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Abstract

It is now well established that, especially on large linear program-

ming problems, the simplex method typically takes up a number of
iterations considerably larger than recent interior-points methods in

order to reach a solution. On the other hand, at each iteration, the

size of the linear system of equations solved by the former can be

signi�cantly less than that of the linear system solved by the latter.

The algorithm proposed in this paper can be thought of as a com-

promise between the two extremes: conceptually an interior-point

method, it ignores, at each iteration, all constraints except those in

a small \active set" (in the dual framework). For sake of simplicity,

in this �rst attempt, an a�ne scaling algorithm is used and strong

assumptions are made on the problem. Global and local quadratic

convergence is proved.

1 Introduction and Algorithm Statement

Consider the problem the linear programming problem (in dual form)

(P ) minimize hc; xi s.t. Ax � b; x 2 IRn;
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with A an m � n real matrix and c a non-zero real vector of dimension n.
Let S denote the feasible set

S = fx : Ax � bg; (1)

a (possibly unbounded) polytope. In many problems of interest, m is much
larger than n, i.e., S has a large number of vertices. A simplex method
applied to such problem would likely take up a large number of iterations,
hopping from vertex to vertex. At each iteration it would solve a linear
system of size n. On the other hand, an interior-point method aiming at
solving the KKT equations

c+ AT� = 0
�i(aix� bi) = 0 i = 1; : : : ; m;

(2)

where � is the m-vector of dual variables, would likely take up considerably
fewer iterations, but would involve, at each iteration, the solution of a (struc-
tured) linear system of much larger size n+m. (See, e.g., [1] for background
on interior-point methods.)

The idea investigated in this paper is as follows. Try to guess, at each
iteration, as subset of the constraints, termed the \active set", such that
good progress can be made at that iteration even when all other constraints
are ignored. If all ignored constraints are inactive at the solution of (P), than
in principle nothing will be lost. Identifying these however is obviously not
possible in practice, at least far from the solution, so if the active set is small
it likely misses many of the active constraints at the solution. If the active
set is cleverly selected though, there may be hope that enough progress will
still be made at every iteration to drive the iterates to the neighborhood of
the solution, where fast local convergence can then take place.

In this paper, we show that the idea just put forth holds some promise.
For sake of relative simplicity of the analysis, we consider an interior-point
method of the a�ne scaling variety and we make strong nondegeneracy as-
sumptions. We select as the active set at a given iteration the n constraints
closest to be active at the corresponding iterate. We borrow primal and
dual stepsize rules from [2] (itself inspired from [3]) and closely follow the
convergence analysis carried out in that paper. We show that the resulting
algorithm is globally and locally quadratically convergent.
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To proceed, let m = f1; � � � ; mg, and, for i 2 m, let ai be the ith row of
A, let bi be the ith entry of b, and let

gi(x) = aix� bi:

Further, let
G(x) = diag(g1(x); : : : ; gm(x)):

and, given any � 2 IRm, let

� = diag(�1; : : : ; �m):

Next, given 
 �m, say 
 = fi1; : : : ; i`g, where the ijs are listed in increasing
order, de�ne

A
 =
h
aTi1 ; : : : ; a

T
i`

iT
;

G
(x) = diag(gi1(x); : : : ; gi`(x));

and
�
 = diag(�i1; : : : ; �i`):

The feasible set S is given by (1), the strictly feasible S0 set by

S0 = fx 2 IRn : gi(x) < 0 8i 2mg;

and the solution set S� by

S� = fx� 2 S : hc; x�i � hc; xi 8x 2 Sg:

A point x� 2 S is said to be stationary for (P ) if there exists �� 2 IRm such
that

c+ AT�� = 0
��i gi(x

�) = 0 8i 2m
(3)

(In particular, all vertices of S are stationary.) If furthermore �� � 0, then
x� is a KKT point for (P ), i.e., since (P ) is convex, x� 2 S�.

The following two assumptions are made throughout.
Assumption A1. S0 6= ;.
Assumption A2. S� is nonempty and bounded.

Assumption A2 implies that A has full column rank.
Assumption A2'. Let 
 � f1; : : : ; mg satisfy j
j � n. Then A
 has

full column rank.
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Given x 2 S, we denote by I(x) the index set of active constraints at x,
i.e.

I(x) = fi 2m : gi(x) = 0g:

Assumption A3. For all x 2 S; fai : i 2 I(x)g is a linearly independent
set.
The following iteration is an \active set" version of one investigated in [2].

