
ABSTRACT

Title of dissertation: CYCLOTRON RESONANCE GAIN IN THE 
PRESENCE OF COLLISIONS

Nightvid F. Cole
Doctor of Philosophy, 2017

Dissertation directed by: Professor Thomas Antonsen
Institute for Research in Energy and Applied Physics

The conditions needed for the amplification of radiation by an ensemble of

magnetized, relativistic electrons that are collisionally slowing down are investigated.

The current study is aimed at extending the work of other researchers in developing

solid-state sources of Terahertz radiation. The source type considered here is based

on gyrotron-like dynamics of graphene electrons, or it can alternately be viewed

as a solid state laser source that uses Landau levels as its band structure and is

thus similar to a quantum cascade laser. Such sources are appealing because they

offer the potential for a compact, tunable source of Terahertz radiation that could

have commercial applications in scanning, communication, or energy transfer. An

exploration is undertaken, using linear and nonlinear theories, of the conditions

under which such sources might be viable, assuming realistic parameters. Classical

physics is used, and the model involves electrons in monolayer graphene assumed to

be pumped by a laser, follow classical laws of motion with the dissipation represented

by a damping force term, and lose energy to the electromagnetic field as well. The



graphene is assumed to be in a homogeneous magnetic field, and is sandwiched

between two partially-transmissive mirrors so that the device acts as an oscillator.

This thesis incorporates the results of two approaches to the study of the

problem. In the first approach, a linear model is derived semi-analytically, which is

relevant to the conditions under which there is gain in the device and thus stable

operation is possible, versus the regime in which there is no net gain. In the second

approach, a numerical simulation is employed to explore the nonlinear regime and

saturation behavior of the oscillator. The simulation and the linear model both

assume the same original equations of motion for the field and particles that interact

self-consistently. The model used here is very simplified, but the aim here is to

elucidate the basic principles and scaling behavior of such devices, not necessarily to

calculate what the exact dynamics, outputs, and parameters of a fully commercially

realized device will be.
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Chapter 1: Introduction

In 1926 the idea of the cyclotron was invented at Aachen University. Electrons

in a magnetic field experience a force that allows them to move in circles (gyrate)

around the magnetic field lines (longitudinal motion along the field lines can also

occur.) The angular velocity (in this writing SI units are used) is eB/m. If a rotating

electromagnetic field is applied to the gyrating electrons at the same angular velocity,

resonance occurs. Originally cyclotrons were designed as particle accelerators. In

this mode of operation, the particles gain energy from the rotating field. The reverse

may also occur, where the electrons lose energy by emitting cyclotron radiation.

The gyrotron is a modified form of the cyclotron that makes use of relativistic

effects to make it possible to amplify radiation, thus functioning as a type of maser.

The cyclotron formula is only valid for non relativistic electrons. In the relativistic

case, (angular) frequency changes to eB/(γm). As with the cyclotron, electrons

may gain or lose energy, depending on the relative phase of the electrons and the

applied rotating field. Unlike for the cyclotron, however, relativistic effects allow

electrons to phase-bunch ( [1]). Under the right conditions the gyro-cyclotron, or

gyrotron, becomes an oscillator, which self-seeds its own radiation and amplifies it,

allowing it to become a high-powered microwave source.
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The conventional gyrotron [2], also known as the cyclotron resonance maser,

is a microwave source that makes use of stimulated cyclotron radiation. According

to classical gyrotron theory, a gyrotron will produce radiation at the fundamental

or a harmonic of the base angular velocity of gyration. For a particle of charge q

and mass m at a relativistic factor γ = (1− v2/c2)
−1/2

and in a uniform magnetic

field of strength B, this is given by

ω =
|qB|
γm

. (1.1)

For an electron with relativistic factor γ = 1.1, and |B| = 2T, this yields an output

fundamental (cyclic) frequency of

νg =
ω

2π
= 50.8 GHz. (1.2)

Stimulated radiation is possible due to the relativistic energy dependence of

the gyration frequency of an electron in a uniform magnetic field.

An additional condition usually required for cyclotron gain is that the electron

distribution function be inverted; that is, the derivative of the distribution function

with respect to energy should be positive (∂f/∂E > 0) for some range of energies.

This condition is easily met in a conventional gyrotron, where electrons are injected

into, travel through, and leave a cavity during a sufficiently short period of time that

their distribution is not “thermalized” by collisions. A situation in which an inverted

distribution function is not realized is one in which electrons are injected into an

interaction region and slow down due to collisions before being removed. In this

case, for reasonable models of the thermalization process, the distribution function
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is a monotonically decreasing function of energy. We will find that even in this case,

gain is present at some oscillation frequencies if the slowing down time is sufficiently

long, and if correlations between instantaneous electron energy and electron “birth

time” (equivalent to injection time) are not destroyed. To analyze this effect it

is necessary to self-consistently treat the collisional and dynamic response of the

electrons to the applied fields. This is in contrast to the customary approach where

collisions may have a role in determining the unperturbed distribution function, but

are then neglected or treated heuristically in determining the perturbed distribution

function.

It is desired to produce radiation in the terahertz (THz) range without re-

quiring extraordinarily high magnetic fields of several tens of Tesla, which are only

available in expensive, large-scale, superconducting, or pulsed, electromagnets [3].

Lower fields produce frequencies only at 100 GHz or in some cases a few 100s of

GHz. [4] This can be accomplished if the effective mass of the electron can be lowered

by working with conduction band electrons of a solid material [5], while essentially

retaining the principles of gyrotron physics. Consideration of a graphene-based gy-

rotron is a motivation for this paper. Electrons can be optically pumped from the

valence band to the conduction band by an infrared laser, subsequently emit cy-

clotron radiation, and then eventually effectively removed by falling back into the

valence band of the graphene. By contrast, in many traditional semiconductors,

the band structure is more complex, and so is the emission spectrum from tran-

sitions between Landau levels (the quantum description of emission equivalent to

cyclotron radiation). Band structure and emission spectra can be kept simple by
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using Landau levels of a single species of charge carrier, and graphene can keep ef-

fective mass low enough to allow for magnetic fields available at T ≥ 77 K to suffice.

Light-to-heavy-hole lasing, one of the most plausible semiconductor alternatives for

producing tunable far infrared oscillators, would require magnetic fields which might

pose a problem for operation at T ≥ 77 K, and germanium semiconductor-based

cyclotron resonance maser (SCRM) sources, although otherwise promising, require

even lower temperatures since only the lowest few Landau levels are involved [1] .

Previous work has focused on three broadly similar topics : One approach is to

consider cyclotron resonance in graphene at low-lying Landau states that often must

be treated quantum mechanically. The focus is on issues such as population inversion

of Landau states in graphene [6], [7], and on graphene Landau lasing in the quantum

regime [8], [9], [10]. The second approach is to study electron behavior in graphene

in the absence of a magnetic field as a THz source. This includes THz gain in

optically pumped graphene with no magnetic field [11], THz gain in graphene using

dielectric substrates and photonic boundary conditions but no magnetic field [12],

and femtosecond-scale transient population inversion in optically pumped graphene

due to carrier cooling and Auger recombination but no magnetic field [13]. The third

approach is to study conventional gyrotrons and other vacuum-electronics sources

of THz radiation from electrons in a vacuum [14], [15]. Our approach is different

from the first category because we consider the case of high quantum numbers that

should be possible to approach using a classical treatment, different from the second

category because we are using a magnetic field, and different from the third category

because we are using graphene. Nonetheless, it has aspects in common with all three
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previous approaches and could thus be considered an interdisciplinary combination.

As discussed in Ref. ( [1]), another type of source involves solid-state devices.

The behavior of electrons in a solid is not the same as in a vacuum, even if the other

parameters of the problem, such as the applied magnetic field strength, are the same.

This is true even in graphene, with electrons having a relatively long mean free path.

One reason is that such systems are often necessary to describe using quantum-

mechanical dynamics instead of using classical mechanics for gyrotron operation.

While related to the classical laws, these dynamics are different. For one thing, the

electrons in a solid are subject to the Pauli exclusion principle, which may provide

an absolute minimum energy that they are physically able to have. Electrons are

also sometimes accompanied by holes. Furthermore, quantum mechanics actually

discretizes the permitted energy the electrons can have in a magnetic field. This

is known as Landau quantization. The expressions regarding this quantization in

graphene are given in Ref. ( [16]), with the allowed energies given by (Ibid.)

En = sgn(n)
√

2eh̄v2
F
|n|B + E0, (1.3)

where En is the energy associated with an electron in level number n, n is a nu-

merical index for the energy level which may be positive, zero, or negative, e is the

elementary charge, v
F

is the Fermi speed (about 106 m/s in graphene), B is the

magnetic field strength, and E0 is a base or reference-point energy.

The highest energy level that is filled by electrons at absolute zero (when the

system has its lowest overall energy) is known as the Fermi level. Excited electrons
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can only lose energy until they get down to this level, due to the Pauli exclusion

principle, unless they recombine with holes in the valence band - since holes are

simply unfilled energy states below the Fermi level.

By varying the doping of the graphene, the Fermi level can be “tuned” so that

all the negative-n states are filled at absolute zero, but the nonnegative-n states

are not (Mittendorff, personal communication). This makes the interpretation of

the electron motion easier, since the negative-n states are the ones with no classical

analog.

The quantum mechanical approach has been used in a number of papers in

the small-n regime (e.g. [8]). It is generally accepted in many fields of physics that

quantum mechanics is necessary when the quantum numbers of the system are small,

but when the quantum numbers are large, the correspondence principle states that

classical mechanics should appear as a limiting case. Though quantum mechanics

is always correct, there are practical reasons that classical physics is useful. First,

classical mechanics is intuitive, and allows the motion to be described by particle

trajectories that have an obvious interpretation. Second, classical mechanics is

computationally easier than the quantum mechanics is, because quantum mechanics

must consider all possible motions, even those that violate the classical equations

of motion. One can of course come up with simplifying assumptions that make

quantum calculations reasonable, such as the two-level approximation or various

statistical approximations, but these are only good in the deep quantum regime

where n is 0 or 1 only. Third, as will be seen, the classical model better elucidates

the scaling properties of the system.
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When incorporating scattering into a classical model, scattering cross sections

for electrons, which are results of a quantum calculation, must be “put in by hand” to

the dynamical equations. An effective theory can be built by noting that small-angle

inelastic scattering events can be viewed as a “friction” on the electron. (Ultimately,

of course, macroscopic friction is a consequence of microscopic scattering events,

and must physically be some large-number limiting case of microscopic scattering

dynamics.) The model described in this thesis treats the “friction” on the electron

as a classical force opposing its motion of the form ṗfr = −p/τ , where τ is a time

constant which shall be called the “damping time”. For these reasons, the analysis

here takes advantage of the correspondence principle, and is classical, not quantum,

in nature.

Though it would be interesting to explore the classical-quantum correspon-

dence in this context in more detail, that matter is beyond the scope of this thesis.

Instead, the focus will simply be on the classical dynamics of what is effectively a

solid-state analog of the gyrotron, operating as an oscillator at terahertz (THz) or

far infrared (FIR) frequencies.

