
ABSTRACT

Title of Dissertation: Numerical studies of constraints and

gravitational wave extraction in general relativity

David Robert Fiske, Doctor of Philosophy, 2004

Dissertation directed by: Professor Charles W. Misner

Department of Physics

Within classical physics, general relativity is the theory of gravity. Its equations

are non-linear partial differential equations for which relatively few closed form solu-

tions are known. Because of the growing observational need for solutions representing

gravitational waves from astrophysically plausible sources, a subfield of general rel-

ativity, numerical relativity, has a emerged with the goal of generating numerical

solutions to the Einstein equations. This dissertation focuses on two fundamental

problems in modern numerical relativity: (1) Creating a theoretical treatment of the

constraints in the presence of constraint-violating numerical errors, and (2) Designing

and implementing an algorithm to compute the spherical harmonic decomposition

of radiation quantities for comparison with observation.

On the issue of the constraints, I present a novel and generic procedure for incor-

porating the constraints into the equations of motion of the theory in a way designed

to make the constraint hypersurface an attractor of the evolution. In principle, the

prescription generates non-linear corrections for the Einstein equations. The disser-

tation presents numerical evidence that the correction terms do work in the case of

two formulations of the Maxwell equations and two formulations of the linearized

Einstein equations.

On the issue of radiation extraction, I provide the first in-depth analysis of a novel

algorithm, due originally to Misner, for computing spherical harmonic components

on a cubic grid. I compute explicitly how the truncation error in the algorithm

depends on its various parameters, and I also provide a detailed analysis showing

how to implement the method on grids in which explicit symmetries are enforced via

boundary conditions. Finally, I verify these error estimates and symmetry arguments

with a numerical study using a solution of the linearized Einstein equations known

as a Teukolsky wave. The algorithm performs well and the estimates prove true both

in simulations run on a uniform grid and in simulations that make use of fixed mesh

refinement techniques.

Numerical studies of constraints and

gravitational wave extraction in general relativity

by

David Robert Fiske

Dissertation submitted to the Faculty of the Graduate School of the
University of Maryland, College Park in partial fulfillment

of the requirements for the degree of
Doctor of Philosophy

2004

Advisory Committee:

Professor Charles W. Misner, Chairman/Advisor
Dr. Joan M. Centrella
Professor C. David Levermore
Professor Richard A. Matzner
Professor Jogesh C. Pati
Professor Gregory W. Sullivan

c© Copyright by

David Robert Fiske

2004

DEDICATION

To my parents, who always wanted the best for me.

Y a Vili, quien justamente es aśı.

ii

ACKNOWLEDGEMENTS

My time as a graduate student has been split into three “epochs,” and I

wish to acknowledge the generosity of people with whom I have interacted

in each.

Most recently, I have spent over a year working with the numerical rela-

tivity group at Goddard Space Flight Center. I am most grateful to Joan

Centrella, who has been kind enough to take me into her group at a late

stage in my graduate career and to helped me to define much of the work

that constitutes Chapter 4 of this dissertation. Her efforts have helped

to ensure my timely graduation. In the actual execution of this plan,

John Baker has provided key guidance both by providing references to

the literature and by serving as a sounding board for many of my ideas.

I am grateful to James van Meter for continually catching my bugs and

keeping a good sense of humor while doing so, and to Breno Imbiriba

and Dae-Il Choi for showing me the ropes at Goddard. David Brown has

been a source of expertise on several topics, and also made Figure A.1.

Richard Matzner has contributed valuable comments on early drafts of

the dissertation and has been a valuable resource as I have attempted to

round out the material in the text. Dan Brennan, Kim Engle, Phil New-

man, Josephine Palencia, and Jeff Simpson provided essential services

administering the local Beowulf clusters.

iii

Prior to my time at Goddard, I spent most of a year working primarily

alone at the University of Maryland. During this time I benefited greatly

from discussions with David Mattingly and Ted Jacobson, primarily on

the work that formed the basis for Chapter 3 of this dissertation. I am

also grateful to Ted for showing a continuing interest in my success and

well-being during my time as a student at Maryland. Manuel Tiglio at

the Louisiana State University was also kind enough to take an interest

in my work and has provided valuable comments and insights on many

points.

I spent most of 2002 at the Center for Gravitational Physics and Geom-

etry at the Pennsylvania State University. Pablo Laguna and Deirdre

Shoemaker were my gracious hosts, and did their best to ensure that I

felt part of the Center and benefited from what it has to offer. Ken Smith

and Bernard Kelly were my companions in this part of the journey; in

addition to their great work, they made the time away from home more

pleasant. Erik Schnetter, although no longer at Penn State by the time I

arrived, taught me a lot about good code design by phone, by email, and

most of all by the example he left behind in his Maya code. He was also

kind enough to play host during two of my trips to Germany.

Some people, of course, do not belong to any of these periods in partic-

ular. Charles Misner has, from the beginning, provided valuable advice

regarding my work, and perhaps more importantly has provided me with

many opportunities to interact with the wider community. This includes

coordinating my time at Penn State and Goddard, but also includes

sending me to conferences both in the U.S. and abroad. I also grateful

to Conrad Schiff for help at several stages during my time at Maryland,

in addition to the occasional free meal. Alex Dragt advised me during

my first year of graduate school, and I am grateful for his support and

direction.

iv

Outside of school I have received a lot of support from family and friends.

My parents have always done what they could to support me morally and

emotionally. Violeta Prieto has been a great friend throughout my time

at Maryland, and has tolerated the bad moods and odd work schedules

that have been part of finishing this dissertation with love and support

(not to mention meals, laundry, and a detailed proofing of the text).

Matt Ferguson, Liz Hays, Chen Ling, and especially Sarah Donnelly and

Rachel Grubbs have been close companions throughout school.

Finally, but not least, I have been fortunate to have great teachers and

professors from elementary school through graduate school. Certainly I

cannot name them all, but I wish to acknowledge especially Alvin Bell,

Vitaly Bergelson, Ron Bowerman, Barbara Buttermore, Mark Dickman,

Richard Furnstahl, Mike Gilligan, John Givens, Roger Gossman, Cora

Kerr, Albert Laux, Lisa Marker, Dan Matheny, Beth Niemeyer, LeEddy

Smith, Lisa Snook, Linda Straley, and Judy Withrow. In addition to be-

ing excellent teachers, these individuals enriched my experience either by

sharing their free time to provide additional opportunities, by encourag-

ing and allowing me to go beyond classroom material (often by allowing

me to choose challenging homework problems myself rather than com-

pelling me to do those assigned to the class), or, in many cases, both.

This work has been supported by a University of Maryland Graduate Fel-

lowship, U.S. Department of Energy grant DEFG02-96ER40949, U.S. Na-

tional Science Foundation grant PHY-0071020, and NASA Space Sciences

grant ATP02-0043-0056. I was fortunate to twice received travel support

from Sonderforschungsbereich 382 funded by the DFG and headed by

Hanns Ruder at Theoretische Astrophysik Tübingen in Germany. Some

of my computations were performed on Beowulf clusters at NASA God-

dard Space Flight Center operated by the Space Science Data Operations

Office and the Commodity Cluster Computing Group.

v

TABLE OF CONTENTS

List of Tables viii

List of Figures x

1 Introduction 1
1.1 Historical Context and Motivation . 3
1.2 Notation and Conventions . 8

2 Separating Space from Time 10
2.1 ADM Decomposition . 11
2.2 Formalisms . 15

2.2.1 Standard ADM . 16
2.2.2 BSSN . 17

3 Constraints 20
3.1 Constraints in Hamiltonian systems 21
3.2 Constraints in numerical simulations 23
3.3 Driver terms . 25

3.3.1 Simple Harmonic Oscillator 26
3.3.2 Partial Differential Equations 29

3.4 Application to the Maxwell Equations 32
3.4.1 System I Evolution Equations 33
3.4.2 System II Evolution Equations 33
3.4.3 Propagation of Constraints . 34
3.4.4 Numerical Results . 36

3.5 Application to the linearized Einstein Equations 40
3.5.1 Linearized ADM . 41
3.5.2 A Linearized BSSN-Type System 48

3.6 Summary and Future Work . 51

4 Gravitational Wave Extraction 54
4.1 Newman-Penrose Formalism . 55

4.1.1 Tetrads and Weyl Scalars . 55
4.1.2 Spin-Weighted Spherical Harmonics 58

4.2 Spherical Harmonic Decomposition 61

vi

4.2.1 Methodology . 62
4.2.2 Error Analysis . 64
4.2.3 Choosing the parameters . 67
4.2.4 Symmetry issues . 68
4.2.5 Mesh refinement issues . 72

4.3 Teukolsky Waves . 73
4.3.1 Analytic Even Parity Solution 74
4.3.2 Numerical Results . 76

4.4 Summary and Future Work . 87

5 Conclusions and Discussion 92

A Fixed Mesh Refinement 96

B Implementation of Misner’s Algorithm 101
B.1 User Interface and Compile-Time Parameters 102
B.2 Internal Data Structures . 104
B.3 Internal Functions and Subroutines 105

B.3.1 Initialization . 106
B.3.2 Computation . 110
B.3.3 Index Mappings . 111

B.4 Notes on Modularity . 113

Bibliography 116

Vita 123

vii

LIST OF TABLES

3.1 The parameters used for the various simulations of the two Maxwell
systems are tabulated here. 36

4.1 The first few non-trivial values of cN,k(1), which are the coefficients
of the Taylor expansion of a function integrated against d(x;N, 0, 1).
(In general, cN,k(∆) = cN,k(1)∆

k.) The values of k run across and the
values of N run down. The fact that the first coefficient is always 1,
and that, by increasing N , more of the sub-leading coefficients are 0
indicates that increasing N increases the order of convergence of the
Misner algorithm (provided that ∆ ∝ h). 67

4.2 The table shows how the arguments of spherical harmonics trans-
form under reflections through various Cartesian planes. The first
column indicates which coordinates have their signs inverted, while
the second and third columns give the new angular arguments to
the spherical harmonic Ylm. Alternatively, the fourth and fifth col-
umn show, respectively, the overall sign in front of and whether or
not to complex conjugate the given spherical harmonic with the orig-
inal angular arguments. The second row, for example, says that
Ylm(−x, y, z) = Ylm(θ, π − φ) = (−1)mȲlm(θ, φ), where (θ, φ) are the
angular coordinates of the point (x, y, z). 69

4.3 The table summarizes which entries of GAB identically vanish because
of the symmetries of the spherical harmonics under reflections through
coordinate planes for all values of l andm with l ≤ 2. (This is governed
by equation (4.39).) Of the 81 possible matrix elements, only 25 have
non-trivial values. 71

4.4 The grid parameters used for the various Teukolsky wave test runs.
The simulation’s outer boundary is at xmax, and the value of dxfine is
the value of the grid spacing at the finest FMR level. Other FMR
levels are factors of two coarser. All numbers are given in units of the
wavelength λ. 76

B.1 The table shows the correspondence between equations in the Misner
paper and subroutines in the misner harmonics module. 107

viii

B.2 The table shows which subroutines and functions must be provided
in order for the module to work with a code other than Hahndol.
The first function, ht mype returns the processor number for parallel
codes. The variables blk, i, j, and k are integers and inputs to the
subroutines listed. The variables dx and x are three dimensional arrays
of real numbers output by the subroutines, and phi is real variable
output by the subroutine. 114

ix

LIST OF FIGURES

2.1 The figure demonstrates, schematically, the role of lapse and shift in
the ADM decomposition. The lapse α controls how much proper time
elapses between time slices Σ0 and Σ1 as measured along a unit normal
n. Lines of constant spatial coordinates need not run normal to the
surfaces; the shift vector βi controls the component tangent to the
initial hypersurface of the vector ∂t. In the figure the points A and A′

have the same spatial coordinates (but different time coordinates). . . 14

3.1 The time evolution of the solution error in x and v for the undriven
(K = 0) evolution equations. 27

3.2 The time evolution of the solution error in x and v for the driven
evolution equations with K = 1. 28

3.3 The time evolution of the solution error in x and v for the driven
evolution equations with K = 100. 28

3.4 The time evolution of the constraint C(t) for the undriven (K = 0)
evolution equations. 29

3.5 The time evolution of C(t) for the driven evolution equations with
K = 1. 30

3.6 The time evolution of C(t) for the driven evolution equations with
K = 100. 30

3.7 The l2 norm of the primary constraint CE versus time t for three test
cases. Case I-0 has no correction terms (KE = 0). See Table 3.1 for
the other parameter values. 38

3.8 The l2 norm of the primary constraint CE versus time t for three test
cases. Case II-0 reproduces KWB. See Table 3.1 for the definitions of
other parameters. 39

3.9 The l2 norm of the secondary constraint CΓ versus time t for three
test cases. Case II-0 is the result of KWB. See Table 3.1 for other
parameter values. At t = 0 the constraint is identically satisfied. . . . 40

3.10 The figure shows the l2 norm of the total solution error and the con-
straint violation ‖C‖2 for the linearized ADM system with and with-
out constraint driver modifications. The two jagged lines show the
constraint violations in the two cases. The jaggedness shows that the
constraints are heavily influenced by round-off error. The two smooth
lines showing ‖E‖2 for the two cases are completely overlapping. . . . 44

x

3.11 The figure shows the behavior of the total constraint violation for the
ADM formalism for a particular choice of initial data that does not
satisfy the constraints. Using the unmodified equations, the constraint
violation oscillates, but over time remains essentially of the same am-
plitude. In the modified equations, however, the constraint violation
rapidly damps away. 47

3.12 The figure shows numerical results for the “BSSN-type” system with
with a family of values for the damping parameters associated with
the constraint driver terms. Panel (a) shows the l2 norm of the total
constraint violation, and Panel (b) shows the l2 norm of the solution
error, both as a function of time. 50

4.1 A plot of d(r;N, 0, 1) for various even values ofN in [0,10]. The central
peak grows monotonically with N . Although in the limit of infinite N ,
d goes to a delta-function, it is clear that the function profile changes
dramatically only for the first few values of N 66

4.2 The two panels show errors in the numerically extracted wave in high
resolution, FMR simulations with three different wave extraction pa-
rameter sets. There is little difference between different shell thick-
nesses so long as N = 2. There is a large increase in error when the
parameter N is reduced. 78

4.3 Extraction maps for four extraction radii in the coarse resolution
Teukolsky wave FMR run. The mesh size indicates the grid spac-
ing in the various refinement regions, while the three circles mark the
extraction radius and the boundaries of the shell used in the spherical
harmonic extraction algorithm. The labels at the top include a triple
(N,R,∆), where N is the number of (cell-centered) grid points across
one coordinate direction in the coarsest region, R is the extraction
radius, and ∆ is the half-width of the shell. Additional refinement
regions, not shown here, surround the entire map. 79

4.4 Extraction maps for four extraction radii in the medium resolution
Teukolsky wave FMR run. The mesh size indicates the grid spacing
in the various refinement regions, while the three circles mark the
extraction radius and the boundaries of the shell used in the spherical
harmonic extraction algorithm. The labels at the top include a triple
(N,R,∆), where N is the number of (cell-centered) grid points across
one coordinate direction in the coarsest region, R is the extraction
radius, and ∆ is the half-width of the shell. Additional refinement
regions, not shown here, surround the entire map. 80

xi

4.5 Analytic and numeric solutions for the l = 2, m = 0 component of
a Teukolsky wave at three resolutions. No mesh refinement was used
for any of the runs shown in Panel (a), and the extraction radius is
r = 3λ. Mesh refinement was used for the runs in Panel (b). The
extraction radius is also at r = 3λ, which passed through a cubic
mesh refinement boundary of side length 2λ. (Additional refinement
boundaries exist beyond the extraction radius.) Note the agreement
between the high resolution runs and the analytic solution. 82

4.6 A convergence plot for the l = 2, m = 0 component of Ψ4 extracted
from unigrid simulations of a Teukolsky wave at radius r = 3λ, where
λ is the width of the wave in the initial data. The lowest resolu-
tion suffers from a phase error, which is to be expected from a low
resolution simulation. 83

4.7 Panel (a) shows the l = 2, m = 0 component of Ψ4 extracted from
a unigrid run at various extraction radii. Panel (b) shows the same
data, shifted to r = 3λ and scaled by r so that the waveforms should
lie nearly on top of each other. 84

4.8 A convergence plot for the value of Ψ4,20 at r = 3λ extracted in sim-
ulations at three different resolutions. The lowest resolution result is
clearly not in the convergent regime, but the two highest resolutions
show excellent convergence. 85

4.9 Panel (a) shows the l = 2, m = 0 component of Ψ4 extracted from an
FMR run at various extraction radii. Panel (b) shows the same data,
shifted and scaled by r so that the waveforms should lie nearly on top
of each other. 86

A.1 Guard cell filling in two spatial dimensions. In these pictures, the
thick vertical line represents a refinement boundary separating fine
and coarse grid regions. The picture on the left shows the first step, in
which one of the parent grid cells (gray square) is filled using quadratic
interpolation across nine interior fine grid cells (black circles). The
other parent grid cells are filled using corresponding stencils of nine
interior fine grid cells. (The asymmetry in the left panel is drawn
with the assumption that the fine block’s center is toward the top-
left of the panel.) The picture on the right shows the second step in
which two fine grid guard cells (gray circles) are filled using quadratic
interpolation across nine parent grid values (squares). These parent
grid values include one layer of guard cells (black squares) obtained
from the coarse grid region to the right of the interface, and two layers
of interior cells (gray squares). The final step in guard cell filling (not
shown in this figure) is to use “derivative matching” to fill the guard
cells for the coarse grid. 99

xii

B.1 The calling sequence for the two “Misner Harmonic” subroutines that
form the public interface to the misner harmonic module. The vari-
able parfile is a string that is the name of a parameter file. The
integer variables l and m specify which spherical harmonic compo-
nent to compute on the grid function with real part labeled by index
reIndex and imaginary part (optional argument) labeled by index
imIndex. The real and imaginary parts of the spherical harmonic
component are returned in real variables RePhiLM and ImPhiLM. The
integer variable nr indicates where the extraction should take place in
a way determined by the parameter file. 102

B.2 A code fragment from the misner harmonics module. This shows the
internal parameters and data structures used. 103

B.3 This subroutine contains the loop that constructs the values stored in
the internal data structures of the misner harmonics module. Vari-
ables not declared locally to the subroutine are (private) module vari-
ables; cf. Figure B.2. Roughly speaking, each of the subroutines called
here corresponds to one equation from the Misner paper. 107

B.4 The subroutine compute Rlm. The module array ThetaLM is used as
temporary storage, and the function Rn computes the function Rn

given by (4.22). 111
B.5 This is the code for the subroutine that computes spherical harmonic

components. The function i2phi returns the value of the grid function
at the point with indices i, j, k, blk when s is 1, and returns the value
of the grid function at points related by appropriate symmetries when
s is not 1. 112

xiii

Chapter 1

Introduction

This dissertation is concerned with constructing numerical solutions to Einstein’s

theory of general relativity and with developing tools for analyzing those solutions

in a way compatible with observational attempts to detect gravitational radiation.

This endeavor draws from and contributes to the areas of mathematical physics,

numerical analysis, computer science, and astrophysics. Indeed, while the tone of

the dissertation, both in terms of the test problems presented and the background

material covered, centers around general relativity, most of the original work in the

dissertation has applications outside of numerical relativity. The constraint driver

terms detailed in Chapter 3, for example, are applicable to the numerical evolution

of any system of partial differential equations which separate into constraint and

evolution equations. In more physical language, this means that the algorithm con-

structed in that chapter is applicable to any gauge theory, of which there are many

in modern physics. Likewise, the analysis of Misner’s novel algorithm for computing

spherical harmonic components of functions represented on a cubic grid, which is

central to Chapter 4, has applications extending even beyond traditional physics.

Of course the emphasis of this dissertation is rooted in numerical relativity. While

the prescription for generating constraint driver terms, alluded to above, is not spe-

cific to general relativity, I study this new computational tool on examples from

linearized gravity and on formulations of the Maxwell equations known to have prop-

erties analogous to the Einstein equations. After constructing generally applicable

error estimates for Misner’s algorithm, I demonstrate that the algorithm works and

1

that the error estimates are true with numerical simulations of a pure gravitational

wave spacetime. The simulation, moreover, runs inside a code designed to solve

the full, non-linear Einstein equations with quite generic initial data and which uses

fixed mesh refinement technology to efficiently allocate computer resources. This is

a code that implements many the most important technological tools for solving the

Einstein equations in situations of interest to the experimental community.

The tests here are not only focused on problems for numerical relativity, they are

implemented such that they form a natural part of a consistent and continuing effort

to invent, implement, and improve techniques for computing waveforms and other

interesting properties of strongly gravitating bodies.

The dissertation is organized as follows: In the remainder of this chapter, I pro-

vide some historical context and motivation for the work that I have done, and I also

briefly describe the notation and conventions employed in the main text. In Chap-

ter 2, I provide a technical sketch of the mathematical foundations of separating the

covariant Einstein equations, in which space and time are treated on equal footing,

into spatial and temporal pieces. This material is introductory, but is much more

technical than the introductory material in Chapter 1. In Chapter 2, I also introduce

the notion of different formalisms of the equations. This leads directly into Chap-

ter 3, where I study the role of the constraint equations of the theory in numerical

evolutions. This chapter describes original work toward incorporating the constraint

equations of the theory into the evolution equations in a way that is designed to force

numerical evolutions to obey the constraints. I begin with an extended explanation

of work that I previously published on the subject — an application of the proce-

dure to the Maxwell equations — and augment that with more recent work in which

I apply the procedure to gravitational plane waves. In Chapter 4, I switch direc-

tions and begin a study of gravitational radiation in numerical simulations. I sketch

the mathematical structure, in this case the Newman-Penrose formalism, needed to

sensibly define gravitational radiation. In practice, most people like to decompose

wave signals into spherical harmonics components, so I then describe the appropri-

ate notion of spherical harmonics, spin-weighted spherical harmonics, for radiation

2

quantities; I describe in detail an algorithm previously published by Misner for com-

puting spherical harmonics components of functions represented on a cubic grid; and

I compute, for the first time, detailed estimates of the numerical errors incurred by

the algorithm. This theory is then tested, with excellent results, in conjunction with

a large-scale numerical relativity code. Results are presented. Finally I conclude the

main text with some discussion in Chapter 5, and provide additional details that do

not fit into the main body of the text in the Appendices.

1.1 Historical Context and Motivation

Einstein presented his theory of general relativity in 1915 [38]. Like his special theory

of relativity, the new theory treated space and time as two parts of a single entity,

spacetime. The theory asserts that gravity results from curvature in spacetime and

that matter determines the spacetime curvature. This interplay between curvature

and matter is described by the Einstein equation

Gµν = 8πTµν (1.1)

which is a non-linear, partial differential equation for the spacetime metric and the

matter fields.1 The symbol Gµν represents the Einstein tensor and Tµν is the stress-

energy tensor for any matter in the spacetime. Both are symmetric and their indices

run from 0 to 3. Because, in this dissertation, I work entirely on vacuum problems,

I henceforth set Tµν = 0. Even with this simplification, however, there are few

known analytic solutions to (1.1), and, of the known solutions, many are cosmological

solutions which have no direct application to gravitational wave physics. To date,

the two body problem, which is a problem of great interest in gravitational wave

1Throughout the dissertation I use geometric units G = c = 1, where G is Newton’s gravitational

constant and c is the speed of light. In these units length, time, and mass all have the same

dimensions, which means that I will frequently measure time in units of length or length in units

of mass!

3

physics, remains unsolved.2

There are some well known solutions to the full Einstein equations (1.1), including

the Schwarzschild solution mentioned in Footnote 2. While these solutions played an

extremely important role for people first sorting out the implications of the theory,

they, for me in the context of this dissertation, are only convenient test cases. I

will introduce the details of specific solutions in the text when needed. There is, of

course, a rich history both to the construction and interpretation of these solutions;

interested readers are referred to MTW [66] for more of this history. What is relevant

to the current discussion is that the earliest solutions to the Einstein equations

were constructed by considering the equations in their covariant form (1.1), often

simplified by imposing certain convenient symmetries.

In contrast to this approach, numerical relativists would like to think of the

Einstein equations as an initial value problem. Initial data should be specified and

then evolution equations, in discretized form, should be used to advance that data

to some later (or earlier) time. In order to follow such a program, however, one

needs to break spacetime back into space and time. One such description of the

Einstein equations, credited to Arnowitt, Deser, and Misner (ADM), was formulated

in the late 1950s [9]. ADM found that the Einstein equations do not admit an initial

value problem, but do admit a constrained initial value problem. Only six of the

ten Einstein equations provide evolution information. The other four equations are

constraints that the data must satisfy at all times.3 The existence of the constraints

2One should keep in mind that the “two body problem” can actually be a problem in vacuum.

The Schwarzschild solution, for example,

ds2 = −
(

1− 2M

r

)

dt2 +

(

1− 2M

r

)−1

dr2 + r2dΩ2

was discovered as early as 1916 [76], and is a solution to the vacuum Einstein equations. It nonethe-

less describes a black hole of mass M . It is the vacuum problem of computing the orbits of a binary

black hole system, in fact, that is most frequently meant by the “two body problem,” at least in

the numerical relativity community.

3I will show in the text that it is sufficient to solve the constraint equations in the initial data

provided that the exact (not discretized) evolution equations are integrated exactly.

4

is directly related to the fact that general relativity is a gauge theory — in the case

of general relativity the gauge freedom corresponds to freedom in how spacetime

coordinates are chosen. Chapter 2 deals with the decomposition of spacetime along

the lines of ADM, and Chapter 3 deals with the constraints of the theory in great

detail.

Arnowitt, Deser, and Misner were completing their work on this subject just

before computers were marginally large enough, fast enough, and easy enough to

use that one might consider trying to solve the ADM form of the Einstein equations

numerically. The first documented attempt to do so appears to be work by Hahn

and Lindquist in 1964 [47]. This work was quickly extended by Smarr [80, 81] and by

Eppley [39]. These first attempts were centered around evolving Misner data [64] in

axisymmetry (2+1 dimensions). Lack of sufficient computer resources would likely

have impeded these efforts and those that followed them over the next twenty-plus

years. A breakthrough finally came in the 1990s when, using faster computers with

more memory, the Binary Black Hole Grand Challenge Alliance in the United States

successfully simulated a head-on black hole collision. As a post-processing step they

were also able to compute the event horizon in the spacetime. This work was still in

axisymmetry [63].

Some of the first attempts to apply numerical relativity in three dimensions fo-

cused on single Schwarzschild black holes. This was an appealing testbed since the

analytic solution was known. One of the earliest attempts to evolve a Schwarzschild

black hole in three dimensions was published by Anninos el al. [8]. In their 1995

paper, the authors lament:

Progress in three dimensional numerical relativity has been impeded

in part by a lack of computers with sufficient memory and computational

power to perform well resolved calculations of 3D spacetimes.

(As I will describe shortly, the situation, even with computer power increasing ac-

cording to Moore’s law, is not so much better now, nearly ten years later.) Important

theoretical and technical advances were nonetheless made in the area of black hole

simulations during the 1990s. Two different methods, both of which are still used

5

today, were devised for handling the physical singularities inherent in black hole solu-

tions — namely the puncture method [23, 24], which generalized the Brill-Lindquist

prescription [19] for initial data of black holes at rest and which can be generalized

to the Bowen-York prescription [18] for spinning and moving black hole initial data;

and the excision method [3], in which a portion of the spacetime containing the

singularity and interior to the event horizon is simply not evolved. Dynamical gauge

conditions that would prevent hypersurfaces from reaching the singularity were also

developed [17].

