperforms the

competing algorithms despite the fact that, for individual modalities, the perfor-

mance of CCMM is lower than SMBR. This demonstrates that forcing the class

predictions of multiple modalities to be consistent is useful for multi-modal fusion.

We also compare cumulative match curves (CMC) of different methods with

multiple modality combinations in Fig. 5.5. The CMC is a popular tool to analyze

the performance of biometric systems [129], [144], [145]. To compute CMCs, the

target label set Z is composed of all the class labels. As can be seen from this

figure, the proposed method consistently outperforms the comparison methods.

Figure 5.6: Example of challenging fingerprints and iris images from WVU dataset
[140]. Many images in the dataset suffer from various artifacts such as blur, occlu-
sion, noise etc.

5.3.3 CASIA Fingerprints dataset

The CASIA Fingerprint Image Database Version 5.0 (or CASIA-FingerprintV5)

[146] contains a total of 20, 000 fingerprint images from 500 subjects. Each subject

contributed a total of 40 images from 8 fingers, 4 from each hand. Each finger was

scanned 5 times and the volunteers were asked to rotate their fingers with various

levels of pressure to generate significant intra-class variations. In order to effectively

compare all the algorithms, we took the subset of the first 50 subjects. Further-

more, we randomly selected 3 training images per modality for each subject, and

136

kept the remaining 2 for testing. The results presented in Table 5.4 are the average

classification accuracies over 5 random trials. For each fingerprint, we compute the

same features as for the WVU dataset. In this experiment, we evaluate the idea of

class consistency with continuous features only. Furthermore, we compare CCMM

on three combinations of modalities: (1) four fingerprints from the left hand, (2)

four fingerprints from the right hand, and (3) all 8 fingerprints. As can be observed

from Table 5.4, CCMM is comparable to SMBR when 4 fingers are fused, however

it performs slightly better when fusing all 8 fingers.

Figure 5.7: Example images of CASIA v5 dataset showing large intra-class variation.
The first four images belong to one finger of subject 1 and the last four images are
from subject 2.

CCMM SMBR SLR-
Sum

SLR-
Major

SVM-
Sum

SVM-
Major

MKL
Fu-
sion

Left
Fingers

92.4 90.4 88.2 83.2 85.8 76.4 81.8

Right
Fingers

91.8 92.2 90.0 84.6 82.2 74.6 78.8

All Fingers 97.0 96.2 95.4 87.8 92.6 83.6 91.2

Table 5.4: Comparison of rank-one recognition performance on multi-modal CASIA
fingerprint data

We test CCMM on the subset of the dataset by randomly selecting 15 images

for training and 15 images for testing from each category. For the intensity images,

we compute gradient based kernel descriptors [147] on 16× 16 patches over a dense

regular grid with spacing of 8 pixels. With these features, we compute a dictionary

137

CCMM SMBR SLR-
Sum

SLR-
Major

SVM-
Sum

SVM-
Major

MKL
Fu-
sion

Intensity
Features

66.2 66.2 65.4 65.4 66.2 66.2 67.2

Semantic
Features

63.2 69.6 47.0 47.0 63.2 63.2 64.4

Combined
Features

77.2 75.4 64.2 63.4 76.2 71.2 76.0

Table 5.5: Classification Accuracy for Pascal-Sentence dataset

of 1000 words using k-means. Using this dictionary of visual words, we employed

efficient match kernels and used 1 × 1, 2 × 2, and 4 × 4 pyramid sub-regions [148]

to compute image level features. For depth features, we compute the shape features

over point clouds as described in [149] and gradient kernel descriptor features on the

depth image. Similar to intensity features, image level depth features are computed

using efficient match kernels over 1× 1, 2× 2, and 4× 4 pyramid sub-regions using

a dictionary of 1000 words. Finally, image level intensity and depth features are

converted into binary features using the method proposed in [133]. We evaluate

CCMM on individual modalities as well as their combination in Table 5.1. From

the first two rows of the table, we note that SLR and SMBR methods have lower

accuracy than SVM (CCMM is, of course, equivalent to SVM for the single modality

case since we employ SVM as the per modality classifier). The reason for this is

that these methods do not learn any classification model and rely on a sparse linear

combination of training features to represent the test feature. Furthermore, none of

the methods take into consideration that the input features are binary. By treating

binary features in an appropriate way, CCMM is able to significantly improve the

performance using a fusion of depth and intensity features, as seen in the last row

138

of Table 5.1.

5.3.4 Pascal-Sentence Dataset

This dataset has two modalities - images and sentences. The images in the

dataset are collected from PASCAL VOC 2008, which is one of the most popular

benchmark datasets for object recognition and detection. For each of the 20 cate-

gories of the PASCAL 2008 challenge, 50 images are randomly selected. Each image

is annotated with 5 sentences using Amazon’s Mechanical Turk. For our task we

randomly picked just one sentence for each image. These sentences represent the

semantics of the image.

