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Abstract

We consider the problem of routing k two-terminal nets in the
presence of obstacles in two models: the standard two-layer model
and the knock-knee model. Determining routability is known to be
NP-complete for arbitrary k. Our main results are polynomial time
algorithms to determine whether the given nets are routable in either
model for any fixed k. We introduce a technique that reduces the
general problem into finding edge-disjoint paths in a graph whose size
is propotional to the size of the obstacles. Two optimization criteria

" are considered: the total length of the wires and the number of vias
used.
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1 Introduction

A general wire routing problem consists of interconnecting the terminals
of each of a given set of k nets within a given grid, while avoiding a set of
rectilinear obstacles representing previously placed modules. The locations
of the terminals are assumed to be on the boundaries of the obstacles.
Wires can run on a grid in any of several layers with the restriction that
wires in a given layer have to be separated by a certain minimum distance.
A wire may change layers by using a contact cut or via. The standard
two-layer model, where horizontal wires run on one layer and vertical wires
run on the other layer, and the krock-knee model will be considered in this
paper. Our goal is to provide a detatled routing of the k nets, whenever
such a routing is possible. Two optimization criteria are used. The first is
to minimize the total length of the wires, and the second is to minimize the
number of vias used in the wiring.

This problem has been studied extensively in the literature (e.g. [CO],
[CR], [H1], [H2], [HS], [LE], [O], [OT], [WW]). A typical solution consists of
a heuristic to order the nets and a method to route each net separately while
avoiding the initial obstacles and the wires of the previously routed nets. It
seems that no good heuristics exist to perform the ordering satisfactorily.
Another alternative is the rip up and reroute strategy, where a designer
could interactively change the ordering of the nets whenever “blockages”
are observed ([DS],[OT]). As for routing a single net while avoiding a set
of obstacles, two basic sirategies are well-known. The maze algorithms
initially introduced by Lee [LE] are used extensively. Any such algorithm
guarantees an optimal solution, if it exists. However, their time and space
requirements are extremely large. The lsne search algorithms introduced
by Hightower ([H1}) use much less memory but do not necessarily produce
a wiring even if one exists. In ([COJ,[CR]), the line search technique was
combined with some algorithms from computational geometry to obtain a
fast algorithm that always guarantees a solution with minimum length or
minimum number of bends, whenever such a solution exists. The running
time of this algorithm depends only on the size of the obstacles , unlike
that of a maze router whose running time will typically depend on the size
of the overall grid and the size of the obstacles.



In this paper, we consider the problem of routing the given k nets si-
multaneously. We restict ourselves to two-terminal nets since otherwise the
problem is NP-complete even for a single net. If k is not fixed, the problem
is known to be NP-complete ({[KV]). Therefore it is highly unlikely that an
efficient algorithm exists that guarantees a solution whenever one exists.
Our main result provides an algorithm whose running time is polynomial
in the size of the constraints and that guarantees a solution whenever one
exists for any fixed k. Our main technique is to reduce the general problem
to finding edge-disjoint paths in a graph of size O(k?n?), where n is the
input length of the obstacles. A recent result of [RS] shows how to find
such paths efficiently for each fixed k. We also establish stronger results
for the case when k = 2.

The rest of the paper is organized as follows. The basic definitions and
the two wiring models are introduced in the next section, while section 3
contains the solution for the knock-knee and the one-layer models. The
proofs for the standard two-layer model are presented in section 4.

2 Definitions

An instance of the k-routing problem consists of a grid specified by its
boundaries, a set of rectilinear obstacles specified by line segments that de-
termine their boundaries, and a set of k pairs (a,,b;),1 < ¢ < k, representing
the terminals of £ nets. We assume that any pair of obstacles are separated
by at least a unit distance for otherwise they could be combined into a
single rectilinear obstacle. The grid without the union of the regions de-
termined by the rectilinear obstacles is called the routing region. The tnput
length of an instance is determined by the set of line segments specifying the
boundaries of the grid and the obstacles, and the pairs {(a;,5;),1 < 1 < k}.
Notice that the input length is independent of the size of the given grid.
We now introduce the notion of escape lines.

A horizontal line segment u covers a horizontal boundary segment v if,
and only if, they have a nonempty intersection on the X-axis. A similar
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Figure 1: Escape Lines

definition holds for vertical segments. The main technique of this paper
relies on generating mazimal line segments in the routing region that cover,
and are within a small distance of, the boundary segments. The typical
notion of escape lines consists of generating two types of line segments.
The type I escape lines are maximal line segments that cover boundary
segments and are within a unit distance of these boundary segments. The
type II escape lines are maximal horizontal or vertical segments in the
routing region that intersect a terminal (see Figure 1). As we will see later
the routing problem could be restricted to finding paths in a graph that
consists of escape line segments.