The present model assumes that the magnetic field is perpendicular to the

plane of the graphene, and that the THz radiation being amplified is travelling

normally through the graphene and is circularly polarized. The graphene is pumped

by an infrared laser.
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1.1 Graphene band structure

Undoped graphene has the Dirac band structure [17], equivalent to ultrarel-

ativistic (γ � 1) (or massless) electrons, with a band velocity of 106 m/s. The

conduction band and the valence band are touching at the Dirac point (see Fig. 1)

.

Fig. 1.1: Basic band structure of undoped graphene near the Dirac point with the valence

band (blue) filled and the conduction band (red) empty. The x and y axes rep-

resent the two components of electron momentum in the plane of the graphene,

while the z axis represents the electron energy (zero point arbitrary).

The energy-momentum dispersion relation for this (massless) band structure

is
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E = pc′, (1.4)

where c′ is the band velocity (Fermi velocity).

Although this allows for gyrotron-like action in an applied static, homogeneous

magnetic field perpendicular to the graphene sheet plane, the efficiency will be low.

This is because of the ultra-relativistic nature of the band structure. (In conventional

gyrotrons the efficiency is highest when the electrons are weakly relativistic with

kinetic energies up to 80 keV [18].) Doping the graphene allows for an alteration of

the band structure, in agreement with theoretical predictions for bilayer graphene

[19]. (Also see Fig. 1.2)

Fig. 1.2: Same as Figure 1.1, except the graphene is doped and possesses a bandgap.

In doped graphene with a small band gap, the band structure is hyperbolic, so

the relation between energy and momentum of a (conduction band) electron is given

9



by the quasi-relativistic expression (see Linear Theory section for more detail):

E =
√

(pc′)2 + (m′c′2)2, (1.5)

where c′ = v
F

is the Fermi speed mentioned earlier, and m′ is the effective mass.

The band gap is 2m′c′2.

The electron’s classical velocity is given by

v =
dE

dp
=
pc′

2

E
=

p

m′γ′
, (1.6)

where

γ′ ≡ E

m′c′2
=

√
1 +

( p

m′c′

)2

. (1.7)

1.2 Particle dynamics

The ith electron at time t has a momentum p(i, t) which may be expressed in

Cartesian coordinates as

p(i, t) = px(i, t)x̂+ py(i, t)ŷ. (1.8)

Introducing polar coordinates p(i, t) and θ(i, t), this becomes

p(i, t) = p(i, t)[cos θ(i, t)x̂+ sin θ(i, t)ŷ]. (1.9)

Differentiating the latter with respect to time, and using the Lorentz force relation

ṗ = q
[
E + v×B

]
, and the velocity expression v(t) = p(t)/(γ(t)m′), we obtain the

pair of equations
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ṗ = −e[Ex cos θ + Ey sin θ], (1.10)

and

pθ̇ = −e[−Ex sin θ + Ey cos θ] + p
ω
L

γ′
, (1.11)

where

ω
L
≡ eB

m′
. (1.12)

The above, however, apply only to an idealized case with no scattering of electrons

by phonons or inhomogeneities/defects in the graphene. Both elastic and inelastic

scattering can occur. A simple model which treats inelastic scattering events of

primarily small, longitudinal momentum transfers as an overall damping on the

electron momentum causing it to decay exponentially with time constant τ can be

used. In this case, the equation for ṗ becomes

ṗ = −e[Ex cos θ + Ey sin θ]− p

τ
, (1.13)

while that for θ̇ is now

θ̇ = −p−1e[−Ex sin θ + Ey cos θ] +
ω
L

γ′
. (1.14)

Now we transform to a rotating frame with angular velocity ω and initial phase

φ0. This involves transforming both the particle momentum and the field. The
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transformed field is parameterized as perpendicular and parallel field components

(E‖(t) and E⊥(t)), as experienced by the electrons (Some variables have implicit

indices i, t with i suppressed):

Ex(t)
Ey(t)

 =

cos(ωt+ φ0) − sin(ωt+ φ0)

sin(ωt+ φ0) cos(ωt+ φ0)


E‖(t)
E⊥(t)

 . (1.15)

The transformed particle momentum has magnitude p(i, t) (which is unchanged by

the transformation), and angle θ(i, t) ≡ θ(i, t)−ωt−φ0. With the field now expressed

in terms of E‖(t) and E⊥(t) and the particle momentum expressed in terms of p(i, t)

and θ(i, t), the equations of motion become (indices i, t suppressed):

ṗ = −e[cos θE‖ + sin θE⊥]− p
τ
,

and

θ̇ = −ω + θ̇ = −ω +
ω
L

γ′
− p−1e[− sin θE‖ + cos θE⊥]

, (1.16)

which are the rotating-frame electron equations of motion. To simplify the equations

of motion for circularly polarized radiation, we can introduce a complex field

Ê =
E‖ − iE⊥

2
, (1.17)

allowing these equations to be rewritten as

ṗ = −e
[
Êeiθ + c.c

]
− p

τ
(1.18)
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and

θ̇ =
ω
L

γ′
− ω − e

p

[
i
(
Êeiθ − c.c

)]
. (1.19)

1.3 Electromagnetic field equations of motion and dynamics

The electromagnetic radiation field obeys the driven wave equation

−∇2E +
1

c2

∂2E

∂t2
= −µ0

∂J

∂t
. (1.20)

Consider an electromagnetic wave of the form

E(x,y,z,t) = Ex

(
t− z

c
, z
)
x̂+ Ey

(
t− z

c
, z
)
ŷ, (1.21)

which is propagating in the +z direction. Making the substitution of variables

t ≡ t− z

c
(1.22)

∂/∂t = ∂/∂t (1.23)(
∂

∂z

)
old

=

(
∂

∂z

)
new

− 1

c

∂

∂t
. (1.24)

The wave equation becomes

(
1

c2

∂2

∂t
2

)(
Ex(t,z)x̂+ Ey(t,z)ŷ

)
−
(

1

c

∂

∂t
− ∂

∂z

)2 (
Ex(t,z)x̂+ Ey(t,z)ŷ

)
= −µ0

∂J

∂t
= −µ0

∂J

∂t
,

(1.25)
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or

(
2

c

∂

∂t

∂

∂z
− ∂2

∂z2

)(
Ex(t,z)x̂+ Ey(t,z)ŷ

)
= −µ0

∂J

∂t
. (1.26)

Discarding the term ∂2/∂z2 (negligible single-pass graphene reflection) and

integrating with respect to t gives

2

c

∂

∂z

(
Ex(t,z)x̂+ Ey(t,z)ŷ

)
= −µ0J, (1.27)

while omitting constant of integration since a nonvanishing zero-frequency compo-

nent of radiation is unphysical. This result can in turn be integrated with respect to

z, from just before radiation passes through the graphene to just after. The result

is

2

c
∆
(
Ex(t,z)x̂+ Ey(t,z)ŷ

)
= −µ0

∫ z→0+

z→0−
J(z)dz, (1.28)

where

∆
(
Ex(t,z)x̂+ Ey(t,z)ŷ

)
≡
(
Ex(t,z)x̂+ Ey(t,z)ŷ

)
z→0+ −

(
Ex(t,z)x̂+ Ey(t,z)ŷ

)
z→0−

.

(1.29)

Consider a charged quasi-fluid made of identical charged particles flowing at some

velocity v = (vx, vy, vz) through a box Lx by Ly by Lz (Fig. 1.3 ):

Let ρ be charge density, q be the charge of each charged particle, so that the number

density of charges is ρ/q. The current going through the box in the +x direction is

14



Fig. 1.3: Box representing a volume Lx × Ly × Lz.

Ix =
∆QY Z

∆t
, (1.30)

where ∆QY Z is the charge flowing through Y − Z face.

If charges have a velocity v, the charges move in the x direction by vx∆t in

time ∆t, so charges in a volume vx∆t × Ly × Lz pass though the Y − Z face in a

time interval ∆t. Hence

Ix =
ρvx∆tLyLz

∆t
= ρvxLyLz, (1.31)

so

Jx =
Ix

LyLz
= ρvx. (1.32)

15



A similar argument can be made for the other components, so J = ρv.

If the velocity of charged particles is not uniform, simply replace v with its

average over particles 〈v〉, since each charged particle contributes independently to

J. Hence J = ρ 〈v〉 and

∫ z→0+

z→0−
J(z)dz =

(∫ z→0+

z→0−
ρ(z)dz

)
〈v〉 = qn0 〈v〉 = −en0 〈v〉 , (1.33)

where n0 is the number of excited electrons per unit area. Using an earlier result

(1.28) and the relation Z0 = µ0c, the relation (1.33) becomes

∆
(
Ex(t,z)x̂+ Ey(t,z)ŷ

)
= −Z0

2

∫ z→0+

z→0−
J(z)dz =

eZ0n0

2
〈v(i, t)〉 , (1.34)

where Z0 is the impedance of free space. Using Eq. (1.6) and simplifying notation,

this becomes

∆E =
eZ0n0

2m′
〈p(i, t)/γ′(i, t)〉 . (1.35)

As will be explained in the Linear Theory, a more physical arrangement in-

volves having forward and backward waves arriving at the graphene simultaneously,

thus increasing the effective gain by a factor of 2. Incorporating this and expressing

the result in terms of the complex field Ê from (1.17) gives the result

∆Ê =
eZ0n0

2m′

〈
p(i, t)e−iθ

γ′(i, t)

〉
. (1.36)
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1.4 Necessity of electron inversion

There have been several papers in the quantum-mechanical literature that

assume that gain occurs only when the electron population is inverted. This as-

sumption should not be assumed to be unconditionally valid, because it is not so

in the classical case. Only by assuming that there is no damping of the electron

motion in the classical case does one recover that result. The following proof of this

[T. Antonsen, personal communication] is included here to show that the existence

of inversion-free lasing in the classical model with damping is an effect of including

damping, not an unphysical result of treating the system classically.

In the absence of electron damping forces, the damping time τ → ∞. The

rotating-frame electron equations (1.18) and (1.19) become

ṗ = −e
[
Êeiθ + c.c

]
, (1.37)

and

θ̇ =
ω
L

γ′
− ω − e

p

[
i
(
Êeiθ − c.c

)]
. (1.38)

The electric field equation is still that from (1.36) (written now with subscripts

suppressed and γ′ being simply called γ),

∆Ê =
eZ0n0

2m′

〈
pe−iθ

γ

〉
. (1.39)
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The momentum average can be expressed in terms of an electron distribution func-

tion f(θ, p) as

〈
pe−iθ

γ

〉
=

∫ ∞
0

∫ 2π

0

dθ dp p
p

γ
e−iθf(θ, p), (1.40)

(since p is the Jacobian of the coordinate system) where f is a distribution function

which is normalized so that

∫ ∞
0

∫ 2π

0

dθ dp p[f(θ, p)] = 1. (1.41)

Because electrons are neither created nor destroyed, the polar coordinate kinetic

equation validly applies:

∂f

∂t
+

∂

∂θ
(θ̇f) +

1

p

∂

∂p
(pṗf) = 0. (1.42)

To write down a linear theory, let f = f0 +f1, where f0 is a field-free term and

f1 is first order in Ê. Because there is no damping and no field for f0, the values of

p are constants of the motion for it. Thus the kinetic equation for it is simply

∂f0

∂t
+

∂

∂θ
θ̇f0 = 0. (1.43)

The solution is independent of angle (isotropic): f0 = f0(p). The equation for the

first order term is
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∂f1

∂t
+

(
ω
L

γ
− ω

)
∂f1

∂θ
+ (−e)[Êeiθ + c.c.]