Our image features, following [150], are collections of responses from a variety

of detectors, image classifiers and scene classifiers. The details of the image features

can be found in [150]. The semantic features are constructed by using word-net

semantic similarity with a dictionary of 1,200 words. These are followed by a quan-

tization step that reduces the dimension to 20. The details of the text features are

presented in [150]. Finally, the features are converted to binary codes using [133].

We present our result in Table 5.5, which shows that CCMM works better than the

competing methods.

5.4 Conclusion

We described a multi-modal fusion algorithm- CCMM- based on class consis-

tency and demonstrated that it works significantly better than previous methods

139

for binary features. The main idea was to perturb the input modalities until they

predict the same class. To compute the score for a target class, we took weighted

average of scores from all the modalities. Although, the proposed algorithm used

linear classification models, the class consistent prediction can be explored with

other classification models too.

140

Chapter 6: Summary and Directions for Future Work

6.1 Summary

In this dissertation, we discussed sparse representation and dictionary-based

methods for visual classification, when the data is partially or weakly labeled. In the

first part, we addressed the problem of labeling the data and proposed a dictionary-

based algorithm for partially labeled data. In the second part, we proposed a

dictionary-based solution for multiple instance learning problem. Non-linear ex-

tensions for both the algorithms were developed using the kernel trick. The choice

of kernel for non-linear classification models is often made with cross validation. To

learn an optimal kernel, in the third part of the dissertation, we developed a sparse

representation-based classification algorithm using multiple kernel learning. In the

final chapter, we developed an algorithm for fusing multiple modalities using linear

classification models.

6.2 Directions for Future Work

As we discussed in Chapter 2, unlabeled data can be used to improve the clas-

sification model by learning a probability distribution over classes. However, one is

141

often confronted with the situations where information about a sample is available

from multiple sources. For example, description of an image might be available in

the form of intensity as well as depth image or the identity of a person may be

determined by his face, fingerprints, iris signature etc. In such cases, we can learn

independent dictionaries for each modality and fuse their score to determine the

class information of a test sample. However, instead of using unlabeled data inde-

pendently, we can use it simultaneously to improve all the dictionary models. For

example, if a fingerprint can confirm the identity of a person with high probability,

the corresponding face image, which alone may not be very informative, can be

used to improve the face dictionaries. This can be done by maintaining probability

distributions for all the modalities and updating them jointly. In Chapter 3, a novel

dictionary-based algorithm for multiple instance learning was presented. Although

this algorithm was applied for classification, it can also be applied for object detec-

tion. In Chapter 4, we developed a multiple kernel learning approach for SRC. Note

that the sparse codes are learned over the training samples. This method can be

used jointly with dictionary learning. The perturbation model developed in Chapter

5 can be applied to many classification models. Although, the proposed algorithm

works with linear weight vector, similar optimized problem can be formulated with

dictionary learning.

142

Bibliography

[1] R. Rubinstein, A.M. Bruckstein, and M. Elad. Dictionaries for sparse repre-

sentation modeling. Proceedings of the IEEE, 98(6):1045 –1057, june 2010.

[2] J. Wright, Y. Ma, J. Mairal, G. Sapiro, T.S. Huang, and S. Yan. Sparse

representation for computer vision and pattern recognition. Proceedings of the

IEEE, 98(6):1031 –1044, june 2010.

[3] M. Elad, M.A.T. Figueiredo, and Y. Ma. On the role of sparse and redundant

representations in image processing. Proceedings of the IEEE, 98(6):972 –982,

june 2010.

[4] Michael Elad. Sparse and Redundant Representations - From Theory to Ap-

plications in Signal and Image Processing. Springer, 2010.

[5] S. Chen, D. Donoho, and M. Saunders. Atomic decomposition by basis pursuit.

SIAM J. Sci. Comp., 20(1):33–61, 1998.

143

[6] Y. C. Pati, R. Rezaiifar, and P. S. Krishnaprasad. Orthogonal matching pur-

suit: recursive function approximation with applications to wavelet decompo-

sition. 1993 Conference Record of the 27th Asilomar Conference on Signals,

Systems and Computers, pages 40–44, 1993.

[7] J. A. Tropp. Greed is good: Algorithmic results for sparse approximation.

IEEE Trans. Info. Theory, 50(10):2231–2242, Oct. 2004.

[8] Alfred M. Bruckstein, David L. Donoho, and Michael Elad. From sparse

solutions of systems of equations to sparse modeling of signals and images.

SIAM Review, 51(1):34–81, 2009.

[9] K. Engan, S. O. Aase, and J. H. Husoy. Method of optimal directions for

frame design. In International Conference on Acoustics, Speech, and Signal

Processing (ICASSP), 1999.

