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Abstract

This report describes an integrated, distributed fault management

(IDFM) system for communication networks. The architecture is based

on a distributed intelligent agent paradigm, with probabilistic networks

as the framework for knowledge representation and evidence inferenc-

ing. A static strategy for generating the suggestive test sequence is

proposed, based on which a heuristic dynamic strategy is initiated.

Another dynamic strategy, formulated as a Markov decision problem,

is also provided. To solve this problem, reinforcement learning tech-

niques are investigated.
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1 Introduction and Motivation

In this section, we will brie
y introduce the fault management problem for

communication networks, followed by the evaluation of current research and

the motivation for the proposed system.

1.1 Introduction

Communication networks have become indispensable today and this trend

will continue as more and more new technologies emerge. These will pro-

vide both opportunity and challenge. A network can be con�gured to use

the latest technologies and be customized to the user's needs. At the same

time, the risk or faults in such a heterogeneous system will increase [40]. To

meet the needs of current and future communication environments, it is the

responsibility of network management to maintain the network operation

and service. Typically, a Network Management System (NMS) consists of

the following �ve functional areas: Fault Management, Con�guration Man-

agement, Accounting Management, Performance Management and Security

Management (FCAPS).

The role of fault management is to detect, isolate, diagnose and correct

the possible faults during network operations. Therefore it is primarily

fault management that helps to keep the normal operations and ensure the

networks reliability and availability. In this sense we say fault management

serves as the foundation of other network management functions. Due to

the growing number of networks that have served as the critical components

in the infrastructure of many organizations, interest in fault management

has increased during the past decade, both in academia and in industry.
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Fault Management is based on three main assumptions [11]:

� The objective is to deal with malfunctions, not the design faults, of

the system. So it is basically a fault diagnosis problem, not fault

tolerant system design.

� Tests are more expensive than computations so it is more favorable to

compute and infer the faults and their causes rather than brute-force

tests.

� Mis-diagnosis is more expensive than tests. Thus, it is desirable that

a fault management system can cover and diagnose as many fault

scenarios as possible in a cost e�cient manner.

In general, any fault diagnosis procedure can be interpreted in terms

of search spaces and corresponding operations [30]. The search spaces are

data space, hypothesis space and repair space. In data space, measured

data, together with alarms and users reports, are mapped into some fault

hypotheses. It may include operations like data gathering, data analysis

(such as trend analysis and feature extraction) and hypothesis testing. In

hypothesis space, the hypotheses generated in data space are mapped into

some possible causes. Usually, there is a fault model in this space based

on which the reasoning can be executed. In repair space, such causes are

mapped into a set of possible actions to treat or repair the faulty components

in some e�cient way. Such a space-operation paradigm has been successfully

adopted in many fault diagnosis applications in various areas like electric

circuits and chemical industry. In communication networks fault diagnosis,
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we can also take this paradigm.

1.2 Motivation

In this part, we describe the motivation for our integrated, intelligent fault

management system based on a critical evaluation of current research results

and approaches.

� Automated system: In legacy communication networks, fault diagnosis

is often not too di�cult since the knowledge of the network manager

combined with the alarms reported is usually enough to rapidly lo-

cate most failures. But in future communication networks, which are

expected to be broadband, giant, heterogeneous and complex, things

will not be that easy. As the size and speed of the networks grow,

their dynamics become increasingly di�cult to understand and con-

trol. On the other hand, more and more users, possibly with di�erent

or even competing requirements of quality of service (QoS), wish to

bene�t from the networks. These will pose signi�cant problems on

fault management and thus more advanced techniques are needed.

For example, a single fault can generate a lot of alarms in a variety

of domains, with many of them not helpful. Multiple faults will make

things even worse. In such cases, it is almost impossible for the network

manager, inundated in the ocean of alarms, to correlate the alarms

and localize the faults rapidly and correctly just by his experience.

Therefore, fault management will have to be automated.
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� Probabilistic expert system: Knowledge-based expert systems, as ex-

amples of automated systems, have been very appealing for complex

system fault diagnosis [22] and the e�ort in this �eld is still growing.

Nevertheless, most of the developed expert systems were built in an

ad-hoc and unstructured manner by simply transferring the human

expert knowledge to an automated system. Usually, such systems are

based on deterministic network models and they are designed to re-

place the human experts. A serious problem of using deterministic

models is their inability to isolate primary sources of failures from

uncoordinated network alarms, which makes automated fault identi�-

cation a di�cult task. Observing that the cause-and-e�ect relationship

between symptoms and possible causes is inherently nondeterministic,

probabilistic models can be considered to gain a more accurate rep-

resentation for the networks. Instead of replacing the human expert,

the expert system based on such a probabilistic model is expected to

behave as the assistant to a human expert by providing processed in-

formation and suggestions timely and automatically. Such systems are

called normative expert systems.

� Distributed architecture: So far, most research and standards on fault

management assume a centralized architecture where all of the symp-

tom information has to be sent to the central manager for process-

ing. One example is the simple manager-agent paradigm adopted by

SNMP. There is no intelligence embedded near the network elements.

What the agent does is to provide the manager with the desirable data
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only. It is the manager that performs the fault diagnosis steps. Such a

paradigm works well for small networks. But as the networks become

larger, the centralized paradigm will incur vast amounts of information

communication and thus occupy too much bandwidth unwisely. Since

there are many cases where the faults can be resolved on-the-spot,

there is no need to report the local faults to the central manager to

get a global view. In this regard, we propose that the faults should be

dealt with locally if they are local. Only those that cannot be handled

locally should draw global attention. It is the authors' belief that it

will be more e�cient, both in time and bandwidth utilization, if faults

were handled in this way. Hence, observing that communication net-

works are hierarchial and distributed by nature, it is most desirable to

come up with a multi-layer architecture and distribute the intelligence

to the lower layers that are closer to the managed objects. The enti-

ties, which have the distributed intelligence and whose responsibilities

are fault diagnosis in the local domain, are referred to as \Intelligent

Agents"(IA). We provide more details on IA in the next section.

� Integrated fault management: In previous research on fault man-

agement, the term \fault" was usually taken the same as \failure",

which means component (hardware or software) malfunctions, e.g.

sensor failures, broken links or software malfunctions. Such faults

are called \hard " faults and can be solved by replacing hardware el-

ements or software debugging and/or re-initialization. The diagnosis

of the \hard" faults is called \re-active" diagnosis in the sense that it
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consists of basically the reactions to the actual failures. In communi-

cation networks, however, there are still some other important kinds

of faults that need to be considered. For example, the performance of

a switch is degrading or there exists congestion on one of the links.

Since there might not be a failure in any of the components, we call

such faults \soft " faults. \Soft" faults are in many cases indications of

some serious problems and for this reason, the diagnosis of such faults

is called \pro-active"diagnosis. By early attention and diagnosis, such

pro-active management will sense and prevent disastrous failures and

thus can increase the survivability and e�ciency of the networks.

In summary, our goal is to come up with an automated, integrated,

distributed fault management (IDFM) system for communication networks,

which assumes a probabilistic model and integrates the management of both

hard and soft faults. The system assumes a distributed, multi-agent architec-

ture, in which each individual agent is responsible for the fault management

of a certain local domain. In order to generate the test sequence, reinforce-

ment learning techniques are applied.

