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Stability of Rate Control System with Time-Varying
Communication Delays

Richard J. La and Priya Ranjan

Abstract— We adopt the optimization framework for the  is especially important when the delay is non-negligible
rate allocation problem proposed by Kelly and investigate and/or the delay could be widely varying, e.g., multi-hop
the stability of the system with arbitrary communication  mobile wireless network. Tan and Johari [9] have studied
delays between network elements with time-varying queue he case with homogeneous users, i.e., same round-trip
dynamics. We first present the conditions for the existence delays and same log utility functions, and provided local
of a solution of the system. Second, we establish the 2 " . ' .

stability conditions in term of users gain parameters

conditions for the system stability with arbitrary delays oo )
for a family of popular utility and price functions, and ~ @1d communication delays. In general their results state

then extend the results to more general utility and price that the product of gain parameter and communication
functions. We demonstrate that the stability of such a delays should be no larger than some constant. Similar
system can be studied by considering a discrete time systemresults have been obtained in [4], [18] in the context of
derived from a simpler homogeneous delay case where all single flow and single resource with more general utility
users have the same fixed delay. Numerical examples arefnctions and in [2] in the context of single bottleneck

provided to validate our analyses.

Index Terms— Control theory, economics.

. INTRODUCTION

Kelly [10] has proposed an optimization framework
for the rate allocation for elastic traffic where the
objective of the system is to maximize the aggregate
utility of the users. Here the utility of a user could
either represent the true utility or preferences of the
user or a utility function that is assigned to the user by
the end user rate control algorithms, e.g., Transmission
Control Protocol (TCP) and Proportional-Fair Conges-
tion Controller (PFCC). In the latter case the selection
of the utility function determines the end user algo-
rithms and the trade-off between the fairness among
the users and system efficiency [1], [11], [15], [19],
e.g., PFCC. Using the proposed framework he has shown
that the system optimum is achieved at the equilibrium
between the end users and resources. Based on this
observation researchers have proposed various rate-based
algorithms, in conjunction with a variety of active queue
management (AQM) mechanisms, that solve the system
optimization problem or its relaxation [10], [14], [15],
[16].

The convergence of most of these algorithms, how-
ever, has been established only in the absence of feed-
back delay initially. Modeling the communication delay
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with multiple heterogeneous users. The given stability
conditions are similar to those in [9] and state that the
product of the delay and gain parameter of end user
algorithms needsto be smaller than some constant. These
results focus on characterizing sufficient conditions on
the communication delay and gain parameter for stabil-
ity.

Ranjan et al. [20] and Ying et al. [25] have studied
the stability of the rate control system in the presence
of arbitrary fixed delays between network elements,
e.g., network resources and end users, and arbitrary
gain parameters of the end users. These approaches are
consistent with the philosophy that network protocols
must be ssimple and robust given the complexity and
scale of the Internet, and may prove to be more suitable
for wireless ad hoc networks where delays are often
expected to be unpredictable and widely varying and
satellite networks in which the delays are significant. In
particular, the stability conditions given in [2], [4] may
be sufficient to ensure smooth operation of the network
when the network is operating normally. However, a
network can occasionally experience high congestion and
behave unpredictably due to the presence of a large
amount of nonresponsive traffic, e.g., broadcast of a
concert on-line, and/or a collapse of a part of network
as a result of, for example, a link failure or routing
instability. In such a scenario the system may temporarily
deviate from the stable regime characterized by the
conditions in [2], [4] because of the increased queueing
delay and/or a larger number of flows, and the unstable
behavior of the rate control mechanism can aggravate



the congestion level, potentially leading to a congestion
collapse. A more detailed discussion of these results is
presented in Section I11.

In this paper we extend the results in [20] and con-
sider the case of state-dependent time-varying delays
between network resources and end users and establish
the conditions on utility and resource price functions
that ensure global stability with arbitrary delays with
gueue dynamics. Modeling time-varying delaysisimpor-
tant when queueing delays are comparable to the fixed
delays and/or the delays are expected to vary widely
due to a large variation in queueing delays (e.g., multi-
hop wireless networks). Our analysis is based on the
invariance-based global stability results for nonlinear
delay differential equations [7], [8], [17]. This kind of
global stability results are different from those based on
Lyapunov or Razumikhin theorems for delay differential
equations used in [2], [4], [18], [23], [25] or from
passivity approach [24]. A simple case of single-resource
has been studied in our earlier work [21].

The main results of this paper can be summarized as
follows:

1) The stability conditions for a rate control system
with a popular family of users' utility and resource
price functions are derived (Section V). These
stability results are extended to more general utility
and price functions under a set of assumptions
(Section VI).

2) Therate control system with arbitrary time-varying
delays is stable if the same system with a fixed
homogeneous delay [20] is stable with appropriate
initial conditions (Section VI1). In other words, the
detailed delay structure/dynamics between network
elements and end users are not critica to the
stability of the system. Combined with the results
in [20] this implies that the stability of the system
can be studied by looking at a simple discrete
time system that arises from the underlying market
structure of the rate control problem.

This paper is organized as follows. Section |l de-
scribes the optimization problem for rate control. An
overview of the previous work on characterizing stability
conditions in the presence of a communication delay
is provided in Section Ill. Section IV describes the
system model with time-varying communication delays,
and provides conditions for the existence of a solution.
The stability conditions with a popular family of utility
and resource price functions are derived in Section V.
The stability conditions in Section V are extended to
the cases with more general utility and price functions
in Section VI. A relationship between the stability con-

ditions for the time-varying delay case studied in this
paper and those of a simple fixed homogeneous delay
caseisdiscussed in Section VII. Numerical examplesare
presented in Section VIII. We conclude in Section 1X.