[10] M. Aharon, M. Elad, and A. Bruckstein. K-SVD: An algorithm for designing

overcomplete dictionaries for sparse representation. IEEE Transactions on

Signal Processing, 54(11):4311–4322, 2006.

[11] M. Elad and M. Aharon. Image denoising via sparse and redundant repre-

sentations over learned dictionaries. IEEE Transactions on Image Processing,

pages 3736 – 3745, December 2006.

[12] M. Protter and M. Elad. Image sequence denoising via sparse and redundant

representations. IEEE Transactions on Image Processing, 18:27–35, January

2009.

144

[13] W. Dong, X. Li, L. Zhang, and G. Shi. Sparsity-based image denoising via dic-

tionary learning and structural clustering. In IEEE Conference on Computer

Vision and Pattern Recognition (CVPR), 2011.

[14] J. Yang, J. Wright, T. Huang, and Y. Ma. Image super-resolution via

sparse representation. IEEE Transactions on Image Processing, 19:2861–2873,

November 2010.

[15] J. Yang, Z. Wang, Z. Lin, S. Cohen, and T. Huang. Coupled dictionary

training for image super-resolution. IEEE Transactions on Image Processing,

21:3467–3478, August 2012.

[16] A. Adler, Y. Hel-Or, and M. Elad. A shrinkage learning approach for sin-

gle image super-resolution with overcomplete representations. In European

Conference on Computer Vision(ECCV), 2010.

[17] K. Etemand and R. Chellappa. Separability-based multiscale basis selection

and feature extraction for signal and image classification. IEEE Transactions

on Image Processing, 7(10):1453–1465, Oct. 1998.

[18] J. Wright, A. Y. Yang, A. Ganesh, S. S. Sastry, and Y. Ma. Robust face

recognition via sparse representation. 2008.

[19] V. M. Patel and R. Chellappa. Sparse representations, compressive sensing

and dictionaries for pattern recognition. In Asian Conference on Pattern

Recognition (ACPR), 2011.

145

[20] V. M. Patel, R. Chellappa, and M. Tistarelli. Sparse representations and

random projections for robust and cancelable biometrics. International Con-

ference on Control, Automation, Robotics and Vision, pages 1–6, Guangzhou,

China, Dec. 2010.

[21] T. G. Dietterich and R. H. Lathrop. Solving the multiple-instance problem

with axis-parallel rectangles. Artificial Intelligence, 89:31–71, 1997.

[22] O. Maron and T. Pérez. A Framework for Multiple-Instance Learning. In

Neural Information Processing Systems, 1998.

[23] X. Zhu and A. Goldberg. Introduction to Semi-Supervised Learning. Morgan

& Claypool Publishers, 2009.

[24] V. Sindhwani and S. S. Keerthi. Large scale semi-supervised linear svms. In

ACM SIGIR, 2006.

[25] O. Chapelle, B. Schölkopf, and A. Zien. Semi-supervised learning. Adaptive

computation and machine learning. MIT Press, 2006.

[26] F. Rodriguez and G. Sapiro. Sparse representations for image classification:

Learning discriminative and reconstructive non-parametric dictionaries. Tech.

Report, University of Minnesota, Dec. 2007.

[27] K. Huang and S. Aviyente. Sparse representation for signal classification. In

Advances in Neural Information Processing Systems (NIPS), 2007.

146

[28] M. Ranzato, F. Haung, Y. Boureau, and Y. LeCun. Unsupervised learning

of invariant feature hierarchies with applications to object recognition. In

IEEE International Conference on Computer Vision and Pattern Recognition

(CVPR), 2007.

[29] Q. Zhang and B. Li. Discriminative k-svd for dictionary learning in face recog-

nition. In in IEEE Conference on Computer Vision and Pattern Recognition

(CVPR), 2010.

[30] Z. Jiang, Z. Lin, and L. S. Davis. Learning a discriminative dictionary for

sparse coding via label consistent K-SVD. In IEEE Conference on Computer

Vision and Pattern Recognition, 2011.

[31] J. Mairal, F. Bach, and J. Ponce. Task-driven dictionary learning. IEEE

Transactions on Pattern Analysis and Machine Intelligence, 34(4):791–804,

April 2012.

[32] M. Yang, L. Zhang, X. Feng, and D. Zhang. Fisher discrimination dictio-

nary learning for sparse representation. In IEEE International Conference on

Computer Vision (ICCV), 2011.

[33] G. Zhang, Z. Jiang, and L. S. Davis. Online semi-supervised discriminative

dictionary learning for sparse representation. In Asian Conference on Com-

puter Vision, 2012.

147

[34] P. Sprechmann and G. Sapiro. Dictionary learning and sparse coding for unsu-

pervised clustering. In IEEE International Conference on Acoustics, Speech,

and Signal Processing (ICASSP), 2010.

