
 

 

 
 

 
 

 
ABSTRACT 

 
 
 
 

Title of Document: STUDIES OF SPECTRAL MODIFICATION IN 
INTENSE LASER PULSE-PLASMA 

INTERACTIONS  
  
 Wenxi Zhu, Doctor of Philosophy, 2013 
  

Directed By: Professor Thomas M. Antonsen Jr., Physics 
 

 

Laser pulses propagating through plasma undergo spectral broadening through local 

energy exchange with driven plasma waves.  During propagation, a high power laser 

pulse drives large amplitude plasma waves, depleting the pulse energy. At the same time, 

the large amplitude plasma wave provides a dynamic dielectric response that leads to 

spectral shifting. The loss of laser pulse energy and the approximate conservation of laser 

pulse action imply that spectral red-shifts accompany the depletion. Here we examine the 

spectral shift and broadening, energy depletion, and action conservation of nonlinear 

laser pulses using the modified paraxial solver in WAKE. For pulses causing complete 

cavitation, large wavenumber shifts and action decay are observed at the distance where 

40-50% of the pulse energy is depleted, consistent with theoretical prediction.  

A tenuous plasma, enveloped, full wave solver was further implemented and 

compared to the modified paraxial solver through studying the University of Maryland 

laser-plasma system. The full wave solver has the advantage of better predicting the 

dispersion relation and eliminating the problematic divergence in the dispersion of the 



 

 

modified paraxial solver as wavenumber approaches zero, which is important 

especially when considering long wavelength generation.  

Numerical analysis of the two propagation algorithms has been conducted via 

monitoring conservation laws. For large spectral shifts, numerical damping and 

convection of radiation out of the simulation domain result in action decay. 

Implementing a higher order evaluation of numerical derivatives and smaller spatial 

step have reduced numerical damping. 

Spectral red-shifting of high power laser pulses propagating through underdensed 

plasma channel can be a source of ultrashort mid-infrared (MIR) radiation. Parametric 

dependence of MIR generation on laser pulse power, initial pulse duration, and plasma 

density is investigated through characteristic wavenubmer estimates and simulations.  
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Chapter1: Introduction 

 

1.1 Optical Guiding in the Laser Wakefield Accelerators (LWFA) and Spectral 

Modification in the Plasma Channels 

Recent advances in Laser Wakefield Acceleration (LWFA) [1] have stimulated the study of 

ultra intense laser pulse propagation in plasmas. In LWFA, which is just one type of plasma based 

particle accelerator, a single, short ( 1ps ), high intensity (
17 210 /W cm ) laser pulse 

propagates through an underdense plasma exciting plasma waves. Charged particles are then 

accelerated in the electric field of the plasma waves [1-3]. The acceleration process is most 

effective when the laser intensity is high and the plasma is strongly perturbed. There are then 

numerous nonlinear processes affecting the laser propagation. These include: pulse compression, 

self-focusing, pulse refraction, spectral broadening and shifting, pump depletion and plasma 

cavitation. This thesis will explore these effects with an emphasis on modeling and understanding 

the evolution of the pulse spectrum. 

 

1.1.1 The Laser Wakefield Accelerators (LWFA) and recent progress 

Laser Wakefield Accelerator is considered as an option for the next generation of 

accelerators because it can produce large accelerating gradients 1GV/cm which are far in excess 

of that produced in conventional accelerators. In conventional accelerators the maximum 

accelerating gradient is limited to the range 20MV/m due to breakdown on the metal structure. In 

a LWFA the accelerating medium is plasma, which is already broken down. 

Recent experiments in LWFAs [4] have made great progress and have demonstrated a 

promising way to build high energy colliders with compact size and less cost [5-7]. Initial 

experiments in the so called self modulated regime were performed by A. Modena et al. in 1995. 

Self modulation is a process in which a single long laser pulse breaks up into a train of short 
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pulses with duration approximately the same as the plasma period. This drives large amplitude 

plasma waves and the accelerating energy gain achieved in 1995 experiment was in the range of 

100 MeV. But, the beam quality was poor in this case in that the spread in energy was 

comparable to the mean energy.   

More recent progress in experiments has used high intensity shorter pulses (50 fs). Because 

the pulse duration was matched to the plasma period and because the pulse intensity was higher 

than in previous experiments, a regime was entered in which the electron plasma was cavitated 

following the laser pulse. This is often referred to as the blow-out, caviation, or bubble regime [8-

10]. In this regime, a portion of plasma electrons can be trapped and accelerated to high energy. 

In the experiments this produced nearly monoenergetic electron beams [11-17].  

Recently, there has been more exciting progress in experiments. A significant achievement 

is 1 GeV energy gain within a centimeter-scale distance at the Lawernce Berkeley National Lab 

(LBNL) in 2006 [18,19]. This was followed by more recent accomplishments of > 2Gev energy 

gain using the Texas Pettawatt laser and > 3GeV energy gain from GIST, Korea [20]. With such 

high electric gradient the plasma acceleration field can be several orders of magnitude stronger 

than that of conventional radio-frequency (RF) accelerators (10~20MV/m).  

Many recent efforts of improving beam quality have been focused on methods of initial 

trapping of electrons from the background plasmas in the plasma waves and triggered trapping 

and injection of electron beams [21]. New facilities for the next generation of experiment are 

under construction such as CILEX [22] and BELLA [23]. 

 

1.1.2 Plasma Wave Driver: the Ponderomotive Force 

During the laser pulse propagation, the electrons interact with the radiation electric fields in 

two ways. They quiver at the high frequency of the laser field, and then respond on the time scale 

of the plasma waves to the low frequency ponderomotive potential [24-26]. Through this low 

frequency force the plasma wake fields are generated.   
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To understand the origin of the ponderomotive force, consider the plasma (electron) fluid 

momentum equation of motion 

( )
dp v B

e E
dt c


   ,      (1.1) 

where e, v  and p are the charge, velocity and momentum of a particle, /E A c t   and 

B A are electric and magnetic fields of the laser.  

In the weak field limit, the momentum can be written as the sum of a rapidly oscillating 

response to the laser electric force qp  and a slowly varying response p that is second order in 

the laser field, qp p p  . The rapidly varying component satisfies 

/qp t eE    .      (1.2) 

And introducing the vector potential is found to satisfy /qp eA c . The second order 

momentum is determined by 

2 2

/ [( / ) ] ( )

| | /2

q q qd p dt p m p p c a

mc a

      

  
,    (1.3) 

where 
2/ /qa eA mc p mc   is the dimensionless vector potential. Generally the weak field 

limit is defined by | | 1a . The ponderomotive force is the time average of the right hand side 

of (1.3), and is related to gradient of the laser pulse intensity, 

2 2| | /2 ~P tF mc a I      ,     (1.4) 

where  t  denotes the time average. In the strong field limit when particles are relativistic, the 

ponderomotive force takes the form [26]  

2 2( / ) | | /2pr tF mc a     ,     (1.5) 

where 
2 2 2 2 1/2[1 (| | / | | )]t tp m c a         is the time averaged relativistic factor and 

| | tp  is the momentum averaged over time. 
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1.1.3 Laser Guiding 

To extend the interaction length, laser pulse guiding is desired. Guiding requires a high 

index of refraction on axis than off axis. The laser pulse can be guided in two different ways. The 

pulse can be self-guided due to the relativistic decrease in quiver velocity with intensities 

increased. The critical power for relativistic self-guiding is 217( / )c pP GW  , where ωp is the 

plasma frequency. At higher powers, 
cP P , the pulse creates its own guiding structure by 

radially expelling electrons and varying the index of refraction [4,27-30]. At lower powers, 

cP P , pre-formed plasma channels with lower density on axis than off can guide the laser pulse 

[31-33].  

A typical set up that is mainly considered in our study is the utilization of a Ti-Sapphire (λ = 

800 nm) to generate ultrashort pulses (FWHM > 20 fs) [34]. The ultrashort pulse is amplified 

using chirped pulse amplification (CPA) in which the pulse is stretched out temporally before 

amplification and compressed back after being amplified to reach to a high peak power pulse with 

the same pulse duration as the original one [35,36]. The plasma structure used in this study is a 

cylindrical symmetric guiding channel usually filled with pre-ionized Helium or Nitrogen (or a 

combination of the two) or Argon. The plasma density varies parabolicly with radius 

2 2

0(1 / )chn n r r  , where rch parameterizes the channel radius. The laser spot size w is ‘matched’ 

to the channel 4 8 /ch pw r c  so that it is properly guided. We have studied different initial 

laser pulse power cases in the context of this thesis, so that different extent of nonlinear behavior 

of the pulse and the corresponding spectral evolution can be studied. 

 

1.1.4 Spectral Modification  

The nonlinear process of plasma wave excitation leads to modification of the laser pulse 

spectrum [37-39]. The laser pulse drives a plasma wave through the ponderomotive force.  



5 

 

Plasma electrons are pushed forward at the pulse front, repelled laterally in the body of the pulse, 

and converge on axis one plasma period later.  As a result, the electron density increases at the 

front, decreases in the middle and can increase again at the back of the pulse. The temporal 

density variations of the plasma wave provide a dynamic dielectric response that modifies the 

pulse spectrum [38,40-42]: the spectrum blue-shifts where the electron density rises in time and 

red-shifts where the electron density falls in time. Both red and blue shifts of the pulse were 

observed in previous studies [43-46]. For pulse durations commensurate with the plasma period, 

red-shifting dominates the spectral evolution as the body of the pulse sits in a region of falling 

electron density. As we will see, it is expected, based on conservation of wave action (to be 

defined), that the laser pulse frequency will be down shifted by an amount comparable to the 

initial frequency as the laser pulse loses energy comparable to its initial energy.  

 

1.1.5 Mid-Infrared Generation from Spectral Broadening 

The red-shifting can lead to a broadband spectrum extending well into the mid-infrared 

(MIR), wavelengths ranging from 2 to 20 microns, and whose properties are determined by those 

of the initial pulse and the plasma through which it propagates [47]. The extent of spectral 

shifting depends on the temporal gradient in the electron density and the distance over which the 

gradient is sustained. The conversion to MIR thus relies critically on increasing and maintaining 

the ponderomotive force [24-26].  

Because of the spectral proximity of MIR to the natural frequencies associated with many 

important molecular vibrational transitions and two atmospherical transmission windows of 3-5 

μm and 8-13 μm, a tunable MIR source could be applied to probe fundamental physical processes 

in liquids and materials or induce time-dependent structural changes in biological assemblies 

[47,48]. We ainvestigate the generation of MIR from our simulations and investigation of 

parametric dependence of conversion from optical to MIR energy in underdense plasmas in 

Chap.4. 
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1.2 Models and Numerical Approaches 

1.2.1 The Particle-in-Cell (PIC) Method  

Theoretical study of laser pulse spectral evolution requires physical models that self-

consistently treat the propagation of the pulse, and the excitation of plasma waves.  One of the 

most comprehensive simulation approaches is the Particle-in-Cell (PIC) method [49,50]. The PIC 

method treats electrons and ions as individual particles that move through the simulation domain 

according to the relativistic equations of motion, Eq. (1.1). Particles interact with electromagnetic 

fields self-consistently. Quantities such as particle charge and current densities are accumulated 

on a grid, based on the position and velocities of the simulation particles, and serve as sources in 

the full system of Maxwell’s equations. Typically the number of simulation particles is much less 

than the actual number of particles. Thus, when computing charge and current densities, each 

simulation particle (or macro particle) represents a number of actual particles.   