I1. BACKGROUND

In this section we briefly describe the rate control
problem in the proposed optimization framework. Con-
sider a network with a set £ of resources or links and
a set 7 of users. Let C; denote the finite capacity of
link [ € L. Each user has a fixed route r;, which is
a non-empty subset of £. We define a zero-one matrix
A, where A;; = 1if link [ is in user ¢’s route r; and
A;; = 0 otherwise. When the throughput of user ¢ is
x;, user i receives utility U;(z;). As mentioned earlier,
this utility function could represent either the user’s true
utility or some function assigned to the user through the
selected end user algorithms. We take the latter view
and assume that the utility functions of the users are
used to select the desired rate alocation among the
users (i.e., the desired operating point of the system),
which also determines the end user algorithms as will
be shown shortly. The utility U;(z;) is an increasing,
strictly concave and continuously differentiable function
of z; over the range z; > 0.! Furthermore, the utilities
are additive so that the aggregate utility of rate allocation
T = (J?i,i € I) is ZiEI Ul(IL‘Z) Let U = (UZ(),Z S I)
and C = (C,,1 € £).? The rate control problem can be
formulated as the following optimization problem [10]:
SYSTEM(U,A,C):

maximize Y Ui(;)
i€T
subjectto ATz <C, >0

)

Thefirst constraint in the problem says that the total rate
through a resource cannot be larger than the capacity of
the resource. Instead of solving (1) directly, which is dif-
ficult for any large network, Kelly in [10] has proposed
to consider the following two simpler problems.

Suppose that each user 7 is given the price per unit
flow )\;. Given )\;, user ¢ selects an amount to pay per
unit time, w;, and receives a rate z; = 1/‘\’—3 Then, the
user’s optimization problem becomes the following [10].
USERZ(U“ )\z) .

maximize U; (%) — w;

’LUiZO

)

over

1Such a user is said to have elastic traffic.

2All vectors are assumed to be column vectors.

3This is equivalent to selecting its rate z; and agreeing to pay
Wi = Ti - N;.



The network, on the other hand, given the amounts
the users are willing to pay, w = (w;,1 € I), a-
tempts to maximize the sum of weighted log functions
> ie7 wi log(x;). Then the network’s optimization prob-
lem can be written as follows [10].

NETWORK(A,C;w) :

maximize " w;log(z;)
i€T
subject to ATz <C, >0

3

Note that the network does not require the true utility
functions (U;(+),7 € ), and pretends that user ¢'s utility
function is w; - log(z;) to carry out the computation. It
is shown in [10] that one can aways find vectors \* =
(A5 i e I),w* = (wfr,i € Z), and z* = (2,1 € T)
such that w; solves USER;(U;; AY) for all i € 7, z*
solves NETWORK (A, Cyw*), and w} = z} - A7 for
al i € Z. Furthermore, the rate alocation z* is aso the
unique solution to SY STEM (U, A, C).

Assume that every user adopts rate-based flow control.
Let w;(¢) and z;(t) denote user i’s willingness to pay per
unit time and rate at time ¢, respectively.* Now suppose
that at time ¢ each resource | € L charges a price per
unit flow of 1 (t) = pi(Xiuer, zi(t)), where pi(-) is an
increasing function of the total rate going through it.
Consider the system of differential equations

L antt) = (wi(w —m(t) Y Mt)) -

ler;

(4)

These equations can be motivated as follows. Each user
first computes a price per unit time it is willing to
pay, namely w;(t). Then, it adjusts its rate based on
the feedback provided by the resources in the network
to equalize its willingness to pay and the total price.
Following [11] we assume w; (t) is set to z;(¢)-U; (x;(t)).
With this choice of willingness to pay w;(t) one can
see that user 7 always tries to reach a point where
Ui (i) = Yier, P jaer, ©5), 1-€, the marginal utility
from additional rate, equals the price per unit flow,
which maximizes the net utility which is the utility
minus the total price. This is in fact the solution to
the user optimization problem in (2) [22]. The feedback
signal from a resource | € £ can aso be interpreted
as a congestion indicator, requiring a reduction in the
flow rates going through the resource. For more detailed
explanation of (4), refer to [11]. Since we assume that
the utility functions of the users are selected to decide the
rate allocation amongst the users, under (4) one can see
that, in fact, both the users’ utility functions and resource

“Throughout the rest of the paper we refer to the willingness to
pay per unit time as simply willingness to pay.

price functions can be utilized to decide the operating
point of the system. Therefore, the design of rate control
agorithms is equivalent to selecting the users utility
functions and the price functions of the resourcesin the
network.

Kelly et al. [11] have shown that under some condi-
tions on p;(-),l € L, the above system of differential
equations converges to a point that maximizes the fol-
lowing expression

Uz) =D Us(z) — Z/OEMEW h pi(y)dy. ®)
i 1

Note that the first term in (5) is the objective function
in our SYSTEM(U, A, C) problem. Thus, the algorithms
proposed by Kelly et al. solves a relaxation of the
SYSTEM (U, A, C) problem.

[11. PREVIOUS WORK

The analysis in [11] of the convergence of the rate
control algorithms given by (4), however, does not model
the communication delay that is present between the
resources and the end users. There has been some
previous work on studying the stability of the system
in the presence of communication delay. Here we only
briefly summarize some of work that is most relevant
to our work presented in this paper. Tan and Johari [9]
have analyzed the case where every user has the same
round-trip delay and utility function given by w log(-),
i.e, w(t) = w. They have characterized the conditions
on local stability in terms of the gain parameter x and
and communication delay d. Their results state that there
exists some constant D such that the product of the
gain parameter x and communication delay d should
be smaller than D. In addition, they have shown the
convergence rate of the system in the case of single-user
single-resource.

