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Abstract

We consider the asymptotic nonlinear filtering problem dz = f(z)dt +
Vedw, dy = h(z)dt + /edv, and obtain lim. ,qelog¢(z,t) = —W(z,t)
for unnormalised conditional densities ¢°(z,t) using PDE methods. Here,
W (z,t) is the value function for a deterministic optimal control problem
arising in Mortensen’s deterministic estimation, and is the unique viscosity
solution of a Hamilton—Jacobi-Bellman equation. Hijab has also studied
this filtering problem, and we extend his large deviation result for certain
unnormalised conditional measures. The resulting variational problem cor-
responds to the above control problem.



1 Introduction

An important problem in nonlinear system theory is the construction of
observers for control systems of the form

¢ = f(z,u), (1)
y = h(z).

Baras and Krishnaprasad [1] have proposed a method for constructing an
observer as a limit of nonlinear filters for a family of associated filtering
problems (3), parameterised by € > 0. More recent work in this direction is
presented in Baras, Bensoussan and James [2]. It is of interest then to study
the asymptotic behaviour of the corresponding unnormalised conditional
densities ¢¢(z,t) as ¢ — 0, via the Zakai equation (5). We obtain the

asymptotic formula .
qe(z’t) o e—;(W(z,t)+o(1)), (2)

as € — 0, where W (z,) is the value function corresponding to a determin-
istic optimal control problem, namely that arising in deterministic estima-
tion.

Hijab [10] has studied this asymptotic estimation problem, and obtained
a WKB expansion when W (z,t) is smooth. This identifies the limiting filter
as Mortensen’s deterministic or minimum energy estimator [13]. In addi-
tion, Hijab [11] has proved a large deviation principle for the conditional
measures for the filtering problem (3). We extend Hijab’s large deviation
result by allowing random initial conditions in (3), and observe that the
resulting variational problem (c.f. action functional ) is exactly the optimal
control problem mentioned above.

The asymptotic formula for the unnormalised conditional densities
(Theorem 5.1) and the large deviation principle for the unnormalised con-
ditional measures (Theorem 6.2) characterise the limiting filter in terms of
the deterministic estimator.

Our method is inspired by the work of Fleming and Mitter [6], and Evans
and Ishii [5]. A logarithmic transformation is applied to the robust form
of the Zakai equation, yielding a Hamilton—Jacobi equation in the limit. A
related Hamilton—Jacobi equation is interpreted as the Bellman equation
for the deterministic estimation optimal control problem, of which W (z,t)



is the unique viscosity solution. In particular, W (z,t) is not assumed to be
smooth.
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2 Problem Formulation

We consider a family of diffusion processes in JR™ with real valued obser-
vations:

dzf(t) = f(zf(¢))dt + Vedw(t), z°(0) = =z, (3)
dy*(t) = h(z*(t))dt + Vedv(t), y°(0) = O.

Here w, v are independent Wiener processes independent of the initial
conditions z§, which have (unnormalised) densities

gi(z) = Cee o5 (4)

where lim,_,gelogC. = 0 and Sy > O is smooth and bounded. As ¢ — 0
the trajectories of (3) converge in probability to the trajectory of a corre-
sponding deterministic system.

The Zakai equation for an unnormalised conditional density ¢¢(z,t) is

* € 1 € €
d¢t(z,t) = Al¢(z,t) + Eh(:z:)q (z,t)dy(t), (5)
¢“(2,0) = g5(z),
where A} is the formal adjoint of the diffusion operator
€ X 07 n 0
Ao = 5;:9?,2 +'z:fi(x)3x,-.

i—1

We assume throughout the following: f,h are bounded C* functions
with bounded derivatives of orders 1 and 2. Defining

(@0 = e (- Or) (@1, ©



the robust form of the Zakai equation is
€ € € € € 1 € €
2 p(z,t) — EAp (z,t) + Dp(z,t)g%(z,t) + ZV (z,t)p*(z,0) =0, (7)

pe(x’ t) = qg("”),
where

g‘(z,t) = f(z) —y(t)Dh(z)’, (8)

Ve(z,t) = %h(x)z + y(t)Ach(z) (9)

—5u(t) | Dh(z) [ + ediv (/(2) - () Dh(z)) .

Note that (7) is a linear parabolic PDE and the coefficient V¢ de-
pends on the observation path ¢t — y(t). We shall omit the e-dependence
of y, and view (7) as a functional of the observation path y € Qp =
C(]0,T], R™; y(0) = 0). This transformation provides a convenient choice
of a version of the conditional density, and under our assumptions we can
recover the unnormalised density ¢¢(z,t) from solutions of (7); see for ex-
ample Pardoux [14].

