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Abstract: A prototype thin-film deposition model is developed and subsequently used in a
sequence of model reduction procedures, ultimately reducing the dynamic dimension from six
to one with essentially no loss in accuracy to the dynamics of the deposition process. The species
balance model consists of a singular perturbation problem of nonstandard form which first is
numerically solved following the approach of Daoutidis (2015). An alternative strategy then is
presented, consisting of a reaction factorization procedure which facilitates the solution of the
outer solution of the singular perturbation problem and provides unique physical insight into the
conserved quantities (reaction invariants) identified by the elimination of redundant dynamic
modes. Further reduction in dynamic dimension then is achieved through a second factorization
focused only on the major reaction species. This second reduction procedure identifies pseudo-
equilibria of finite-rate properties and introduces an additional level of complexity to the
challenges of identifying consistent initial conditions for DAE systems.
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constants; chemical industry; reaction invariants

1. INTRODUCTION

There is a rich history of research in model reduction
methods for chemical reaction networks, especially for
homogenous systems. Recently, Daoutidis (2015) reviewed
some of the reaction network model reduction literature
in the context of di↵erential-algebraic equations (DAEs)
produced by the reduction procedure. The objective of this
work is to present the details of implementing a reaction-
factorization approach we have developed to reduce the
dynamic dimension of thin-film deposition kinetics models;
we compare it to methods presented in Daoutidis (2015)
using a prototype deposition reaction model. Our motiva-
tion for dynamic model reduction is not for computational
e�ciency, but to understand the true minimal dynamic
dimension of thin-film deposition models so as to obtain
a better fundamental understanding of the dynamics of
these processes.

Consider the simplified gas/surface reaction network (RN)
and the net-forward rates associated with each reaction
step listed in Table 1 and shown in Fig. 1 where M
and D are gas-phase monomer and dimer species with
number concentrations [M ] and [D] in m�3. Species A is
an adsorbed surface species with number concentration [A]
m�2 while B represents the element of precursor M that is
incorporated into the bulk film and A‡ the transition state
of the final irreversible reaction. Note that any by-products
of the irreversible deposition reaction are omitted from this
example. Sites open to adsorption S are consumed during

?
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adsorption of M and regenerated as bulk film B is created.
The concentration of B [B] also has units m�2; its value
can grow infinitely large because [B] represents the total
number of atoms deposited per unit surface area.

Fig. 1. A prototypical deposition system and the as-
sociated gas-phase and surface reactions. Monomer
species M are shown in black, the dimer D in red,
adatoms A in green, bulk film elements B in blue,
and a representative adsorption site S as the yellow
rectangular prism.

The first three reactions of Table 1 are reversible and
the first is modeled as being barrierless in the forward
direction, and so no transition state is defined for the
adsorption process. The reaction between M and D is a gas
phase reaction while the remainder are surface reactions.
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For this and other heterogeneous deposition RN, we can
write the number concentration material balance for each
species X

j

, j = 0, . . . , n
s

� 1 as

d

dt
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for phase �

i

, i = 1, . . . , n
p

� 1 where in our two-phase
system �1 represents the area of the reaction surface (in
m2) and �0 the volume (m3) of the gas phase. Of course (1)
can be rewritten in terms of the vector of molar quantities
m for the complete set species over all of the phases

dm

dt

=
1

✏

Qg +Pf (2)

subject to the specified initial condition

m(0) = m

o

(3)

with species molar quantities and concentrations
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Reaction stoichiometic coe�cients are split between the
two arrays

Q =

2
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1 0
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0 1
0 0
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3

777775
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with those net forward reactions that ultimately will be
treated as equilibrium relations

g =


g0

g1

�
=


�0(K0[M ]2 � [D])
�1(K2[A]� [A‡])

�
(5)

and the finite-rate processes

f =


f0

f1

�
=


�1k1(K1[M ][S]� [A])

�1k3[A
‡]

�
. (6)

The time constant ✏ has units of (s) and should be thought
of as an artificial construct that makes possible writing the
species balance equations (2). Finite, but small, values of
✏ correspond to the reactions (5) dynamically relaxing to
chemical equilibrium defined by Qg = 0. It is possible to
solve (2-3) directly for finite ✏ using a numerical integration
technique suitable for sti↵ problems, although this solution
can only be considered the true solution when ✏ ! 0.