Black hole research continued into this decade with further advancements in gauge

conditions [4, 1], the first evolutions of binary black hole systems that ran (stably) for

a time comparable to an orbital period [25], and advances in excision techniques that

allow black holes to move through the numerical grid [34, 79]. Even though progress

has been made, state of the art simulations continue to push the limits of modern

computer power.4 It is not sufficient to wait for computers to become larger in order

to increase resolution in numerical relativity simulations; the algorithms also must

become more efficient. One example of this is the application of mesh refinement to

numerical relativity computations. Mesh refinement means choosing the resolution

of the simulation differently in different parts of the computational domain. It comes

in two forms. In adaptive mesh refinement (AMR), the algorithm chooses how to

distribute the available resources throughout the domain and redistributes the re-

sources according to the dynamics of the evolution. In fixed mesh refinement (FMR)

a person chooses how to distribute resources, and this distribution does not change

during the course of the simulation. Both types of mesh refinement have long been

practiced in hydrodynamics.

Choptuik, starting in the late 1980s, was the first to use AMR in numerical

relativity in the course of his studies of critical collapse phenomena in scalar fields

in one dimension [31, 32]; this work has been extended within the last year to two

dimensions [33]. In two dimensions, AMR has also been used to study inhomogeneous

4Indeed it is likely that this statement will still be true in ten or twenty years because, as more

computer resources become available, the problems attempted become larger!

6

cosmologies [50, 13], and was applied to studies of a Schwarzschild black hole [23].

Fixed mesh refinement has been used in short simulations of a binary black hole

merger [24], a Schwarzschild black hole with excision [74], and orbiting, equal mass

black holes in a co-rotating gauge [25]. The propagation of gravitational waves

has been studied in AMR simulations of model equations describing perturbations

of the Schwarzschild solution [70] as well as in the full, three-dimensional Einstein

equations [68]. Detailed studies of how faithfully gravitational waves and other strong

gradients pass through refinement boundaries have only begun quite recently. The

first published results from numerical relativity appeared just this year, first in the

case of pure waves [30] and then in the case of puncture black hole initial data [55].

Chapter 4 of this dissertation builds directly on the work of Refs. [30] and [55].

The first indirect observational evidence for gravitational waves came from obser-

vations of PSR 1913+16, the first discovered pulsar in a binary system [52, 53, 54].

Careful study of the orbital period of the binary, measured by observations of the

time of arrival of the pulses showed that the system lost angular momentum and en-

ergy at a rate quite consistent with the hypothesis that it was radiating gravitational

waves [35, 36]. Another pulsar-containing binary, PSR 1534+12, was discovered in

1991 by Wolszczan [92], and detailed measurements of it have also lead to stringent

tests of strong-field general relativity [82, 83]. For a review of the early history of

this topic, see the text of the Nobel lecture by Taylor [84] or by Hulse [51].

At the present time, several ground-based detectors, using laser interferometry,

are already or very near to operating [11, 43, 75], and the NASA-ESA space-based

antenna LISA was scheduled to be launched in 2011 [14]; budget cutbacks currently

make a delay of one to two years likely [90]. These experiments should provide

the first direct probe of strong-field gravitational physics. The data analysis needs of

these observations, however, require accurate waveform templates for use in matched-

filtering algorithms, and while the early and late stages of a merger process can be

treated analytically using post-Newtonian and perturbation theory, respectively, the

highly dynamical merger period can only be understood with the full, non-linear

Einstein equations. In this regime, numerical relativity is essential [75]. In addition

7

to the laser interferometers, several groups around the world continue to operate

Weber bars, a technology pioneered by Joseph Weber at the University of Maryland

[48]. While there is only a small chance of positively detecting a gravitational wave

with such detectors, they have set observational upper bounds.

1.2 Notation and Conventions

This section describes notation in use throughout the text.

With respect to tensor indices, this dissertation follows the convention that Latin

indices range over spatial values (1, 2, 3), while Greek indices range over spacetime

indices (0, 1, 2, 3). Because most quantities in the dissertation are written in a

3+1 framework, most tensors that appear here will be spatial tensors. When the

possibility of confusion arises, I prepend a “(4)” as a superscript; e.g. (4)Rµναβ is the

Riemann tensor associated with the spacetime metric, whereas Rijmn is the Riemann

tensor associated with the spatial metric. In a few cases, I also find it convenient to

put spacetime indices on purely spatial tensors. In these cases all “time” components

are understood to be identically zero. The Einstein summation convention, that

repeated indices are summed over, is used except where I explicitly indicate that it

is not.

Partial derivatives are interchangeably denoted

∂f

∂xi
= ∂if = f,i (1.2)

and covariant derivatives, likewise, are denoted

∇if = f;i (1.3)

according to convenience. The Lie derivative of a field f with respect to a vector va

is denoted £vf . For variational derivatives, I adopt the notation5

δφ(x′)

δφ(x)
= δ(x− x′) (1.4)

5This notation is consistent with Ref. [71] even though it does not appear, to my knowledge, in

the general relativity literature.

8

where δ is a Dirac delta function. In most cases the operator will act on an integral,

as in
1

2

δ

δφ(x)

∫

[

φ(x′)2 + φ,x′(x
′)2
]

dx′ = φ(x)− φ,xx(x) (1.5)

for example. In such cases, the operator is a mapping from functionals to functions.

Note also that, as in the example, I freely integrate by parts without regard for the

boundary integrals. This is equivalent, in practice, to assuming that the boundaries

of my domains have appropriate boundary conditions. This assumption proves sound

enough for the cases that I study here.

Finally, the metric signature will be (− + ++) for the spacetime metric, and,

correspondingly, (+ + +) for the spatial metric. I use the standard notation

t(ab) =
1

2
(tab + tba) (1.6)

and

t[ab] =
1

2
(tab − tba) (1.7)

and generalize it to more indices when needed. Signs and index ordering on conven-

tional tensors (like Riemann, for example) are as in MTW [66].

9

Chapter 2

Separating Space from Time

The Einstein equations written in their usual form (1.1) are manifestly covariant.

Space and time appear as equal partners. While this form pleases the theorist, it

is not well suited for numerical simulations. When constructing a simulation, it is

preferable to think of time separate from space, with the hope of specifying initial

data for the spatial domain of a simulation and evolving that data forward in time

according to some evolution equations.1

This chapter sketches the formal steps required to separate space from time in

the Einstein equations. The results will be a constrained initial value formulation

of the Einstein equations. That is, some of the Einstein equations will turn out to

be constraints that the data must satisfy at all times, while others provide evolution

equations for given initial data. After deriving the desired result from an appropriate

Lagrangian in canonically conjugate variables, I introduce the notion of different

“formalisms” of the equations, which plays a key role in modern attempts to build

numerically stable simulations.

1This is not the only approach. While all numerical relativity codes of which I am aware do

some sort of evolution, some authors have, for example, experimented with specifying initial data

on surfaces that are, at least for part of the domain, light-like rather than space-like [91].

10

2.1 ADM Decomposition

The currently standard space plus time decomposition was popularized by Arnowitt,

Deser, and Misner in the late 1950s [9] and has subsequently been referred to as

either an “ADM decomposition” or a “3+1 split.”2 The discussion in this section is

largely a review of the original ADM paper [9], supplemented by the discussion by

Wald [89, Appendix E].

The starting point for the discussion is a spacetime (M, (4)gµν) comprised of a

manifold M and a metric (4)gµν , and the Lagrangian

L = (4)R
√

−(4)g. (2.1)

This Lagrangian is associated the usual Einstein-Hilbert action from which the co-

variant form of the vacuum (Tµν = 0) Einstein equations (1.1) can be derived by

varying the action with respect to the spacetime metric. In (2.1), the quantities on

the right hand side are the determinant of the four dimensional spacetime metric

and its Ricci scalar.

To proceed from this point, the degrees of freedom on spatial slices must be

isolated from the degrees of freedom related to the passage of time. In their original

work on the subject, ADM identified

gij = (4)gij (2.2a)

α = (−(4)g00)−1/2 (2.2b)

βi = (4)g0i (2.2c)

πij =
√

−(4)g((4)Γ0pq − gpq
(4)Γ0rsg

rs)gipgjq (2.2d)

as the relevant quantities. I call these, respectively, the spatial (three-) metric, the

lapse, the shift, and the conjugate momenta. These three dimensional quantities

2ADM used this split in a Hamiltonian formulation of the Einstein equations, identified the lapse

and shift as Lagrange multipliers enforcing the constraints, and applied the formulation to clarify

the identification of total energy in asymptotically flat spacetimes.

11

easily relate to the spacetime metric





(4)g00
(4)g0j

(4)gi0
(4)gij



 =





βkβ
k − α2 βj

βi gij



 (2.3)

and the inverse spacetime metric





(4)g00 (4)g0j

(4)gi0 (4)gij



 =





−1/α2 βj/α2

βi/α2 gij − βiβj/α2



 (2.4)

where gij is the inverse of gij, and spatial indices are raised and lowered with the

spatial metric. The relation
√

−(4)g = α
√
g, where g is the determinant of gij, is

also useful.

Substituting (2.2) into (2.1) yields

L = −gij∂tπij − αH − βiP
i − 2∂i

(

πijβj −
1

2
πβi +∇iα

√
g

)

(2.5)

where

H = −√g
[

R + g−1
(

1

2
π2 − πijπij

)]

(2.6a)

P i = −2πij;j (2.6b)

and π = πii. Here, as throughout the text, R (with no prefix) is the Ricci scalar asso-

ciated with the three-metric. The Lagrangian as expressed in (2.5) is now a function

of the three dimensional quantities (2.2), and the last term is a total derivative that

does not contribute to the equations of motion.

Deriving the equations of motion from this Lagrangian requires only a straightfor-

ward application of the usual tools of theoretical mechanics. The resulting evolution

equations

∂tgij = 2αg−1/2
(

πij −
1

2
gijπ

)

+ βi;j + βj;i (2.7a)

∂tπ
ij = −α√g

(

Rij − 1

2
gijR

)

+
1

2
αg−1/2gij

(

πmnπmn −
1

2
π2
)

− 2αg−1/2
(

πinπ j
n −

1

2
ππij

)

+
√
g
(

∇i∇jα− gij∇n∇nα
)

+∇n

(

πijβn
)

− βi;nπ
nj − βj;nπ

ni (2.7b)

12

come from varying the action with respect to πij and gij respectively.
3 In addition,

varying with respect to α and βi yields

H = 0 (2.8a)

P i = 0 (2.8b)

which I will now call the Hamiltonian and momentum constraints.

Equations (2.7) are of fundamentally different nature than equations (2.8). This

distinction is vitally important and deserves discussion. Equations (2.7) each have

a single term, which I have suggestively written on the left hand sides of equations,

containing a time derivative. I will call such equations evolution equations, because

they indicate how a given degree of freedom changes with time. In contrast, equations

(2.8) contain no time derivatives. I will call such equations constraint equations

because they limit which data sets are allowed by the theory. This situation arises in

all theories with gauge freedom. In the case of general relativity, the gauge freedom

(the freedom to redefine coordinates) is carried in the scalar field α, which controls

“how fast” time flows normal to a given spatial hypersurface, and by the vector field

βi, which controls spatial coordinate transformations undertaken between successive

times. See Figure 2.1. It is a generic feature of gauge theories that variations of the

action with respect to the gauge fields yield constraint equations.

Since I want to use the spacetime decomposition to formulate an initial value

problem, it is important to know whether the constraints propagate. In other words,

I need to answer the question: If I have data at an initial time that satisfies the

constraints (2.8) and evolve that data according to the evolution equations (2.7) to a

different time, will the data at the later time also satisfy the constraints? The answer

is yes, the constraints do propagate. To prove this, apply the Bianchi identities

DµGµν = 0, where Dµ is the covariant derivative operator compatible with the four

dimensional spacetime metric (4)gµν , to the covariant Einstein tensor Gµν of (1.1) in

3In order for these variations to yield meaningful results, it must be true that gij and πij are

canonically conjugate variables. This follows from the form of the Hamiltonian. I have also ignored

all issues related to the boundary integrals resulting from integrations by parts.

13

Σ0

Σ1

αn β+ αn

Aβ

A’

Figure 2.1: The figure demonstrates, schematically, the role of lapse and shift in the

ADM decomposition. The lapse α controls how much proper time elapses between

time slices Σ0 and Σ1 as measured along a unit normal n. Lines of constant spatial

coordinates need not run normal to the surfaces; the shift vector β i controls the

component tangent to the initial hypersurface of the vector ∂t. In the figure the

points A and A′ have the same spatial coordinates (but different time coordinates).

vacuum (Tµν = 0).4 Noting that the various projections

C = Gµνn
µnν (2.9a)

Ci = Gµjn
µgji (2.9b)

Eij = Gmng
m
ig

n
j, (2.9c)

written in terms of the unit normal nµ to a given foliation (as in Figure 2.1) and

the spatial metric of (2.2a), correspond to the Hamiltonian constraint, momentum

constraint, and the spatial portion of the Einstein tensor, respectively, the Bianchi

identities projected onto the normal direction imply that

nµDµC = Eµν∇µnν − 2Cνn
µDµn

ν −∇µCµ − C∇µn
µ (2.10a)

and projected onto the spatial slice imply

nµDµCν = −∇µEνµ−Eνµn
αDαn

µ−Cν∇µn
µ−CµnνnαDαn

µ−Cµ∇µnν+2CnµDµCν .

(2.10b)

4One could also demonstrate that the constraints propagate by taking time derivatives of the

constraint equations (2.8) and simplifying the resulting expressions using the evolution equations

(2.7). I will follow an approach along these lines in the context of the Maxwell equations in

Section 3.4. This approach is, however, more tedious for the Einstein equations.

14

Equations (2.10) show that if the constraints C = Ci = 0 are satisfied in the initial

data (along with the definition Eij = 0), then the constraints will be satisfied at all

times [44].5

In principle, I now have a constrained initial value problem. I may choose spatial

initial data for gij and π
ij, subject to (2.8). Once done, I am free to choose both α and

βi arbitrarily as functions of both space and time, and to use (2.7) to evolve my initial

data to any later (or earlier) time. If I introduce a boundary at a finite distance,

then, in addition, I will need to choose boundary conditions that also respect the

constraints (2.8).

2.2 Formalisms

Equations (2.7) and (2.8) are a complete characterization of the vacuum Einstein

equations in 3+1 terms. They are not, however, a unique representation of the

Einstein equations in 3+1 terms. Notice, for example, that adding a multiple of

H to the right hand side of (2.7a) does not change the physical predictions of the

system of equations since all physical solutions have H = 0 according to (2.8a). That

is not to say that the equations are the same independent of whether or not I add a

multiple of the Hamiltonian constraint to some of the evolution equations, but rather

that they are the same when the constraints are satisfied.

In a numerical simulation, the constraints will generically be violated at some level

because, no matter how the simulation is designed, it always solves an approximation

to the actual equations. This means that, although at the continuum level combining

the constraints into a set of evolution equations as above does not effectively change

the equations, any approximation to a solution is sensitive to such changes. Moreover,

from numerical experiments, numerical relativists have come to understand that

choosing an appropriate formalism plays a critical role in determining the long-term

stability of a simulation. In current simulations, in fact, no group of which I am

5Note that the meaning of ∇a and Da are reversed in Ref. [44] relative to the conventions that

I am using here.

15

aware uses equations (2.7) and (2.8), which I will call the “original ADM equations,”

as written. In the rest of this section I will introduce the formalisms that are used in

this dissertation in some detail. The particular formalisms introduced in this section

are by no means an exhaustive list of formalism in use today, but serve only to

introduce those used in this dissertation.

2.2.1 Standard ADM

In the context of his initial data work, York [96] introduced a modification to the

original ADM equations (2.7) and (2.8), which, in the numerical relativity literature,

has come to be called simply the “ADM equations.”6 I follow this convention, though,

when there is specific need to distinguish York’s rewrite from (2.7) and (2.8), I will

designate York’s version of the equations “standard ADM.”

Rather than evolving the canonically conjugate momenta πij, York chose the

extrinsic curvature Kij of the three dimensional slices as embedded in the four di-

mensional spacetime manifold. In pure geometrical terms, the extrinsic curvature is

a measure of the “bend” of a hypersurface as measured from a higher dimensional

space in which hypersurface is embedded. For my purposes here, it is sufficient to

note that

Kij = −g−1/2 (πij − gijπ) (2.11)

gives a simple algebraic relationship between πij and Kij.

In this formalism, the evolution equation for the three-metric gij is (2.7a), using

(2.11) to eliminate πij in favor of the extrinsic curvature Kij. The evolution equation

for the extrinsic curvature, on the other hand, comes from taking a time derivative

of (2.11), and replacing the time derivatives that appear on the right side of the

equations according to (2.7b) and the new evolution equation for the metric (2.12a).

In passing from the original ADM equations to the standard equations, it is also

6York was not the first to write the equations in form described in Section 2.2.1. Indeed the

original ADM paper, Ref. [9], discusses the possibility of using the extrinsic curvature as the “mo-

mentum” variable. York’s work, however, appears to be what made that choice popular in the

numerical relativity community.

16

necessary to solve the Hamiltonian constraint (2.8a) for the Ricci scalar R in terms

of gij and Kij, and use this expression for R to remove the Ricci scalar from the

evolution equations. (York provided a different derivation, and from the point of

view that he adopted in Ref. [96], the equations below follow naturally, without the

need to explicitly incorporate the Hamiltonian constraint.) The final results

∂tgij = −2αKij + βi;j + βj;i (2.12a)

∂tKij = −∇i∇jα + α
(

Rij − 2KinK
n
j +KKij

)

+£βKij (2.12b)

take this mixing of the constraint into the evolution equation into account, with

H = R +K2 −KijK
ij (2.13a)

P i =
(

gimgjn − gijgmn
)

Kmn;j (2.13b)

giving the constraints themselves.7

2.2.2 BSSN

An alternative to ADM was suggested in a paper by Shibata and Nakamura in 1995

[77] and was made popular by a subsequent paper by Baumgarte and Shapiro in 1999

[12]. It has since become known as the BSSN formalism, and it has all but replaced

ADM in modern simulations because, empirically, it has better stability properties.

Discussion begins with the definition of new variables

φ =
1

12
log g (2.14a)

K = gabKab (2.14b)

g̃ij = e−4φgij (2.14c)

Ãij = e−4φ
(

Kij −
1

3
gijK

)

(2.14d)

Γ̃i = g̃abΓ̃iab (2.14e)

in terms of the ADM variables. In this formalism, it is the quantities on the left

hand sides of equations (2.14) that are independently evolved. This means that

7Equations (2.13) are rescaled by a factor of g−1/2 relative to equations (2.8). Since their analytic

value is zero, this is physically meaningless, but it is nonetheless convenient.

17

there are seventeen free variables in the system, compared to twelve free variables in

the ADM equations.8 This, however, is no problem because equations (2.14) provide

five constraints on the BSSN variables, which, in addition to the physical constraints

(2.8), should be satisfied by the data. More specifically, the five constraints are as

follows: (2.14a) and (2.14c) imply that det g̃ = 1; (2.14b) and (2.14d) imply that

g̃ijÃij = 0; and (2.14e) itself is three constraints between Γ̃i and the conformal metric

g̃ij.

The evolution equations for these variables are derived from the evolution equa-

tions for the ADM variables (2.12). In computing the time derivative for Γ̃i, which is

typically called the conformal connection, it is again necessary to mix the constraints

into the evolution equations in order to have a stable evolution system. It is conven-

tional to use the momentum constraint (2.8b) to replace the Ãij
,j where it appears in

the evolution equation for Γ̃i because it has been found empirically that it is essential

in making this formalism stable [12, 5]. It has also been argued on purely mathemat-

ical grounds that adding the momentum constraint to this evolution equation plays

a key role in making the BSSN system numerically stable [67].

In the end

∂tφ = −1

6
αK +£βφ (2.15a)

∂tK = −∇a∇aα + α

(

ÃabÃab +
1

3
K2

)

+£βK (2.15b)

∂tg̃ij = −2αÃij +£βgij (2.15c)

∂tÃij = e−4φ (−∇i∇jα + αRij)
TF +£βÃij

+ α
(

KÃij − 2ÃiaÃ
a
j

)

(2.15d)

∂tΓ̃
i = 2α

(

Γ̃iabÃ
ab − 2

3
g̃iaK,a + 6Ãiaφ,a

)

+ g̃kl
(

−Γ̃jklβi,j +
2

3
Γ̃iklβ

j
,j

)

+ βkΓ̃i ,k

+ g̃jkβi,jk +
1

3
g̃ijβk,kj − 2Ãiaα,a (2.15e)

8This counting takes into account that the 3× 3 matrices gij , Kij , g̃ij , and Ãij are symmetric,

and therefore have only six independent components each.

18

are the evolution equations. Equations (2.15) require more explanation. First, the

“TF” in (2.15d) indicates the trace-free part of the expression in the parentheses.

Second, note that the covariant derivatives in (2.15b) and (2.15d) are with respect

to the physical metric gij. Although convenient for writing the equations, in code

this should be computed in terms of BSSN quantities. The full expression is

∇m∇nα = ∂m∂nα− 4∂(mφ∂n)α− Γ̃kmn∂kα + 2γ̃mnγ̃
kl∂kφ∂lα (2.16)

(see, for example, [55]). The index should be raised in (2.15b) with the physical

metric gij. Third, the Ricci tensor in (2.15d) is also with respect to the physical

metric. It can be computed according to the decomposition

Rij = R̃ij +Rφ
ij (2.17)

with

R̃ij = −1

2
g̃lmg̃ij,lm + g̃k(iΓ̃

k
,j) + g̃lmΓ̃klmΓ̃(ij)k

+ g̃lm
(

2Γ̃kl(iΓ̃j)km + Γ̃kimΓ̃klj

)

(2.18)

giving the Ricci tensor associated with the conformal metric, and

Rφ
ij = −2∇̃i∇̃jφ− 2g̃ij∇̃k∇̃kφ+ 4∇̃iφ∇̃jφ− 4g̃ij∇̃kφ∇̃kφ (2.19)

giving the part dependent on the conformal factor.

As written, equations (2.15) and (2.18) also reflect the empirically correct choices

for when to use the independently evolved Γ̃i, and when to recompute the equivalent

quantity from the conformal metric.9 Whenever derivatives of the conformal connec-

tion appear, the independently evolved quantity is used, but where the conformal

connection itself would appear, it is recomputed from the conformal metric accord-

ing to (2.14e). This has been shown empirically to lead the most stable numerical

system [5].

9The community still experiments with this point. As written here, I have followed the general

rules laid out in Ref. [4] and used in work related to this dissertation, Ref. [55].

19

Chapter 3

Constraints

Constraints are ubiquitous in classical physics. They appear in even fairly elemen-

tary problems of dynamics, and appear again, in a slightly different way, in gauge

field theories. This chapter talks briefly about the nature of constraints in physical

theories at a continuum level, before reanalyzing them in the context of numerical

simulations. The behavior of systems in the two cases is radically different, in that

constraints, which at the continuum level are forever satisfied if satisfied in the initial

data, may grow when the equations are discretized. After these two short introduc-

tory sections, I present an original method for controlling the growth of constraints in

numerical simulations by incorporating constraint equations into evolution equations

in a novel way.

Before proceeding to a more detailed discussion, I find it useful to define, and to

distinguish the difference between, two terms.

Definition 3.1 A constraint C = C(t,x) is a function of space and time such that

C(t,x) = 0 for all t and x.

Definition 3.2 A conserved quantity C = C(t) is a function of time only such that

C(t) = 0 for all t.

A few comments are needed. First, it is immediately clear from the definitions that a

constraint always implies a conserved quantity, but that the reverse is not true. Sec-

ond, note that, without loss of generality, I define constraints to be zero-valued. This

is convenient for technical reasons that will be apparent later. Finally, notice that

20

conserved quantities are frequently expressed as integrals. Total mass, for example,

is conserved in an integral sense meaning that mass density at any given point may

changed over time, but the integral over the whole space is constant. Constraints,

on the other hand, are usually specified as functions and are identically satisfied

pointwise throughout the space. This chapter is concerned only with constraints as

defined here. The constraint driver methods, in particular, introduced in Section 3.3,

are not generally applicable to conserved quantities.

3.1 Constraints in Hamiltonian systems

In classical mechanics, constraints usually arise to account for forces that are not

otherwise treated explicitly. A roller-coaster car, which is confined to its track, is an

obvious example. The problem can be solved, without worrying about the details of

forces that hold the car to the track, by treating the path of the track as a constraint

in the problem. The constraint, in such a case, essentially indicates that, while

we may think of the car moving in three dimensions, the mathematical problem is

only one dimensional. In the case of holonomic constraints,1 the typical method for

solving such a problem in N dimensions with C constraints is to introduce N − C

generalized coordinates, which implicitly include the constraints. In effect, switching

to generalized coordinates makes the actual number of degrees of freedom in the

problem manifest.

Constraints arise again in gauge theories, though the way that they enter the

theory is different. Here the physical fields of the theory are expressible in terms of

other, non-observable fields. The Maxwell equations, in which the scalar and vector

potentials are gauge fields, are the simplest example in physics. Changing the gauge

fields in a way consistent with the theory does not alter the physical fields in any

1Holonomic constraints are those that can be expressed as an equality between coordinates of

particles. The roller-coaster car is an example. Nonholonomic constraints are all others. The walls

of a container filled with a gas are an example. See Goldstein [46] for more discussion on this point

in classical mechanics.

21

way. The precise physical meaning of the constraints in a gauge theory is not as

clear as it was in typical case of classical mechanics. In a mathematical sense, they

again indicate that the physical fields have “too many” degrees of freedom, but the

physical origin of this excess remains a much deeper question in general.2 Whatever

the cause, however, the fact remains that the physical fields of a gauge theory are

necessarily subject to constraints.

In the context of solving a gauge theory’s equations of motion as an initial value

problem, a natural question arises: Is it necessary to solve the constraints at each

moment of time, or is it sufficient to solve them only in initial data? The answer,

for a self-consistent theory, is that it is sufficient to solve the constraints in the

initial data because the constraints of the theory propagate. This is generally proved

by computing the time derivative of a constraint, and showing, by substituting the

evolution equations for the fundamental fields into this equation, that the evolution

equation for the constraint is a linear combination of the constraints in the theory.

Given that the constraints are satisfied at the initial time, this proves that they

remain satisfied for all time.3

One might also ask, when trying to solve the equations of motion for gauge

field theory, if some analogue of generalized coordinates exist in which the true

degrees of freedom of the theory are isolated, eliminating the need to further deal

with the constraints. The answer here is mixed. For the Einstein equations, which

are of primary concern here, the answer appears to be that one cannot remove the

constraints entirely. The momentum constraint can be removed from the theory by

considering only equivalence classes of three-metrics, where any two three-metrics

related by a diffeomorphism are considered equivalent. This leaves, however, the

2In the case of Maxwell, the gauge freedom is related to electric charge conservation and the

lack of magnetic monopoles. In the case of Einstein, it is related to coordinate freedom. Why there

should be charge conservation or coordinate freedom, however, is a fundamentally deeper question

than the purely mechanical question of why the car should stay on the track.

3See Appendix E of Wald [89] for extended discussion on this point in terms of the Maxwell, the

Klein-Gordan, and the Einstein equations. See Section 2.1 for an alternate approach for the case

of the Einstein equations.

22

Hamiltonian constraint. As of early 2004, it does not appear that this constraint

can be removed by any such trick, in large part because it is quadratic in the fields

and therefore does not admit a unique inversion. In addition to posing problems for

numerical relativists, this also presents a difficulty for those attempting canonical

quantization of gravity [89].