This report is organized as follows: In section 2, we provide background

knowledge on the three areas founding our approaches: intelligent agent,

probabilistic reasoning and belief networks, and reinforcement learning (es-

pecially temporal di�erence algorithms). The proposed system architecture

and function de�nitions are described in section 3. In section 4, we provide

the mathematical formulations of the problems of interest and we describe

the proposed solution methods.
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2 Background

2.1 Intelligent Agents

The term \Intelligent Agent (IA)" is originated from the �eld of Arti�cial

Intelligence (AI), in particular Distributed Arti�cial Intelligence (DAI). It

has been used since early 1980's to re
ect the idea of creating \autonomous

objects that think". This term has also been used for years in the �eld

of distributed computing where it refers to some speci�c entities (client or

server) that will solve speci�c tasks in a distributed environment.

There are various de�nitions on what an intelligent agent is. One of

them is [28]: An agent is anything that can be viewed as perceiving its

environment through sensors and acting upon that environment through

e�ectors. The terms \sensors" and \e�ectors" should be interpreted in a

broad sense. According to this de�nition, an intelligent agent can be either

a hardware or a software entity. In this report, we concentrate on software

agents. One such agent is shown in �gure 1.

There are various types of IAs: some are designed to solve the whole

problem all by themselves while others have to share the local information

and work together; some are mobile, which will be 
exible in some cases,

some are static; some can learn and adapt to the dynamic environment, some

don't. Despite the diversity, there are some important common properties

that distinguish an IA from conventional software programs:

� Autonomy: an agent is an autonomous and self-contained software

entity which acts typically on behalf of a user or a process, enabling
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Figure 1: Illustration of an intelligent agent

task automation without direct intervention of a human or others.

� Intelligence: an agent contains some level of intelligence, ranging from

simple prespeci�ed rules to self-learning adaptive machines. In our

problems, we are considering self-learning agents.

� Cooperation: the agent system allows for cooperation between indi-

vidual agent entities, especially in a distributed problem-solving case.

Such a system is called a \multi-agent distributed system", as our

proposed system for fault management would be.

� Asynchronous Operation: an agent may be event or time triggered,

independent of its users or other agents. It may be even mobile, moving

from one domain to another to access the remote resource.

The various agent technologies existing today can be classi�ed roughly as
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single-agent systems and multi-agent systems. In a single-agent system, an

agent performs a task on behalf of a user or a process. It can communicate

with the users as well as with local or remote resources, but not with other

peer agents. In a multi-agent system, on the contrary, agents may commu-

nicate with each other extensively to achieve their individual or joint goals.

Surely the agents can also communicate with users or resources. In a single-

agent system, Local agents and Networked agents can be identi�ed; In a

multi-agent system, DAI-based agents and Mobile Agents are distinguished,

as shown below [24]:

� Local agents: designed to access local resources only.

� Networked agents: can access not only local but remote resources,

and thus have a more or less detailed knowledge about the network

infrastructure and services provided throughout.

� DAI-based agents: Distributed Arti�cial Intelligence (DAI) based multi-

agent systems are concerned with the coordination of the intelligent

behavior among a collection of autonomous intelligent agents. The

agents can be designed using AI techniques, like rule-based or case-

based reasoning. Agents can communicate with each other and with

users or system resources.

� Mobile agents: mobile agents aim primarily at large computer net-

works which o�er a huge number of sophisticated services. This in

particular enables the concept of \remote programming" [24] , which
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is regarded as an alternative to the traditional \Client/Server pro-

gramming" based on the Remote Procedure Call (RPC) paradigm.

In this report, we propose a DAI-based problem-solving agent system

for fault management. The focus is on agent design and cooperation with

no mobility included.

To design an intelligent agent, there are some issues to be considered

[28]:

� Agent type: basically the name that re
ects the purpose of the agent.

For example, medical diagnosis system, or satellite image analysis sys-

tem.

� Percept: the inputs for the system. For example symptoms and ob-

servations for the diagnosis system.

� Actions: the possible action an agent can take to ful�ll the goal. In

medical diagnosis, the actions are questions, tests and treatments.

� Goals: for instance, a healthy patient and minimal costs in the medical

diagnosis case.

� Environment: Is it accessible or not? Is it deterministic or stochastic?

Is it static or dynamic? Is it discrete or continuous?

For more information on intelligent agent theory and practice, we refer

to [39]. Multi-agent systems are introduced in an excellent survey paper by

P. Stone from a machine learning perspective [31].
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2.2 Probabilistic Reasoning and Belief Networks

Belief networks, also called Bayesian networks or probabilistic causal net-

works, were developed in the late 1970's to model the distributed processing

in reading comprehension. Since then they have attracted much attention

and have become the general knowledge representation scheme under uncer-

tainty [27].

2.2.1 Representing knowledge in an uncertain domain

The attempts to model human's inferential reasoning, namely the mecha-

nism by which people integrate data from multiple sources and come up

with a coherent interpretation of the data, have motivated much research

in various areas within the arti�cial intelligence discipline. One of the most

popular approaches to AI involves constructing an \intelligent agent" that

functions as a narrowly focused expert.

While the past decades have seen some important contributions of expert

systems in medical diagnosis, �nancial analysis and engineering applications,

problematic expert system design issues still remain. Dealing with uncer-

tainty is among the most important since uncertainty is the rule, not the

exception, in most practical applications. This is based on two observations:

� The concrete knowledge, or the observed evidence from which reason-

ing will begin, is not accurate.

� The abstract knowledge, namely the knowledge stored in the expert

systems as the model of human reasoning, is probabilistic rather than
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deterministic.

Therefore a natural starting point would be to cast the reasoning pro-

cess in the framework of probability theory and statistics. However, cautions

must be taken if this casting is interpreted in a textbook view of probability

theory [25]. For example, if we assume that human knowledge is represented

by a joint probability distribution(JPD), p(x1; :::; xn), on a set of random

variables (propositions), x1; :::; xn, then the task of reasoning given evidence

e1; :::; ek is nothing but computing the probability of a small set of hypothe-

ses p(H1; :::;Hmje1; :::; ek)|the belief of the hypotheses given the set of

evidence. So one may conclude that given JPD, such kind of computing is

merely arithmetic labor.

Though it is true that JPD su�ces to answer all kinds of queries on

x1; :::; xn, this view turns out to be a rather distorted picture of human

reasoning and computing queries in this way is cumbersome at least, if not

intractable at all. For example, if we are to encode explicitly for binary

variables x1; :::; xn an arbitrary JPD p(x1; :::; xn) on a computer, we will have

to build up a table with 2n entries|an unthinkably large number. Even if

there is some economical way to compact this table, there still remains the

problem of manipulating it to obtain queries on propositions of interest. For

example, to compute p(Hje) (where H and e are the sets of hypotheses and

evidence, respectively), according to Bayes' rule,

p(Hje) =
p(ejH)p(H)

p(e)

we need to compute the marginal probabilities p(e), p(H) and the likelihood

p(ejH), which incurs enormously large number of calculations.
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Human reasoning, on the contrary, acts di�erently in that probabilistic

inference on a small set of propositions is executed swiftly and reliably while

judging the likelihood of the conjunction of a large number of propositions

turns out to be di�cult. This suggests that the elementary building blocks

of human knowledge are not the entries of a JPD table but, rather, the low-

order marginal probabilities and conditional probabilities de�ned \locally"

over some small set of propositions. It is further observed that an expert

will feel more at ease to identify the dependence relationship between propo-

sitions than to give the numerical estimate of the conditional probability.

This suggests that the dependence structure is more essential to human rea-

soning than the actual value. Noting also that the nature of dependence

relationships between propositions resemble in many aspects that of con-

nectivity in graphs, we can naturally represent such kind of relationship via

more explicit graph approaches, which leads to belief networks.

