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Abstract

Almost all prior work on modelling the dependance of
acoustic emissions on tool wear have concentrated on the
effect of wear-level on the sound. We give justification
for including the wear-rate information contained in the
sound to improve estimation of wear. A physically plau-
sible model is proposed which results in a Hidden Markov
Model (HMM) whose hidden states are the wear level and
rate and observations are the feature vectors extracted from
the sound. We also present an efficient method for pick-
ing feature vectors that are most useful for the classification
problem.

1. Introduction

Much work has been done in real-time monitoring of ma-
chinery to detect faults as and when they occur, rather than
wait until the next maintenance period. This way, unneces-
sary maintenance, as well as long runs in a faulty condition,
can be avoided. In the case of a cutting tool, trying to cut
with a blunt tool can lead to the breakage of the tool and
degradation of the job, while pulling the tool off for fre-
quent assessments are expensive in terms of the machinist’s
time. It is of interest to develop a method that can give an
estimate of the wear from easily observable signals. The
sound or vibration from the tool-post is one of the simplest
signals to measure and it is rich in information relating to
the current state of the tool.

Most previous work on estimating tool wear or dam-
age from acoustic emissions has concentrated on using the
power density spectrum in various ways; the simplest ap-
proach being just the average power of the sound signal [8],
[11]. A more sophisticated way of using the power spec-
trum is to compare the total power in various sub-bands [3],
[6]. These simple approaches give surprisingly good results
in many cases. One approach which uses a learning expert
system with torque and thrust information, in addition to

vibration data is given in [5].
Another approach is presented in [9] where the author

tries to isolate high-energy transients from the sound sig-
nal; one of the assumptions being that transients would be
good indicators of chipping or fracture. Another approach,
influenced by speech processing, has been to model the de-
pendance of the sound on the wear-level as a heirarchical
HMM in multiple time-scales [1]. In a previous article [12],
we have explored the applicability of biologically inspired
filters to pick out appropriate feature vectors in multiple
levels of detail which were then classified according to the
wear by a multi-resolution tree structured classifier.

In all of the above work, it has been assumed that the
only useful information contained in the sound is that of
the wear-level. But it seems reasonable that the sound can
also give information about thewear rateat any instant.
In particular, chipping is often accompanied by short time-
scale transients [7] and chatter is characterized by chaotic
vibrations [2].

2. How does the wear influence the sound?

There are two ways in which the wear of the tool can
relate to the sound.

1. Differentwear levelsresult in different sounds.

2. Different sounds imply events that result in different
wear rates

There is a fundamental difference between these two phe-
nomenon. The way the wear level affects the sound is inde-
pendant of the history of the tool. Whichever path the tool
took to reach this particular wear level, the effect on the
sound is the same. Thus, if this was the only relationship
between the sound and the wear, it would be possible to es-
timate the wear of the tool at any time by a short sample of
the sound at that time. Classifiers without memory would
be adequate.

The second relation is more subtle. Events such as chat-
ter affect both the instantaneous wear rate on the tool as
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well as the sound produced by the tool. It seems plausible
that large variations in the sound produced by the tool at a
constant wear-level could be indicative of variations in the
instantaneouswear-rate.

3. A mathematical formulation

From what was discussed in the previous section, it
seems reasonable to propose that the sound at any time is
a stochastic function of both the wear-level and the wear-
rate at that time. Thus if we divide time into equal intervals
and denote byrt the wear-rateduring time intervalt andwt

the wear-levelat the end oftime intervalt, then the sound
produced during timet has a probability distribution that
depends on(rt, wt). Furthermore, we have

wt = w0 +
t∑

t̂=1

rt̂ (1)

In this model we have three elements

1. Sequence{rt} which is the sequence of wear rates for
time t. For simplicity we assume thatrt can belong to
one ofR discrete values and is Markov.

2. {wt} which is the sequence of wear levels for timet.
Note that specification ofw0 and a sequence ofrt com-
pletely specifies a sequence ofwt through Eq.1.

3. {xt}, with xt ∈ R
d is the sequence of feature vectors

observed.xt is distributed according to a probability
distributionPrt,wt(xt) that depends onrt andwt. As
the simplest first approximation, we assume thatP is
Normal with mean and variance depending onrt and
wt.

This results in aHIdden Markov Modelwhere the state is
(wt, rt), the wear-level and wear-rate at timet and the ob-
servationsxt have a distribution that depends on the current
state. To train such a model from observations we would
use the Baum-Welch algorithm [10] to obtain a set of pa-
rameters that locally maximize the likelihood.

4. Choosing feature vectors

One problem in building classifiers is choosing feature
vectors that adequately compress the information necessary
for good classfication. We want to pick out components that
are most useful for the classification from a (possibly large)
set of observations while rejecting components that do not
provide any useful information. TheFischer discriminant
[4] is one way of doing this without actually building clas-
sifiers for all possible combinations of feature vectors.