[35] I. Ramirez, P. Sprechmann, and G. Sapiro. Classification and clustering

via dictionary learning with structured incoherence and shared features. In

IEEE International Conference on Computer Vision and Pattern Recognition

(CVPR), 2010.

[36] E. Elhamifar and R. Vidal. Sparse subspace clustering: Algorithm, theory,

and applications. IEEE Transactions on Pattern Analysis and Machine Intel-

ligence, 35(11):2765–2781, 2013.

[37] Y. Chen, C. S. Sastry, V. M. Patel, P. J. Phillips, and R. Chellappa. In-plane

rotation and scale invariant clustering using dictionaries. IEEE Transactions

on Image Processing, 22(6):2166–2180, June 2013.

[38] A. Blum and T. Mitchell. Combining labeled and unlabeled data with co-

training. In Proceedings of the Eleventh Annual Conference on Computational

Learning Theory, COLT. ACM, 1998.

[39] C. J. C. Burges. A tutorial on support vector machines for pattern recognition.

Data Mining and Knowledge Discovery, 2:121–167, 1998.

[40] H. V. Nguyen, V. M. Patel, N. M. Nasrabadi, and R. Chellappa. Design of

non-linear kernel dictionaries for object recognition. IEEE Transactions on

Image Processing, 22(12):5123–5135,, Dec. 2013.

148

[41] A. Shrivastava, H. V. Nguyen, V. M. Patel, and R. Chellappa. Design of non-

linear discriminative dictionaries for image classification. In Asian Conference

on Computer Vision, 2012.

[42] H. V. Nguyen, V. M. Patel, N. M. Nasrabadi, and R. Chellappa. Sparse

embedding: A framework for sparsity promoting dimensionality reduction. In

European Conference on Computer Vision (ECCV), 2012.

[43] Y. Chen, V. M. Patel, Jaishanker K. Pillai, Rama Chellappa, and P. Jonathon

Phillips. Dictionary learning from ambiguously labeled data. In IEEE Inter-

national Conference on Computer Vision and Pattern Recognition (CVPR),

2013.

[44] L. Rosasco, A. Verri, M. Santoro, S. Mosci, and S. Villa. Iterative projection

methods for structured sparsity regularization. MIT-CSAIL-TR-2009-050,

CBCL-282, 2009.

[45] T. Cour, B. Sapp, and B. Taskar. Learning from partial labels. Journal of

Machine Learning Research, 12:1225–1261, 2011.

[46] J. J. Hull. A database for handwritten text recognition research. IEEE Trans.

Pattern Anal. Mach. Intell., 16:550–554, May 1994.

[47] T. B. Sebastian, P. N. Klein, and B. B. Kimia. Recognition of shapes by

editing shock graphs. In IEEE International Conference on Computer Vision

(ICCV), 2001.

[48] T. Cour, B. Sapp, and B. Taskar. Annotated faces on tv dataset.

149

[49] T. Cour, B. Sapp, C. Jordan, and B. Taskar. Learning from ambiguously

labeled images. Journal of Machine Learning (JMLR), 2011.

[50] A. Shrivastava, J. K. Pillai, V. M. Patel, and R. Chellappa. Learning dis-

criminative dictionaries with partially labeled data. In IEEE International

Conference on Image Processing (ICIP), 2012.

[51] M. Chen, K. Q. Weinberger, and Y. Chen. Automatic feature decomposi-

tion for co-training. In IEEE International Conference on Machine Learning

(ICML), 2011.

[52] B. Scholkopf and A. J. Smola. Learning with Kernels, Support Vector Ma-

chines, Regularization, Optimization, and Beyond. MIT Press, 2001.

[53] T. Leung, Y. Song, and J. Zhang. Handling label noise in video classifica-

tion via multiple instance learning. In International Conference on Computer

Vision, 2011.

[54] Q. Zhang and S. A. Goldman. EM-DD: An improved multiple-instance learn-

ing technique. In Neural Information Processing Systems, 2001.

[55] Y. Chen and J. Z. Wang. Image categorization by learning and reasoning with

regions. Journal of Machine Learning Research, 5:913–939, 2004.

[56] C. Leistner, A. Safari, and H. Bischof. MIForests: Multiple-instance learning

with randomized trees. In European Conference on Computer Vision, 2010.

150

[57] Y. Chen, J. Bi, and J. Z. Wang. MILES: Multiple-instance learning via embed-

ded instance selection. IEEE Transactions on Pattern Analysis and Machine

Intelligence, 28(12):1931–1947, 2006.

[58] V. M. Patel and R. Chellappa. Sparse representations and compressive sensing

for imaging and vision. SpringerBriefs, 2013.