∂f0

∂p
+

1

p
ṗ f0 = 0. (1.44)

It is now useful to introduce a function f̂1(p, t), which is independent of θ, such that

f1 = f̂1e
iθ + c.c.. Now the expression (1.40) simplifies to

〈
pe−iθ

γ

〉
= 2π

∫ ∞
0

dp
p

γ
f̂1. (1.45)

Eq. (1.44) becomes

∂f̂1

∂t
+

(
ω
L

γ
− ω

)
if̂1 − eÊ

∂f0

∂p
− eÊ f0

p
= 0. (1.46)

This equation can be solved by introducing the Laplace transformed function

F̂1(p, s) ≡
∫ ∞

0

f̂1(p, t)e−stdt (1.47)

so that

sF̂1 + i

(
ω
L

γ
− ω

)
F̂1 −

eÊ
(
∂f0

∂p
+ f0

p

)
s

= 0, (1.48)

which has the solution

F̂1 =
eÊ/s

i
[
ω
L

γ
− (ω + is)

] (∂f0

∂p
+
f0

p

)
. (1.49)
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Consider that due to the basic properties of Laplace transforms, in the limit s→ 0+,

sF̂1 → f̂1. Thus,

f̂1 =
eÊ

i
[
ω
L

γ
− (ω + is)

] (∂f0

∂p
+
f0

p

)
. (1.50)

From (1.45), (1.39) and (1.50),

∆Ê =
e2Z0n0

2m′
2π

∫ ∞
0

dp
p

i [ω
L
− γ(ω + is)]

(
∂f0

∂p
+
f0

p

)
Ê. (1.51)

Gain may only occur when

G = Re

[∫ ∞
0

dp
p

i [ω
L
− γ(ω + is)]

(
∂f0

∂p
+
f0

p

)]
>0. (1.52)

Since

Re

[
1

i(ω
L
− γω) + γs

]
=

γs

γ2s2 + (ω
L
− γω)2

, (1.53)

we find that if (∂f0/∂p+ f0/p)<0 for all p in the distribution, G<0. Equivalently,

gain cannot occur if

1

p

∂

∂p
(pf0)<0. (1.54)

Since pf0 is equivalent to the Cartesian coordinate momentum distribution

function due to p being the Jacobian, this requirement implies that gain cannot

occur when the distribution contains no inversion, in this case where τ →∞.

A schematic of the device being considered is shown in Fig. (1.4).
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Fig. 1.4: Optically pumped graphene (black, pumping beam not shown) is sandwiched be-

tween two partially transmissive mirrors (green). In “forward wave only” mode,

the beam is incident on the graphene (A). Beam then undergoes a gain due to the

excited conduction electrons gyrating, and then undergoes an absorption by the

graphene after this process (B). Beam is partially transmitted by a mirror (D)

and partially reflected (C). Then the beam undergoes the same processes on the

other side (E,F,A) and the cycle repeats itself. In “forward and backward wave”

mode, half the THz energy is incident in the forward direction (A) while the

other half is simultaneously incident on the graphene in the backward direction

(C).

1.5 Chapters 2 and 3 overview

In Chapter 2, a linear model is developed, which allows a description of the

dynamics of a THz oscillator when the electric field is weak. Under certain assump-

tions, a semi-analytical formula is derived, which shows that under some conditions,
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an amplification of THz oscillation can occur which is sufficient to overcome losses

of various types. This model is valid for predicting when the system will oscillate

at all, but cannot predict how large the electric field will become, because once the

field gets too strong, the linear model’s assumptions are invalid.

Chapter 3 sets out to remedy this limitation. By numerically solving an alter-

nate form of the equations of motion, the steady-state field strengths of the oscillator,

and its output in steady state operation, are predicted.
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Chapter 2: Linear Theory: Electron Cyclotron Resonance Gain in

the Presence of Collisions

[The material in this chapter has been published in IEEE Transactions on

Plasma Science. [20] Some material has been removed and transferred to the pre-

vious section of this thesis, and some trimmed material is added back in. c© 2017

IEEE. Reproduced under Thesis Policy found online at https://www.ieee.org/

publications_standards/publications/rights/permissions_faq.pdf(accessed

11/27/2017). Reprinted with permission from authors.]

This chapter presents an analysis of the possibility of achieving gain for THz

fields from a semiclassical perspective, and finds that it may be viable if the graphene

is pumped by an external source, such as a mid-infrared laser of suitable strength,

so that the graphene has an appropriate source of conduction electrons. We find

gain even though there is no population inversion in the model. Gain is possible due

to a correlation between an electron’s energy and its time of birth. Previous work at

low, zero, and negative Landau states such as in [8] concluded that Auger scattering

prevents population inversion from occurring, and thus restricts gain. However the

effect of Auger scattering at large quantum numbers is to contribute to an effective

(classical) damping force. In the classical model, the Coulomb interaction between
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electrons gives rise chiefly to small-momentum-transfer scattering events and can

be thus approximated by a damping force on the electrons as they scatter by small

angles and energy shifts from many other electrons successively. In the absence of a

coherent radiation field, this slowing down also leads to a distribution function which

decreases monotonically with increasing energy. However, if the slowing down and

interaction with the radiation field are treated consistently we find gain is possible.

While the full features of Auger scattering at low Landau levels require a quantum

treatment, the classical treatment should suffice at large quantum numbers when

many states are available for electrons to scatter into.

Electrons are pumped from the valence to the conduction band by the laser,

so that the newly pumped electrons are in a narrow range of energies, but their

momenta are isotropically distributed. When a monochromatic THz wave field is

present, the electrons immediately are influenced by this field as they gyrate in

the background magnetic field. The momenta, while initially isotropic, become

anisotropic due to the interaction with the THz field. These electrons subsequently

gyrate in the field, but the momentum distribution remains anisotropic. When the

electrons lose energy due to dissipation, the gyration frequency increases (refer back

to Eq. (1.1) for gyration frequency). For appropriately chosen THz field frequencies,

the gyration frequency will, as it increases, briefly come into resonance with the THz

field. Because of the anisotropic electron momentum distribution, there will be a

net transfer of energy between the electrons and the field during the brief period

in which the electrons are resonant with the THz field. Depending on the relative

phase between the electrons and the field, this may result in the THz wave being
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either amplified or attenuated. In this chapter, we explore the conditions required

for the phases that result in amplification of the THz wave as it passes through the

graphene.

While it may seem paradoxical that gain can occur without population inver-

sion, one should bear in mind that the usual argument in the quantum-mechanical

framework linking gain to population inversion assumes a statistical mixture (i.e. a

completely incoherent superposition) of different energy levels. Indeed, the equiva-

lent assumption in the classical picture (a gyroangle and time independent unper-

turbed distribution function) also results in a conclusion of no gain. Despite this, the

phase bunching that occurs in the gyrating electrons can still give rise to gain when

the electron birth times are correlated with their energies, as we will later show.

This correlation leads to an energy-dependent gyration phase distribution relative

to the phase of the THz field. Returning to the quantum mechanical picture, the

assumption of statistically independent energy states does not apply to the case in

our model, because a classical gyration phase, reinterpreted in quantum terms of a

localized wave packet, is related to the relative phase between neighboring levels in a

coherent superposition of energy eigenstates (Landau levels) with a common center

of gyration. A bunching of classical gyration phases corresponds to the coherence

within a quantum superposition of levels. Thus, the statistical/incoherent assump-

tion usually invoked in atomic and molecular systems does not hold. A coherence

between states has been shown to give rise to gain without inversion in systems with

as few as three participating energy levels [21]. Thus the presence of a non-inverted

population, is not by itself a sufficient condition to show that gain cannot occur.
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Undoped graphene has the Dirac band structure [5], equivalent to ultrarela-

tivistic (or massless) electrons, with a band velocity of 106 m/s. The conduction

band and the valence band are touching at the Dirac point, as illustrated in Fig.

2.1a. The energy-momentum dispersion relation for the massless (zero band gap)

band structure is

E = pc′, (2.1)

where c′ is the band velocity. In the present study, we allow for the possibility

of a band gap that could be achieved by doping and doubling the graphene to

bilayer graphene [19], but the bandgap is not necessary and is taken to be small.

The energy-momentum dispersion relation for the massive (nonzero band gap) band

structure is

E =
√

(pc′)2 + (m′c′2)2, (2.2)

where c′ is the high-momentum band velocity and m′ is the effective mass. The

band gap energy is 2m′c′2. Furthermore, we assume that the Fermi level is tuned to

E = 0, between the valence band and the conduction band. Thus, the electrons can

be made to behave in a manner analogous to relativistic electrons in a conventional

gyrotron. We also have the analogous relativistic factor γ′ such that the energy is

E = γ′m′c′
2

and the gyration frequency satisfies ω = eB/γ′m′ = eBc′
2
/E.

The situation that we consider is illustrated in Fig. 2.1b. A sheet of graphene

is oriented perpendicular to a uniform magnetic field. The graphene is illuminated
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Fig. 2.1: a) Schematic of graphene band structure showing valence electrons and electrons

excited by a laser pulse with photon energy 2E. b) Schematic of configura-

tion analyzed showing orientation of graphene sheet, applied magnetic field, and

incident and transmitted probe wave. c© 2017 IEEE.

by a pump and a probe. The pump beam excites an electron from the valence band

to the conduction band as illustrated in Fig. 2.1a. The electron loses energy to

collisions passing through multiple states of the ideal Hamiltonian while interacting

with the wave electric field. The probe beam passes normally through the graphene

and experiences gain or loss due to the response of the graphene electrons. Both the

THz wave and the pump laser are assumed to have circular polarization so that the

initial electron momentum distribution and the underlying dynamics are isotropic.

An exploration based on a classical treatment of electron motion in a strong

applied magnetic field will be considered here and is valid when electron excitation

energy is sufficiently large, such that the electrons responsible for the gain are in high
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order Landau levels, with index N ' [E2− (m′c′
2
)2]/(2h̄|qB|c′2)� 1, where h̄ is the

reduced Planck constant. If we work in the low-band-gap limit where E � m′c′
2
,

this may be written as

N ' 7.6× 102 (E[eV])2

(B[T])
. (2.3)

The gyration frequency of an electron with injected energy Ei is given by

ωi = eBc′
2
/Ei with c′ = 106m/s. Our analysis assumes that the electrons slow

down due to collisions and thus, their gyrofrequency changes with time. We will

find that maximum gain of the probe occurs due to electrons that have slowed such

that their gyration frequency is a factor of about 1.7 times their initial frequency.

The maximum gain occurs for frequencies

f [THz] = 0.27
B[T]

E[eV]
. (2.4)

From Eqs. (2.3) and (2.4), the level number, frequency and energy relate via

N = 2.1× 102 E[eV]

f [THz]
. (2.5)

Thus for example, using an 8 T magnetic field as an upper limit, a 500 meV electron

excited to the N = 10th state will give rise to gain at a frequency of 4 THz. The

condition on N is more stringent than simply N > 1. This is because, as we will

find, gain occurs in narrow bands of frequency δf/f of order 0.2. It is necessary

that there be a sufficient number of transitions in this frequency range so that the
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classical picture involving a superposition of states can apply. Thus, we can expect

to have to consider cases where N is of order 10 or higher.

