
Fair Watermarking Techniques

Gang Qu, Jennifer L. Wong, and Miodrag Potkonjak
Computer Science Department, University of California, Los Angeles, CA 90095

Abstract

Many intellectual property protection (IPP) techniques
have been proposed. Their primary objectives are pro-
viding convincible proof of authorship with least degra-
dation of the quality of the intellectual property (IP),
and achieving robustness against attacks. These are
also well accepted as the most important criteria to
evaluate different IPP techniques. The essence of such
techniques is to limit the solution space by embedding
signatures as constraints. One key issue that should be
addressed but has not been discussed is thefairness
of the techniques: what is the quality of the solution
subspace for different signatures, that is, how large the
solution subspace is (uniqueness), and how difficulty it
is to get a solution from such subspace (hardness)? In
this paper, we introduce fairness as one of the metrics
for good IPP techniques and post the challenge prob-
lem of how to design fair watermarking techniques.
We claim that all fair techniques have to be instance-
oriented and due to the complexity of the problem it-
self, we propose an approach that utilizes the statisti-
cal information of the problem instance. We use the
satisfiability (SAT) problem as an example to illustrate
how fairness could be achieved. We make the obser-
vation that the unfairness of the previous watermark-
ing techniques comes from the global embedding of the
signature and propose fair watermarking techniques.
We test the uniqueness and hardness on a model with
full knowledge of the solution and real life benchmarks
as well. The experimental results show fairness can be
achieved.

1 Introduction

Recently, the watermarking-based technique for intel-
lectual property protection (IPP) was proposed [4]. The
key observation is that in real life, many CAD problems
can be reduced to (often NP-hard) optimization prob-
lems where there exist a huge amount of different so-
lutions of the same quality, and this results in different
design implementations for the system with the same
functionality. The watermarking-based techniques take
advantage of this by embedding the designer’s signa-

ture as additional design constraints and enforcing the
final design to satisfy these constraints. This essentially
makes the design rather unique and corresponds to the
designer’s signature which can be used as the proof of
authorship.

Qu et al. [7] extend this to protect decision prob-
lems (e.g., SAT) by introducing optimization-intensive
techniques. In these new methods, only part of the sig-
nature is selected and embedded, the selection is made
in such a way that both the uniqueness of the signature
and the likelihood of satisfying an instance of the SAT
problem are simultaneously maximized. This prevents
the signature-based constraints from changing a satisfi-
able problem to unsatisfiable.

The core idea of such IPP techniques is to cut the
solution space (e.g., different implementations of a sys-
tem, truth assignments to a SAT formula, etc.). With a
signature embedded as additional constraints, the solu-
tion space is divided into two parts based on whether
these extra constraints are satisfied or not. A water-
marked solution meets both the original and the addi-
tional constraints, and this fact is used to show the au-
thorship.

What is fairness and why it matters?
For a given watermarking technique, different signa-
tures will be interpreted as distinct constraints and thus
they will have very different impact on cutting the solu-
tion space of the initial problem. A watermark scheme
is fair if it divides the solution space into subspaces
of the same quality. The solution subspace’s quality is
measured by the quality of the solutions (how many,
how good, etc.) and the difficulty to find them.

Consider a formula over four variables in the stan-
dard CNF format[10]:
F = (v1+v03+v4)(v1+v04)(v2+v4)(v

0
2+v3+v04) (*)

F is satisfiable and has six truth assignments:
f(0; 1; 0; 0); (1; 0; 0; 1), (1; 0; 1; 1); (1; 1; 0; 0); (1; 1; 1; 0); (1; 1; 1; 1)g. (**)

For example, one of the watermarking methods in [7]
is to add new clauses. By adding a subset the following
clauses:
f(v1+v03)(v2+v3)(v1+v03)(v3+v4)(v

0
1+v03)(v3+v4)g

© 2000 IEEE ISBN 0-7803-5974-7

55

only certain truth assignments still satisfy the new for-
mula.

