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Polymer capsules and beads can be easily created by combining either two oppositely 

charged polymers or one polymer and a multivalent salt. These structures have been 

mainly investigated until now for their controlled release properties. Here, we study the 

ability to impart new functionalities to capsules by embedding a second kind of colloidal 

or nano-structure in their interior. Three different concepts are explored in this regard. 

First, we demonstrate capsules that are responsive to pH. For this purpose, we entrap 

vesicles made from a diacetylene surfactant in chitosan capsules. The resulting capsules 

change their color blue blue to red as the pH of the solution is increased. The next 

concept involves capsules with the ability to sense and separate cations from solution. In 

this case, nanoscale particles of synthetic clay (laponite) are localized in alginate beads. 

The resulting hybrid beads can effectively separate a cationic dye from a mixture of 

cationic and anionic dyes. The third concept involves linking of magnetic chitosan-

gelatin capsules in a chain to create an artificial earthworm, i.e., a structure that can  

undergo guided motion in a fluid environment under an external magnetic field.    
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Chapter 1: INTRODUCTION & OVERVIEW 
 

         This thesis revolves around the theme of capsules. Capsules are spherical 

structures with a thin shell enclosing a solvent-filled interior. In particular, our main 

interest will be on polymer capsules, where the shell is composed of a single polymer or a 

mixture of polymers. Such capsules ranging in size from a few microns to several 

millimeters can be prepared by several methods. Chapter 2 gives a detailed description of 

capsule preparation and structure. 

 

Traditionally, capsules have been investigated from the point of view of 

controlled release and drug delivery. That is, small molecules are encapsulated within the 

capsule (the shell protects the molecules against various environmental factors) and these 

molecules are then slowly released from the capsule at a controlled rate. Indeed, 

controlled release from capsules has also been an ongoing aspect of investigation within 

our laboratory. However, the focus of this thesis is not on controlled release but instead 

on the range of other functionalities that can be imparted to capsules. Recent work in our 

laboratory has shown that a variety of colloidal or nanoscale structures, including vesicles 

and nanoparticles, can be encapsulated quite easily in the interior of polymer capsules 

and beads. The goals for this thesis are to exploit this ability to alter the capsule 

nanostructure as a way to impart new functionalities to the capsules. We thus view 

capsules from a different viewpoint – not simply as containers that deliver an 

encapsulated drug or molecule, but as a platform for a variety of applications.  
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It is worth reiterating the key aspects of our approach. Consider colloidal 

structures having a given property or function. By encapsulating these structures within a 

polymer capsule, we ensure that they remain localized – i.e., the colloids are too big to be 

able to diffuse through the capsule shell into the external fluid. At the same time, the 

properties or functionalities of the colloids are also imparted to the hybrid capsules. This 

idea will be explored by means of three separate studies as part of this thesis:   

 (a) Vesicle-Loaded Capsules with pH-Responsive Properties 

 (b) Nanoclay-Loaded Beads with Ion-Sensing Capabilities 

 (c) Magnetic Particle-Filled Capsules as a Way to Create Artificial Earthworms  

 

 

FIGURE 1.1. Schematics of the three types of hybrid systems studied: (a) vesicle-loaded 
capsules with pH-sensitive properties; (b) nanoclay-loaded beads with the ability to sense and 
separate cations; and (c) artificial earthworms based on capsules loaded with magnetic particles. 
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Figure 1.1 shows photographs representing the three concepts explored in this 

thesis. First, pH-responsive capsules are shown in Figure 1.1a the capsules exhibit 

different colors depending on the pH of the external fluid. This ability to respond to pH is 

conferred to the capsules by entrapping a certain kind of vesicles in them. The vesicles 

are made from a diacetylene surfactant and undergo a chromatic transition in response to 

pH. We will show that this pH-responsive behavior is retained when the vesicles are 

localized within capsules. Interestingly, the use of capsules offers certain advantages for 

pH sensing (in terms of stability) compared to the use of vesicle solutions.  

 

The next set of photographs, shown in Figure 1.1b demonstrate ion-sensing beads. 

Here, nanoscale particles of a synthetic clay (laponite) are localized in polymer beads. 

The laponite particles have a strong affinity for cationic species over anionic ones. This 

property is conferred to the beads, which can thus be used for sensing and separating a 

cationic dye from a solution (this can be done selectively from a mixture of cationic and 

anionic dyes as well). Here again, the use of beads is much more convenient than the 

direct use of laponite particles because the particles tend to aggregate in solution.  

 

Finally, Figure 1.1c shows a chain of magnetic capsules, which together represent 

an artificial earthworm. This is an effort to create a biomimetic structure out of polymer 

capsules. Individual capsules, each filled with magnetic nanoparticles, are chemically 

fused together. The resulting “earthworm” can undergo guided motion through the use of 

a magnetic field. Note that the concentration of magnetic particles is low enough that we 

can easily match the density of the earthworm with its surrounding fluid. That is, the 
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earthworm floats in the fluid, but when required it can be made to “swim” to its final 

location. Such a design may have uses in terms of understanding the locomotion of small 

worms and other animals. The same design can be easily implemented with smaller 

structures, and such miniature earthworms could be useful in microfluidic devices or 

even in certain medical applications.          
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Chapter 2: BACKGROUND 
 

In this chapter, we discuss basic aspects pertaining to the components of the hybrid 

capsules and beads to be studied in Chapter 3. The main components are the biopolymers, 

chitosan, gelatin, and alginate and the structures we will place inside the capsules/beads 

include vesicles, clay nanoparticles and magnetic nanoparticles. Thereafter, we provide a 

brief description of the formation of capsules and beads. We then briefly describe the 

techniques to be used in this study, specifically UV-Vis spectroscopy.   