Intuitively speaking, we should pick features such that
vectors belonging to one class are separated as much as pos-
sible from those from another class. For scalar observations
x, Fischer proposed the following measure of separation of
vectors of class1 from class2

F =
(µ1 − µ2)2

σ2
1 + σ2
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whereµ1, µ2 are the means of the observations belonging
to class1 and class2 respectively andσ1, σ2 the variances.
In the case ofK classes, the above can be generalized to

F =

∑K
i=1

∑K
j=1(µi − µj)2

∑K
m=1 σ2

m

(3)

Now consider an observation
vectorx = [x1, x2, . . . , xd]T . Let a = [a1, a2, . . . , ad]T be
a weight vector and lety = xT a be a feature derived fromx
by a weighted combination of the components ofx. We can
ask what value ofa will give a maximum value for the Fis-
cher criterion (3). Sinceµa = E{xT a} = E{xT }a = µT a
andE{(xT a− µa)2} = aT E{(x− µ)(x− µ)T }a, we can
write (3) as

F (a) =

∑K
i=1

∑K
j=1(µ

T
i a− µT

j a)2
∑K

m=1 aT σ2
ma

(4)

=

∑K
i=1

∑K
j=1 aT (µi − µj)(µi − µj)T a

∑K
m=1 aT σ2

ma

=
aT Aa

aT Ba

whereA =
∑K

i=1

∑K
j=1(µi − µj)(µi − µj)T and B =

∑K
m=1 σ2

m.
DenotingCa = b whereC is the invertible matrix such

thatCT C = B

F (b) =
bT C−1T

AC−1b

bT b

which attains its maximum value forb equal to the eigenvec-
tor corresponding to the largest eigenvalue ofC−1T

AC−1.
Denote byeb = {eb

1, e
b
2, . . . , e

b
K−1} the eigenvectors corre-

sponding to the largestK − 1 eigenvalues arranged in de-
scending order, whereK is the number of classes. All other
eigenvalues will be zero. Thenea = {ea

1, e
a
2 , . . . , e

a
K−1} =

{C−1eb
1, C

−1eb
2, . . . , C

−1eb
K−1} is the set of weightsa ar-

ranged in order of decreasing Fischer discriminant values.
The weighta can also been interpreted as a direction

in the d-dimensional space of observation vectors. Then
ea
1 is the direction that corresponds to a maximum in the

Fischer discriminant.ea
2 is the direction orthogonal toea

1

that gives the maximum and so on. Transformingx to



x̂ = [xT ea
1 , x

T ea
2 , . . . , x

T ea
K−1]

T gives us a feature vec-
tor where the information necessary for classification has
been efficiently represented.

5. Initial classifier for wear

Acoustic emissions were measured from an accelerome-
ter mounted on the tool spindle. The raw data was divided
into frames, each corresponding to one revolution of the
tool. The energy in the frequencies from0 − 24kHz was
divided into 100 bins. It was found that the logarithm of
the power in each frequency bin was very well fitted with
a Normal distribution; i.e., the power is lognormal. Thus
the logarithm of the power in the 100 frequency bins was
used as observation vectors for each frame. We assumed a
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Figure 1. Wear prediction using only wear-
level information for tool Ti1

linear increase in wear between wear measurements to ini-
tially separate the training vectors into6 wear level classes
from 0-5 thousandths of an inch. Using these wear classes
we computed the feature vector for maximum Fischer dis-
criminant as detailed above. Since wear increases mono-
tonically, a left-to-right HMM was trained on the data to
refine our model. The classification performance of this
model is used as a base against which to measure the im-
provement in performance when we also include wear-rate
information. This model also helps us to pick out features
that correspond closely to wear-rate. The performance of
this classifier is presented in Table 1 and Fig.1.

5.1. Wear-rate features

The number of time steps it takes to increase wear by
0.001 inch is a measure of the average wear-rate. We use
the wear-level model to classify the training sequence and
obtain segments as shown in Fig.1. The segments are di-
vided into two sets; one with all the high wear segments
and the other with all the low wear ones. The mean and
variance of these two sets are used to find a feature that pro-
duces the maximum in Fischer discriminant between them.
This feature was used as the wear-rate feature. Thus our
feature vector is4-dimensional with the first three compo-
nents indicative of wear-level and a fourth component that
corresponds to wear-rate. Fig.2 shows the weight vectors
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Figure 2. Weights in different frequency
bands for best features for wear level and
wear rate

Table 1. Average absolute wear error in thou-
sandths of an inch

Type of classifier Error on
training set

Error on test-
ing set

Using wear-level
information only

0.46 0.42

Using wear-level
and wear-rate
information

0.33 0.37

that correspond to maximum Fischer discriminant for wear-
level and wear-rate. It is interesting to note that a few of the
low frequency bands are the most indicative of wear-level
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Figure 3. Wear prediction using wear-level
and wear-rate information for tool Ti1

while features that correspond to wear-rate are of consid-
erably broader bandwidth. This confirms our intuition that
short time-scale, broadband transients are the primary indi-
cators of wear-rate.

6. Training and testing of combined model

Training uses the Baum-Welch algorithm where, starting
from an initial model, we calculate the expected values of
the parameters given the observations. This gives an esti-
mate for the parameters with a higher likelihood. Iteratively
repeating this step gives a sequence of models with mono-
tonically increasing likelihood. This process converges to a
model (set of parameters) that locally maximizes the likeli-
hood.

Once the model is trained, we can compute the state se-
quence{rt} with the maximum likelihood for a given ob-
servation sequence. This is done through the Viterbi algo-
rithm where we find the best (in terms of highest likelihood)
sequence that ends in a particular statei at timet in a recur-
sive manner for alli. A maximum likelihood estimate for
the wearwt at any time is thus possible.

7. Results and conclusions

Fig.3 shows the maximum likelihood sequence of wear
levels for one particular tool along with wear measure-
ments. Table 1 shows the performance of the classifier in-
corporating wear-rate information in addition to wear-level

where it can be compared with the classification error us-
ing just the wear-level information. Although the num-
ber of wear measurements is not enough to make strong
statements about any improvement in performance, we have
enough evidence to support our approach.
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