Following Fleming and Mitter [6], who considered filtering problems
with € = 1, we apply the logarithmic transformation

S¢(z,t) = —elogp®(z,t). (10)
Then S¢(z,t) satisfies
2.5%(z,t) — %AS‘(z,t) + H(z,t, DS(z,t)) =0, (11)

S¢(z,0) = So(z),
where .
He(z,t,A) = Agé(z,t) + 2 P |2 —V¢(z,t). (12)

Equation (11) is a nonlinear parabolic PDE, which can be interpreted as
the Bellman equation for a stochastic control problem [6].
Formally letting ¢ — 0 we obtain a Hamilton-Jacobi equation

2 5(z,t) + H(z,t,D8(z,t)) = O, (13)
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S(z,0) = So(z),
where )
H(z,t,A) = Ago(z,t) + 5 | AP —V(z,t), (14)

90(z,t) = f(z) — y(t) Dh(s)' (15)
Viz0) = sh(z) +y()Dh(=)(z) ~ () | Dh(=) . (16)

Note that ¢g¢ — go, V¢ — V, and H¢ — H uniformly on compact subsets.
We shall interpret solutions of (13) in the viscosity sense. If we define

W(z,t) = S(z,t) —y(t)h(z), y € Qo, (17)

then, for y € Qo N C!, W(z,t) satisfies a Hamilton—Jacobi equation, which
in Section 3 is presented as the Bellman equation for the deterministic
estimation control problem.

Our main task is to prove that S¢ — S as € — 0 uniformly on compact
subsets. From this the asymptotic formula (2) will follow (Theorem 5.1).

3 Deterministic Estimation

We begin by reviewing Mortensen’s method [13], [10] of deterministic min-
imum energy estimation.

Given an observation record Y; = {y(s), 0 <s <t}, 0 <t < T, of the
deterministic system

z = f(z) + u, z(0) = =, (18)
y = h(z) + v, y(0) =0,

we wish to estimate the state at time ¢, the initial condition zy being un-
known. Define

~

1 rt

Ji(zo,u,v) = So(zo) + —2~/(; (| u(s) | +v(s)2) ds. (19)
A minimum energy input triple (zf, u*,v*) given Y; is a triple that minimises
J; subject to the constraint that the trajectory of (18) produces the output
Y. By replacing v(s) by §(s) — k(z(s)) in (19) and omitting the §(s)* term,
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we can formulate an equivalent unconstrained optimal control problem.
Define

Ji(zo,u) = So(zo) —|—/0tL(:z:(s),u(s),s)ds, (20)
where
L(z,u,9) = 5 |ul + Sh(z)? ~ §(s)h(a) (21)

We now minimise J; over pairs (zo,u). The deterministic or minimum
energy estimate Z(t) given Y, is defined to be the endpoint of the optimal
trajectory s — z*(s), 0 < s <t, corresponding to a minimum energy pair
(z5,u*) : () = z*(t).

Next, we use dynamic programming to study this problem. The controls
t — u(t) take values u € U = IR", and are square integrable. Given such a
control, let z,, denote the corresponding trajectory (given a specified initial
condition). Following the general scheme presented in Fleming and Rishel
[7], define a class of admissible pairs (zo,u) by

Use = {(zo,u) : z4(0) = o, zu(t) = z}; (22)

that is, pairs for which the corresponding trajectory passes through a spec-
ified point z at time ¢t. Define a value function

W(z,t) = (o0 ui)nef ‘. Ji(zo,u). (23)

Note that this is a reversal of the standard set—up of dynamic programming
[7]. By using standard methods, we see that W (z,t) is continuous and
formally satisfies the Bellman equation

2W (z,t) + H(z,t,DW(z,t)) = 0, (24)

W(z,0) = So(z),

where
H(z,t,)) = max {\(f(z) + u) — L(z,u,t)}. (25)

W (z,t) is the minimum value (if it is attained) of J; subject to the end
point condition z,(t) = z. To obtain £(t), one minimises W (z,t) over z:

W(z(t),t) < W(z,t) for all z € R". (26)



Notice that the definition (23) for W (z,¢) makes sense for y € 3o N C*.
We can directly interpret (13) as the Bellman equation of another optimal
control problem (see (40)—(42) below), with S(z,t) as its value function.
This makes sense for all y € Q, since ¢ does not appear. Thus defining
W(z,t) by (17) is valid for any y € Qo. If y € 3o N C?, these definitions
coincide.