To treat the situation we consider quantum mechanically one would need to

include the effect of many transitions between states. Recall that the electron energy

drops from its initial value to one that is roughly 50 % lower during the process of

slowing down. Further, as we will find from the classical picture, the electron-field

interaction occurs for a finite time, several wave periods. The quantum wave function

describing this would thus involve a coherent superposition of multiple states. The

classical approach accounts for these two effects in the limit of a large number of

participating states, and provides an answer in terms of simple integrals and figures.

The organization of this chapter is as follows: In section II we derive classical

equations for the gain or loss an electromagnetic wave experiences in crossing trans-

versely a layer of graphene in which electrons have been energized. The main result

of this analysis is an expression (Eqs.(2.35-2.39)) for the complex gain of the probe

wave. This expression is evaluated numerically and the gain is plotted as a function

of its independent parameters. The main conclusion is that positive gain can occur if

the slowing down time τ satisfies ωiτ>15. Section III presents a discussion of issues

that are important in realizing gain experimentally and presents sample numbers.

Finally, areas for further study are listed.
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2.1 THz gain

We consider a single atomic layer of graphene that is illuminated by

a mid-infrared laser to pump electrons from the valence band to the conduction

band, at an initial energy Ei =
√

(pic′)2 + (m′c′2)2, corresponding to momentum pi

(Figure 2.1). A THz wave, to be amplified, is normally incident on the graphene.

The electric field of this wave is in the plane of the graphene, (x− y). The applied

static magnetic field is perpendicular to the graphene plane (z). As long as the

waist diameter of the THz beam is much larger than both the wavelength of the

THz radiation and the distances (fast gyration and slow drift, if any) travelled by

the electrons during their interaction with the radiation, the system is to a good

approximation translationally invariant in both the x and y directions and will be

treated as such in this analysis. The electrons are assumed to be governed by

classical mechanics once injected into the conduction band by the IR laser.

The THz electromagnetic radiation field can be considered to undergo two

processes in passing through the graphene. First, a modification by the current

of the excited electrons in the graphene gives gain. Then, the field undergoes a

dispersionless, frequency-independent loss due to absorption by the graphene itself.

Mirror transmission, and mirror absorption (including large-angle scattering out of

the cavity) would occur in a self sustaining oscillator as will be discussed in sec. III.

An electron at time t has a momentum p(t) which may be expressed in Carte-
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sian coordinates as

p(t) = p(t)[cos θ(t)x̂+ sin θ(t)ŷ]. (2.6)

Differentiating the momentum with respect to time, using the damped Lorentz force

relation with a collisional relaxation time τ gives ṗ = q
[
E + v × B

]
− p/τ , and

introducing the angle θ = θ − ωt, we obtain the pair of equations

ṗ = −e
[
Êeiθ + c.c.

]
− p

τ
, (2.7)

and

θ̇ =
ω
L

γ′
− ω − ep−1

[
iÊeiθ + c.c.

]
, (2.8)

where

ω
L
≡ eB

m′
, (2.9)

γ′ ≡
√

1 +
( p

m′c′

)2

, (2.10)

and

Ê =
(Ex − iEy)

2
eiωt. (2.11)

Our simple model treats inelastic scattering events of primarily small, longitu-

dinal momentum transfers as an overall damping on the electron momentum causing
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it to decay exponentially with time constant τ . Thus, we are excluding pitch angle

and energy diffusion processes, with the rationale being that for superthermal elec-

trons, damping should dominate. We note that in the absence of a coherent THz

field the momentum relaxation term in Eq. (2.7) leads to a distribution function

that scales with momentum as τ/p2, and is thus not inverted.

We will solve this equation system subject to the following initial conditions.

Electrons are injected into the conduction band with energy Ei = γim
′c′

2
with

γi =
(
1 + p2

i / (m′c′)2)1/2
and with initial momentum angle θ uniformly distributed

in the interval [0, 2π]. Further, each electron has a birth time tB at which p = pi

and θ = θ0, which we will take to be uniformly distributed. Solutions are then

parameterized as follows,

p = p(t; θ0, tB)

θ = θ0 + ∆θ(t; θ0, tB),

(2.12)

where p(tB; θ0, tB) = pi , ∆θ(tB; θ0, tB) = 0.

We assume the radiation waist is sufficiently large so that we may take ∇·J '

0, and hence ∇·E ' 0, and we consider the propagation of the electromagnetic fields

to be essentially one-dimensional, in the z-direction, perpendicular to the plane of

the graphene.

We combine the components of the wave equation for the electric field by

projecting onto the basis function (x̂− iŷ)eiωt/2 and averaging over time to obtain

d2

dz2
Ê(z) + k2Ê(z) = −iωµ0

2

〈
(Jx − iJy)eiωt

〉
, (2.13)
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where J = x̂Jx + ŷJy is the current produced by the graphene conduction

electrons, k = ω/c, and the angular brackets indicate the time average. We solve

(2.13) using the method of variation of parameters. Specifically we write the electric

field as the sum of a forward and backward wave,

Ê(z) = Êf (z)eikz + Êb(z)e−ikz, (2.14)

where we constrain Ef and Eb by insisting ∂Êf/∂z − ∂Êb/∂z = 0. (We have

replaced one variable, Ê, by two, Êf,b. Thus, we are free to make one relation

relating Êf and Êb.) Inserting the electric field (2.14) in the wave equation (2.13),

using the constraint, and integrating the forward and backward waves through the

graphene layer gives

Êf (0 + ε) = Êf (0− ε) + ∆Êf (2.15)

Êb(0− ε) = Êb(0 + ε)−∆Êb, (2.16)

where

∆Êf = ∆Êb =
−cµ0

4

∫ z→0+

z→0−
dz
〈
(Jx − iJy)eiωt

〉
. (2.17)

We assume the graphene is positioned halfway between the two mirrors such

that when the forward and backward waves return to the graphene, they add coher-

ently. Then on each transit, from graphene to mirror and back the field Ê(z = 0)

will increment by ∆Ê = ∆Êf + ∆Êb.
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We now relate the current density in the graphene to the particle momentum

in Eqs. (2.7) and (2.8).

Each conduction electron with velocity v(t; tB, θ0) = p(t; tB, θ0)/(γ(t; tB, θ0)m′)

and birth time tB < t, will contribute to the current density. If the pumping IR laser

excites electrons to the conduction band at a rate ṅ , where ṅ has units m−2s−1, the

electric field change can be thus cast in terms of the velocity of an electron given its

history as

∆Ê =
eZ0ṅ

2

∫ t

−∞
dtB

〈
(vx − ivy)eiωt

〉
θ0
, (2.18)

where Z0 =
√
µ0/ε0 is the impedance of free space and we have used c = 1/

√
µ0ε0.

This gives the jump in the electric field the wave experiences due to the conduction

electrons. The change in the complex amplitude Ê defined by Eq. (2.17) can then

be expressed

∆Ê =
eZ0ṅ

2

∫ t

−∞
dtB

〈
(vx − ivy) eiωt

〉
=
eZ0ṅ

2m′

∫ t

−∞
dtB

〈
pe−iθ

γ

〉
θ0

. (2.19)

We now seek to calculate the conditions under which the growth of a wave with

prescribed frequency ω due to the interaction with the excited graphene electrons

can overcome the combined losses due to absorption in the graphene and mirrors and

transmission through the mirrors. To this end we assume that the electric field is

oscillating sinusoidally, and is sufficiently small that the equations of motion can be

linearized. We write the electron momentum as the sum of the field free component,

with subscript “0”, and a first order in electric field perturbation with subscript “1”,
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p (t− tB) = p0 (t− tB) + p1 (t− tB) , (2.20)

and

∆θ (t− tB) = ∆θ0 (t− tB) + ∆θ1 (t− tB) . (2.21)

The field free solutions satisfy Eqs. (2.7) and (2.8) with Ê set to zero,

p0 (t− tB) = pie
−(t−tB)/τ , (2.22)

and

∆θ0 (t− tB) =

∫ t

tB

dt′
(

ω
L

γ0 (t′)
− ω

)
= (ω

L
− ω) (t− tB)− ω

L
τ ln

(
γi + 1

γ0 (t) + 1

)
,

(2.23)

and

γ0 (t− tB) =

√
1 +

p2
0 (t− tB)

m′2c′2
, (2.24)

is the relativistic factor of an electron as it slows down, and

γi = γ0(t = tB), (2.25)

is the initial relativistic factor.

In the first order equations the electric field appears. If we take ω to be the

angular frequency of the (radiation) field, the quantity Ê defined in (2.11) will have
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a steady (DC) component and a component oscillating at 2ω. In first order these

act independently, so we take Ê to be DC. The first order equations for electron

motion are written

d

dt
p1 = −p1

τ
−
(
eÊeiθ0+i∆θ0 + c.c.

)
, (2.26)

and

d∆θ1

dt
= −ωL

γ2
0

dγ0

dp0

p1 −
e

p0

(
iÊeiθ0+i∆θ0 + c.c.

)
. (2.27)

We note from Eqs. (2.26) and (2.27) that the dependence of the momentum variables

p1 and ∆θ1 on the birth phase θ0 can be separated according to p1 = p̂1(t− tB)eiθ0 +

c.c. and θ1 = ∆θ̂1(t − tB)eiθ0 + c.c. . The complex amplitudes p̂1 and ∆θ̂1 then

satisfy

dp̂1

dt
= − p̂1

τ
− eÊei∆θ0(t−tB), (2.28)

and

d∆θ̂1

dt
= −ωL

γ2
0

dγ0

dp0

p̂1 − i
e

p0

Êei∆θ0(t−tB), (2.29)

with the initial conditions p̂1(t = tB) = θ̂1(t = tB) = 0.

Equations (2.28) and (2.29) can be integrated giving

p̂1 = −eÊτA(t− tB), (2.30)

where
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τA(t) = e−t/τ
∫ t

0

dt′et
′/τ+i∆θ0(t′), (2.31)

and

∆θ̂1(t− tB) = eÊ

[∫ t

tB

dt′
(
ω
L

γ2
0

dγ0

dp0

τA(t′ − tB)

)
− i

pi
τA(t− tB)

]
(2.32)

Next we linearize Eq. (2.19), which gives

∆E =
eZ0ṅ

2m′

∫ t

−∞
dtB

((
1

γ0

− p0

γ2
0

dγ0

dp0

)
p̂1 − i

p0

γ0

∆θ̂1

)
e−i∆θ0 . (2.33)

Upon substituting Eq. (2.30) and (2.32) in (2.33) and letting t̂ = t − tB such that

dtB = −dt̂ we find for the increment in field amplitude

∆E = −e
2Z0ṅ

4m′
Ê

(∫ ∞
0

dt̂e−i∆θ0(t̂)

((
1

γ3
0(t̂)

+
e−t̂/τ

γ0(t̂)

)
τA(t̂) (2.34)

+i
p0

γ0

∫ t̂

0

dt′
(
ω
L

γ2
0

dγ0

dp0

)
τA(t′)

))
, (2.35)

or simply

∆Ê

Ê
= R (G− L) , (2.36)

where

R =
e2Z0ṅτ

2c′
2

2Ei
, (2.37)
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is the dimensionless pumping rate, and

L = γi

∫ ∞
0

(
1

γ3
0

+
e−t̂/τ

γ0

)
τA(t̂)e−i∆θ0(t̂)

τ 2
dt̂, (2.38)

is a loss term representing absorption of THz by the energetic electrons,

G = −γi
∫ ∞

0

ip0

τ 2γ0

∫ t̂

0

dt′
(
ω
L

γ2
0

dγ0

dp0

)
τA(t′)e−i∆θ0(t̂)dt̂, (2.39)

is a potential gain term due to gyrophase bunching that allows the THz fields to be

amplified. The real part of Eq. (2.36) describes the change in the magnitude of the

electric field, while the imaginary part describes the change in phase.