To give some idea of the dynamics to be expected for the
case ✏ ! 0, let us first consider a numerical solution to (2)
for small, but finite 0 < ✏ ⌧ 1. We first set K0 = K1 = 1
m3, K2 = 1, k1 = k3 = 1 s�1, �1 = 1 m2, �0 = 1 m3 (these
correspond to the values used in Adomaitis (2016) except

Table 1. Elementary reaction steps and net-
forward reaction rates.

reaction net forward rate

2M ↵ D (1/✏)g0 s

�1
m

�3

S + M ↵ A f0 s

�1
m

�2

A ↵ A

‡
(1/✏)g1 s

�1
m

�2

A

‡ ! B + S f1 s

�1
m

�2

for k2 where it was set to a value of 2 in the cited work)
and choose the specified initial condition (3) to be

m

o

= [0, 0, 1, 0, 1, 0]|. (7)

noting that m

o

and c

o

will have numerically identical
values given our selected values of �

i

.

Recalling the elements of m in (4), the specified set of
initial conditions of (7) corresponds to a pure monomer
gas phase and a bare growth surface. Setting ✏ = 0.1 s,
we observe the dynamics of the 6 ODE system in Fig. 2
(left). In the time period shortly after t = 0, monomer M
and dimer species D relax to a pseudo-equilibrium; that
brief time segment is followed by a much longer period
of consumption of M (and consequently D) through the
adsorption process. Likewise, at a time scale that is slower
than that of the gas-phase equilibration, we observe the
saturation of the growth surface with A, a period that
is also followed by a slow decay to zero. These dynamics
are naturally mirrored by the those of the surface sites
S. Finally, the bulk species B concentration continuously
increases and only asymptotically ends as all gas- and
surface-phase species are consumed. Overall, we observe
three distinct time scales in the dynamics displayed in
Fig. 2 (left).

Fig. 2. Integration results for the six dynamic mode system
for small finite ✏ (left) and ✏ ! 0 (right).

2. SOLVING THE SINGULAR PERTURBATION
PROBLEM

From Daoutidis (2015), we recognize (2) as a singularly
perturbed system in nonstandard form. Because Q and
@g/@m are full column- and row-rank, respectively (this
should be obvious by direct inspection), taking the limit
✏ ! 0 will ultimately produce the pseudo-equilibrium
manifold

Q = {m : g = 0,h = 0} (8)

where the 4 additional relationships h = 0 define the
values of variables in m that are not computed using
g = 0. Defining the column vector � by the elements

�

i

= lim
✏!0

g

i

✏
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our original material balances (2) become

dm

dt

= Q� +Pf (9)

0 = g (10)

in the limit ✏ ! 0. Daoutidis (2015) shows that the index
of DAE system (9-10) can be reduced by computing

� = �(LQg(m))�1
LPfg(m)

where the elements of the arrays above (with row index i

and column index j) are the Lie derivatives

LQjgi(m) =
@g

i

@m

Q

j

where Q

j

is the jth column of Q. Likewise

LPfgi(m) =
@g

i

@m

Pf

where Pf is the vector of finite-rate chemical processes.
For our system we find

@g

@m

=


�1 0 2K0M/�0 0 0 0
0 K2 0 �1 0 0

�
,

LQg =


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,
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k1K2 (K1MS�1/�0 �A) + k3A

‡

�
.

The diagonal form of LQg makes computing its inverse
trivial, therefore, � can immediately be written as

� =

2

6664

�2k1K0M/�0 (K1MS�1/�0 �A)

1 + 4K0M/�0
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‡
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3
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2.1 Consistent initial conditions, particular solutions

With � in hand, we can compute a particular solution
to (9) provided the initial conditions m

0 are consistent
with the specified initial condition m

o

projected onto
the pseudo-equilibrium manifold Q defined by (8). For
example, if the specified initial condition (7) corresponds
to 1 mole of monomer M per unit volume and zero dimer
D, the monomer/dimer species material balance and (10)
are both satisfied by

m

0 = [0.25, 0, 0.5, 0, 1, 0]|. (12)

These initial conditions are clearly visible in Fig. 2 (right)
where the results of integrating (9) are shown. Comparing
the numerical solution of (9) to (2) using ✏ = 0.1 in the
latter, we observe essentially identical results after the
rapid equilibration of the dimerization reaction for finite ✏
described earlier, a result that is to be expected.