If clauses(v1 + v0

3
)(v2 + v3) or (v1 + v0

3
)(v3 + v4)

are added then there exist 4 and 5 truth assignments re-
spectively, while only(1; 0; 0; 1) meets the subset(v0

1
+

v0

3
)(v3 + v4) and there is no truth assignment to satisfy

subset(v0

1
+ v0

3
)(v2 + v3)(v3 + v4).

Now it becomes clear why we need fair watermark-
ing methods. In the above example, little or no extra
effort is needed to find a solution that satisfies(v1 +
v0

3
)(v2 + v3) or (v1 + v0

3
)(v3 + v4) in addition to the

original formula; however, it is relatively difficult to
find the solution that satisfies clauses(v0

1
+v0

3
)(v3+v4);

and it becomes impossible to solve the problem when
clauses(v0

1
+ v0

3
)(v2 + v3)(v3 + v4) are appended.

In this paper, we present how to develop fair water-
marking techniques. In particular, we claim that a fair
watermarking technique has to be instance-dependent
and we demonstrate this on the SAT problem by mod-
ifying the schemes in [7] so that fairness is possible.
We use two different approaches to test the fairness:
(1) solve the instances with different watermarks and
compare the average run time; (2) we develop a tech-
nique to create SAT instances that have exactlyk truth
assignments, then we count how many are still valid for
different watermarks. Both tests suggest that the modi-
fied watermarking techniques can provide fairness.

In the next section, we survey the previous effort on
watermarking-based IPP. Then we outline the general
design methodology for fair techniques. We apply this
in section 4 to the SAT problem and propose several
fair watermarking methods. In section 5, we report the
experimental results and finally we conclude by revis-
iting the role of fairness in the design of watermarking
techniques.

2 Related Work

The generic watermarking-based IPP techniques is pro-
posed in [4], where the entire signature is translated and
embedded as extra design constraints. The final im-
plementation satisfies both the initial and extra design
specifications. The authorship is proved by showing
that a randomly chosen solution has little chance to sat-
isfy the additional constraints. Although this approach
has been successfully applied to almost all stages of the
system design process, it protects the design as one en-
tity and fails to protect only the core parts. It is vulner-
able because the signature is interpreted as one huge
watermark, it has to meet all the constraints and can-
not be used to protect decision problems. The first two
problems are solved by putting multiple small water-
marks into the crucial parts of the design that need to be
protected [5]. For decision problems, the optimization-

intensive techniques [7] create constraints from the sig-
nature, select part of them to add into the initial prob-
lem.

Fairness is one of the fundamental issues whenever
there are multiple users who want to share certain com-
mon resources. For example, network connections shar-
ing the bandwidth in networking, programs sharing the
same processor and memory in operating systems and
multimedia applications, a group of participants in cryp-
tosystem sharing a secret. In our case, the solution
space of the original problem is the resource to be shared
by different users. Each user will provide his/her sig-
nature and then receive a share (solution subspace). As
we have seen from the previous section, it is important
to have fair watermarking schemes. Unfortunately, lit-
tle attention has been paid on the fairness of watermark-
ing intellectual properties. The optimization-intensive
approach [7] is the first (accidental) attempt which tries
to give each user a still satisfiable SAT instance.

3 Fairness in Intellectual Property Protection

We use the SAT problem as an example to discuss the
fairness in the context of intellectual property protec-
tion.

The goal of watermarking is to place marks into the
intellectual property for the purpose of identification of
authorship. Watermark-ing-based IPP techniques achieve
this by constraining the original SAT instance and then
showing that a resulting solution satisfies not only the
original instance, but also the additional constraints that
are related to the signature.

There are two issues we have to consider when de-
signing these techniques. First, we want to have a rather
unique solution that corresponds to the signature, where
the uniqueness is measured by the ratio ofthe number
of solutions for the watermarked instanceto the num-
ber of solutions for the initial instance. To provide a
solution with strong proof of the authorship, we want
to have as few solutions as possible after watermark-
ing. I.e., we need constraints that result in small solu-
tion subspace.