Iteration IPAS.

Parameters. � 2 (0; 1), �max > 0.

Data. x 2 S0, �i > 0 8i 2m, 
 � m, with j
j � n.

Step 1. Solve

�
0 AT




�
A
 G
(x)

� �
�x
~�


�
=
�
�c
0

�
(L
(x; �)):

For i = 1; : : : ; m, set

~�i =

(
(~�
)j if i is the jth smallest index in 
;
0 if i 62 
:

Step 2. Updates.
(i) Compute the largest feasible stepsize

t =

(
1 if ai�x � 0 8i 2m;
minf(�gi(x)=ai�x) : ai�x > 0; i 2mg otherwise:

(4)

Set

t̂ = min f1; maxf�t; t�k�xkgg: (5)

Set x+ = x + t̂�x.
(ii) If ~�i � gi(x) for some i 2m, set

�+i = �0i ; 8i 2m: (6)

Otherwise, set

�+i = minf�max;maxf~�i; k�xk
2gg; 8i 2m: (7)
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(iii) Pick 
+ � ~
 with

~
 = indexes of n least negative gi(x
+)

2

The following result, proved in the appendix, implies that Step 1 in Iteration
IPAS is well de�ned.

Lemma 1.1 Let x 2 S, let � 2 IRm with �i > 0 for all i 2 m, and let

 �m satisfy j
j � n. Then

M
(x; �) :=
�

0 AT



�A
 G
(x)

�

is nonsingular.

The next result shows that Iteration IPAS can be repeated inde�nitely.

Lemma 1.2 Let x 2 S0, let � 2 IRm with �i > 0 for all i, and let 
 � m

satisfy j
j � n. Then Iteration IPAS generates quantities with the following
properties: �x 6= 0, t̂ > 0, x+ 2 S0, �+i > 0 for all i 2m and j
+j � n.

Proof. Since c 6= 0, if �x = 0 then the �rst block of equations in the
linear system implies that ~�
 is nonzero, while, since x 2 S0, the second block
implies that it is zero, a contradiction. The other claims are immediate. 2

We now consider sequences fxkg, f�kg and f
kg obtained by repeated
application of Iteration IPAS. Thus, for all k, xk 2 S0, �ki > 0 for all i 2
m, and j
kj � n. Auxiliary quantities computed at iteration k will bear
superscript k as well.

For future use, we rewrite L
k(xk; �k) as

X
i2
k

~�ki a
T
i + c = 0; (8)

�ki ai�x
k + gi(x

k)~�ki = 0 8i 2 
k: (9)

We will prove convergence of the algorithm as stated. Note that Step 2(iii)
leaves room for heuristic enlargement of the \active set" 
.
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2 Convergence Analysis

The analysis carried out in this section is strongly inspired from that in [2],
itself inspired from [3]. It is provided in extenso for ease of reference.

2.1 Global Convergence

We show that, under Assumptions A1-A3, the sequence fxkg converges to
S�, the set of solution points.

First, in view of Lemma 1.2, t̂k > 0 for all k and �xk never vanishes, and
thus the sequence fxkg generated by the algorithm never becomes constant.
The next result implies that the values of the objective function and of all
constraint functions with negative multiplier estimates ~�i must decrease at
every iteration.

Proposition 2.1 Let x 2 S0, let � 2 IRm with �i > 0 for all i 2 m, let

 �m with j
j � n and let �x and ~� solve L
(x; �). Then

hc;�xi = �h~�
; A
�xi < 0 (10)

and

ai�x < 0 8i s.t. ~�i < 0: (11)

Proof. See the appendix. 2

Corollary. The sequence fxkg is bounded.
Proof. Assumption A2 implies that, given any x0 2 S, the level set

fx 2 S : hc; xi � hc; x0ig is bounded. The claim then follows from the
monotone decrease of hc; xki. 2

We �rst show that fxkg converges to stationary points of (P ). The proofs
of Lemmas 3.2 and 3.3 are given in the appendix.

Lemma 2.2 Let x� 2 IRn and suppose that K, an in�nite index set, is such
that fxkg converges to x� on K. If f�xkg converges to zero on K, then x� is
stationary and f�kg converges to �� on K, where �� is the unique multiplier
vector associated with x�.
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Lemma 2.3 Let x� 62 S� and suppose that K, an in�nite index set, is such
that fxkg converges to x� on K. Then f�xkg goes to zero on K.