 

2.1. BIOPOLYMERS 

Macromolecules of biological origin fall broadly under three classes: polypeptides 

or proteins; polynucleotides; and polysaccharides.1 For the purposes of this study, we will 

focus on biopolymers that have the ability to render viscosity to water by forming 

entangled networks or gels. These include chitosan, gelatin, and alginate which are each 

discussed in more detail below. Other water-soluble polysaccharides of interest include 

xanthan gum, gellan gum, guar gum, locust bean gum and gum arabic.  

        

Chitosan 

Chitosan is a linear polysaccharide obtained by the deacetylation of chitin.2 

Chitin, in turn, is a natural polysaccharide that constitutes the hard exterior shell of 

insects and crustaceans. Among biological polymers, chitin is next only to cellulose in 

abundance. However, while chitin is insoluble in water, its deacetylated derivative, 

chitosan, is water-soluble under acidic conditions (pH < 6.5). Under these conditions, the 
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amine groups along the chitosan backbone are ionized and chitosan acts as a cationic 

polyelectrolyte.  Note that chitosan is strictly a copolymer of mostly D-glucosamine (β-

(1, 4)-2-deoxy-2-amino-D-glucopyranose) sugars and a small fraction of the N-acetyl-D-

glucosamine (β- (1, 4)-2-deoxy-2-acetamido-D-glucopyranose) sugars from the parent 

chitin. The structures of these sugars are shown in Figure 2.1. 

 

 

 

 

 

 

 

 
Figure 2.1. Structures of the parent sugars in (a) chitin and (b) chitosan. The N-acetyl-D-
glucosamine sugar in chitin is deacetylated to give the D-glucosamine sugar in chitosan. 
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Gelatin 

Gelatin is produced by partial hydrolysis of the protein, collagen, which is 

extracted from the bones and connective tissues of animals such as cattle, pigs and 

horses. When gelatin is added as a powder to water and heated, it forms a solution of 

moderate viscosity. This solution sets to form an elastic gel upon cooling. The same triple 

helical Gly-X-Y domains abundant in collagen fibers (typically X = proline and Y = 

hydroxyproline), also form the physical crosslinks in the gel.3  The gel melts when heated 

above a characteristic temperature of 32°C and this melting transition is reversible. It 

should be noted that gelatin under ambient conditions is weakly anionic. At higher pH, 

however, gelatin is strongly anionic.  
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Alginate  

Sodium alginate is linear, unbranched polysaccharide composed of 1,4-linked β-

D-mannuronic (M) and α-L-guluronic (G) residues (Figure 2.2a). It is extracted from the 

cell walls of marine brown algae (Phaeophyta). In water, alginate chains can be ionically 

crosslinked by divalent cations (e.g. Ca2+, Ba2+, Sr2+) to form a gel.4 The crosslinking 

occurs via the exchange of monovalent Na+ ions on G residues with the divalent cations 

(Figure 2.2b). This is a co-operative process, with several divalent ions occupying 

cavities between adjacent chains (like eggs in an egg-box)5 (Figure 2.2c). Note that 

alginate gels are irreversible and stable to heat.  
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Figure 2.2.  (a) Structure of β-D-mannuronic (M) and (b) α-L-guluronic (G) residues in a 
sodium alginate polymer. (b) The ionic coordination of G residues with divalent Ca2+ is 
indicated. (c) Structure of alginate-Ca2+ gels as per the “egg-box” model, which involves 
co-operative binding of  the ions to adjacent chains.11  
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2.2. SURFACTANT STRUCTURES  

Surfactants are water-soluble surface-active agents comprised of a hydrophobic 

portion, usually a long alkyl chain, attached to hydrophilic functional groups. When 

added to water, surfactants can form a variety of structures depending on their 

concentration and molecular geometry. These include micelles and vesicles, with the 

latter discussed in more detail below. 

 

Vesicles 

Vesicles are self-assembled capsules formed in water by surfactants or lipids.6 

The molecules that form vesicles are amphiphilic, with a hydrophilic head and 

hydrophobic tail(s). The shell of the vesicle is a bilayer (ca. 2-5 nm in thickness) of these 

amphiphilic molecules, with the hydrophilic heads on both sides of the bilayer and 

thereby exposed to water, while the hydrophobic tails inside the bilayer are shielded from 

water. A vesicle can be considered to form by the folding of amphiphilic bilayers. 

Vesicles with only a single bilayer (or lamella) are called unilamellar vesicles (ULVs), 

while vesicles with several concentric bilayers are called multilamellar vesicles (MLVs) 

and these are also referred to as “onions”. 