On the other hand, we have to be able to find at least
one solution. In general, the smaller the solution space,
the more difficult it is to find a solution [2, 8]. From
this point of view, we don’t want the solution subspace
to be too small. Clearly there is a trade-off here, tight
constraints give strong proof, but increase the difficulty
of solving the problem. In summary, an ideal water-
marking technique will create constraints from differ-
ent signatures which divide the solution space into sub-
spaces such that it is equi-difficult to find a solution in
each subspace and the found solution provides a proof
of authorship with the same level of strength.

56

The watermarking assumption [7] says that the SAT
instances are watermarkable if their solution space is
large enough to accommodate the watermarks. Such
instances belong to theeasy-to-solvecategory and usu-
ally can be solved in polynomial-time, despite the NP-
hardness of the SAT problem [2, 3]. However, mea-
suring the fairness is still a challenge. Needless to say,
enumerating all the solution to a SAT formula is hard
even if the original instance is easy to solve. This makes
it (almost) impossible to use the exact ratio of numbers
of solutions before and after watermarking (as men-
tioned above) as a metric for fairness. Furthermore,
the difficulties for finding different solutions are not the
same in general. For example, for formula (*)F =
(v1 + v0

3
+ v4)(v1 + v0

4
)(v2 + v4)(v

0

2
+ v3 + v0

4
) from

the Introduction section, it is much easier to find so-
lutions like (1; �; �; �) than find the solution(0; 1; 0; 0).
This suggests us that a weight in terms of difficulty-
to-get has to be assigned to each solution to accurately
measure the fairness.

In practice, we exploit the statistical information from
the SAT instance to approximate the fairness. Con-
sider a naive watermarking scheme: before we solve
the problem, we assign true/false to a subset of selected
variables and this selection encodes the signature. (This
is a special case of the “adding clauses” technique [7]
when we restrict all the new clauses to be single-literal-
clause.). If we pick variables and assign them values
randomly, in one case we may setv1 = 0 while in an-
other case we may havev1 = 1. As we have shown
before, this is not fair.

This scheme can be modified to avoid such extreme
unfair situations, although absolute fairness cannot be
guaranteed. Instead of selecting from all the variables,
we restrict ourselves to a subset of “well behaved” vari-
ables. For example, for each variable, we count how
many times it appears in the complementary form and
how many times as uncomplementary. Then we choose
variables which have roughly 50% chance to appear in
either form and use these variables to embed the signa-
ture. In the above formula, sincev1 never appears in
the complementary form, we will not select it as a can-
didate variable and the above unfairness cannot happen
again.

Of course, it is not enough to count only the number
of occurrence of variables. Bothv2 andv0

2
appear only

once in the above formula, however they cut the solu-
tion space differently: four solutions out of six have
v2 = 1 and only two withv2 = 0. This is because
v2 appears in a short clause(v2 + v4), comparing to
(v0

2
+ v3 + v0

4
), and short clauses are relatively hard to

satisfy.
A fair watermarking technique should be capable

of providing solution subspaces of the same quality to
different signature holders. There are two metrics to
measure the solution subspace’s quality: uniqueness
(which provides the proof of the signature) and hard-
ness (which shows how difficult to find a solution in
the subspace). Both metrics can be defined naturally
but are difficult to compute. Therefore, we use the sta-
tistical information of the problem instance to approx-
imate the fairness. In the next section, we discuss how
to make the watermarking techniques for SAT fair.

4 Fair Watermarking Techniques for SAT

Qu et al. [7] present several optimization-intensive tech-
niques to watermark the truth assignments to the SAT
problems. Their key observation is that it is not nec-
essary to embed the whole signature, as long as a con-
vincible proof can be provided. Considering that extra
constraints may change a satisfiable formula to unsat-
isfiable, they introduce objective functions which mea-
sure the likelihood of a formula to be satisfied. When
the signature is translated into constraints, only those
that have little impact on the problem’s satisfiability are
directly embedded. As for the rest of the constraints,
they are embedded after modification or simply dis-
carded.