Equation (2.36) describes the gain or loss the wave experiences on transmission

through the graphene. Spontaneous oscillations can grow only for frequencies for

which g ≡ Re(G− L) > 0, and physical gain of the entire system requires that the

pumping rate ṅ must be made large enough to overcome transmission, absorption,

and scattering losses at the cavity’s mirrors and the intrinsic absorption of energy by

the valence band electrons of the graphene itself. The precise conditions leading to

system gain (Rg>`, where ` represents all losses) will be addressed in the discussion

section. For now, we will focus only on the conditions under which g> 0. The terms

“gain” and “dimensionless gain” in this section, when not otherwise specified, will

refer to g = Re(G− L).

The functions G and L have been defined so that they are dimensionless by

normalizing to the slowing down time squared. Since G has an extra time integra-

tion, we expect it to be larger than L when ωiτ � 1. To further characterize the gain
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we introduce the following parameters: the initial gyration frequency normalized by

the slowing down time,

ωiτ = ω
L
τ/γi =

τ [ps]B[T]

E[eV]
, (2.40)

the half bandgap energy normalized to the initial energy

m′c′
2

/Ei = γ−1
i , (2.41)

and the frequency normalized to the initial gyration frequency,

ω/ωi = γiω/ωL . (2.42)

Plots of the real part of the dimensionless gain function versus frequency for

several slowing down times are shown in Fig. 2.2. The intuitive understanding of

the behavior of the system is in the Appendix. The dependence of g on frequency

can be characterized as having a slowly varying average part (which is negative) and

a superimposed rapidly varying part, which leads to intervals of frequency where

gain is positive. Also shown in Fig. 2.2 as symbols are the frequencies associated

with transitions between adjacent Landau levels for two cases: one in which the

electrons are initially excited to the fifth Landau level, and one in which they are

excited to the tenth. The classical limit should apply if these symbols are dense

enough so that their spacing can resolve the gain curve.
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The origin of the intervals of positive gain is explained as follows. Electrons are

injected with initial energy, Ei. As an electron slows down, its resonant frequency

increases. This means the horizontal axis of Fig. 2.2 also corresponds to time since

birth of the electrons contributing to gain or loss at that frequency. The gain will

then show oscillations with frequency corresponding to numbers of integer wave

periods since birth. This can be shown as follows. The dependence of gain or loss

on frequency enters Eq. (2.36) through the phase ∆θ0(t− tB) defined in Eq. (2.23).

This phase is a rapidly varying function of time on the scale t′/τ ∼ 1, except for

the interval of time when ω
L
/γ(t− tB) ' ω. Expanding the time dependence of the

phase around its stationary time, we have (Subscript “R” refers to resonance)

∆θ0 (t′) ' φR +
1

2
Ω̇ (t′ − tR)

2
, (2.43)
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Fig. 2.2: Normalized gain versus normalized frequency for several dimensionless slowing

down times. For this plot the normalized half bandgap energy is m′c′
2
/Ei = γ−1

i

= 0.00585. The solid portions of each curve indicate where cos(φR + π/4) < 0,

where φR is defined in Eqs. (2.45) and (2.48). Diamonds and stars represent

Landau transition energies for 3 T magnetic field, with the N = 10 (diamonds)

and N = 5 cases (stars) arising at electron energies of 199 and 140 meV, respec-

tively. g = Re(G-L) where G and L are defined by Eqs. (2.38) and (2.39), τ

is the time scale of damping of electron motion, and the independent variables

are explained by Eqs. (2.9), (2.40), (2.25), and (2.42). Amplification of the THz

field cannot occur when g <0. c© 2017 IEEE.

where tR is defined by d∆θ0/dt
′ = 0,
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ω
L

γ0 (tR)
− ω = 0, (2.44)

with

φR =

∫ tR

tB

dt′
(

ω
L

γ0 (t′)
− ω

)
, (2.45)

and

Ω̇ =
d

dt′
ω
L

γ0 (t′)

∣∣∣
tR

=
p2

0ωL
τγ3

0 (m′c′)2

∣∣∣
tR
. (2.46)

The smooth part of the gain versus frequency curve comes from the contribu-

tions to the integrals in Eq. (2.39) from τ ' tR with the additional approximation

that the lower limit of the time integrals in Eqs. (2.31) and (2.35) is taken to be

τ → −∞. The rapid oscillations are due to the fact that the endpoint is in fact

τ = 0, not τ → −∞. These oscillations thus track the resonant phase φR defined

in Eq. (2.45). The integral in (2.45) can be evaluated by switching from t′ as the

integration variable to γ0(t− t′) defined through (2.24). The result is an expression

for the resonant phase as a function of frequency,

φR (ω/ω
L
) =

ω
L
τ

2
(2.47)

×
{

ln

[(
γi − 1

γi + 1

)(
ω
L
/ω + 1

ω
L
/ω − 1

)]
− ω

ω
L

ln

[
γ2
i − 1

(ω
L
/ω)2 − 1

]}
. (2.48)

The quantity φR corresponds to 2π times the number of wave periods that

elapse between the birth of an electron at γi and the time it slows down to γ0 = ω
L
/ω.
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To illustrate its importance we have modified the curves in Fig. 2.2 such that the

curves are solid if cos(φR + π/4) < 0 and dashed if cos(φR + π/4) > 0. As can be

seen, positive gain occurs only on solid portions of each curve. The origin of the

π/4 phase shift, as well as a more rigorous explanation of the dependence of gain

on resonance phase, is presented in the Appendix.

The effect of varying normalized half bandgap energy is shown in Fig. 2.3

where normalized gain is plotted vs. normalized frequency for three values of

bandgap energy and fixed normalized slowing down time ωiτ = 44.1.
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Fig. 2.3: Normalized gain versus normalized frequency (same variables as in Fig. 2.2)

for several values of normalized half band gap energy. The normalized slowing

down time is ωiτ = 44.1 for all curves shown. The curves represent 3 selected

half-band-gap energies γ−1
i (see Eq. (2.41)). The solid portions of each curve

indicate where cos(φR +π/4) < 0, where φR is defined in Eqs. (2.45) and (2.48).

c© 2017 IEEE.

We see from Fig. 2.3 that the first gain peak is insensitive to the normalized

half bandgap energy once γ−1
i is small. Dips in gain occur at frequencies corre-

sponding to the cyclotron resonance at the half bandgap energy ω/ωi = γi. When

electrons decrease their energy to the half bandgap value the gyration frequency

becomes energy independent, and the negative mass effect responsible for cyclotron

resonance gain no longer is possible.
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The gain curves of the type shown in Fig. 2.2 and 2.3 have a series of local

maxima as functions of ω/ωi. We record for each pair of parameters γ−1
i and ωiτ

the maximum value of gain and plot these maxima as functions of ωiτ in Fig. 2.4.

Fig. 2.4: Gain maximized over frequency as a function of slowing down time ωiτ and initial

normalized half-bandgap γ−1
i . c© 2017 IEEE.
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Two things are apparent in Fig. 2.4. First, the maximum in gain is relatively

insensitive to the half bandgap energy once it is less than γ−1
i ≤ 0.1, and insensitive

to slowing down time once it reaches ωiτ > 20. We also notice that a slowing

down time ωiτ > 15 is required for sufficient gain. Figure 2.5 shows the frequency

corresponding to the maximum gain points of Fig. 2.4 . We see that for ωiτ = 20 the

maximum gain occurs for a frequency ω/ωi ' 1.7. The results of Figs. 2.4 and 2.5

will be used in the next section to determine the optimum dimensional parameters

for observing gain.

Fig. 2.5: Dimensionless frequency at which the gain peaks in Fig. (2.3) and (2.4) occur.

c© 2017 IEEE.
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Fig. 2.6: Frequency and quantum index as a function of energy and magnetic field (log-

log). Magenta square is 3 T magnetic field and 171 meV energy, the other two

are 8 T field and 171 meV/500 meV (respectively). c© 2017 IEEE.

2.2 Discussion

If THz gain is to be observed in experiments, or if a device producing THz 

radiation is to be constructed, parameters must be found such that the amplification 

of the THz field as expressed in Eq. (2.36) is sufficient to overcome the intrinsic 

losses. These are usually in the range of a few percent. In the case of the whole 

oscillator, the amplification would have to exceed, in addition, the losses and output 

coupling associated with the oscillator cavity.

The amplification expressed in Eq. (2.36) is the product of two factors: The
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Mirrors

Graphene

Fig. 2.7: Schematic of apparatus using mid-IR laser pumping. Partially transmissive

curved mirrors (blue) form a cavity and contain a beam of THz radiation (green).

This is amplified by the graphene (yellow-orange) which is pumped by mid-

infrared radiation (gray wavy line) from a laser (not shown). The cavity is

symmetric and gives two identical output beams (slightly darker green).

dimensionless gain, g = Re(G− L), and a dimensionless ionization rate R given by

(2.37). To be sufficient to overcome all losses, we must have Rg > ` for amplitude

losses ` . Thus, the dimensionless gain g must be considered along with total cavity

losses of all types in order to come up with the minimum value of R needed for the

cavity to oscillate. These losses include mirror transmission, mirror scattering and

absorption, and valence electron absorption in graphene, assumed to be 2.3 % of

power for a monatomic layer. As an example of cavity loss, a mirror transmission

T = 0.0125, mirror absorption/scattering α of 0.01, and graphene absorption ξ of

0.023, combine to form a cavity single pass power loss of 1− (1− T − α)(1− ξ) =
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0.045, or 4.5 %. The amplitude loss ` for this example is 1 −
√

(1− T − α)(1− ξ)

= 0.0228, or 2.28 %. Note that the assumed graphene absorption of 2.3 % is the

standard absorption for a single layer of graphene, although that value is considered

in much of the relevant literature (e.g. [22]) to be accurate only at higher frequencies

than the THz range, and thus, may be a poor approximation at said frequencies.

Since the normalized gain will be at best g ∼ 0.15, it follows from Eq. (2.36) that

an (extremely large) cavity amplitude loss of 15% implies a rate which must be in

the range R ∼ 1. For the minimal (graphene only) loss, we must have R > 0.077.