3.2 Constraints in numerical simulations

Although there are analytic guarantees that, if the initial data satisfies the con-

straints, and that initial data is propagated forward by the exact evolution equa-

tions, the constraints will be satisfied at all future times, numerically this need not

be true. Round-off and truncation errors necessarily introduced in the numerical

approximation to the problem will take the simulated solution off of the constraint

hypersurface. Once off of the constraint hypersurface, even analytically, there are no

guarantees about how the system will behave since this is a non-physical region of

the solution space.

In practice, there are three broad classes of techniques used to deal with con-

straints in a numerical evolution: (1) Free evolution, in which the initial data is

constructed to satisfy the constraints, and is evolved forward using the evolution

equations. The constraint violation introduced by numerical error is monitored, but

no action is taken to re-solve the constraints at later times. (2) Special numerics, by

which I mean numerical schemes that are tailored to a specific problem and are de-

signed to ensure that the constraints are satisfied up to some order. (3) Constrained

evolution, in which the constraints are solved explicitly throughout the evolution,

either by taking the evolved solution as a starting point for an elliptic solver, or by

making algebraic substitutions on the evolved solutions such that the modified data

satisfies the constraints. For the purposes of this dissertation, only free evolution

has direct relevance. Attempts to use fully constrained evolution have so far been

extremely limited in full, three dimensional numerical relativity, and, to date, no one

has successfully formulated and implemented the Einstein equations in a way that

23

admits special numerics that identically conserve constraints.

There are two primary reasons, that constrained evolution techniques have not

been popular, although they have been and are practiced by some in the field [73, 7].

The first is that the constraint equations of the Einstein system are elliptic equations,

and finding numerical solutions to elliptic equations tends to be quite computation-

ally expensive. The second, more fundamental reason is that the procedure may not

be well defined. Solutions to elliptic equations are entirely determined by boundary

conditions, whereas no one knows how to sensibly apply a boundary condition near

a black hole. Even if the physical boundary of a computational domain is far enough

from a black hole to apply a reasonable boundary condition there, most long-term

stable simulations include excision techniques (i.e. they do not evolve data in the

interior of the black hole — see, for example, [3, 79]), in which a boundary is intro-

duced inside the event horizon of the black hole. Specifying an appropriate boundary

condition here is an open question for the elliptic problem.

In order to avoid these problems, there have been some numerical experiments

with solving the constraints algebraically. Instead of solving the elliptic equations

explicitly, there have been some attempts to substitute constraints for evolution

equations to ensure that the constraints are satisfied (e.g. Ref. [41]). These methods

have not become as popular as free evolution methods, nor are they entirely natural

since it is not clear how to substitute four constraint equations into twelve (first order

in time) evolution equations in a meaningful way.4

Given that constraint violating modes can be created by the numerics used in a

simulation, that constraint violating modes have empirically been linked to numerical

instabilities, and that the dynamics of the fields off of the constraint hypersurface

are not constrained by physics, it is not surprising that a variety of authors (e.g.

[9, 77, 12, 5, 56, 59, 93]) have found that exact form in which the evolution equations

are written plays a role in the stability of simulations. Exactly how to rewrite the

4There is a notable exception in the BSSN formalism. It is common to enforce the constraint

g̃ijÃij = 0 by subtracting the trace of Ãij from the evolved variable at the end of each iteration of

the time stepping algorithm. See, for example, Ref. [55].

24

evolution equations in order to increase stability has, however, remained more of an

art than a science.

3.3 Driver terms

Making one trivial observation can lead to an unlimited number of ways of dealing

with the constraints of the system. Given the evolution equations and constraint

equations written in a particular formalism, one can freely modify the evolution

equations by adding multiples of the constraints. Analytically this does not change

the physics of the system because, on the constraint hypersurface, these terms vanish

identically. Off of the constraint hypersurface, these terms will be non-zero, and

will therefore affect the off-constraint dynamics of the evolution system under free

evolution. Choosing the exact form of these corrections carefully might induce the

evolution to dynamically favor constraint satisfying solutions. This observation, in

many variations, has been applied, to differing degrees of success, by other authors

[37, 21, 94, 78, 95, 88, 7, 60].

In what follows, I repeat and expand upon results that I first reported in Ref.

[42]. My goal in this work is to develop a general prescription for choosing such

terms. This approach differs significantly from other such attempts in that it (1)

considers non-linear correction terms, (2) provides a general analytic prescription for

generating the correction terms, or (3) both. In order to present the idea, I first

discuss the ordinary differential equation case of a simple harmonic oscillator. In

Section 3.4, I turn to how to treat partial differential equations with an extensive

application to the Maxwell equations, written in two different formalism, each of

which closely resemble popular formalisms of the Einstein equations. Finally, in

Section 3.5 I study the linearized Einstein equations in one spatial dimension.

25

3.3.1 Simple Harmonic Oscillator

The equations of motion for the simple harmonic oscillator, written in first order

form are

d

dt





x

v



 =





v

−x



 (3.1)

in units where the angular speed ω = 1. For a constraint, take the energy of the

system at time t shifted by the initial energy C(t) = x2(t) + v2(t) − E0, which,

analytically, should be zero for all t.

Given that the constraint may be violated in a numeric integration, I would like

a way to measure whether the system will tend to evolve toward or away from the

proper constraint value. In making this determination, it is useful to consider the

squared constraint since this is of definite sign. Consider the time evolution of the

squared constraint. By the chain rule,

dC2

dt
=
∂C2

∂x

dx

dt
+
∂C2

∂v

dv

dt
(3.2)

gives this time evolution. Notice now that the functional form of the partial deriva-

tives in (3.2) is fixed by the form of the energy expression of this formalism, but

the time derivative terms on the right hand side of (3.2) may be modified by adding

multiples of the constraints without changing the physics of the system.

Consider the modified system of evolution equations

d

dt





x

v



 =





v

−x



−K





∂xC
2

∂vC
2



 (3.3)

with K a positive constant. Repeating the chain rule argument outlined above,

dC2

dt
=

[

∂C2

∂x
v − ∂C2

∂v
x

]

−K

[

(

∂C2

∂x

)2

+

(

∂C2

∂v

)2
]

(3.4)

gives the new evolution equation for the constraint. The first term in brackets is a

piece determined by the underlying formalism, while the second term is due entirely

to the correction applied in (3.3). Moreover, by the choice of K, the correction term

has definite sign and will tend to restore the system to a state of zero constraint.

26

abs error x
abs error v

Legend

Absolute errors in x and v for undriven equations

0

0.05

0.1

0.15

0.2

0.25

20 40 60 80 100
t

Error(t)

Figure 3.1: The time evolution of the solution error in x and v for the undriven

(K = 0) evolution equations.

This effect is balanced against the unknown sign of the first term, so that success is

not guaranteed, but by choosing K large enough one might hope that the dynamics

would choose to stay near the constraint hypersurface.

Numerical simulations, in fact, bear out these hopes. I ran a toy model based

on (3.3) in Maple [62], testing the system with different values of K. I integrated

forward in time with the Euler method and looked at both the solution error and

the constraint violation as a function of time.

The solution error results are displayed in Figures 3.1–3.3. Notice that while

solution error grows linearly with time in the unmodified system (K = 0), as seen in

Figure 3.1, it quickly levels out to a relatively small value in Figure 3.2 (K = 1) and

grows linearly with a slope 3 orders of magnitude smaller than the unmodified case

when K = 100 in Figure 3.3.

Likewise, the results for the constraint violation itself is equally encouraging.

Compare the constraint violation for the unmodified equations, shown in Figure 3.4,

which grows for the entire duration of the simulation, to the constraint violation in

27

abs error x
abs error v

Legend

Absolute errors in x and v for set 1

0

0.0005

0.001

0.0015

0.002

0.0025

20 40 60 80 100
t

Error(t)

Figure 3.2: The time evolution of the solution error in x and v for the driven evolution

equations with K = 1.

abs error x
abs error v

Legend

Absolute errors in x and v for set 2

0

0.0001

0.0002

0.0003

0.0004

20 40 60 80 100
t

Error(t)

Figure 3.3: The time evolution of the solution error in x and v for the driven evolution

equations with K = 100.

28

Energy constraint over time of undriven equations

0

0.05

0.1

0.15

0.2

0.25

0.3

20 40 60 80 100
t

C(t)

Figure 3.4: The time evolution of the constraint C(t) for the undriven (K = 0)

evolution equations.

the two modified runs, shown in Figure 3.5 and Figure 3.6 (K = 1 and K = 100,

respectively). In both modified cases, the constraint violation quickly levels out,

staying at a fixed value for the duration of the run. This fixed value, as expected, is

smaller for the larger value of K.

By putting the spring constant k and the massm back into the harmonic oscillator

equations, and then making the spring constant a function of the energy of the sys-

tem, I was able to construct a more complicated toy model, where the off-constraint

behavior depended on the deviation from the proper constraint value. The results

were substantially the same, with both the solution error and the constraint viola-

tion larger in the unmodified system of equations. The modified equations performed

better with larger values of K than with smaller values.

3.3.2 Partial Differential Equations

Having seen the method in the simple case of ODEs, consider now the more inter-

esting case of PDEs with one constraint equation. Let s be the state vector for a

29

Energy constraint over time of set 1

0

0.0005

0.001

0.0015

0.002

0.0025

20 40 60 80 100
t

C(t)

Figure 3.5: The time evolution of C(t) for the driven evolution equations withK = 1.

Energy constraint over time of set 2

0

5e–06

1e–05

1.5e–05

2e–05

2.5e–05

20 40 60 80 100
t

C(t)

Figure 3.6: The time evolution of C(t) for the driven evolution equations with K =

100.

30

system. Define

Sm(t,x) =
∂sm
∂t

(3.5)

to be the right hand side of the evolution equation in the unmodified formalism.

A general constraint C will depend on s and its spatial derivatives. Furthermore,

the constraint should be satisfied at every point in space. These considerations

motivate looking at the integrated, squared constraint C2 =
∫

C2dNx, and, instead

of taking partial derivatives with respect to the fields, I need to take variational

derivatives of the integrated constraint when considering the analogies of (3.3) so

that the dependence of C on the spatial derivatives of the fields is treated properly.

Following this prescription, the appropriate modification to the equation of mo-

tion for the state vector is

∂sm
∂t

= Sm(t,x)−Kmn(t,x)
δC2

δsn(t,x)
(3.6)

for some positive-definite matrix-valued function Kmn. Under this change,

dC2

dt
= D[s]−

∫

(

δC2

δsm

)

Kmn

(

δC2

δsn

)

dNx (3.7)

gives the evolution of the constraint in the modified theory. Here D[s] gives the

functional form of the right hand side of the constraint’s evolution equation in the

unmodified theory. For the cases considered here, I chose the Kmn diagonal and

constant.

For systems withM constraint equations, the method is easily modified by taking

the grand constraint functional to be

C2
G =

∫

wIJ(t,x)CICJd
Nx (3.8)

with any positive definite matrix wIJ . Like Kmn, the matrix wIJ , can, in principle,

be a function of both space and time, and can have off-diagonal entries. In practice,

however, I have only used diagonal and constant matrices. Even in the diagonal case,

the matrix is necessary in principle because there is no a priori reason to believe that

the constraints have the same measurement dimensions. It also allows the different

constraints to be treated with different relative importance. In addition, since there

31

is no natural scale for the grand constraint, one may always set one of the coefficients

wIJ in (3.8) to unity.

3.4 Application to the Maxwell Equations

This section takes Maxwell’s equations as a concrete example of a system of par-

tial differential equations subject to a pointwise constraint. Knapp, Walker, and

Baumgarte (KWB) [58] showed both that the Maxwell equations may be formulated

in ways closely paralleling popular formulations of the Einstein equations, and that

numerical properties of the full Einstein equations can be understood more easily in

the simpler context of the Maxwell equations. Following KWB, I consider two ways

of writing the vacuum Maxwell equations in terms of the vector potential Ai. The

first system, called System I, uses the evolution equations

∂tAi = −Ei − ∂iψ (3.9)

∂tEi = −∂j∂jAi + ∂i∂jAj (3.10)

and the constraint

CE = ∂iEi = 0. (3.11)

The second system introduces the additional field Γ defined by

Γ = ∂iAi (3.12)

to eliminate mixed derivatives in (3.10). The evolution equations for System II are

∂tEi = −∂j∂jAi + ∂iΓ (3.13)

∂tΓ = −∂i∂iψ (3.14)

and (3.9). Both systems use a gauge consistent with

∂tψ = −∂iAi = −Γ (3.15)

using the first equality for System I and the second for System II.

32

3.4.1 System I Evolution Equations

Having defined the systems, I would now like to calculate the terms required for

applying the constraint finding method to System I. Here there is only one constraint,

C = CE = ∂iEi, which is zero-valued. It depends only on the first derivatives of the

electric field, therefore I need only to calculate

δC2

δEi(t,x)
= −2∂iCE (3.16)

which modifies (3.10). The new evolution equation for the electric field is

∂tEi = −∂k∂kAi + ∂i∂kAk + 2KE∂iCE (3.17)

for an arbitrary positive KE, while the other System I evolution equations (3.9) and

(3.15) remain unchanged.

3.4.2 System II Evolution Equations

System II, unlike System I, has two constraints that should be enforced, the original

constraint given by (3.11) plus the definition of Γ in (3.12), rewritten as

CΓ = ∂iAi − Γ = 0 (3.18)

to make it zero-valued. This provides more freedom in constructing the grand con-

straint

C2 = C2
E + wC2

Γ (3.19)

where one does not necessarily have to treat the constraints on equal footing. In this

case, the total constraint depends additionally on Γ and on first derivatives of the

vector potential. In addition to (3.16), which is still valid, I need

δC2

δAi(t,x)
= −2w∂iCΓ (3.20)

δC2

δΓ(t,x)
= −2wCΓ (3.21)

to enforce the definition of Γ.

33

Applying these correction terms to the evolution equations gives the new equa-

tions of motion

∂tAi = −Ei − ∂iψ + 2wKA∂iCΓ (3.22)

∂tEi = −∂k∂kAi + ∂iΓ + 2KE∂iCE (3.23)

∂tΓ = −∂k∂kψ + 2wKΓCΓ (3.24)

which, combined with (3.15), form a complete system. The constants KA and KΓ

are arbitrary but positive.

3.4.3 Propagation of Constraints

In Ref. [58], KWB examined the evolution equation for CE in both systems. They

showed that for System I, the constraint does not evolve in time, and that in System

II, the constraint obeys a wave equation. They did not have reason, however, to con-

sider the time evolution of the secondary constraint CΓ. I extend their results here

by showing that the secondary constraint also satisfies a wave equation in the un-

modified case. Furthermore, I demonstrate the improved behavior of the constraints

under the modifications that I have proposed.

Calculating the first time derivatives of the constraints is easily accomplished by

taking the time derivatives of (3.11) and (3.18) and replacing the time derivatives

that appear on the right hand sides of the equations by the evolution equations

(3.17), (3.22), and (3.24). This gives the results

∂tCE = −∂2i [CΓ − 2KECE] (3.25a)

∂tCΓ = −CE + 2w
[

KA∂
2
iCΓ −KΓCΓ

]

. (3.25b)

Equation (3.25a) can be viewed as valid for both systems if CΓ is taken to be iden-

tically zero for System I.

To see that KWB have a wave equation for the secondary constraint, set all of

the Ks to zero in (3.25) to eliminate the modifications, and take the time derivative

of (3.25b). The result

∂2tCΓ = ∂2iCΓ (3.26)

34

follows immediately.

Of greater interest here, however, is an analysis on the modified equations (3.25)

in their first derivative form. The equations are linear, so they admit a Fourier

analysis by substituting a plane wave solution eikx into the right hand sides. After

this substitution, the resulting equations

∂tCE = k2CΓ − 2KEk
2CE (3.27a)

∂tCΓ = −CE − 2w
[

KAk
2 +KΓ

]

CΓ (3.27b)

retain the terms that gave the KWB wave equations for the constraints, but have

additional terms that look like they provide exponential decay. This system of equa-

tions is, in fact, simple enough for Maple to solve analytically for general values of

the Ks in one dimension. The solution, which is too long to display in detail here,

consists of a sum of terms with the form

exp

[(

−f+1 ±
√

σ
[

(

f−1
)2 − k2

]

)

t

]

f2 (3.28)

where

f±1 (k
2) = (KE ± wKA)k

2 ± wKΓ (3.29)

σ = ±1, and f2 = f2(k, Ci(0, x)) is some simple function of k and the initial values

of the constraints. Since f+1 (k
2) > 0 is manifestly positive and the radical is either

positive or pure imaginary, the only term of this form that could cause anything other

than exponential decay is−f+1 +
√

σ[(f−1)
2 − k2] for parameters where σ[(f−1)

2−k2] >
0. Simple algebraic analysis, however, shows that even this term has an overall minus

sign, giving exponential decay. In order to make the argument more concrete, I

present the k = 1 solution

CE(t, x) = e−3t [CE(0, x) + S(x)t] (3.30a)

CΓ(t, x) = e−3t [CΓ(0, x)− S(x)t] (3.30b)

for which all of the Ks are set equal to one. Here S(x) = CE(0, x) + CΓ(0, x) is a

short hand.

35

Run KE KA KΓ w

I-0 0 - - -
I-1 1× 10−2 - - -
I-2 5× 10−2 - - -
II-0 0 0 0 1
II-1 5× 10−3 5× 10−3 5× 10−3 1
II-2 1× 10−2 1× 10−2 1× 10−2 1

Table 3.1: The parameters used for the various simulations of the two Maxwell

systems are tabulated here.

One might object that this constraint behavior is “too good” (as did Tiglio [88]).

This result seems to indicate that the constraint violations, at late times, will be

pushed below truncation error, which seems unnatural if not unstable for a numer-

ical calculation. In practice, as I will show with numerical experiments, truncation

errors prevent complete exponential decay in the constraints (as they must), but the

continuum tendency toward exponential decay keeps the constraints well controlled.

3.4.4 Numerical Results

My numerical experiments on these modified systems of equations used an ICN

integration scheme [87], and a Courant factor of 1/2. The spatial domain ran from

−6 to +6, with data stored on 99 points in each coordinate direction. On the evolved

fields (Ei, Ai, ψ, and Γ), I imposed outgoing wave boundary conditions (see Ref. [2]

for implementation details), and, on the constraints, I imposed CI = 0 for applicable

I. All runs were performed on a 500 MHz Digital Personal Workstation with 1.5 GB

of RAM.

For each system, I ran three parameter sets, one of which reproduced the equa-

tions used by KWB. The full definitions of all of the parameter sets are found in

Table 3.1. Sensible values of the parameters were easily determined by trial and

error. Choosing the values too small, as expected, makes little difference in the evo-

lution, while choosing the values too large leads to numerical instabilities during the

transient period of the evolution.

In my original paper on this subject, Ref. [42], I noted that one possible expla-

36

nation for the instability associated with large parameters is that the added terms

modify the dispersion relationships for the various Fourier modes, as seen in (3.28).

Large values of the parameters may require adjustments to the Courant condition,

which I had not analyzed in detail. In a later paper, Calabrese [26], in fact, made

this statement more precise. The correction terms in the case of the Maxwell equa-

tions change the system from a hyperbolic system to a mixed parabolic-hyperbolic

system. While for the hyperbolic system the standard Courant condition dt = λdx

with λ < 1 applies, in the case of parabolic equations stability requires dt = λdx2,

where λ depends on the size of the damping parameters. I address this issue further

in Section 3.5 in the context of the Einstein equations.

I followed KWB in using the analytic solution

Aφ = 0 (3.31a)

Eφ = 8Aλ2re−λr2 sin θ (3.31b)

of a toroidal dipole to generate the initial data. The other components of the fields are

zero. I chose λ = A = 1, and the conversion from spherical to Cartesian coordinates

was made in the code.

The results of the System I runs are summarized in Figure 3.7, which shows a

plot of ‖CE‖2 versus t. The I-0 (control) curve reproduces the findings of KWB that,

after an initial transient, the CE constraint does not evolve in time. The I-1 and

I-2 curves, representing different values (see Table 3.1) of the parameter KE, on the

other hand, show a modulated exponential decay. Eventually, around t ≈ 200, the

I-1 case also stops decaying as rapidly, while the rapid exponential decay continues

through the end of the run for I-2.

That the constraint in the modified case I-1 ceases to evolve at some point is

consistent with (3.7), which implies that the constraints will cease to evolve when

the first term balances with the second term. From (3.7), one expects that this

balance will be achieved for smaller constraint violation when the driving parameter

is larger, which is consistent with the results shown in Figure 3.7.

Looking at two dimensional slices of the constraint data at various times, also

37

1e-08

1e-07

1e-06

1e-05

0.0001

0.001

0.01

0 50 100 150 200 250 300 350

System I: ||CE||2 vs. t

I-0
I-1
I-2

t

||C
E
(t

)|
| 2

Figure 3.7: The l2 norm of the primary constraint CE versus time t for three test

cases. Case I-0 has no correction terms (KE = 0). See Table 3.1 for the other

parameter values.

suggests that the source of the modulation in the decay demonstrated by I-1 and

I-2 is fluctuations at the boundary, possibly caused by the simple boundary condi-

tion applied there on the constraints. Significantly, these fluctuations are unable to

penetrate the interior of the computational domain, unlike many scenarios seen in

numerical relativity where noise from the boundary noticeably propagates inward,

eventually killing the simulation. Because I am only interested in the Maxwell equa-

tions as a test-bed for the method, and because the modified System I equations

already perform orders of magnitude better than their unmodified counter part, I

have not pursued this point further.

Figure 3.8 shows a plot of ‖CE‖2 vs. t for the System II case. Here again, the

control run (II-0) reproduces the results of KWB, this time showing exponential

decay in the primary constraint. Even with such an ideal result in the unmodified

case, the modified runs II-1 and II-2 show improvement. They represent runs with

non-zero values (see Table 3.1) of the various forcing parameters, and in these cases

38

1e-35

1e-30

1e-25

1e-20

1e-15

1e-10

1e-05

1

0 50 100 150 200 250 300 350

System II: ||CE||2 vs. t

II-0
II-1
II-2

t

||C
E
(t

)|
| 2

Figure 3.8: The l2 norm of the primary constraint CE versus time t for three test

cases. Case II-0 reproduces KWB. See Table 3.1 for the definitions of other param-

eters.

the constraint decays exponentially, but with a smaller characteristic time.

Figure 3.9 is a plot of ‖CΓ‖2 versus time t, and shows similar behavior to the

primary constraint in all three cases. The secondary constraint shows exponential

decay in the unmodified II-0 case, while showing a faster decay in the two modified

runs, II-1 and II-2. The jump in the graph at t = 0 occurs because the secondary

constraint is exactly satisfied in the initial data by construction.

It should be noted that one likely explanation for the extremely favorable per-

formance of the unmodified System II is that, since the constraints satisfy a wave

equation, constraint violations propagate off of the grid. This is supported by the

data presented by KWB, showing that decay rate of the constraint decreases when

the outer boundary is moved farther out [58]. The method presented here bene-

fits from constraint violations propagating off of the grid as well, but, in addition,

attempts to damp the constraint violation pointwise throughout the grid at all times.

39

1e-35

1e-30

1e-25

1e-20

1e-15

1e-10

1e-05

1

0 50 100 150 200 250 300 350

System II: ||CΓ||2 vs. t

II-0
II-1
II-2

t

||C
Γ(

t)
|| 2

Figure 3.9: The l2 norm of the secondary constraint CΓ versus time t for three test

cases. Case II-0 is the result of KWB. See Table 3.1 for other parameter values. At

t = 0 the constraint is identically satisfied.

3.5 Application to the linearized Einstein Equa-

tions

The work detailed in the previous two sections provides the first proof-of-concept tests

that driver terms can control constraint growth during the free evolution of a system

of partial differential equations. The work of those sections, formally, generalizes

simply to the more complicated Einstein equations. To preserve diffeomorphism

symmetry in the equations and to properly balance the tensor density weights, the

corrections should be computed as

∂sm
∂t

= Sm(t,x)−
κmn√
g

δC2

δsn(t,x)
(3.32)

instead of (3.6), letting C2 =
∫

C2√gdNx now so that the natural volume element

is used as the measure in the integration.

This method should now be tested in the specific context of an ADM decompo-

40

sition of the Einstein equations for general relativity. Unlike the Maxwell equations,

however, the Einstein equations are non-linear and have higher derivative terms in

the constraints. In particular, on the issue of higher order derivatives, note that

the correction terms generated by (3.32), for the formalisms that I am using here,

will have fourth derivative terms after integrating by parts because the constraints

themselves contain second derivatives.5 Either the non-linearities or the higher or-

der derivatives could cause serious complications when adding driver terms to the

evolution equations. I began by studying the effect of of constraint driver terms by

isolating potential issues coming from the higher order derivatives in the linearized

Einstein equations, leaving the possible effects of non-linearities aside for a moment.

Moreover, in this first round of tests, I study a simplified metric, which is assumed

to be diagonal and depend only on time and a single spatial coordinate. I ignore the

complications that fourth derivatives may introduce at the boundary by imposing

periodic boundary conditions.

3.5.1 Linearized ADM

Considering a transverse linear plane wave propagating in a Minkowski background,

the ADM evolution equations (2.12) take the form

∂gii
∂t

= −2Kii (3.33a)

∂Kii

∂t
= −1

2
gii,xx (3.33b)

in the geodesic gauge (α = 1, βi = 0). In this section spatial indices run only over y

and z, and the implicit summation convention is not used. There are two constraints

(because two components of the momentum tensor are identically satisfied under the

simplifying assumptions of the current problem)

H = −1

2
(gyy,xx + gzz,xx) (3.34a)

P =
1

2
(Kyy,x +Kzz,x) (3.34b)

5In a fully first order system, the correction terms would only have second order derivatives, but

this spoils the first order nature of the system!

41

which correspond to the linearized versions of (2.13) in the case of the transverse

wave. I fix gxx = 1 and Kxx = 0 because these tensor components do not appear in

the constraints, and are therefore irrelevant to my current topic.

With these choices, it is easy to check that the ansatz

gyy = 1 + af(t, x) (3.35a)

Kyy = −a
2

∂f

∂t
(t, x) (3.35b)

gzz = 1− af(t, x) (3.35c)

Kzz = +
a

2

∂f

∂t
(t, x) (3.35d)

identically satisfies the constraints (3.34) for any smooth function f . It is now suf-

ficient to solve just one pair of evolution equations, say the gyy-Kyy pair, to have

a complete solution to the problem. Each pair, however, is a wave equation, so

(3.35) is a solution to all of the linearized Einstein equations for any f(t, x) =

c1f1(t + x) + c2f2(t − x). For concreteness and for the numerical results below, I

choose the particular solution

f(t, x) = sin((t+ x)/λ) (3.36)

where x runs over a periodic domain [0, 2πλ).

Now I need to generate the correction terms for this formalism. Applying the

prescription (3.32) to the constraints (3.34) combined into the equally weighted grand

constraint functional6 C2 =
∫

(H2 + P 2)d3x,

∂gii
∂t

= −2Kii − κg(gyy,xxxx + gzz,xxxx) (3.37a)

∂Kii

∂t
= −1

2
gii,xx + κK(Kyy,xx +Kzz,xx) (3.37b)

replace (3.34) as the equations of motion for the system. I choose the parameters

κg and κK to be positive constants. The goal, paralleling the argument with the

Maxwell equations, is now to construct an explicit solution for the time evolution of

the constraints (3.34) given the new evolution equations (3.37).