Now we prove that W (z,t) is the unique viscosity solution of the
Hamilton-Jacobi-Bellman equation (24). Our assumptions imply that f
is a complete vector field. Therefore U,: # @ for all z € R*, 0 <t < T,
and consequently W(z,t) < oco. We do not assume existence of optimal
controls.

The following definition is taken from Crandall, Evans and Lions [4].
Write C = C(IR" x (0,T), IR), and similarly for C.

Definition Let W € C. We say that W is a viscosity subsolution of (24)
provided that for all ¢ € C! the following property holds:
if W — ¢ attains a local mazimum at a point (z,t), then

2 4(z,t) + H(z,t,Dé(z,t)) < O. (27)

We say that W 1s a viscosity supersolution of (24) provided that for all
¢ € C1 the following property holds:
if W — ¢ attains a local minimum at a point (z,t), then

26(z,t) + H(z,t,Dé(z,t)) 2 0. (28)

If W is both a viscosity subslution and supersolution, we say that W is a
viscosity solution of (24).

Lemma 3.1 (Principle of Optimality) Let 0 < t; < t; < t, and choose
(Io,u) € Uz,t- Then
t2
W (zu(tz),t2) < W(zu(ts),t1) + L(zyu(s),u(s), s)ds. (29)

t1

Proof: Let (Zo,%) € Uz, (t,)t,- Define



Then @ € Ug,(s,),:,, and hence

31
W (za(t),ts) < So(Fo) + /0 L(za(s), (s), s)ds
[
+ | L(zy(s),u(s),s)ds.
t
Taking the infimum of the right hand side over (%, %) € Uy ()5, We obtain

(29). O

Fix (z,t) and choose v > W(z,t). Define
U;:Y,t = {(anu) S uz,t . Jt(xO, u) < '7},
B, = {eR" :|z—-2' |<¢€}.

Lemma 3.2 Fiz € > 0. Then there exists n > 0 such that if (zo,u) € U],
then z,(t — h) € Be for all0 < h < 7.

Proof: Note that z,(t) = z € B,. Define
ne = sup{h >0 : z.(s) € B, for all s € [t — h,t]}.
Then | z,(t — n,) — z |= €. Let

= inf .
" (s0,u) € U7, T

We want to show that n > 0. Suppose not; n = 0. Then there is a sequence
(zp,u") € U], with n,, — 0 as n — co. Write z, = z,,, etc.

Now f is continuous, so there is a constant K > 0 such that | f(z') |[< K
for all ' € B,.. Then

0<e€e = |z—zu(t—7n) |
< [ (1 f(ae) |+ [ uals) D ds
< Knn, + t-t-nn | un(s) | ds
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Choose Ny > 0 such that n > Nj implies Kn,, < ¢/2. Then

t
0 < ¢/2 < | un(s) | ds for n > Nq.
t—nn
(Note that if U is bounded, then the lemma follows from this inequality.)
Next, since (z,u") € U7, it follows that

t
/t lu(s) [Fds < .

et/ 1
Then
t
0 < ¢/2 < / | un(s) | ds
t

—n

< V77, for n > No,

using the Cauchy-Schwarz inequality, which is impossible since /5, — 0.
Consequently n > 0 proving the lemma. O

Theorem 3.1 The value function W(z,t) defined by (23) is the unique
viscosity solution of the Hamilton-Jacobi-Bellman equation (24).

Proof: First we show that W (z,t) is a viscosity subsolution. Let ¢ € C*
and suppose that W — ¢ attains a local maximum at (z,t). Then there
exists € > 0 such that

W (z,t) — ¢(z,t) > W(,¢t') — ¢(,¢') (30)
forallz' € B, |t —t' |[< e
Choose a constant control u(s) = u € U. There is an zo such that

(20,u) € Uy Choose 0 < & < e such that z,(s) € B, for |t — s [< 6. Set
t'=t—s, ' = z4(t'). Select (zf,u') € Uy p and define

oy Ju(s) 0<s<t
Mﬁ—{ v H<s<t.

The Principle of Optimality (29) implies
t

W(z,t) < W(za(t —h),t —h)+ - L(za(s),4(s),s)ds. (31)



If 0 < h < 6, then (30) gives
W(z,t) — ¢(z,t) > W(za(t — h),t — h) — (za(t — h),t —h).  (32)

Combining (31) and (32) we obtain

$(zalt - h),t_; h) — ¢(=,t) ;L/tihL(xa(s),a(s),s)ds <o.