4.1 Adding Clauses

Technique statement
This technique takes a binary message, translates it

into a set of clauses overn variables and append them
to the original formula. It fetches the first several bits
and determines the lengthl of first new clause, then get
the nextblog2 nc bits from the message and select a
proper variable to put in the clause, the form (comple-
mentary or not) of the variable is decided by the next
bit. This procedure continues until alll literals of the
first clause are set. Then it starts to build another new
clause until the message is completely embedded. The
uniqueness of the solution is provided by the fact that
it also satisfies the newly added clauses.

Why it is unfair?
As we have experienced earlier, a variable may have

different tendency to be true or false. The “adding
clauses” technique decides to put a variable into the
new clause as complementary or uncomplementary form
depending on one bit from the signature, thus for a ran-
dom message, any variable will have the same chance
to be picked and in either complementary or uncomple-
mentary form. For example, in formula (*), it is easy
to satisfy clauses withv1 than those withv0

1
. How-

ever,v1 andv0

1
have equal chance to be selected by this

technique as literal in the new clauses. This causes the
unfairness.

57

How to make it fair?
Since a fair watermarking technique has to be fair

to all possible signatures, we want to translate the sig-
natures into constraints that have the same strength on
constraining the original problem. This cannot be ac-
complished if we make our selection from all variables
and determine their forms solely from the signature.
We propose two modifications, both based on each vari-
able’s (or literal’s) statistical information in the SAT in-
stance.

(i) Pre-select a subset of variables that have equal
tendency to be assigned true or false and restrict the
“adding clauses” methods to only these variables, i.e.,
build new clauses using only the pre–selected variables.

(ii) The second modification treats the SAT problem
as a formula over literals (v and v0 for each variable
v), and create new clauses on a pre-selected subset of
literals that have the same probability to be true.

Clearly from above one can see that we cannot de-
termine the subset of variables/literals before the SAT
instance is given. In this sense, we say that any fair
watermarking technique has to be instance-oriented.

4.2 Deleting Literals

Technique statement
In this method, one of the literals in each clause

(except the single-literal clauses) is selected based on
the signature and deleted. Thus, the solution to the
watermarked formula will not take advantage of these
deleted literals, while they may be useful for other so-
lutions to the original formula, and this is the proof of
authorship. For example, let

F = (x2 + x0

6
+ x7)(x

0

1
+ x0

2
+ x0

3
+ x0

4
)

(x0

1 + x2 + x0

5 + x10)(x
0

1 + x0

3 + x7 + x8 + x0

9)

(x1 + x0

5 + x7)

(x0

1
+ x0

2
+ x3 + x4 + x6 + x0

7
+ x9 + x0

10
)

and we want to embed19992 = 11111001111. The
first clause has length 3 and we pick literalx0

6
based on

the firstblog2 3c bit(s), 1, from the message11111001111.
Similarly, we select literalsx0

4
; x10; x

0

1
; x0

5
andx9 from

the clauses inF , delete them and get a new formula:

F
0 = (x2 + x7)(x

0

1 + x0

2 + x0

3)

(x0

1
+ x2 + x0

5
)(x0

3
+ x7 + x8 + x0

9
)

(x1 + x7)(x
0

1 + x0

2 + x3 + x4 + x6 + x0

7 + x0

10)

Why it is unfair?
In one extreme case, if the formula hasv1(v

0

1
+ v2)

in it, deleting literalv0

1
does not change the original

formula at all, but deleting literalv2 makes this for-
mula unsatisfiable. The unfairness comes from the un-
balanced role that each literal plays in the same clause.

The elimination of a complementary literal has little
impact on the satisfiability of the formula if that vari-
able will receive a true assignment in most of the so-
lutions. This unfairness is inevitable if we select the
literals based on the random signature.

How to make it fair?
There is a simple way to make this scheme fair (Fig-

ure 1).

Input: a formulaF over variablesfx1; : : : ; xng,
and a messageM.