6In principle this should include a factor of g1/2 as in (3.32), but I ignore that factor here because

it does not contribute at first order.

42

As with Maxwell, this linear system of equations is simple enough for Maple to

generate an explicit solution to the constraints’ evolution equations, and, as with

Maxwell, that solution indicates that arbitrary (unconstrained) initial data will ap-

proach the constraint hypersurface at late times. The full result is too long to display

here, but has a form similar to (3.28) and (3.29). All terms in the solution are ex-

ponentially decaying with time.

I wrote a one dimensional numerical code to experiment with this system of

equations. I specify initial data from the analytic solution (3.35) with the particular

choice (3.36). All first and second spatial derivatives are computed using standard

second order, centered finite difference stencils. The fourth derivatives are computed

by applying the second derivative operator twice. That is

f (4)(xi) ≈
D2(fi−1)− 2D2(fi) +D2(fi+1)

h2
(3.38)

where

D2(fj) =
fj+1 − 2fj + fj−1

h2
(3.39)

is the finite difference operator for second derivatives, and h is the grid spacing.

This approximation is second order accurate. The time integration scheme is iterated

Crank-Nicholson [87]. I find empirically that in order to have numerical stability with

the constraint driver terms it is important to choose dt = kh2 for some k rather than

maintaining a more conventional Courant condition dt = kh. This was suggested, in

the case of the Maxwell equations in Ref. [26]; in that case it was explicitly required

because some of the modified equations are parabolic rather than hyperbolic. I

choose k = 1/4. The wavelength λ is the natural length scale of the problem; I

choose the amplitude a = 10−6λ in terms of that scale. With these choices, I verified

that the code is second order convergent both with and without constraint driver

terms.

Figure 3.10 shows the l2 norms ‖E‖2 and ‖C‖2 for the linearized ADM system

both with and without constraint driver terms. The error ‖E‖2 is defined to be

‖E‖2 =
∫

∑

fields f

(fnumeric − fanalytic)
2dx (3.40)

43

1e-12

1e-11

1e-10

1e-09

1e-08

0 2 4 6 8 10

||E
||

or
 ||

C
||

time

||E|| and ||C|| with and without constraint driver corrections

||E|| (Unmodified)
||E|| (Modified)

||C|| (Unmodified)
||C|| (Modified)

Figure 3.10: The figure shows the l2 norm of the total solution error and the con-

straint violation ‖C‖2 for the linearized ADM system with and without constraint

driver modifications. The two jagged lines show the constraint violations in the two

cases. The jaggedness shows that the constraints are heavily influenced by round-off

error. The two smooth lines showing ‖E‖2 for the two cases are completely overlap-

ping.

and the constraint

‖C‖2 =
∫

(H2 + P 2)dx (3.41)

weights the two physical constraints equally.

The results show several interesting features. Most prominently, they show that

the constraint driver terms do reduce the constraint violation in the simulation.

Because the norm of the error is the same regardless of whether or not the constraint

driver terms are activated, I draw, in this case, two additional conclusions, (1) the

constraint driver terms are not spoiling the solution,7 and (2) there are significant

7One might worry, for example, that the constraints are solved, but that the resulting solution is

not the solution to the constraints that corresponds to the initial data. This issue could be further

addressed by considering the convergence of the simulation over several different choices of grid

44

constraint satisfying errors present in the simulation.

The fact that the constraint violations are reduced by the constraint driver terms

without increasing the solution error is a necessary condition for the successful appli-

cation of the algorithm, but what of the constraint satisfying errors? A few comments

are useful on this point. First I should discuss what it means to have a constraint

satisfying error. Recall that I noted above that (3.35) satisfies the constraint equa-

tions for any smooth function f . Not all choices of f , however, satisfy the evolution

equations. If I make the particular choice

f(t, x) = sin((vt+ x)/λ) (3.42)

where v is a constant, I will only have a solution to the evolution equations if v = 1

is the speed of light; compare (3.42) to (3.36). Choose any v 6= 1. Taking (3.35)

with the choice (3.42) yields a one parameter family of solutions to the constraints,

but the solutions at various “times” are not connected by the evolution equations.

In other words, this “solution” satisfies the constraint equations at all times, but it

never satisfies the evolution equations! Since numerical errors will generally violate

both the constraint equations and the evolution equations, there should always be

some “component” of constraint satisfying error in numerical results.

In the particular case of the plane wave solution simulated here, it seems that most

of the error is constraint satisfying. This claim is supported by the fact that, as seen

in Figure 3.10, the absolute error in the numerical answer is essentially unchanged

when the constraint modifications are added, even though the constraint violation is

reduced by two and a half orders of magnitude when the constraint driver terms are

activated.

I should also say some words about the jaggedness of the lines showing ‖C‖2
in both the unmodified and the modified cases in Figure 3.10. This is understood

analytically by noting that, in the initial data, the truncation error in the finite

difference approximation to gyy,xx is exactly the same in magnitude and opposite in

sign as the truncation error in the finite difference approximation to gzz,xx because

spacing.

45

of the symmetry between the equations. Specifically,

(

∂2gyy
∂x2

∣

∣

∣

∣

t=0

)

num

=

(

∂2gyy
∂x2

∣

∣

∣

∣

t=0

+
∞
∑

k=4

ckh
k−2 ∂

kgyy
∂xk

∣

∣

∣

∣

t=0

)

exact

+ ey (3.43)

(

∂2gzz
∂x2

∣

∣

∣

∣

t=0

)

num

=

(

∂2gzz
∂x2

∣

∣

∣

∣

t=0

+
∞
∑

k=4

ckh
k−2 ∂

kgzz
∂xk

∣

∣

∣

∣

t=0

)

exact

+ ez (3.44)

where the ck are rational numbers, and the terms ey and ez represent the round-

off errors in the calculation. Round-off errors are normally negligible. In this case,

however,
(

∂kgyy
∂xk

)

exact

= −
(

∂kgzz
∂xk

)

exact

(3.45)

for all k ≥ 1, which means that

(H)num = (gyy,xx)num + (gzz,xx)num = ey + ez + eH (3.46)

where eH is the round-off error accumulated in computing the constraint from the

numerical derivatives. In other words, the constraint violation in the initial data

is completely determined by round-off error. This phenomenon is a well-known

feature of floating point arithmetic, and is called catastrophic cancellation. When two

numbers of nearly equal size are subtracted, especially if those two numbers in reality

differ only by round-off error, it frequently turns out that all of the significant digits

cancel in the subtraction, leaving only round-off error behind. Because truncation

error arising from the time integration causes the magnitude of gyy,xx and gzz,xx to

evolve differently after the very earliest times, I do not see complete catastrophic

cancellation in Figure 3.10. The jaggedness in the lines, however, indicates that

round-off error continues to make a significant contribution to the constraint violation

for all times shown. Evidently the symmetry between the x and the y equations forces

this to persist even at later times.

In a moment, I will consider a different formalism, in which there are no such

accidental cancellations in the constraints. There I will demonstrate, perhaps more

convincingly because the constraint violations tend to be larger, that the constraint

driver terms are behaving as designed for initially constrained data. Before doing

that, however, consider the case of unconstrained data in the ADM formalism. In

46

0

5e-07

1e-06

1.5e-06

2e-06

2.5e-06

3e-06

0 2 4 6 8 10

||C
||

time

Constraint violation in linearized ADM as a function of time for unconstrained initial data

Unmodified
Modified

Figure 3.11: The figure shows the behavior of the total constraint violation for

the ADM formalism for a particular choice of initial data that does not satisfy the

constraints. Using the unmodified equations, the constraint violation oscillates, but

over time remains essentially of the same amplitude. In the modified equations,

however, the constraint violation rapidly damps away.

this case I kept the analytic solution (3.35) with the particular choice (3.36), and

then perturbed the initial data for gyy by giving it an amplitude of a′ = 1.1× 10−6λ.

This amounts to a ten percent perturbation in this particular degree of freedom

compared to the unperturbed fields which all have a = 1.0 × 10−6λ. Figure 3.11

shows the l2 norm of the total constraint violation in both the unmodified system and

the system with constraint driver terms. In the unmodified system, the constraint

violation is oscillating, but has a fairly constant amplitude over time.8 When the

constraint driver terms are added, on the other hand, the constraint violation does

damp away rapidly. Because the initial data in this case was not a solution to the

Einstein equations, it is not possible to compute the error in the numerical solution

8This is consistent with the analysis in Ref. [58] and with (3.25a), which suggests that constraint

violations in the “ADM” form of the Maxwell equations do not dissipate.

47

as compared to an analytic solution. At late times, however, the modified system

finds a solution to the equations. Notice also that round-off error does not appear

to be significant in this simulation (there are no jagged lines) because the symmetry

between x and y has been explicitly broken by the choice of initial data.

3.5.2 A Linearized BSSN-Type System

Now I would like to study a case that does not have the accidental cancellation in

the constraints that was present in the ADM system. To do this, I construct a new

system of equations by defining a new variable

Γ = gyy,x (3.47)

and rewriting the ADM equations in terms of this new variable. Using (3.33) and

(3.47), it is easy to derive new evolution equations

∂gyy
∂t

= −2Kyy (3.48a)

∂gzz
∂t

= −2Kzz (3.48b)

∂Kyy

∂t
= −1

2
Γ,x (3.48c)

∂Kzz

∂t
= −1

2
gzz,xx (3.48d)

∂Γ

∂t
= −2Kyy,x (3.48e)

for the fields in this new formalism. The constraints are (3.34) with the definition

(3.47)

G = Γ− gyy,x (3.49)

rewritten so that it is zero valued.

Some remarks are needed. First, I call this system a “BSSN-type” system because

the introduction of the new variable Γ shadows the introduction of the conformal

connection Γi in (2.14e).9 Second, it is clear that I have broken the symmetry

9The new variable that I am introducing here fails to capture some features of the BSSN system.

In particular, the BSSN system introduces the momentum constraint into the evolution system

48

between the y direction and the z direction. While this seems undesirable in a

broader context, keep in mind that I am introducing this system specifically to break

just that symmetry. Without breaking the symmetry between y and z I would not

be able to eliminate the accidental calculation that keeps the constraints so small in

the linearized ADM system. Third, notice that, as always, there is no unique way

to write the evolution and constraint equations. I could, for example, substitute Γ,x

for gyy,xx in the Hamiltonian constraint (3.34a). I consistently, both in writing and

in implementing, use the equations as described here.

Having made my specific choices on how to write the evolution equations and

the constraints, I can now generate the correction terms. The modified equations of

motion

∂gyy
∂t

= −2Kyy − κH(gyy,xxxx + gzz,xxxx) + κΓ(Γ,x − gyy,xx) (3.50a)

∂gzz
∂t

= −2Kzz − κH(gyy,xxxx + gzz,xxxx) (3.50b)

∂Kyy

∂t
= −1

2
Γ,x + κP (Kyy,x +Kzz,x) (3.50c)

∂Kzz

∂t
= −1

2
gzz,xx + κP (Kyy,x +Kzz,x) (3.50d)

∂Γ

∂t
= −2Kyy,x − κΓ(Γ− gyy,x) (3.50e)

have positive, but otherwise free, constants κH , κP , and κΓ.

I also implemented this system in a 1D code. I continue to use the solution (3.35)

with (3.36) to provide the initial data. Initial data for the new variable Γ is computed

analytically from the definition (3.47). The numerical methods used in this code are

identical to those in the 1D ADM code described in the previous subsection.

From Figure 3.12, which shows results from the 1D code, it is clear that the

constraint violations in the new system are non-trivial and that round-off error is no

longer playing a significant role. Panel (a) shows the l2 norm of the total constraint

‖C‖2 =
[∫

(

H2 + P 2 +G2
)

dx

]1/2

(3.51)

through the evolution equation for Γi, which I am not doing with this system. While this seems

to be a key feature of BSSN in real applications (see, e.g., [67]), it will prove irrelevant in this

simplified test case.

49

1e-10

1e-09

1e-08

1e-07

1e-06

1e-05

0.0001

0 2000 4000 6000 8000 10000 12000 14000

||C
||

time

Constraint violation for BSSN-Type Equations

Unmodified
Modified

(a)

1e-18

1e-16

1e-14

1e-12

1e-10

1e-08

1e-06

0.0001

0 2000 4000 6000 8000 10000 12000 14000

||E
||

time

Total Solution Error for BSSN-Type Equations

’Unmodified’
’Modified’

(b)

Figure 3.12: The figure shows numerical results for the “BSSN-type” system with

with a family of values for the damping parameters associated with the constraint

driver terms. Panel (a) shows the l2 norm of the total constraint violation, and Panel

(b) shows the l2 norm of the solution error, both as a function of time.

50

and Panel (b) shows the l2 norm of the solution error analogous to (3.40).

Three of the lines in the figure show what appears to be the beginning of an

oscillating pattern. This happens because the numerical solution suffers from a phase

error. Because the domain is toroidal, however, the numeric and analytic solutions

periodically experience an instant when they are in phase. When this happens, the

absolute error dips down. For this reason, although the error appears to be an a

minimum when the line dips down, it is in fact 2π radians out of phase at that time.

This means, in particular, that although ‖E‖2 for the unmodified system registers

lower than ‖E‖2 for the modified system at 6000 crossing times, the modified system

is actually more accurate, and that this would be obvious if the domain were not

periodic. One should look at the maximum amplitude and the number of peaks in

the error function. Lower amplitude and fewer peaks means a better solution.

For the constraints, something similar is happening for the unmodified solution.

The phase error in the various fields which contribute to the constraint is not the

same. Because the domain is periodic, they nonetheless come momentarily into phase

after a sufficient number of crossing times. Since the constraint is not sensitive to

phase error (provided all fields have 2π-multiples of the same phase error), this causes

a dip in the curve for ‖C‖2 in the unmodified case.

Of course, the most prominent feature of the figure is that the constraint violation

in the modified case does decay rapidly away. It quickly settles to a value that is

five orders of magnitude smaller than the peak value of the constraint violation

in the unmodified case. And, from the figure, with the discussion above guiding

the analysis, it is clear that it reduces the constraint violation while simultaneously

reducing the total solution error. This is the best possible result for my method.

3.6 Summary and Future Work

In this chapter I have introduced and studied a novel technique modifying equations

of motion such the dynamics of the system favor the constraint hypersurface. The

prescription is well defined for any system of partial differential equations that can be

51

split into evolution and constraint equations. Unlike other authors who have studied

constraint subtraction methods, the method provided here is generically non-linear,

although it has yet to be tested on a non-linear problem.

I have applied this method to the Maxwell equations, written in two different

formalisms, as well as to the linearized Einstein equations. In both cases numerical

evidence supports the theoretical prediction that the constraint driver terms will

damp constraint violating modes generated by numerical errors in the simulations. In

the case of the Einstein equations the prescription presented here produces correction

terms that contain fourth derivatives of the numerically evolved fields. Although a

priori such terms might cause concern about the stability of the resulting system,

the available numerical evidence indicates that such terms do not create stability

problems.

It is also important to appreciate that the constraint driver terms damp the

constraint violations without increasing the solution error, and in many cases actually

improve the overall quality of the simulation. This is significant. One might worry

that the driver terms would find the wrong solution to the constraint equations. All

available evidence on this point suggests that the method that I am proposing here

does not suffer from that potential problem.

When this method is applied to the full (non-linear) Einstein equations, the cor-

rection terms will also be non-linear. Moreover, the correction terms will also not

be, in general, quasi-linear, and there is relatively little known mathematically about

such systems. In lieu of detailed mathematical understanding of how constraint driver

terms will effect the numerical properties of the Einstein system, and encouraged by

the results in linearized systems, I would like to continue the study started here by

a combination of analytical work and numerical experiments. This should include

work with the constraint driver terms in the context of the non-linear Einstein equa-

tions in one dimension (spherical symmetry) first, and, if the results are positive,

should continue to the three dimensional equations. In the event that the results

are unfavorable for the method as written, it may also be interesting to consider the

linearized corrections applied to the non-linear equations. While less attractive in

52

the sense that such a prescription would require re-tuning the constraint driver terms

for each spacetime simulated (since one would, presumably, want the corrections lin-

earized around a background adapted to the problem at hand), it might avoid any

complications that arise from spoiling quasi-linearity.

53

Chapter 4

Gravitational Wave Extraction

In order for numerical relativity to make contact with gravitational wave experi-

ments, numerical relativists must be able to compute gravitational waves within the

framework of their numerical simulations. This has, historically, proven to be a diffi-

cult task in practice partially because simulations have only recently become stable

enough for wave extraction to be meaningful and partially because the computa-

tional requirements of a full, three-dimensional simulation have made it difficult or

impossible to extend the simulation domain into the wave zone while simultaneously

resolving the sources.

This chapter briefly covers the formalism required for defining waves, which means

specifically the Newman-Penrose formalism applied in a 3+1 spacetime, as well as

the techniques used for decomposing the Weyl scalars into spherical harmonic com-

ponents. After this review, I present, for the first time, a detailed error analysis for

a new algorithm, due to Misner, for computing spherical harmonic components on

a cubic grid. Finally, I demonstrate that this technology works in three dimensional

simulations of linearized gravity both with and without fixed mesh refinement. Be-

cause FMR can be used to extend the spatial domains of simulations beyond what

is possible in unigrid domains, this demonstration is a key step toward extracting

waveforms from more realistic sources.

54

4.1 Newman-Penrose Formalism

This section does not attempt to treat the Newman-Penrose formalism in its entirety.

The purpose is to highlight the part of the formalism that is essential for computing

and extracting gravitational waves from numerical simulations. Readers interested

in more detail should consider reading Chapter 1 of Chandrasekhar [28] and the

references therein. After outlining the basics of the formalism, I provide, both as

historical context and as an introduction to later sections, the rationale for adopting

this particular formalism in the discussion of gravitational waves.

4.1.1 Tetrads and Weyl Scalars

The Newman-Penrose approach requires choosing four null vectors, the tetrad, with

respect to which all other quantities will be referred. Two of the vectors, la and

na are real valued, while the remaining two ma and m̄a are complex and conjugate

to each other.1 The vectors la and na are chosen to point along “outgoing” and

“ingoing” directions respectively (defined more rigorously in what follows), and the

vectors ma and m̄a are chosen along angular directions. These are always chosen to

satisfy certain orthogonality conditions

lama = nama = 0 (4.1)

and, in addition, may be normalized

lana = −1 (4.2a)

mam̄a = +1 (4.2b)

to remove some arbitrary freedom from their definition.2 Note that the angular

vectors m and m̄ are still somewhat arbitrary; they may be rigidly rotated without

1When referring to Newman-Penrose quantities, the indices are understood to be four dimen-

sional unless otherwise noted.

2I follow Chandrasekhar and earlier work of Penrose in imposing normalization conditions (4.2)

because there is no advantage in this work to allowing extra freedom. In other contexts, conditions

(4.2) are not applied. Also notice that, because Chandrasekhar writes his metric with the opposite

signature, he has opposite signs on his version of (4.2) in Ref. [28].

55

violating any of the conditions laid out thus far. The physical implications of this

are discussed below.

With a tetrad specified, it becomes possible to recast various quantities familiar in

the usual coordinate basis formalism into Newman-Penrose quantities. In particular,

one can always contract indices of tensors with tetrad vectors to form scalars. The

relevant example for wave extraction comes from the Weyl tensor Cabcd, which is

recast into five complex scalars

Ψ0 = −Cpqrslpmqlrms (4.3a)

Ψ1 = −Cpqrslpnqlrms (4.3b)

Ψ2 = −Cpqrslpmqm̄rns (4.3c)

Ψ3 = −Cpqrslpnqm̄rns (4.3d)

Ψ4 = −Cpqrsnpm̄qnrm̄s. (4.3e)

These Weyl scalars are coordinate invariant, but tetrad dependent.

In the case of the Weyl scalars, recasting to the Newman-Penrose formalism is

especially useful. It can be shown that the various Weyl scalars, when the tetrad

is oriented in a conventional way, fall off with different powers of radial coordinate.

It is Ψ4 that falls off as 1/r and that represents outgoing radiation, and it is Ψ4

therefore on which we will concentrate in the rest of this chapter.

For any practical computation, it becomes important to choose a reasonable

tetrad. For the Kerr spacetime, written in Boyer-Lindquist coordinates

ds2 = −
(

1− 2Mr

Σ

)

dt2 +
Σ

∆
dr2 + Σdθ2 +

Ωsin2 θ

Σ
dφ2 − 4aMr sin2 θ

Σ
dtdφ (4.4)

with ∆ = r2 − 2Mr + a2, Σ = r2 + a2 cos2 θ, and Ω = (r2 + a2)Σ + 2Mra2 sin2 θ in

terms of black hole mass M and spin per unit mass a, a conventional choice for the

tetrad has an easy expression. This tetrad, sometimes called the Kinnersley tetrad

[57], is motivated physically by choosing la and na to point, respectively, along the

outgoing and ingoing null geodesics, and choosing the ma-m̄a pair orthogonal. In

56

Boyer-Lindquist coordinates, these vectors are

l =
1

∆
(r2 + a2,∆, 0, a) (4.5a)

n =
1

2Σ
(r2 + a2,−∆, 0, a) (4.5b)

m =
1√

2(r + ia cos θ)
(ia sin θ, 0, 1, i csc θ) (4.5c)

with the normalization according to (4.2). Notice, in particular, that while la is

affinely parameterized, na is not [28, 10].3

For Kerr spacetimes, the coordinate expressions on the right hand sides of (4.5)

are only valid in Boyer-Lindquist coordinates. More generally, they are not, strictly

speaking, meaningful at all for spacetimes other than Kerr. Nonetheless, the Weyl

scalars computed in the numerical results presented below are computed with respect

to a tetrad constructed from the coordinate expressions in (4.5). For weakly distorted

Kerr solutions, this should not introduce significant error. If, at some later time,

this proves insufficient, it would be possible to use a Gramm-Schmitt procedure to

construct a tetrad more adapted to the numerical coordinates as has been successfully

done in work that patches non-linear evolutions to a perturbation code [10].

The Weyl scalars, as written in (4.3), depend on the Weyl tensor of the full four

dimensional metric. In order to compute them on a single time slice in a numerical

simulation, it is most convenient to rewrite them in terms of data available on a three

dimensional surface.4 Noting that, for vacuum spacetimes, the Riemann and Weyl

3The first component of (4.5c) differs from equation 5.4c in Ref. [10], This appears to be a

typographical error in Ref. [10].

4One could, alternatively, compute the time derivatives necessary by finite differencing between

data on different time slices, but this requires saving more data in simulations which already push

the physical limits of available computers.

57

tensors are equal, the following expressions5

(4)Rijkl = Rijkl + 2Ki[kKl]j (4.6a)

(4)R0jkl = −2
(

Kj[k,l] + Γpj[kKl]p

)

(4.6b)

(4)R0j0l = Rjl −KjpK
p
l +KKjl (4.6c)

in which everything on the right hand sides is a three dimensional quantity, are useful

[10].

The Newman-Penrose formalism turns out to be an ideal framework for pertur-

bation studies in general relativity. Price was the first to show that all non-trivial

perturbations of a Schwarzschild black hole are described by Ψ0 and Ψ4, and, further,

that the equations for these quantities, in the Schwarzschild background, separate

and decouple [72]. Teukolsky showed that the same is true for Kerr spacetimes of ar-

bitrary spin [85]. Knowing now that Ψ4, for example, represents outgoing radiation,

it is also possible to clarify the physical significance of it being complex valued. The

real and imaginary parts correspond to the two possible polarizations of gravitational

radiation. Moreover, this casts light on the fact, noted above, that the tetrad vec-

tors m and m̄ are oriented in an arbitrary manner. Mathematically such a rotation

mixes the real and imaginary parts of Ψ4, but this mixing corresponds exactly to

reorienting a theoretical gravitational wave detector by half of the same angle.

4.1.2 Spin-Weighted Spherical Harmonics

Although the Weyl scalars, for example, are coordinate scalars, they retain a tensor-

like quality. To be more precise, consider the effects on Ψ0 and Ψ4 of a rotation

m′ = eiχm (4.7)

of the space-like vectors Re {m} and Im {m} through an angle χ. Substituting (4.7)

into (4.3a), yields

Ψ′0 = e2iχΨ0 (4.8)

5Note that there is a factor of two difference between (4.6b) and Ref. [10]. This appears to be

an error in Ref. [10].

58

whereas substituting (4.7) into (4.3e) yields

Ψ′4 = e−2iχΨ4 (4.9)

instead. Evidently Ψ0 and Ψ4 transform differently under such a rotation even though

they are both nominally coordinate scalars. (Although they are coordinate scalars,

they remain tetrad dependent, which is the key fact appearing here.) In general, a

field η that transforms under a rotation (4.7) as

η′ = eisχη (4.10)

will be said to have spin-weight s. With this definition, (4.8) and (4.9) clearly indicate

that Ψ0 is of spin-weight +2, while Ψ4 is of spin-weight −2.
Because fields of different spin-weights, by definition, transform differently under

rotations, it is not entirely surprising that they require different treatments when

it comes to extracting spherical harmonic components. It is spin-weighted spheri-

cal harmonics, rather than the usual spherical harmonics, that are appropriate for

describing spin-weighted fields. The spin-weighted harmonics are constructed to

transform as scalars of a given spin-weight. Although expanding any function on the

sphere in terms of spherical harmonics of the “wrong” weight is a mathematically

well defined operation, using the “right” weight is more convenient. This is very

similar to describing two orbiting bodies in a co-rotating coordinate frame rather

than an inertial frame. Because the goal of the coming sections will be to extract

spherical harmonics modes from Ψ4 in numerical simulations, it is important to fully

define spin-weighted spherical harmonics, as well as listing a few key properties. The

discussion of this subsection follows Refs. [69] and [45], and adopts the convention

that the angular vectors Re {m} and Im {m} point along the coordinate lines of θ

and φ.

Consider a field η of spin-weight s defined on a sphere with angular coordinates

(θ, φ). Define the operator

ðη = −(sin θ)s
(

∂

∂θ
+ i csc θ

∂

∂φ

)

(sin θ)−sη (4.11)

59

for functions on the sphere.6 From this definition, it is easy to check that the trans-

formation

(ðη)′ = ei(s+1)χ(ðη) (4.12)

holds under the rotation (4.7). A factor of eisχ comes from the assumed transfor-

mation property of η, and an additional factor of eiχ comes from the fact that the

operator in parenthesis is m contracted with the natural derivative operator on the

sphere. The ð operator is, apparently, a raising operator on the spin-weight “quan-

tum number.” The operator

ð̄η = −(sin θ)−s
(

∂

∂θ
− i csc θ

∂

∂φ

)

(sin θ)sη (4.13)

is the corresponding lowering operator.

With these ladder operators, spin-weighted spherical harmonics sYlm of any spin-

weight s are defined in terms of the scalar spherical harmonics 0Ylm ≡ Ylm. The

explicit definition for integral spin, which is the only case of interest here,

sYlm =











[

(l−s)!
(l+s)!

]1/2

ð+sYlm 0 ≤ s ≤ l

(−1)s
[

(l+s)!
(l−s)!

]1/2

ð̄−sYlm −l ≤ s ≤ 0
(4.14)

includes prefactors that normalize the spin-weighted harmonics. The spin-weighted

harmonics are not defined when l < |s|. It can be proved by induction on s that the

spin-weighted spherical harmonics of any fixed s form a complete, orthonormal set

on the sphere. That is

∮

sȲlm(θ, φ) sYl′m′(θ, φ)d2Ω = δll′δmm′ (4.15)

for any s. The specific case of interest in the applications that follow is in −2Y20.