 

PCDA Vesicles 

In this thesis, we are particularly interested in vesicles formed by diacetylenic 

surfactants, such as 10,12-pentacosadiynoic acid (PCDA). This surfactant has a single tail 

with a diacetylenic moiety in the middle (Figure 2.3a). When PCDA is added to water 

and mixed by sonication, it forms unilamellar vesicles (Figure 2.3b). The tails forming 
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the bilayer of PCDA vesicles can be polymerized by UV light at 254 nm.7 The 

polymerization involves a 1,4-addition reaction and results in the bilayer being converted 

into a conjugated polymer with an alternating ene-yne sequence (Figure 2.3c). 

Polymerized PCDA vesicle solutions accordingly exhibit an intense blue color. When the 

vesicles are exposed to environmental perturbations, such as temperature, pH, or solvent, 

the solution changes color from blue to red, which is believed to be due to strain on the 

conjugated bilayers. This property has led to the use of PCDA-based vesicles and 

Langmuir-Blodgett films for sensing applications.8   

 

 

 

 

 

 

 

 

 

 

(a) PCDA 

(b) PCDA vesicle (c) PCDA vesicle bilayer 
     after polymerization 

 

Figure 2.3. (a) Structure of the diacetylenic surfactant, PCDA. (b) Schematic of a 
unilamellar PCDA vesicle formed by dispersing PCDA in water. (c) Structure of the 
polymerized PCDA bilayer obtained by irradiating PCDA vesicle solutions with 254 nm 
UV light. Note that the tails in the bilayer become linked to each other in this process. 
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2.3. NANOPARTICLES 

Nanoparticles are solid structures within the size range of 1-1000 nm, and can be 

based on organic polymers, metals or ceramics. For the purposes of this thesis, we will 

focus on clay (laponite) nanoparticles and superparamagnetic iron oxide nanoparticles, 

which are each discussed below.  

 

1 nm 30 nm
1 nm 30 nm

 

 

 

 

 

Figure 2.4. Schematic of a disk-like laponite nanoparticle bearing a strong negative 
charge on its faces.   
 

Laponite 

Laponite is a type of synthetic clay nanoparticle in the form of discs of diameter 

30 nm and thickness 1 nm. The faces of the particles are negatively charged while the 

edges bear positive charge (Figure 2.4). Due to the negative charge on their faces, they 

have an affinity for cationic species – the cations are basically exchanged for the native 

sodium counterions. Accordingly, these nanoparticles have the ability to sense and 

separate cationic solutes from solution.9

 

Iron Oxide  

 Superparamagnetic iron oxide (SPIO) particles are composed of very small 

crystallites (1–10 nm), with both ferric iron (Fe3+) and ferrous iron (Fe2+) present. 

Superparamagnetism means that under a magnetic field, the entire particle aligns its 
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magnetic moment with the applied field. The effective magnetic moment of a material 

containing SPIO particles is thus very high. SPIO particles are usually coated with a 

protective layer of a hydrophilic material such as the polysaccharide, dextran so as to be 

stable in aqueous media. These particles find a variety of applications, for example as 

contrast agents for magnetic resonance imaging (MRI).10-12

 

2.4. POLYMER CAPSULES AND BEADS 

Capsules and beads ranging in size from a few microns to several millimeters can 

be prepared both from biopolymers as well as synthetic polymers. A structure is referred 

to as a capsule if it has a thin shell enclosing a liquid-filled core. On the other hand, a 

bead is a more homogeneous material where there is no clear-cut distinction between a 

shell and a core. 

 

Capsule Formation 

The method we will use to form capsules involves polyelectrolyte complexation. 

This process requires two polymers of opposite charge, or one polymer and a surfactant 

of opposite charge. For example, one could use chitosan as the cationic polymer and 

sodium alginate as the anionic polymer. To form the capsules, the chitosan solution is 

added drop-wise to a bath containing a solution of alginate (or vice versa). As illustrated 

in Figure 2.5, contact between the oppositely charged polymers at the drop interface leads 

to electrostatic complexation, thus forming a polymer shell around the drop. In this way, 

capsules of given size (equal to the size of the generating drop) can be created by a 

simple, mild process (room temperature, no organic solvents). Smaller capsules can be 
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created by a modification to the above process, where instead of drop-wise addition, the 

chitosan is sprayed into the alginate as a fine mist – this yields microcapsules having a 

size around 10 to 100 microns. Alternately, microcapsules can also be used by creating 

smaller drops using different nozzle designs.  

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 2.5. Creation of chitosan capsules by electrostatic complexation. A drop of 
chitosan is added to a solution of anionic biopolymer or surfactant. The resulting capsules 
have a shell consisting of chitosan complexed with the anionic moiety.  

 

In terms of the materials composing the capsule shell, a limited number of choices 

exist for the cationic polymer. In addition to chitosan, the only other common cationic 

that finds frequent use is poly-L-lysine (PLL). On the other hand, a variety of choices 

exist for the anionic polymer – in addition to alginate, one could use gelatin (at high pH), 

gellan gum, xanthan gum etc. Also, as mentioned, one could form capsules using one 

polymer and an oppositely charged surfactant. In Chapter 3, we will form chitosan 
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capsules using the anionic surfactant, sodium dodecyl benzene sulfonate (SDBS). Some 

of the other variables that influence capsule structure and properties are discussed in 

Chapter 3 as well.      