We can rewrite R as follows,

R = 5.76× 102 (τ [ps])2

E[eV]τI[ps]
, (2.49)

where τI = no/ṅ is an average ionization time and n0 is the surface density of valence

electrons, n0 = 3.82× 1019m−2. The requirement R > 0.077 then gives

1

τI [ps]
> 1.34× 10−4 E[eV]

(τ [ps])2
. (2.50)

The ionization time also determines the pumping laser power per unit area

absorbed, given by

I =
2n0Ei
τI

= 1.643× 105

(
E[eV]

τ [ps]

)2

[W/cm2]. (2.51)

We note that if the constraint ωiτ = 20 is imposed then,
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I[W/cm2] = 4.11× 102(B[T])2. (2.52)

Possible operating points are displayed on Fig. 2.6 in a plot of the magnetic

field vs. electron energy plane. Recall that the electron energy will be half the

photon energy of the pumping laser. Two sets of lines are displayed in this plot.

The solid lines are lines of constant frequency as given by Eq. (2.4). The dashed

lines are lines of constant N as given by Eq. (2.3). The present analysis applies only

to points well above the N = 1 line. Using the results of Fig. 2.2, we estimate that N

> 10 is required. The set of lines labeled with frequency values show the energy and

magnetic field needed to produce gain at the indicated frequency. Here we have taken

the operating frequency to be a factor 1.7 times greater than the initial gyration

frequency such that it is given by Eq. (2.4). Operation at a specified frequency

requires that the slowing down time be sufficiently long such that ωiτ ≥ 20. Thus,

curves of constant operating frequency also correspond to curves of required slowing

down time. As far as parameter choices are concerned, high electron energies make

the mean free time too short, for example, at electron energies in the 0.5-1 eV

range (asterisk in Fig. 2.6 is at 500 meV), the mean free time is only around 100

fs or less due to the hot electrons losing energy to interband transitions (“impact

ionization”) [23,24]. For this and other reasons, the parameter choices corresponding

to Fig. 2.2 seem more reasonable and are shown by the diamond on Fig. 2.6. At this

low energy (corresponding to an oscillator operation frequency of 12.6 THz if the

magnetic field is 8 T), the energy loss rate should be small because 171 meV is below
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the threshold for optical phonon emission [25]. Note also that magnetic fields can

increase intraband relaxation times in graphene [26, 27]. The absorbed pump laser

power required for this example follows from Eq. (2.52) and is 2.63× 104W/cm2. If

this power is absorbed in an area whose diameter is 20 wavelengths at 12.63 THz,

the required absorbed power is ∼ 47 W. The square shows a reduced magnetic field

that corresponds to a higher quantum level number, which can be considered to

make sure the classical formulas are applicable.

Up until now we have only considered the single pass amplification of a THz

wave incident on a single layer of graphene. If a self-sustaining oscillator is desired,

it would be configured as shown in Fig. (2.7). The graphene would be placed

between two mirrors that define a Fabry-Perot resonator, and the THz wave would

pass repeatedly through the graphene. The THz signal would grow from noise, if

the gain were sufficient to overcome losses, Rg > ` where ` represents the amplitude

loss factor per half trip through the resonator. As mentioned, contributing to ` are

the intrinsic losses in the graphene, losses in the mirrors, and any fractional losses

due to output coupling.

Two important issues to be addressed in the classical picture are the deter-

mination of operating frequency and determination of the saturation level of THz

radiation. If the frequency were known, determination of the saturation level could

be made by returning to Eqs. (2.7) and (2.8) and solving them numerically with a

prescribed field amplitude Ê. The recorded trajectories p(t− tB, θ0) and θ(t− tB, θ0)

would then be inserted in Eq. (2.19) and a nonlinear gain would be computed. This

calculation should be repeated for different amplitudes until the amplitude was found
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for which the nonlinear gain balanced the losses.

The determination of the operating frequency will require a treatment of the

competition between the different modes of the Fabry-Perot resonator. From Fig.

2.2 and Fig. 2.3 we see that the gain vs. frequency has a series of peaks. The

fractional width of a single peak is about ∆f/f ' 0.1. Thus, if the spacing between

mirrors is L = 1 cm, the separation in frequency between adjacent modes is πc/L =

90 GHz. Taking the operating frequency to be 12.6 THz and the gain bandwidth

to be 1.26 THz implies that only fourteen modes could have gain. The competition

among modes could then be treated via expansion of the field in modes with slowly

evolving amplitudes.

Another issue worthy of deeper study is the effects of collisions on the electron

motion. We have modeled the effect as a steady slowing down. The collision process

may also involve scattering in pitch angle and energy. A simple estimate of the

sensitivity of our results to the inclusion of these effects can be made by examining

the dependence of gain on slowing down time in Fig. 2.2. We note that it requires

a change in slowing down time from ωiτ = 20 to ωiτ = 30 to move the positive gain

band of frequencies by an amount equal to its width. Thus, to the extent that the

additional collision processes can be modeled as less than a 50% variation in slowing

down time the conditions for gain are robust.
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2.3 Conclusion

In conclusion, cyclotron resonance gain occurs at some frequencies if the elec-

trons have a long enough slowing down time and are assumed to not undergo large-

angle scattering. Results are promising and net gain in the THz frequency regime for 

an oscillator might be possible considering cavity, graphene absorption, and output 

coupling, but some questionable assumptions were made, particularly concerning 

which scattering processes of electrons in graphene can be neglected, and how to 

treat the others.

Of course, this analysis requires caution regarding the usage of classical physics, 

which is valid only when the electron kinetic energy is a large multiple of the gyra-

tion quantum energy, N � 1. The scattering time is now realistically in accordance 

with modern experimental values, as the scattering time is distinct from that of 

thermal electrons and is enhanced by the presence of a magnetic field. This mag-

netic field increases the carrier lifetime significantly above that which is otherwise 

observed and reported in the literature.

A more complete analysis would also look at possible quantum corrections, 

thermal excitation effects, and factor in the electron-hole cross section both for 

scattering and creation (per carbon atom) by the IR laser. More complex mirrors 

could also be considered.
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2.5 Appendix: Semi-analytical treatment of integrals

In this section, we aim to explain the behavior seen in Fig. 2.2 by making

approximations to Equation (2.39) so as to make it possess a closed-form solution.

Equation (2.39) with τA(t′) expanded,

G = −γi
∫ ∞

0

dt̂e−i∆θ0(t̂) ip0

τ 2γ0

∫ t̂

0

dt′
(
ω
L

γ2
0

dγ0

dp0

)
e−t

′/τ

×
∫ t′

0

dt′′et
′′/τ+i∆θ0(t′′), (A1)

can be re-expressed with the lower endpoint contribution of the innermost integral

made explicit:

G =
G2 −G1

τ 2
, (A2)

with

G1 = γi

∫ ∞
0

dt̂e−i∆θ0(t̂) ip0

γ0

∫ t̂

0

dt′
(
ω
L

γ2
0

dγ0

dp0

)
e−t

′/τ

×
∫ t′

−∞
dt′′et

′′/τ+i∆θ0(t′′) (A3)
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G2 = γi

∫ ∞
0

dt̂e−i∆θ0(t̂) ip0

γ0

∫ t̂

0

dt′
(
ω
L

γ2
0

dγ0

dp0

)
e−t

′/τ

×
∫ 0

−∞
dt′′et

′′/τ+i∆θ0(t′′). (A4)

It may now be noted that the innermost integral in G2 is separable from the rest

since the bounds of integration are fixed and thus the inner integral is independent

of the dummy variables in the outer integrals and acts as a constant with respect

to them:

G2 =

[
γi

∫ ∞
0

dt̂e−i∆θ0(t̂) ip0

γ0

∫ t̂

0

dt′
(
ω
L

γ2
0

dγ0

dp0

)
e−t

′/τ

]

×
[∫ 0

−∞
dt′′et

′′/τ+i∆θ0(t′′)

]
. (A5)

Recall that e−i∆θ0(t̂) is rapidly oscillatory except around t̂ = tR, so the outermost

integral in ((A5)) gets its main contribution from that time. For low frequencies

such that tR << τ , we can thus approximately evaluate that integral by invoking

e−t
′/τ ' 1 , p0(t′) ' p0(t) ' pi , and γ0(t′) ' γ0(t) ' γi, so we have (using

dγ0/dp0 = p0/((m
′c′)2γ0)):

γi

∫ ∞
0

dt̂e−i∆θ0(t̂) ip0

γ0

∫ t̂

0

dt′
(
ω
L

γ2
0

dγ0

dp0

)
e−t

′/τ (A6)

' γi

∫ ∞
0

dt̂e−i∆θ0(t̂) × ipi
γi

∫ tR

0

dt′
[
ω
L

γ2
i

pi
(m′c′)2γi

]
(A7)

= γi

∫ ∞
0

dt̂e−i∆θ0(t̂) ipi
γi

(tR)

[
ω
L

γ2
i

pi
(m′c′)2γi

]
. (A8)
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From (A8) and ((A5)),

G2 ' −K0

∫ ∞
0

dt̂e−i∆θ0(t̂), (A9)

where K0 is an overall constant factor.

Now the integral in (A9) may be evaluated by noting that the complex ex-

ponential is rapidly oscillatory except around t̂ = tR so that it should not make a

significant difference whether the lower limit of the integral is at t̂ = 0 or at t̂ = −∞.

Thus,

∫ ∞
0

dt̂e−i∆θ0(t̂) '
∫ ∞
−∞

dt̂e−i∆θ0(t̂). (A10)

Now we note that the quadratic phase approximation (2.43) may be substituted into

(A10), giving

∫ ∞
0

dt̂e−i∆θ0(t̂) '
∫ ∞
−∞

dt̂e−iφRe−i
Ω̇
2 (t̂−tR)

2

(A11)

= e−iφR
√

2

Ω̇

∫ ∞
−∞

e−iu
2

du, (A12)

where φR is defined by (2.45), and we have made the u-substitution u =
(
t̂− tR

)√
Ω̇/2.

This may be evaluated using Fresnel integrals, giving

∫ ∞
0

dt̂e−i∆θ0(t̂) ' e−i(φR+π
4 )
√

2π

Ω̇
. (A13)

This result (A13) can be inserted in (A9):
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G2 ' −K0e
−i(φR+π

4 )
√

2π

Ω̇
. (A14)

The gain, G may now be evaluated using (A2) with the approximation G1 << G2

and the result (A14):

G ' −K1e
−i(φR+π

4 ), (A15)

with K1 being a new overall constant which absorbs some other terms. Thus, g>0

is only expected to occur when cos (φR + π/4)<0, in excellent agreement with the

numerically integrated result displayed in Fig. 2.2. Note that this crude approxima-

tion works well when at frequencies near to, but slightly above, ω
L
/γi . The value

at lower frequencies is an unphysical artifact since tR does not exist. At frequen-

cies much above ω
L
/γi, the approximation performs poorly due to the fact that the

assumptions p0(tR) ' pi and γ0(tR) ' γi no longer hold.
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Chapter 3: Nonlinear Theory: Nonlinear Gyrotron-like THz source

based on Graphene

[Material intended to be reused in whole or in part for a journal publication, 

preferably also in IEEE Transactions on Plasma Science.]

3.1 Introduction

Cyclotron radiation is produced when electrons gyrate in a magnetic field, and 

are consequently continually accelerating and radiating. The gyrotron produces ra-

diation similar to cyclotron radiation, but makes use of the relativistic dependence of 

the gyration frequency on energy to create stimulated emission. Gyrotron radiation 

has been analyzed using both linear and nonlinear theories since at least 1960 [14]. 