Proposition 2.4 fxkg converges to the set of stationary points of (P ).

Proof. By contradiction. Suppose not. Then, since fxkg is bounded,
there exists some in�nite index set K and some x� not stationary such that
xk ! x� as k ! 1, k 2 K. In view of Lemma 2.2, f�xkg does not
converge to zero on K. Thus there exists and in�nite index set K 0 � K such
that inf

k2K0

k�xkk > 0. Since xk ! x� as k ! 1, k 2 K 0, this contradicts

Lemma 2.3. Thus the claim holds. 2

Now note that, since hc; xki decreases at each iteration, if one limit point
of fxkg is in S�, then all of them are. Proceeding by contradiction towards
proving that fxkg converges to S�, we will assume that fxkg is bounded away
from S�.

Lemma 2.5 If fxkg is bounded away from S�, then f�xkg ! 0.

Proof. By contradiction. Suppose there exists an in�nite index set K
such that inf

K
k�xkk > 0. Let K 0 � K, x� 2 S be such that xk ! x� as

k !1; k 2 K 0, with K 0 an in�nite index set. Since fxkg is bounded away
from S�, it follows that x� 62 S� which, in view of Lemma 2.3, leads to a
contradiction. 2

The following key lemma is proved in the appendix.

Lemma 2.6 Suppose fxkg is bounded away from S�. Let x� and x0� be two
limit points of fxkg. In view of Proposition 2.4, they are stationary points.
Let �� and �0� be the associated multiplier vectors. Then �� = �0�.

Theorem 2.7 fxkg converges to S�.

Proof. Proceeding again by contradiction, suppose that some limit point
of fxkg is not in S� and thus, since hc; xi takes on the same value at all limit
points of fxkg, that fxkg is bounded away from S�. In view of Lemma 2.5,
f�xkg ! 0. Let �� be the common multiplier vector associated with all limit
points of fxkg (see Lemma 2.6). A simple contradiction argument shows that
Lemma 2.2 then implies that f~�kg ! ��. Since fxkg is bounded away from
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S�, �� 6� 0. Let i0 be such that ��i0 < 0. Then ~�ki0 < 0 for all k large enough
and thus i0 2 
k for all k large enough. Proposition 2.1 and the fact that
t̂k > 0 for all k (Lemma 1.2) then imply that, for k large enough,

0 > gi0(x
k) > gi0(x

k+1) > : : :

contradicting the fact that fgi0(x
k)g ! 0. 2

2.2 Local Rate of Convergence

Let x� be a limit point of fxkg and let �� be the corresponding KKT multi-
plier vector. We now assume that the second order su�ciency conditions of
optimality with strict complementarity holds at x�, i.e.,

Assumption A4. aiv = 0 8i 2 I(x�) only if v = 0.
Assumption A5. ��i > 0 for all i 2 I(x�).

Assumptions A4 and A5 ensure that x� is the unique solution of (P ) and
that exactly n constraints are active at x� (i.e., x� is a vertex). Since fxkg
converges to S� it follows that fxkg ! x�. The following result is a variation
on a result of Fiacco and McCormick (proof of Theorem 14 in [4]) It is related
to Lemma 2.1 (but Assumptions A4 and A5 are not in force in that lemma).
For the sake of completeness, a proof is given in the appendix.

Proposition 2.8 Let ��i = minf��i ; �maxg and let 
� � I(x�). Then the
matrix M
�(x�; ��) is nonsingular.

We show that, if ��i � �max for all i, the pair f(xk; �k)g converges Q-
quadratically to (x�; ��). First a preliminary result, also derived in [3] (again,
it is proved in the appendix for ease of reference).

Lemma 2.9 (i) f�xkg ! 0 and f~�kg ! ��; (ii) for k large enough fi :
�ki > 0g = I(x�); (iii) if ��i � �max for all i 2m, then f�kg ! ��; (iv) for k
large enough ~
k = I(x�).