A similar sufficient condition is also obtained in [18]
in the context of single-flow single-resource. Suppose
that the end user algorithms is given by

#(t) = k(w —z(t — d)p(z(t — d))) ,

where w, k > 0 and d is the communication delay. This
models the end user agorithms with U(x) = w - log(x)
with a feedback delay of d. The authors show that,
if p(-) is a function of class C! that is nonnegative,
nondecreasing, and bounded in norm by 1 such that p’(-)
is nonincreasing and lim,_,, p(z) = 1, then the system
is stable provided that 0 < d < .

Recently Deb and Srikant [4] have investigated the
stability of the system in the context of single flow and
single resource with more general utility functions, and



have provided a sufficient condition for stability. Assume
that the rate = is constrained to [I, M]. Let d denote the
feedback delay from the network resource to the single
user. The resource price function is denoted by p(-), and
z* is the unique solution to (5). The proposed end user
algorithms is given by

Ly Y Dole(t —
w(t)-m(w T rlat d))).

Define
wming<z < (20" () — U'(z))

AL, M) =1+
( ) maXleSM h(]?)

(6)

B(l, M) (")

W MAX <5< M ‘xU” () + U (x)‘ + max;<z<n h(x)

min <<y 2U' ()

where h(z(t — d)) = limy_,,_q) 2U-ZPE) Their
main results state that if there exists some constant ¢ > 1
such that |/grd < gg%g then the system is globally
exponentialy stable.

Alpcan and Basar [2] have studied the stability of
a system with a single resource and multiple flows,
using a delay based algorithms, and provided a sufficient
condition for stability. Although the agorithms uses the
estimated queueing delay as the feedback information,
the authors assume that feedback delay is fixed. Denote
the feedback delay of flow i by r;. Assume z* is the
solution to (5) and 0 < z; < Z; ez, WhEre z; a0
is assumed not to exceed the minimum capacity of

the links on the user's route. Let z := = — z* and
gi(z) := —d(gf) - —dUziE;” ). Define
kmin = min _inf g(jEZ) (8)
1 —%;<ZTi<Timax—T] T

The end user’s rate evolves according to

xz(t):%xz(t))_aZQ(z(t_rl)) ) IL.:]-a"'ala
I (h— o
Q(t):%w—l,

where ¢ is the queueing delay and «; > 0. They show
that if rpa, = max;r; < g2 then the system is
asymptotically stable.

Ranjan et al. [20] studied the globa stability of the
system with a class of utility and resource price func-
tions. These utility and resource prices functions are also
considered in this paper and are described in more details
in Section V. Suppose that the rate update rules of the
users are given by

d 1
%wl(t) = K; (:E“—(t)

)

it - T,-W(t)) (©)

b

. . (t— 7. —T

uz(t)zz(zyelz%( . gl z,z)> ’
ler; !

Z;, isthe forward delay from sender j to resourcel, T’
is the reverse delay from resource / to sender 5, T'; isthe
round-trip delay of user j, i.e., T; = Z;;+Tj,;, and I; is
the set of userstraversing resource [. Here the parameters
ai,1 € Z, and by, 1 € L, determine the responsiveness of
the users and resource price functions, respectively. They
have shown that if a; > 1+max;c,, b; for al i € Z, then
the system is globally asymptotically stable regardiess
of T;;, Z;;, and T;. A similar result with homogeneous
users and resource price functions has been obtained by
Ying et al. [25].

IV. NETWORK MODEL WITH DELAYS

Some of previous studies [2], [4], [18] described in
Section 111 have modeled the delays between the network
resources and end users. However, in all of these studies
the delays are assumed to be fixed. In a network, how-
ever, the delays experienced by the packets depend on
the queue sizes at the bottlenecks at the time of arrival.
Modeling queueing delays may be more important in
wireless networks where the capacities are limited. In
this section we first describe the network model that
captures the delays between the network resources and
end users with queue dynamics. A simple case of single-
flow, single-link with state-dependent time-varying delay
is considered in [21].

Consider a set Z = {1,...,N} of users sharing a
network consisting of aset £ = {1,..., L} of resources
as described in Section 11. The route of user i is given by
r;. In this paper we focus only on the forward path. In
other words, the route r; consists only of the resources
in the forward path. Although the reverse path can be
modeled in a similar manner as the forward path, for
notational simplicity, we model the reverse path as a
single link with a fixed delay given by 7/, € 7.
Let I; be the set of users traversing resource | € L,
i.e, I, = {i € T |1 € r;}. The feedback information
from the resourcesto user 4, which istypicaly carried by
acknowledgments (ACKSs), is delayed due to link prop-
agation and transmission delays as well as the queueing
delays at the bottlenecks.

Let Dy, I € L, denote the transmission and propaga-
tion delay of resource [. We assume that the links in
ri = {l@1)s- -+ l(i,r,)} ae arranged in the order user
i packets visit, where R; = |r;|, and let [(; ;) denote
the k-th link along r;. When used, (R; + 1)-th resource
in user 7’s route refers to receiver 4. We first define the
following:
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Fig. 1. Delay model.
e T;(t), i € Z —round-trip delay of a user i's packet

whose acknowledgment (ACK) arrives at the sender
at time .

« 7(t),l € L —queueing delay of apacket that getsto
the head of queue at resource! attimet, i.e, 7;(t) =
q’(t%(t)), where ¢, (t) is the queue size at resource
[ a time ¢.