In the non-relativistic case, the electron gyration frequency is independent of elec-

tron energy, which means that stimulated emission cannot occur. However, for 

relativistic electrons, the gyration frequency does have energy dependence, which 

the gyrotron exploits to amplify a radiation field. Depending on an electron’s gy-

ration phase relative to that of the EM field, the electron will be accelerated or 

decelerated. Those that are accelerated have a reduced gyration frequency, forming 

a nonuniform distribution in gyrophase, which reinforces the growth of the electric
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field. Both classical and quantum descriptions of this have been found to predict

this amplification [14].

Traditional cyclotrons and gyrotrons are limited by the electron mass to a

(cyclical) frequency of 28 GHz/Tesla, assuming the main operation is at the fun-

damental frequency. Thus gyrotrons, while an excellent source of microwaves at

frequencies up to hundreds of GHz, are not a suitable source for Terahertz radia-

tion, unless an extremely strong magnetic field is used. Electrons in graphene have

a much smaller effective mass than electrons in vacuo, thus circumventing this lim-

itation. Note, however, that using graphene electrons as a gyrotron-like source has

some limitations that electrons in a conventional gyrotron do not. In particular,

electrons in graphene must be excited to the conduction band in order to be useful,

and then these electrons may lose energy by a variety of dissipative scattering pro-

cesses as well as gyrotron radiation. Among these processes are Auger scattering,

electron-hole scattering, and others. These dissipative scattering mechanisms cause

much of the device energy to be lost as heat. Despite this, the ability of these oscil-

lators to operate at Terahertz frequencies, even with modest applied magnetic fields,

makes them a potentially useful source of Terahertz radiation. This work aims to

explore, using numerical calculation, the operation of a graphene-based terahertz

oscillator.

A discussion of the early literature on solid-state analogs of cyclotron reso-

nance masers can be found in [1]. Some of this work also included analyses of lasing
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by holes, rather than, or in addition to, electrons. In the earlier literature and

also more recently, a number of authors have proposed solid state sources of THz

radiation based on electrons, including Landau-level lasing, which is the quantum

description of the gyrotron process. [6] [7] [8] Unlike the most common approach

used by previous authors, this analysis is conducted in the classical limit, when the

quantum numbers of the Landau states involved are much larger than unity.

Holes gyrate in the opposite sense from electrons, due to their positive elec-

trical charge. This is true in the same way that holes’ curvature in a magnetic field

in the classical Hall effect is opposite the curvature of electrons. Hence the gyrating

holes do not appreciably couple to circularly polarized radiation of the same hand-

edness that couples to electrons, when the geometry is such that the Terahertz wave

propagation direction and the static magnetic field are both perpendicular to the

plane of the graphene. In this work, holes are omitted from the analysis and only

electrons are considered.

This work builds upon an earlier paper [20], in which it is predicted, using a

linear model and classical dynamics for both the electrons and the field, that gain

can occur in a graphene-based THz gyrotron oscillator under certain conditions. In

optically pumped monolayer graphene which is in a low-loss cavity, conduction elec-

trons may exhibit gyrotron-like behavior. In order for net amplification to occur, a

sufficiently low rate of energy loss from the electrons is required. As in the previ-

ous paper, the energy loss of the electrons due to inelastic scattering is included by
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adding a damping force to the electrons’ equations of motion, as will be presented in

the next section. In this work, the problem is approached numerically considering

both single-frequency and multiple-frequency operation of the oscillator. A discus-

sion of how the dynamics becomes nonlinear with increasing THz field strength is

presented.

It should be noted that in reality, electromagnetic fields inside a cavity can

have very complex spatial profiles which depend on the cavity geometry and on

the particular cavity mode(s) which are excited in the oscillator. For simplicity,

the model used here takes the radiation field to be homogeneous in the directions

transverse to the radiation propagation, that is, it as though the field were that of

a plane wave. The electric field is thus taken to be a function of only z and t, and

it propagates through graphene which is in the x-y plane. Future research could

improve upon this model by allowing the radiation field to have a more complex

spatial form, for instance, a Laguerre-Gaussian. Additionally, this analysis assumes

a static, homogeneous magnetic field imposed on the graphene in addition to the

radiation field, and this field is taken to be in the z-direction.

One may question the assumption of a single slowing down time and the effect

of having electrons that lose energy at varying rates. To test this, the gain curves

can be plotted for varying slowing down times in the linear model, before embarking

on the development of the nonlinear model which also assumes the validity of the

assumption of a single slowing down time τ for all simulated electrons. This is shown

in Fig. (3.1).
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Fig. 3.1: Dynamics: different slowing down times superimposed with the same ωi. Inelas-

tic scattering which acts as a variation in the slowing-down time τ still can allow

gain to occur in frequency ranges where the gain is positive across the range of

τ values. Here is an example of how this could be the case. In a narrow range of

frequences between 10 and 12 THz, all the gain curves are positive for ωiτ values

running from 27 to 42.

The concurrence of gain for a range of slowing down times allows for a stochastically-

varying energy loss rate in the electrons, and shows that it might not prevent gain

from occurring in the system.
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3.2 Theory

The classical frequency of gyration for a single electron in only a static mag-

netic field is given by ω = 2πν = eB/(γme), where γ = (1 − v2/c2)−1/2. This 

reduces to the cyclotron frequency relation ω = eB/me in the non-relativistic limit, 

giving rise to the fundamental limit of 28 GHz/Tesla mentioned earlier. Electrons in 

impure graphene, with a bandgap, have an energy-momentum relation of the form

E =
√

(pc′)2 + (m′c′2)2, (3.1)

where c′ is the high-momentum band velocity and m′ is the effective mass [20]. (For

graphene, the high momentum band velocity is very nearly 106 m/s.) This allows

the graphene gyrotron to reach the higher frequencies in the Thz range.

The oscillator to be modeled is taken to be composed of two partially reflective

mirrors with the optically pumped graphene sandwiched between the two mirrors.

The two mirrors are taken to be identical, each having a power transmission coeffi-

cient T and power absorption coefficient α. The graphene has a power absorption

coefficient ξ. All of these factors serve to remove power from the recycled beam

on each half-round-trip of the THz radiation inside the cavity formed by the two

mirrors. As in [20],ζ, the total cavity power loss per half-round-trip, is related to

each loss via

ζ = 1− [(1− T − α)(1− ξ)]. (3.2)

.
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As described in [20], an electron moving within the x-y graphene plane under

the influence of a THz wave has a momentum that may be described in terms of its

magnitude and direction as a function of time:

p(t) = p(t)[cos θ(t)x̂+ sin θ(t)ŷ]. (3.3)

The electron is considered to be “born” (pumped into the conduction band) at

some time tB and subsequently follows the equations of motion for this momentum,

which may be found using the Lorentz force law and adding an electron damping

force ṗdamping = −p/τ , giving

ṗ(t) = −e[Ex(t) cos θ(t) + Ey(t) sin θ(t)]− p(t)

τ
, (3.4)

and

θ̇(t) = −p(t)−1e[−Ex(t) sin θ(t) + Ey(t) cos θ(t)] +
ω
L

γ′(t)
, (3.5)

where the last term represents the gyration of the electron in a static magnetic field

B which is normal to the graphene plane, Ex and Ey are the Cartesian components

of the THz wave’s electric field,

ω
L
≡ eB

m′
, (3.6)

and

γ′(t) ≡

√
1 +

(
p(t)

m′c′

)2

, (3.7)
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where m′ is the electron’s effective mass and c′ is the band velocity, approx. 106

m/s. (Note that these equations of motion for each electron are valid only for times

t > tB. In our model, we assume there are electrons born at differing times tB,

because the pumping is continuous.)

Now we assume a circularly polarized THz “seed” field which can be described

by its complex amplitude (The subscript t will now be omitted for clarity/brevity):

Ê =
(Ex − iEy)

2
eiωt. (3.8)

This allows us to transform to a rotating frame at angular velocity ω and angle φ0

(which we take to be uniformly distributed) by introducing the rotating frame angle

θ = θ − ωt − φ0. The equations of motion may be written in terms of these new

variables as

ṗ = −e
[
Êeiθ + c.c.

]
− p

τ
, (3.9)

and

θ̇ =
ω
L

γ′
− ω − ep−1

[
iÊeiθ + c.c.

]
. (3.10)

Electrons following these equations of motion may gain energy from the field,

or lose energy to the field. A self-consistent theory, of course, needs to account not

only for the effect of the field on the electrons, but also the effect of the electrons on

the field. Maxwell’s equations allow us to relate the current, which is the collective
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flow of charge, to the source of the electromagnetic field. The driven electromagnetic

wave equation is

−∇2E +
1

c2

∂2E

∂t2
= −µ0

∂J

∂t
, (3.11)

which allows radiation to be absorbed and emitted by matter containing some cur-

rent density J. For radiation travelling in the “+z” direction passing through

graphene which is in the x-y plane, it is useful to define the change in radiation

field [20]

∆(E) ≡ (Ex(t, z)x̂+ Ey(t, z)ŷ)
∣∣
z→0+ − (Ex(t, z)x̂+ Ey(t, z)ŷ)

∣∣
z→0−

. (3.12)

This may be evaluated using the driven wave equation by rewriting into integral

form, giving [20]

∆E = −cµ0

2

∫ z→0+

z→0−
J(z)dz =

eZ0ṅ

2

∫ t

−∞
dtB

〈
v(t; tB, θ0)

〉
θ0
, (3.13)

where a change of variables has been made so that the electron birth time tB is

the new time parameter, Z0 is the impedance of free space, ṅ is the number of

electrons pumped to the conduction band per unit area per unit time, v is the

electron velocity, and the average is taken over the “birth” phases of the injected

electrons. The electron velocity may be expressed in terms of the momentum by

using the relation v(t; tB, θ0) = p(t; tB, θ0)/(γ(t; tB, θ0)m′). From this, the radiation

passing through the graphene is altered in a way that can be expressed in terms
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of the motion of the electrons within the graphene as governed by the equations of

motion for electrons under the original radiation field. In other words, we have a

self-consistent set of equations of motion for the coupled electrons and field.

To construct the linear model solution to these equations in [20], the momen-

tum magnitude and direction is decomposed into the unperturbed and the pertur-

bation:

p (t− tB) = p0 (t− tB) + p1 (t− tB) , (3.14)

and

∆θ (t− tB) = ∆θ0 (t− tB) + ∆θ1 (t− tB) . (3.15)

Then, these forms are substituted into the equations (3.9) and (3.10), and this

allows the unperturbed (no THz wave, Ê = 0) equations to be solved, arriving at a

closed-form solution:

p0 (t− tB) = pie
−(t−tB)/τ , (3.16)

and

∆θ0 (t− tB) =

∫ t

tB

dt′
(

ω
L

γ0 (t′)
− ω

)
= (ω

L
− ω) (t− tB)− ω

L
τ ln

(
γi + 1

γ0 (t) + 1

)
,

(3.17)

and

γ0 (t− tB) =

√
1 +

p2
0 (t− tB)

m′2c′2
, (3.18)
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is the relativistic factor of an electron as it slows down, and

γi =

√
1 +

p2
i

m′2c′2
= γ0 (t = tB) , (3.19)

is the initial relativistic factor.