[59] Hyun Oh Song, Stefan Zickler, Tim Althoff, Ross Girshick, Mario Fritz,

Christopher Geyer, Pedro Felzenszwalb, and Trevor Darrell. Sparselet models

for efficient multiclass object detection. In European Conference on Computer

Vision, 2012.

[60] H. V. Nguyen, V. M. Patel, N. M. Nasrabadi, and R. Chellappa. Kernel

dictionary learning. In International Conference on Acoustics, Speech, and

Signal Processing, 2012.

[61] S. Gao, I. W. Tsang, and L.-T. Chia. Kernel sparse representation for im-

age classification and face recognition. In European Conference on Computer

Vision, 2010.

[62] M. Harandi, C. Sanderson, R. Hartley, and B. Lovell. Sparse coding and dic-

tionary learning for symmetric positive definite matrices: A kernel approach.

In European Conference on Computer Vision, 2012.

[63] S. Andrews, I. Tsochantaridis, and T. Hofmann. Support vector machines for

multiple-instance learning. In Neural Information Processing Systems, 2003.

151

[64] J. Huo, Y. Gao, W. Yang, and H. Yin. Abnormal event detection via multi-

instance dictionary learning. In International Conference on Intelligent Data

Engineering and Automated Learning, 2012.

[65] X. Wang, B. Wang, X. Bai, W. Liu, and Z. Tu. Max-margin multiple-instance

dictionary learning. In International Conference on Machine Learning, 2013.

[66] Bruno A. Olshausen and David J. Fieldt. Sparse coding with an overcomplete

basis set: a strategy employed by v1. Vision Research, 37:3311–3325, 1997.

[67] J. Mairal, F. Bach, J. Ponce, and G. Sapiro. Online dictionary learning for

sparse coding. International Conference on Machine Learning (ICPR), 2009.

[68] Q. Qiu, V. M. Patel, and R. Chellappa. Information-theoretic dictionary

learning for image classification. IEEE Transactions on Pattern Analysis and

Machine Intelligence, 2014.

[69] Li Zhang, Wei-Da Zhou, Pei-Chann Chang, Jing Liu, Zhe Yan, Ting Wang,

and Fan-Zhang Li. Kernel sparse representation-based classifier. IEEE Trans-

actions on Signal Processing, 60(4):1684 –1695, april 2012.

[70] Boris Babenko, Ming-Hsuan Yang, and Serge Belongie. Visual tracking with

online multiple instance learning. In Computer Vision and Pattern Recogni-

tion, 2009.

[71] A. Mohan, C. Papageorgiou, and T. Poggio. Example-based object detec-

tion in images by components. IEEE Transactions on Pattern Analysis and

Machine Intelligence, 23(4):349–361, 2001.

152

[72] P. A. Viola, J. C. Platt, and C. Zhang. Multiple instance boosting for object

detection. In Neural Information Processing Systems, 2005.

[73] K. Sikka, A. Dhall, and M. Bartlett. Weakly supervised pain localization using

multiple instance learning. In IEEE International Conference and Workshops

on Automatic Face and Gesture Recognition (FG), 2013.

[74] Mark Schmidt, Glenn Fung, and Rómer Rosales. Fast optimization meth-

ods for l1 regularization: A comparative study and two new approaches. In

European Conference on Machine Learning, pages 286–297, 2007.

[75] Mark Schmidt, Glenn Fung, and Romer Rosales. Optimization methods for

l1-regularization. UBC Technical Report TR-2009-19, 2009.

[76] P. Lucey, J.F. Cohn, K.M. Prkachin, P.E. Solomon, and I. Matthews. Painful

data: The UNBC-McMaster shoulder pain expression archive database. In

International Conference on Automatic Face Gesture Recognition and Work-

shops, 2011.

[77] A. Shrivastava, V. M. Patel, and R. Chellappa. Multiple kernel learning for

sparse representation-based classification. IEEE Transactions on Image Pro-

cessing, 23(7):3013–3024, July 2014.

[78] P. V. Gehler and O. Chapelle. Deterministic annealing for multiple-instance

learning. In International Conference on Artificial Intelligence and Statistics,

pages 123–130, 2007.

153

[79] G. Csurka, C. R. Dance, L. Fan, J. Willamowski, and C. Bray. Visual cat-

egorization with bags of keypoints. In Workshop on Statistical Learning in

Computer Vision, ECCV, 2004.

[80] P.J. Phillips. Matching pursuit filters applied to face identification. IEEE

Transactions on Image Processing, 7(8):1150–1164, Aug 1998.

[81] E. Kokiopoulou and P. Frossard. Semantic coding by supervised dimensional-

ity reduction. IEEE Trans. Multimedia, 10(5):806–818, Aug. 2008.

[82] P. Lucey, J. Howlett, J. F. Cohn, S. Lucey, S. Sridharan, and Z Ambadar.