Given that

Y00(θ, φ) =

√

1

4π
(4.16)

and

Y20(θ, φ) =

√

5

16π
(3 cos2 θ − 1) (4.17)

6The symbol ð is called eth and is conventional for this operator.

60

it is easy7 to apply (4.14) to find

−2Y20(θ, φ) =

√

15

32π
sin2 θ =

√

5

6

(

Y00(θ, φ)−
1√
5
Y20(θ, φ)

)

(4.18)

with the second equality, specifying how to convert between spin-weight −2 and

scalar (spin-weight 0) spherical harmonics. As a further check on my work, I will

compute

−2Y30(θ, φ) =
15

4

√

7

30π

(

5 cos3 θ − 3 cos θ
)

=
1

10

(

−
√
70Y10(θ, φ) +

√
30Y30(θ, φ)

)

(4.19)

in a few applications as well. Because my code is constructed to compute scalar

spherical harmonics, I make use of these conversion relations between spin-weighted

and scalar harmonics in Section 4.3.2.

4.2 Spherical Harmonic Decomposition

In order to analyze potential waveforms, it is frequently useful to look at the spher-

ical harmonic decomposition of Ψ4. Its spherical harmonic components Ψ4,lm =

Ψ4,lm(t, r) are defined by

Ψ4,lm(t, r) =

∮

−2Ȳlm(θ, φ)Ψ4(t, r, θ, φ)d
2Ω (4.20)

in terms of a spin-weighted spherical harmonic. Because the spin-weighed harmonics

can be re-expressed in terms of regular spherical harmonics (cf. (4.18)), I will opt to

compute

0Ψ4,lm(t, r) =

∮

Ȳlm(θ, φ)Ψ4(t, r, θ, φ)d
2Ω (4.21)

directly from the evolved data, and compute the spin-weighted components from the

unweighted components.8

7It is easy, but one should keep in mind that when computing ð̄2Y20 the first time that ð̄ acts,

it acts on a spin-weight 0 quantity, whereas the second time that ð̄ acts, it acts on a spin-weight

−1 quantity.

8I make this choice because, having implemented the specific case of scalar spherical harmonics as

a proof-of-concept test, I wish to exploit that code while developing code to compute spin-weighted

harmonics directly.

61

Whichever components one chooses to compute directly, from a numerical point

of view, given that data is typically represented on a Cartesian, cubic grid, the

integration over a sphere in (4.20) or (4.21) is extremely inconvenient. In order

to perform such integrals, previous authors have resorted to interpolating from the

cubic grid to a spherical grid, and performing a discrete integral on the interpolated

data. While there is nothing wrong with this approach in principle, developing a

robust framework for approaching the problem this way takes a considerable amount

of work, whereas the algorithm developed below has relatively modest costs in code-

development time. It also has the run-time advantage, in simulations where the

extraction radii remain fixed, that the overhead associated with interpolation is paid

only once when the numerical grid is created rather than each time a spherical

harmonic component is computed.

In the rest of this section I describe, theoretically, one particular method for com-

puting spherical harmonic components on a cubic grid. The details of my particular

implementation of this algorithm are included in Appendix B.

4.2.1 Methodology

The idea used here follows that of Misner [65]. Although the development here is

written in terms of the usual spherical harmonics (as it is in Ref. [65]), the mathemat-

ical foundations of the method generalize any to family of spin-weighted harmonics.

The only specific property of the spherical harmonics used in the development of the

algorithm is that they form a complete orthonormal set on the sphere, but in light

of (4.15), spin-weighted spherical harmonics would work as well.

In what follows, I outline in some detail the steps of the algorithm, although I

will not provide a full derivation. (See Ref. [65] for the derivation). A basic outline of

the algorithm is essential, since I will build on Misner’s results with more extensive

analysis of the numerical errors associated with this decomposition method.

In order to begin, two definitions are need. First define a radial function

Rn(r;R,∆) = r−1
√

2n+ 1

2∆
Pn

(

r −R

∆

)

(4.22)

62

in terms of the usual Legendre polynomials Pn. Here R and ∆ are parameters that

will be associated with the radius at which the spherical harmonic decomposition is

desired and half of the thickness of a shell centered on that radius. From this, define

Ynlm(r, θ, φ) = Rn(r)Ylm(θ, φ) (4.23)

which form a complete, orthonormal set with respect to the inner product

〈f |g〉 =
∫

S

f̄(x)g(x)d3x (4.24)

on the shell S = {(r, θ, φ) | r ∈ [R−∆, R+∆]}. Note also that, because the functions

Rn form a complete set on the shell,

Ψ4,lm(t, R) =

∫

[

∞
∑

n=0

Rn(R;R,∆)Rn(r;R,∆)

]

Ȳlm(θ, φ)Ψ4(r, θ, φ)d
3x (4.25)

and that the term in brackets

∞
∑

n=0

Rn(R;R,∆)Rn(r;R,∆) = r−2δ(R− r) (4.26)

is a delta function. (Compare (4.25) to (4.21).)

On a finite grid Γ, the inner product (4.24) will have the form

〈f |g〉 =
∑

x∈Γ

f̄(x)g(x)wx (4.27)

where each point has some weight wx. This weight was given the form

wx =



















0 |r −R| > ∆+ h/2

h3 |r −R| < ∆− h/2

(∆ + h/2− |R− r|)h2 otherwise

(4.28)

by Misner, where h is the grid spacing.9 Only cases with ∆ > h/2 are considered.

This means, roughly, that points entirely within the shell S are weighted by their

finite volume on the numerical grid, points entirely outside of the shell S have zero

9Misner only considered the unigrid case in Ref. [65]. In Section 4.2.5 and Appendix B I indicate

how I implemented the method for FMR, and in Section 4.3.2 I show numerical results from an

application in FMR.

63

weight, and points near the boundary are weighted according to the fraction of their

volume inside S.10

With the numerical inner product (4.27), and letting capital Roman letters A =

(nlm) represent index groups, the YA are no longer orthonormal. Their inner product

〈YA|YB〉 = GAB = ḠBA (4.29)

forms a metric for functions on the shell. Although a priori this matrix appears to

be complex valued, I will show in Section 4.2.4 that is actually real-symmetric and

sparse. For now it suffices to follow Misner in denoting it as generically Hermitian.

The inverse to this metric GAB can be used to raise indices on functions defined on

the sphere.

Making use of this new metric, and with some further analysis, the approximation

for the spherical harmonic coefficients

Ψ4,lm(t, R) =
∑

x∈Γ

R̄lm(x;R)wxΨ4(t, x) (4.30)

follows with

Rlm(r;R) =
N
∑

n=0

R̄n(R)Y
nlm(r, θ, φ) (4.31)

in terms of Y A = GBAYB, not YA.

4.2.2 Error Analysis

In Ref. [65], Misner provides an algorithm for computing spherical harmonic compo-

nents on a cubic lattice, but he does not provide any analysis of the errors involved.

In a practical application of the method, such error analysis, in particular an analysis

of the convergence order in grid spacing, is very valuable. For this reason, I wish to

examine the issue more closely here.

10Actually the boundary points are weighted by the fraction of their volume that would be inside

S if the point were on a coordinate axis. See Ref. [65] for more details on the definition of the

weights.

64

To begin the analysis, note that there are three parameters in the algorithm,

the grid spacing h, the width of the shell ∆, and the number of terms in the sum

over basis polynomials N . (Compare (4.25) to (4.30) and (4.31).) In the limit that

h → 0 and N → ∞, the numerical algorithm goes to the continuum theory. Note

that, when h and N go to their limits, any value for ∆ is allowed, since (4.25) is

an exact, continuum expression. For a finite value of N , however, the quality of

the approximation in the radial direction is a function of both N and ∆. Moreover,

tying the value of ∆ to the grid spacing h, though not necessary from fundamental

considerations, does in fact have advantages in terms of convergence behavior that

will become clear below.

The convergence of the method as grid spacing h goes to zero depends primarily

on the order of accuracy in the volume integral when using the weights defined by

(4.28). For a finite volume, this weighing scheme provides an approximation that

scales as O(h), but, for a region that is also scaling with h, the resulting integral

scales as O(h2). This provides a strong motivation for choosing ∆ ∝ h since the

simulations described in this dissertation are all second order accurate. Having pre-

scribed the method in just this way, Misner allows for a second order convergent

method, although the effects of N and ∆ need to be considered before making a firm

conclusion.

Having just decided that I should choose ∆ ∝ h, I now consider the convergence

behavior of the algorithm as ∆→ 0 for fixed values of N . Define

d(x;N,R,∆) =
N
∑

n=0

2n+ 1

2∆
Pn

(

x−R

∆

)

Pn(0) (4.32)

which is closely related to the delta function (4.26) in the limit N → ∞. For finite

N , this should approximate the delta function to some order of accuracy. Figure 4.1

gives a feel for how quickly the function d goes to a delta function for increasing

N . It seems clear that the first few terms make the biggest individual contributions

to the sum, suggesting that later terms in the series may not be so important. To

quantify this, consider the approximation

f(0) ≈ IN [f] ≡
∫ ∆

−∆

d(x;N, 0,∆)f(x)dx (4.33)

65

3

1

2

0

-1

x

d(x;N,0,1)

0.5 1-1 0-0.5

d(x;N,0,1) vs. x for even N in [0,10]

Figure 4.1: A plot of d(r;N, 0, 1) for various even values of N in [0,10]. The central

peak grows monotonically with N . Although in the limit of infinite N , d goes to a

delta-function, it is clear that the function profile changes dramatically only for the

first few values of N .

for a suitably smooth test function f . In the limit that N → ∞, this is exact. For

any finite N , this expression can be analyzed by Taylor expanding the test function

around the point x = 0. This gives, after rearranging terms and noting that all of

the odd terms vanish by symmetry,

IN [f] =
∞
∑

k=0

cN,2k
(2k)!

f (2k)(0) (4.34)

where

cN,k(∆) =

∫ ∆

−∆

xkd(x;N, 0,∆)dx (4.35)

are the coefficients of the expansion. In order to have a high order method, I need

cN,0 = 1, and the coefficients corresponding to the next few values of k to vanish.

Table 4.1 shows the first few coefficients cN,k(1) = ∆−kcN,k(∆) for even N in [0,10].

It is clear that each time N is increased, one more of the sub-leading coefficients

vanishes. For a second order accurate method, it is sufficient to take N = 0 (provided

that ∆ ∝ h).

66

N\
k 0 2 4 6 8 10 12

0 1 1/3 1/5 1/7 1/9 1/11 1/13
2 1 0 -3/35 -2/21 -1/11 -12/143 -1/13
4 1 0 0 5/231 5/143 6/143 10/221
6 1 0 0 0 -7/1287 -23/2431 -70/4199
8 1 0 0 0 0 63/46189 15/4199

10 1 0 0 0 0 0 -33/96577

Table 4.1: The first few non-trivial values of cN,k(1), which are the coefficients of the

Taylor expansion of a function integrated against d(x;N, 0, 1). (In general, cN,k(∆) =

cN,k(1)∆
k.) The values of k run across and the values of N run down. The fact that

the first coefficient is always 1, and that, by increasing N , more of the sub-leading

coefficients are 0 indicates that increasing N increases the order of convergence of

the Misner algorithm (provided that ∆ ∝ h).

4.2.3 Choosing the parameters

In practice, the grid spacing parameter h is usually chosen to resolve the sources

without exceeding the physical limits of the computer. I would not expect, in general,

that the grid spacing would be chosen based on the needs of this algorithm. For that

reason, let me assume now that h is chosen, and discuss how to choose the remaining

parameters N and ∆. In this subsection I will discuss some of the theoretical issues

that should be considered when choosing the parameters, leading to a rule of thumb

that is valid based on this analysis and my experience with the algorithm.

The error analysis of Section 4.2.2 implies that for fixed ∆, increasing the value

of N decreases the error term. It also implies that for fixed N , increasing the value

of ∆ increases the error term. This suggests taking ∆ as small as possible, and N as

large as possible to make the error term as small as possible. This must be balanced,

however, against practical limitations. Certainly the shell thickness ∆ needs to be

large enough so that there are some grid points within the shell, otherwise the whole

procedure is undefined. For fixed N , a stronger restriction requires that the Legendre

polynomial PN can be resolved over the shell. Without this condition, there would

seem to be no benefit to taking higher values of N . Getting higher accuracy in

practice requires finding a proper balance between choosing ∆ small and N large.

67

In making this balance, however, one must keep in mind that the error in the

method is partially determined by the weighting scheme (4.28), which is only second

order accurate in the grid spacing. I am, in addition, going to choose ∆ ∝ h for

reasons described above. This already suggests that taking N larger than two is

pointless, since choosing N = 2 already makes the piece of the error that is propor-

tional to ∆ scale like O(∆4) (cf. Table 4.1), meaning that it will be an error term

of sub-leading order in grid spacing. But once this term is of sub-leading order, it is

much less important how large I choose ∆, provided that I still choose it proportional

to the grid spacing. I therefore adopt the following

Rule of Thumb: Choose N just large enough to ensure that the error

term proportional to ∆ is an error term of sub-leading order in grid

spacing. Choose ∆ just large enough to safely resolve PN on the shell.

With this rule of thumb, and the second order accurate weighting scheme (4.28),

I found the choices N = 2 and ∆ = 3h/4 completely satisfactory. Note that this

corresponds to Misner’s choice of ∆ in Ref. [65]. With N = 2 I found that larger

values of ∆ are also acceptable. Numerical results justifying these estimates will

come in Section 4.3.2.

4.2.4 Symmetry issues

There are two points of interest related to this method of spherical harmonic decom-

position and symmetries. The first was mentioned briefly in Section 4.2.1, namely

that symmetry causes the metric GAB to be real and sparse. The second deals with

implementing the method for grids in which explicit symmetries are enforced on grid

functions in order to reduce the computational load of the simulation. In these cases,

in which data is not evolved over a whole extraction sphere, additional analysis is

required to demonstrate that the method is well defined and to understand how to

most efficiently implement it. The primary result on this second topic is that the

adjoint harmonics Y A of (4.31) have the same symmetries under reflection as the

original spherical harmonics YA.

68

Planes θ φ Sign Conjugate

None θ φ +1 no
x θ π − φ (−1)m yes
y θ −φ +1 yes
z π − θ φ (−1)l no
xy θ π + φ (−1)m no
xz π − θ π − φ (−1)l+m yes
yz π − θ −φ (−1)l yes
xyz π − θ π + φ (−1)l+m no

Table 4.2: The table shows how the arguments of spherical harmonics transform

under reflections through various Cartesian planes. The first column indicates which

coordinates have their signs inverted, while the second and third columns give the new

angular arguments to the spherical harmonic Ylm. Alternatively, the fourth and fifth

column show, respectively, the overall sign in front of and whether or not to complex

conjugate the given spherical harmonic with the original angular arguments. The

second row, for example, says that Ylm(−x, y, z) = Ylm(θ, π − φ) = (−1)mȲlm(θ, φ),
where (θ, φ) are the angular coordinates of the point (x, y, z).

Unlike the previous subsections, the results in this subsection are specific to scalar

spherical harmonics, although it seems reasonable to believe that the results could

be generalized to spin-weighted spherical harmonics if needed.

Consider first the implications of symmetry on the metric GAB. The symmetries

of the spherical harmonics, summarized in Table 4.2, cause the imaginary part of

all terms in the integral (4.29) to cancel in pairs of points on the sphere related

by reflections through coordinate planes. The reason is that each of the four signs

(+1, (−1)m, (−1)l, and (−1)l+m) appears twice in Table 4.2, once for a term that

is complex conjugated and once for a term that is not. The matrix is also sparse.

By similar reasoning, for certain values of l and m, the terms in the integral (4.29)

can cancel in sets of four. Both of these facts can be seen at once through a simple

calculation. The idea is to break the integral into parts using the second and third

columns of Table 4.2, and then to simplify using the last two columns. Considering

first just the symmetries under reflection through the xy-plane and recalling the

69

definition (4.29),

GAB =

∮

Ȳl1m1
(θ, φ)Yl2m2

(θ, φ)d2Ω (4.36a)

=

∫ 2π

0

∫ π/2

0

Ȳl1m1
(θ, φ)Yl2m2

(θ, φ)d2Ω

+

∫ 2π

0

∫ π/2

0

Ȳl1m1
(π − θ, φ)Yl2m2

(π − θ, φ)d2Ω (4.36b)

= [1 + (−1)l1+l2]
∫ 2π

0

∫ π/2

0

Ȳl1m1
(θ, φ)Yl2m2

(θ, φ)d2Ω. (4.36c)

(I have suppressed the radial functions since they play no role here.) Repeating the

procedure for reflections through the xz- and yz-planes shows that

GAB = 2σm1+m2,l1+l2

∫ π/2

0

∫ π/2

0

Re
{

Ȳl1m1
(θ, φ)Yl2m2

(θ, φ)
}

d2Ω (4.37)

where

σm1+m2,l1+l2 ≡ 1 + (−1)m1+m2 + (−1)l1+l2 + (−1)m1+m2+l1+l2 . (4.38)

This proves that the matrix is real. In addition, the matrix element is zero by

symmetry whenever

σm1+m2,l1+l2 = 0 (4.39)

which is true for 56 of the 81 matrix elements that exist when considering a fixed

value of n and all values of l and m for l ≤ 2. Of the remaining 25 matrix elements,

9, of course, are the diagonal elements that go to unity in the continuum limit. The

exact break-down of which such elements must be zero by symmetry is summarized

in Table 4.3. Knowing that the matrix is real-symmetric and sparse allows for a more

efficient implementation of the algorithm in general. It is also extremely useful in

analyzing the algorithm in the context of the second topic of this subsection, explicit

grid symmetries.

When evolving initial data with known symmetries, it is very common to evolve

only that part of the data that is unique. In such cases, an appropriate symmetry

boundary condition is applied at some edges of the grid. This is, however, inconve-

nient for wave extraction since computing spherical harmonic components (by any

method) requires integrating over the full sphere. If data with octant symmetry,

70

m1 +m2 l1 + l2 Number Satisfies (4.39)

even even 25 no
even odd 16 yes
odd even 20 yes
odd odd 20 yes

Table 4.3: The table summarizes which entries of GAB identically vanish because

of the symmetries of the spherical harmonics under reflections through coordinate

planes for all values of l and m with l ≤ 2. (This is governed by equation (4.39).)

Of the 81 possible matrix elements, only 25 have non-trivial values.

for example, is evolved only in a single octant, it is neither sufficient to apply the

decomposition algorithm in that one octant nor to multiply the result of a single

octant by 8 since the symmetry may forbid some modes as well as repeating them.

In principle the problem appears to be even more difficult for this particular

decomposition method. Although the spherical harmonics have well defined symme-

tries under reflections, as summarized in Table 4.2, it is the adjoint harmonics that

appear in (4.31). The adjoint harmonics, however, are constructed by contracting

GAB with the usual spherical harmonics, and this appears to mix different values of l

and m. While this mixing does occur, the the matrix GAB is sparse in just the right

way to ensure that the adjoint harmonics have the same symmetries at the usual

spherical harmonics.

A particular choice of the mapping (n, l,m) 7→ A makes this easiest to see.

Specifically, considering all values of l and m with l ≤ 2, there is a basis in which

GAB takes block diagonal form

(GAB) =

















Ξ1

Ξ2

Ξ3

Ξ4

















(4.40)

with all unwritten entries identically zero by symmetry. In this expression Ξ1 is a

4N × 4N matrix over the basis functions B1 = {Yn00, Yn2,−2, Yn20, Yn22}; Ξ2 is an

N × N matrix over the basis functions B2 = {Yn10}; Ξ3 is a 2N × 2N matrix over

the basis functions B3 = {Yn1,−1, Yn11}; and Ξ4 is a 2N × 2N matrix over the basis

71

functions B4 = {Yn2,−1, Yn21}. In this basis the matrix is block diagonal, so the

inverse matrix

(GAB) =

















Ξ−11

Ξ−12

Ξ−13

Ξ−14

















(4.41)

is also block diagonal and the different basis sectors do not mix. This last point

is key. It implies that any particular adjoint harmonic is a linear combination of

spherical harmonics from a single set Bk

Y nlm =
∑

Y
n′l′m′∈Bk

(Ξk)
(nlm)(n′l′m′)Yn′l′m′ (4.42)

where k is the index such that Ynlm ∈ Bk. Because, in each set Bk, the parity

of l and the parity of m is the same on each Ynlm ∈ Bk, and because, in light of

Table 4.2, it is the parity of l and m that determines the symmetries of Ynlm under

reflections through planes, every spherical harmonic in Bk for any fixed k has the

same symmetries under reflections as any other spherical harmonic in Bk. This

implies that the adjoint harmonics also share this symmetry under reflection.

4.2.5 Mesh refinement issues

Misner developed his method for extracting spherical harmonic components for the

case of a uniform grid. Certain subtleties arise when the grid is not uniform that

need to be considered in detail.

Algorithmically, the method remains largely unchanged, except that one needs

to decide how to choose ∆ when the extraction radius passes near or through a

refinement boundary.11 By experimenting with the method, I have found empirically

11One might argue that the simplest solution to this problem is to choose the refinement bound-

aries and the extraction radii such that there are no intersections. This solution is undesirable

in practice since (1) fixed mesh refinement simulations are, in part, testbeds for adaptive mesh

refinement simulations of the future, and in AMR such choices are not possible; and (2) for simula-

tions based on the Paramesh package [61], as are the simulations presented here, the most efficient

72

that, even on FMR grids, it is safe to use the rule of thumb developed in Section 4.2.3.

In particular, in the numerical simulations that follow, I choose N = 2 and ∆ =

3hmax/4, where hmax is the grid spacing of the coarsest grid through which the shell

could pass. (The details of the algorithm that makes this choice are in Section B.3.1.)

It should not be too surprising that this choice works even with FMR. The error

analysis of Section 4.2.2 did not assume anything in particular about uniform grid

spacing, except, implicitly, that the waves pass faithfully through the interfaces.

Moreover, the reasoning that lead to my rule of thumb in Section 4.2.3 supports this

choice. Taking N = 2 pushes the error term proportional to ∆ to sub-leading order,

so the exact size of ∆ is not terribly important so long as there are enough zones

in the shell to resolve the radial polynomials. Choosing ∆ based on the coarse grid

spacing means that there is at least as many points in the shell in the FMR run as

there would be in a correspondingly spaced unigrid run.

What remains now is the implicit assumption in the analysis that waves pass

faithfully through the mesh refinement boundaries. This, however, was already ver-

ified in detail in Ref. [30]. In what follows, I recreate those simulations as a testbed

for all aspects of the wave extraction algorithm. I describe the details of those tests

in Section 4.3.

4.3 Teukolsky Waves

Teukolsky waves are solutions to the linearize Einstein equations. These form an ideal

test case for the methods considered here because the analytic solution is known for

all times, which makes it easy to check simulation results, and because, for a linear

wave, one need not wait for the wave to propagate to the wave zone to make a proper

test.

box-in-box refinement scheme has little or no space for a shell of finite thickness to fit without

intersecting refinement boundaries.

73

4.3.1 Analytic Even Parity Solution

Teukolsky appears to be the first person to write out even and odd parity wave

solutions to the linearized Einstein equations [86]. I will use the pure l = 2, m = 0

(in a spin-weight −2 basis) solution as a test case in Section 4.3.2 after describing

the solution in some detail in this subsection.

The general form of the even parity metric derived in Ref. [86]

ds2 = −dt2 + (1 + Afrr)dr
2 + 2Bfrrrdrdθ + 2Bfrφr sin θdrdφ

+
(

1 + Cf
(1)
θθ + Af

(2)
θθ

)

r2dθ2 + 2(A− 2C)fθφr
2 sin θdθdφ

+
(

1 + Cf
(1)
φφ + Af

(2)
φφ

)

r2 sin2 θdφ2 (4.43)

is given in terms of the functions

A = 3

(

F (2)

r3
+

3F (1)

r4
+

3F

r5

)

(4.44a)

B = −
(

F (3)

r2
+

3F (2)

r3
+

6F (1)

r4
+

6F

r5

)

(4.44b)

C =
1

4

(

F (4)

r
+

2F (3)

r2
+

9F (2)

r3
+

21F (1)

r4
+

21F

r5

)

(4.44c)

and in terms of a free generating function F = F (t− r). The notation

F (n) =

[

dnF (x)

dxn

]

x=t−r

(4.45)

denotes various derivatives. Taking F as a function of t− r corresponds to outgoing

waves. To generate an ingoing solution, change the argument of F to t + r, and

change, in (4.44), the sign in front of all of the terms with odd numbers of derivatives.

74

The angular functions in the metric are

frr = 2− 3 sin2 θ (4.46a)

frθ = −3 sin θ cos θ (4.46b)

frφ = 0 (4.46c)

f
(1)
θθ = 3 sin2 θ (4.46d)

f
(2)
θθ = −1 (4.46e)

fθφ = 0 (4.46f)

f
(1)
φφ = −f (1)θθ (4.46g)

f
(2)
φφ = 3 sin2 θ − 1 (4.46h)

for the l = 2, m = 0 case.

I follow Choi el al. [30] in choosing

F (x) =
ax

λ2
e−x

2/λ2

(4.47)

as the exact form of the generating function, where the free parameters a and λ

represent the amplitude and the width of the wave respectively. The natural length

unit in the problem is λ, and I consistently choose a = 2 × 10−6λ. Moreover I take

an equal superposition of an ingoing wave and an outgoing wave, both centered at

the origin, for the initial data. This particular choice has a moment of time sym-

metry that allows me to set Kij = 0. Choosing this form for F gives a waveform

with oscillations but of essentially compact support. This is ideal for testing codes

with boundaries because it makes clear when the wave passes through those bound-

aries, and allows one to easily detect any reflections that occur due to poor interface

conditions.

In order to use this analytic solution for tests of the wave extraction algorithm,

I need to compute from it the analytical value of Ψ4. The computation proceeds

by applying the definition (4.3e) with the particular choice of tetrad (4.5). Of the

twelve non-zero components of the Riemann tensor for this spacetime, only

Rtθtθ = −
1

sin2 θ
Rrφrφ = −3

2
r2 sin2 θ

∂2C

∂t2
+

1

2
r2
∂2A

∂t2
(4.48a)

75

Unigrid FMR
Label dx xmax dxfine xmax Interfaces

High 1/12 8 1/48 32 2, 4, 8, 16
Medium 1/6 8 1/24 32 2, 4, 8, 16
Low 1/3 8 1/12 32 2, 4, 8, 16

Table 4.4: The grid parameters used for the various Teukolsky wave test runs. The

simulation’s outer boundary is at xmax, and the value of dxfine is the value of the grid

spacing at the finest FMR level. Other FMR levels are factors of two coarser. All

numbers are given in units of the wavelength λ.

Rtφtφ = − sin2 θRrθrθ =
3

2
r2 sin4 θ

(

∂2C

∂t2
− ∂2A

∂t2

)

+
1

2
r2 sin2 θ

∂2A

∂t2
(4.48b)

Rtθrθ = −
1

sin2 θ
Rtφrφ = −1

8
r3 sin2 θ

(

3
∂3B

∂t3
+
∂3A

∂t3

)

(4.48c)

contribute to the sum. (In particular, this means that, in this spacetime, Ψ4 is real.)

The result

Ψ4 =
sin2 θ

16

[

−12∂
2C

∂t2
+ 6

∂2A

∂t2
+ r

(

3
∂3B

∂t3
+
∂3A

∂t3

)]

(4.49)

is a pure mode of −2Y20 (cf. (4.18)). The third time derivatives conveniently express

the particular mix of second time and space derivatives that otherwise would have

appeared in (4.49).