Letting h — 0 we have
2 ¢(z,t) + Dé(z,t) (f(z) +u) — L(z,u,t) <O0.

But this holds for all v € U, hence (27) and so W(z,t) is a subsolution of
(24).

To see that W (x,t) is a viscosity supersolution, let ¢ € C! and suppose
that W — ¢ attains a local minimum at (z,t). Then there exists an € > 0
such that

W (z,t) — ¢(z,t) < W(2',t'") - ¢(',¢',) (33)

forallz'€ B, |t' -t |[<e.
Suppose, contrary to (28), that there exists a § > 0 such that

2 ¢(z,t) + H(z,t, D (z,t)) < —0 < 0.
By continuity, reducing € > 0 if necessary,
2o(',t") + t.'fnea)l(]{DqS(x',t') (f(z') +u) = L(z',u,t")} < —0 <0 (34)

for all z' € B, |t —t' |< €. Let y > W(z,t) and let n be given as in Lemma
3.2. By the Principle of Optimality (29) we have

W(z,t) = inf _ {W(zu(t—h),t—h)+ /tihL(:z:u(s),u(s),s)ds}. (35)

(zo,u) € u:,t

Let 0 < h < n A€, and choose (zo,u) € U7 ; such that

W (zu(t — h),t — h) + /:hL(xu(s),u(s),s)ds < W(z,t) + % (36)



Since z,(t — h) € B, we have from (33)
W(zu(t — h),t — h) — ¢(zu(t — h),t —h) > W(z,t) — ¢{z,t).  (37)
Combining (36) and (37) we have
0 < é(zu(t — h),t — h)
2 - —h
However, for t — h < s <, z4(s) € Be and |t — s |< ¢, so from (34) we

have

3:9(2u(s), 8) + D(zu(s), s) (£ (zu(s)) + u(s)) — L(zu(s), u(s),s) < —o.
Integrating, we obtain

é(z,t) — d(zu(t —
h

But (38) and (39) contradict each other, so we must have § < 0; proving
(28). Thus W (z,t) is a supersolution of (24).

The uniqueness assertion follows from Ishii [12], Theorem 1. In fact,
since Sp(z) is uniformly continuous, it follows that W (z,t) is also uniformly
continuous. [

—¢(z,t) %/tih L(zy(s),u(s),s)ds. (38)

M) L L ule))ds < —0. ()

Finally we state an optimal control problem for which S(z,t) is the
value function. Consider the dynamics

£ = go(z,s) +u, z(0)= xzo. (40)
We wish to minimise
tr1
L(zo,u) = So(zo) + [ (5 1u(s) P +V(2uls),9)) ds.  (41)
Denote by %;; the corresponding class of admissible pairs (zo,u). Define
= i . 42
S(z,t) (zo,u.l)n£ - I(zo, u) (42)

The above arguements can be used to prove the following.

Theorem 3.2 The value function S(z,t) defined by (42) is the unique
viscosity solution of the Hamilton-Jacobi equation (13).

10



4 Some Estimates

Let S¢(z,t) be the solution of (11). In this section we obtain estimates
for | S¢ | and | DS¢ | on compact subsets independent of the parameter e.
These estimates will be used in Section 5 to prove that S¢ — S.

Theorem 4.1 For every compact subset @ C IR™ X [0,T], there exists
€0 > 0 and K > 0 such that for 0 < € < ¢; we have

| S¢(z,t) | < K, forall (z,t) € Q, (43)
| DS¢(z,t) | < K, for all (z,t) € Q. (44)

To prove (43), we use a comparison theorem which depends on the
maximum principle for linear parabolic PDE. Let Bgp C IR™ denote the
closed ball centred at 0 with radius R > 0, write I'r = Bgx{0}UdBgx[0,T)
and define Qr = Bg X [0,T], denoting by Q% its interior.

Lemma 4.1 (Maximum Principle, Friedman [10]) Define

Lw = 2w- %Aw+ow‘,

where b 1s smooth. If Lw <0 (Lw > 0) in Q%, then

w(zr,t) < sup w(z,s) ( inf  w(z,s) < w(:c,t))
(2,8) € Tgr (z8) € Tr

for all (z,t) € Qk.

Lemma 4.2 (Comparison Theorem) Let S¢ be a solution of (11), and
define

~

1
Lv = 2Zv-— %Av—{—Dng—%— 2 | Dv |* ~V©.

Let w=v— S If Lv>0 (ﬁvSO) in Q%, and if S¢ < v (v < 5% on g,
then S¢ <wv (v < S¢) in Q%.