ForeachieZ andt >0 let I, (t) =77, and for

esch k € {1,...,R;}, define (recursively starting with
k= R;)
F?ﬂ (t) = %c—l—l(t) + Dl(i,k) + URES (t - Dl(i,k) - F;c—i-l(t))

The variable I'i () denotes the delay experienced by the

feedback signal from resource Lii k) that arrives at sender

i at time ¢. In other words, ¢ —I",(¢) is the time at which

the packet whose ACK is received at time ¢ arrived at

the resource [(; ). Similarly, for each s € 7 and m =
., R;, we define ' (¢) = 0 and

+ Tl(in (t - Dl(i,k)
k=1,...,m

F;C—TI( )) )
—-1.

The variable ch’m(t) gives us the delay experienced from

resource [(; ) to resource l(; ) by user i packet that

arrives at resourcel(; ,,,) at time ¢. We define on(t) = 0.
Under this general model, the end user dynamics are

given by

d '

sz’(t) = Kj (fEi(t)Uz'

where

(24()) = @it = T())i'(¢)) (20)

Z:U'l( k) Z ))

and
O

pu(t) sz( >zt

JjE€L
Here K (j,1) is the order of link [ in user j's route if
[ € r; and O otherwise. Under this model the price of
resource | at time ¢ depends on the rates of the users

some time back due to the delay from the senders to the

resource. The feedback signal generated by the resource
price functions is then further delayed.

Now we describe the evolution of queue sizes
q(t),l € L. Let Byl € L, denote the finite buffer size
at resource [. Then, the queue dynamics can be captured
by the following differential equations:

( Sjen it =190 -,
if 0 <qf(t) <B
<) = [Sjen it =T ) -] (11)
dt? if i(t) =0
[Cjenai(t = TP ) - )]
\ if q(t) = By

where [a]T = max(0,a) and [b]~ = min(0, b).

The system given by (10) and (11) is a straightforward
extension of a model used in the literature [11], [14],
[20]. This type of model is, however, an approximation
to areal system, and a few aspects of area system are
not modeled explicitly. For instance, when the aggregate
rate at a resource is larger than its capacity, although the
gueue size and hence the queueing delay at the resource
increase the total departure rate of the users is allowed
to be larger than the capacity, Also, in a real network,
the rate of a user decreases after traversing a bottleneck
experiencing packet losses due to a finite buffer size.
This thinning effect of user rates is not modeled in
(10) and (11). However, when packet losses are not
high, these shortcomings of the model do not cause a
significant discrepancy in system behavior. These effects
can also be mitigated by maintaining a small memory of
transmission rate at the source and providing accurate
prices in the packet header using alarger number of bits
for congestion notification.

In this paper we are interested in studying the stability
of the system given by the set of delay differential
eguations in (10) and (11). The goal of this paper is
to study how the time-varying nature of the delays
affects the stability of the system. To be more precise,
we are interested in finding necessary and/or sufficient
conditions on the utility and resource price functions
that will ensure the convergence of z;(t),i € Z, to the
solution of (5) regardless of the delays D; and queue
dynamics.

We begin with the existence and uniqueness of a
solution of the system given by (10) and (11) in the
next subsection. The issue of existence and in particu-
lar unigueness is nontrivial for delay differential equa-
tions with state-dependent delays. There are practical
examples where state-dependent delays may lead to
unbounded state [3].



A. Existence and Uniqueness of Solutions

In this subsection we establish the conditions for the
existence and uniqueness of a solution of (10) and (11)
only for a single resource case with no forward delay
to the resource. The existence of a solution for multiple
resource cases is left open. However, we suspect that
the approach taken in this subsection can be extended to
these cases. To this end we use the framework developed
by Hartung and Turi in [5], [6]. They consider a general
setup for delay differential equations with distributed and
state-dependent delays:

2(t) = &(t, 2(t), A(t, 2))

where A(-) describes the role played by delayed state
variable and can be written as

0
dSV(S, t, Zt)Z(t + 8) )

-r

(12)

A(t,z) = (13)
where r is the maximum possible delay, z(t) € R" for
n > 0, z; denotes the segment z;(s) = z(t + s) for
s € [-r,0], v(-,-,%) isan n x n matrix valued function
of bounded variation on [—r,0], ¥ € C(]-r,0],R"),
and the integral is the Stieltjes-integral of z(¢ + -) with
respect to v(-, ¢, z;). The set C'([—r, 0], R") denotes the
set of continuous functions on [—r, 0] with domain R".
Note that their general setup can handle the case where
the function £(-) depends on time ¢, although our model
does not require this.

Since there is only one resource, we remove the sub-
script and denote the queue size at the resource at time
t by q(t). Let z(t) = [2(t); q(1)] and 2(t) = [&(1); §(2)),
where Z(t) = (z;(t),s € Z). Our model can now be
viewed as a specia case of (12) and be obtained by
extending Example 1.3 in [5, pp. 2] as follows. Let v/(-)
be a diagonal matrix with

Vii(sataw) = X[fT,-(t,w),O](S) y 8 € [_Ira O]a i=1,...,N

where T;(t,v) gives the round-trip delay of user i at
time ¢ given some continuous function 4/ in ]RTrl (in
place of z;),° and X[-T,0](8) is the characteristic function
of the interval [—T',0], i.e,

(=1 f-T<s<0
XETOS) =0 0 ifs<—Tors>0 °

and vyi1 n41(s,t,4) = 0. Itisclear that v(-,t,4)) isof
bounded variation on [—r, 0] for al ¢ € R.. Then, we
have

A(t, z¢) = ((zi(t — Ti(t)), i € I);0)

°T;(t,+) is the round-delay that satisfies Tj(t,v)) =
w where C is the capacity of the resource.