Output: a new formula derived fromF withM embedded.
Algorithm:
// watermark set-up:

for each literall, calculate its statistical informationSI(l);
for each clause, select two literalslk0 ; lk1 that have the

sameSI(l);
// watermark embedding:

letF 0 be an empty formula;
convertM to a binary stringS;
for each bitSk of S
f if (Sk == 0)

deletelk0 from thekth clause and append toF 0;
else deletelk1 from the clause and append toF 0;

g
report formulaF 0;

Figure 1: Pseudo code for watermarking SAT by delet-
ing literals.

Instead of picking from all literals in the clause, we pre-
select two which have the same importance from each
clause. Then we delete one of them to embed either a 0
or a 1.

Fair watermarking techniques are of particular inter-
esting for reallife problems. In most random SAT mod-
els [2, 3, 8], the random-ness implicitly suggests a nat-
ural fairness among variables/literals. For example, in
theJ(n; r; p) model [3], a formula consists ofn clauses
overr variables. A variablev is in thekth clause as an
uncomplementary literal with probabilityp, as a com-
plementary literal with probabilityp, and will not ap-
pear in this clause with probability1�2p. For this type
of formula, the modified fair watermarking techniques
produce relativly little additional fairness over the orig-
inal optimization-intensive techniques. However, for
formulas deriving from real-life problems, there are cer-
tain non-random relationships among the variables. Fair
watermarking techniques find such relationships, take
advantage of them and provide fairness.

5 Testbed and Experimental Results

We implement the proposed fair watermarking tech-
niques for the SAT problem and test their fairness using
two different approaches: (i) We create a model where
all the SAT instances have a known number of solu-
tions, then we translate different signatures into con-

58

straints and check how many solutions can make these
additional constraints true. This avoids the difficulty
of solving the SAT problems. (ii) We test the fairness
on a set of instances from DIMACS SAT benchmark
[9] usingWalkSAT [10] as the solver. In this case, we
estimate the fairness by comparing the runtime.

5.1 SAT Instances with Known Solutions
To get a full-knowledge of the solutions to a SAT in-
stance, we develop a SAT model, where each instance
has exactlyk known solutions. The creation of such
a formula consists of three phrases: solution selection;
elimination of non-solution assignments; fine tune-up
of the formula.

solution selection: Based on the requirement, selectk

truth assignments overn � dlog2 ke variables, we
call thesen variablescore variables. The require-
ments could be in any form, such as at least three
variables have to be true,v1 andv7 have to receive
the same value, etc.

elimination of non-solution assignments: There are2n

different assignments ton variables, since we need
a formula with exactlyk solutions, we have to
build the formula in such way to exclude all the
rest of the combinations. The basic technique to
do this is introducing new clauses. For example,
clause(v1+v2+v3+v4) over four variables elim-
inates the choicev1 = v2 = v3 = v4 = 0.

fine tune-up of the formula: The purpose of this step is
twofold: simplify the formula from the above step
by removing the redundancy, and increase the com-
plexity for solving the formula by introducing new
variables. The first goal is to express a formula us-
ing the fewest number of literals. Although there
are a lot research efforts on this issue, the two ba-
sic properties being used are:v+v0 = 1; v�v0 = 0.
When introducing new variables, it is crucial to
check that the new variables will not increase the
number of solutions. This requires that the new
variables will be either true or false in all thek
truth assignments and this is the reason we call
the previousn variables “core”.

Now we show how to create a formula with exactly
3 solutions. First we selectv1; v2 as two “core vari-
ables” and(0; 0); (0; 1); (1; 0) as three solutions. Then
we will add clauses to exclude the other choice(1; 1)
and one single clause(v0

1
+v0

2
) does this trick. Now we

have the formulaF = (v0

1
+ v0

2
) which has three so-

lutions exactly as we require. There is no redundancy
in F , however, all the solutions can be easily found.
We introducing a third variablev3 by appending clause
(v1 + v0