 

Bead Formation 

Polymer beads are created by a method similar to the one above. As an example, 

beads of alginate are created by drop-wise addition of sodium alginate to a bath 

containing calcium salt (Figure 2.6). Ca2+ ions diffuse into the drop and crosslink the 

alginate chains, converting the liquid drop into a gel bead. Unlike capsules, beads are 

more homogeneous and do not have a distinct shell. However, depending on the Ca2+ 

concentration in the bath, the bead can still be somewhat inhomogeneous, with the 

crosslink density near the center of the bead being less than that near the periphery.  

 

 
Figure 2.6. Creation of alginate beads by ionic crosslinking. A drop of alginate is added 
to a solution of CaCl2. The ions diffused into the drop and crosslink the alginate chains to 
form a solid bead.  
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A notable point regarding the above methods is that they facilitate encapsulation 

or entrapment within the capsule/bead. Any chemicals or colloidal structures in the 

generating drop are generally preserved in the interior of capsules/beads, and examples 

include biological cells, vesicles, and nanoparticles. Note that encapsulation and 

capsule/bead formation are integrated within a single step. We will exploit this aspect to 

create hybrid capsules and beads having new functionalities.   

 

2.5. UV-VIS SPECTROSCOPY 

UV-Vis absorption spectroscopy is an analytical technique used to study 

molecules that adsorb radiation in the ultraviolet (200 to 400 nm) and visible (400 to 800 

nm) regions of the electromagnetic spectrum. When a molecule absorbs radiation in the 

UV-Vis range, the absorbed energy generally moves electrons into higher energy levels. 

The molecule does not absorb energy continuously throughout the spectral range because 

the absorbed energy is quantized; that is, the molecule will absorb only at wavelengths 

that provide the exact amount of energy necessary to promote electrons to higher energy 

levels.13 Each compound will thus have a unique UV-Vis spectrum. UV-Vis can thus 

serve as an analytical technique, especially for compounds that have an aromatic group.  

  

A typical UV-Vis experiment is done with a solution of low solute concentration 

(10-5 to 10-2 M), which is then placed in a cuvette into the sample cell of a UV-Vis 

spectrometer. Light is broken down into its component wavelengths in the spectrometer 

and passed through the sample. The absorption intensity is measured for each wavelength 

and a UV-Vis spectrum (plot of absorbance vs. wavelength) is produced for the sample. 
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UV-Vis spectroscopy can be used as a quantitative analytical method to determine the 

concentration of the solute. This is done using the Beer-Lambert law:33 

 A cε= ⋅ ⋅ l  (2.1) 

where A is the measured absorbance at a particular wavelength, c is the concentration of 

the solute in mol/L, l  is the path length of the sample, and ε is the molar extinction 

coefficient or molar absorptivity at that wavelength.  
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Chapter 3: CAPSULES: FUNDAMENTAL STUDIES & NEW CONCEPTS 

 

 

3.1. INTRODUCTION 

In Chapter 3, we study the microstructure and properties of biopolymer 

capsules/beads loaded with different materials like vesicles and nanoparticles. Following 

a brief study of some fundamental aspects pertaining to capsules, we will explore three 

new concepts, as mentioned in Chapter 1: (a) PCDA vesicle-loaded capsules having 

pH-responsive properties; (b) beads loaded with clay nanoparticles (laponite) and thus 

having ion-sensing capabilities; and (c) artificial earthworms, which are chains of 

magnetic particle-filled capsules that show motility under a magnetic field. 

 

With regard to pH sensing, the simplest and most well known method is using 

litmus paper, which changes color based on the pH of a test solution. A variety of pH-

responsive indicator dyes, polymer gels, and polymer blends also exist, and some of them 

have been integrated onto optical fibers or other devices to create electronic pH sensors. 

The concept we will explore in this study is to integrate pH-sensitive vesicles into 

capsules. The vesicles are formed from the diacetylenic surfactant, PCDA, which has 

been discussed in Chapter 2. Polymerized PCDA vesicles are known to undergo 

colorimetric transitions upon exposure to different pH, temperatures, and solvents.14-17 

Here, we will show that PCDA vesicles remain stable within the lumen of capsules, with 

the net result that the capsules now have the same colorimetric properties as the vesicles.   
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With regard to cation sensing and separation, a number of approaches have been 

investigated, especially for removal of metal cations from water. Alginate gels, beads, 

and fibers are actually known for their ability to sequester metal ions (such as Cu2+, Ni2+, 

Cd2+, Pb2+ and Cr3+) from solution. Likewise, clay particles are also known to bind 

cations strongly from solution.18-22 Note that cation binding in both cases actually 

involves a process of ion exchange, where the cations of interest get bound to the alginate 

or clay while sodium counterions are released into the solution. Here, we investigate 

alginate beads containing a type of synthetic clay particles (laponite). We will show that 

the hybrid beads outperform conventional alginate beads quite significantly with regard 

to their cation sensing and separation capabilities.     