Improving pain recognition through better utilization of temporal information.

In International Conference on Auditory-Visual Speech Processing, 2008.

[83] Ahmed Bilal Ashraf, Simon Lucey, Jeffrey F. Cohn, Tsuhan Chen, Zara Am-

badar, Kenneth M. Prkachin, and Patricia E. Solomon. The painful face -

pain expression recognition using active appearance models. Image and Vi-

sion Computing, 27(12):1788–1796, nov 2009.

[84] Carolina Galleguillos, Boris Babenko, Andrew Rabinovich, and Serge Be-

longie. Weakly supervised object localization with stable segmentations. In

European Conference on Computer Vision, 2008.

[85] I Laptev, M. Marszalek, C. Schmid, and B. Rozenfeld. Learning realistic

human actions from movies. In IEEE Conference on Computer Vision and

Pattern Recognition, 2008.

154

[86] J. K. Pillai, V. M. Patel, R. Chellappa, and N. Ratha. Secure and robust

iris recognition using random projections and sparse representations. IEEE

Transactions on Pattern Analysis and Machine Intelligence, 33(9):1877–1893,

Sept. 2011.

[87] S. Gao, I. W.-H. Tsang, and L.-T. Chia. Sparse representation with kernels.

IEEE Transactions on Image Processing, 22(2):423 –434, feb. 2013.

[88] Hanchao Qi and Shannon Hughes. Using the kernel trick in compressive sens-

ing: Accurate signal recovery from fewer measurements. In IEEE International

Conference on Acoustics, Speech and Signal Processing(ICASSP), pages 3940

–3943, may 2011.

[89] Mehmet Gönen and Ethem Alpaydın. Multiple kernel learning algorithms.

Journal of Machine Learning Research, 12:2211–2268, July 2011.

[90] V. M. Patel, N. M. Nasrabadi, and R. Chellappa. Sparsity-motivated auto-

matic target recognition. Applied Optics, 50(10), April 2011.

[91] Hanxi Li, Yongsheng Gao, and Jun Sun. Fast kernel sparse representation. In

International Conference on Digital Image Computing Techniques and Appli-

cations, pages 72 –77, Dec. 2011.

[92] X.-T. Yuan and S. Yan. Visual classification with multi-task joint sparse

representation. In Computer Vision and Pattern Recognition, 2010.

[93] Bradley Efron, Trevor Hastie, Iain Johnstone, and Robert Tibshirani. Least

angle regression. Annals of Statistics, 32:407–499, 2004.

155

[94] Y. Chen, N. M. Nasrabadi, and T. D. Tran. Hyperspectral image classifica-

tion via kernel sparse representation. IEEE Transactions on Geoscience and

Remote Sensing, 51(1):217 –231, jan. 2013.

[95] Gert R. G. Lanckriet, Nello Cristianini, Peter L. Bartlett, Laurent El Ghaoui,

and Michael I. Jordan. Learning the kernel matrix with semidefinite program-

ming. Journal of Machine Learning Research, 5:27–72, 2004.

[96] Charles A. Micchelli and Massimiliano Pontil. Learning the kernel function

via regularization. J. Mach. Learn. Res., 6:1099–1125, December 2005.

[97] Cheng Soon Ong, Alexander J. Smola, and Robert C. Williamson. Learning

the kernel with hyperkernels. J. Mach. Learn. Res., 6:1043–1071, December

2005.

[98] Alexander Zien and Cheng Soon Ong. Multiclass multiple kernel learning. In

Proceedings of the 24th international conference on Machine learning, ICML

’07, pages 1191–1198, 2007.

[99] Zenglin Xu, Rong Jin, Haiqin Yang, Irwin King, and Michael R. Lyu. Simple

and efficient multiple kernel learning by group lasso. In International Confer-

ence on Machine Learning, pages 1175–1182, 2010.

[100] M. Varma and D. Ray. Learning the discriminative power-invariance trade-off.

In International Conference on Computer Vision (ICCV), 2007.

156

[101] A. Vedaldi, V. Gulshan, M. Varma, and A. Zisserman. Multiple kernels for

object detection. In International Conference on Computer Vision (ICCV),

2009.

[102] H. Tanabe, Tu Bao Ho, Canh Hao Nguyen, and S. Kawasaki. Simple but

effective methods for combining kernels in computational biology. In IEEE

International Conference on Research, Innovation and Vision for the Future,

pages 71 –78, july 2008.

[103] Nello Cristianini, John Shawe-Taylor, André Elisseeff, and Jaz S. Kandola.

On kernel-target alignment. In Neural Information Processing Systems, pages

367–373, 2001.

[104] Shibin Qiu and Terran Lane. A framework for multiple kernel support vector

regression and its applications to sirna efficacy prediction. IEEE/ACM Trans.