T! +

J

The results developed in [5] tell us that a solution
exists if (i) the function £(-) belongs to the Banach-
space of bounded continuous functions on an appropriate
domain of definition, and (ii) the initial function belongs
to the space of continuous functions [5, pp. 15]. In
our system the function &(+) is given by the right-hand
side of (10) and (11), and the first condition can be
easily verified. The second condition is a reasonable
assumption on the initial conditions considered in this
work as user rates and queue sizes must be continuous
in time. Finally, the uniqueness of a solution can be
guaranteed if £(-) of (12) is localy Lipschitz in both
second and third argument, which can be verified in
our case. These conditions provide us the basis for
continuation of solutions and studying their stability.

V. STABILITY OF GENERAL NETWORKS

In this section we first establish of the stability of the
delay differential system of (10) and (11) using a popular
family of user utility and resource price functions [1],
[25] for notational simplicity. The convergence results
established in this section will be extended in Section VI
to more genera functions.

A. Utility and Resource Price Functions

The class of users utility functions that we consider
is of the form

(14)

In particular, « = 1 has been found useful for modeling
the utility function of TCP algorithms [12]. This class
of utility functions in (14) has been used extensively in
engineering literature [10], [12]. Also, it has been used
to carry out a trade-off between system throughput and
fairness among the users [1]. With the utility functions
of the form in (14) one can easily show that the price
elagticity of demand decreases with o as follows. Given
aprice per unit flow p, the optimal rate z*(p) of the user
that maximizes the net utility U,(z) — p -  is given by
p’u;a. The price elasticity of demand, which measures
how responsive the demand is to a change in price, is
defined to be the percent change in demand divided by
the percent change in price [22]. In our case the price
elagticity of demand is given by
p d*(p) _p -1 _ -1

z*(p) dp p*plra l+a l+a
Therefore, one can see that the price elasticity of demand

decreaseswith .8 i.e., the larger a is, the less responsive
the demand is.

1
T

. (15)

5When comparing the price elasticity, typically the absolute value
of (15) is used.



The class of resource price functions that we are
interested in is of the form

ny) =a- (%)b ,

where b > 0, ¢; is some positive constant, and C; is the
capacity of resourcel € L. However, C; can be replaced
with any positive constant, e.g., virtual capacity in AVQ,
so that the price function can be dynamically adjusted
based on the current load using the virtual capacity asthe
control variable [13]. Throughout this paper we assume
that ¢; = 1 unless stated otherwise. This kind of marking
function arises if the resource is modeled as an M /M /1
gueue with a service rate of C; packets per unit time and
a packet receives a mark with a congestion indication
signd if it arrives at the queue to find at least b packets
in the queue. The parameter b is used to change the shape
of the price function. The larger b is, the more convex
and responsive the price function is.

With the utility and resource prices defined in this
subsection, eg. (10) can be rewritten as

(16)

Sailt) =i (57 0) — it - TEOWD) (D)
where
by
=> q- <—> (18)
ler;
and

B. Sahility Results

This subsection presents the conditions for the stability
of the system given by (17) and (18). First, we introduce
an assumption on the rates of the users. Since the rate of
a user is limited in practice due to the link capacity and
recelver buffer size, we assume that the rate of each user
is upper bounded by some constant X ;... Similarly user
rates are bounded away from zero from the fact that there
is a lower bound on the transmission rate. For instance,
in the case of TCP the transmission rate of a connection
cannot be smaller than one packet size divided by the
round-trip time of the connection. We denote this lower
bound on user rates by X,,;, > 0. This lower bound
Xmin Can be arbitrarily close to 0.

Assumption 1. A user rate belongs to a compact set
[Xmina Xmax]'

We introduce a sufficient condition on the user and
resource price parameters that ensures the stability of
the differential equation system given by (17) and (18).

Assumption 2: Assume that

ai>1+fllé%§(bl foralieT. (29
The above assumption tells us that for a fixed utility
functions of the users, there is alimit on how responsive
the resource price functions can be to changes in the
arrival rates, and vice versa. Hence, this assumption
captures the trade-off in the responsiveness between the
end users and the resource prices.

The following main result states that if a solution of
the differential equations exists, then the rates of the end
users converge to the optimal rates that maximize (5) if
the end users satisfy Assumption 2.

Theorem 1: Suppose that the utility functions of the
end users are of the form (14), and that the price
functions of the resources are given by (16). Under
Assumptions 1 and 2, if a solution of the system given
by (17) and (18) exists (see subsection IV-A), then z(t)
convergesto z* ast — oo for every solution z(¢), where
T* is the solution to (5).

V1. GENERAL UTILITY AND RESOURCE PRICE
FUNCTIONS

In this section we extend the results in Section V to
the case with more general utility and resource price
functions and establish the convergence of (10) under a
set of assumptions. Throughout this section we implicitly
assume the existence of a solution of (10) and (11). In
order to facilitate our analysis, for each user i € 7 we
define a function which gives us its willingness to pay
as a function of its current rate:

yi = i - Uj () = gil;) - (20)
Using (20) we rewrite (10) as
¥i(t) (21)
= rigi(9; ' (vi(1))) [y (¢)
—g; "yt = T sz( WD gyt -

JEL, 4,

Ti(t) - t—T}(1)))]
= kg, (g7 (wi (D)) [a(t) — fil@™ ' @t - T:0))),
@ )L €m)] (22)

) 7li.k
F{ K (3, ))(



where
ey (1) -
= ((t = Dl = T2V =T (1)), § € T),
ler;
and
fi (77 @t - T®)), @ Gap ()1 € )
= i@ G = Ti), 5 Gy )
T Wit (1))
= g; (st = Tu(1)))
R .
<[ o -1 -
k=1 J€L,; 4
pp e o)) @3
Let us define
Yi(t) = (5t = Ti(t)), Fitio ) Bs- -2 Fidi ) ()
Y(t) = (Yl(t),...,YN(t)) : (24)

and G;(Y'(t)) = (G '@t — Ti(1), T (Fitny) (1)),
e T Wislen,)(£))- Now we can write (22) in the
following matrix form:

() = F@®) [FY (1) - 5]

where F;(Y (t)) = fi(G;(Y'(t))), and &(-) is the state
dependent diagonal gain matrix with

(1)) -

We make the following assumption on g;(-),i € Z,
and the resource price functions p;(-),l € L.