Using this solution, lowest-order perturbation theory may be applied, with

the electric field of the THz wave as the perturbation. In the linear regime, that is,

when the THz radiation field is not too strong, the gain on a single pass through

graphene, neglecting cavity losses, is given by

∆Ê

Ê
= R (G− L) , (3.20)

where

R =
e2Z0ṅτ

2c′
2

4Ei
, (3.21)

is the dimensionless pumping rate,

Ei = γim
′c′

2

, (3.22)

is the injected energy, and

L = γi

∫ ∞
0

(
1

γ3
0

+
e−t̂/τ

γ0

)
τA(t̂)e−i∆θ0(t̂)

τ 2
dt̂, (3.23)

is a loss term representing absorption of THz by the energetic electrons. The quan-

tity
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G = −γi
∫ ∞

0

ip0

τ 2γ0

∫ t̂

0

dt′
(
ω
L

γ2
0

dγ0

dp0

)
τA(t′)e−i∆θ0(t̂)dt̂, (3.24)

is a potential gain term due to gyrophase bunching that allows the THz fields to be

amplified. The real part of Eq. (3.20) describes the change in the magnitude of the

electric field, while the imaginary part describes the change in phase. The change

in angle due to the radiation field is given by Eq. (2.32),

∆θ̂1(t− tB) = eÊ

[∫ t

tB

dt′
(
ω
L

γ2
0

dγ0

dp0

τA(t′ − tB)

)
− i

pi
τA(t− tB)

]
, (3.25)

where

τA(t) = e−t/τ
∫ t

0

dt′et
′/τ+i∆θ0(t′). (3.26)

We estimate the electric field value at which the gain saturates as follows.

Saturation will occur when the angle ∆θ1 in (3.25) approaches unity. For simplicity,

we take the limit γ−1
0 ,m′ → 0. We normalize time in Eqs. (3.25) and (3.26) to

the slowing down time τ . We assume the exponent in (3.26) is of order unity, and

estimate τA ∼ τ . This leads to an estimate for the angle ∆θ1 ∼ eÊτ 2ωi/(γim
′c′) ≡

Ê/Ec, where

Êc = ωEi(ωiτ)−2(ec′)−1 = 6.3× 106(ωiτ)−2f [THz]Ei[eV ][V/m] (3.27)

represents a critical field strength. We note that we previously found gain for suf-

ficiently large slowing down times, ωiτ = 15-20. Thus, for the case of f = 4 THz,
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Ei = 500meV , ωiτ = 20,we obtain a critical field Ec = 3.2×104V/m, corresponding

to an intensity I ≈ 300W/cm2. Of course this is a rough estimate and the true

dependence of gain on intensity is determined by solving the nonlinear system as

we do in the next section.

Each conduction electron with velocity v(t; tB, θ0) = p(t; tB, θ0)/(γ(t; tB, θ0)m′)

and birth time tB < t, will contribute to the current density [20]. This current den-

sity gives rise to a change in the Terahertz radiation field as the radiation passes

through the graphene (see Eq. (3.13) of this paper and the accompanying discus-

sion.) The current density acts a source for the field and modifies the field between

the mth pass of the THz radiation through the graphene and its m + 1st pass. We

assume that the change in field amplitude on each pass/bounce is small. In this case

the time dependance of the electric field amplitude Ê will be nearly periodic with

period Tl = l/c where l is the path length between passes of the THz through the

graphene. We then introduce a time variable t′ to represent this rapid, periodic time

dependance and use the bounce number, m, to label the slow time dependence. The

electric field change upon passing through the graphene once can be cast in terms

of the velocity of electrons as

∆
−→
E (t′) ≡ Em+1 (t′)− Em (t′) =

eZ0n0

2
〈{−→v (t′)}〉 , (3.28)

where Z0 = 376.73 Ω is the impedance of free space, e is the elementary charge ,

n0 is the excited electron number density, m is the “bounce number” of THz pulse

or continuous wave, that is, how many times THz radiation has passed through
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graphene, and the triangular brackets denote the average over the electrons.

3.3 Numerical Simulation

To keep computation manageable and limit noise, electrons in the simulation, 

which follow the equations of motion (Equations (3.4) and (3.5)), are removed from 

the calculation after a time ψ ≡ 0.9Tl from their injection, by which time they have 

lost enough energy to be far out of resonance with the THz field. Each removed 

electron is immediately replaced by a freshly injected electron. The injection rate 

ṅ thus relates to the excited electron number density n0 by the relation ṅ = n0/ψ. 

The electric field equation now can be written

∆
−→
E (t′) ≡ Em+1 (t′)− Em (t′) =

eZ0n0

2
〈{−→v (t′)}〉 =

eZ0(ṅψ)

2
〈{−→v (t′)}〉 . (3.29)

Note that Ê is defined by Eq. (3.8) and thus

∆Ê(t′) = eiωt
eZ0(ṅψ)

4
〈{vx(t′)− ivy(t′)}〉 , (3.30)

where ψ is the effective electron residence time,

or

∆Ê(t′) = eiωt
eZ0(ṅψ)

4
〈{px(t′)− ipy(t′)} /(γ(t′)m′)〉 , (3.31)

where px − ipy = pe−iθ = pe−i(θ+ωt+φ0) and
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γ(t) ≡

√
1 +

(
p(t)

m′c′

)2

. (3.32)

We use 12950 values for t′ (with successive values separated by a time step of

5 × 10−16s) and initialize 188 electrons with uniform phase distribution. The field

iteration equation is

∆E = ∆
−→
E (t′) ≡ Em+1 (t′)− Em (t′) =

eZ0ṅ

2

∫ t′

−∞
dtB

〈
v(t′; tB, θ0)

〉
θ0
. (3.33)

In the simulation, the electric field for m = 0 is taken to be low amplitude random

noise. Êm has a time argument t′ and is periodic in t′ with period Tl. For each

t′ particles are launched with a uniform distribution of gyro phases. Particles are

thus labeled by 1) their gyro phase, 2) their initial t′ = t′0, and 3) their time since

birth t − tB. Electron entrance times and entrance phase angles θ0 are uniformly

distributed and uncorrelated (that is, uniformly distributed throughout the space of

entrance times and phase angles). All electrons begin with the momentum having

a magnitude pi. If a total of N simulation electrons are initialized in a time interval

Tl = l/c (where l is the separation between mirrors), then we simply use the discrete

equation

∆
−→
E (t′) =

(
eZ0ṅψ

2

)
1

N

∑
particles

−→v (t′; tB, θ0). (3.34)

But this only covers the modification of the THz radiation by the graphene’s conduc-

tion electrons, and does not account for the cavity losses due to mirror absorption,
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mirror transmission, or intrinsic (valence electron) graphene absorption. To account

for this, before feeding the modified field back into the simulation for the next iter-

ation, the simulated field must first be subject to losses. The losses are treated as a

single loss which is a dispersionless, frequency independent loss. It is implemented

via the form

−→
E (t)→

√
1− ζ

−→
E (t), (3.35)

where ζ is the total half-round-trip cavity loss factor which obeys Eq. (3.2).

The simulation works by using the field E(t′) from the mth pulse-bounce to

compute (using the forward Euler method with time step ∆t = (3.3 × 10−4)τ on

each iteration) the electron trajectories using Equations (3.4) and (3.5), and then

the corresponding electron velocities are used to calculate the field increment using

equation (3.29). The field is then incremented to the E(t′) for the m + 1st bounce

and subject to the cavity loss using equation (3.35). This is repeated until m reaches

a pre-set maximum value.

The predictions from the linear model in [20] are an estimation of the single-

pass gain (G− L will be referred to as simply “gain”) experienced by a THz pulse

consisting of only a single frequency. To find numerical results to compare with the

linear model, a monochromatic field is injected into the simulation and run through

the graphene only once (single pass), and the field is recomputed. The Fast Fourier

transform is then computed, in order to isolate the gain of the frequency component

in question. In Fig. 3.2, the resulting gain, plotted as a function of frequency, is
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shown compared with the linear model. ωiτ = 61.6 here.

Fig. 3.2: Gain, defined as the G − L from Eq.(3.20), plotted vs. normalized frequency

for linear model and numerical result for monochromatic field, single pass, and

different electric field strengths expressed as a fraction of the critical field strength

(see Eq. 3.27) for nonlinear behavior
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These results can also be expressed in terms of the power flux rather than the

normalized field strength. Using Eq. (3.27) and the value ωiτ = 61.6 we find for the

case E = 2.4Ec, P = (1.38 × 107)[f(THz)Ei(eV )]2W/m2. An enlargement of the

region in which the gain as a function of frequency peaks is shown in zoomed-in for

in Fig. 3.3 .

Fig. 3.3: Gain plotted vs. normalized frequency, zoomed in. Curves at same field strengths

as in Fig. (3.2).
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It can be seen that the gain is roughly halved when E = 2.4Ec, and essentially

vanishes when E = 3.6Ec.

The nonlinear graphene gyrotron theory is expected to reduce to the linear

theory in the limit E << Ec, but at critical field strengths, the behavior should

show reduced gain, as in a conventional gyrotron. The simulation, when integrated

forward in this way, confirms this result. This suggests that this parametrization

and method of integration provides a useful extension to the linear theory that can

be used to estimate what the steady-state operation of the device will look like.

Next, the dynamics for the multi-pass case are considered, and also cavity loss

is added, assuming a total cavity loss (half-round-trip) of 4.5 % of energy. Damping

time is now 1.5 ps and we are restricting the field to a single frequency by filtering

other frequency components out via Fourier transform after each pass. The resulting

efficiency plot is shown in Fig. 3.4.
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Fig. 3.4: Efficiency ramp up, 288 passes

3.4 Conclusion

The nonlinear theory, evaluated with the integration methods used here, pro-

vides a useful extension to the linear theory, and agrees as expected with that theory

in the low-field limit as well as displaying physically reasonable saturation behavior.

Cavity losses can be incorporated which allow a more realistic consideration of de-

vice operation, and efficiencies up to a few tenths of 1% can be feasible, defined as

the device output power divided by the power going into pumping of the electrons.

Since the absorption of the IR laser pump may be very inefficient, the true whole-
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device efficiency may be significantly lower. Nevertheless, the device does coherently

oscillate.

3.5 Appendix: Intuitive Understanding of Gain

Here, the goal is to explain, conceptually, why the gain function behaves as it

does and what it might mean physically. First, the phase angle given by Eq. (2.23)

is shown in Fig. 3.5 as a function of time for two frequencies, 13.0 THz (at which

there is a net loss) and at 14.1 THz (at which there is net gain).

Fig. 3.5: Dynamics:phase angle

Next, is the complex exponential ei∆θ(t) in Fig. 3.6. Notice that because the

two phase angle functions in Fig. 3.5 bottom out at different phase values, the

78



complex exponentials behave dramatically differently around the phase-stationary

point.

Fig. 3.6: Dynamics: complex exponential ei∆θ(t) versus time. Imaginary part excluded.

Then the time integral of the complex exponential is shown in Fig. 3.7. Be-

cause of the different behaviors of the complex exponential around the resonant time

(phase-stationary time), the integral ends up at dramatically different values at late

times for these two frequencies.
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Fig. 3.7: Dynamics: Integral of complex exponential. Imaginary part excluded.

Note that this factor appears explicitly in (A9) as the determining function

for the gain. Essentially, what happens is that the stationary phase of gyration of

the electrons relative to the field determines whether gain or loss occurs.
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