 

With regard to artificial earthworms, the general goal is to create soft structures 

that are motile under an external field. For example, polymer gel strips have been set in 

motion either by vibrations, by an electric field, or by a magnetic field.23-24 Polymer gels 

undergoing volume phase transitions in response to temperature or solvent quality have 

also been exploited in actuators and valves.25-26 The new concept we explore here is to 

link a series of chitosan-gelatin capsules into a chain using glutaraldehyde. Each capsule 

in the chain has magnetic particles in its interior. The idea of putting superparamagnetic 

iron oxide (SPIO) particles inside capsules has been around since 1978 when albumin 

microcapsules containing magnetic particles as well as chemotherapeutic agents were 

used to deliver site-specific chemotherapy to tumors.27 However, the connection of 

magnetic capsules into a chain has not been demonstrated thus far to our knowledge. The 

chains we create show motion guided motility under an external magnetic field.  
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3.2. EXPERIMENTAL SECTION 

Capsule Materials: Polymers, Surfactants, Salts 

Chitosan, gelatin, and sodium alginate were all obtained from Sigma-Aldrich. The 

chitosan was of medium molecular weight (190–310K), with a Brookfield viscosity of 

286 cps and a degree of deacetylation ca. 80%. Chitosan is soluble only under acidic 

conditions, i.e., at a pH < 6.5, and we used 1% acetic acid to control the pH in chitosan 

solutions. The gelatin was of grade 300 bloom, while the sodium alginate had a 

Brookfield viscosity between 20-40 cps. The anionic surfactant, sodium dodecyl benzene 

sulfonate (hard type) was obtained from TCI America. 

 

Nanoparticles, Dyes, and Other Chemicals 

Laponite RD clay was obtained from Southern Clay Products. The particles are 

discs having an average diameter of 30 nm and a thickness of 1 nm. Dispersions of 

laponite in deionized water were prepared by vortex mixing. The samples had a basic pH 

of 9.8. The magnetic capsules (γ-Fe2O3) were purchased from Alfa Aesar. Their size was 

specified to be 32 ± 18 nm, and their average surface area was 42 m2/g.  The crosslinking 

agent, glutaraldehyde (grade I, 50%) was obtained from Sigma Aldrich, as were the 

cationic dye, methylene blue and the anionic dye 5(6)-carboxyfluorescein. 

 

PCDA Vesicles and Their Polymerization 

10, 12-Pentacosadiynoic acid (PCDA) was obtained from Sigma Aldrich. PCDA 

vesicles were created by dispersing the compound in deionized water, followed by 

sonication using a tip sonicator at 62°C for 60 min. The resulting solution was stored 
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overnight at 4°C. To polymerize the vesicles, the solution was irradiated at room 

temperature for 5 min using UV radiation at 254 nm from a low-pressure Oriel Hg pen 

light, with a light intensity of roughly 10-4 W/cm2. Upon polymerization, the solution 

turned deep blue, and this was stored in a refrigerator until needed.  

 

Dynamic Light Scattering 

A Photocor-FC instrument with a 5 mW laser light source at 633 nm was used to 

analyze the size of vesicles. Studies were done at 25°C with the scattering angle being 

90°. A logarithmic correlator was used to obtain the autocorrelation function, which was 

analyzed by the method of cumulants to yield a diffusion coefficient for the vesicles 

analyzed. The apparent hydrodynamic radius of the vesicles was obtained from the 

diffusion coefficient through the Stokes-Einstein relationship.  

 

UV-Vis Spectroscopy 

A Varian Cary 50 UV-Vis spectrophotometer was used to monitor the 

concentration of dyes in solution as well as the color transition of PCDA vesicles in 

response to change in pH. 

 

Optical Microscopy 

The Zeiss Axiovert 135 TV inverted microscope equipped with Motic Image Plus 

imaging system has been used for high-quality transmission microscopy. Capsules were 

imaged with a 2.5X objective. 
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3.3. RESULTS AND DISCUSSION 

3.3.1. FUNDAMENTAL STUDIES WITH CAPSULES 

In our initial studies, we focused on variables that influence the size, stability, and 

mechanical integrity of biopolymer capsules. These studies were done with chitosan-

SDBS capsules, with the biopolymer chitosan being the cationic moiety and the anionic 

surfactant, SDBS being the anionic moiety. Capsules were prepared by adding drops of 

chitosan to a bath of SDBS. Variables include the concentration of chitosan, the 

concentration of SDBS, and the incubation time, i.e., the time that the drop stays in the 

SDBS solution. Other key variables are the molecular weight of the chitosan and the 

presence of hydrophobes on the chitosan backbone, but those were not explored here.   
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Figure 3.1. Typical images of chitosan-SDBS capsules at various incubation times. The 
capsule diameter extracted from these images is shown as a function of time on the plot.   
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First, the chitosan concentration was explored as a variable. Capsules were made 

with 0.5, 1, 1.5 and 2 wt% chitosan solutions, with the SDBS concentration in the 

receiving bath fixed at 5 wt%. In each case, capsules corresponding to various incubation 

times were examined by optical microscopy for their size and shape. We observe from 

Figure 3.1 that with increasing incubation time, the capsules shrink in overall diameter 

while their shell thickness increases. The shrinking with time is especially apparent at 

low chitosan concentrations. For 1 wt% chitosan, the capsule has a uniform spherical 

shape for incubation times around 3 min, but at higher times, the capsule shrivels, i.e., the 

shell of the capsule ceases to have a uniform structure. Note that if the incubation time is 

too low (< 3 min), the capsule does not have any mechanical integrity and cannot be 

picked up from solution – this is because the capsule shell is too thin.  