4.3.2 Numerical Results

In order to test aspects both of the wave extraction method and the effects of FMR

interfaces on wave extraction, I ran two classes of test cases. Each class consisted of

three runs with different spatial resolutions. The runs of the first class were set on a

uniform grid, while the runs of the second class were set on fixed mesh refined grids.

The spatial parameters for the runs are summarized in Table 4.4. The time step was

chosen to be dt = dx/4 in unigrid and dt = dxfine/4 in FMR simulations.

The low resolution simulations, especially in the unigrid case, are noticeably

coarse. This choice, driven primarily by hardware considerations, is sufficient for my

purposes here, although in the cases of the coarsest simulations it is only marginally

76

so. I should mention, so that it is clear why the unigrid simulations are run at such

low resolutions compared to the FMR simulations, that the computational burden, in

terms of memory and execution time, for the highest resolution unigrid run exceeds

the computational burden of the highest resolution FMR run. This is true, despite

the resolution being a factor of four smaller and the outer boundary being a factor

of four closer, because the FMR simulation is much more efficient.

Before proceeding further, I need now to justify my choices of the parameters N

and ∆ to the Misner algorithm. As noted in Section 4.2.3, I have chosen here to

use N = 2 and ∆ = 3h/4 for the simulations presented below. These choices are

consistent with theoretical considerations, but are further justified empirically by

Figure 4.2, which shows the error in waves extracted with three different parameter

sets. When N = 2, it appears that there is little difference in the error as ∆ varies

(although there is arguably a slight increase in error for the larger ∆, consistent with

the analysis in Section 4.2.2). Changing to N = 0 while keeping ∆ fixed, however,

leads to a considerably larger numerical error. (Keep in mind that only even values

of N are allowed.) Based on this evidence, I now specialize strictly to the parameter

choices N = 2 and ∆ = 3h/4 for the rest of the dissertation. In addition, I choose

to compute weights and (scalar) spherical harmonics for all values of l and m, with

l ≤ 2.12

Having fixed both the grid and the wave extraction parameters, let me comment

on how they relate to each other. To better visualize how the FMR boundaries

intersect with the extraction spheres, I have found it useful to create an extraction

map. Figure 4.3 shows extraction maps for the coarse FMR run, and Figure 4.4 shows

extraction maps for the medium FMR run. As indicated by the figures, extraction

radii were located at 3λ, 4λ, 5λ, and 6λ. In addition there was an extraction radius

at 7λ for which no extraction map is shown. Each map is labeled by a triple of

parameters (N,R,∆), which indicate, respectively, the number of (cell-centered)

12In a single set of runs, I reproduced the highest resolution FMR runs computing all values of l

and m with l ≤ 3. I verified in this case that all scalar spherical harmonic components except for

the (0,0) and (2,0) components were zero to extremely high precision.

77

-1e-06

-8e-07

-6e-07

-4e-07

-2e-07

 0

 2e-07

 4e-07

 6e-07

 8e-07

 1e-06

 0 2 4 6 8 10 12

E
rr

or
 in

_4

,2
0

 ψ

time() λ

Comparision of Error in Extracted Wave Using Misner’s Method with Various Parameters (r=3)λ

N=2, =5h ∆
N=2, =3h/4∆
N=0, =3h/4∆

(a)

-1.5e-06

-1e-06

-5e-07

 0

 5e-07

 1e-06

 1.5e-06

 0 2 4 6 8 10 12

E
rr

or
 in

_4

,2
0

 ψ

time() λ

Comparision of Error in Extracted Wave Using Misner’s Method with Various Parameters (r=4)λ

N=2, =5h ∆
N=2, =3h/4∆
N=0, =3h/4∆

(b)

Figure 4.2: The two panels show errors in the numerically extracted wave in high

resolution, FMR simulations with three different wave extraction parameter sets.

There is little difference between different shell thicknesses so long as N = 2. There

is a large increase in error when the parameter N is reduced.

78

-8

-6

-4

-2

0

2

4

6

8

-8 -6 -4 -2 0 2 4 6 8

Extraction Map: (24, 3, 0.25)

-8

-6

-4

-2

0

2

4

6

8

-8 -6 -4 -2 0 2 4 6 8

Extraction Map: (24, 4, 0.5)

-8

-6

-4

-2

0

2

4

6

8

-8 -6 -4 -2 0 2 4 6 8

Extraction Map: (24, 5, 0.5)

-8

-6

-4

-2

0

2

4

6

8

-8 -6 -4 -2 0 2 4 6 8

Extraction Map: (24, 6, 0.5)

Figure 4.3: Extraction maps for four extraction radii in the coarse resolution Teukol-

sky wave FMR run. The mesh size indicates the grid spacing in the various refinement

regions, while the three circles mark the extraction radius and the boundaries of the

shell used in the spherical harmonic extraction algorithm. The labels at the top in-

clude a triple (N,R,∆), where N is the number of (cell-centered) grid points across

one coordinate direction in the coarsest region, R is the extraction radius, and ∆ is

the half-width of the shell. Additional refinement regions, not shown here, surround

the entire map.

79

-8

-6

-4

-2

0

2

4

6

8

-8 -6 -4 -2 0 2 4 6 8

Extraction Map: (48, 3, 0.125)

-8

-6

-4

-2

0

2

4

6

8

-8 -6 -4 -2 0 2 4 6 8

Extraction Map: (48, 4, 0.25)

-8

-6

-4

-2

0

2

4

6

8

-8 -6 -4 -2 0 2 4 6 8

Extraction Map: (48, 5, 0.25)

-8

-6

-4

-2

0

2

4

6

8

-8 -6 -4 -2 0 2 4 6 8

Extraction Map: (48, 6, 0.25)

Figure 4.4: Extraction maps for four extraction radii in the medium resolution

Teukolsky wave FMR run. The mesh size indicates the grid spacing in the vari-

ous refinement regions, while the three circles mark the extraction radius and the

boundaries of the shell used in the spherical harmonic extraction algorithm. The

labels at the top include a triple (N,R,∆), where N is the number of (cell-centered)

grid points across one coordinate direction in the coarsest region, R is the extraction

radius, and ∆ is the half-width of the shell. Additional refinement regions, not shown

here, surround the entire map.

80

points across one coordinate direction in each refinement level, the extraction radius,

and the half-width of the extraction shell. The mesh accurately portrays the grid

refinement in each region, and the extraction region is denoted by three circular

lines; the middle line is the extraction radius, and the two surrounding lines are

the edges of the extraction shell. Note that the extraction shells generically pass

through mesh refinement boundaries. One should also bear in mind that these two-

dimensional slices depict the extraction sphere at its largest cross section and that the

refinement regions are cubical. That means, for example, that, in three dimensions,

the corners of the innermost refinement cube poke through the sphere represented

by map (48, 3, 0.125) in Figure 4.4, even though, in the two dimensional picture, it

appears that the extraction sphere might be in a single resolution region.

Having understood the grid structure in the various runs, turn now to the results.

Before looking at each family of runs individually, it is worth making a direct com-

parison between the raw results. Figure 4.5 shows analytic and numeric solutions to

the Teukolsky wave equation at r = 3λ for the entire family of unigrid runs (Panel

(a)), and the entire family of FMR runs (Panel(b)). Both families appear to show

agreement with the analytic result at the highest resolutions, and appear to converge

to the analytic solution. In addition, the FMR runs appear, consistent with the fact

that they were run with higher resolution in the extraction region, to more accurately

represent the exact answer. These observations are quantified and expanded below.

In the case of uniform grids, the analysis in Section 4.2.2 indicates that the

numerical value of Ψ4,20 extracted from a second order accurate simulation should be

second order accurate. This is indeed the case, as seen in Figure 4.6. In the figure,

the errors in the numerical solution as compared to the analytic solution have been

scaled by appropriate factors of two so that, for perfect second order convergence,

the lines would lie over each other. This is in fact the case. The lowest resolution

run shows signs of a phase error and dissipation that is common for poorly resolved

waves propagating on a numerical grid, but the higher resolution simulations are

clearly passing into the convergent regime. This validates, for the first time in a live

simulation, the spherical harmonic decomposition method, and validates, for the first

81

-8e-05

-6e-05

-4e-05

-2e-05

 0

 2e-05

 4e-05

 6e-05

 8e-05

 1e-04

 0 2 4 6 8 10 12

 _
4,

20
ψ

time() λ

Teukolsky wave in unigrid: The l = 2, m = 0 component of _4 extracted at r = 3 ψ λ

Analytic solution
high resolution

medium resolution
low resolution

(a)

-0.00015

-0.0001

-5e-05

 0

 5e-05

 1e-04

 0.00015

 0 2 4 6 8 10 12

 _
4,

20
ψ

time() λ

Numeric and Analytic Solutions of _4,20(r=3) from Teukolsky Initial Data (a = 2e-6)ψ λ λ

Analytic Solution
High Resolution
Med Resolution
Low Resolution

(b)

Figure 4.5: Analytic and numeric solutions for the l = 2, m = 0 component of a

Teukolsky wave at three resolutions. No mesh refinement was used for any of the

runs shown in Panel (a), and the extraction radius is r = 3λ. Mesh refinement was

used for the runs in Panel (b). The extraction radius is also at r = 3λ, which passed

through a cubic mesh refinement boundary of side length 2λ. (Additional refinement

boundaries exist beyond the extraction radius.) Note the agreement between the

high resolution runs and the analytic solution.

82

-8e-06

-6e-06

-4e-06

-2e-06

 0

 2e-06

 4e-06

 6e-06

 0 2 4 6 8 10 12

E
rr

or
 in

_4

,2
0

(s
ca

le
d)

 ψ

time() λ

Convergence plot for Teukolsky wave initial data (a = 2e-6) at r = 3 (uniform grid)λ λ

(Numeric - Exact) high resolution
(Numeric - Exact) med resolution
(Numeric - Exact) low resolution

Figure 4.6: A convergence plot for the l = 2, m = 0 component of Ψ4 extracted from

unigrid simulations of a Teukolsky wave at radius r = 3λ, where λ is the width of

the wave in the initial data. The lowest resolution suffers from a phase error, which

is to be expected from a low resolution simulation.

time ever, the error estimates made in Section 4.2.2. It is also worth noting that,

comparing Panel (a) of Figure 4.5 with Figure 4.6 at the highest resolutions used,

the error in the waveforms is on the order of a few percent, which is a good result

considering resolution.

The overall quality of the waveforms extracted from the simulation can also be

verified by comparing results extracted at several distinct radii. Because the domi-

nant r dependence of Ψ4 goes like r
−1, the easiest way to compare multiple extractions

is to shift the waveform in space and scale it by r so that the different waveforms

should lie nearly on top of each other; this agreement will not be perfect even in the

analytic solution since Ψ4 also has terms that scale with higher negative powers of r.

Figure 4.7 shows both the raw Ψ4,20 data (panel (a)) extracted at 3λ, 4λ, 5λ, 6λ, and

7λ, and that same data shifted to r = 3λ and scaled up by r. It is clear from panel

(b) that the wave is faithfully propagated and extracted at all radii considered.

The numerical results for the FMR family, shown at r = 3λ in Panel (b) of Fig-

ure 4.5, are better approximations to the analytic result than the unigrid runs shown

in Panel (a). Because the FMR grids are more memory efficient, higher resolutions

83

-0.00015

-0.0001

-5e-05

 0

 5e-05

 1e-04

 0.00015

 0 2 4 6 8 10 12

 _
4,

20
ψ

time() λ

Wave extraction for Teukolsky wave initial data (a = 2e-6)λ

R_ext = 3 λ
R_ext = 4 λ
R_ext = 5 λ
R_ext = 6 λ
R_ext = 7 λ

(a)

-0.0004

-0.0003

-0.0002

-0.0001

 0

 1e-04

 0.0002

 0.0003

 0.0004

-4 -2 0 2 4 6 8 10 12

r

_4
,2

0
ψ

time() λ

Scaled and shifted wave extraction for Teukolsky wave initial data (a = 2e-6) on uniform gridλ

R_ext = 3 λ
R_ext = 4 λ
R_ext = 5 λ
R_ext = 6 λ
R_ext = 7 λ

(b)

Figure 4.7: Panel (a) shows the l = 2, m = 0 component of Ψ4 extracted from a

unigrid run at various extraction radii. Panel (b) shows the same data, shifted to

r = 3λ and scaled by r so that the waveforms should lie nearly on top of each other.

84

-1e-06

-8e-07

-6e-07

-4e-07

-2e-07

 0

 2e-07

 4e-07

 6e-07

 8e-07

 1e-06

 0 2 4 6 8 10 12

E
rr

or
 in

_4

,2
0

 ψ

time() λ

Convergence plot of _4,20 at r = 3 : Teukolsky initial data (a = 2e-6) on FMR gridψ λ λ

Error high res
Error med res/4
Error low res/16

Figure 4.8: A convergence plot for the value of Ψ4,20 at r = 3λ extracted in simula-

tions at three different resolutions. The lowest resolution result is clearly not in the

convergent regime, but the two highest resolutions show excellent convergence.

are achievable, and because both the guardcell filling and extraction algorithms are

well behaved in the presence of FMR boundaries, this higher resolution leads to more

accurate waveforms. This is apparent in Figure 4.8, which shows the errors in the

numeric solutions scaled by powers of two appropriate to second order convergence.

The scaled error curves for the two highest resolutions overlay because the simula-

tion is in fact converging at second order. The lowest resolution has not reached

the convergent regime, but its absolute errors are still quite small.13 By comparing

the peak error in the finest resolution curve in Figure 4.8 to the amplitude of the

extracted wave in Panel (b) of Figure 4.5, it is clear that the error in the waveform

at these resolutions is on the order of a few tenths of a percent. The validity of

these waveforms is further confirmed by looking at the scaled and shifted waveforms

extracted at several radii. Figure 4.9 shows both the raw data extracted at several

radii (Panel (a)), and that same data scaled and shifted to r = 3λ.

In the end, these experiments with the Teukolsky wave indicate that Misner’s

13Compare Figure 4.8 with Figure 4.6. The lowest resolution in the FMR run has resolutions in

its central regions comparable to the two lowest resolution unigrid runs. See Table 4.4 for the exact

parameters.

85

-0.00015

-0.0001

-5e-05

 0

 5e-05

 1e-04

 0.00015

 0 2 4 6 8 10 12

 _
4,

20
ψ

time () λ

Wave extraction for Teukolsky wave initial data (a = 2e-6)λ

R_ext = 3 λ
R_ext = 4 λ
R_ext = 5 λ
R_ext = 6 λ
R_ext = 7 λ

(a)

-0.0004

-0.0003

-0.0002

-0.0001

 0

 1e-04

 0.0002

 0.0003

 0.0004

-4 -2 0 2 4 6 8 10 12

r

_4
,2

0
ψ

time() λ

Scaled and shifted wave extraction for Teukolsky initial data (a = 2e-6)on FMR gridλ

R_ext = 3 λ
R_ext = 4 λ
R_ext = 5 λ
R_ext = 6 λ
R_ext = 7 λ

(b)

Figure 4.9: Panel (a) shows the l = 2, m = 0 component of Ψ4 extracted from an

FMR run at various extraction radii. Panel (b) shows the same data, shifted and

scaled by r so that the waveforms should lie nearly on top of each other.

86

method for extracting spherical harmonics components works in an actual application

to general relativity, and that the error analysis of that method, presented for the first

time here is also born out in numerical results. The experiments show further that

the presence of FMR interfaces neither degrades the performance of the algorithm

nor spoils the propagation of the wave itself.

These results represent a crucial step toward extracting gravitational radiation

signal from more realistic simulations. The technology developed here is directly

applicable to black hole spacetimes without change, provided that the simulation of

the black hole itself is both stable and reliable. Because there has been recent progress

in the art of constructing robust black hole simulations, there is good reason to hope

that black hole simulations of the near future will apply the techniques developed

here to extract signals from distorted black hole or binary black hole simulations.

4.4 Summary and Future Work

In this chapter I outlined the basic mathematical tools used to describe gravitational

radiation, the Newman-Penrose formalism. Within that formalism, I described the

need for and the definition of spin-weighted spherical harmonics, which are the gener-

alization of the usual scalar spherical harmonics appropriate for describing radiation

fields in general relativity. I also presented one particular algorithm due to Misner

for computing spin-weighted spherical harmonics from data numerically evolved on

a cubic grid.

Working from this background, I presented a detailed error analysis of Misner’s

algorithm and worked out, in the case of the scalar spherical harmonics, all of the

details necessary to implement the algorithm on a cubic grid in which reflection

symmetries are explicitly enforced by boundary conditions. Also, related to the issue

of symmetry, I showed that a particular matrix, which plays a key role in Misner’s

algorithm, is real-symmetric and sparse, rather than complex-Hermitian and dense

as would naively be thought. This can lead to significant savings in computation,

especially if the method is pushed to higher order accuracy, used to compute spherical

87

harmonics with higher values of l, or used in a simulation in which the weights must

be recalculated during the simulation.14

This work was tested in the context of a linearized solution to the Einstein equa-

tions with a known spherical harmonic expansion. The theoretical work of the earlier

sections of the chapter were tested both in the case of uniform grids and grids with

fixed mesh refinement interfaces. Waves extracted and decomposed into spherical

harmonic components, on both types of grids, matched the analytic solution to high

degree of accuracy. The error models presented here were demonstrated to be correct.

The benefits of using FMR are also apparent. The results of this chapter demon-

strate that radiation quantities (i.e. Ψ4) propagate without significant distortions

through properly treated mesh refinement boundaries. This builds on the results of

Ref. [30], which showed that metric quantities also propagate through mesh refine-

ment boundaries. Moreover the results of this chapter demonstrate that it is possible

to compute the spherical harmonic decomposition of radiation quantities even when

the extraction sphere intersects mesh refinement boundaries. This is a significant

result because the FMR simulations are much more efficient to run on the computer,

allowing higher resolutions in the central regions of domain and pushing the physical

boundary (for which there is no known, physically consistent boundary condition to

apply in the strong field region) farther out. This simultaneously improves the accu-

racy of the simulation in the “source” region (looking forward toward more realistic

simulations in which compact objects generate the gravitational radiation), while

pushing the physical boundary far enough away that any incoming radiation gener-

ated by the boundary condition does not have time to propagate to the extraction

radius.15

14Although I only need to compute the weights at the beginning of a simulation, in other appli-

cations the weights might need to be recomputed many times. This would occur if the extraction

radius changed during the course of a simulation or if the grid structure changed in a simulation

using adaptive mesh refinement.

15The lower resolution in the outer regions also tends to damp any wave signal, and, in addition,

when the boundary is far enough away, it is possible to impose reasonable boundary conditions.

Both of these facts conspire to reduce the effects of the outer boundary conditions on the simulation.

88

On the other hand, it is also clear that FMR is not a fix-all for resolution prob-

lems. The wave must be properly resolved in all regions between the source and

the extraction radius in order to extract a proper waveform. This is apparent in

Figure 4.8, which shows that the error in the lowest resolution simulation is not yet

converging. In that low resolution run, the innermost refinement region has a reso-

lution of λ/12 and the second refinement region, which contains the extraction shell,

has a resolution of just λ/6. Most people would not expect a unigrid simulation with

less than ten points per wavelength to converge, and, indeed, one should not expect

to be able to successfully extract a waveform in a mesh refined region of such low

resolution either. In more realistic simulations, in which the source is a strong-field

interaction (a black hole binary, for example), this could pose problems even for an

FMR simulation since, in those cases, the extraction radius will be farther from the

center of the grid at a distance corresponding to the radiation zone. An FMR sim-

ulation will need to maintain sufficient resolution in all zones out to the extraction

radius. Of course the FMR simulation is still more efficient than a unigrid run that

maintains the highest resolution all the way to the wave zone,16 and AMR could solve

this problem by localizing resolution on the wave packets as they travel outward.

These results provide a crucial step toward extracting gravitational wave signals

from more physically and astrophysically relevant simulations. They can be extended

in the near future to studies of distorted black hole initial data. These studies are

of interest to gravitational wave detector experiments because, after colliding, black

holes form a single, highly distorted black hole, which continues to radiate gravita-

tional energy. Some of these signals may be detectable. Even if the application to

strongly distorted black holes is not immediately possible, which may be the case

since they have not been well studied numerically, applications to weakly distorted

16Keep in mind that in a simulation with an astrophysical source, say a binary black hole system

for example, the characteristic size of the source is of the order of the system mass M , whereas the

radiation emitted is of the order 10M–100M . That means that the source region needs to have grid

spacings of order M/10 at maximum, whereas the wave zone only needs grid spacings of order M .

(Of course higher resolutions, in both regions, are desirable.) In a unigrid simulation one would

need to keep the highest resolution through the whole grid.

89

black holes will also have research benefits. Some people in the community (primarily

the Lazarus project [10]) have studied the possibility of interfacing fully non-linear

numerical codes to codes that evolve only linear perturbations. The ability to make

direct comparisons between results generated from a non-linear code and results

generated by a combination of non-linear evolution followed by an evolution of lin-

earized perturbations would be a great aid in evaluating the usefulness of the mixed

approach. Very likely it would lead to improvements in both methods.

Brill waves [20] are a likely test case for the ideas and methods presented in this

chapter, which could form an intermediate step between the linearized waves treated

here and distorted black holes. While black holes introduce additional technical

problems related to representing singularities inherent in the solution on the com-

puter, Brill waves are a direct generalization of the work presented in this chapter.

In addition, distorted black hole initial data is frequently generated by superposing

a Brill wave on an undistorted black hole solution, and relaxing (by solving an ellip-

tic equation) that initial guess to a solution of the constraints (see, e.g., Ref. [16]).

In order to generate Brill wave initial data in any case, one needs to solve a scalar

elliptic equation, but the Goddard group is fortunate to have access to a numerical

elliptic solver that is also layered over the Paramesh package and which is able to

solve the equation on a mesh refined grid compatible with the Hahndol evolution

code [22]. This technical problem is no longer an obstacle.

The ability to integrate radiation quantities over a sphere will also play a role in

our attempts to study “kicks” generated by black hole collisions. When two compact

objects with non-equal masses collide, the gravitational radiation field emitted will

not be symmetric. This means that the black hole formed by the collision will have

non-zero linear momentum in the center of mass frame of the two initial objects.

(This is necessary because the gravitational waves carry linear momentum in a pre-

ferred direction.) Order of magnitude estimates suggest that the kick velocity of

the final object is bounded by v < 10−4c = 300 km s−1. If kick velocities actually

approach this bound, they could be sufficient to eject a merged black hole from the

center of a galaxy, thereby preventing a large central black hole from forming there

90

via hierarchical mergers [75]. In order to study this in a numerical simulation, it is

necessary to record and integrate in time the amount of radiation passing through

some large sphere. Any net momentum flux passing through the sphere must be com-

pensated by a change in momentum of the final black hole. The calculation requires

extracting the Y1m (scalar) spherical harmonic components of the time-integrated

radiation field, which is exactly what we now know how to do.

In terms of future algorithm development, the primary impediment to pushing

the algorithm to higher order is the simple weighting scheme used to compute the

volume integral. It would be nice to develop a more accurate way to compute these

integrals and incorporate it into the code. Although few people have a code that is

only first order accurate, there are currently multiple efforts to introduce codes that

converge at higher than second order. It would not be acceptable to use a second

order accurate analysis algorithm on a fourth order accurate simulation. Even among

second order codes, it would be preferable to see the order of accuracy improved

because it is preferable that the numerical errors from the analysis step be of higher

order than the numerical errors in the data.

91

Chapter 5

Conclusions and Discussion

This dissertation has focused on the role of the constraints in numerical evolutions,

and on the mathematical and algorithmic issues associated with computing gravi-

tational waveforms from numerically evolved data. Although the specific problems

studied here have been simpler than those of interest to the observational commu-

nity, they have provided valuable testbeds for new algorithms. In the case of the

constraint driver algorithm described in Chapter 3, more work is needed to show

that the method will be robust in more realistic situations, while the wave extrac-

tion technology developed in Chapter 4 is already implemented in a code that can,

in principle, handle more astrophysically interesting problems. Taking a broader

view, I noted in the introduction, and wish to reiterate here, that much of the origi-

nal work presented in this dissertation has applications beyond numerical relativity.

Constraint driver terms can be applied to any set of partial differential equations

subject to a constraint, and Misner’s algorithm is applicable to any problem for

which spherical harmonic components should be extracted from data represented on

a cubic lattice.

On the issue of the constraints, the dissertation presents a novel prescription for

incorporating the constraint equations of the theory into the evolution equations. I

showed in the text, for the cases studied here, that with this particular modification,

arbitrary initial data will evolve into data that satisfies the constraints of the theory.

This is true at the analytic level. In four separate linear test cases, two cases of the

Maxwell equations in three dimensions and two cases of the linearized Einstein equa-

92

tions in one dimension, numerical simulations showed behavior consistent with this

prediction. More importantly, I showed that, for initially constrained data, numeri-

cal constraint violations are suppress in a way that decreases or leaves unchanged the

total solution error. If these results generalize to non-linear equations, this method

will play an important role in future simulations throughout numerical relativity.

The work that I presented on this topic in the dissertation was partially based

on results that I had already published, which showed that the constraint driver

terms worked for the Maxwell equations. In this dissertation, I have added to that

by successfully applying the technique to the linearized Einstein equations. The

application to Einstein differed from the application to Maxwell in that the correction

terms for the Einstein equations contain higher order derivatives. In the Maxwell

equations, the correction terms added derivatives of the same order as those already

in the equations. Although adding fourth derivatives may have seemed, a priori,

to risk introducing high frequency instabilities, I now have numerical evidence that

they do not appear to cause any problems in the bulk of the simulation. (Because

I used periodic boundary conditions in my test problem, I have avoided, so far, any

potential complications the fourth derivatives create at the boundaries.)

In my original paper on this subject, I identified two features of the corrections

to the Einstein equations that differed from the Maxwell corrections. The first was

higher order derivatives, which I just discussed. The second, which remains untested

is the non-linear nature of the corrections to Einstein. It appears, in fact, that the

correction terms are not even quasi-linear. While this is not a guaranteed problem,

there is little mathematical theory available for partial differential systems that are

not quasi-linear. This remains one of the most interesting aspects of the method to

test, and it is a problem that I look forward to studying in the near future.

On the topic of wave extraction, I made a detailed study of Misner’s algorithm for

extracting spherical harmonic components from data represented on a cubic lattice.

In particular, I made a detailed error analysis of the method as a function of all of

its parameters, and I used the symmetries of the spherical harmonic functions to

determine an optimal way of applying the method on grids in which symmetries in

93

the data are imposed by boundary conditions. (Meaning, for example, that only

one octant of the sphere is numerically evolved for data with octant symmetry.) I

implemented the algorithm, and used the code in conjunction with an existing code

designed to evolve the fully non-linear, three dimensional Einstein equations. The

numerical results from these tests confirmed my error estimates, both in the case of

a grid with uniform resolution and in the case of fixed mesh refinement.

Because my implementation of the algorithm is already working with a generic

Einstein solver, I am already in an excellent position to exploit this new technology

on more interesting problems. From an astrophysical point of view, one would like

to study the gravitational radiation emitted from distorted black holes since a dis-

torted black hole is the end product of a binary black hole collision. This is certainly

something that I will try in the near future. Another problem of pedagogical value

would be Brill wave spacetimes. Both cases would test the technology in situations

that are in the non-linear regime of the equations, but, while there may be tech-

nical issues associated with distorted black hole spacetimes, which have not been

very well studied, the Brill wave should be immediately accessible. (The technical

differences in the problem arise because the black hole has a physical singularity,

which makes the problem more challenging even without attempting to extract a

meaningful waveform.)