The PIC approach resolves all time scales down to the laser period, and thus is 

computationally expensive [39,51-54]. Parallel programming tools have been developed for the 

demanding computation needs of PIC simulations [55,56]. Further, a more efficient many-core 

architecture: Graphic Processing Units has evolved for the general-purpose parallel programming, 

in which memory is shared by thousands of concurrent threads [57,58]. The fully explicit, multi-

dimensional and relativistic PIC code OSIRIS [59-61], Vorpal [62] and a more recent ‘jasmine’ 

[63] have implemented the GPU architecture.  

 

1.2.2 The Quasistatic Approximation (QSA) and Envelope Approximation  

While the comprehensive approach solves the full system of Maxwell’s equations on all 

time scales, there are techniques that have been developed to speed up simulations of the laser-

driven and plasma-driven accelerators by many orders of magnitude. Due to the disparity of the 

length scales between laser wavelength and plasma wavelength, reduced models such as the 
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Lorentz-boosted Frame method [64] and the Ponderomotive Guiding Center method [65,66] are 

used to speed up calculations.  

The Lorentz boosted frame method solves the full set of Maxwell’s equations and the 

relativistic equations of motion in a reference frame moving with respect to the plasma in which 

the Lorentz shifted plasma and laser frequencies are comparable. The ponderomotive guiding 

center method uses the separation of motion described by Eqs. (1.1-1.5). 

The quasistatic approximation (QSA) is often associated with the Ponderomotive Guiding 

Center method [26]. It assumes that the laser deformation and its wakefield variation is very small 

during the time in which a plasma particle transits through the laser pulse. That is, the laser pulse 

duration is much smaller than the pulse evolution time  [67]. This allows separation of timescales 

of the electromagnetic field of the driver determined by Maxwell’s equations and the evolution of 

plasma particles determined by the equation of motion with the ponderomotive force. Larger time 

steps are applied to solve the evolution of the electromagnetic fields of the laser and numerical 

efficiency is achieved. The quasistatic approximation only applies to low energy particles, which 

are not fast enough to be travelling with the laser pulse. For particles that are trapped, accelerated 

and travelling with the speed comparable to the speed of light, QSA breaks down. In the study of 

this thesis, we only consider the lower energy particles, i.e. those that are not trapped and 

accelerated.  Our study will be based on numerical simulations using the 2D QSA code WAKE 

[26], which is described later in this chapter. Quick-PIC is a 3D PIC code that also applies QSA 

to model particle or laser beam driven wakefield acceleration [68].  

Because of the separation of time scales, electrons respond to the pulse in two different ways 

as mentioned earlier: there is a high frequency response giving rise to currents that modify the 

laser pulse and low frequency response through the ponderomotive force driving the plasma 

waves.  The plasma period and pulse duration are assumed to be comparable.  For this separation 

of time scales to be valid, it is required that the plasma be tenuous, 
2 2

0p  , where p  is the 
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plasma frequency 
2 1/2(4 / )p q n m 

 
with n  being the plasma density, and q  

being the charge 

of the plasma particle. The contribution of the plasma to the dielectric constant is thus small, so 

that the shape of the laser pulse evolves slowly as it propagates.   

There are further approximations that lead to greater numerical efficiency. A common 

approach, motivated by the slow variation of the pulse shape together with the separation in time 

scales between the laser oscillation period and the plasma wave period and laser pulse duration, is 

to treat the laser pulse in the envelope approximation. The time structure of the laser pulse can be 

separated into high frequency oscillations within the pulse modulated by a slowly varying 

envelope. The plasma motion can be separated into a rapid quiver motion and a slowly varying 

ponderomotive motion as discussed previously. The plasma density responds to the 

ponderomotive force, which depends only on the pulse envelope. In this case it is not necessary to 

resolve the laser period or wavelength.  

A common representation of the laser vector potential field A  for a linearly polarized wave 

is to write the transverse component as an envelope Â  modulating a plane wave traveling at the 

speed of light [26] 

0ˆ ( , , ) . .
ik

A A x t e c c
 

   ,     (1.6) 

where 0 0 /k c
 
is the laser central wave number, and in a moving window 

( , , )x ct z t   system x represents the transverse direction, ct z    measures the distance 

back from the head of the pulse. In this approach, changes in the laser frequency are manifested 

in more rapid variations of the laser pulse envelope. 

 

1.2.3 The Enveloped Full Wave Equation (FWE) and the Modified Paraxial Equation (MPE) 

The envelope approximation leads to consideration of an approximate wave equation.  The 

modified paraxial equation (MPE) has been used in WAKE, and in this thesis we introduce the 
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enveloped full wave equation (FWE), which will be shown to possess advantages over MPE. To 

illustrate these, we insert the transverse vector potential Eq. (1.6) into Maxwell’s equations in the 

Lorentz gauge for the fast varying field components, assuming the fast plasma current is 

determined by the ponderomotive guiding center model, and further assuming the fast electric 

field is divergence free ( 0A ). The resulting enveloped full wave equation (FWE) is 

2 2
2

0 2 2 2

2 1 4ˆ ˆe

e

ne
ik A A

c t c t m c



 


    
     

    
,    (1.7) 

where 
en  and    

 are the time averaged electron density and relativistic factor, and the angular 

bracket signifies that an average over an ensemble of particles that stream through the plasma 

wake generated by the laser pulse is to be taken.   

In the slowly varying envelope approximation the derivatives with respect to time - t are 

considered to be small.  The modified paraxial equation (MPE) takes the form 

2
2

0 2

2 4ˆ ˆq n
ik A A

c t mc



 


   
    

   
,    (1.8) 

where we have dropped 
2 2ˆ /A t   from the full wave equation (1.7), which is  valid under the 

condition 

0

ˆ
ˆ A

ik A
c t

  
 
  

.     (1.9) 

The paraxial equation makes the further approximation that the derivative with respect to ξ in (1.8) 

can be ignored. However, important physics is lost when this is done. In particular, the mixed 

t   derivative is maintained to account for the lowering of the group velocity due to the plasma 

and transverse variation. Also, this term is needed to describe the depletion of energy from the 

laser pulse [26]. Equation (1.8) is thus accurate so long as (1.9) is valid.   This still allows 

treatment of cases in which there are significant changes in the spectrum, 0/ ~ k  .   
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The MPE does preclude treatment of the case in which components of the spectrum are 

shifted to zero wavenumber. At large spectral shift, when wavenumber variation δk is comparable 

to the laser central wavenumber k0, δk~k0 and (1.9) is not satisfied, the theoretical dispersion 

relation for the MPE deviates significantly from that of the FWE (theoretical FWE, Fig. 2.2). In 

particular the group velocity diverges at small wavenumber.  

The differences in dispersion between the MPE and FWE lead to differences in the predicted 

spectrum. As the spectral shift becomes large, the group velocities in both cases decrease and the 

low k portions of the pulse fall behind the main pulse (Fig. 2.4). In the moving frame of the 

simulations the low-k components leave the simulation domain. The MPE model has a lower 

group velocity than that of the FWE for the same spectral shift (Fig. 3.1). Thus the low-k 

components of the laser pulse fall behind the main pulse faster for the MPE than from the FWE 

case (Fig. 3.3).  

There is another method, the unidirectional pulse propagation equation (UPPE) [69], that 

attempts to overcome the computational expense of full Maxwell’s equation solvers [70], while 

still treating pulses with broad spectra. The UPPE is a pseudo-spectral solution of the wave 

equation in which propagation in one direction is treated. In the UPPE the wave equation is 

solved in the frequency domain, while the medium’s nonlinear response is solved in the time 

domain. This requires two fast Fourier Transforms per time step. Thus, the UPPE is inherently 

slower than Finite Difference Time Domain (FDTD). The UPPE encompasses the envelop 

models described by (1.7) and (1.8). Further, it allows one to describe situation where the linear 

dielectric response is an arbitrary function of frequency. However, because it is inherely slower 

than FDTD it is not the methods of choice for laser-plasma interaction. 
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1.2.4 Numerical Implementation of PIC Simulations 

In conventional particle-in-cell (PIC) simulations, Maxwell’s equations are usually solved 

using an explicit finite difference time domain (FDTD) method [71]. In this approach the electric 

and magnetic fields are defined along the edges of two interleaved cubic grids (known as the Yee 

grid). The electric and magnetic fields are also defined at staggered times. Thus, the curl of one 

field, the electric field say, can be computed and used to determine new values of the other field, 

in this case the magnetic field, a half time step later. This approach, while very simple, has 

limitations that will now be described. Since the code WAKE uses the vector potential we will 

illustrate the limitations as they would apply to solutions of the wave equation in the Lorentz 

gauge, 

2
2 2

2
0

A
c A

t


  


.     (1.10) 

An explicit numerical solution to this equation involves approximating all derivatives by 

centered finite differences. For example, the differencing for the second order time and space 

derivatives are evaluated by  
2 2 2

, 1, , 1,[ / ] ( 2 ) /i j i j i j i jA t A A A t        and 

2 2 2

, , 1 , , 1[ / ] ( 2 ) /q i j i j i j i jA x A A A x       , where i is the time index, j is the spacial index, and 

q=1, 2 and 3 represents the spatial dimensions (x1=x, x2=y and x3=z). Substituting a plane wave 

vector potential of the form 0

ik z i tA A e   , where 0A  is the amplitude of the wave, and k  and 

 are the wavenumber and frequency.  Eq. (1.10) yields 

3

0 02 2 2
1

2 2q q q qik x ik xi t i t
ik z i t ik z i t

q q

e e e e
A e A e

c t x

 
 


   



     
     

   
 ,  (1.11) 

or  

22
3

1

1 1
sin sin

2 2

q q

q q

k xt

c t x





    
     

      
 .    (1.12) 
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Equation (1.12) is the numerical dispersion relation for the FDTD wave equation. Note that 

when 0t  and 0qx  , 2 2 2sin ( / 2) /t t  and 2 2 2sin ( / 2) /q q q qk x x k . 

Comparing (1.12) with the real electromagnetic wave propagating dispersion relation 

3
2 2 2

1

/ q

q

c k


 ,     (1.13) 

one can conclude that numerical dispersion relation approaches the actual dispersion when time 

and space grids are very small.  