As was mentioned before, two routing models will be considered. The
standard two-layer model restricts the routing to two layers such that hor-
izontal wires run one layer and vertical wires run on the other layer. On
the other hand, the knock-knee model allows arbitrary rectilinear wiring as
long as no two wire segments overlap. Hence wires could intersect either
at a crossing point or at a knock-knee (See Figure 2). It was shown in [BB]
that four layers suffice for any routing in the knock-knee model.

We assume that the reader is familiar with the basic techniques for
channel routing and in particular with the notion of constraint graphs.
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Figure 2: Routing in Knock-knee Model

3 Routing in the Knock-Knee Model

Given an instance of the k-routing problem, we are supposed to deter-
mine whether or not the corresponding nets are routable in the knock-knee
model. We start by extending the notion of escape lines and then establish
the main algorithm of this section.

Let u be the maximal line segment in the routing region which covers a
boundary segment and whose distance from that boundary segment is one.
For each such segment, generate as many as possible but no more than
[;] parallel maximal segments on each side u as shown in Figure 3. These
segments will be called type I escape lines. Notice that for each boundary
segment there are at most 2 [!2‘-] + 1 type I escape lines. We will later
see that in general we cannot eliminate any of them. Let v be a maximal
line segment in the routing region with one endpoint being a terminal. As

before, generate the maximum number < [5] of maximal line segments

2
parallel to v (on each side) in the routing region as shown in Figure 3.

These segments will be called type II escape lines.

The escape graph G = (V,E) is defined as follows. V is the set of all
the intersection points of all the escape lines plus all the terminals. E is
the set of all escape segments joining two vertices in V. Notice that if n is
the size of the input representing the boundary segments of the obstacles,
then the sizes of V and E are bounded by O(k*n?). Our goal is to prove
that a routing exists if, and only if, there exist k edge-disjoint paths in G
between the pairs of vertices corresponding to the terminals of the given
nets. Before we can establish the main result of this section, we have to
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Figure 3: Escape Lines in the Knock-Knee Model

introduce a characterization ([FR]) for the existence of edge-disjoint paths
in a rectilinear grid.

Let R be a rectilinear grid with n columns and m rows. Suppose we are
given a set of pairs (z;,y;) representing the terminals of a set of nets, where
z; and y; lie on the boundary of R. A necessary and sufficient condition
for the routability of these nets in the knock-knee was given in ([FR]). A
vertical cut at column ¢ < n is the region of R between the columns ¢ and
¢ + 1. The congestion of ¢ is the number of terminal pairs separated by
the vertical cut at ¢. A column is saturated if its congestion is equal to m.
Similar definitions hold for horizontal cuts. Suppose there are t saturated
horizontal cuts, say ry,r2,...,r:, and let ¢ be any column. The saturated
rows induce ¢ + 1 regions to the left of ¢, say Ti,7T3,...,Tt+1 (see Figure
4). Join each terminal by an imaginary edge. Call the resulting graph the
extended graph. A set T is odd if the number of edges leaving T is odd.
The number of odd sets T; is called the parity congestion of ¢. The revised
congestion of ¢ is the sum of the parity congestion and the congestion of
¢. The revised column criterion states that the revised congestion of any
column is at most m. We can similarily define the revised row criterion.

Theoreml [FR]: A routing within a rectangle exists if and only if the
revised row and column criteria hold.

We are ready to state the main result of this section.



T
t+1
I'"I ®
rQ
r*l‘
re
2
T2
r“l-
r 1
1
T
1

Figure 4: Routing Within a Rectangle

Theorem?2: Given an instance of the k-routing problem, a solution exists
if and only if there exist k edge disjoint paths connecting the corresponding
terminals in the escape graph.

Proof: Suppose a solution to an instance of the k-routing problem exists
and let p;(a;,b;) be the path determined by the wiring of the jth net.
Without loss of generality, we can assume that p; consists of rectilinear
segments {r;1,%j2,--- ,r,-tj}, where for any two successive segments one is
horizontal and the other is vertical. We will show how to transform this
wiring into paths in the escape graph G.