De�nition A belief network is a Directed Acyclic Graph (DAG) in

which:

� The nodes represent variables of interest (propositions), which maybe

be discrete, assuming values from �nite or countable states, or may be

continuous.

� The set of directed links or arrows represent the causal in
uence among

the variables and the parents of a node are all those nodes with arrows

pointing to it.

� The strength of an in
uence is represented by conditional probabilities
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attached to each cluster of parent-child nodes in the network.

2.2.2 The semantics of belief networks

I. Representation of joint probabilities

Based on the chain rule of probability, we have

p(x1; :::; xn) =
nY
i=1

p(xijx1; :::; xi�1) (1)

Given a DAG G and a JPD P over a set x = fx1; :::; xng of discrete

variables, we say that G represents P if there is a one-to-one correspondence

between the variables in x and the nodes of G, such that

p(x1; :::; xn) =
nY
i=1

p(xij�i) (2)

If we order the nodes in such a way that the order of a node is larger

than those of its parents and smaller than those of its children (the so-called

topological ordering), we have

p(xijx1; :::; xi�1) = p(xij�i) (3)

which means given its parent set �i � fx1; :::; xi�1g, the set of variables

that render xi, each variable xi is conditionally independent of all its other

predecessors fx1; :::; xi�1gn�i.

Therefore, we can construct a belief network following the steps below

[28]:

� Choose the set of random variables that describe the domain
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� Give order numbers to the random variables using topological ordering

� While there are still variables left:

{ Pick a random variable and add a node representing it

{ Choose parents for it as the minimal set of nodes already in the

network such that (3) is satis�ed

{ Specify the CPT for it

II. Representation of conditional independence relations

We have described above the conditional independence of a node and its

predecessors, given its parents. But, is this the only and general case of

conditional independence? In other words, given a set of evidence nodes E,

is it possible to \read o�" whether a set of nodes in X is independent of

another set Y , where X and Y are not necessarily parents and children?

This is an important issue in designing inference algorithms.

Fortunately, the answer is yes and the methods are provided by the

notion of d-separation, which means direction-dependent separation

[26]. If each undirected path from a node in X to a node in Y is d-separated

by E, we say X and Y are blocked , which means there will be no way at

all for X and Y to communicate if we remove E, and thus conditionally

independent.

De�nition [26] : Let X, Y and Z be three disjoint subsets of nodes in a

DAG G, then Z is said to d-separate X and Y , i� along every undirected

path from each node in X to each node in Y there is an intermediate node

A such that either
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� A is a head-to-head node (with converging arrows) in the path, and

neither A nor its descendents are in Z, or

� A is in Z and A is not a head-to-head node.

2.2.3 Inference in belief networks

We have seen that a belief network can simulate the mechanism that oper-

ates in the environment and represent the JPD of the domain random vari-

ables. Thus it allows for various kinds of inferences(also called evidence

propagation) [28]:

� Diagnosis inferences: From e�ects to causes, also called abductive

inferences, bottom-up or backward inference. For example: \What is

the most probable explanations for the given set of evidence?"

� Causal inferences : From causes to e�ects, also called predictive

inferences, top-down or forward inferences. For example: \Having

observed A, what is the expectation of B?"

� Inter-causal inferences : Between causes of a common e�ect. For

example: \If C's parents are A and B, then what is the expectation of

B given both A and C?" Namely, what is the belief of the occurrence of

one cause on the e�ect given that the other cause is true? The answer is

that the presence of one makes the other less likely (explaining away).

� Mixed inferences : combining two or more of the above.
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There are basically three types of algorithms for propagating evidence:

exact, approximate and symbolic. By exact propagation we mean a method

that, apart from precision or round-o� errors, computes the probability dis-

tribution of the nodes exactly. The most in
uential exact inference algorithm

is proposed in [23] and this is the algorithm we would prefer to use for fault

management; but its complexity is high. By approximate propagation we

mean the answers computed are not exact but, with high probability, lie

within some small distance of the correct answer. Finally, symbolic propaga-

tion, which computes the probabilities in symbolic form, can deal not only

with numerical values, but also with symbolic parameters.

Exact evidence propagation in an arbitrary belief network is NP-hard

[12]. Fortunately, the complexity can be estimated prior to actual processing

and when the estimates exceed reasonable bounds, an approximation meth-

ods such as stochastic simulation can be used instead. But even approximate

inference (using Monte Carlo simulation) is also NP-hard if treated in gen-

eral [14]. For many applications, however, the networks are small enough (or

can be simpli�ed su�ciently) so that these complexity results are not fatal.

For applications where the usual inference methods are impractical, we usu-

ally develop techniques customer-tailored to particular network topologies,

or particular inference queries. So specifying e�ciently and accurately the

structure as well as CPT for belief networks entails both keen engineering

insights of the problem domain and the indispensable good sense of simpli-

�cation to obtain the appropriate trading-o�. It is still somewhat an art.
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2.2.4 Learning belief networks

In previous discussions we assumed that both the network structure and the

associated CPT are provided by human experts as the prior information.

In many applications, however, such information is not available. In addi-

tion, di�erent experts may treat the systems in various ways and thus give

di�erent and sometimes con
icting assessments. In such cases, the network

structure and corresponding CPT can be estimated using data and we refer

to this process as learning. Even if such prior information does exist, it

is still desirable to validate and improve the model using data. For more

information on learning in belief networks, we refer to [13] [17].

As one may expect, learning belief networks consists of both structural

learning (deriving the dependency structure G) and parametric learning

(estimating P ). The structure of the network may be known or unknown,

and the variables in the network may be observable or hidden. There are

four types of combinations [28]:

� Known structure, fully observable: The only thing needed is to

specify the CPT and this can be done by directly using the statistics

of the data set S. Search methods such as hill-climbing or simulated

annealing can be exploited to accomplish the �tting of data.

� Unknown structure, fully observable: We have to �rst recon-

struct (extract) the topology, which entails determining the best pos-

sible structure through a space of available alternatives. The search

is basically enumerative. Fitting the data to a particular structure
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reduces to the above �xed-structure problem.

� Known structure, hidden variables: As stated before, human

experts would rather give dependence relationships between random

variables than the corresponding numerical values, especially when not

all of the variables are observable. Therefore we can say that �nding

the topology of the network is often the easy part and thus the known

structure, hidden variable learning problem is of great importance.

Such problems are quite analogous to neural network learning, where

gradient descent methods can be used [6].

� Unknown structure, hidden variables: When there are some hid-

den variables, the previous extraction techniques would not apply and

there is no known good algorithms for this problem.

2.2.5 Remarks

In a word, we can say that a belief network is a good framework to integrate

experts' prior knowledge and statistical data and it constitutes a model of

the environment rather than, as in many other knowledge representation

schemes, a model of the reasoning process. The contributions of belief net-

works can be summarized as follows [8]:

� Natural and key technology for diagnosis

� Foundation for better, more coherent expert systems

� Supporting new approaches to planning and action modeling
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{ planning using Markov decision processes

{ new framework for reinforcement learning

� New techniques for learning models from data, see also [15].

Note that the introduction above is by no means complete or exhaustive.

It is supposed to provide background knowledge on what a belief network

is, what it can do and how. For more information in this area, we refer to

[9][10][20][26].