Future work on the wave extraction algorithm will almost certainly be centered

on making it more accurate. The error analysis that I provided in the text indicates

exactly how to modify the various parameters of the algorithm to achieve any desired

level of convergence, but this is currently of limited value. The dominant error in the

method at present is in the approximation to the volume integral over a thin shell.

To really push the method to higher accuracy, a better integration scheme will be

required.

In a wider context, while there is no doubt that while the dissertation makes

contributions both to the overall understanding of the role of the constraints in free

evolution and to the development of techniques for successfully computing gravita-

tional waveforms from simulated data, there is also no doubt that these are distinct

94

contributions to the field. One goal of future work will certainly be to combine both

advances into a single framework, so that they can both be applied simultaneously.

To a large extent I have mapped the road to achieving this already. I need to demon-

strate that the constraint driver terms will continue to perform as desired when the

equations are non-linear, and the I need to compute and implement the corrections

in three dimensions. (Although for the relatively simple problems presented in the

text computing the corrections was nearly trivial, computing the corrections for the

full Einstein equations in three dimensions promises to be a tedious process.) Once

I have such an implementation, I will be able to include the correction terms in the

evolution code from which I generate my radiation quantities.

The techniques developed here must also be merged with advances from other

areas of numerical relativity. When simulating black hole spacetimes, for example,

the singularity inherent to the physical solution must somehow be modeled. One

of the leading techniques for treating the singularity is the excision method, which

was discussed only briefly in the text. In this method the interior of the black hole

is simply not evolved. While this presents no theoretical problem since the black

hole interior is causally disconnected from the exterior, it presents a computational

problem because it introduces an interior boundary in the simulation domain. Several

groups have worked on ways to stably apply boundary conditions at the excision

boundary, but it is not immediately clear that these techniques will be compatible

with the constraint driver terms that I have proposed. The fourth derivatives present

in the constraint driver corrections would surely make the analysis more complicated,

and this needs to be studied. Although there is no clear impediment to pushing the

techniques that I have developed in the dissertation to more realistic situations, issues

like this are apparent and will need to be studied in the future.

95

Appendix A

Fixed Mesh Refinement

This appendix provides some details associated with fixed mesh refinement as imple-

mented in the Hahndol code, which was used to generate some of the data presented

in this dissertation. Fixed mesh refinement, although well developed in other compu-

tational fields, remains a novel technology in numerical relativity. Because numerical

relativity deals with non-linear equations, with high order derivatives, and which do

not appear to admit a manifestly conservative formalism, not all of the experiences

of other fields is immediately applicable to fixed mesh refinement in numerical rela-

tivity. These problems are highlighted below. The discussion on guard cells comes,

in some cases directly, from Ref. [55].

The Hahndol code [30, 55] is layered over the Paramesh libraries [61], which create

and manipulate the data structures required for mesh refinement and handle most of

the parallelization of the code. I will not attempt to explain in full the details of the

Paramesh package, nor of Hahndol itself, but wish to use them as examples in a sketch

of some key points that will help the reader, especially a reader unfamiliar with mesh

refinement techniques, to understand the computational science and mathematical

issues involved in constructing proper interface conditions.

We use a “box-in-box” refinement scheme. This is illustrated in two dimensions

in Figure 4.3, which shows relatively fine grids near the origin surrounded by coarser

grids. Adjacent grids always differ in grid spacing by a factor of two. There is no

refinement in time, which means that all grids, independent of spatial resolution

are updated together with a time step that respects the Courant stability condition

96

on the finest grid. This differs from the Berger-Oliger scheme [15] that is common

in other fields, as well as the modified Berger-Oliger schemed first introduced by

the Carpet collaboration in numerical relativity [74]. In these schemes each grid is

updated according to its own Courant factor. While the Berger-Oliger scheme is a

factor of four more efficient, our numerical algorithm is easier to construct, and is

therefore, arguably, an easier test case.

We use a cell-centered scheme for representing the data. This means that, in

Figure 4.3 for example, we store data not at the intersection of the grid lines, but

at the center of the cells formed by the crossing grid lines. In a unigrid simulation

this might make little difference, but in cases with multiple refinement regions, this

has a practical effect: the data on two neighboring grids is not aligned in any spatial

direction. Considering that our finite differencing stencils, like the first derivative

approximation

f ′(xi) ≈
f(xi+1)− f(xi−1)

2∆x
(A.1)

for example, extend at least one grid point in each direction, this means that we need

to “create” data in order to apply those stencils at a refinement boundary. This extra

data is stored at fictional points called guard cells, which are filled using some sort

of interpolation.

The primary problem in introducing multiple grids into a computation simulation

is handling the interface conditions between the refinement regions. In physical

terms, the different refinement regions effectively have different indices of refraction,

so that waves incident on them may reflect and refract. The interface conditions,

which means the interpolation scheme used to fill the guard cells, applied at the

boundaries between refinement regions must be constructed carefully to ensure that

such effects are minimized, and also to ensure that the overall convergence order of

the code is maintained.

As a general rule, guard cells at mesh refinement boundaries should be filled to

third order accuracy for an evolution code such as ours to maintain overall second

order accuracy.1 We point out that this is not the result one would expect from a

1In our terminology the “order of accuracy” refers to the order of errors in the grid spacing.

97

simple counting of powers of ∆x ∼ ∆t. For example, Eqs. (2.15) contain second

spatial derivative terms on the right hand sides. Using standard O(∆x2) centered

spatial differences this gives, for any field f , f ′′j = (fj+1 − 2fj + fj−1)/∆x
2, where

primes denote a spatial derivative and, for simplicity, we are looking only at the

x-direction. Suppose that this term includes a guard cell, say fj+1, that is computed

to nth order accuracy, fj+1 → fj+1 +O(∆xn). With this, the second derivative term

becomes f ′′j → f ′′j +O(∆xn−2). Maintaining overall O(∆x2) accuracy thus appears

to require filling the guard cells to fourth order accuracy. However, as we discuss

below, third order accurate guard cell filling is sufficient to produce second order

accurate evolutions; cf. [29, 49].

The current version of our code uses a third order guard cell filling scheme that is

now included with the standard Paramesh package. This guard cell filling proceeds

in three steps.

The first step is a restriction operation in which interior fine grid cells are used

to fill the interior grid cells of the underlying “parent” grid. The parent grid is a

grid that covers the same domain as the fine grid but has twice the grid spacing.

The restriction operation is depicted for the case of two spatial dimensions in the

left panel of Figure A.1. The restriction proceeds as a succession of one–dimensional

quadratic interpolations, and is accurate to third order in the grid spacing. Note that

the 3-cell-wide fine grid stencil used for this step (nine black circles in the figure)

cannot be centered on the parent cell (gray square). In each dimension the stencil

includes two fine grid cells on one side of the parent cell and one fine grid cell on the

other. The stencil is always positioned so that its center is shifted toward the center

of the block (assumed in the figure to be toward the upper left). This ensures that

only interior fine grid points, and no fine grid guard cells, are used in this first step.

For the second step, the fine grid guard cells are filled by prolongation from

the parent grid. Before the prolongation, the parent grid gets its own guard cells

Thus, third order accuracy for guard cell filling means that the guard cell values have errors of order

∆x3, where ∆x is the (fine) grid spacing. Second order accuracy for the evolution code means that,

after a finite evolution time, the field variables have errors of order ∆x2.

98

Figure A.1: Guard cell filling in two spatial dimensions. In these pictures, the thick vertical line represents a refinement boundary

separating fine and coarse grid regions. The picture on the left shows the first step, in which one of the parent grid cells (gray

square) is filled using quadratic interpolation across nine interior fine grid cells (black circles). The other parent grid cells are

filled using corresponding stencils of nine interior fine grid cells. (The asymmetry in the left panel is drawn with the assumption

that the fine block’s center is toward the top-left of the panel.) The picture on the right shows the second step in which two fine

grid guard cells (gray circles) are filled using quadratic interpolation across nine parent grid values (squares). These parent grid

values include one layer of guard cells (black squares) obtained from the coarse grid region to the right of the interface, and two

layers of interior cells (gray squares). The final step in guard cell filling (not shown in this figure) is to use “derivative matching”

to fill the guard cells for the coarse grid.

99

(black squares in the right panel of Figure A.1) from the neighboring grids of the

same refinement level, in this case from the coarse grid. The stencil used in the

prolongation operation is shown in the right panel of Figure A.1. The prolongation

operation proceeds as a succession of one–dimensional quadratic interpolations, and

is third order accurate. In this case, the parent grid stencil includes a layer of guard

cells (black squares), as well as its own interior grid points (gray squares). At the

end of this second step the fine grid guard cells are filled to third order accuracy.

The third step in guard cell filling is “derivative matching” at the interface.2

With derivative matching the coarse grid guard cell values are computed so that the

first derivatives at the interface, as computed on the coarse grid, match the first

derivatives at the interface as computed on the fine grid. The first derivative on the

coarse grid is obtained from standard second order differencing using a guard cell and

its neighbor across the interface. The first derivatives on the fine grid are computed

using guard cells and their neighbors across the interface, appropriately averaged to

align with the coarse grid cell centers. This third step fills the coarse grid guard cells

to third order accuracy.

An alternative to derivative matching, which we do not use, is to fill the coarse

grid guard cells from the first layer of interior cells of the parent grid. However, we

find that such a scheme leads to unacceptably large reflection and transmission errors

for waves passing through the interface. These errors are suppressed by derivative

matching.

2In Ref. [30] this process is referred to as “flux matching.”

100

Appendix B

Implementation of Misner’s Algorithm

In this appendix I delve into more gritty issues regarding my particular implemen-

tation of the algorithm for spherical harmonic decomposition that I described and

analyzed in Section 4.2. I use, without reintroducing, the notation of that section

here. While the details provided here may be quite useful to some readers, those in-

terested only in the theoretical aspects of the work may wish to skip this appendix.

It should be noted that the analysis developed in Section 4.2 was not available

when the first version of this code was written. The analysis of the symmetries, for

example, was not understood when code development began, and so the approach

developed there to treat grids reduced by explicit symmetries was not applied. The

approach described in this appendix is a brute force approach. This is less optimal

both from the point of view of performance and from the point of view of code

development.

My implementation was designed primarily for use with the Hahndol code [30, 55],

which itself is layered over the Paramesh AMR libraries [61]. For this reason, the

code is written in Fortran 90.1 While the code was designed primarily for use as part

of Hahndol, it is highly modular, and could therefore easily be used with another

1I chose Fortran 90 because Paramesh and most of Hahndol are written in that language and

I did not wish to deal with C-Fortran interfacing issues. In retrospect this was a mistake because

Fortran imposes several limitations that make the code less adaptable than it otherwise would have

been. Coding anything that is data structure intensive in Fortran is almost always a mistake. The

code is, nonetheless, modular and portable as I describe in the text.

101

call init_misner_harmonics(parfile)

...

call compute_misner_harmonic(l,m,RePhiLM,ImPhiLM,nr,reIndex,imIndex)

Figure B.1: The calling sequence for the two “Misner Harmonic” subroutines that

form the public interface to the misner harmonic module. The variable parfile is

a string that is the name of a parameter file. The integer variables l and m specify

which spherical harmonic component to compute on the grid function with real part

labeled by index reIndex and imaginary part (optional argument) labeled by index

imIndex. The real and imaginary parts of the spherical harmonic component are

returned in real variables RePhiLM and ImPhiLM. The integer variable nr indicates

where the extraction should take place in a way determined by the parameter file.

code that uses another framework.

B.1 User Interface and Compile-Time Parameters

The module misner harmonics contains the primary portion of the code. Its public

interface consists of an initialization routine init misner harmonics and a compu-

tation routine compute misner harmonic. The argument sequence for these func-

tions is shown in Figure B.1. The first routine initializes the module and must be

called after the grid hierarchy is created and before attempting to actually compute

a spherical harmonic component. It must be called again every time the grid struc-

ture changes, as would happen in a simulation using adaptive mesh refinement. The

second function actually computes a specified spherical harmonic component on a

specified grid function.

Internally, the initialization subroutine calls a hierarchy of private module func-

tions and subroutines to compute the weights and other required data. This data is

stored in module variables, which are enumerated in Figure B.2. The six parameters

at the top of the code fragment define compile-time parameters used to set the sizes

of the various arrays used in the algorithm.2 The code comments make these fairly

2One would really like these parameters to be run-time choices and the memory allocated dy-

102

module misner_harmonics

! Subroutine listing cut for this example

integer, parameter, private :: NWeightsMax = 11000 ! Max # of weights allowed

integer, parameter, private :: NRadiiMax = 5 ! Max # of Radii allowed

integer, parameter, private :: NMax = 2 ! Sum over N to this value

integer, parameter, private :: LMax = 2 ! Which values of l?

integer, parameter, private :: SglIndRng = 9 ! sum of first LMax+1 odds

integer, parameter, private :: IndRng = 18 ! SglIndRng*(NMax/2 + 1)

integer, private :: NWeights(NRadiiMax) ! # of non-zero weights

integer, private :: NRadii ! # of Radii of extraction

complex, private :: ThetaLM(SglIndRng,8,NWeightsMax,NRadiiMax)!See note above

! (i,j,k,blk) of w_x != 0 in stored in IndexWeights

integer, private :: IndexWeights(4,NWeightsMax,NRadiiMax)

logical, private :: initialized = .false.

logical, private :: symmetry(3) ! Coordinate directions suppressed

integer, private :: sym_factor ! 2^(3-N) where N is number of explicit syms

integer, private :: sym_num ! 2^N where N is number of explicit symmetries

real, private :: sym_sign(8) ! Signs for pseudo-scalars under symmetries

real, private :: Delta

! Executable code cut for this example

end module misner_harmonics

Figure B.2: A code fragment from the misner harmonics module. This shows the

internal parameters and data structures used.

self-explanatory. One should note, however, that the parameter NWeightsMax limits

the number of non-zero weights allowed on a single processing element. When the

code is run on a parallel machine there are frequently (in fact to use memory op-

timally there should be) more than NWeightsMax total non-zero weights in the full

domain. Also note that, since all of the odd n terms in the sum (4.26) vanish iden-

tically, only even values of NMax are allowed. (There is a run-time check that all of

these parameters have valid and compatible values.) In practice one may well want

to compute spherical harmonic components at several different radii in a single sim-

ulation. The parameter NRadiiMax determines the maximum number of extraction

radii allowed in a given simulation. One should also note that while LMax and NMax

determine how many values of l are used and the parameter N respectively, they

namically. I hope to include this algorithm improvement in a future revision, likely to be written

in C++ for easy of memory management and because a class structure would more naturally allow

for the scheme to accommodate several different spin-weighted harmonics in the same simulation

without a repetition of code.

103

cannot independently be increased without limit since the module knows the explicit

forms of only the first few spherical harmonics and Legendre polynomials. In order

to increase past this limit, higher order harmonics would need to be implemented.3

B.2 Internal Data Structures

After the compile-time parameters come four data structures that store most of the

mathematical information. The array NWeights stores the actual number of non-

zero weights computed at each of the extraction radii, while NRadii stores the actual

number of extraction radii for which weights have been computed.4 The complex

valued array ThetaLM contains the quantities

Θlm = R̄lm(x;R)wx (B.1)

which are exactly the values needed to apply (4.30) to compute a spherical harmonic

component. This array has four indices. The first indicates indicates value of l andm

(which are mapped to a single integer by equation (B.2) below). The second is used

only for grids with explicit symmetries; this is described below. The third is an index

labeling the grid points, and corresponds to x in (B.1). The fourth index labels the

different extraction radii. Finally, the array IndexWeights maps between grid index

groups and scalar indices local to the module. Such a mapping is needed because

the module only stores non-zero weights. The first index runs over the grid indices

(i, j, k, blk), which are the index values in the x, y, and z directions augmented by

a fourth index used to label the refinement level.5

3The modules spherical harmonics and legendre polynomials contain this code. These mod-

ules will not be discussed further, but are straightforward implementations of the named functions.

The functions are combined into several useful combinations in the module misner auxiliaries.

4Keep in mind the difference between the parameters which control the maximum number of

weights and radii allowed in any simulation and the variables which indicated how many weights and

radii are actually used in a given simulation. The maximums can be changed only by recompiling

the code, whereas the actual number used is determined freely (up to the maximum) at run-time.

5In a strictly unigrid code the blk index would always be set to 1. The name blk comes from

the basic grid structure in Paramesh, which is called a “block.”

104

The variable initialized is used internally to ensure that spherical harmonic

components are only computed after the module data has been initialized. Attempt-

ing the computation without initializing the module would, of course, be meaningless.

The code generates a run-time error in this case.

The variable Delta stores the parameter ∆ as defined in Section 4.2. It is used

only during initialization.

The remaining variables are all related to making the algorithm work when the

grid takes advantage of explicit symmetries in the data. This was discussed in detail

in Section 4.2.4. Unfortunately the analysis of that section was not available when

the original code was written, and so this implementation applies a complicated,

brute force approach to the problem. First, at initialization time, any symmetries

are recorded in the array symmetry. A value of true in the first place, for example,

indicates that a reflection symmetry is applied in the x direction. Three true values

indicates, then, that only a single octant of data is evolved, with appropriate mirror

boundary conditions applied to the data. The variables sym factor and sym num are

then defined for later convenience as 23−s and 2s, respectively, where s is the number

of explicit symmetries. Finally I store, in the first s entries of the array sym sign

a value of +1 or −1, which indicates the sign acquired by a pseudo-scalar under

the corresponding reflection.6 I will explain the use of these variable in more detail

below.

B.3 Internal Functions and Subroutines

There are two stages to the computation, initialization of the data structures, and

using the data structures to compute spherical harmonic components. The two

subroutines in the public interface, described in Section B.1 correspond to these two

tasks. In this section, I describe in some detail what happens internally when these

interface subroutines are called by the user. The treatment here is “top down,”

meaning that I start with the interfaces and descend down through the calling stack.

6Entries in the array sym sign beyond position s are not initialized and are never used.

105

I take this approach because it provides an opportunity to see the big picture before

attacking the details.

B.3.1 Initialization

When the user calls init misner harmonics:

1. A subroutine checks to ensure that the compile-time parameters were given

values that are (a) allowed, and (b) self-consistent. If either of these conditions

is violated, the code prints an error message and aborts.

2. Reads the parameter file to determine if the grid is reduced by explicit grid

symmetries. This means that the array symmetry is filled, and the variables,

sym factor, sym num, and sym sign are set to appropriate values.

3. Rereads the parameter file to determine how many extraction radii were re-

quested and where those radii are located. These values are stored in local

variables; there is a run-time check to ensure that the number of radii requested

is less than or equal to the compile-time parameter NRadiiMax.

4. Loops over the requested extraction radii and constructs the values stored in

the internal data structures. This loop is described below.

5. Sets the variable initialized to true.

6. Reports success to standard output and returns control to the main program.

Whenever possible, run-time checks ensure that the values passed into the subroutine

by the user (either directly through the calling stack or through the parameter file)

are legal values. Illegal values are reported and the code is gracefully ended.

The majority of the work in this process occurs in the loop over extraction radii.

The essential portions of the internal routine that runs this loop are shown in Fig-

ure B.3. For the most part, each of the subroutines in the loop corresponds to an

equation in Ref. [65]. This correspondence is shown in Table B.1. The subroutines

106

subroutine init_misner_harmonics_Rext(Rext, NRext)

real, intent(in) :: Rext(:) ! Extraction radii

integer, intent(in) :: NRext ! Number of extraction radii

complex G(IndRng,IndRng), Yadj(IndRng,8,NWeightsMax)

real Weight(NWeightsMax), CoordsWeights(3,NWeightsMax)

integer nr, mype

do nr = 1, NRext

NRadii = nr

call check_radius(Rext(nr),nr,NRext)

call define_weights(Rext(nr), Weight, CoordsWeights)

call construct_metric(G, Weight, Rext(nr), CoordsWeights)

call construct_inverse(G)

call compute_adjoint_harmonics(Yadj, G, Rext(nr), CoordsWeights)

call compute_Rlm(Yadj, Rext(nr))

call store_final_ThetaLM(Weight)

end do

initialized = .true.

end subroutine init_misner_harmonics_Rext

Figure B.3: This subroutine contains the loop that constructs the values stored in the

internal data structures of the misner harmonics module. Variables not declared

locally to the subroutine are (private) module variables; cf. Figure B.2. Roughly

speaking, each of the subroutines called here corresponds to one equation from the

Misner paper.

Subroutine name Eqn in Ref. [65]

define weights 14
construct metric 15
compute adjoint harmonics 18
compute Rlm 20

Table B.1: The table shows the correspondence between equations in the Misner

paper and subroutines in the misner harmonics module.

107

check radius and construct inverse, which do not correspond directly to equa-

tions in the Misner paper, provide a run-time check on the value of the radius and

construct the inverse matrix GAB from the matrix GAB using a call to LAPACK [6],

respectively. The subroutine store final ThetaLM also does not correspond to an

equation in the Misner paper; it corresponds to (B.1) above. I now descend into the

remaining subroutines in some detail.

The define weights subroutine’s primary role is to loop over all points in the grid

and determine whether or not the volume surrounding them overlaps the extraction

shell. In order to do this, however, it must first define the extraction shell, which

means defining the parameter ∆. Because I am generically concerned with grids with

multiple refinement regions, it is non-trivial to determine the proper value of ∆. In

practice I determine it looping over each refinement region and then looping over all

points within each refinement region. At each point, I

1. Compute the local grid spacing,

2. Compute the spherical coordinates for the point,

3. Compute a “candidate value of ∆” ∆c which is some constant (usually 3/4)

times the local grid spacing, and

4. Check whether the current point, with the candidate value of ∆c, would be

within the extraction shell. If it would be then I set the actual value of ∆

to max(∆c,∆) and move to the next refinement region. If the current point

would not be in the extraction shell, then I continue the loop over points in

the current refinement region.

At the end of this procedure, ∆ is set to the value that it would have if the simulation

were unigrid with grid spacing equal to the coarsest refinement level through which

the extraction shell could pass. This is, perhaps, clarified by comparing extraction

maps (24, 3, 0.25) and (24, 4, 0.5) in Figure 4.3. The shell in (24, 3, 0.25) is “thin”

because it is contained entirely within the two finest refinement regions. The shell in

(24, 4, 0.5) is “thick” because it can reach the outer most region in the map. Note

108

that the thickness of the shell in (24, 4, 0.5) is determined by the outer refinement

region even though the extraction sphere does not reach that far. This is illustrative

of what was meant by “could” in the emphasized sentence above.

Once the value of ∆ is set, the weights are defined strictly according to (4.28).

No information is stored about zero-valued weights. Non-zero weights are stored in

a local array, and the indices of the point corresponding to that weight are stored

in the array IndexWeights. The spherical coordinates of the point are also stored

in a local array for later use in the initialization process. The number of weights

NWeights is incremented for the current extraction radius. Neither the actual value

of the weights nor the coordinates of the points are needed once the initialization

is complete; neither is it necessary to store them between initialization of different

extraction radii. Run-time checks ensure that the number of weights computed does

not exceed the compile-time parameter NWeightsMax; if the bound is exceeded the

code exits gracefully with an error message.

Once the weights are computed, I call the subroutine compute metric to con-

struct the metric GAB. At this point, complications due to explicit grid symmetries

become manifest. The metric is defined as an inner product over the entire sphere,

whereas only a portion of that sphere will appear in the computational domain when

symmetries are enforced explicitly. This was discussed in detail in Section 4.2.4, al-

though that full analysis was not available when I developed this code. Instead I use

the procedure outlined in the following pseudo-code to compute the value of GAB:

Set G(A,B) to zero
Loop over points with non-zero weight

Recover the spherical coordinates of the point from local arrays
Compute YA and YB at the point
Add ȲAYBwx to the current value of G(A,B)
Use the array symmetry to check through which planes (if any) to reflect
For each reflection (or combination of reflections)

Compute the spherical coordinate of the mirror point (Table 4.2)
Compute YA and YB at the mirror point
Add ȲAYBwx to the current value of G(A,B)

End loop over reflections
End loop over points
In a parallel code, globally reduce to get the sum over all processors

109

The value of the weight wx is the same at all mirror points.

The metric GAB is inverted with a calls to LAPACK routines [6]. The inverse

metric is then used to raise the indices on the spherical harmonics to form the adjoint

harmonics. Symmetry issues again arise. Without the analysis of Section 4.2.4

available, I decided to compute the adjoint harmonics separately for each octant

when octant symmetry is imposed. (I compute fewer copies when fewer symmetries

are used.) The second index of the array Yadj in Figure B.3 is just for this purpose.

For each multi-index A, I compute Y A according to the following pseudo-code:

Set Yadj to zero
Loop over points with non-zero weight (index i)

Recover the spherical coordinates of the point from local arrays
Loop over multi-index B

Compute YB at the point
Add GBAYB to Yadj(A,1,i)

Use the symmetry array to determine the symmetries
Loop over symmetries (index s starting with s = 2)

Compute the spherical coordinates of the mirror point (Table 4.2)
Compute YB at the mirror point
Add GBAYB to Yadj(A,s,i)

End loop over symmetries
End loop over multi-index B

End loop over points

In this case GAB is the same for all mirror points; in fact is it the same for all points

on the sphere by its definition.

The next step in the process is to compute the functions Rlm. The code for this

is shown in Figure B.4. To save a bit of memory, I store the values of the functions in

the module variables ThetaLM. The code simply applies the definition of the functions

Rlm given by (4.31), which is immediately overwritten in store final ThetaLM by

Θlm defined in (B.1). This completes the initialization step.

B.3.2 Computation

The ultimate goal of the algorithm, of course, is to compute the spherical harmonic

components of grid functions during a simulation. Having initialized the module,

the user can accomplish this by calling the subroutine compute misner harmonic.

110

subroutine compute_Rlm(Yadj, Rext)

! Equation 20 from the Misner paper.

! Store them in the ThetaLM slots for now.

use misner_auxilaries

complex, intent(in) :: Yadj(:,:,:)

real, intent(in) :: Rext

integer n,l,m, A,B

real Rn_local

integer w,s

ThetaLM(:,1:sym_num,1:NWeights(NRadii),NRadii) = (0.0d0, 0.0d0)

do w = 1, NWeights(NRadii)

do n = 0,NMax,2; do l = 0,LMax; do m = -l,l

A = lm_mapping(l,m)

B = nlm_mapping(n,l,m)

Rn_local = Rn(n,Rext,Rext,Delta)

do s = 1, sym_num

ThetaLM(A,s,w,NRadii) = ThetaLM(A,s,w,NRadii) &

+ Rn_local*Yadj(B,s,w)

end do

end do; end do; end do

end do

end subroutine compute_Rlm

Figure B.4: The subroutine compute Rlm. The module array ThetaLM is used as

temporary storage, and the function Rn computes the function Rn given by (4.22).

This subroutine computes the sum (4.30). The code is shown in Figure B.5. Here

the function i2phi returns the value of the grid function at the point i, j, k, blk

when s is one. When s is not one, it returns the value that the grid function would

have at a mirror point assuming the appropriate symmetries. In order to provide the

value at mirror points, the routine must make assumptions about whether the grid

function is a scalar or pseudo-scalar, and can then use the module array sym sign

to determine the required sign.7

B.3.3 Index Mappings

I wanted mappings to convert (l,m) pairs and (n, l,m) triples into into single (scalar)

indices. This saves space in memory and allowed me to write the code in a way that

closely resembles notation used in Ref. [65]. Although making the code resemble

7In the text I used this routine to compute the spherical harmonic components of the Weyl scalar

Ψ4, for which the real part behaves as a scalar and the imaginary part behaves as a pseudo-scalar.