11



Proof: If fv > 0, then
) € 1 2 2
é—tw———iAw+Dwg€+§(| DS¢ |* — | Dv | ) > 0.
Now | DS¢ | — | Dv |*= Dw (Dv + DS¢)'. Set
1
be = g€—|—§(D’U+DS€)

Then Lw > 0 and on T'g, w(z,s) > 0. Hence w(z,t) > 0 for all (z,t) € Qg
by Lemma 5.1 O

Proof of Theorem 4.1: We now construct a function v such that £v >0

in Q% and S¢ < v on I'g, independent of (sufficiently small) € > 0 (Evans-
Ishii [5]). Define

+ ut + M, (45)

where the constants p > 0, M > 0 are to be chosen.
We write v; for v,,, etc. Then '

ﬁvzu—5<( o, Sl )

2\ =Tz (e 2 )
+§ (R22_g€|’2i|2)2 (R22—| rflzy -V
> pu—€eC <(R2——1|13 2)? + (R21—| rizlz)‘”‘)
2
> 0in Q%,

for all small € > 0, provided p is chosen sufficiently large. Choose M so
large that
So(z) < M for all z € Bp.

Now v(z,t) — oo as | z |~ R uniformly in ¢ € [0,7T7], hence
S¢ < vin QY,

12



and since v is continuous in Q%, there is a constant K > 0 depending on R
such that
S¢(z,t) < K for all (z,t) € Qg/a,

for all sufficiently small € > 0.

Similarly we can find a lower bound for S¢ on Qg/;.

Next we estimate the gradient, using a variant of the techniques used
in Evans and Ishii [5], as suggested by Evans. To simplify the notation we
write v = §¢, which from (11) satisfies

1 .
vt %'Uit‘ + Uit vugtt -V =0, (46)

where we have used the summation convention. Let Q CcC Q' cC IR™ x
(0,T), where Q, Q' are open and “CC” means “compactly contained in”.
Choose ¢ such that ¢ =1 on @ and ¢ = 0 near 9Q', and define

2 = §2'vk’l)z —Av (47)

where the constant A > 0 is to be chosen.
Suppose that z attains its maximum over Q' at (zo,%) € @'. Then we
have
z = 0Oand (48)

0 < z— %z,-zi (49)
at the point (zo,%0). Then at this point, using (49),

0 < 2¢¢upvg + 2¢2vEvr — Ay
—€GiGiVEVE — €CCGUEVE — 4€SG VR Vks

€
2 2
— € Vi Vhi — €¢" VgVhii + EAvii

IA

—eC¢® | D’ | +2¢%v; ('Ut — gvz‘i)
k
+ (—vt + %v;,-) +C | Do |?
for € sufficiently small. Using (46) we find that

0 < —u (§2vivi)k ~ g% (s‘2vkvk) + %vivi +C¢|Dv P

t

+C | Dv |* +AC | Dv | +AC.

13



This together with (48) implies

A
E1Dv|23 C¢ | Dv [ +C | Dv [ +AC | Dv | +AC.

Let
A = plmax¢ | Dv | +1]

Then
¢|Dv [® < | Dv | [max¢ | Dv | +1],

and from (50),
g—le|2§ C | Dv |* +CAp.

Choosing u so large that p/4 < u/2 — C, we have from (52)
| Dv | < CX at (zo,t0).

This implies
z < Chin Q'.

If it happened that (zo,t0) € 3Q', then
z = —dv < CX at (zo,t0),
and this also implies (54). But from (54),
max¢? | Dv | < maxz+ CA < C),
and using the definition (51) we have
max¢? | Dv |* < Cpfmax¢ | Dv | +1]

which implies

¢|Dv|<Cing,

and hence
| Dv| < Cin Q.

This completes the proof of Theorem 4.1. O

14
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5 Main Result

We are now in a position to state and prove our main result.

Theorem 5.1 Under the above assumptions, we have
li_r'r(}elog ¢*(z,t) = —W(z,?) (55)

uniformly on compact subsets of R™ x [0,T], where W (z,t) is defined by
(17).

Proof: From Theorem 4.1 and the Arzela—Ascoli theorem, there is a sub-
sequence €, — 0 such that S converges uniformly on compact subsets to
a continuous function S. By the “vanishing viscosity” theorem, Crandall
and Lions [3], S is a viscosity solution of (13). By uniqueness, Theorem
3.2, S=8.In fact, S¢ —» S as ¢ — 0.