3. ELIMINATION OF REDUNDANT DYNAMIC
MODES - A REACTION FACTORIZATION

APPROACH

Despite being a DAE system, computational solutions to
(9) still require time-integration of the full (6) ODEs.
To reduce the dynamic dimension of our system, we now
describe a systematic approach to developing a dynamic

model of the surface reaction processes based on perform-
ing a Gauss-Jordan factorization (Chilakapati, et al., 1998;
Remmers, et al., 2015) of Q, rewritten as

Q =


Qt

Qb

�
with Qt =


1 0
0 �1

�
.

We note that in this example Qt = Qt
�1, which will

generally not the case; in fact, in some situations where
reaction expressions are incorrectly formulated, Qt

�1 may
not even exist 1 . The Gauss-Jordan factorization proce-
dure to decouple the g

i

then can be carried out by
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It is clear that when Qt
�1 exists (and it does for this

system), we obtain the DAE system
⇥
�QbQt

�1
I

⇤
dm
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=
⇥
Pb �QbQt

�1
Pt

⇤
f (13)

0 = g (14)

for ✏ ! 0. For our system, recalling that the species molar
quantity vector m is defined by (4), we find that (13)
becomes

d

dt

2
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0 1

3

75 f = Rf . (15)

Clearly there is redundancy in the di↵erential equations
(15) given that the column span of the array premultiply-
ing the vector of finite-rate processes f has dimension 2.
Therefore, we continue our factorization procedure by first
defining the submatrices

Rt =


�1 0
1 �1

�
Rb =


�1 1
0 1

�

and so Rt
�1 can be found as
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�
.

Thus, the next step in the factorization procedure requires
the computation of
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Premultiplying the left-most term of (15) by the left-most
array above gives

d(A+A

‡ + S)/dt = 0 (16)

d(2D +M +A+A

‡ +B)/dt = 0 (17)

two new states whose physical meaning will be discussed
next.

1
A good example is the Wei-Prater isomerization example involving

three isomers and three equilibrium reactions between the species:

it is easy to prove that the three equilibrium reactions cannot be

independently specified, leading to a noninvertible Qt
�1

in our

approach.
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3.1 Interpretation of the conserved modes

The results of this relatively simple operation are far-
reaching. First, we observe that two conserved (instan-
taneous) quantities w0 and w1 are generated from the
zeroing-out of the f

i

coe�cients in the bottom two rows
of the expression above and are defined as

w0 = A+A

‡ + S (18)

w1 = 2D +M +A+A

‡ +B. (19)

The constant w0 in (18) represents the maximum number
of open adsorption sites on the reaction surface, and so
the sum of number of adsorbed species plus the remaining
number of open adsorption sites must be constant. The
constant w1 corresponds to the total number of deposition
element atoms in this isolated system, where the dimer
D contains two of the atoms, and all of the other species
contain a single atom. Given the clear physical significance
of w0 and w1, we conclude that the factorization procedure

can reveal essential features of the reaction chemistry

2
.

The two- (dynamic) dimensional DAE system produced
by this factorization procedure is

d

dt


2D +M

2D +M +A+A

‡

�
= �


f0

f1

�

g = 0

A

‡ +A+ S = w0 (20)

M + 2D +B +A

‡ +A = w1

We close by noting how the linear transformation used
to decouple the g

i

equilibrium reactions and to factor
out redundant dynamic modes is closely related to the
approach used by Asbjørnsen (1972) and Rodrigues, et al.
(2015) to identify variant and invariant states of chemically
reacting systems.

3.2 Initial conditions, particular solutions

The introduction of the two conserved quantities w0 and
w1 must be reconciled with the specified initial condition
(7); as such, we compute

w0 = w1 = 1 m�2 (21)

which both make sense given the physical interpretation
of the constants. Turning to the equilibrium relationships
g = 0 and returning to m

0 given in (12), we observe that
the projected initial condition (12) satisfies equilibrium
relationships and are consistent with the conserved values
in (21). Therefore, (20) is integrated forward in time
subject to projected initial conditions (12) given (21) to
reveal (see Fig. 3, left) precisely the same dynamics of the
six-mode system shown in Fig. 2, right.

4. PSEUDO-EQUILIBRIUM OF FINITE-RATE
PROCESSES

In many surface adsorption-reaction processes, the con-
centration of surface species (adsorbed, activated, etc.) is
small relative to other species, including the surface sites S.
Likewise, the rates at which surface species concentrations
2

Because the factorization is independent of the rate expressions,

the conclusions drawn regarding the conserved species will hold

regardless of the actual rates.