However, there are limitations of this standard explicit FDTD method. First, there is a 

condition, the Courant–Friedrichs–Lewy condition (CFL condition) [72,73], which gives a 

limitation to the time step size in order for the solution to be stable. In the 1D case of Eq (1.12), 

for real ω, 

 

2

2 2sin sin 1
2 2

t c t k x

x

     
      

     
.     (1.14) 

If (1.14) is not satisfied ω is complex and numerical solutions grow exponentially in time. 

Condition (1.14) can be described as follows. In order for every k value to satisfy this inequality, 

(c∆t/∆x)≤1 must be satisfied. In the 3D case, this condition can be generalized as  

2
3

2

1

1
( ) 1

q q

c t
x

 
  

 
 .      (1.15) 

Thus, in simulations that spatially resolve the laser pulse wavelength qx  , the time step 

must be much smaller than the laser period.  

A second limitation to the FDTD-PIC approach is that, when the time and space grids are 

finite, the numerical wave speed that is determined by (1.12) is slower than the speed of light for 

wave lengths close to the grid size. Thus, when high-energy particles are being simulated, their 

speed can exceed the phase velocity of waves supported by the grid as described by (1.12). This 

results in non-physical radiation called numerical Cerenkov radiation [74], which can invalidate 
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the PIC simulation results. However, use of the envelope approximation in the moving frame 

allows us to apply the explicit FDTD method to the Full Wave Equation (FWE) (1.7) and 

Modified Paraxial Equation (MPE) (1.8) and avoid these limitations. The numerical dispersion 

relations for these equations are to be discussed in Chap. 3. 

 

1.2.5 The Code WAKE  

The code WAKE is used exclusively in our study. It is a fully relativistic, nonlinear, kinetic 

simulation tool for modeling the propagation of short laser pulses in underdense plasmas.  WAKE 

is a two dimensional code, using a cylindrically symmetric coordinate system and a moving 

window frame (ξ=ct-z, t). Using these simplifications, WAKE solves an envelope equation for 

the time evolution of the pulse in one transverse and one longitudinal dimension. WAKE employs 

the particle-in-cell method, but utilizes the disparity of time scales, the QSA, and envelope 

approximation to significantly reduce computational times [26].  

In the original version of WAKE, the modified paraxial equation is solved, which includes 

corrections of order 0/p   to the group velocity. However, for red-shifts comparable to the 

laser central wavenumber, the dispersion predicted from the MPE in WAKE is not accurate [38]. 

We have successfully implemented a tenuous plasma full wave equation (FWE) in WAKE 

extending the modified paraxial equation (MPE) implemented before. We then compare solutions 

of the two equations for cases in which there is strong spectral shifting. It is found out that the 

enveloped equations are capable of simulating those regimes as long as spatial and temporal 

resolution is sufficient and as long as numerical damping is held to a sufficiently low level.  

 

1.3 Structure of the Thesis 

The structure of this thesis is as follows. Chapter 2 describes the effects of the plasma’s 

index of refraction on spectral evolution as a laser pulse prorogates in a preformed plasma. Then 
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the modified paraxial equation (MPE) is introduced with discussions of the approximations 

applied in this model. Conservation laws are discussed and the amount of spectral shifting as the 

pulse energy depletes is estimated in various ways. WAKE simulations of three cases are then 

presented: the 2006 LBNL experiments [18], pulse compression experiments reported by J. 

Schreiber, et al.’s [75], and simulations to compare with the a 1D simulation of Shadwick, et al. 

[41]. 

Chapter 3 compares the modified paraxial equation (MPE) with the full wave equation 

(FWE) and their conservation laws. The advantage of FWE over MPE is described through 

analysis of dispersion relations and group velocities. Simulation results using the FWE in the 

code WAKE for the UMD parameters are presented and action decay is emphasized. Analysis of 

the numerical schemes and numerical dispersion relation in WAKE and their effect on the non-

conservation of action is then discussed. It is found that higher spatial resolution and higher order 

numerical differencing yield better conserved action from simulations.  

Chapter 4 describes the generation of MIR radiation for parameters relevant to the 

University of Maryland laser system. The wave action conservation and pulse energy depletion 

are used to characterize the average spectral shifting. The parametric dependence of MIR energy 

on laser pulse power, pulse length, and plasma density are further examined to generalize our 

conclusion of the tunability of the MIR generation. 

Chapter 5 gives the summaries of this thesis. 
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Chapter 2: The Enveloped Wave Equation and Observation of 

Spectral Modifications in the Laser Wakefield Simulations 

 

2.1 Introduction 

Laser wakefield accelerators (LWFAs) are plasma based accelerators in which a single, 

short, high intensity laser pulse propagates through an underdense plasma exciting a plasma wave 

whose longitudinal electric field can accelerate particles [1-3]. Recent progress (reviewed in Ref. 

26) in the development of LWFAs includes the demonstration of nearly monoenergetic electron 

beams [11-17], and energy gains in the range of 1 GeV [18,19]. New facilities for the next 

generation of experiment are under construction [23]. 

In LWFAs the nonlinear process of plasma wave excitation leads to modification of the laser 

pulse spectrum. The laser pulse drives a plasma wave when the pulse duration is comparable to 

the plasma frequency.  The laser pulse thus propagates in a region of temporarily varying plasma 

density and this causes the laser pulse spectrum to evolve. The primary effect is that the laser 

pulse frequency decreases (red shift) as the pulse loses energy. However, both red and blue shifts 

of the pulse were observed in previous studies [43-46]. As we will see, it is expected based on 

conservation of wave action (to be defined) that the laser pulse frequency will be down shifted by 

an amount comparable to the initial frequency as the laser pulse loses all its energy.  

Theoretical study of laser pulse spectral evolution requires physical models that self-

consistently treat the propagation of the pulse, and the excitation of plasma waves.  The most 

comprehensive simulation approach is the particle in cell (PIC) method.  In this approach the full 

system of Maxwell’s equations are solved on a spatial grid.  The plasma is treated as an ensemble 

of particles that obeys the relativistic equations of motion with the full Lorenz force. Particle 

charge and current densities are accumulated on the grid and serve as sources in Maxwell’s 

equations.  The PIC approach resolves all time scales down to the laser period, and thus is 
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computationally expensive [39,51-54]. There are also reduced models that make approximations 

that lead to greater numerical efficiency. A common approach, motivated by the separation in 

time scales between the laser oscillation period and the plasma wave period and laser pulse 

duration, is to treat the laser pulse in the envelope approximation.  This leads to consideration of 

the paraxial wave equation.  In this approach, changes in the laser frequency are manifested in 

more rapid variations of the laser pulse envelope.  At some point the envelope approximation 

breaks down.  A goal of this study is to investigate this process.    

Our study will be based on numerical simulations using the code WAKE [26]. WAKE is a 

fully relativistic, nonlinear, kinetic simulation tool for modeling the propagation of short laser 

pulses in underdense plasmas.  WAKE is a moving window, particle-in-cell simulation, but 

utilizes the disparity of time scales to significantly reduce computational times. The time structure 

of the laser pulse can be separated into high frequency oscillations within the pulse modulated by 

a slowly varying envelope. Because of this separation of time scales, electrons respond to the 

pulse two different ways. First, there is a high frequency response that gives rise to currents that 

modify the laser pulse.  Second, there is a low frequency response through the ponderomotive 

force, which is proportional to the gradient of the laser pulse intensity, ~PF I , and which 

drives the plasma wave.  The plasma period and pulse duration are assumed to be comparable.  

For this separation of time scales to be valid, it is required that the plasma be tenuous, 
2 2

0p   

where p  is the plasma frequency, and 
2 1/2(4 / )p q n m 

 
is the plasma frequency with n  

being the plasma density, and q  
and m being the charge and mass of an electron respectively, 

and 0  is the central frequency of the laser pulse. Using these simplifications, WAKE solves an 

envelope equation for the time evolution of the pulse in one transverse and one longitudinal 

dimension.  In particular, the modified paraxial equation is solved, which includes to corrections 

of order 0/p   to the group velocity and allows for evaluation of changes temporal changes in 
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the pulse intensity.  Finally, because the plasma is tenuous the evolution of the laser envelope is 

slow compared to the transit time of electrons through the pulse.  Consequently, the field solver 

for the laser pulse does not need to be updated after every particle time step.    

The organization of this chapter is as follows. Section 2.2 describes the influence of the 

plasma dynamics on the evolution of the spectrum, and provides estimates for the magnitude of 

spectral changes based on conservation laws. The modified paraxial equation is introduced and its 

expected regimes of validity are discussed. Diagnostics for characterizing the change in the pulse 

spectrum are also introduced. Section 2.3 presents simulations of three different cases. These 

include simulations on the 2006 LBNL experiments [18], pulse compression experiments 

reported by J. Schreiber, et al.’s [75], and simulations to compare with the a 1D simulation of 

Shadwick, et al. [41]. Finally, in Sec. 2.4 we present our conclusions. 

 

2.2 Spectral Modification and Its Simulation Model in WAKE 

A laser pulse of duration P  is traveling through plasma from right to left as shown in Fig. 

2.1. Plasma particles are pushed forward at the pulse front (left) and then outward by the 

ponderomotive force of the pulse.  One plasma period later, the electrons converge on axis. As a 

result, the plasma density n  increases at the front, decreases in the middle and increases again at 

the back of the pulse. We use a coordinate frame ( , )t co-moving with the laser pulse where 

ct z    measures the distance back from the head of the pulse. With this choice of coordinates, 

due to the slow evolution of the laser pulse, the electron density depends on space and time 

mainly through its dependence on the frame variable  . 

The space and time dependence of the plasma frequency leads to changes in the frequency 

and wave number of the laser pulse.  The dispersion relation for a light wave propagating in  

plasma is 
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 2 2| | ( , ) /pck t z     ,      (2.1) 

where  is the laser local frequency; 
p

 
is the plasma frequency; k is the wave number, for 

positive 
zk ( ˆ

zk z k  ), the plus and minus signs represent forward and backward propagating 

modes respectively. We are interested in the forward propagation mode in the thesis because our 

enveloped models neglect all backscatter. As a wavepacket propagates in the time and space 

varying medium its position and wave number change according to Hamilton’s equations with the 

frequency (2.1) acting as the Hamiltonian.  Consequently, due to the time and space dependence 

of the medium, the wavenumber of the wave packet changes as it propagates according 

to
/ /

/ /

dk dk dt z

dz dz dt k





 
  

 
. Performing the indicated differentiations on Eq. (2.1) and 

considering the forward propagation gives: 

2

2 2 1/2

( / )1 ( / )

2 ( / )

p

p

dk n

dz c

  

    

 


  
,     (2.2) 

where on the right hand side we have used the fact that the plasma density is mainly a function of 

the frame coordinate.  Thus, the local wavenumber shift k with respect to the laser pulse central 

wavenumber 0 0 /k c  is proportional to the gradient of the electron density ( / ) /n     

along  , and is positive (blue shift) at the pulse front, negative (red shift) in the middle and 

positive (blue shift) again at the back.  As a result, the pulse spectrum broadens.    