2.3 Reinforcement Learning

2.3.1 Introduction

In order to let the (software) agent do the right things, the human designer

can choose to program beforehand everything for every possible cases or,

he/she can just set up the objectives and some rules for the agent, which

will in turn �nd how to ful�ll the objectives by learning from the interac-

tions with the environment governed by those rules. In the �rst approach,

since the designer has programmed everything, or the designer has told the

agent exactly how to behave, the agent is nothing more than a conventional

software program. The design labor is concentrated totally on the designer

and such software programs don't have any adaptability. For the second

approach, it is the agent itself that learns the right things to do by gaining

experience through trial-and-error. The designer does not prescribe to the

agent what to do and so the design labor is reduced drastically. As discussed

before, such an adaptive agent is called \intelligent" agent. In practice, es-
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pecially in an uncertain environment whose properties are di�cult to predict

a priori, the latter approach is more favorable.

For an intelligent agent that has to learn by itself (we call it a rein-

forcement learning agent, or RL agent), the underlying mechanism of re-

inforcement learning is motivated by animal learning studies, as illustrated

psychologically by Thorndike's Law of E�ect:

\Of several responses made to the same situation, those which are ac-

companied or closely followed by satisfaction to the animal will, other things

being equal, be more �rmly connected with the situation, so that, when it

recurs, they will be more likely to recur; those which are accompanied or

closely followed by discomfort to the animal will, other things being equal,

have their connections with that situation weakened, so that, when it recurs,

they will be less likely to occur. The greater the satisfaction or discomfort,

the greater the strengthening or weakening of the bond. "

So if the RL agent gets rewards by performing an action in a situation,

it will most likely choose the same action again when encountering the same

situation later. If it gets penalties instead, the action will be less likely to

be chosen again. The rewards or penalties are referred to as \reinforcement

signal".

In a situation, if the RL agent would already know all of the reinforce-

ment signals for each possible action, it would simply choose the best action

that would incur the best reward. This best reward is called \value func-

tion" for this situation. Things would be much easier in such cases. The

agent doesn't have to learn anything, what it has to do is just to select the
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best action.

However, the problem faced by a RL agent is: It doesn't know beforehand

all of the reinforcement signals for each action. So, it has to �gure them

out by performing the actions and see; this can also be done via simulation,

as suggested in [5]. This process is called exploration. Usually, the agent

cannot wait until all of the actions have been tried, which will be very time-

costly, especially when the state space and/or the action pool are of large

dimension. By performing exploration, it is hoped that enough knowledge of

the environment can be gained in a short length of time, without exhaustive

trials on the actions.

One of the objectives of the agent is to minimize the total cost along

the way of reaching goals. In order to do this, it is straightforward for the

agent to be \greedy" by choosing the currently best action in a state. This

process is called exploitation. Most of the time the greedy style would be

supposed to lead to minimal costs. But, since exploration is not supposed

to be exhaustive, and thus the current best action may not be the ultimate

best one at all, there are still some cases when the agent cannot achieve an

optimal or even sub-optimal solution using greedy methods only. In this

regard, it might be advisable to explore more once in a while rather than

sticking to the current knowledge all the time. This is actually a trade-o�

between exploration and exploitation. For a good introduction on this topic,

we refer to [35]. The idea of such trade-o� is just like what Confusius said

more than a thousand years ago: \learning without thought is labor lost;

thought without learning is perilous ."
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Note that in many cases, the rewards might be of short-term or long-run.

Markov decision processes provide a framework for analyzing the trade-o�

between these two types of rewards. So if formulated properly, the RL agent

can also model delayed rewards.

In conclusion, reinforcement learning is a model of the learning problems

encountered by an agent that learns behavior through trial-and-error inter-

actions with a dynamic, uncertain environment. In this section, we will use

TD-methods, the most important RL algorithms, as an illustration.

2.3.2 Temporal-di�erence learning

Temporal-di�erence learning was originated by Sutton [32] when he consid-

ered the problem of learning to predict, which uses past experience of an

incompletely known system to predict its future behavior. Unlike the con-

ventional prediction-learning methods that assign credit based on the dif-

ference between predicted and actual outcomes, this method assigns credit

by means of the di�erence between temporally successive predictions. So its

training examples can be taken directly from the temporal sequences with-

out a special supervisor or teacher. This method, incremental in nature,

is especially useful in the problems where future behaviors (teachers) are

not available or too di�cult to obtain, as most of the practical applications

manifest. Moreover, it is claimed that TD-methods make more e�cient use

of the experience than supervised-learning methods and also, they converge

more rapidly and make more accurate predictions along the way. The re-

quirement of using TD-methods on a system is quite gentle | the system
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is dynamical, so that it is sequential in nature and the emphasis on the

temporal sequences makes sense.

Perhaps the most distinguishable success of using TD-methods is Tesauro's

TD-Gammon [33] [34], which, by learning from the environment with no

prior knowledge from a teacher, plays signi�cantly better than the previous

world-champion program and as well as expert human players. In the com-

munications networks area, Singh and Bertsekas [29] formulate the dynamic

channel allocation problem in cellular telephone systems as a dynamic pro-

gramming (DP) problem and apply TD(0) to execute the approximation.

It has been shown that, in terms of call blocking probability, their schemes

are better than those previously used in industry.

In this report, we consider the problem of predicting the cost-to-go func-

tion in a DP formulation. The applicable environments are �nite or count-

ably in�nite state Markov chains and continuous state Markov processes

[36].

For a Markov chain fitg, the cost-to-go function de�ned as

J�(i)
4
= E

"
1X
t=0

�tg(it; it+1)ji0 = i

#

is the in�nite horizon expected cost for the system with initial state i, where

the scalar g(i; j) represents the cost of transition from state i to state j. The

future costs are included by multiplying a discount factor �t with � 2 (0; 1),

which means that immediate costs are more important than future costs.

The cost-to-go can be shown to satisfy some form of Bellman's equation

J�(i) = E [g(i; j) + J�(j)ji0 = i] ;8i
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The objective of DP is to calculate numerically the optimal cost-to-go

function J�. However, it is well known that for many important problems

where the number of states is very large, the computational requirements

of DP are so overwhelming that, in such cases, only suboptimal solutions

based on some approximations can be obtained [5]. Temporal di�erence

algorithms can be used for such approximations.

2.3.3 The TD(�)-Algorithm

For a TD approximation to J�, we consider a function of linear architecture

~J(i; r) =
KX
k=1

r(k)�k(i)

where ~J is an approximation to J�, each �k is a �xed and easily computable

scalar basis function and r is a parameter vector, or the associated weight

vector. To approximate the cost-to-go function, one usually tries to min-

imize some error metric between the function ~J and J�, for example the

square error, by choosing the optimal weight vector r�. This is basically an

unconstrained optimization problem and therefore, Newton-type methods

can be used. Here, the goal is to derive a recursive updating formula for r

that converges asymptotically to its optimal solution.

To this end, we use the following notation

~J(r) = �0r;

where ~J(r) = [ ~J(1; r); : : : ; ~J(n; r)]0 , r = [r(1); : : : ; r(K)]0 and � is a K � n

basis function matrix whose ith column is equal to �(i). Then we have the
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Jacobian matrix r ~J(r) = �, with ith column equal to r ~J(i; r) = �(i), the

partial derivatives with respect to the components of r.

Now suppose we observe a sequence of states it generated according to a

transition probability matrix P and at time t, r has been set to some value

rt. Then at time t + 1, we de�ne the temporal di�erence dt corresponding

to the transition from it to it+1 as

dt = g(it; it+1) + � ~J(it+1; rt)� ~J(it; rt)

where ~J(it; rt)�� ~J(it+1; rt) is the expected cost of the transition from it to

it+1. Since we observe an actual cost g(it; it+1), the error is given, in some

sense, by the di�erence of the two approximations, i.e. dt.