Comput. Biol. Bioinformatics, 6(2):190–199, April 2009.

[105] L. Fei-Fei, R. Fergus, and Pietro Perona. Learning generative visual models

from few training examples: An incremental bayesian approach tested on 101

object categories. 2004.

[106] K. Lai, L. Bo, X. Ren, and D. Fox. Sparse Distance Learning for Object

Recognition Combining RGB and Depth Information. In IEEE International

Conference on on Robotics and Automation (ICRA), 2011.

[107] A.M. Martinez and R. Benavente. The ar face database. CVC Technical

Report No. 24,, June 1998.

157

[108] A. Rakotomamonjy, U. Rouen, F. Bach, S. Canu, and Y. Grandvalet. Sim-

plemkl. Journal of Machine Learning Research, 9:2491–2521, 2008.

[109] Hao Zhang, Alexander C. Berg, Michael Maire, and Jitendra Malik. SVM-

KNN: Discriminative nearest neighbor classification for visual category recog-

nition. In in IEEE Conference on Computer Vision and Pattern Recognition

(CVPR), 2006.

[110] Svetlana Lazebnik, Cordelia Schmid, and Jean Ponce. Beyond bags of features:

Spatial pyramid matching for recognizing natural scene categories. In in IEEE

Conference on Computer Vision and Pattern Recognition (CVPR), 2006.

[111] Gregory Griffin, Alex Holub, and Pietro Perona. Caltech-256 object category

dataset. In CIT Technical Report 7694, 2007.

[112] Oren Boiman, Eli Shechtman, and Michal Irani. In defense of nearest-neighbor

based image classification. In in IEEE Conference on Computer Vision and

Pattern Recognition (CVPR), 2008.

[113] Prateek Jain, Brian Kulis, and Kristen Grauman. Fast image search for learned

metrics. In in IEEE Conference on Computer Vision and Pattern Recognition

(CVPR), 2008.

[114] Duc-Son Pham and Svetha Venkatesh. Joint learning and dictionary construc-

tion for pattern recognition. In in IEEE Conference on Computer Vision and

Pattern Recognition (CVPR), 2008.

158

[115] Jan C. van Gemert, Jan-Mark Geusebroek, Cor J. Veenman, and Arnold

W. M. Smeulders. Kernel codebooks for scene categorization. In European

Conference on Computer Vision (ECCV), 2008.

[116] Jianchao Yang, Kai Yu, Yihong Gong, and Thomas Huang. Linear spatial

pyramid matching using sparse coding for image classification. In in IEEE

Conference on Computer Vision and Pattern Recognition (CVPR), 2009.

[117] Jinjun Wang, Jianchao Yang, Kai Yu, Fengjun Lv, Thomas Huang, and Yi-

hong Gong. Locality-constrained linear coding for image classification. In

in IEEE Conference on Computer Vision and Pattern Recognition (CVPR),

2010.

[118] Michal Aharon, Michael Elad, and Alfred Bruckstein. K-svd: Design of dic-

tionaries for sparse representation. In IN: PROCEEDINGS OF SPARS’05,

pages 9–12, 2005.

[119] David G. Lowe. Distinctive image features from scale-invariant keypoints.

International Journal of Computer Vision, 60(2):91–110, 2004.

[120] Andrew Johnson and Martial Hebert. Using spin images for efficient object

recognition in cluttered 3d scenes. IEEE Transactions on Pattern Analysis

and Machine Intelligence, 21(5):433 – 449, May 1999.

[121] Wongun Choi, C. Pantofaru, and S. Savarese. Detecting and tracking people

using an RGB-D camera via multiple detector fusion. In IEEE International

Conference on Computer Vision Workshops, 2011.

159

[122] A.K. Mishra, A. Shrivastava, and Y. Aloimonos. Segmenting “simple” objects

using RGB-D. In IEEE International Conference on Robotics and Automation

(ICRA), 2012.

[123] Pradeep K. Atrey, M. Anwar Hossain, Abdulmotaleb El-Saddik, and Mohan S.

Kankanhalli. Multimodal fusion for multimedia analysis: a survey. Multimedia

Systems, 16(6):345–379, 2010.

[124] A. Rattani, D.R. Kisku, M. Bicego, and M. Tistarelli. Feature level fusion of

face and fingerprint biometrics. In IEEE International Conference on Biomet-

rics: Theory, Applications, and Systems, 2007.

[125] X. Zhou and B. Bhanu. Feature fusion of face and gait for human recognition

at a distance in video. In International Conference on Pattern Recognition,

2006.

[126] Arun Ross A and Rohin Govindarajan B. Feature level fusion using hand and

face biometrics. Proceedings of the SPIE, 5779:196–204, Mar. 2005.