In the blowout regime the pulse completely expels the background electrons magnifying 

this effect.  In particular, 0( / ) / / Pn n c     , which upon using p  , provides the 

following scaling for k   

0

( )
p

p

P

k
k k z

 
,      (2.3) 
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where z  is the characteristic propagation distance. Setting / 1k k  gives the characteristic 

distance 
Sz  for which the wavenumber shift is comparable to the central wavenumber 

0k : 

           

2

0

2S P

p

z c





.      (2.4) 

This estimate can also be made on the basis of action conservation as will be discussed. 

 A frequently used model for the evolution of the laser pulse is based on the so called 

envelope approximation described in Sec. 1.2.2:  the transverse component of the laser vector 

potential for a linearly polarized wave can be written as an envelope Â  modulating a plane wave 

traveling at the speed of light, Eq. (1.6). Substituting (1.6) into Maxwell’s Equations results in the 

wave equation or the enveloped full wave equation (FWE), Eq. (1.7). In the slowly varying 

envelope approximation the derivatives with respect to time - t are considered to be small.  The 

modified paraxial equation (MPE) takes the form as Eq. (1.8). 

The range of validity of the paraxial equation can be explored by comparing the approximate 

and exact dispersion relations.  The dispersion relation for the modified paraxial equation pred icts 

an axial group velocity 

2 2 2

2

v ( ) /1
1

2

g z p

z

k k c

c k


 

    
 

,    (2.5) 

whereas the unapproximated group velocity from the full wave equation (1.7) is 

 
1/2

2 2 2 2

v ( )

/

g z z

z p

k k

c k k c


 

.    (2.6) 

This implies that the modified paraxial equation is valid when 
2 2 2 2, /p zk c k  . Figure 2.2 

shows a comparison of Eqs. (2.5) and (2.6) with 
141.17 10 /p rad s    and 

28 10 /k rad cm   .  The red curve is the group velocity predicted by the MPE which handles 

only forward propagating waves from Eq. (2.5).  The blue curve is the group velocity predicted 
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by the FWE as a function of 
zk  for the backward and forward propagation directions represented 

by the negative and positive 
zk  axes respectively from Eq. (2.6).  The dotted line shows the value 

of 
zk  equal to /p pk c . The two expressions coincide when 

2 2 2 2, /z pk k c .  

From a numerical standpoint the local wavenumber shift can be loosely described by three 

ranges (Fig. 2.3).  For weak wavenumber shifts, | |~ /p pk k c  , the time step used for 

representing the laser pulse need only resolve the plasma frequency. For strong red shifts 

0 ~ pk k k , the dispersion relation, Eq. (2.5), is no longer valid and the full wave equation is 

needed.  Finally, for marginal wavenumber shifts 0 pk k k   , the modified paraxial equation 

is still valid, and two approaches can be taken to improve accuracy.  One can decrease the grid 

size in  to better resolve the scale 0k k , but this may result in extended simulation times, 

eliminating one of the strengths of the modified paraxial equation.  Alternatively one can 

introduce a ‘super envelope’ [66] 

( )ˆˆ ˆ( , , ) iA A x t e   ,      (2.7) 

where the phase ( , )t   is specified such that the super envelope 
ˆ̂
A  remains relatively slowly 

varying in .  The super envelope then satisfies a wave equation that has additional spatially 

varying terms compared with both Eq. (1.7) and Eq. (1.8), making it complicated computationally.  

2
2

0 0 2

2 2 4ˆ ˆ ˆ ˆˆ ˆ ˆ ˆq n
i A ik i A ik A A

c t t c t mc

   

    


              
              

              
.  (2.8) 

Further, it is not guaranteed that a phase ( , )t   can be found that will keep the super envelope 

smooth.  An example of this will be illustrated in the next section when we consider Wigner plots. 

There we will find that wave density with different values of wavenumber can occupy the same 

location.  We note also that the envelope phase should also be taken to depend on transverse 
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coordinate, and this would introduce even more spatially dependent terms in Eq. (2.8).  Thus, the 

most straightforward approach is to simply increase the resolution in .

 
 The relation between wavenumber shift and pulse energy can also be estimated by 

considering the wave action.  First, we note that Eq. (1.8) identically conserves wave action [26], 

defined as, 

2
*

0
ˆ ˆRe ( )

2

L
L

d x d U
I A k i A

c k
.   (2.9) 

The quantity, k  , is the mean wavenumber, and the pulse energy given by, 

22

0
ˆ( )

2
L

d x d
U k i A     (2.10) 

is depleted through driving plasma waves.  More detailed description of conservation laws is 

presented in Sec. 3.6 Appendix 1. As a consequence of (2.9) the mean laser pulse wavenumber 

must decrease with energy to maintain action conservation.  Locally, however, there can still be 

blue shifts if the pulse length is longer than the plasma period.  In this situation the pulse 

experiences a positive   derivative in the index of refraction and the plasma wave can return 

energy to the electromagnetic wave. Later in chapter we will see that the implementation of Eq. 

(1.8) fails to conserve action when wave number shifts are large, and part of investigation is 

devoted to this effect. 

The pulse depletion length dpz  characterizes the distance over which the pulse energy 

depletes by 100% or / ~1L LU U . Because the action is conserved, and is approximately  

proportional to /LU k   [26], / ~1L LU U  implies 
2 2/ ~1~ ( / )( / )s p Pk k z c    .  This is 

the same condition presented in Eq. (2.4). The rate of energy deposition and the rate of mean laser 

wavelength shift can also be shown to be equal in the 1D nonlinear regime by 2009 Shadwick et 
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al. simulatins [41]
 
with the adiabatic invariant of wave action. As an aside, we note that in the 

blowout regime 
dpz  has the same scaling as the dephasing length [42].  

We examine the spectral variation of the laser pulse using three methods. The most direct 

method is Fourier spectral analysis of the pulse envelope.  The spectrum of the envelope is 

obtained by Fourier transform with respect to the frame coordinate , 

ˆ( , , ) ( , , ) i kA x k t A x t e d      .     (2.11) 

We note that the transform with respect to the transverse direction has not been taken, so that the 

quantity A  still depends on transverse coordinate.  The Fourier transform with respect to   

provides the nonlocal spectrum of the laser pulse; that is to say it cannot distinguish wavenumber 

shifts at different points  within the pulse.  While this function is useful for determining the 

global wavenumber shifts with time, other quantities can give information that is local in .   

One quantity that provides a measure of the local wavenumber shift is the Wigner 

distribution [76,77]. The Wigner distribution for the envelope is defined as 

*1 1 1ˆ ˆ( , , ) ( , , ) ( , , )
2 2 2

i kW k t A x t A x t e d       





 


     .   (2.12) 

The function W  can be understood to be similar to a density in ( , )k  space for the complex 

laser field.   The Wigner distribution is complex, so it is not strictly speaking a density.  However, 

it has the desirable features that 

2

( , )
( , , )

2

A k t
d W k t ,    (2.13a) 

and  

2
ˆ( ) ( , , ) ( , )d k W k t A t .    (2.13b) 
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That is, projections of the Wigner function onto the space or wavenumber axes provide the 

density in the complementary variable.  We will make plots of the real part of the Wigner 

function that illustrate local changes in the pulse spectrum. 

 A third method to characterize local wavenumber shifts is to calculate the rate of the 

phase change of the pulse envelope. We calculate this wavenumber shift, /k     , by 

considering the ‘super envelope’ of A  defined in (2.7).  Differentiating Eq. (2.7) with respect to 

  and multiplying by *Â  we find 

                                         

* * 2

ˆˆ ˆˆ ˆˆ ˆ ˆ| |
A A

A A i A


  

  
 

  
.     (2.14) 

The second term in Eq. (2.14) represents the local wavenumber change.  Here we consider the 

weighted average of /   over r  or /k      which can be expressed as 

                                    

max max2 * 2 2

0 0

ˆ ˆˆ ˆ( , ) Im[ ] / | |
r rA

k z d r A d r A 


           
  .   (2.15) 

Definition (2.15) is problematic in regions of  where the pulse envelope is small, and where as 

a consequence k  is the ratio of two vanishingly small numbers. To eliminate this problem, we 

simply add a small constant to the denominator of Eq. (2.15), which forces the wavenumber to 

vanish in these regions, and leaves the wavenumber shifts in regions of large field unchanged.     

 

2.3 Simulations 

 We simulate the laser pulse propagation and examine the spectral variation of the laser 

pulse in three situations using WAKE: the 2006 LBNL experiments [18], the 2010 pulse 

compression experiments of Schreiber et al. [75], and the parameters considered in the 2009 1D 

explicit full wave equation simulations of Shadwick et al. [41]. A table of the parameters used in 

simulating the three cases is shown below. 
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2.3.1. 2006 LBNL Experiments 

We first consider the LWFA parameters of the 2006 LBNL experiments: a 40 TW laser 

pulse of energy 1.6 J, wave length 
0 810 nm  , spot size 32.5 10w cm   , and duration 

80P fs   propagating through a plasma channel with electron density 18 3

0 4.3 10n cm  . 

From our previous estimate of 
Sz  given by Eq. (2.4), we find ~ 5 Sz mm , corresponding to 

approximately two Rayleigh lengths ( 2

0 / 2 2.4Rz w c mm ).  

To characterize the behavior of the pulse profile we examine the energy, action and spectra. 

The radially averaged pulse profiles as a function of propagation distance z (Here we have 

introduced the propagation distance z ct to replace the time variable appearing in Eq. (1.8).)  

and longitudinal coordinate   are shown in Fig. 2.4 (a).  The initial tilt of the profile shows the 

pulse sliding backwards as the linear group velocity is less than c. During the first 5 mm of 

propagation the pulse undergoes compression resulting in an enhancement of the intensity. As the 

portion of the pulse in the falling density redshifts, the group velocity decreases and the front and 

middle region of the pulse coalesce leading to pulse compression. After about 5 mm, local regions 

of the pulse begin to fall back in the frame consistent with even a lower local group velocity. Late 

in time the pulse has become heavily depleted as show in Fig. 2.5, in which the energy U and 

action LI  are plotted as functions of propagation distance z. Energy has depleted about 

75% during the whole simulation process (12mm).  Action is conserved until z= 4 mm at which 

point it drops continuously by 58% by the end of simulation.  Further analysis shows that 

numerical dissipation of the modified paraxial equation results in the decay of action, and is 

examined in Chap 3. 

Figure 2.4 (b) shows lineouts of the pulse profile at four different propagation distances. The 

variation of the pulse duration and intensity is demonstrated clearly.  An interesting feature is the 

rapid oscillation in the pulse profile, which we note is sufficiently resolved by our step size in  .  
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The oscillations have a wavelength ~1 m   
and appear after the laser pulse has reached 

maximum compression: 3.6 mm (purple) and 4.8 mm (blue) for example.  As the portion of the 

pulse redshifts, it slows down and moves backwards through the center of the pulse.  Thus, at the 

same point in space there are (at least) two wavenumbers resulting in a local beating. The 

wavelength of ~1 m   implies that 
02 / ~ 0.8k k   . This is verified in the Wigner 

distributions that we consider next.   