From this we have

lim elog ¢(z,t) = —(S(z,t) — y(t)h(z))

uniformly on compact subsets, for y € lp. Using the definition (17) of
W (z,t) completes the proof. O

6 Large Deviations

We have seen that the optimal control problem associated with determin-
istic estimation plays a key role in studying the asymptotics of the Zakai
equation (5). In this section we shall see that this control problem is exactly
the variational problem arising in a large deviation principle for certain con-
ditional measures.

We begin by reviewing the results in Hijab [11]. Fix zo and consider
the stochastic differential equation (3), with initial condition z§ = zo for
all € > 0. Let Qi\(u.zo) be an unnormalised conditional measure on Q" =
C([0,T},IR") of z* given y € 1y and the initial condition zo. As in Section
3, given a control t — u(t), let z, denote the corresponding trajectory of
(18). Hijab [11] proved the following.

15



Theorem 6.1 For any open subset O and any closed subset C of 7,

lireriionf elog Q¢ (0) > —I(zo0,y,0)

z|(y,z0)

Iimsoup €logQ})(y,20)(C) < —I(zo,y,C)

where for A C ",

I(zo,y,4) = inf {% /OT (| u(s) |* —i—h(zu(s))2) ds (56)

_/OTh(xu(s))dy(s) | £,(0) = zo, x4 € Jq},

with the understanding that the infimum over an empty set is infinite.

Now let the initial conditions of (3) be random with unnormalised den-
sity defined by (4). Let ino)lu be an unnormalised joint conditional mea-
sure of (z¢,z§) on Q" X IR™ given y € Q.

Theorem 6.2 For any open subset O and any closed subset C of 1", and
for any open subset Oy and any closed bounded subset Co of IR", we have

1i£i()11f610g Qlz,20)ly (0 x0¢) > —J(O x 0o,y) (57)
limsup elog Q{, )y (€ X Co) < —J(C X Co,y) (58)
e—0

where for A X A, C Q" x IR",

J(A X Aoyy) = z(i)Ielgo{S’o(:zzo) + I(zo,y,4A)}. (59)

To prove this theorem we employ the following version of Laplace’s
asymptotic method, adapted from Freidlin and Wentzell [8].
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Lemma 6.1 Let f: IR™ — IR be Borel measurable, bounded below, and let
C. be a family of positive real numbers such that lim._oelog C. = 0. Then
for any Borel subset A and any bounded Borel subset B of IR™ we have

.. 1 .

llrgl’})nfelog ) C. exp <———E-f(:1:)) dr > — zue1fA f(z), (60)
1

. 1 < _

111:1_.s0up610g i C. exp ( 6f(:r:)) dr < zHElfB f(z). (61)

Proof: Let m = infyes f(z). If m = oo, the result is clear; so assume
m < oco. For any 6 > 0 define

As = {z€A: f(z)<m+86, |z|< R},

where R is chosen large enough to ensure As # 0. Then A; is a bounded
Borel subset of A, and

/ Ccexp (—lf(z)> dr > C.exp (———1—(m + 5)) dz
A € As €

> K;C.exp (—%(m + 5)) ,
and hence

lim inf €log ACeexp (——%f(x)) dz > —(m+96).

This holds for all 6 > 0, hence (60) follows.
Next, write m = inf cp and assume m < co. Then

/BCGexp (—%f(:v)) dr < /BC'ts exp (-%m) dz,

from which (61) follows. O

Proof of Theorem 6.2: From Theorem 6.1, for any 6 > 0 there exists
€0 > 0 such that for 0 < € < ¢,

Qsl(.z0) (O) = exp (——i— (I(zo0,y,0) + 6)) .
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Then
ety (0% 00) = [ @0, (0) (o)

1
> . C. exp (_E (So(zo) + I(zo0,y,0) + 5)) dzo.

Applying (60) we have

lim inf € log Q{, 4y, (O X O0) > —J(0 X Oo,y) — 6.

However, § > 0 was arbitrary; hence (57).
The estimate (58) follows from

clwzo) (C) < exp (—%(I(xo’y’ - 5)>

for € sufficiently small, using (61). O

Note that the variational problem (59) corresponds to the optimal con-
trol problem (18)—(23) discussed in Section 3. Theorem 6.2 implies that
the limiting measure is concentrated on the optimal initial condition zj
and optimal trajectory z*(s), 0 <s<T.
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