[127] K. Lai, Liefeng Bo, Xiaofeng Ren, and D. Fox. A large-scale hierarchical multi-

view RGB-D object dataset. In IEEE International Conference on Robotics

and Automation, 2011.

[128] Xiaofeng Ren, Liefeng Bo, and D. Fox. RGB-(D) scene labeling: Features and

algorithms. In IEEE Conference on Computer Vision and Pattern Recognition,

2012.

160

[129] S. Shekhar, V.M. Patel, N.M. Nasrabadi, and R. Chellappa. Joint sparse rep-

resentation for robust multimodal biometrics recognition. IEEE Transactions

on Pattern Analysis and Machine Intelligence, 36(1):113–126, Jan 2014.

[130] B. Kulis and K. Grauman. Kernelized locality-sensitive hashing. IEEE Trans-

actions on Pattern Analysis and Machine Intelligence, 34(6):1092–1104, June

2012.

[131] M. Rastegari, J. Choi, S. Fakhraei, H. Daume III, and L. S. Davis. Predictable

dual-view hashing. In IEEE International Conference on Machine Learning

(ICML), 2013.

[132] Yunchao Gong and S. Lazebnik. Iterative quantization: A procrustean ap-

proach to learning binary codes. In IEEE Conference on Computer Vision

and Pattern Recognition (CVPR), 2011.

[133] M. Rastegari, A. Farhadi, and D. Forsyth. Attribute discovery via predictable

discriminative binary codes. In European Conference on Computer Vision

(ECCV), 2012.

[134] M. Norouzi, A. Punjani, and D.J. Fleet. Fast search in hamming space with

multi-index hashing. In IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), 2012.

[135] M. Rastegari, Chen Fang, and L. Torresani. Scalable object-class retrieval

with approximate and top-k ranking. In IEEE International Conference on

Computer Vision (ICCV), 2011.

161

[136] K. Crammer and Y. Singer. On the algorithmic implementation of multiclass

kernel-based vector machines. Journal of Machine Learning Research, 2:265–

292, Mar 2002.

[137] R. Fan, K. Chang, C. Hsieh, X. Wang, and C. Lin. LIBLINEAR: A library for

large linear classification. Journal of Machine Learning Research, 9:1871–1874,

2008.

[138] B. Krishnapuram, L. Carin, M. Figueiredo, and A. Hartemink. Sparse multi-

nomial logistic regression: fast algorithms and generalization bounds. IEEE

Transactions on Pattern Analysis and Machine Intelligence, 27(6):957–968,

June 2005.

[139] Inc. Gurobi Optimization. Gurobi optimizer reference manual, 2014.

[140] S Crihalmeanu, A. Ross, S. Schuckers, and L. Hornak. A protocol for multi-

biometric data acquisition, storage and dissemination. In Technical Report,

WVU, Lane Department of Computer Science and Electrical Engineering,

2007.

[141] S.J. Pundlik, D.L. Woodard, and S.T. Birchfield. Non-ideal iris segmenta-

tion using graph cuts. In IEEE Conference on Computer Vision and Pattern

Recognition Workshops, 2008.

[142] L. Masek and P. Kovesi. Matlab source code for biometric identification system

based on iris patterns. The University of Western Australia, Tech. Rep., 2003.

162

[143] A.K. Jain, S. Prabhakar, L. Hong, and S. Pankanti. Filterbank-based finger-

print matching. IEEE Transactions on Image Processing, 9(5):846–859, May

2000.

[144] K.I. Chang, K.W. Bowyer, and P.J. Flynn. An evaluation of multimodal

2d+3d face biometrics. Pattern Analysis and Machine Intelligence, IEEE

Transactions on, 27(4):619–624, April 2005.

[145] R.M. Bolle, J.H. Connell, S. Pankanti, N.K. Ratha, and A.W. Senior. The

relation between the roc curve and the cmc. In IEEE Workshop on Automatic

Identification Advanced Technologies, Oct 2005.

[146] CASIA-FingerprintV5, http://biometrics.idealtest.org/.

[147] L. Bo, X. Ren, and D. Fox. Kernel Descriptors for Visual Recognition. In

Advances in Neural Information Processing Systems (NIPS), December 2010.

[148] L. Bo and C. Sminchisescu. Efficient Match Kernel between Sets of Features

for Visual Recognition. In Advances in Neural Information Processing Systems

(NIPS), December 2009.

[149] Liefeng Bo, Xiaofeng Ren, and D. Fox. Depth kernel descriptors for object

recognition. In IEEE/RSJ International Conference on Intelligent Robots and

Systems (IROS), 2011.

[150] A. Farhadi, M. Hejrati, M. A. Sadeghi, P. Young, C. Rashtchian, J. Hocken-

maier, and D. Forsyth. Every picture tells a story: Generating sentences from

images. In European Conference on Computer Vision (ECCV), 2010.

163