3
)(v2 + v0

3
) to F , which forcesv3 = 0 in all

the solutions. With the addition of(v3 + v4)(v
0

4
+ v5)

we get two more variables that both have to be true. Fi-
nally, to “confuse” the solvers we make more changes
and have a formula over five variables (we also reorder
the variables):

F = (v1 + v2)(v
0

1
+ v4)(v

0

2
+ v3)(v

0

2
+ v5)(v

0

3
+ v4)

(v0

3
+ v0

5
)(v1 + v0

4
+ v5)(v1 + v0

2
+ v0

3
)

It is non-trivial to claim now thatF has exactly three
truth assignments:(1; 0; 0; 1; 0); (1; 0; 1; 1; 0); (1; 0; 0; 1; 1):

5.2 Experimental Results
We report the experimental results on watermarking the
SAT instances from both our new model and the DI-
MACS SAT benchmark [9]. Experiments on the for-
mer measures exactly the uniqueness of the solution
subspace, this can be calculated efficiently because we
have complete knowledge of the solution space for for-
mulas created by our model. For the DIMACS bench-
mark, we solve the instance and use the runtime to es-
timate the hardness of each solution subspace.

Table 2 presents the results from fairly watermark-
ing formulas with known solutions by deleting literals.
We first create a formula with exactlyk solutions over
n variables, then we generate 100 random messages of
the same length and embed them into the original for-
mula. Finally we check how many solutions can meet
these additional constraints imposed by the signature.

number of number of short message long message
variables solutions max. avg. min. max. avg. min.

50 1,000 17 11 6 7 3 0
2,000 50 40 31 23 18 12
10,000 213 200 180 70 61 49
20,000 337 310 301 116 105 92
100,000 572 558 533 254 212 197

100 1,000 45 37 21 11 6 0
2,000 121 92 75 28 20 7
10,000 503 482 451 216 199 183
100,000 1034 993 970 508 492 450
200,000 3772 3755 3721 732 681 670

200 1,000 51 42 19 31 15 10
10,000 447 439 402 156 134 127
100,000 2073 2045 2007 715 689 677
200,000 3416 3409 3371 1287 1273 1250

1,000,000 21053 20086 19837 17655 17552 17486

Table 2: Watermarking formulas with known solutions
by deleting literals.max., avg., min.are the maximal,
average, and minimum number of solutions after wa-
termarking over the 100 trials.

In the fair “adding clauses” watermarking technique,
we create new clauses over a pre-selected variables or
literals. To demonstrate the different impacts of differ-
ent variables to the solution space, we do the follow-
ing experiments for the ii8*.cnf instances, which are
generated from the problem of inferring the logic in an
8-input, 1-output “blackbox”. For each instance, we
estimate statistically the tendency that a variable (v)
will be assigned either true (pv) or false (p

v
0). Then

we sort the variables byjpv � pv0 j, the unbalanceness

59

Instance r n clause length original best 5 best 10 best 20 best 30 best 40 best 50
ii8a1.cnf 66 186 2 � 3 0.29 0.12 0.16 0.11 - - -
ii8a2.cnf 180 800 2 � 6 0.14 0.20 0.18 0.22 12.93 11.77 12.58
ii8a3.cnf 264 1552 2 � 6 0.15 0.14 0.18 0.19 14.85 13.29 18.41
ii8a4.cnf 396 2798 2 � 6 0.20 0.23 0.22 0.23 0.24 0.36 0.47
ii8b1.cnf 336 2068 2 � 6 0.16 0.22 16.28 17.10 17.48 18.46 19.39
ii8b2.cnf 576 4088 2 � 6 0.24 0.28 22.73 24.21 24.28 26.72 31.05
ii8b3.cnf 816 6108 2 � 6 0.29 0.33 5.42 36.96 47.32 46.18 48.26
ii8b4.cnf 1068 8214 2 � 6 0.34 0.41 0.93 47.22 59.81 58.28 55.77
ii8c1.cnf 510 3065 2 � 10 0.20 0.13 0.20 0.17 10.66 13.65 17.26
ii8c2.cnf 950 6689 2 � 10 0.28 0.26 0.31 0.36 16.62 24.97 26.88