 

When the chitosan concentration is increased to 2%, the capsules show a uniform 

spherical shape and shell structure even for much longer incubation times. There is only a 

slight decrease in capsule diameter and a modest increase in shell thickness over this 

period. Note also that the 2% chitosan capsules are larger than the 1% ones – this is 

because the drops were generated by a transfer pipette and the higher viscosity of the 2% 

chitosan gave rise to bigger drops. Indeed, there is a limitation with using too high a 

chitosan concentration (above 2 wt%) since the solution becomes very viscous and 

difficult to handle.  

 

We then examined the effect of SDBS concentration over the range of 1 to 5 wt%, 

with the chitosan concentration fixed at 2 wt%. For low SDBS concentrations (less than 
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about 3 wt%), capsules are not formed – instead, addition of chitosan leads to a liquid-

liquid phase separation. At higher SDBS concentrations from 3 to 4 wt%, capsules are 

formed, but they are not sturdy – they collapse when perturbed slightly by a spatula or by 

stirring. For 5 wt% SDBS, capsules with good mechanical integrity are formed. Taken 

together, our results suggest that an optimal composition for forming chitosan-SDBS 

capsules is by combining 1.5–2 wt% chitosan and 5 wt% SDBS, with an incubation time 

of about 3–4 min.   

  

3.3.2. PH-SENSITIVE CAPSULES LOADED WITH PCDAVESICLES 

The next set of studies are on capsules loaded with PCDA vesicles. For these 

studies, we used the chitosan-SDBS capsule formulation described above. The following 

procedure was adopted to prepare vesicle loaded capsules. First, polymerized PCDA 

vesicles were prepared at a concentration of 1 mM (~ 0.3 wt%), as described in the 

Experimental Section. Note that polymerization confers a deep blue color to PCDA 

vesicles, as seen by the photographs in Figure 3.2. Before polymerization, the sample has 

a light blue tinge, which is simply an indication of light scattering from vesicles (it is 

seen for all vesicles, not just PCDA). The deep blue color after polymerization, on the 

other hand, is due to the conjugated nature of polydiacetylenes. One further point is that 

the size of the vesicles, as characterized by DLS, remained about the same before and 

after polymerization  (~ 90 nm diameter in both cases). 

 

Once the PCDA vesicles were polymerized, we added 1.5 wt% chitosan to the 

sample. The solution became slightly viscous, but otherwise appeared to be stable and 
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homogeneous. This chitosan-PCDA solution was then added dropwise into a solution of 

5 wt% SDBS. After an incubation time of about 3–4 min, the capsules were removed and 

placed in a solution of phosphate buffer at pH 5.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.2. Photographs of a PCDA vesicle solution before and after UV polymerization 
of the vesicle bilayers. Upon polymerization, the solution turns a deep blue color.  
 

 

For studies as a function of pH, it is useful to compare the results for PCDA 

vesicle-bearing capsules with those for PCDA vesicles. Towards this purpose, we added 

NaOH to each sample and monitored the results as a function of pH by visual observation 

and UV-Vis spectroscopy. As mentioned earlier, polymerized PCDA vesicles show an 
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irreversible colorimetric transition from blue to red with increasing pH. This can be seen 

clearly from the UV-Vis spectra (Figure 3.3) as well as the photographs in Figures 3.4. 

Figure 3.3 shows that, with increasing pH, there is a decrease in absorbance at 635 nm 

(blue) while that at 549 nm (red) gradually increases. The photographs in Figure 3.4 show 

the solution to be purple around pH 10 and a deep red at pH 11. For a pH of 12 or above, 

PCDA vesicles precipitate out of solution. The molecular basis for the colorimetric 

transition is that the higher pH causes a disordering of the polydiacetylene bilayers in 

PCDA vesicles (because hydrogen-bonds between the side chains are disrupted). Note 

that the transition is irreversible, presumably because the disordered state of the bilayers 

is thermodynamically more stable than the ordered state.    

  

0

0.4

0.8

1.2

1.6

2

400 500 600 700 800

Wavelength (nm)

A
bs

or
ba

nc
e ph8

ph9
ph10
ph11

 

Figure 3.3. UV-Vis spectra of a PCDA vesicle solution at various solution pH. The data 
show a shift from blue to red peaks with increasing pH.  
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Figure 3.4. Colorimetric transitions as a function of pH in PCDA vesicle solutions (top) 
and PCDA vesicle-bearing capsules (bottom).   
 

Figure 3.4 shows the effect of solution pH on chitosan capsules loaded with 

PCDA vesicles. The capsules have a blue color around pH 6, a purple color around pH 7, 

and a red color around pH 9. Thus a colorimetric transition with pH does occur for the 

capsules, i.e., the capsules are pH-responsive. Interestingly, the transitions are slightly 

shifted relative to those observed for the vesicle solutions: for example, the capsules are 

red at pH 9 whereas the solution turns red only at pH 11. The origin for these differences 

is yet to be deciphered, although it is probably related to interactions between chitosan 

and the PCDA vesicles.  