(25)

Rii(U(t)) = —rigi(g; (26)

Assumption 3: (i) The function g;(z;) is strictly de-
creasing with g;(z;) < 0 for al =; > 0, (i) the price
functions p;(x) are strictly increasing in z for al [ € L,
and (iii) g;(z;) is Lipschitz continuous on [X i, Xmaz]
and p;(x) is Lipschitz continuous on [ X ,in, | 11| - Ximaz],
where X ,;, and X ., are the assumed lower and upper
bound on z;,% € Z, respectively.

This assumption ensures that the state dependent gain
matrix %(-) is a positive definite matrix. Assumption (i)
implies that the marginal utility decreases faster than

! from the definition of ¢;(z;). Hence, a change in
price per unit flow does not cause a large change in
user demand, i.e., the rate at which the marginal utility
equals the price per unit flow, and a user demand is
relatively insensitive to price changes, i.e., user demands
are inglagtic. It aso guarantees the existence of gi_l,z

Z. Therefore, the convergence of 7(t) to 7 implies the
convergence of z(t) = g ' (7(t)) toz =g (7).

It is easy to verify that the utility functions given in
(14) satisfy the above assumption. From the definition
of g;(x;), we have

. 1 1
gi(zi) = x; - Uj(x;) = wlw = E . 27)
From (27) one can easily see that Assumption 3 holds.
We define the invariance and a fixed point of the map

F(). Let Z:= Y7 (R; + 1).

Definition 1: A set D C RY is said to be invariant
under the map F'(-) defined in (25) if F(Y) € D

whenever Y € D=, ie,Y = (Y1 ,YN) and
Yie DR+ foral i € T. A vector 7 G]Rf is said to
be a fixed point of F(-) if F(y,...,y) T

One can verify that if 7* is a fixed point of F(-),
then 7= (@*) = (91" (1), 95 ' (15), - 9n' (X)) is @
solution to (5) from (22) and (23), i.e, 7* = g(z*),
where z* is a solution to (5).

Let Tgwx = TT + EZET‘ (Dl + Bl) and Tow =
max;ez 1), ,.- We denote by C,([—Tinaz,0], A) the set
of n-dimensional functions that are continuous over
[—Tmaz, 0] With the range A.

We now state the assumption under which the
asymptatic stability of (25) is established.

Assumption 4 Multidimensional map F : RY= —
RY has a fixed point 7* € RY, where g~ 1(7* ) is the
solution to (5). Also, assume that there is a sequence
of closed, convex product spaces Dy, k > 0, such
that F(D%) C int(Dk+1) C Dk+1 C Z’I’Lt(Dk) and
Nk>0Dy = {¥*}, where int(A) denotes the interior of
the set A.

Clearly, the existence of sequence Dy,k > 0, that
satisfies the above assumption depends on the selected
utility and resource price functions, but not on the
delays D;,l € L, and T ,i € Z. One can verify that
Assumption 4 holds with utility and price functions of
(14) and (16), respectively, under Assumption 2.

Let YDO = CN([ mam,o],DO) and Q =
CL([ mamao]aB = HleﬁBl)1 where B, = [OaBl];
be subsets of initid functions of 7(s) and
q(s) = (@(s),] € L), 5 € [~Timax, 0], respectively.
The solution of (25) constructed using initial functions
¢ € Yp, and ¢ € Q is denoted by 7, ,(t). When there
is no confusion, we omit the subscript and use y(t).
Given the initial function ¢ € Yp,, the initial function



1) of queue sizes is assumed to satisfy (11).

Theorem 2: (Asymptotic Stability) All solutions (t)
starting with initial functions ¢ € Yp, and ¢ € @ that
satisfies (11) given ¢ converge to 7* ast — oo for al
D, By € R+ and Tir S R+.

Proof: The proof is provided in Appendix I. N

Our stability results consider the case where arbitrary
delays D;,l € £, and T}, € Z, are allowed. However,
if the delays are finite and upper bounded by some con-
stant, then the system may be stable without satisfying
our conditions stated in this subsection, and | ess stringent
stability conditions may be sufficient to ensure stability
if the upper bounds on the delays are known a priori.

One can verify that if a system is stable with a homo-
geneous, constant feedback delay as described in [20],
then the system with more genera (state-dependent)
time-varying delays described in this section is aso
stable with appropriate initial conditions. Therefore, our
results demonstrate that the delay-independent stability
of the system studied in this paper depends criticaly
on the selection of users' utility functions and resource
price functions, but not on the detailed delays between
network elements, e.g., end users and resources. Hence,
the stability of the system with a given set of users
and network resources can be studied by considering a
simple fixed homogeneous delay system and a natural
underlying discrete time map with suitable initial con-
ditions [20]. This result offers a tool with a potential
to significantly simplify the stability study of a delay
differential system given by (10) by reducing it to that of
a simple system, which is described in the next section.