Fig. 3. Integration results for the 2-mode (left) and the
1-mode (right) systems.

change relative to the gas phase may be such that for most
of the time period studied

d

dt

�
2D +M +A+A

‡� ⇡ d

dt

(2D +M) (22)

which immediately leads to the pseudo-equilibrium rela-
tionship between the two finite-rate processes f0 ⇡ f1

(Adomaitis, 2016) and the question of which of the two
ODEs of (20) should be retained. Writing

x0 = 2D +M

x1 = 2D +M +A+A

‡
,

we observe that we cannot explicitly set a fixed initial con-
dition x0(t = 0) because some of the gas-phase monomer
will be consumed by the adsorption reaction when the
specified initial conditions are projected onto the equilib-
rium relationships. However, we can set x1(t = 0) inde-
pendently of w0 and w1; doing so simply then prescribes
the initial value of B. Furthermore, we observe that

d

dt

�
2D +M +A+A

‡� = �dB

dt

ultimately resulting in the one-dimensional DAE system
dB

dt

= f1

g = 0

f0 � f1 = p = 0 (23)

A

‡ +A+ S = w0

2D +M +B +A

‡ +A = w1

where the algebraic equations of (23) define manifold QM

QM = {m : g = 0,h = 0, p = 0} .

In addition to the previous algebraic constraints, projected
initial conditions for (23) must also satisfy

k1 (K1[M ][S]� [A])� k3[A
‡] = 0

which means the m

0 of (12) no longer is valid. Projecting
the specified initial conditions onto the five algebraic
equations of (23) plus B(t = 0) = 0 gives

m

0 = [0.158 0.142 0.398 0.142 0.716 0.0]. (24)
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Of course, DAE systems are well-known to present chal-
lenges to finding consistent initial conditions, particularly
for high-index systems (see, e.g., Biegler (2000), Pantelides
(1988)). It is interesting to see how using physically based
arguments is key to finding the correct initial conditions
for our deposition system after each of the sequential steps
in our reduction process.

4.1 Interpretation of the reduced dynamics

Figure 3 compares the 2-mode solution (left) to the dy-
namics of the 1-dimensional system (right). The reduced
sti↵ness of the 2- and 1-mode DAE systems is clearly
indicated by increased step size used in the simulations. Of
course, the 2-mode solution computed using our factoriza-
tion procedure should be the same as the true solution to
the 6-mode system for ✏ ! 0, and that can be confirmed
by comparing Fig. 2 (right) and Fig. 3 (left).

The projected initial conditions (24) are visible in Fig. 3
(right) and represent the instantaneous equilibration of
species D, M, S, A, and A‡ on manifold QM . The initial
values of [M ] and [D] are reduced relative to the 2-mode
system’s initial condition because of the consumption of
the gas-phase species by the adsorption process and the
production of the activated surface species A‡. The e↵ect
of the new pseudo-equilibrium relationship is to eliminate
the initial S and A dynamics; afterwards, the dynamics of
all species follows the slower dynamic phase seen in the
2- and 6-mode processes. All of the processes essentially
reach the same states at t = 10 s, indicating that the model
reduction procedure has minimal e↵ect on the deposition
process modeling accuracy.

5. AN ALTERNATIVE VIEW OF THE REDUCTION
PROCESS

We summarize the model reduction process in Fig. 4
where the dynamic behavior of the finite-✏ 6-dimensional,
the 2-D, and the 1-D models are all represented by the
trajectories in (M,D,A)-space produced from a common
specified initial condition, together with the Q and QM

manifolds, and the projected initial conditions.

Starting with the fictitious case of ✏ > 0 (2), the trajectory
representing a solution to this 6-mode model is shown as
the black dotted curve in Fig. 4. It starts from specified
initial condition m

o

(3), quickly contracts to Q, and then
approaches and follows QM to the steady state m1, which
represents the complete consumption of reactants in this
closed system.

The particular solution of the 2-mode reduced system
(20) corresponding specified initial condition m

o

(3) is
marked by the red squares of Fig. 4. For this system, the
specified initial condition m

o

is first projected onto the
2-dimensional Q; this operation is denoted by the red line
segment connecting m

o

and the corresponding m

0 on Q
as the enlarged red square. As described in the discussion
of Fig. 3, the primary di↵erence between this solution and
that of the case corresponding to ✏ > 0 is the lack of the
quick equilibration dynamics of the dimerization reaction.