To prove Q-quadratic convergence of f(xk; �k)g, the following property of
Newton's method will be used. It is borrowed from [2]. Its proof is given in
the appendix for ease of reference.
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Proposition 2.10 Let F : IRn ! IRn be twice continuously di�erentiable
and let z� 2 IRn and � > 0 be such that F (z�) = 0 and @F

@z
(z) is nonsingular

whenever z 2 B(z�; �) := fz : kz� � zk � �g. Let dN : B(z�; �) ! IRn be

de�ned by dN(z) = �
�
@F
@z
(z)
�
�1

F (z). Then given any c1 > 0 there exists
c2 > 0 such that

kz+ � z�k � c2kz � z�k2 8z 2 B(z�; �) (12)

for every z 2 B(z�; �) and z+ 2 IRn for which, for each i 2 f1; : : : ; ng, either

(i) jz+i � z�i j � c1kdN(z)k2 8z 2 B(z�; �)

or

(ii) jz+i � (zi + dNi (z))j � c1kdN(z)k2 8z 2 B(z�; �).

Theorem 2.11 If ��i � �max 8i 2 m, then f(xk; �k)g converges to (x�; ��)
Q-quadratically.

Proof. With reference to Proposition 2.10, let � > 0 be such that
M
k(x; �) is nonsingular for all (x; �) 2 B((x�; ��); �) and for all k large
enough; in view of Proposition 2.8 and of the fact that 
k takes only �nite
many values, all of which contain I(x�), such � exists. Since f(xk; �k)g !
(x�; ��) as k ! 1, there exists k0 such that (xk; �k) 2 B((x�; ��); �) for all
k � k0. Now let us �rst consider f�kg. For i 2 I(x�), in view of the update
rule for � in Step 2(ii) of Iteration IPAS, �k+1i = ~�ki for k large enough, so
that condition (ii) in Proposition 2.10 holds for k large enough. For i 62 I(x�),
for each k either again �k+1i = ~�ki or �

k+1
i = k�xkk2. In the latter case, since

��i = 0, condition (i) in Proposition 2.10 holds. Next, consider fxkg. For
i 2 
k n I(x�),

j�ki j

j~�ki j
=

jg(xki )j

jai�xkj
! 1 as k !1:

Thus,
t
k
= minf�ki =~�

k
i : i 2 I(x�)g

and

t̂k = minf1;
�kik
~�kik

� k�xkkg (13)
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for k large enough, for some ik 2 I(x�). In particular, tk converges to 1.
Thus, for k large enough and some ik 2 I(x�)

kxk+1 � (xk +�xk)k = jt̂k � 1jk�xkk

� j k�xkk+
~�ki � �k

~�ki
j k�xkk:

Since ��i > 0 for all i 2 I(x�), it follows that for some C > 1 and all k large
enough

kxk+1 � (xk +�xk)k � (k�xkk+ Ck~�k � �kk)k�xkk

� (1 + C)(k�xkk+ k~�k � �kk)2

Thus condition (ii) of Proposition 2.10 holds. The claim then follows from
Lemma 2.9 and Proposition 2.10. 2

3 Conclusion

An interior-point method has been proposed where only a small subset of the
constraints (in the dual framework) is taken into account in each search direc-
tion computation. Global and local quadratic convergence has been proved.
While an a�ne-scaling method has been used, and strong assumptions have
been made, it is anticipated that similar ideas can be applied to more sophis-
ticated interior-point methods and that the assumptions can be weakened,
possibly subject to a more conservative selection of the active set. Finally,
the update rule for the active set leaves room for heuristics (within the frame-
work for which convergence has been proved) to speed up convergence in the
early iterations.

4 Appendix: Some Proofs

Proof of Lemma 1.1. Let (�x; ~�
) be such that M
(x; �)
�
�x
~�


�
= 0.

Thus

AT


~�
 = 0 (14)
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�
A
�x +G
(x)~�
 = 0: (15)

Taking the inner product of both sides of (14) by �x yields

h�x;AT


~�
i = 0: (16)

Since �i > 0 for all i 2 m, left multiplying both sides of (15) by ��1

 and

taking the inner product with ~�
 yields

h~�
; A
�xi+ h~�
;�
�1

 G
(x)~�
i = 0: (17)

From (16) and (17) we get

h~�
;�
�1

 G
(x)~�
i = 0:

Since the ��1

 G
(x) is negative semide�nite, it follows that G
(x)~�
 = 0. In

view of (15) this implies that A
�x = 0. It then follows from Assumption
A2' that �x = 0. Finally, equation (14) together with Assumption A3 and
the fact that G
(x)~�
 = 0 implies that ~�
 = 0.

Proof of Proposition 2.1. The proof will make use of the following
lemma.