VIlI. COMPARISON WITH DETERMINISTIC DELAYS
CASE

In this section we discuss the relationship between a
homogeneous delay system, i.e.,, where every user has
the same fixed feedback delay, and a time-varying delay
system discussed in Section VI.

We first describe the system where al users have the
same fixed feedback delay 7' > 0. We assume that there
is no forward path delay and all of the delay lies in the
reverse path, which is the same for al users and is given
by T. Then, (10) can be written in a much simpler form

E%(t) (28)
:ﬁi(wi(t)Ué(xz(t —xi(t =T Z/f'l (t-T )
ler;
where (t —T) = pi (3¢, 7j(t —T')). Using the same

definition y;(t) = z;(t) - U; (v;(t)), we can write (28) in

the following simple matrix form:
y(t) =r(HE) [F(y(t - T)) - 3(2)]
where %(7(t)) is defined in (26) and
Fi(y) = fz(“ ®)
—= gl Z

ler;

(29)

= N
, yERY .

Zgj (7))

]GL

Note that since every user has the same delay, the
multidimensional nonlinear map F(-) has the domain
RY (as opposed to R = in section VI).

One can define a natural discrete time map from
(29) that highlights the underlying market mechanism
at work. Moreover, one can show that there is a close
relationship between the stability of the discrete time
system and that of (10) in the presence of arbitrary
delays. Consider the following:

Uny1 = F(@n) , n€ Zy :={0,1,2,...} (30)
where 7, € RY, and Fi(9) —
fi (gfl(y1),-..,g]§,1(yN)). Here one can easly

see the market structure where in each iteration every
user updates its willingness to pay to its total price
based on the previous values of willingness to pay of all
users, which determine the market price of resources.
Therefore, one can interpret this as a simple economic
model where users are probing the market and adjusting
their bids based on the delayed market price and their
utility functions.

Suppose that the multidimensional map F : RY —
RY has some fixed point 7*, i.e, 7* = F(7*), and that
there is a sequence of closed, convex product spaces
Dk,k > 0, such that F(Dk) C ’int(Dk+1) C Dk+1 C
int(Dg) and Ng>oDy = {7 “}. Then, it is shown that
if the initia functions ¢ € Dy, i.e, 7(s) € Dy for al
—T < s <0, then lim;_,, y(t) = 7* for al T' > 0 [20].

A key observation to be made here is the following:
Consider a system consisting of a set of users and
resources that satisfy Assumption 3. First, suppose that
the users have the same delay 7" and the assumption
in the previous paragraph holds for some sequence of
Dy, k > 0, and hence the system is stable provided
that the initial functions lie in Dy. Then, one can easily
verify that even when the users have heterogeneoustime-
varying delays as described in Section 1V, the same
sequence Dy, = Dy, k > 0, satisfies Assumption 4 from
the monotonicity properties of the maps by Assumption 3
and, hence, the system is stable if the initial functions
liein Dy = Do.

This observation can be explained to some extent as
follows. Suppose that in the homogeneous delay case,



the delay of the flows is T', and in the heterogeneous
delays case, the delays of the flows satisfy 7%, < T
for al ¢ € Z. Then, since the communication delays of
the users in the heterogeneous delay case are no larger
than T' of the homogeneous delay case, one may expect
the system with heterogeneous delays to be stable if
the system with homogeneous delay is stable. However,
since our stability results for homogeneous delay case
hold for any arbitrary 7' [20], one should expect the
system with heterogeneous time-varying delays to be
stable irrespective of D;,l € £, and T} ¢ € Z, as well.

VIII. NUMERICAL EXAMPLES

In this section we present a few numerical examples
to illustrate the results in the previous sections. We
demonstrate that under the stability condition given in
Theorem 1 indeed the user rates converge to the solution
of (5), while when the condition does not hold, for
sufficiently large delays, the system becomes unstable.

user 1

user 3

Fig. 2. Topology of the example network.

We consider a simple network consisting of two links.
The first link is shared by users 1 and 3, while the
second link is share by users 2 and 3. This is shown
in Fig. 2. The capacities of the links are set to C' =
[Cy Co]F =[5 4]T. The delays are set to [D; D3] =
[50 40], and [T7 T3 T3] = [289 250 277]. The buffer
Sizes are set to [B; Bp| = [400 1200]. The utility
functions are of the form in (14) with a; = a2 = 3
and a3 = 4, and the resource price functions are of
(16) with ¢, = 0.2, | = 1,2. We select two different
sets of parameters b;,l = 1,2, to create both a stable
system and an unstable system. The initia function is
given by ¢,(s) = [z1(s) z2(s) z3(s)]" = [3 1 2T for
al s € [T az, 0], and the initial queue sizes were set
to zero a t = —T)4,. The gain parameters are set to
k; = 1 for al users.

A. Sable System

The resource price parameters for the first case are set
to by = by = 1.9. Since a; > b, + 1 for al users,
the system is stable. One can solve the optimization
problem in (5) and show that the solution is given by

rate evolution
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Fig. 3. User rate and queue size evolution of a stable system.

r* = [1.844 1.696 1.370]7. Fig. 3 plots the evolution of
user rates and queue sizes according to (10) and (11),
respectively. As one can see the user rates cornverge to
the optimal rates.

B. Unstable System

In the second case the resource price parameters are
increased to b1 = by = 3.5. One can easily see that the
stability conditions in Theorem 1 do not hold. Fig. 4
shows the unstable behavior of the system as the user
rates show no sign of settling down, resulting in large
oscillations in the rates as well as in queue sizes.