  In Fig. 2.6, the real parts of the Wigner distributions evaluated at r=0 are shown as a 

function of k  and   at five distances z = 0, 2.4, 3.6, 4.8 and 8 mm from left to right. For each 

distribution the corresponding electron density is also plotted correspondingly.  In Fig. 2.6 (h) and 

(i), we see that there are two peaks at different k-values in the Wigner function for values of  

corresponding to where the modulations appear in Fig. 2.4 (b).  (The presence of multiple peaks 

in the Wigner distribution shows that the envelope cannot be made smooth by introducing a phase 

as shown in Eq. (2.7).  The separation between these peaks is roughly 0~ 0.8k k , which agrees 

well with the beat wavelength . As the propagation distance increases, the wavenumber shifts 

(red shift especially) become larger, and the magnitude of the shift can reach up to 80 to 90% of 

the central frequency.  This indicates that the approximations used for the modified paraxial 

approximation have locally broken down.  It can also be seen that red shift occurs when the 

density decreases at 50 ~ 70 fs   in Figs. 2.6 (b-e). However, a portion begins to blue shift 

(curved shape at the bottom of Fig. 2.6 (i)) when the density increases at ~150 fs  (Fig. 2.6 (d)). 

This portion again red shifts when the density starts to decrease again at 150 ~170 fs  (Fig. 

2.6 (e) and (j)).  

The global spectrum (Fourier transform) is shown as a false color image in the k-z plane 

in Fig. 2.7 (a), while lineouts of the spectrum at selected propagation distances are shown in Fig. 

2.7 (b).  Initially, the spectrum is red shifted (mostly) and broadened as the pulse propagates. 
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Further, during this phase it develops several peaks.  At distances from z = 3.6-4.8 mm a large 

peak appears near 
0~ 0k k  or 

0 0| | | |~k k k k   , (bright spot at middle left in Fig. 2.7 (a) 

and blue line in Fig. 2.7 (b)). This is the strong shift case discussed in Fig. 2.3 and is also the 

point at which action conservation fails (see Fig. 2.5). For later times when the energy has been 

heavily depleted, there is no further shift in the spectrum.    

 The local wavenumber shift can be calculated directly from Eq. (2.15) and results for k  

are shown in Fig. 2.8 (a) as false color images in the z  plane, and as lineouts at four 

instances, z=0, 2.4, 3.6 and 4.8 mm, in Fig. 2.8 (b). Comparing these images with the pulse 

intensity images in Fig. 2.4 (a), we note the blue shift occurs both at the front and back of the 

pulse while the red shift occurs in the middle, in agreement with the discussion in Sec. 2.2.  

 

2.3.2. Pulse Compression Experiments  

We now consider the parameters of the Schreiber et al. [75] pulse compression experiment: 

a laser power of 200 TW , normalized amplitude 0 3.0a  , wavelength 0 800 nm  , duration 

45p fs   and a spot sizes of 0 22.0w m
 
FWHM propagating in a uniform density plasma 

with 
18 32.3 10n cm  . Four cases with plasma lengths of l=0, 4, 6 and 8.5 mm were compared 

with the experimental results shown in Fig. 2.9 (a). Fig. 2.9 (a) are Wigner distributions and 

temporal intensities of the fields for gas jet lengths l=0, 4, 6 and 8.5 mm from left to right. Fig. 

2.9 (b-d) are simulation results showing: energy and action plots as functions of jet length l , 

pulse intensity as a function of l  and   and pulse profiles as functions of   at four propagation 

lengths l=0, 4, 6 and 8.5 mm denoted by different colors respectively.  

 The experiments showed the following phenomena from Fig. 2.9 (a): for the shortest length 

l=4 mm, the pulse steepened faster at the back and the total pulse length is reduced; for longer 

length l=6 mm, the pulse front is also depleted; for l=8.5 mm the pulse duration is reduced from 
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45 fs to 27 fs FWHM. These can be compared with Fig. 2.9 (d). Fig. 2.9 (d) shows that at l=4 mm 

the back of the pulse steepens and the pulse duration reduces, while at l=6 mm the pulse front 

depletes too and at l=8.5 mm the pulse duration decreases to 20~30 fs FWHM. Besides, similar to 

the simulation results of the LBNL experiments, both Fig. 2.9 (c) and (d) show that pulse is 

compressed and intensity increases up till l=7 mm before it decays due to energy depletion; small 

oscillations are also observed at the pulse tail at later times, l=6, 8.5 mm for example. Fig. 2.9 (b) 

demonstrates that the energy depletes by around 65% by the end, and action starts to decrease at 

around l=6 mm, and at l=8.5 mm it decreases by 45%.  

 

2.3.3. 1D Regime Simulations 

Finally, we simulated parameters corresponding to a case considered by Shadwick et al.  [41], 

in which 1D simulations of energy depletion and spectral modification were studied.  The 

purpose of the comparison is twofold: to examine the effects of two dimensionality on the results 

obtained in Ref. 41, and at the same time to compare the results of WAKE, which uses the MPE, 

with those of a code that solves the full 1D wave equation. The case of 0 1a , was examined.  

To reduce the effect of pulse diffraction, we used a plasma channel with a parabolic radial profile 

density yielding a matched spot size of 8.3w m . The remaining parameters were as follows: 

a laser power of 2.2 TW  wavelength of 0 810 nm  , and duration 55.5p fs    propagating 

in a channel with an on axis electron density of 
18 34.3 10 cm  over a distance of 1 cm . In order 

to ensure the propagation is 1D, the laser power should be less than the critical power for self-

focusing [25], 
217( / )cr pP GW  .  For the parameters considered we find / ~1/ 3crP P .   

The pulse profile as a function of t  and   is shown in Fig. 2.10 (a), and the spectrum as a 

function of t  and k  is shown in Fig. 2.10 (b).  These are very similar to the corresponding 

images for the LNBL case shown in Fig. 2.4 (a) and Fig. 2.7 (a).  The energy and action as a 
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function of propagation distance from the 1D simulations of Shadwick et al. appear in Fig. 2.11 

(a) with the WAKE results appearing in Fig. 2.11 (b) for comparison.  In the full Maxwell’s 

equations solution for the pulse propagation presented by Shadwick et al.  action is only an 

approximate conserved quantity.  Thus, the decay in action in Fig. 2.11 (a) is expected.  The 

energy depletion of both simulations are comparable up to ~ 2270pt , at which point the 

numerical damping in WAKE (discussed in the next section) becomes noticeable as the action 

begins to drop appreciably in Fig. 2.11 (b).  By the end of the simulation, 4000pt  , the action 

in WAKE has dropped by around 2.5% , much more than that from the 1D simulation (around 

0.6% ).  

Figure 2.12 shows the Wigner distributions at times 0,2270,3000pt   respectively.  It 

can be seen from Fig. 2.11 (b) that the wave action starts to decrease dramatically at about 

2270pt  . Comparing with the spectrum Fig. 2.10 (b), we see a large wavenumber shift (up to 

0~ 0.6k ) appearing at this time. Fig. 2.12 also shows that the frequency is red shifted during the 

process and reaches to 0~ 0.6k by the time 2270pt  .  

 

2.4 Conclusion 

We have studied the spectral broadening of intense laser pulses propagating in plasma for 

parameters relevant to Laser Wake Field Acceleration.  The studies were carried out using the 

two-dimensional, paraxial simulation code WAKE, which makes a number of approximations 

that enable efficient calculation. Several measures of spectral modification were considered 

including the Fourier spectrum, the rate of change of the envelope phase, and the Wigner function.  

Simulations of the 2006 LBNL experiments, the recent pulse compression experiments of 

Schreiber, et al.,
 
and the explicit one dimensional simulations of Shadwick, et al. were performed. 

Results of the simulations verified that spectra were substantially modified for all three cases, and 
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that the spectral changes and energy depletion were consistent with action conservation. For 

pulses causing complete cavitation large wavenumber shifts, 
0/ .80k k  , are observed for 

propagation to a distance where 40%-50% of the pulse energy is depleted, consistent with 

previous estimates from conservation laws. The extended paraxial equation conserves action up 

to this distance. Action subsequently decays due to numerical damping and laser propagation out 

of the simulation domain. Analysis was conducted for the numerical propagation algorithm and 

numerical schemes in the next chapter and provided insight into the observed action decay for 

large wavenumber shifts.  
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Table 2.1 Parameters for the three cases simulated. 

 P (TW) a0 P (fs) w (m) n0 (10
18

 cm
-3

) length (mm) 

LBNL 40 0.7 80 25 4.3 12 

Schreiber et al. 200 3.0 45 22 2.3 8.5 

Shadwick et al. 2.2 1.0 55.5 8.3 4.3 10 
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Figure 2.1 Laser pulse of duration P  travelling through a plasma to the left. Plasma density 

n  increases at the front of the pulse, decreases in the middle and increases again at the back, 

resulting blue shift, red shift and blue shift again from front to back. 
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Figure 2.2 Comparison of actual group velocity (blue) and the approximate group velocity 

(red) as functions of zk . Plasma wave numbers in two propagation directions are denoted by 

dashed lines. 
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Figure 2.3 Local spectral shift k falls into the weak | |~ pk k , marginal 0 pk k k   

and strong 0| | pk k k  ranges. 
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Figure 2.4 (a) Radially averaged pulse intensity profile as a function of ( , )z   for continuous 

propagation distance z=0-12mm. (b) Pulse intensities as functions of   at distances z=0 (red), 

2.4 (light blue), 3.6 (purple) and 4.8mm (blue). 
0 0.16k    and 0.18p t   were applied 

in WAKE;  running time 100 hrs, 1 cpu. 
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Figure 2.5 Energy (red) and action (green) as functions of propagation distance z . Four 

moments of interest are denoted by dashed lines: z=0, 2.4, 3.6 and 4.8mm. 
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Figure 2.6 (a)-(e) Densities in the ( , )r   frame at z=0, 2.4, 3.6, 4.8 and 8mm from left to right.   