Next, we update rt to a better estimate rt+1 according to

rt+1 = rt + 
tdt

"
tX

k=0

(��)t�kr ~J(ik; rt)

#

= rt + 
tdt

"
tX

k=0

(��)t�k�(ik)

#

where r0 is initialized to some arbitrary vector, 
t is a sequence of learning

rate, which can be constant, diminishing or determined through line search.

Parameterized by �, this algorithm is usually called TD(�).

When we put zt =
Pt

k=0(��)
t�k�(ik), we can have a more convenient

representation of TD(�) with two iteration formulae

rt+1 = rt + 
tdtzt

zt+1 = ��zt + �(it+1)

with z�1 = 0
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We would be interested in �nding out whether this algorithm converges

to an optimal r� and if so, under what conditions. Some researchers, in-

cluding Sutton [32], have shown that it does indeed converge for a class of

approximators in which there are as many tunable parameters r(k) as the

number of states in the system. Such cases are not practical when the num-

ber of states are close to in�nity or uncountable (continuous). So the more

general case called compact representations , where the number of parame-

ters may be less than the cardinality of the state space, should be of more

interest.

Note that the equations above, as a whole, is an example of stochastic

approximation algorithms, which have attracted much interest from various

areas, such as adaptive �ltering, signal modeling and system identi�cation

[3].

2.3.4 Q-Learning

The TD(�) algorithm can be written as the following, if we use the value

function directly:

On every step, update all state i

J(i) J(i) + 
(g + �J(j) � J(i))e(i)

where g is the immediate cost, e(i) is the eligibility of i

e(i) =
tX

k=0

(��)t�kI(i = ik):

Q-learning is an instance of temporal di�erence learning. The idea is based

on Q-values: let Q�(i; a) be the expected discounted reinforcement of taking
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action a in state i, then continuing with the policy of choosing actions to

maximize (or minimize according to the objectives) Q�

Q�(i; a) = R(i; a) + �
X
j

Pij(a)max
a0

Q�(j; a0)

It is well known that the policy obtained by �(i) = argmaxaQ
�(i; a) is an

optimal policy.

The Q-learning algorithm aims to estimate the Q-values on-line, �nding

the policy and the value function together. For each state i, instead of

trying all of its successors (like in value iteration), it chooses one action a

and enters the next state j, incurring an immediate cost g, and thus obtains

the learning instance (i; a; j; g) from which it can gain experience. At each

state, the action can be chosen using appropriate exploration-exploitation

scheme, like �� greedy methods. This idea is quite similar to that in depth-

�rst-search algorithms for spanning a graph. The update formula for TD(0)

Q-learning, the most widely-used Q-learning algorithm, is shown below:

Q(i; a) (1� 
)Q(i; a) + 

�
g + �max

a0
Q(j; a0)

�

Note that Q-learning doesn't require the system transition model Pij(a),

so it is model-free reinforcement learning. Watkins and Dayan [38] have

shown that: if each action is executed in each state an in�nite number of

times, and 
 is decayed, the Q values will converge to Q�, which will help

yield an optimal policy.
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3 Architecture and Function De�nitions

In this section, we propose the architecture for our IDFM system and

describe the tasks, components and the functions for an intelligent agent.

3.1 Architecture

Figure 2 shows the architecture of our IDFM system. The managed network

is divided into several domains and for each domain, there is an intelligent

agent attached to it, which is responsible for this domain's fault manage-

ment. A domain is an abstract notion, for example it might be a subnet, a

cluster, a host or a member of a functional partition. For those problems

that none of the individual agent can solve, there is a mechanism by which

the agents can report to the coordinator and share the information in order

to get a global view and solve it cooperatively. So the whole system is, from

the agent point of view, a distributed, cooperative multi-agent system.

Each agent is called a \Domain Diagnostic Agent (DDA)" with the goals

of monitoring the health of the domain, diagnosing the faults in a cost-

e�cient manner. The percepts (inputs) of a DDA are the measured data,

alarms or user reports while the action it can take is to report the domain's

health, possible causes and suggestive test sequence. The environment it

faces is discrete and stochastic in nature. The tasks of such an agent are

described below.
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DDADDA DDA

Figure 2: Architecture of Integrated, Intelligent Fault Management

3.2 Outline of DDA tasks

Adopting the space-operation paradigm discussed in the introduction , the

tasks for each local DDA in IFDM are identi�ed as: Fault Detection and

Classi�cation (FDC), Fault Localization and Identi�cation (FLI), and Fault

Corrections (FC), respectively.

� Fault Detection and Classi�cation: The inputs are measured

data, alarms or users reports. Such inputs are analyzed so that the cur-

rent system behavior is obtained, based on which the fault hypotheses

can be generated and tested. The model of \normal" behavior may be

stored explicitly (such as an AR model) or implicitly (such as a MLP

neural network), and model parameters should be adapted (learned)

along the way. The output of the FDC is the type of fault(s). Such
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detection and classi�cation might integrate many techniques, such as

�ltering, change detection, hypothesis testing and neural network clas-

si�cations.

� Fault Localization and Identi�cation: The principal operation

is to determine what might be the primary causes for the symptoms

(fault types) recognized by the FDC. As indicated in [2], both rule-

based (deterministic) expert system and neural networks can be ap-

plied here to implement such mappings and further, they can be inte-

grated in some way to overcome either's disadvantages [1] [37]. Once

more, since the relationship between symptoms and causes is prob-

abilistic in nature, such schemes are insu�cient by their own. Thus

probabilistic fault models should be considered. Belief networks, which

form the basis for probabilistic reasoning and expert systems, manifest

themselves as the most suitable choice [26].

� Fault Corrections: We are going to generate, given the possible

causes, a set of tests or repair sequences based on some heuristic or

decision-theoretic strategies. This is basically a sequential decision

process and thus can be formulated mathematically in some careful

way as a Markov decision problem. In [19], Huard and Lazar give a

dynamic programming (DP) formulation for the network troubleshoot-

ing problem. Noting that Huard's problem assumes single fault, our

goal is to formulate the problem in a more general sense. However, tra-

ditional dynamic programming has been rejected as a feasible method

for many decision problems because of the two well-known drawbacks:

32



\curse of dimensionality"|increase in dimension will incur explosion

in state space, and \curse of model"|it's very hard to obtain the

system model. So it might be very di�cult to formulate a DP prob-

lem. Even if one gets the formulation, one might not be able to solve

it given the huge state space. Such cases are usually referred to as

\di�cult" problems. Reinforcement Learning (RL), with the name

borrowed from the animal learning discipline, can overcome the draw-

backs mentioned above and has drawn much attention in areas like AI

(especially machine learning) and control theory (especially decision

and control) [5]. Such techniques will be investigated and applied to

the fault diagnosis system.

Those tasks are implemented by di�erent components of an DDA. Many

such DDAs will then be distributed in the networks and act as the \local

experts" for di�erent domains.

3.3 Components of a DDA

A DDA consists of the following components, as shown in Figure 3.

� Intelligent Monitoring and Detection Assistant (IMDA)| The role of

the IMDA is to monitor and analyze the data and classify the raw

input data to a (set of) symptom type(s). FDC is implemented here.

� Intelligent Domain Trouble-shooting Assistant (IDTA)|The role of

the IDTA is to, based on the symptoms reported by IMDA, �nd the

most possible causes and come up with the suggestive test sequence.
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So it includes both FLI and FC. The probabilistic network model is

located here.

� Intelligent Communication Assistant (ICA)|The role of the ICA is to

help the DDA to send messages in cases of global problems.