Finally, we observe the trajectory corresponding to the
single dynamic-mode model (23) as denoted by the yellow-

filled circles of Fig. 4. Analogous to the case of the 2-
mode model, the specified initial condition m

o

is first
projected onto the 1-dimensional QM (following the green
line segment to the enlarged yellow circle) to which the
dynamics are then constrained. Overall, the phase space
is organized by the invariant structures: the 2-D Q, 1-D
QM , and 0-D fixed-point m1.

6. AN OPEN REACTION SYSTEM

Let us now consider a modification to the finite-rate
processes of (2) consisting of the extended stoichiometric
coe�cient matrix

P =

2

666664

0 0 1 0
1 0 0 0

�1 0 0 1
0 �1 0 0

�1 1 0 0
0 1 0 0

3

777775
,

and the addition of two reaction rates f2 and f3

f =

2

64

f0

f1

f2

f3

3

75 =

2

64

�1k1(K1[M ][S]� [A])
�1k3[A

‡]
u

in

[D
in

]� u

out

[D]
u

in

[M
in

]� u

out

[M ]

3

75 (25)

representing the net inflow of dimer species D and
monomer M, respectively. In this formulation the inlet u

in

and outlet volumetric flow terms u

out

have units m

3
s

�1.
These changes have the e↵ect of converting (2) from a
closed (batch) system to a CSTR with a well-mixed gas
phase in contact with the reaction surface.

The first step in the factorization to diagonalize the g

i

proceeds exactly as before. The step that follows where
redundant dynamic modes are eliminated also takes place
in the same manner as before; however, it produces a
di↵erent DAE system because of the addition of f2 and f3.
What is found from the combined factorization procedure
is the system:

d

dt

2

4
2D +M

2D +M +A+A

‡

2D +M +A+A

‡ +B

3

5 =

"�f0 + 2f2 + f3

�f1 + 2f2 + f3

2f2 + f3

#

(26)

g = 0 (27)

A

‡ +A+ S = w0 (28)
where we now have only one true invariant (28). Physically,
this makes sense: (28) represents the conservation of sur-
face reaction sites, a quantity una↵ected by the in/outflow
of species in the gas phase.

The third di↵erential equation in (26) is invariant with
respect to the true reactions of our system; is represents
the total number of deposition species atoms in our system
and so the dynamics of this quantity are only a↵ected
by the net inflow of the deposition species 2f2 + f3. The
second ODE of (26) represents the change in total number
of deposition species in the gas phase and that can be
reversibly desorbed from the system; the first ODE in (26)
described the accumulation rate of the deposition species
in the gas phase. The quasi-equilibrium manifold for (26-
28) is three dimensional; it is not di�cult to see that one
can rewrite this system in such a way that the dynamics
would be most clearly illustrated in the (D,A,B) species
molar quantity space.
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Fig. 4. Dynamics for the 6-, 2-, and 1-mode models in (M,D,A)-space showing the hierarchical relaxation to Q (for
finite ✏), to QM , to m

1.

6.1 Pseudo-equilibrium of the finite-rate processes for the

open system

We note that (22) may still apply for this system and under
these conditions f0 ⇡ f1 likewise will hold. This results in
the further reduction of (26-28) to

d

dt


2D +M

B

�
=


�f0 + 2f2 + f3

�f1

�

g = 0 (29)
f0 � f1 = p = 0

A

‡ +A+ S = w0

producing a two-dimensional quasi-equilibrium manifold
upon which the dynamics governed by the two ODEs of
the DAE system above evolve.

6.2 Deposition rate control

In an industrial CVD reactor system, it may be desired
to control the deposition rate r = dB/dt. For example,
in a roll-to-roll large-scale reactor system, the substrate
may be required to move at a uniform rate through the
deposition reactor system, and control of deposition rate r
is required to maintain uniform film thickness in the face
of substrate temperature and other disturbances. Because
direct control of the surface reaction processes generally
is impossible, control can only be provided through the
gas-phase inputs to the reaction system.

If the precursor is injected from a source held at a higher
pressure and lower temperature relative to the reaction
chamber, it may enter as an essentially pure stream
of dimer D, dissociating into the equilibrium mixture
according to equilibrium relationship g0 = 0 under reactor
chamber conditions. This means f2 = u � u

out

[D] and

f3 = �u

out

[M ] where our manipulated variable u =
u

in

[D
in

] is the molar flow of dimer D to the reactor and
u

out

= (u � f0)/([D] + [M ]). The consequences of our
reaction factorization approach on control system design
are beyond the scope of this study and will be addressed
in future work; it is anticipated that the work will follow
that of Asbjørnsen (1972) and Rodrigues, et al. (2015).
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