Suppose a path p; has some segments outside G. Let rj be the mini-
mally indexed routing segment of pj(aj,b;) that is not an escape segment.
Without loss of generality, assume that rj; is a horizontal segment. Let R
be the maximal routing region containing r;; and [-:—'I + 1 horizontal escape
segments above rj; and [£] 4+ 1 below r;; (See Figure 5). Since r;; is not
escape segment, such a region always exists. A path p; may enter R at
some point z; and leave R at z. We want to alter the routing within R so
that all the horizontal segments used are escape segments. Moreover, the
columns used are the entry and the exit columns of the given wiring in R
and possibly one additional column which is used by a previous wire. It
is easy to see that the routing in R is a channel routing problem (because
of the maximality of R) with 2[] + 2 tracks (the escape segments) such
that each net has two terminals. It is clear that in this case there are no
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Figure 5: The Rectangle R in the Proof of Theorem?2

saturated columns. The congestions of all the rows are identical. If all the
rows are saturated, then a routing exists if and only if every induced net is
a trivial net. Assume that none of the rows is saturated. Then using Theo-
reml the problem always has a solution with 2[%] + 2 tracks and with one
additional column. Choose this column to be an escape segment if possible.
Notice that rj; is now an escape segment and none of the escape segments
used by any path has been replaced by a non-escape segment. Therefore
the proof follows.

Using a result from ([RS]) we have the following.

Theorem3: Given an instance of the k-routing problem, we can determine
a routing whenever it exists in time polynormial in the input length for all
fixed k.

The specific choice of the escape segments will be justified by the fol-
lowing example. Let k = 8 and let the obstacles and the nets be as given
in Figure 6. We justify the introduction of type II escape lines. The re-
gions above the horizontal line [1,2] and below the horizontal line [4, 3] are
chosen to be saturated (see discussion preceding Theorem1). Therefore the
routability of the given instance will depend on the number of horizontal
lines in the region between lines [1,2] and [4,3]. The path congestion at the
third column is 8 and hence by Theorem1 we need at least 8 horizontal lines
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Figure 6: Justification of Escape Lines

in the unsaturated region. Therefore enough lines parallel to an escape II
line have to be generated if routability to be tested on the generated lines
only.

We end this section with the following theorem concerning one layer
rcuting.

Theorem4: Given an instance of the k-routing problem, a one-layer rout-
ing exists if and only if it exists in the escape graph G. Moreover an optimal
solution with respect to bend minimization lies in G as well.

The proof of this theorem is similar to that of Theorem?2 , except that
the routing induced within the rectangle R is a river routing problem.

4 Routing in the Standard Two-Layer Model

The routing problem in the standard two-layer model is considerably more
difficult than that in the knock-knee model. For example, determining
the minimum number of tracks needed to wire two-terminal nets within
a channel is NP-complete ([ST]), while the corresponding problem in the
knock-knee model can be solved quite efficiently ([PL]). However the results
of the previous section can be extended to the the standard two-layer model.

8



We first introduce the escape lines associated with the given boundaries and
we then show that it is enough to restrict the search to the routing region
determined by these escape lines. Finally we show how to map this problem
into finding a set of edge-disjoint paths on a graph roughly the same size
- as the routing region.

The escape lines are generated as before except that | %5] parallel lines
(whenever possible) are generated rather than the [%] needed for the knock-
knee model. As before, let G = (V, E) be the corresponding escape graph
determined by the escape lines. We are ready to prove the first theorem of
this section.

Theorem5: An instance of the k-routing problem has a solution if and
only if it has a solution within the routing region determined by the escape
graph G. Moreover , a solution with the minimum number of bends lies in
G as well.

Proof: The proof is similar to that of Theorem2 . Suppose the given
instance of the k-routing problem has a solution and let p;(a;,b;) be the
path corresponding to the j-th net. Suppose that one p; has a segment that
is not an escape segment. Let r;; be the minimally indexed routing segment
of p; (say horizontal) that is not an escape segment. As before, let R be
the maximal routing rectangle containing rj; and [¥] horizontal escape
segments above rj; and [%f] below r;;. One can check that the routing
paths determine a channel routing problem within R. We now show that
the routing within R can be done such that all the horizontal segments
used are escape segments and the number of bends used is not increased.

We will briefly outline how to route the induced nets by using at most
[2%] tracks. Let ¢ be the number of nets induced within R. The new
routing strategy will use the entry and the exit columns of each net plus
one specified extra column (the same for all the nets) such that all the
horizontal tracks are escape segments. The columns used will be a subset
of those used by the given routing. Start by routing those nets whose
terminals lie on one side of R by using one escape line per net. Notice that
the number of bends used per net is two and hence the total number of
bends used is minimum. For the remaining nets, let’s consider the vertical



Figure 7: A Cycle in The VC Graph

constraint graph (VC) associated with this channel routing problem. We
distinguish between two cases:

(i) The VC graph does not have any cycles. Then it is well-known that
¢ tracks are sufficient and the only columns used are the entry and the exit
columns. The wiring of each net has two bends (obviously nets appearing
in the same column do not require any bends).