IMDA

IDTA

ICA

DDA

Figure 3: Components of a DDA

3.3.1 Function De�nition|IMDA

In a DDA, an IMDA is in the lowest level and serves to interface with

Network Element Agents (NEA, as de�ned by SNMP or CMIP and supposed

to provide operation information, for example) and to provide symptoms

information to the IDTA, as described below and illustrated in Figure 4.

� Input: Data from network element agents MIBs, including IMDA's

periodic polling and the alarms sent by the NEA.

� Output: The activation status on the output nodes, each of which

is called a Problem De�nition Node (PDN) and acts to represent a
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IMDA

PDN PDN

NEA
domain

NEA. . .

Figure 4: Illustration of an IMDA

certain type of fault. The PDNs will in turn serve as the input for

IDTA. We de�ne �ve activation levels for each output node in order

to re
ect the severity of such a symptom type. The �ve severity levels

are \alarm", \major", \minor", \warning" and \normal", respectively.

Note that the PDNs should be de�ned carefully to re
ect the most

typical kinds of problems and the input-output mapping here is a kind

of pattern recognition problem.

� Functions: Basically monitoring and FDC.

{ Monitoring, includes two closely integrated parts:

� Data gathering (from the MIBs): Periodically, the IMDA will

poll the MIBs for operation information and execute pattern

classi�cation. The alarms, initiated by the NEAs, are also

accepted and they will in general trigger a process of classi-

�cation.
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� Learning the \normal" behavior: In order to decide whether

or not there exist fault(s) and if so, of what type, there must

be some form of internal representations of the MIB vari-

ables' expected behavior with which the comparisons can be

made. Such representations are usually referred to as system

(behavior) models, and hence we call our diagnosis system

model-based. The system model can be set up in various

ways, such as AR modeling or neural networks, etc. It is one

of our objectives to develop an e�cient representation of the

system behavior, which can �t well the current given data,

generalize well the unknown data and predict well the future

behavior. To make such a model adaptive, change detection

will also be considered.

{ Fault Detection and Classi�cation: as described before in section

3.2.

3.3.2 Function De�nition|IDTA

The IDTA is located above IMDA and acts as the trouble-shooter for the

symptoms reported from the IMDA. It includes a probabilistic expert sys-

tem, which is basically a belief network database. Based on the activation

status of the PDNs, a sub-belief network is extracted from the database

and then the inference and trouble-shooting begin, as described below and

shown in Figure 5.

� Input: The activation status of the PDNs.
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making
decision

working memory
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Figure 5: Illustration of an IDTA

� Output: Primary causes and the suggested test sequence.

� Functions: The IDTA functions include scheduling of the PDNs, ex-

traction of the sub-belief network (model construction), inference and

trouble-shooting, and they consist of a trouble-shooting cycle.

{ Scheduling of the PDNs: At the same time, there might be more

than one PDNs that are not in the \normal" state. As described

before, there are �ve severity levels for each PDN's value. The

alarms are to be considered with highest priority and the warn-

ings the least (the \normal" status incurs no diagnosis at all ). So

there should be a mechanism to discriminate the severity levels

and determine the PDNs for which the sub-belief network will
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be extracted. For example, in a case where PDN one is in alarm

status and PDN two is in minor status, it might be more desir-

able to take care of PDN one only instead of considering both of

them (let alone PDN two only). The scheduling algorithm will

be studied elsewhere. Note that this should be a quick and easy

one since the purpose of IDFM is not scheduling anyway.

{ Belief network extraction (model construction): For the selected

PDNs, a sub-belief network can be extracted into the working

memory. This can be done using the idea of d-separation, as

de�ned in the introduction to belief networks in section 2.2.2.

The nodes extracted are those that are not d-independent of the

selected PDNs. One such example can be found in [7].

{ Inference and trouble-shooting: Given the extracted belief net-

work (constructed model) B, the beliefs of any non-PDN nodes

to be faulty can be calculated through backward inference based

on which static or dynamic trouble-shooting strategies can be

adopted to generate the test sequence.

� Re-action and pro-action: Re-actions are embodied in the handling of

the alarms. For pro-actions, however, we have two implications. First,

since the \abnormal" PDNs with status other than \alarm" can also be

dealt with, the diagnosis afterwards is actually pro-diagnosis in the

sense that it is dealing with something before it really goes wrong.

Second, the belief network nodes are not restricted to be physical

entities, they can also be \logical" or performance nodes, such as \link
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congestion", so that \soft" faults can also be included.

� Knowledge engineering considerations:

The overall probabilistic expert system (belief network database) can

be constructed as follows:

{ Identifying the most typical fault types as the problem de�nition

nodes.

{ For each PDN, construct a belief network for it. The structure is

relatively easy to get from the experts. The weights can be �rstly

set up by the experts and then get validated by the statistical

data.

{ Combine the individual belief network into a large belief network

by joining, aggregating and deleting nodes.

The division into domains makes the local probabilistic database man-

ageable and thus we don't have to wait for long for the model construc-

tion. The constructed model is also expected to be tractable. Note

that a new PDN might be added on-line some time, but this should

be done very carefully.

3.3.3 Function De�nition|ICA

When the problems cannot be solved by any of the individual DDAs, it is the

role of the ICA to report the problems to an upper layer, where correlation

and coordination can be done and a conclusion can be drawn from a global

point of view. The ICA is illustrated in Figure 6.
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Figure 6: Illustration of an ICA

� Input: Results of belief computations (the most probable causes) for

various extracted belief networks and results from test sequences.

� Output: Compressed versions of symptom statistics and of the results

given as inputs. The output is then transmitted to a coordinator in

the upper layer via some communication links.

� Functions: The ICA functions include assessment of the value of the

results from belief computations and test sequences (Input Evalua-

tion). This evaluation will decide to what extent it is worthwhile to

transmit these results to an upper layer. Only the most relevant re-

sults will be transmitted. In addition, the ICA will have a function

to select features and compress the data describing valuable inputs

(Information Compression). The evaluation and compression will help
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reduce the amount of data to be transmitted and thus reduce the

bandwidth overhead for such communications. Finally, the ICA must

include a function which will decide where to send the compressed de-

scriptions and how to communicate with minimum overhead with the

upper layer (Communication Interface). To understand such selected

and compressed information (encoded data), the coordinator receiv-

ing such information must share with ICA the same encoding-decoding

protocol.

4 Problem Formulations

In this section, we include the mathematical problem formulations for

the IDTA. The IMDA and ICA parts will be discussed in separate papers.

4.1 Problem de�nition

We assume here that at least one of the PDNs is observed to be in an

\abnormal" state and the PDNs for which a belief network will be extracted

have been selected by some scheduling algorithm. There might be multiple

such PDNs.

For the extracted belief network B = ((V;L);P) with N nodes, V is a

�nite set of nodes, V = fV1; : : : ; VNg; L is the set of links and P denotes

the associated Conditional Probability Tables (CPT). We have the following

de�nitions:

� A time-step set T = f1; 2; : : : ; N � pg.
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� Problem de�nition nodes set D = fd1; : : : ; dpg with each element in a

kind of \abnormal" state. There are altogether p PDNs, which assume

binary values.

� Evidence set E: Serves as the evidence in the probabilistic reasoning.

Initially, we let E = D. As the diagnosis progresses, new elements

will be added into the evidence set. The elements in E assume binary

values.

� Candidate set U : The set containing the faulty node(s), or all of the

nodes in V except those already in the evidence set, namely U = V nE.

Initially, let U = V nD. The elements in U assume binary values.

� A set of actions A = U
W
fSTOPg. The possible actions are: the next

candidate to choose or STOP. The set A will change as the diagnosis

progresses and more evidence accumulates.