Lemma A.1. Let x 2 S, � 2 IRm such that �i > 0 for all i 2 m, and let
(�x; ~�
) satisfy

�
A
�x +G
(x)~�
 = 0: (18)

Then (i) h~�
; A
�xi � 0 and (ii) if �x 6= 0, then h~�
; A
�xi > 0.
Proof. Left multiplying both sides of (18) by ��1


 yields

A
�x + ��1

 G
(x)~�
 = 0 (19)

and taking the inner product with ~�
 yields

h~�
; A
�xi+ h~�
;�
�1

 G
(x)~�
i = 0: (20)

The �rst claim follows from negative semide�niteness of G
(x). Concerning
the second claim, assume by contradiction that h~�
; A
�xi = 0. It follows
from (20) that G
(x)~�
 = 0. This, together with (19) and Assumption 2'
implies that �x = 0, proving the claim.
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Proof of Proposition 2.1. Since, in view of Lemma 1.2, �x 6= 0, the �rst
claim directly follows from Lemma A.1. Since x 2 S0 and �i > 0 for all
i 2 
, it follows from (18) that ai�x < 0 for all i 2 
 such that ~�i < 0,
proving the second claim.

Proof of Lemma 2.2. Suppose f�xkg ! 0 as k ! 1; k 2 K. With-
out loss of generality (by going down to a further subsequence if necessary)
assume that, for some 
̂, 
k = 
̂ for all k 2 K. Equation (8)-(9) then yield

X
i2
̂

~�ki a
T
i + c = 0; (21)

and
�ki ai�x

k + gi(x
k)~�ki = 0 8i 2 
̂; 8 k: (22)

Since f�kg is bounded (by constuction), it follows from (22) that for all i 2 
̂
for which gi(x

�) < 0, f~�ki g ! 0 as k ! 1; k 2 K. In view of (21) and of
Assumption A3, it follows that, for all i 2 
̂, f~�ki g converges on K, say to
��i . Letting �

�

i = 0 for all i 62 
̂ and taking limits in (21)-(22) then yields

AT�� + c = 0;

��i gi(x
�) = 0; i = 1; : : : ; m;

implying that x� is stationary, with multiplier vector ��.
Proof of Lemma 2.3. Let Jk = fi 2 m : �ki � gi(x

k)g. The proof will
make use of the following result.

Lemma A.2. LetK be an in�nite index set such that, onK, �k is bounded
away from zero, ~�k is bounded, �xk is bounded and, for some x�, xk ! x�

as k !1, k 2 K. Then �tk is bounded away from 0 on K.
Proof. According to Step 2(i) of Iteration IPAS, �tk = min tki where, for

i = 1; : : : ; m,
tki = �gi(x

k)=ai�x
k if ai�x

k > 0 (23)

and tki = 1 otherwise. Proceeding by contradiction suppose that, for some
in�nite index set K 0 � K and some i0 2m,

tki0 ! 0 as k !1; k 2 K 0: (24)

Clearly,
tki0 = �gi0(x

k)=ai0�x
k; 8k 2 K 0; k large enough: (25)
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First suppose that i0 belongs to 
k for in�nitely many k 2 K 0. For all such
k, in view of (9), tki0 = �ki0=

~�ki0. Since
~�k is bounded away from zero and �k is

bounded, this contradicts (24). Thus i0 62 
k for all k 2 K 0, k large enough.
Since (25) is equivalently written as

gi0(x
k + tki0�x

k) = 0; 8k 2 K 0; k large enough;

letting k !1, k 2 K 0, we see that gi0(x
�) = 0. Now, in view of the update

rule for 
k, whenever i0 62 
k, at least n other constraints gi(x
k) are closer

to zero than gi0(x
k). Since the number of choices of n constraints is �nite,

there must exists an in�nite index set K 00 � K 0 and indexes i1; : : : ; in 2 m

such that, for all k 2 K 00, gi0(x
k) < gi`(x

k), ` = 1; : : : ; n. Letting k !1 on
K 00, we conclude that gi`(x

�) = 0, i = 0; 1; : : : ; n, in contradiction with linear
independance Assumption A3. This contradiction completes the proof.