 

Regarding the timescale of the colorimetric transition with the capsules, we 

noticed that, as soon as the pH of the solution was changed, a moving front 

corresponding to the new color developed inside the capsule. The entire capsule reached 

a uniform color within the span of a few minutes. The color change is thus quite rapid 

and is very reproducible. Another point worth mentioning is that the capsules can be 

responsive to pH even at very high pH values (> 12). Although PCDA vesicles 

precipitate out of solution at such high pH, it does not cause a problem when they are 

 25



localized within capsules. One can thus envision vesicle-loaded capsules as a 

miniaturized pH sensor. While our studies were done with millimeter-sized capsules, we 

expect the same results to hold for smaller capsules. Individual microcapsules bearing 

PCDA vesicles could be used as pH sensors in microfluidic devices.    

 

3.3.3. ION-SENSITIVE CAPSULES LOADED WITH CLAY NANOPARTICLES 

Next, we study alginate beads loaded with laponite (clay) nanoparticles. The 

affinity of these hybrid beads for cationic species in solution is the focus of our study. To 

make the hybrid beads, we combined a 1% alginate solution with 1% laponite and added 

the resulting mixture drop-wise to a 5 wt% solution of calcium chloride (CaCl2). After 

incubation for about 5 min, the beads were removed and stored in deionized water. Also, 

as a control, we prepared alginate beads that did not contain laponite. Equal weights of 

the two sets of beads were then added to separate vials containing 1 mM solutions of 

methylene blue (MB), a cationic dye. The dye concentration in solution was monitored as 

a function of time by UV-Vis spectrometry.  

 

The results are shown in Figure 3.5. We note that after a period of 24 h, the 

solution containing alginate-laponite beads is practically colorless, indicating that most of 

the dye has been absorbed by the beads. The hybrid beads are clearly more efficient at 

absorbing dye compared to the alginate beads. The differences between the two are 

quantified using UV-Vis spectrometry. While the dye concentration in the presence of 

alginate reaches a plateau in about an hour, the concentration continues to decrease in the 

presence of alginate-laponite. The concentration of dye after 24 h is 50% lower in the 
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case of alginate-laponite compared to alginate. It is clear that the superior separation is 

due to the adsorptive capability of laponite particles due to the strong negative charge on 

the particle faces. Note, however, that such separation could not have been achieved by 

simply adding laponite particles to the water, since the particles have a tendency to 

aggregate into a gel and/or precipitate in aqueous solution in the presence of cationic 

species. The laponite-bearing beads, in contrast, remain quite stable during the process.   

 

 
igure 3.5. Binding of a cationic dye to alginate beads and alginate-laponite beads. 

with the UV-Vis data shown in the plot below. 
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Error! 

 

   

 
igure 3.6. rom a mixture of 
tionic and anionic dyes. Initially (left photo), the solution is blue-green due to the 

We then conducted another experiment to test the suitability of alginate-laponite 

beads f
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presence of MB and CF, whereas it turns yellow after 24 h (right photo), indicating that 
the MB has been selectively removed by the beads. The visual results again correlate 
with the UV-Vis data shown in the plot below. 
 

or cation separation. In this case, a blue cationic dye (MB) was mixed with a 

yellow anionic dye (carboxyfluorescein, CF), each at a concentration of 1 mM. This 

mixture was then combined with alginate-laponite beads and the results are shown in 

Figure 3.6. We find that the beads are able to selectively remove the MB from the 
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MB+CF mixture. The solution thus turns from a blue-green to a yellow color as time 

progresses. The UV-Vis results show that the CF concentration remains roughly constant 

whereas the MB concentration drops by two orders of magnitude over a period of 24 h. 

The results highlight the advantages of alginate-laponite beads in removing cationic 

species from water. 

 

3.3.3. A IFICIAL EARTHWORMS BASED ON MAGNETIC CAPSULES 

ficial earthworms”. 

The bu

RT

The last section of our work deals with the creation of “arti

ilding blocks for these are magnetic capsules, wherein we introduce magnetic 

ferrite nanoparticles into conventional capsules. Magnetic chitosan-SDBS capsules have 

been prepared as part of earlier work in our laboratory. For the present study, the capsule 

recipe was slightly modified: first, we made a mixture of 1 wt% chitosan and 0.5 wt% 

gelatin along with 0.25 wt% ferrite particles. This mixture was then added drop-wise to a 

5 wt% SDBS solution, and after an incubation time of about 4 min the capsules were 

removed and placed into deionized water. The next crucial step was to link these 

individual spherical capsules to form a chain. For this, we added the above capsules to a 

vial containing 1 mM glutaraldehyde. Due to the higher density of the ferrite particles, 

the capsules settled to the bottom of the vial. At this point, the capsules were manually 

collected against the vial wall to form a chain. The glutaraldehyde serves to bond the 

capsules to each other, thus forming a chain. After about 14 h of incubation, the chain of 

capsules was removed for further study.   
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The key to chain formation is thus glutaraldehyde (CHO-CH2-CH2-CH2-CHO), a 

dialdehyde that is known for its ability to form covalent bonds with amine groups. 