� Faulty node set F : The set of the faulty non-PDN nodes diagnosed.

Initially, F = NULL. In single fault cases, F = a, where a is the node

tested to be faulty. In case of multiple faults, F may contain more

than one nodes. Here we assume the occurrence of multiple faults are

independent of each other.

� Given the current state of the evidence set E, we can execute the back-

ward inference to get for each node in the candidate set the probability

of being faulty: Pi = Prfui = 1jEg;8ui 2 U , and it is easy to observe

that
P

i Pi = 1.
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� History process: For an action sequence fa1; : : : ; akg; k � N � p, we

de�ne the observation sequence fZa1 ; : : : ; Zakg, each element of which

indicates whether or not the corresponding candidate is faulty or not.

If a candidate l is faulty, then Zl = 1, otherwise, Zl = 0. The history

process is de�ned as follows:

Ik = (Z0; (a1; Za1); : : : ; (ak; Zak))

It follows that Ik = (Ik�1; (ak; Zak)) and we say the history process I

is Markov. We take the history process as the state process.

� Limited observations: The observations and tests are constrained within

the extracted belief network.

� Cost function: There is an immediate cost incurred by selecting an

action a. If a = STOP , the cost is zero. For any a 2 V nD, the non-

PDN nodes, de�ne the cost function as c(a). Note that c(a) is just the

cost of testing node a and it is �xed throughout and independent of

the actual faults. The determination of a cost function might include

many considerations like labor cost and time factors, etc.

Observe that di�erent nodes may be at di�erent urgency levels when

faulty, so a good test sequence should also consider the urgency infor-

mation. Here, we de�ne the urgency as q, which assumes values from

q1; q2; q3 in ascending urgency level. q1; q2; q3 can be determined ad

hoc for di�erent problems.

We distinguish the non-PDN nodes according to observability and re-

pairability. Suppose we have perfect information at this time, i.e. all
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of such nodes are observable (the partially observable cases will be dis-

cussed elsewhere). We then divide the nodes into two sets: repairable

set R, and non-repairable set N . Usually for a 2 R, b 2 N , we have

c(b) << c(a), which means the cost of observing only will be much

less than that of both observing and repairing. In order to minimize

the total cost, one would not be willing to take the risk of choosing

the repairable nodes �rst, if it is not necessary to do so. It is our plan

to take advantage of the cheaper nodes to lead to disbelief of those

expensive nodes and thus help reduce the total cost.

The goal of an IDTA is to �nd the possible causes and generate the

test sequences in a cost-e�cient manner. In the next couple of sections, we

propose strategies, both static and dynamic, to achieve this goal.

4.2 Static strategy|single fault assumption

By a static strategy we mean a strategy which is generated once based on

the original evidence. No updates occur during diagnosis.

First, let's begin with the simplest case, static strategy for a single fault.

By assuming a single fault, the diagnosis can stop as soon as we �nd a faulty

node.

For a test sequence f1; 2; : : : ; j; k; : : : ; ng with k = j + 1; n = N � p,

the probability that the jth candidate have to be tested is the probability

that none of its predecessors have failed the tests, namely 1 �
Pj�1

i=1 Pi, orPn
i=j Pi, the probability that the faulty node is either the jth candidate or

44



its successors. So the expected cost is:

EC1 = c1 + c2

nX
i=2

Pi + : : :+ cj

nX
i=j

Pi + ck

nX
i=k

Pi + : : :+ cnPn

If we exchange k and j, then we get another test sequence f1; 2; : : : ; k; j; : : : ; ng,

for which the expected cost is:

EC1 = c1 + c2

nX
i=2

Pi + : : :+ ck[
nX
i=j

Pi + Pj ] + cj [
nX
i=k

Pi � Pk] + : : : + cnPn

The di�erence between the above costs is: EC1 � EC2 = cjPk � ckPj ,

and it is straightforward that

EC1 � EC2 , cjPk � ckPj , cj=Pj � ck=Pk;8Pi > 0

We see that EC1 is cheaper than EC2 if and only if the c=P value for

candidate j is less than that for candidate k. Thus, any strategy with an

element that has higher c=P value than its successor can be improved upon

by simply exchanging the two elements. So for an optimal strategy, all

elements must be in non-decreasing sequence of c=P values, see also [16][21].

Here is the c=P algorithm for single fault diagnosis.

� 0. Set E = D, U = V=D, F = NULL.

� 1. Compute the probability of being faulty for each candidate.

� 2. Observe the candidate with the smallest cl=Pl value. Ties can be

broken arbitrarily.

� 3. If the chosen node l is faulty, let F = l, return F and terminate.

Otherwise, go to 2.
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The c=P algorithm makes great sense in that it re
ects the following

observation: in order to minimize the total cost, people are more likely

to test those more fault-prone, cheaper nodes �rst than the less-probable,

expensive nodes.

Besides, the more urgent nodes should also be given some kind of priority

and tested early. The idea behind integrating urgency is to rede�ne the cost

function as c(a) c(a)=q;8a 2 U . Then in the c=P algorithm, those nodes

with higher level of urgency will get a lower c=P value and thus can be tested

earlier. From now on, we assume this new cost de�nition.

In the next section, we eliminate the single fault assumption and propose

a dynamic strategy with belief updating as the diagnosis progresses.

4.3 Heuristic dynamic strategy|multiple faults

Heuristically, the c=P algorithm above can be adapted to the case of multiple

faults, basically as a sequential decision problem , using the following ideas:

� 1. Based on each candidate's probability (belief) of being faulty, choose

the node l with the smallest c=P value to test �rst.

� 2. If this node l is working normally, then eliminate it from the can-

didate set U and add it into the evidence set E; go to 1.

� 3. If it is not working normally, then assume it is working normally

and calculate the status of the problematic PDNs. If the probabilities

of the PDNs to be working normally is high, then this node is the only

fault and we can put it into F and terminate; otherwise, there must
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be multiple faults. We put node l in F , update the fault beliefs, go to

1 and continue to �nd other faults. We call this process dynamic since

the new round of diagnosis is based on the updated beliefs gained from

the previous round of diagnosis.

It is the belief updating that changes the faulty probabilities of those

\expensive" nodes and thus, hopefully, reduce their opportunities of being

tested early. Note that in such an algorithm, the candidate set U (or the

action set A) is diminishing in terms of number of elements.

The following is our algorithm for multiple faults.

� 0. Set E = D, U = V nD, F = NULL. Set sequence number SN = 1.

Set indicator found = 0;.

� 1. While(SN � n) f

Calculate for each candidate the probability of being faulty given the

evidence (backward inference), namely, Pi = PrfUi = 1jEg.

� 2. Choose from the current candidate set U the action(candidate) u

with minimum c(u)=Pu.

� 3. Test the chosen candidate u

{ (i) If Zu = 0 (not faulty)

U  Unfug

E  E
_
fug; Zu = 0

SN  SN + 1, go to 1
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{ (ii) If Zu = 1 (faulty)

F  F
W
fug; Zu = 0

U  Unfug

let Zu = 0 (assuming it has been repaired)

calculate for each PDN the probability of being normal

Pdi = Prfdi = 0jU;Zu = 0g;8di 2 D (forward inference)

� If Pdi > �i;8di 2 D, �i is the threshold

u is the unique faulty node

set found = 1, go to 5

� Otherwise

E  E
_
fug; Zu = 0

SN  SN + 1, go to 1

� 4. End of while(SN � n) g

� 5. If (found = 1) return found and F ; otherwise, trigger the ICA for

cooperation.