Lemma A.3. Let K be an in�nite index set such that

inffk�xk�1k : k 2 K; ~�ki > gi(x
k) 8i 2 
kg > 0:

Then f�xkg ! 0 as k !1; k 2 K:
Proof. In view of (6) and (7), for all i 2 m, �ki is bounded away from

zero on K. Proceeding by contradiction, assume that, for some in�nite index
set K 0 � K, inf

k2K0

jj�xkk > 0. Since fxkg and f�kg are bounded, we may

assume, without loss of generality, that for some x� and ��, with ��i > 0 for
all i, and some 
� with j
�j � n,

fxkg ! x� as k !1; k 2 K 0

f�kg ! �� as k !1; k 2 K 0


k = 
� 8k 2 K 0:

Since in view of Lemma 1.1 and Assumption A3, M(x�; ��) is nonsingular,
it follows that, for some v� and ~��, with v� 6= 0 (since inf

k2K0

k�xkk > 0),

f�xkg ! v� as k !1; k 2 K 0;

f~�kg ! ~�� as k !1; k 2 K 0:

In view of Lemma A.2, it follows that t
k
is bounded away from zero on K 0,

and so is t̂k (Step 2 (i) in Iteration IPAS), i.e., for some t > 0, t̂k � t for all
k 2 K 0. In view of Proposition 2.1 and Lemma A.1(i), it follows that

hc; xk+1i � hc; xki � th~�k; A�xki 8k 2 K 0:
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Taking limits in (9) as k !1, k 2 K 0, we get

��


�A
�v� +G
�(x�)~�
� = 0:

Since v� 6= 0 and since ~��i = 0 for i 62 
�, it follows from Lemma A.1(ii) that
h~��; Av�i > 0 and thus there exisits � > 0 such that h~�k; A�xki > � for k
large enough, k 2 K 0. Since, in view of Proposition 2.1, hc; xki is monotonic
nonincreasing, it follows that hc; xki ! �1 as k !1, a contradiction since
xk is bounded.

Proof of Lemma 2.3. Let us again proceed by contradiction, i.e., suppose
f�xkg does not converge to zero as k !1, k 2 K. In view of Lemma A.3,
there exists an in�nite index set K 0 � K such that

~�k�1i > gi(x
k�1) 8i 2 
k�1; 8k 2 K 0; (26)

�xk�1 ! 0 as k !1; k 2 K 0:

Also, without loss of generality, for some 
̂, 
k = 
̂ for all k 2 K 0. Since
fxkg ! x� as k ! 1, k 2 K and kxk � xk�1k = kt̂k�1�xk�1k � k�xk�1k,
it follows that fxk�1g ! x� as k ! 1; k 2 K 0 which implies, in view of
Lemma 2.2, that x� is stationary and f~�k�1g ! �� as k !1; k 2 K 0, where
�� is the corresponding multiplier vector. From (26) it follows that ��i � 0
for all i 2 
̂ such that gi(x

�) = 0. Since by construction of ~�, ��i = 0 for
all i 62 
̂, it follows that all components of �� are nonnegative, thus that
x� 2 S�, a contradiction.

Proof of Lemma 2.6. Let L be the set of limit points of fxkg (in view
of Proposition 2.4, all of these are stationary points of (P )). L is bounded
(since fxkg is bounded) and, as a limit set, it is closed, thus compact. We
�rst prove an auxiliary lemma.

Lemma A.4. If fxkg is bounded away from S�, then L is connected.
Proof. Suppose not. Then there exists E; F � IRn, both nonempty, such

that L = E [ F , E \ F = ;, E \ F = ;. Since L is compact E and F
must be compact. Thus � := min

x2E;x02F
kx � x0k > 0. A simple contradiction

argument using the fact that fxkg is bounded shows that, for k large enough,
minx2L kx

k � xk � �=3, i.e., either minx2E kx
k � xk � �=3 or minx2F kx

k �
xk � �=3. Moreover, since both E and F are nonempty (i.e., contain limit
points of fxkg), each of these situations occurs in�nitely many times. Thus
K := fk : minx2E kxk � xk � �=3;minx2F kxk+1 � xk � �=3g is an in�nite
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index set and k�xkk � �=3 > 0 for all k 2 K. On the other hand since
fxkgk2K is bounded and bounded away from S�, it has some limit point
x� 62 S�. In view of Lemma 2.3, this is a contradiction.