IX. CONCLUSIONS

In this paper we have studied the problem of designing
a robust congestion control mechanism in the presence
of arbitrary delays between the end users and network
resources with time-varying queue sizes. We have pro-
vided a condition for the stability of the system, which
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Fig. 4. User rate and queue size evolution of an unstable system.

is applied to establish the stability of the system with
a family of popular utility and resource price functions.
We have demonstrated that the stability of such a system
can be also studied by considering a much simpler
discrete time system where all users have the same fixed
homogeneous delay.

Modeling the time-varying queue dynamics may be
important in multi-hop wireless networks where, due to a
limited capacity, queueing delays may be comparable to
transmission and propagation delays. Our results provide
a efficient tool for studying the stability of a rate control
system with time-varying delays by allowing us to look
at a much simpler discrete time system instead, which
can be analyzed more easily.
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APPENDIX |
PROOF OF THEOREM 2

In order to prove the theorem, We first show that
the invariance property of the map F(-) aso implies
the invariance property of (25). Then, we prove that
Assumption 4 implies the stability of (25) as well. To
this end, we use the following three lemmas.

Lemma 1: (Invariance) Suppose that D C RY is
a closed, convex, invariant product space under F(-).
Then, for any initial function ¢ € Cn([—Tmaz,0], D) =
Xp and ¢ € Q that satisfies (11) the resulting 7(¢) from
(25) belongs to the set D for al ¢ > 0.

Proof: We prove the lemma by contradiction.
Suppose that the lemma is false. Then, there exist some
initial function ¢ € Xp, ¢ € @, and ¢, ¢t > 0, such that
y(t) ¢ D. Define

to = inf{t > 0| for every interval [t, t'), wheret > t,
Jty, t<t, <t, suchthat 7(t;) ¢ D} .

Then, there is i € T such that for al (¢,t), where
t > tg, there exists #g,ty < ty < t, such that y;(#) ¢
D, := proj;(D), where proj;(D) denotes the projection
of 4-th component of D. We assume that y;(¢) leaves the
interval D; through the right end, i.e., y;(to) = sup D;.
Then, for al (to,t) there exists #y,ty < ty < t, such
that y;(to) > sup D; and g;(tg) > 0. This, however,
leads to a contradiction as follows.
From (22) we have

Yi(to)
= kigy (07 (i (00))) [wi(o) — Filg™ (i — Tu(i))),
@ (G (), € mi))| <0

because rig;(g; (yi(fo))) < 0 and fi(g '(y(ho —
Ti(t))), (@ " (G (0)),! € ri)) € D; from the as-
sumption and, hence, is less than or equal to sup D; (<
yi(to)). This contradicts the earlier assumption that
i(to) > 0. The other case that y;(¢) leaves D; through
the left end, i.e, y;(tp) = inf D;, can be shown to lead
to asimilar contradiction. Therefore, the lemma follows.

]

Lemma 2: Fix k,k > 0. Let D be an open product
space that contains F(D5) and whose closure is con-
tained in int(Dy), i.e, cl(D) C int(Dy). Suppose that
theinitial function ¢ € C ([~Tinaa, 0], Di) and 4 € Q.
Then, there exists a finite ¢, ¢ > 0, such that, for all
t>1,y(t) e D.

In order to prove the lemma, we first prove the
following coordinate-wise invariance.

Lemma 3: (Coordinate-wise Invariance) If yl() €
D; = proj;(D) for some ¢ > 0, then y;(t) € D; for

Proof: Suppose that the lemma.is not true, and there
exists £ > ¢ at which y;(f) = inf D; or y;(f) = sup D;.
We let

F=inf{t >%|yi(t) € 0D;} ,

where 9D; is the boundary of the set D;, and assume
yi(f) = supD; > supproj;(F(DZ)). Then, we can
find #; < ¢ such that for al t € (¢1,%), yi(t) € D; \
proj;(F(DZ)). This implies that ¢;(t) < 0 for al ¢ €
(£1,7) from (22) because F;(Y(t)) < sup proj;(F(D5))
and, thus, y;(t) < sup DZ-, leading to a contradiction. A
similar argument can be used for the case y;(f) = inf D;.

]

Now let us proceed with the proof of Lemma 2.

Proof: (Lemma 2) Suppose that the lemmais false.
Then, from Lemma 3 there exists ©+ € Z such that
for al ¢t > 0, y;(t) ¢ D;. We show that this leads
to a contradiction. Suppose that y;(t) > _sup D; for
al t > 0. Since sup D > sup proj;(F(D=)) with
§ :=sup D;—sup proj;(F (D)) > 0, there exists some
positive constant ¢ such that y;(t) < —e -4 < 0 from
(22). For example, if we let ¢ = infycp, minier 5 (7),
then ¢;(t) < —e - for al ¢ > 0. This, however, implies
that y;(t) | —oo ast 1 oo, contradicting the assumption
that y;() > sup D; foral ¢ > 0. A similar contradiction
can be shown when we assume y;(t) < inf D; for all
t > 0. This completes the proof of the lemma. n

Lemma 4: Let D be aclosed, convex, invariant prod-
uct space and D an open product space that contains
F(D%) and whose closure is contained in int(D),
i.e, c(D) C int(D). Suppose that the initial function
¢ € Cx([~Tmaz,0),D), ¥ € Q, and y(t;) € D for
some¢; > 0. Then, y(t) € D for al t € [t1, t1 + Tnaz)-

Proof: The lemma follows directly from Lemma 3.
]

The proof of the theorem can now be completed as
follows. By repeatedly applying Lemmas 1, 2, and 4,
one can find a sequence of finite ¢,k = 1,2,..., such
that y(t) € Dy for al ¢ > t;. The theorem now follows
from Assumption 4 that N2, Dy, = {7*}.