In the next section, we formulate the sequential decision process using

Markov decision process techniques.

4.4 Dynamic strategy|Markov decision process formulation

For the sequential decision problem with state process I as de�ned before, we

consider a discrete-time dynamic system whose state transitions depend on
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a control, Pxy(u). Here the control u represents just the action of choosing a

node as the test candidate. The costs are accumulated additively over time

and depend on the states visited and the controls chosen.

We de�ne Jk(i) as the expected cost when starting from state i and k

steps remain while J�k (i) is the minimum such cost, or the best k-step cost-to-

go, 8k � n. Such cost-to-go functions are also called J-functions. Consider

�rst the case when there is only one stage and the optimal cost-to-go is by

de�nition

J�1 (i) = min
u2U(i)

X
j

Pij(u)g(i; u; j)

where g(i; u; j) is the immediate cost incurred by leaving state i for state j

when control u is chosen. Here, g(i; u; j) is simply c(u). In the general case,

we claim that for the �nite horizon problem,

J�k (i) = min
u2U(i)

X
j

Pij(u)[c(u) + �J�k�1(j)]:

This expression states that the k-step cost-to-go can be represented as the

expected value for the sum of immediate cost and the cost-to-go of the

remaining k � 1 steps, discounted by �. To prove this, we observe that any

policy �k for the problem with initial state i and k stages to go is of the

form �k = fu; �k�1g, where u 2 U(i) is the control at the �rst stage and

�k�1 is the policy for the next k � 1 stages. Thus,

J�k (i) = min
u2U(i);�k�1

X
j

Pij(u)[c(u) + �J
�k�1

k�1 (j)]

= min
u2U(i)

X
j

Pij(u)[c(u) + �min
�k�1

J
�k�1

k�1 (j)]

= min
u2U(i)

X
j

Pij(u)[c(u) + �J�k�1(j)]:
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The state transition model Pxy(u) is a function of the current state i,

the next possible state j, the action to choose u, and Pi calculated using

backward inference. The next state j = (i; (u;Zu)) and the corresponding

Pxy(u) may be

� j = j1: if node u is faulty, Zu = 1, Pij(u) = Pu

� j = j0: if node u is not faulty, Zu = 0, Pij(u) = 1� Pu

So,

J�k (i) = min
u2U(i)

fPu[c(u) + �J�k�1(j1)] + (1� Pu)[c(u) + �J�k�1(j0)]g

= min
u2U(i)

[c(u) + Pu�J
�
k�1(j1) + (1� Pu)�J

�
k�1(j0)]

= min
u2U(i)

[c(u) + �
X
j

Pij(u)J
�
k�1(j)]:

It is easy to verify that

J�1 (i) = min
u2U(i)

X
j

Pij(u)c(u)

= min
u2U(i)

c(u)

Thus we obtain the MDP formulation pair for IDTA, as shown below,8><
>:

J�1 (i) = minu2U(i) c(u)

J�k (i) = minu2U(i)[c(u) + �
P

j Pij(u)J
�
k�1(j)]

and this can be solved by dynamic programming.

We would like to note that it might be possible that a fault (or multiple

faults) can be identi�ed within n tests; we don't have to wait until Jn(i);8i

have been obtained. The problem is incremental by nature and it can termi-

nate well before n steps. So it might be desirable to design the formulation

more carefully and include the STOP rules.
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4.5 Proposed solutions for the MDP formulation

The optimal solution is an optimal policy �� = f��1; : : : ; �
�
ng, where ��k :

S ! A for each k 2 T , that minimizes the expected total costs. Ideally,

we expect closed-form expression solutions using value iterations or policy

iterations [4]. Reinforcement learning techniques, like Q-learning, would be

appropriate to obtain the approximations for the J-functions. We propose

below three algorithms for the MDP formulation described in the last sec-

tion.

In a value iteration algorithm, each possible action is tried for a state

and the outcome of the best action is recorded as the value function for the

state. Such iterations continue until convergence is achieved, as illustrated

below:

� 1. Initialize J(i) arbitrarily

� 2. Loop until convergence

{ Loop for each state i

J(i) min
u2U(i)

[c(u) + �
X
j

Pij(u)J(j)]

{ End loop

� 3. End loop

In a policy iteration algorithm, on the other hand, it is the candidate

policies themselves, not the value functions, that are updated through the

iterations. In each iteration, we evaluate for each state the value functions
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under this policy and then �nd for each state the best action in order to

improve the previous policy. Such iterations continue until no improvement

is possible, as shown below:

� 1. Choose an arbitrary policy �

� 2. Loop

{ Policy evaluation: compute for each state i the value function

under �,

J�(i) = c(�(i)) + �
X
j

Pij(�(i))J�(j)

{ Policy improvement: improve the policy at each state,

�0(i) argmaxu[c(u) + �
X
j

Pij(u)J�(j)]

� = �0

� 3. Until no improvement is possible

It has been shown that both value iteration and policy iteration algo-

rithms can terminate with arbitrarily good policy.

Note that in either value or policy iteration algorithm, all of the possible

actions for each state are computed and compared (This is called \whole-

sweeping"). Even if the updating is asynchronous, as illustrated in [4], the

convergence still depends on such whole-sweeping. It is easy to imagine

that, for a system with large number of states and/or candidate actions, the

whole-sweeping algorithms will become intractable. So they should be used

only when we are pretty sure that the state space is manageable.
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In our problem, suppose the extracted belief network consists of n nodes,

each of which assumes a binary value. Then the state space for the IDTA

to face is as large as 2n � n!, which will be unthinkably large as n increases.

For example, n = 4 leads to 384, n = 5 leads to 3840, n = 6 leads to

46080..., and such increase progresses exponentially. So for the cases with

n � 5, instead of doing the whole-sweeping, it is more appropriate to take

some approximation algorithms. The generic Q-learning algorithm for our

problem is described below.

� 1. Initialize Q(i; u) arbitrarily

� 2. Loop

{ For each state i, choose an action u, which leads the system to

state j with immediate cost c(u). Thus we obtain the learning

instance (i; u; j; c(u)). The action may be selected using ��greedy

strategy, as described in section 2.3.4.

{ Update the Q-value:

Q(i; u) (1� 
)Q(i; u) + 

�
c(u) + �min

u0
Q(j; u0)

�

� 3. Until convergence

It has been proved that if each action is executed in each state an in�nite

number of times, and 
 is decayed, the Q-values will converge to Q�, by

which an optimal policy can be acquired.

One may point out that such conditions again imply a sort of \whole-

sweeping". However, the key idea behind Q-learning is: instead of �nding
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the optimal policy, it aims to �nd a reasonably good policy at a much lower

cost. Thus a Q-learning agent doesn't have to try (simulate) every candidate

actions; what it does is to try a couple of actions (using an �-greedy scheme,

for example) at a state and select the current possible action to perform.

Such an action leads to the next state, where the same procedure will be

repeated, and so on. So in this sense we say Q-learning entails only a partial

sweeping of the state/action space.

Note that the above algorithm is based on the look-up table representa-

tion of the Q-values. In cases of large state spaces and/or action pools, such

a table might require large amount of memory and/or storage space. So it

is more desirable to use a compact representation scheme in such cases.

5 Conclusions

In this report, we describe an integrated, distributed fault management

system for communication networks. The architecture is hierarchical and

distributed, with probabilistic networks as the framework for knowledge rep-

resentation and evidence inferencing. For fault identi�cation and correction,

mathematical formulations are presented and trouble-shooting strategies,

both static and dynamic, are proposed.
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