Proof of Lemma 2.6. Given any x 2 L, let �(x) be the multiplier vector
associated with x and let J(x) be the index set of \binding" constraints at
x, i.e.,

J(x) = fi 2 m : �i(x) 6= 0g:

First note that, in view of linear independence Assumption A3, if x; x0 2 L
are such that J(x) = J(x0), then �(x) = �(x0). To conclude the proof, we
show that, for any x; x0 2 L, J(x) = J(x0). Let ~x 2 L be arbitrary and let
E := fx 2 L : J(x) = J(~x)g and F := fx 2 L : J(x) 6= J(~x)g. We show that
both E and F are closed. Let fy`g � L be a convergent sequence, say to ŷ,
such that J(y`) = J for all `, for some J . It follows from the �rst part of this
proof that �(y`) = � for all ` for some �. Now, for all `, gj(y

`) = 0 for all j
such that �j 6= 0, so that gj(ŷ) = 0 for all j such that �j 6= 0. Thus J � I(ŷ)
and from linear independence Assumption A3 it follows that �(ŷ) = � and
thus J(ŷ) = J . Also, since L is closed, ŷ 2 L. Thus, if fy`g � E then ŷ 2 E
and, if fy`g � F then ŷ 2 F , proving that both E and F are closed. Since E
is nonempty (it contains ~x), connectedness of L (Lemma A.4) implies that
F is empty. Thus J(x) = J(~x) for all x 2 L, and the proof is complete.

Proof of Proposition 2.8. Let (�x; ~�
�) be such that

M
�(x�; ��)

 
�x
~�
�

!
= 0:

Thus
AT

�
~�
� = 0 (27)

diag(��i )A
��x+G
�(x�)~�
� = 0: (28)

In view of Assumption A5 and since 
� � I(x�), (28) implies that

ai�x = 0 8i 2 I(x�) (29)

and, since ��i = ��i = 0 when i 62 I(x�),

~�i = 0 8i 62 I(x�): (30)

In view of (29) and Assumption A4, it follows that �x = 0. Finally, it follows
from (27), (30) and Assumption A3 that ~�
� = 0.
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Proof of Lemma 2.9. We �rst prove by contradiction that f�xkg ! 0.
Thus suppose that there exists an in�nite index set K such that inf

K
k�xkk >

0. In view of Lemma A.3, there exists an in�nite index set K 0 � K such
that f�xk�1g ! 0 as k ! 1, k 2 K 0 and, for all k 2 K 0, ~�k�1i > gi(x

k�1)
for all i 2 
k�1. Without loss of generality, assume that 
k�1 = 
� for
all k 2 K 0, for some 
� 2 m with j
�j � n. It follows from Lemma 2.2
that f~�k�1g ! �� as k ! 1, k 2 K 0 and from the update rule for �k in
Step 2 (ii) of Iteration IPAS that, for all i 2 m, �ki ! ��i = minf��i ; �maxg
as k ! 1; k 2 K 0. Since for all k 
k contains the indexes of the n least
negative gi(x

k) and since xk ! x� and, from Assumption A3, jI(x�)j = n, it
follows that 
� � I(x�). In view of Proposition 2.8M
�(x�; ��) is nonsingular
and thus, since x� 2 S�; f�xkg ! 0 as k ! 1, k 2 K 0, a contradiction.
Thus f�xkg ! 0. It now follows from Lemma 2.2 that f~�kg ! �� and, in
view of Assumption A5, that ~�ki > gi(x

k) for all i for k large enough. The
update rule for �k again implies that f�ki g ! minf��i ; �maxg for all i 2 m.
Finally, since jI(x�)j = n, it follows from Step 2(iii) in Iteration IPAS that
~
k = I(x�) for k large enough.

Proof of Proposition 2.10. First, let i 2 f1; : : : ; ng be such that (i)

holds. Since
�
@F
@z
(z)
�
�1

is bounded in B(z�; �) and F is Lipschitz continuous

in the same ball, there exists c2 > 0 such that, for all z 2 B(z�; �)

jz+i � z�i j � c1k
@F

@z
(z)�1k2kF (z)� F (z�)k2 � c2kz � z�k2:

Next, suppose (ii) holds. Then

jz+i � z�i j � jz+i � (z + dN(z))ij+ jz�i � (z + dN(z))ij

� c1kd
N(z)k2 + kz� � (z + dN(z))k

� c1kd
N(z)k2 + k

@F

@z
(z)�1kkF (z) +

@F

@z
(z)(z� � z)k:

The �rst term in the right hand side is as in (i). Boundedness of @F
@z
(z)�1 in

B(z�; �) and regularity of F thus again imply that the claim holds.
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