111

subroutine compute_misner_harmonic(l, m, RePhiLM, ImPhiLM, nr, &

phi_rindex, phi_iindex)

use misner_comm

integer, intent(in) :: l,m, nr

real, intent(out) :: RePhiLM, ImPhiLM

integer, intent(in) :: phi_rindex

integer, intent(in), optional :: phi_iindex

complex phiLM

integer w, s, A, i,j,k,blk

call compute_misner_harmonic_checks(nr, l, m)

phiLM = (0.0d0, 0.0d0)

A = lm_mapping(l,m)

do w = 1, NWeights(nr)

i = IndexWeights(1,w,nr)

j = IndexWeights(2,w,nr)

k = IndexWeights(3,w,nr)

blk = IndexWeights(4,w,nr)

do s = 1, sym_num

phiLM = phiLM &

+ ThetaLM(A,s,w,nr)*i2phi(i,j,k,blk,s,phi_rindex,phi_iindex)

end do

end do

call mc_communicate_ip(phiLM)

RePhiLM = real(phiLM)

ImPhiLM = aimag(phiLM)

end subroutine compute_misner_harmonic

Figure B.5: This is the code for the subroutine that computes spherical harmonic

components. The function i2phi returns the value of the grid function at the point

with indices i, j, k, blk when s is 1, and returns the value of the grid function at

points related by appropriate symmetries when s is not 1.

the analytic formulas in the Misner paper is not strictly necessary, I consider it good

coding practice because it makes the code more readable therefore easier to maintain.

I use the mappings

µ(l,m) = l +m+ 1 +
l
∑

l′=0

(2l′ + 1) (B.2)

and

ν(n, l,m) = m− l +
l
∑

l′=0

(2l′ + 1) +
n

2

lmax
∑

l′=0

(2l′ + 1) (B.3)

for this purpose. In (B.3), lmax is the maximum value of l allowed by the code and

is determined by the compile-time parameter LMax. The sum Λ =
∑lmax

l′=0(2l
′ + 1)

is equivalent to the compile-time parameter SglIndRng; the parameter was defined

112

just to make the execution of the function implementing (B.3) faster. Defining

N[i, j] = {k ∈ N | i ≤ k ≤ j} (B.4a)

S1 = {(l,m) | l ∈ N[0, lmax],m ∈ N[−l, l]} (B.4b)

S2 = {(n, l,m) | n ∈ N[0, N] is even, (l,m) ∈ S1} (B.4c)

it is easy to check that µ is a bijection from S1 onto N[1,Λ] and ν is a bijection from

S2 onto N[1, NΛ/2]. This is exactly what is needed in order to have a unique and

memory efficient mapping of index groups into one dimensional indices.

In the code examples above, the function lm mapping implements µ, and the

function nlm mapping implements ν.

B.4 Notes on Modularity

I noted above that this code is quite modular. It could, in fact, be used with a code

other than Hahndol with minimal rewriting. To make the module work with another

code, the following pieces would need to be rewritten:

1. The parameter file reader must be rewritten to match the parameter syntax of

the new host code.

2. The functions in Table B.2 must be implemented to provide basic grid infor-

mation to the module.

3. The macros ht traverse and ht traversal (described below) must be pro-

vided.

4. The helper module misner comm would need to be rewritten only if a commu-

nication scheme other than MPI is used.

The subroutine ht mype, one of the functions listed in Table B.2, should return

0 for the head node in a parallel code. It does not, in fact, matter what it returns

for other nodes, although in an MPI based code it would most naturally return the

processing element’s MPI index. The fourth index blk used by several of the routines

113

Subroutine name Arguments Returns Module

ht mype None Integer ht comm

hd comp grid spacing blk, dx - hd coordinates

hd comp coordinates blk, i, j, k, x - hd coordinates

unk2scalar indx, blk, i, j, k, phi - unk2local

Table B.2: The table shows which subroutines and functions must be provided in

order for the module to work with a code other than Hahndol. The first function,

ht mype returns the processor number for parallel codes. The variables blk, i, j,

and k are integers and inputs to the subroutines listed. The variables dx and x are

three dimensional arrays of real numbers output by the subroutines, and phi is real

variable output by the subroutine.

in the table is used to distinguish between different refinement regions. A unigrid

code should always pass 1 in that position; an FMR/AMR code is free to use it, in

coordination with the macros below, to sensibly deal with its refinement scheme.

The macro pair ht traverse and ht traversal must be provided to loop over

the grid in a sensible way. For unigrid definitions similar to

#define ht_traverse(I,J,K,BLK) (.true.) then; \\

do K = 1, NPTS; do J = 1, NPTS; do I = 1, NPTS

#define ht_traversal do; end do; end do; end if

should work. They are called in the code with the syntax

if ht_traverse(i,j,k,blk)

! Executable statements here

end ht_traversal

which explains the seemingly strange definitions. In Hahndol we do not want to loop

over all blocks for technical reasons specific to the data structures used by Paramesh

to organize the FMR. This is the reason for the if-statement. Other FMR schemes

may or may not find it useful, but for compatibility it must remain even if the test

in some other code is trivial (as it is in the sample definition provided here).

There are other modules used by misner harmonics, but they are all completely

self-contained. The only exception could be misner comm, which is currently written

114

to support the MPI protocol only. A code using another message passing scheme (or

none at all), would have to rewrite this module as well. This would most likely be

trivial as it only contains two subroutines, and both are simple.

115

Bibliography

[1] Miguel Alcubierre, Hyperbolic slicings of spacetime: singularity avoidance and
guage shocks, Phys. Rev. D (2003), 607.

[2] Miguel Alcubierre, Gabrielle Allen, and Gerd Lanfermann, Cactus 4.0 Thorn
Guide (Stable Release), See the chapter on the Boundary thorn in the documen-
tation at http://www.cactuscode.org, January 2003.

[3] Miguel Alcubierre and Bernd Brügmann, Simple excision of a black hole in 3+1
numerical relativity, Phys. Rev. D 63 (2001), 104006.

[4] Miguel Alcubierre, Bernd Brügmann, Peter Diener, Michael Koppitz, Denis Poll-
ney, Edward Seidel, and Ryoji Takahashi, Gauge conditions for long-term nu-
merical black hole evolutions without excision, Phys. Rev. D 67 (2003), 084023.

[5] Miguel Alcubierre, Bernd Brügmann, Thomas Dramlitsch, José A. Font, Philip-
pos Papadopoulos, Edward Seidel, Nikolaos Stergioulas, and Ryoji Takahashi,
Towards a stable numerical evolution of strongly gravitating systems in general
relativity: The conformal treatments, Phys. Rev. D 62 (2000), 044034.

[6] E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra,
J. Du Croz, A. Greenbaum, S. Hammarling, A. McKenney, and D. Sorensen,
LAPACK users’ guide, third ed., Society for Industrial and Applied Mathemat-
ics, Philadelphia, 1999.

[7] Matthew Anderson and Richard Matzner, Extended lifetime in computational
evolution of isolated black holes, gr-qc/0307055 (2003).

[8] Peter Anninos, Karen Camarda, Joan Massó, Edward Seidel, Wai-Mo Suen,
and John Towns, Three dimensional numerical relativity: the evolution of black
holes, Phys. Rev. D 52 (1995), 2059–2082.

[9] R. Arnowitt, S. Deser, and C. W. Misner, The dynamics of general relativity,
Gravitation: An Introduction to Current Research (L. Witten, ed.), Wiley, New
York, 1962, pp. 227–265.

[10] John Baker, Manuella Campanelli, and Carlos O. Lousto, The Lazarus project:
A pragmatic approach to binary black hole evolutions, Phys. Rev. D 65 (2002),
044001.

116

[11] Barry Barish, First generation interferometers, in Centrella [27], p. 3.

[12] Thomas W. Baumgarte and Stuart L. Shapiro, Numerical integration of Ein-
stein’s field equations, Phys. Rev. D 59 (1999), 024007.

[13] Z. B. Belanger, Adaptive mesh refinement in the T 2 symmetric spacetime, Mas-
ter’s thesis, Oakland University, 2001.

[14] P. Bender, A. Briller, I. Ciufolini, A. M. Cruise, C. Cutler, K. Danzmann,
F. Fidecaro, W. M. Folkner, J. Hough, P. McNamara, M. Peterseim, D. Robert-
son, M. Rodrigues, A. Rüdiger, M. Sandford, G. Schäfer, R. Schilling, B. Schutz,
C. Speake, R. T. Stebbins, T. Sumner, P. Touboul, J.-Y. Vinet, S. Vitale,
H. Ward, and W. Winkler, LISA, pre-phase A report, On-line resource [cited
July 11, 2004] http://www.srl.caltech.edu/lisa/documents, 1998.

[15] M. Berger and J. Oliger, Adaptive mesh refinement for hyperbolic partial differ-
ential equations, J. Comp. Phys. 53 (1984), 484.

[16] D. Bernstein, A numerical study of the black hole plus brill wave spacetime,
Ph.D. thesis, University of Illinois at Urbana-Champaign, 1993.

[17] C. Bona, J. Massó, E. Seidel, and J. Stela, New formalism for numerical rela-
tivity, Phys. Rev. Lett. 75 (1995), 600.

[18] J. Bowen and J. W. York, Time-asymmetric initial data for black holes and
black-hole collisions, Phys. Rev. D 21 (1980), 2047.

[19] D. Brill and R. Lindquist, Interaction energy in geometrostatics, Phys. Rev. 131
(1963), 471–476.

[20] Dieter S. Brill, On the positive definite mass of the Bondi-Webber-Wheeler time-
symmetric gravitational waves, Ann. Phys. 7 (1959), 466.

[21] Othmar Brodbeck, Simonetta Frittelli, Peter Hübner, and Oscar A. Reula,
Einstein’s equations with asymptotically stable constraint propagation, J. Math.
Phys. 40 (1999), no. 2, 909.

[22] David Brown and Lisa Lowe, AMRMG (Adaptive Mesh Refinement MultGrid
Code), Penn State Numerical Relativity Lunch Talk, February 2003.

[23] Bernd Brügmann, Adaptive mesh and geodesically sliced Schwarzschild spacetime
in 3+1 dimensions, Phys. Rev. D 54 (1996), 7361–7372.

[24] , Binary black hole mergers in 3D numerical relativity, Int. J. Mod. Phys.
8 (1999), 85.

[25] Bernd Brügmann, Wofgang Tichy, and Nina Jansen, Numerical simulation of
orbiting black holes, gr-qc/0312112 (2003).

117

[26] Gioel Calabrese, A remedy for constraint growth in numerical relativity, gr-
qc/0404036 (2004).

[27] Joan M. Centrella (ed.), Astrophysical sources for ground-based gravitational
wave detectors, American Institute of Physics, Melville, New York, 2001.

[28] S. Chandrasekhar, The mathematical theory of black holes, Oxford University
Press, 1992.

[29] G. Chesshire andW. D. Henshaw, Composite overlapping meshes for the solution
of partial-differential equations, J. Comp. Phys. 90 (1990), 1.

[30] Dae-Il Choi, J. David Brown, Breno Imbiriba, Joan Centrella, and Peter MacNe-
ice, Interface conditions for wave propagation through mesh refinement bound-
aries, J. Comp. Phys. 193 (2004), 398–425.

[31] M. W. Choptuik, Experiences with an adaptive mesh refinement algorithm in
numerical relativity, in Evans et al. [40].

[32] , Universality and scaling in gravitational collapse of massless scalar field,
Phys. Rev. Lett. 70 (1993), 9.

[33] Matthew W. Choptuik, Eric W. Hirschmann, Steven L. Liebling, and Frans
Pretorius, Critical collapse of the massless scalar field in axisymmetry, Phys.
Rev. D 68 (2003), 044007.

[34] G. B. Cook, M. F. Huq, S. A. Klasky, M. A. Scheel, A. M. Abrahams, A. Ander-
son, P. Anninos, T. W. Baumgarte, N. T. Bishop, S. R. Brandt, J. C. Browne,
K. Camarda, M. W. Choptuik, R. R. Correll, C. R. Evans, L. S. Finn, G. C.
Fox, R. Gómez, T. Haupt, L. E. Kidder, P Laguna, W. Landry, L. Lehner,
J. Lenaghan, R. L. Marsa, J. Masso, R. A. Matzner, S. Mitra, P. Papadopoulos,
M. Parashar, L. Rezzolla, M. E. Rupright, F. Saied, P. E. Saylor, E. Seidel,
S. L. Shapiro, D. Shoemaker, L. Smarr, W. M. Suen, B. Szilágyi, S. A. Teukol-
sky, M. H. P. M. van Putten, P. Walker, J. Winicour, and J. W. York, Jr.,
Boosted three-dimensional black-hole evolutions with singularity excision, Phys.
Rev. Lett. 80 (1998), 2512.

[35] T. Damour and J. H. Taylor, On the orbital period change of the binary pulsar
PSR 1913+16, ApJ 366 (1991), 501.

[36] , Strong-field test of relativistic gravity and binary pulsars, Phys. Rev. D
45 (1992), 1840.

[37] Steven Detweiler, Evolution of the constraint equations in general relativity,
Phys. Rev. D 35 (1987), 1095.

[38] Albert Einstein, Der Feldgleichungen der Gravitation, Sitzungsberiche der
Deutschen Akademie der Wissenschaften zu Berlin, Klasse fur Mathematik,
Physik, und Technik (1915), 844.

118

[39] K. Eppley, The numerical evolution of the collision of two black holes, Ph.D.
thesis, Princeton University, Princeton, New Jersey, 1975.

[40] C. Evans, L. Finn, and D. Hobill (eds.), Frontiers in numerical relativitiy, Cam-
bridge University Press, Cambridge, 1989.

[41] C. R. Evans, Enforcing the momentum constraints during axisymmetric spacelike
simulations, in Evans et al. [40].

[42] David R. Fiske, Toward making the constraint hypersurface an attractor in free
evolution, Phys. Rev. D 69 (2004), 047501.

[43] P. Fritschel, The second generation LIGO interferometers, in Centrella [27],
p. 15.

[44] Simonetta Frittelli, Note on the propagation of the constraints in standard 3+1
general relativity, Phys. Rev. D 55 (1997), 5992.

[45] J. N. Goldberg, A. J. MacFarlane, E. T. Newman, F. Rohrlich, and E. C. G.
Sudarshan, Spin-s spherical harmonics and ð, J. Math. Phys. 8 (1967), 2155.

[46] Herbert Goldstein, Classical mechanics, second ed., Addison-Wesley, 1980.

[47] S. G. Hahn and R. W. Lindquist, The two-body problem in geometrodynamics,
Ann. Phys. 29 (1964), 304.

[48] William O. Hamilton, Resonant detectors of gravitational radiation, in Centrella
[27], p. 24.

[49] W. D. Henshaw and D. W. Schwendeman, An adaptive numerical scheme for
high-speed reactive flow on overlapping grids, J. Comp. Phys. 191 (2003), 420.

[50] Simon David Hern, Numerical relativity and inhomogeneous cosmologies, Ph.D.
thesis, Cambridge University, 1999.

[51] R. A. Hulse, The discovery of the binary pulsar, Les Prix Nobel, The Nobel
Foundation, 1994.

[52] R. A. Hulse and J. H. Taylor, A high sensativity pulsar survey, ApJ 191 (1974),
L59.

[53] , A deep sample of new pulsars and their spatial extent in the galaxy,
ApJ 201 (1975), L55.

[54] , Discovery of a pulsar in a binary system, ApJ 195 (1975), L51.

[55] Breno Imbiriba, John Baker, Dae-Il Choi, Joan Centrella, David R. Fiske,
J. David Brown, James van Meter, and Kevin Olson, Evolving a puncture black
hole with fixed mesh refinement, gr-qc/0403048 (2004).

119

[56] Lawrence E. Kidder, Mark A. Scheel, and Saul A. Teukolsky, Extending the
lifetime of 3D black hole computations with a new hyperbolic system of evolution
equations, Phys. Rev. D 64 (2001), 064017.

[57] W. Kinnersley, Type D vacuum metrics, J. Math. Phys. 10 (1969), 1195.

[58] A. M. Knapp, E. J. Walker, and T. W. Baumgarte, Illustrating stability proper-
ties of numerical relativity in electrodynamics, Phys. Rev. D 65 (2002), 064031.

[59] Pablo Laguna and Deirdre Shoemaker, Numerical stability of a new conformal-
traceless 3 + 1 formulation of the Einstein equation, Class. Quant. Grav. 19
(2002), 3679.

[60] Lee Lindblom, Mark A. Scheel, Lawrence E. Kidder, Harald P. Pfeiffer, Deirdre
Shoemaker, and Saul A. Teukolsky, Controlling the growth of the constraints in
hyperbolic evolution systems, gr-qc/0402027 (2004).

[61] P. MacNeice, K. Olson, C. Mobarry, R. de Fainchtein, and C. Packer,
PARAMESH: a parallel adaptive mesh refinement community toolkit, Comput.
Phys. Comm. 126 (2000), 330.

[62] Maplesoft, Maple, 615 Kumpf Drive, Waterloo, Ontario Canada N2V 1K8.

[63] Richard A. Matzner, H. E. Seidel, Stuart L. Shapiro, L. Smarr, W.-M. Suen,
Saul A. Teukolsky, and J. Winicour, Geometry of a black hole collision, Science
270 (1995), 941–947.

[64] Charles W. Misner, The method of images in geometrostatics, Ann. Phys. 24
(1963), 102.

[65] , Spherical harmonic decomposition on a cubic grid, Class. Quant. Grav.
21 (2004), S243.

[66] Charles W. Misner, Kip S. Thorne, and John Archibald Wheeler, Gravitation,
W. H. Freeman and Company, New York, 1970.

[67] Gabriel Nagy, Omar E. Ortiz, and Oscar A. Reula, Strongly hyperbolic second
order Einstein’s evolution equations, gr-qc/04022123 (2004).

[68] Kimberly C. B. New, Dae-Il Choi, Joan M. Centrella, Peter MacNeice, Mijan
Huq, and Kevin Olson, Three-dimensional adaptive evolution of gravitational
waves in numerical relativity, Phys. Rev. D 62 (2000), 084039.

[69] E. T. Newman and R. Penrose, Note on the Bondi-Metzner-Sachs group, J.
Math. Phys. 7 (1966), 863.

[70] P. Papadopoulos, E. Seidel, and L. Wild, Adaptive computation of gravitational
waves from black hole interactions, Phys. Rev. D 58 (1998), 084002.

120

[71] Michael E. Peskin and Daniel V. Schroeder, An introduction to quantum field
theory, Perseus Books, Reading, Massachusetts, 1995.

[72] Richard H. Price, Nonspherical perturbations of relativistic gravitational col-
lapse. II. Integer-spin, zero-rest-mass fields, Phys. Rev. D 5 (1972), 2439.

[73] Erik Schnetter, Gauge fixing for the simulation of black hole spacetimes, Ph.D.
thesis, Eberhard-Karls-Universität zu Tübingen, 2003.

[74] Erik Schnetter, Scott H. Hawley, and Ian Hawke, Evolutions in 3D numerical
relativity using fixed mesh refinement, Class. Quant. Grav. 21 (2004), 1465–
1488.

[75] Bernard F. Schutz, Gravitational wave sources: An overview, The Astrophysics
of Gravitational Wave Sources (Joan M. Centrella, ed.), American Institute of
Physics, Melville, New York, 2003, pp. 3–26.

[76] Karl Schwarzschild, Über das Gravitationsfeld eines Massenpunktes nach der
Einsteinschen Theorie, Sitzungsberiche der Deutschen Akademie der Wis-
senschaften zu Berlin, Klasse fur Mathematik, Physik, und Technik (1916),
189–196.

[77] Masaru Shibata and Takashi Nakamura, Evolution of three-dimensional gravi-
tational waves: Harmonic slicing case, Phys. Rev. D 52 (1995), 5428.

[78] Hisa-aki Shinkai and Gen Yoneda, Adjusted ADM systems and their expected
stability properties: constraint propagation analysis in Schwarzschild spacetime,
Class. Quant. Grav. 19 (2002), 1027.

[79] Deirdre Shoemaker, Kenneth Smith, Ulrich Sperhake, Pablo Laguna, Erik
Schnetter, and David Fiske, Moving black holes via singularity excision, Class.
Quant. Grav. 20 (2003), 3729–3744.

[80] Larry Smarr, The structure of general relativity with a numerical example, Ph.D.
thesis, University of Texas, Austin, Austin, Texas, 1975.

[81] , Spacetimes generated by computers: Black holes with gravitational ra-
diation, N. Y. Acad. Sci 302 (1977), 569.

[82] I. H. Stairs, Z. Arzoumanian, F. Camilo, A. G. Lyne, D. J. Nice, and J. H.
Taylor, Measurement of relativistic orbital decay in the PSR B1534+12 binary
system, ApJ 505 (1998), 352.

[83] I. H. Stairs, S. E. Thorsett, J. H. Taylor, and A. Wolszczan, Studies of the
relativistic binary pulsar PSR B1534+21. I. Timing analysis, ApJ 581 (2002),
501.

[84] J. H. Taylor, Binary pulsars and relativistic gravity, Rev. Mod. Phys. 66 (1994),
711.

121

[85] Saul A. Teukolsky, Pertubations of a rotating black hole. I. Fundemental equa-
tions for gravitational, electromagnetic, and neutrino-field perturbations, ApJ
185 (1973), 635.

[86] , Linearized quadrupole waves in general relativity and the motion of test
particles, Phys. Rev. D 26 (1982), 745.

[87] , On the stability of the iterated Crank-Nicholson method in numerical
relativity, Phys. Rev. D 61 (2000), 087501.

[88] Manuel Tiglio, Dynamical control of the constraints growth in free evolutions of
Einstein’s equations, gr-qc/0304062 (2003).

[89] Robert M. Wald, General relativity, University of Chicago Press, 1984.

[90] Karen Willacy, LISA newsletter, Available online [cited July 11, 2004] from
http://lisa.jpl.nasa.gov/news.html, April 2004.

[91] J. Winicour, Characteristic evolution and matching, Living Rev. Relativity 4
(2001), 3, [Online article]: cited July 13, 2004, http://www.livingreviews.
org/lrr-2001-3.

[92] A. Wolszczan, A nearby 37.9 ms radio pulsar in a relativistic binary system,
Nature 350 (1991), 688.

[93] Hwei-Jang Yo, Thomas W. Baumgarte, and Stuart L. Shapiro, Improved nu-
merical stability of stationary black hole evolution calculations, Phys. Rev. D 66
(2002), 084026.

[94] Gen Yoneda and Hisa-aki Shinkai, Constraint propagation in the family of ADM
systems, Phys. Rev. D 63 (2001), 124019.

[95] , Advantages of a modified ADM formulation: Constraint propagation
analysis of the Baumgarte-Shapiro-Shibata-Nakamura system, Phys. Rev. D 66
(2002), 124003.

[96] James W. York, Jr., Kinematics and dynamics of general relativity, Sources
of Gravitational Radiation (Larry Smarr, ed.), Cambridge University Press,
Cambridge, England, 1979, pp. 83–126.

122

Vita

David Fiske was born on January 12, 1977 in Troy, New York to Donna and Roger

Fiske. He completed his primary education at St. Michael School, Donnell Junior

High School, and Findlay Senior High School, all in Findlay, Ohio. As part of his

high school coursework, he took physics classes at the University of Findlay. He was

the Findlay High School salutatorian in 1995.

After high school, David attended the Ohio State University in Columbus, Ohio

from 1995 to 1999. While attending Ohio State he spent nearly two years work-

ing with the Relativistic Heavy Ion Collision group under the supervision of Prof.

Thomas Humanic and Dr. Ivan Kotov. His work developing equipment to test the

quality of silicon drift detectors for use in the RHIC STAR experiment lead to his se-

nior honors thesis and a journal publication. David was also a Laboratory Instructor,

supervising and grading the work of students in undergraduate physics lab courses.

He received a Bachelor of Science degree with Distinction in Physics and a Bachelor

of Science degree with Distinction in Mathematics, while graduating Summa Cum

Laude, and with Honors in the Liberal Arts.

During summers David also participated in National Science Foundation Research

Experience for Undergraduates Programs at the Center for the Neural Basis of Cog-

nition, a joint venture of Carnegie Mellon University and the University of Pittsburgh

(1997); and at the Department of Physics and Astronomy at the University of Cali-

fornia, Irvine (1998). At the CNBC, he attempted to construct a neuronal network

to understand certain behaviors observed in honey bees. At UCI, he worked in Prof.

Riley Newman’s gravity lab on cryogenic torsion experiments designed to measure

Newton’s gravitational constant and to test the equivalence principle.

As a graduate student at the University of Maryland, College Park, beginning

in 1999, David worked for one year with Prof. Alex Dragt studying applications of

Lie algebras to particle accelerator design, before beginning his present work with

Prof. Charles Misner in numerical relativity. During his time with Prof. Misner,

David also spent time as a visitor at the Pennsylvania State University under the

supervision of Prof. Pablo Laguna, and at NASA Goddard Space Flight Center

under the supervision of Dr. Joan Centrella. David also taught discussion sections

for undergraduate physics courses. He has authored or co-authored four journal

publications during his time at the University of Maryland (all of which appear in

the Bibliography). David received his Masters of Science degree in Physics from the

University of Maryland in 2003, and, upon completion of his doctoral degree, will

become a National Research Council Post-doctoral Fellow at NASA Goddard Space

Flight Center.

David lives in College Park, Maryland, and is engaged to marry long-time friend

and fellow graduate student Violeta Prieto on October 16, 2004 on the campus of

the University of Maryland, College Park.

Publications

• Breno Imbiriba, John Baker, Dae-Il Choi, Joan Centrella, David R. Fiske, J.

David Brown, James van Meter, and Kevin Olson. “Evolving a puncture black

hole with fixed mesh refinement,” (submited to Phys. Rev. D), gr-qc/0403048.

• Miguel Alcubierre, Gabrielle Allen, Carles Bona, David Fiske, Tom Goodale, F.

Siddartha Guzmán, Ian Hawke, Scott H. Hawley, Sascha Husa, Michael Kop-

pitz, Christiane Lechner, Denis Pollney, David Rideout, Marcelo Salgado, Erik

Schnetter, Edward Seidel, Hisa-aki Shinkai, Deirdre Shoemaker, Béla Szilágyi,

Ryoji Takahashi, and Jeff Winicour. “Toward standard testbeds for numerical

relativity,” Class. Quant. Grav. 21 (2004), 589.

• David R. Fiske. “Toward making the constraint hypersurface an attractor in

free evolution,” Phys. Rev. D 69 (2004), 047501.

• Deirdre Shoemaker, Kenneth Smith, Ulrich Sperhake, Pablo Laguna, Erik

Schnetter, and David Fiske. “Moving black holes via singularity excision,”

Class. Quant. Grav. 20 (2003), 3729.

• A. Asumus, R. Bellwied, R. Beuttenmuller, W. Chen, H. Dyke, V. Eremin,

D.R. Fiske, G.W. Hoffmann, T.J. Humanic, M. Grau, I. Ilyashenko, I.V. Kotov,

H.W. Kraner, B. Leonhardt, Z. Li, D. Lynn, S.U. Pandey, J. Schambach, J.

Sedlmeir, E. Sugarbaker, and J. Takahashi. “Probe station testing of large area

silicon drift detectors,” IEEE Trans. Nucl. Sci. 47 (2000), 1375.