Glutaraldehyde thus acts as an efficient crosslinker for amine-containing polymers and 

proteins (it is used as a tissue fixative for this reason). Since amines are present both on 

chitosan and gelatin, glutaraldehyde can crosslink both polymers. Our studies, however, 

showed that capsule chains could not be formed using glutaraldehyde if we used chitosan 

alone or gelatin alone.28-29 However, chitosan-gelatin capsules could be conveniently 

linked into chains by this method. It is known in the literature that chitosan-gelatin 

mixtures have improved mechanical properties over either of the parent polymers alone. 

Such a synergistic interaction between the two probably facilitiates formation of capsule 

chains. We should point out that the individual capsules also become more crosslinked 

during the chain formation process.   

 

Each chain (“artificial earthworm”) is thus composed of a series of semi-hard 

spheres, with the overall structure having reasonably good mechanical integrity and 

stability. Their only drawback is that the chains are slightly brittle, tending to break up 

into smaller units when subjected to mechanical stress. Chains can be stored in DI water 

or they can be made to float in a density-matched liquid, such as water containing sugar. 

The latter is an important property that may be useful in building biomimetic structures 

having the ability to swim or otherwise survive in water.     

 

We have briefly studied the magnetic field-induced motility of our artificial 

earthworms using a simple, permanent magnet. These studies have been done both in 
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deionized water as well as the density-matched sugar solution (Figure 3.7). In both 

liquids, the earthworms usually align themselves perpendicular to the magnet. Further 

studies on these unique structures are under way in our laboratory. Future experiments 

will also examine new designs involving chains with alternating magnetic and non-

magnetic capsules, or chains with blocks of each kind of capsule. Also, the motility of the 

chains in viscous and viscoelastic fluids will also be of interest.   

 

 

 

 

 

 

 

 
 

 
Figure 3.7. Magnetic earthworms in different geometry and solution (a) initially the 
capsules are colorless in the glutaraldehyde solution (b) after crosslinking for 12 hours 
they turn yellowish and the capsule chain can be moved by a magnet. Note that in (b), the 
chain has been placed in a sugar solution of matching density. 
 

3.4. CONCLUSIONS 

  We have studied hybrid polymer capsules or beads, each encapsulating a different 

type of colloidal structure in their interior. The presence of the colloids imparts unique 
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properties to the capsules/beads. First, we studied capsules containing polymerized 

PCDA vesicles. We demonstrated the ability of the capsules to respond to pH changes by 

exhibiting chromatic transitions. Secondly, we demonstrated that alginate beads 

containing clay (laponite) nanoparticles can be used for the removal of cationic species 

from solution. Lastly, we have developed a unique artificial earthworm that can move in 

response to a magnetic field. The earthworm design was based on linking magnetic 

chitosan-gelatin capsules into a chain via glutaraldehyde. The biomimetic potential of this 

structure is immense: movement patterns can be varied based on the geometry and 

constiution of the earthworm, as well as medium in which it is placed.  
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Chapter 4: CONCLUSIONS & RECOMMENDATIONS 

 

4.1. CONCLUSIONS  

The common theme underlying this thesis is the development of new “smart” 

materials that have the ability to respond to physical or chemical stimuli. We have shown 

that such responsive capabilities can be imparted to polymer capsules and beads. The key 

is to encapsulate various colloidal or nano-structures within the interior of the capsule or 

bead. The fact that the capsule interior remains fluid permits such encapsulation. The 

properties of the encapsulated structures can thus be imparted to the capsule.  

 

 We studied three different concepts for multi-functional capsules. In the first 

case, capsules containing pH responsive PCDA vesicles were made. These capsules 

responded to a change in external pH of the solution by exhibiting a color change. The 

chromatic response of the capsules was in some ways better than that of PCDA vesicles 

due to increased stability to pH. Thus, the capsules could serve as pH sensors for pH 

values ranging from pH 5 up to pH 14. In the second study, we devised a new type of 

ion-sensing material by combining the unique properties of laponite clay nanoparticles 

with alginate beads. These hybrid beads were highly effective in selectively absorbing 

cationic species from an aqueous solution. In the final study, we developed novel 

artificial earthworms by linking chitosan-gelatin capsules into a chain with 

glutaraldehyde. We were able to study the magnetic field-induced movement of these 

chains in deionized water and in a density-matched sugar solution.  
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4.2 FUTURE DIRECTIONS 

For these future studies, different types of perturbations like solvent change, 

temperature change can be induced to trigger by a chromatic change in the PCDA- 

chitosan microcapsules.  In vitro and in vivo studies of vesicle loaded gels and capsules 

can be done in the future. Other possibilities for ion exchange resin studies include 

application of these composite systems to real- life waste water treatment experiments 

where the functionality of these beads can be tested. We can also carry out various 

studies on these beads to evaluate the absorption characteristics of divalent and 

monovalent cationic species. Further more one can study the recovery of these dyes from 

the alginate bead structure. Finally we will evaluate the targeting ability of magnetic 

earthworm capsules in vivo using MRI. Capsule surface may be modified in several 

manners to increase targeting capability. We also plan to study these earthworms based 

on hm-chitosan as opposed to chitosan there by possibly increasing the stability of the 

capsule chain. 
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