(f)-(j) Wigner distributions as a function of ( , )k  at z=0, 2.4, 3.6, 4.8 and 8mm from left to 

right.    
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Figure 2.7 (a) Spectral intensity as a function of ( , )z k for continuous distance z=0-12mm. (b) 

Spectral intensities at distances z=0 (red), 2.4 (light blue), 3.6 (purple) and 4.8mm (blue). 
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Figure 2.8 (a) Local frequency shift as a function of ( , )z   for distance z=0-12mm. (b) Local 

frequency shifts as functions of   at distances z=0 (red), 2.4 (light blue), 3.6 (purple) and 

4.8mm (blue). 
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(a)

(b) 

 
 

Figure 2.9 (a) Pulse profiles and the Wigner distributions at the background for four 

experimental cases: gas jet lengths l=0, 4, 6 and 8.5 mm from left to right. (b) Energy ratio 

(red, left axis) and ralative action change (green, right axis) as functions jet length l from 

WAKE. (c) Pulse intensity as a function of ( , )l  in continuous distance l=0- 8.5 mm from 

WAKE. (d) Pulse profiles for four jet lengths l=0 (red), 4 (light blue), 6 (purple) and 8.5 mm 

(blue) from WAKE. 
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Figure 2.10 (a) is the pulse field intensity as a function of ( , )pt  , averaged over r; (b) is the 

spectrum intensity as a function of 0( , / )pt k k , integrated over r. 
0 0.14k   , 

0.2p t    were applied, propagation time 4000pt  . 
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Figure 2.11 (a) Laser energy E (red, left axis), the mean wavenumber <k> computed from the 

first moment of the laser vector potential (blue, left axis), and the ralative change in the wave 

action W (green, right axis) from the 1D explicit simulation. (b) Energy E (red, right axis) and 

action W (green, right axis) from the WAKE simulation. 0 0.14k   , 0.2p t    were 

applied and propagation time 4000pt  . 
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Figure 2.12 Wigner distributions as functions of 
0( / , )k k   at propagation time 

0,2270,3000pt  from left to right.    
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Chapter 3: Analysis of Conservation Laws and the Numerical 

Schemes in WAKE  

 

3.1 Introduction 

In LWFAs (laser wake field accelerators), the laser pulse loses its energy to plasma waves that 

are generated by the laser pulse’s ponderomotive force [25,26]. Accompanying this process the 

laser pulse experiences spectral broadening and red-shifting [43-46]. We simulate these 

phenomena using the quasistatic, enveloped laser-plasma simulation code, WAKE [26]. However, 

for red-shifts comparable to the laser central wavenumber, the validity of the paraxial equation 

used in WAKE comes into question [38]. We have successfully implemented a tenuous plasma 

full wave equation (FWE) in WAKE extending the modified paraxial equation (MPE) 

implemented before. We then compare solutions of the two equations for cases in which there is 

strong spectral shifting. We find that the enveloped equations are capable of simulating those 

regimes as long as spatial and temporal resolution is sufficient and as long as numerical damping 

is held to a sufficiently low level.  

The organization of this chapter is as follows. Section 3.2 compares the tenuous plasma, full 

wave equation (FWE) and the modified paraxial equation (MPE) and their conservation laws. The 

advantage of FWE over MPE is described through dispersions and group velocities. In Sec. 3.3, 

the simulations using both FWE and MPE of the UMD parameters are presented and action 

decays are compared. Section 3.4 presents analysis of the numerical schemes in WAKE and how 

it affects numerical damping of action. Higher resolution in space and higher numerical fitting 

method produce more conserved action from simulations. Section 3.5 gives the conclusion of the 

chapter.  

 



44 

 

3.2 Full Wave Equation (FWE) and Modified Paraxial Equation (MPE) 

Both the FWE and the MPE are equations for the transverse components of the laser vector 

potential A
 (cylindrical represented in a moving window coordinate ( , , )r ct z t   system) as 

described in Chap2. Each takes the form as Eq. (3.1) (same as (1.7)) and Eq. (3.2) (same as (1.8)) 

respectively, 

 

2 2
2

02 2 2

2 4ˆ ˆq n
ik A A

c t c t mc



 
  

    
      

    
, (3.1) 

for FWE, and  

 

2
2

0 2

2 4ˆ ˆq n
ik A A

c t mc



 
  

   
    

   
, (3.2) 

for MPE. 

When it is appropriate to neglect the second order time derivative can be understood by 

considering the group velocity of plane waves in a uniform plasma as described by the two 

equations. The left-hand side of Eq. (3.1) is the d’Alembertian expressed in the moving window 

coordinates. The right hand side represents the electron current density.  Its form relies on the 

approximate conservation of canonical momentum for electrons in the laser field. This 

approximation relies on the excursion of electrons being smaller than the spatial scale over which 

the vector potential varies. In this regard, for 2D planar simulation with laser electric field plane 

polarized in the ignorable direction the form of the electron current density is exact. 

 

3.2.1 Numerical dispersion relations and laser pulse group velocities from FWE and MPE 

The advantage of retaining the second order term is best seen by comparing the linear 

dispersion relation for the various models. The dispersion relation for a small amplitude plane 

wave propagating in plasma is given by Eq. (2.1) 

 
2 2| | ( , ) /pck t z     ,      (3.3) 
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where  is the frequency, and k  the wavenumber.  For positive 
zk ( ˆ

zk z k  ), the plus and 

minus signs represent forward and backward propagating modes respectively. The numerical 

dispersion relation will depend on the manner in which Eq. (3.1) and (3.2) are converted to finite 

difference equations and the grid resolutions in ξ and t, ∆ξ and ∆t. Our typical resolutions are 

0 0.28k   , 0.54p t   . Figure 3.1 compares the forward propagation mode dispersion 

relation given by Eq. (3.3), or full wave solver, with the numerical dispersion relation for our 

implementation of the FWE and the MPE which are to be described in Sec. 3.4. Here we have 

taken 
141.17 10 /p rad s   , 4

0 7.8 10 /k rad cm   and 28 10 /k rad cm   , 

corresponding to a plasma density of 4.3x10
18

 cm
-3

 and vacuum focal spot 
0w  (

0~ 2 /k w
) of  

25 m. 

The FWE dispersion agrees well with the theoretical curve for small wavenumber 

shifts, 0| / | 0.1k k  , and for larger shifts 0| / | 0k k the discrepancy is less than 20%. 

Furthermore, the problematic divergence in the MPE dispersion as 0| / | 0k k   is eliminated in 

the FWE. In the current study, the primary advantage of FWE being accurately modeling the 

dispersion over a wide spectral range is particularly important as we are interested in the 

generation of long wavelength radiation, correspondingly to large shifts 0| / | 0.1k k .                 

Comparison of two numerical group velocities with theory for the same p and k used in 

Fig. 3.1 is shown in Fig. 3.2. Figure 3.2 is based on Fig. 3.1, compares group velocities vg as a 

function of normalized wavenumber k/k0 from theory (black) and the MPE solver (red) and FWE 

solver (blue) with a resolution 0 0.28k   and a time step 0.54p t   . It can be seen that 

there is much faster drop of group velocity for MPE compared to the theory, and the discrepancy 

between the FWE and MPE becomes large for a large spectral red shift, eg., ~0.95k0. The 

consequence is that the group velocity resulting from the FWE is larger than that of MPE. To 
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examine this in more detail, we have evolved a pulse with an initial redshift of 0.95k0 according 

to both the FWE and MPE solvers with the UMD laser-plasma system as shown in Table 3.1[34]. 

Figure 3.3  (a) and (b) show the intensity profile averaged over r as a function of propagation 

distance, z, and moving frame coordinate, ξ, resulting from the FWE and MPE solvers 

respectively. As expected, due to the reduced group velocity for red shifted light, both solvers 

show the laser pulse quickly slipping backward in the moving frame. Both are still, however, 

propagating forward in the lab frame. Also as expected, the FWE slips backwards more slowly.  

 

3.2.2 Conservation laws of FWE and MPE 

Both the MPE and the FWE have their own conserved quantity ‘action’, the constancy of 

which is demonstrate in Appendix 3.6, 

2
*

0
ˆ ˆRe ( )

2
MPE

d x d
I A k i A

c



 


 
  

 
 ,                                  (3.4) 

and 

 

2
*

0
ˆ ˆRe ( )

2
FWE

d x d
I A k i i A

c c t



 


  
   

  
 .  (3.5) 

Field energy depletes as the pulse propagates, because it’s extracted to accelerate plasma 

electrons and to generate plasma wake fields [8,41,42]. For the MPE the relevant energy is given 

by 

 

22

0
ˆ( )

2
L

d x d
U k i A



 
 

 
 .  (3.6) 

Examination of Eq. (3.6) reveals that LU is twice the electric field energy associated with the 

laser pulse. When frequency shifts are small. The plasma contribution to pulse energy is also 

small, and the electric and magnetic field energies are equal. Thus LU accurately represents the 

pulse energy for small shifts. It was shown in Ref. 26 that the rate of change of LU  equals the 
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negative of the rate at which the ponderomotive potential does work on the plasma in the 

quasistatic approximation. This is true even when shifts are large so we will use 
LU  to represent 

the laser pulse energy.  

Comparing expressions for energy and action we see, for both models, 

 ~
U

k
I

  .  (3.7) 

This implies that as pulse energy depletes, the averaged wavenumber also decreases. Thus the 

pulse depletion length dpz  becomes the estimate of the distance for large wavenumber 

shifts, / 1. 

 

3.3 Simulations and Comparison of FWE and MPE using UMD Parameters 

We have simulated with FWE of the UMD laser-plasma system as shown in Table 3.1. 

Figure 3.4 (a) shows the false color images of the pulse intensity on axis as a function of ξ. Figure 

3.4 (b) is the radially averaged pulse intensity as a function of ( , )z  . The pulse starts from the 

Gaussian distribution and initially compresses and self-focuses [25, 28] between distance 0-5.5 

mm and after it reaches its maximum compressed point at ~5.5mm, it starts to decay. For these 

simulations a resolution 0 0.28k   , and a time step 0.54p t   were used. 

As the pulse propagates, the spectrum is red-shifted as seen in Fig.3.5 where the false color 

images of the spectral intensity of ( , )A z  are plotted in the k-z plane. Figure 3.5 (a) is the 

spectrum from the FWE scheme, and Fig. 3.5 (b) is the spectrum from the MPE scheme. Both 

show that even though there is a large shift, the two schemes produced the similar spectra. Figure 

3.5 (c) is the spectrum from Turbowave [65], for which 2D planar geometry was used showing a 

similar spectrum. Figure 3.5 (a), (b) and (c) all show that the spectra start from the central wave 

number k0 and then are broadened and red-shifted as the distance increases. They each reach 

~80% wave number shift at 8.0z mm .  
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Figure 3.6 and 3.7 illustrate the process of pulse propagation and spectral broadening. Figure 

3.6 shows false color images of the laser intensities in the r-ξ plane at different propagation 

distances, z=0, 3.7, 5.5, 7.4 and 8.6 mm. The pulse first self-focuses (b), and then compresses in 

time (c). After a period it begins to stretch in ξ (d) and then escapes from the simulation domain 

(e). The evolution of the local spectrum is illustrated in Fig. 3.7 where false color images of the 

Wigner functions [5,6] in the k-ξ plane are displayed at r=0 and the same set of z values as in Fig. 

3.6. The initial pulse (a) is given a chirp (b). When cavitation occurs large red shifts appear (c). 

The stretching of the Wigner density reaches a minimum in k after which density escapes out of 

the back of the simulation domain (e). 