Table 1: Impact on the solution space by preset values to different variables. Problem instances are from DIMACS,
r is the number of variables,n is the number of clauses, original is the time to solve the original instance, besti is
the time for solving the instance wheni variable values are preset. All run time are inseconds.

that a variable will be true and false in the entire so-
lution space. The ideal choice is variablev such that
pv = pv0 . If we select 3�5 bad variable and preset
values to them, because all the instances have many
clauses of length 2, in almost all the cases, these bad se-
lections turn the problem to unsatisfiable. However, if
we make good choices, we can select fairly large num-
ber of variables, set their values and still be able to find
satisfiable assignments. Table 1 reports the results. (in-
stance ii8a1.cnf becomes unsatisfiable when we select
30 variables or more because of the small size of the
problem.).

6 Conclusions

We introduce the concept of fairness for watermarking-
based IPP techniques. The basic idea is to cut the solu-
tion space into small parts of the same quality accord-
ing to different signatures. The quality of the solution
subspace is measured by its uniqueness and hardness,
with the former provides proof of authorship and the
latter shows how difficult it is to find a solution. We
post the challenge problem of how to design fair water-
marking techniques. We argue that all fair techniques
should be instance-oriented, not depending only on the
problem. Due to the complexity of the problems, we
propose the approach that utilizes the statistical infor-
mation of the problem instance.

This is illustrated by the SAT problem. We explain
why the previous watermarking techniques [7] fail to
provide the fairness and propose modifications to have
better fairness. In the new proposed fair watermark-
ing techniques, the signatures are embedded on top of
a selected part of the problem instance which statisti-
cally gives better fairness. We use different approaches
to test the uniqueness and hardness, the two metrics
for fairness. For uniqueness, we generate models with
known solutions and then compute the size the solution
subspace created by different signature. For hardness,
we solve the fairly watermarked instance and use the

runtime as an estimation. The experimental result sug-
gest that the proposed fair watermarking techniques are
capable of providing fairness.

REFERENCES

[1] E. Charbon.Hierarchical Watermarking in IC Design.
IEEE 1998 Custom Integrated Circuits Conference,
pp. 295-298, 1998.

[2] P. Cheeseman, B. Kanefsky, and W.M. Taylor.Where
the Really Hard Problems Are.Twelveth International
Joint Conference on Artificial Intelligence, pp. 331-
337, 1991.

[3] J. Franco, and Y.C. Ho.Probabilistic Performance of
A Heuristic for the Satisfiability Problem.Discrete Ap-
plied Mathematics, Vol. 22, pp. 35-51, 1988.

[4] A.B. Kahng, J. Lach, W.H. Magione-Smith, S. Mantik,
I.L. Markov, M. Potkonjak, P. Tucker, H. Wang and
G. Wolfe. Watermarking Techniques for Intellectual
Property Protection.35th Design Automation Confer-
ence Proceedings, pp. 776-781, 1998.

[5] J. Lach, W.H. Mangione-Smith, and M. Potkonjak.
Robust FPGA Intellectual Property through Multiple
Small Watermarks.36th Design Automation Confer-
ence Proceedings, pp. 831-836, 1999.

[6] A.L. Oliveira. Robust Techniques for Watermarking
Sequential Circuit Designs.36th Design Automation
Conference Proceedings, pp. 837-842, 1999.

[7] G. Qu, J.L. Wong, and M. Potkonjak.Optimization-
Intensive Watermarking Techniques for Decision Prob-
lems.36th Design Automation Conference Proceed-
ings, pp. 33-36, 1999.

[8] B.Selman, H.Kautz, and D.McAllester.Ten Chal-
lenges in Propositional Reasoning and Search.Pro-
ceedings of the 15th International Joint Conference on
Artificial Intelligence (IJCAI-97) pp. 50-54, 1997.

[9] http://dimacs.rutgers.edu/

[10] http://aida.intellektik.informatik.th-
darmstadt.de/ hoos/SATLIB/

60