(i) The VC graph has [ cycles. In this case, the given wiring must use
at least one extra column in addition to the entry and the exit columns for
otherwise the nets are unroutable. Let u be such a column (vertical escape
segment, if possible). Each cycle can be broken by using a section of u and
an extra track (see Figure 7). If a cycle has ¢ nets, then the number of
bends used is 2¢ + 2 which is minimum. The remaining nets can be routed
as before without any additional columns (one track per net). Since there
are at most ¢ cyles, at most %5 will ever be used. Moreover the wiring
introduced uses the minimum number of bends possiblem. Therefore the
proof of the theorem follows.

We now show how to reduce the above problem to that of finding a set
of edge-disjoint paths in a new graph G' = (V', E'). G' is constructed from
G as follows. For each vertex v; of V that is an intersection point of two
escape lines, create two vertices v;1,v;2. The terminals are also included in
V'. The edges E' consist of : '

10



Figure 8: The Escape Graph G and the Corresponding Graph G'

1. All pairs (v51,vj1) such that [v;,v;] is a horizontal escape segment in
G.

2. All pairs (viz,v;,) such that [v;,v;] is a vertical escape segment in G.

3. All pairs (vi1,v;z) such that v; € V is an intersection point of two
escape segments.

4. All pairs (z,vm) where z is a terminal and (z,v;) € E. m = 1if
[z,v] is a horizontal escape segment, m = 2 otherwise.

Notice that |V'| < 2|V | and |E'| < 2|E].

See Figure 8 for an example.

Theorem8: Let G be the escape graph corresponding to an instance of
the k-routing problem in the standard two-layer model and let G' be the
graph defined above. Then a solution for the k-routing problem exists in
G if and only if there are k edge-disjoint paths in G' connecting the pairs
of terminals (a;, b).

Proof: Suppose that G' contains k edge-disjoint paths say p;(a;,b;). We
will show how to obtain a legal routing of the k nets in G. For each path
pi collapse any two vertices v;;, ;3 corresponding to an intersection point
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v; in G. Let the resulting paths be ¢;(a;,b;). We claim that these are legal
paths in G. No two paths ¢; and g¢; could share a segment since p; and p;,
are edge (and vertex) disjoint. On the other hand if ¢; and g; intersect at
a knock-knee v, then one can easily check that p; and p; have to share the
edge (v1,v2) in G', which contradicts the fact that these paths are edge-
disjoint. Hence the g;’s are legal paths in G. The rest of the proof follows
similarily. '

As before using the result of |RS] the following theorem follows.

Theorem?7: Given an instance of the k-routing problem, it is possible to
determine whether or not it has a solution in time polynomial in n for all
fixed k, where n is the input length of the constraints. Moreover a routing
can be found in polynomial time whenever it exists.

For the case of k = 2 we can show that a solution with the minimum
total wire length can be found in the routing region determined by the
escape graph.

Theorem8: Suppose an instance of the 2-routing problem has a solution.
Then it has a solution with the minimum total wire length within the
routing region determined by the escape graph.

Proof: We use the same strategy as before. We start with any wiring that
minimizes the total wire length and we show that the wiring could be done
with escape segments without increasing the total wire length. We use the
same notation introduced in the proof of theorem . We want to modify the
routing within R in such a way that all the horizontal segments used are
escape segments, the columns used are a subset of those used in the given
wiring and the total wire length is not increased. There are 4 tracks and
at most 2 pairs, (z1,¥1),(2,y2), of terminals in R. Two situations need to
be considered:

(1) The terminals (z,,¥:), ¢+ = 1,2 are on one side of R. Route them by
using the two upper tracks if the terminals are the top side of R. Use the
two lower tracks otherwise. The problem can be easily solved as well if the
terminals of one net are on one side while the terminals of the other net

are on opposite sides.
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(ii) Suppose that the terminals of each net are on opposite sides of R.
If the nets are not involved in any cycle, route them according to the order
induced. Each net uses one track and the minimum total wire length. If
the two nets are involved in a cycle, then an extra column is needed. Either
one or more extra columns are used by the given wiring. Use whichever
minimizes the length of the “detour” (See Figure 9) and three tracks that
are escape segments.
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