Figure 3.8 illustrates the time evolution of the quadratic quantities action and energy defined 

in Eqs. (4-6) using FWE and MPE. We note that for the two schemes the corresponding quantities 

track each other. By the end of the simulation energy has depleted to about 30% of its in itial 

value. Action, which should be conserved in both cases is constant until 8.0z mm after which 

it drops precipitously. This drop occurs at a distance corresponding to the images in Fig. 3.6 (d) 

and Fig. 3.7 (d). The cause of this drop is the propagation of action backward out of the 

simulation domain that occurs when spectral components of the laser pulse have been red shifted 

to such an extent that their group velocity fall well below the speed of light.  

 

3.4 Analysis of the Numerical Scheme in WAKE and Non-Conservation of Action  

3.4.1. Numerical Scheme for MPE with Three-Point Fitting and Action Decay  

The MPE Eq. (3.2) conserves wave action exactly. However, in the simulations of the 

previous section action is observed to decay.  Therefore, this decay must be a result of the 

numerical implementation of Eq. (3.2).  We now consider the dispersion and dissipation 

associated with the particular discrete numerical implementation of the modified paraxial 

equation. For this analysis we make the substitution 
2 2k    and 
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2 2 2(4 / ) / pq mc n k    in Eq. (3.2), and focus on the discretization of  and t  derivatives.  

The discrete equation is evaluated on a grid point in  and half way between two points on the 

grid in time t  

 2 2

0
/2,

/2,

2 ˆ ˆ
p

t t
t t

ik A k k A
c t 









   
          

,   (3.8) 

where t  is the numerical step size in time.  The derivative in time is evaluated by simple 

differencing, /2, , ,[ / ] ( ) /t t t t tA t A A t        .  The quantity /2,
ˆ

t tA  on the right is 

represented by the average , ,
ˆ ˆ( ) / 2t t tA A   .  To evaluate the derivative with respect to  , we 

use a three point, one sided difference, 

 2

ˆ 1 ˆ ˆ ˆ1.5 2 0.5
A

A A A    


 

  


  

 
.    (3.9) 

This amounts to fitting the three points to a parabola and evaluating the derivative at the point .  

This differencing is chosen because it leads to a time advancement algorithm that is numerically 

stable, and it allows (3.10) to be solved for ,t tA  by sweeping in the direction of increasing  , 

thus preserving that no information propagates faster than the speed of light. 

We now consider how Eq. (3.8) acts on a plane wave.  In the lab frame coordinates a plane 

wave vector potential can be written 0

ikz i tA A e  , where 0A  is the amplitude of the wave, and 

k  and  are the lab frame wavenumber and frequency.  Upon transforming to laser frame 

coordinates, ct z    and t , we have 0( )( )

0
ˆ i k k i tik i ck tA A e Ae

         
.  

Thus, the lab 

frame frequency and wavenumber ( , )k  are related to the laser frame (envelope) quantities, 

( , )k  via 0k k k 
 
, and ck   .  

In the discrete case, the mappings that advance the plane wave in   and t  are given by the 

following 
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, ,
ˆ ˆi k

t tA e A 

  

 

        (3.10a) 

, , ,
ˆ ˆ ˆi t

t t t tA e A A

   

   ,     (3.10b) 

where we treat k  as the independent variable that determines  , ( )k   , and we note 

that   will be a complex quantity.  The quantity i te     determines the stability and 

dissipation in our numerical scheme. For instance, if | | 1   (| | 1  ), repeated applications of 

time advance algorithm, representing propagation over some time interval, will result in the decay 

(growth) of the wave amplitude.  Application of the three point evaluation of the derivative 

defined in (3.9) yields, 

 2
ˆ 1 ˆˆ ˆ1.5 2 0.5i k i kA

e e A i kA   

 




 

 
    

 
.    (3.11) 

The numerical wavenumber 
2ˆ (1.5 2 0.5 ) / ( )i k i k

r ik i e e k i k              will have 

both a real and imaginary part. In the limit of small k  , corresponding to high numerical 

resolution of the wavenumber shift, Eq. (3.11) can be Taylor expanded to provide expressions for 

rk  and ik  

21
1 ( ) ...

3
rk k k   

 
    

 
  ,    (3.12a) 

3( ) ...
4

i

k
k k


     .     (3.12b) 

From Eqs. (3.12a) and (3.12b) we see that as 0  , we recover the continuous limit of 

ˆ
rk k k    .  The imaginary part ik  represents the numerical damping and is small in the 

0  limit.  Further, it is seen from (3.12a) that our differencing in  is second order 

accurate as expected.  In the Appendix 2 of this chapter we consider a four point fitting for Eq. 

(3.9) that can be used to reduce the numerical damping.   Figures 3.9 (a) and (b) depict rk  and 
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ik  normalized by 
0k  respectively for different  ’s. The orange curves in both plots represent 

the case 
0 0.56k   , reds represent 

0 0.28k   , blues represent 
0 0.14k   , and blacks 

represent 
0 0.07k   .  In Fig. 3.9 (a) a line of positive slope one would represent the 

continuous limit, while in Fig. 3.9 (b) the value would be zero everywhere.  As the resolution 

increases, 
rk approaches k , and 

ik  approaches zero.  

The numerical dispersion relation for i te     is obtained by substituting the relations 

ˆˆ ˆ/ | ( )A i k A       and 
,

/2,

ˆ ˆ/ ( 1) /t
t t

A t A t





      in Eq. (3.8). Upon normalizing and 

simplifying we find the numerical dispersion relation 

1 / 2

1 / 2

i t i t
e

i t

    
 

 
,     (3.13) 

where  

2 2

0

( )

ˆ2( )

pc k k

k k
,    (3.14) 

is the frequency shift (when k̂ k ) for the continuous equation. We note that in the limit 

0t  the frequency shift for the discrete equation approaches that of the continuous 

equation, .  Further, from (3.15) it follows that if 0ik then solutions are undamped, 

1.  Further, when 0ik , as it is for the three-point-fitting, 1  so the algorithm is 

stable but dissipative.    

Numerical damping of waves, and consequently damping of action, occurs due to nonzero 

ik .   From Eqs. (3.13) and (3.14) we note that damping will maximize when  0 0rk k .  In 

this case  is a negative imaginary number and 1.   To illustrate the effect of the numerical 

damping, we plot the simulation case in Sec. 2.3.3, which is the Shadwick et al.’s 1D regime 

simulation [41] in Fig 3.10.  Figure 3.10 (a) is | |n  as a function of 0/k k  for different values 
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of  , where 42 10n    corresponding to 4000pt  in Ref. 41. The other parameters are 

01/ 0.25k c t  ,
3 13.9 10pk cm  , and 2 18 10k cm

   .  For each value of  , | |n  

becomes significantly less than unity at some negative value of wavenumber shift k . Thus, 

regardless of resolution, if the wavenumber shift is large enough, the numerical solution to Eq. 

(3.2) will be damped.  However, for smaller values of  , the wavenumber shift required for 

sizable numerical damping becomes larger (more negative).  Furthermore, for weak and marginal 

wavenumber shifts, 
0| |k k  , smaller values of   result in negligible damping.  This is the 

case for both blue shift side (right) and red shift side (left). We further considered variations in 

time step t ; we found that the values of | |n  don’t vary significantly as long as 

2 2 2

0 01/ ( ) /pk c t k k k  .  Thus, the main factors controlling the decay of action in the 

simulations are a combination of the wavenumber shift and the finite resolution in .  

Figure 3.10 (b) shows action versus time from WAKE simulations of the Shadwick et al.’s 

1D regime case in Sec.2.3.3.  Two resolutions are considered, 0 0.28k   (red) and 

0 0.14k   (blue). The higher resolution (blue) shows less damping consistent with | |  for 

0 0.28k    (red) and
 0 0.14k    (blue) cases respectively as shown in Fig. 3.10 (a). We 

infer from this that numerical damping leads to non-conservation of action.
 
 We note however, 

that decreasing the grid size by a factor of two does not double the time over which action is 

conserved.  Rather, it appears that the time at which action conservation fails is determined by the 

time it takes to develop wavenumber shifts 00.5k k  .  Thus, with the given algorithm, and in 

particular, the three point fitting scheme, there is little benefit to reducing the grid size past 

0 0.14k   .  
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3.4.2. Numerical Scheme for FWE with Higher-Order-Fitting and Action Decay  

The previously used modified paraxial equation (MPE) results from neglecting the second 

order time derivative in Eq. (3.1). Here we retain the second derivative in the full wave equation 

(FWE) Eq. (3.1). Similar to MPE, each term in Eq. (3.1) is evaluated at each grid point in ξ and 

half way between grid points in t 
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. (3.15) 

The differencing for the first and second order time derivatives are evaluated by 

/2, , ,[ / ] ( ) / 2t t t t t tA t A A t          and 
2 2 2

/2, , , ,[ / ] ( 2 ) /t t t t t t tA t A A A t            

respectively, and the quantity /2,
ˆ

t tA  on the right of Eq. (3.15) is averaged , ,
ˆ ˆ( ) / 2t t t tA A   . 

This choice of differencing scheme was motivated by its linear stability and dispersion accuracy. 

To evaluate the derivative with respect to  , a four-point, one sided differencing method is 

applied (see Appendix 2), 

         2 3

ˆ 1 5 5 1ˆ ˆ ˆ ˆ
3 2 6

A
A A A A      


 

    

  
    

   
 .  (3.16) 

Similar to three-point-fitting, the amount of dissipation is related to the numerical wave 

number
1ˆ ( / ) |k iA A  

     , evaluated when A  is a plane wave, exp( )A i k    . The 

wave number is complex ˆ ˆ ˆ
r ik k i k    and the imaginary part is associated with dissipation. 

For the three-point method we have 
4ˆ ( ) / (4 )ik k      while for the four point method we 

have 
6ˆ ( ) / (9 )ik k      . 

We have considered the parameters in Table 3.1 and plotted Fig. 3.11 similar to Fig. 3.10. 

Figure. 3.11 (a) is the quantity 
2

0| / |NA A for N=554073 steps of the FWE with several values of 

axial resolution k  versus wave number shift. This number of steps corresponds to a 
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propagation distance z=12.3mm. The other parameters are given in the figure caption. As can be 

seen, the wave becomes damped as the wave number shift increases or the resolution is lowered. 

The implications of this damping for our propagation studies are illustrated in Fig. 3.11 (b) where 

action is plotted versus propagation distance for two values of resolution. Initially action is well 

conserved but decays as wave number shifts become appreciable. The decay is greater when 

resolution is lower. 

The benefits of using the four-point-fitting method are shown in Fig. 3.12. Figure 3.12 (a) 

compares 2

0| / |NA A as a function of wave number shift for the two different fitting methods and 

a particular axial resolution, 
0 0.14k   . The four-point method shows substantially less 

damping. The consequence of using the four-point method in a WAKE simulation of pulse 

propagation is shown in Fig. 3.12 (b), where action is plotted versus propagation distance. With 

four point fitting action remains constant until 8.0z mm where it drops abruptly. Refining the 

mesh in ξ does not change the action curve.  

We attribute the sharp drop in action occurring at 8.0z mm in Fig. 3.12 (b) to convection 

of action out of the simulation domain. The simulation is carried out in a moving window frame 

moving at the speed of light c. The group velocity of the laser pulse slows down as the spectrum 

is red-shifted, and it drops rapidly when the wave number becomes comparable to pk (Fig. 2.2). 

Portions of the pulse propagating with velocity below c will leave the simulation domain by 

moving to larger values of ξ. This process is visible in the nearly horizontal streaks of intensity 

for large ξ in Fig. 3.4 (b). It is also visible in Figs. 3.6 (e) and 3.7 (e), where intensity and Wigner 

density are seen a large value of ξ. The expressions for gv in Chap. 2 indicate that gv is 

determined by the spectral shift rate, i.e., the larger the spectral shift, the greater the rate at which 

action will leave the simulation domain.  

We note from Fig. 3.8 that the abrupt drop in action occurs over a propagation distance of 8 

mm. The portion of the pulse contributing to this drop needed to fall back in the moving window 
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by about 150fs. This implies a velocity difference 
2( ) / 5.3 10gc v c    , which is consistent 

with the slope of the intensity streak in Fig. 3.4 (b). 

 

3.4.3. Conclusions of Numerical Schemes and Action Decay  

Equation (3.1) and (3.2) are solved numerically, using finite difference representations of the 

derivatives described in Sec. 3.4.1 and 3.4.2. In our numerical routine values of A
are defined on 

a regular grid in r, ξ and t. The terms in the equation are then expressed on the gird in r and ξ, and 

half way between two grid points in t in the case of the MPE ( / t  term) and at the grid points in 

the case of the FWE (
2 2/ t  term). Numerical dissipation enters the solution because the 

derivative in ξ is not centered on the gird in ξ. This allows the solution to be advanced in t by 

sweeping through ascending values of ξ.  

The amount of dissipation is related to the numerical wave number
1ˆ ( / ) |k iA A  

     , 

evaluated when A  is a plane wave, exp( )A i k    . The wave number is complex 

ˆ ˆ ˆ
r ik k i k    and the imaginary part is associated with dissipation. In the limit of small k  , 

corresponding to high resolution or small wave number shift, the imaginary part is small. The 

effect of numerical dissipation can be studied by considering the linear evolution of plane wave 

amplitudes under the discretized wave equations. Specifically, we consider the ratio 

0 00
ˆ ˆ/ /N t N t tA A A A  for a plane wave with longitudinal wave number 0k k k  and 

transverse wave number k . In the absence of numerical dissipation 0| / | 1NA A  . 

 

3.5 Conclusions  

We have implemented a full d’Alembertian in the laser field evolution equation in WAKE. 

The results that we find for pulse evolution, energy depletion, and spectral modification are 



56 

 

remarkably similar to those previously obtained with the modified paraxial equation. The 

accuracy of calculations is monitored by observing the time dependence of wave action. 

Numerical damping of action can be minimized by a combination of high resolution in ξ and 

higher order evaluation of ξ derivatives. Action does decay in the simulations, but due to 

convection out of the simulation domain, we conclude that WAKE is an accurate tool for 

studying energy depletion and spectral broadening in intense laser-plasma interactions.  

 

3.6 Appendix 1: Conservation Laws  

We are going to derive the conservation laws from the full envelope wave equation (FWE): 

the conservation of laser wave action and the conservation of particle and laser energy. Similar to 

the derivations from the modified paraxial equation (MPE) [26], we start from writing the radiant 

field in terms of an envelope modifying a plane wave travelling as the speed of light, 

 0ˆ ( , , ) . .
ik

A A x t e c c
 

   . (3.17) 

The evolution of the envelope is determined by the full wave equation, 

 

2 2
2

02 2 2

2 4ˆ ˆq n
ik A A

c t c t mc



 
  

    
      

    
. (3.18) 

To derive the conservation of wave action we multiply Eq. (3.18) by 
*Â , integrate over all 

volume, and subtract from that quantity its complex conjugate,  

 
* 2 * 22

3 * 3 3 *

02

ˆ ˆ ˆ ˆ1 2 2ˆ ˆ ˆ ˆ ˆ 0
A A A Ad d

d x A A ik d x A d x A A
c dt t t c dt c t t 

   
    

      
           
        

   . (3.19) 

Here we assume that the laser amplitude vanishes at infinity so that boundary terms can be 

neglected.  Using the identity, 

2 * 2 *
3 * 3 *

ˆ ˆ ˆ ˆ1ˆ ˆ ˆ ˆ
2

A A A A
d x A A d x A A

t t t   
   

   

      
         
         

  .            (3.20) 

To rewrite Eq. (3.19) as a conservation law, 
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* *2

3 * 3 3 *

0

ˆ ˆ ˆ ˆ1 ˆ ˆ ˆ ˆ ˆ2 0
A A A Ad

d x A A ik d x A d x A A
dt c t t  

   
    

        
            
        

   . (3.21) 

This is interpreted as the conservation of action Eq. (3.5), 

 

2
*

0
ˆ ˆRe ( )

2
FWE

d x d
I A k i i A

c c t



 


  
   

  
 , (3.5) 

where 
FWEI  is a conservative quantity. 

While the form of action has been modified for FWE, the laser pulse energy which is the sum 

of the electric and magnetic energy stays the same as that of MPE, 

 

22

0
ˆ( )

2
L

d x d
U k i A



 
 

 
 .  (3.6) 

 

3.7 Appendix 2: Four-Point-Fitting Scheme  

By using a four-point-fitting scheme as opposed to the three point fitting scheme presented 

in section VI ik  and hence the numerical damping can be reduced.  Similar to the three point 

fitting method, one can assume that the first derivative of 3
ˆ

jA   can be approximated by the values 

of 3
ˆ

jA  , 2
ˆ

jA  , 1
ˆ

jA   and ˆ
jA  (excluding boundaries) by fitting them on a curve as follows  

                           0 3 1 2 2 1 3

3

ˆ 1 ˆ ˆ ˆ ˆ
j j j j

j

A
c A c A c A c A

 
  




   

 
 ,    (3.22a) 

which upon using Eq. (3.10a) is simply:  

                               2 3

3 0 1 2 3

3

ˆ 1 ˆ i k i k i k

j

j

A
A c c e c e c e     

 

  






   

 
.   (3.22b) 
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We define 
2 3

0 1 2 3
ˆ ( ) / ( )i k i k i k

r ik i c c e c e c e k i k                  such that 

3 3
ˆˆ ˆ| ( )j jA i k A      where 

rk  and 
ik  are real and imaginary components of the ‘numerical 

operator k̂ .   

 For a sufficiently resolved wavenumber shift, 1k   , and we can Taylor expand k̂  

providing 

2 3 4

0 1 2 3 4
ˆ ( ) ( ) ( ) ( ) ...

i
k f if k f k if k f k        


           

,  (3.23) 

where the 
if  are functions of the 

ic .  In order to be consistent with the continuous limit, we want 

0 0f   the first order term to be equal to i k   when 0  .  In addition the even ordered 

terms should be as small as possible because they result in numerical damping.  Our conditions 

are as follows: 

0 0 1 2 3

1 1 2 3

2 1 2 3

4 1 2 3

( , , , ) 0

( , , ) 1

( , , ) 0

( , , )

f c c c c

f c c c

f c c c

f c c c 



 





,       (3.24) 

where  is a free parameter that we can use to specify one additional condition.   Solving for the 

ic  and rewriting k̂  we have  

       

   2 35 2 5 1ˆ 2 1 2 1 4
3 3 2 6

i k i k i ki
k e e e         



      
           
     

,  (3.25) 

where for small k   

2 41 1
1 (4 1)( ) (100 11)( ) ...

6 120
rk k k k       

 
        

 
,   (3.26a) 

3 51
( ) (9 2)( ) ...

18
ik k k k       

 
      

 
.    (3.26b) 
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For the least numerical damping/growth 
ik  should be as small as possible, setting 0   

provides a
ik  of 6[( ) ]O k  , providing  

 

21
1 ( ) ...

6
rk k k   

 
    

  ,      (3.27a) 

61
( ) ...

9
ik k  


  

 .     (3.27b) 

The solution is still stable, and damping is considerably reduced compared with the three-point-

fitting method, which we see by comparing Eqs. (3.27b) and (3.12b). In addition, the real part 

deviates less from δk comparing Eqs. (3.27a) and (3.12a).    
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Table 3.1 UMD laser-plasma system parameters. 

Quantity Value  

U (J) 0.5  

a0 0.45  

P (fs) 60  

w (m) 25  

n0 (10
18

 cm
3
) 4.3  

Length (mm) 12.3  
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Figure 3.1 Normalized frequency, ω/k0c, as a function of normalized wavenumber k/k0 from 

theory (black) and the MPE solver (red) and FWE solver (blue) with a resolution 

0 0.28k   and a time step 0.54p t   . Here we have taken 
141.17 10 /p rad s   , 

4

0 7.8 10 /k rad cm   and 
28 10 /k rad cm   . 
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Figure 3.2 Comparison of group velocity vg as a function of normalized wavenumber k/k0  

from theory (black) and the MPE solver (red) and FWE solver (blue) with a resolution 

resolution 0 0.28k   and a time step 0.54p t   . Here we have taken 

141.17 10 /p rad s   , 
4

0 7.8 10 /k rad cm   and 
28 10 /k rad cm   . 
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 (a) 

(b) 
 

Figure 3.3 Radially averaged laser fields as a function of propagation time or distance z and ξ 

from FWE (a) and MPE (b) models respectively.   
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(a) 

(b) 

 

Figure 3.4 (a) Pulse intensities as functions of   at distances z=0 (red), 3.7 (purple), 5.5 

(blue), 7.4 (green) and 8.6mm (orange). 0 0.14k    and 0.09p t   were applied in 

WAKE;  running time 1.5 hrs, 1 cpu. (b) Radially averaged pulse intensity profile as a 

function of ( , )z   for continuous propagation distance z=0-12.3mm. 
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 (a) 

(b) 

(c) 

 

Figure 3.5 (a) Spectral intensity as a function of ( , )z k for continuous distance z=0-12.3mm 

from the full wave equation (FWE). (b) Spectral intensity from modified paraxial equation 

(MPE). (c) Spectral intensity Turbowave (2D planar geometry). 
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Figure 3.6 (a)-(e) Pulse profiles as a function of ( , )r  at z=0, 3.7, 5.5, 7.4 and 8.6 mm. from 

left to right.    
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Figure 3.7 (a)-(e) Wigner distributions as a function of ( , )k  at z=0, 3.7, 5.5, 7.4 and 8.6 mm. 

from left to right.    
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Figure 3.8 Energy (red for FWE, purple for MPE) and action (dark green for FWE and light  

green for MPE) as functions of propagation distance z. 
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(a)     (b) 

 

Figure 3.9 
rk (a) and 

ik (b) of the ‘numerical operator’ k̂  as functions of 
0/k k with 3-

point fitting method in the MPE solver, for both red shifts 
0/ 0k k   and blue shifts 

0/ 0k k  . The orange curves represent the case
0 0.56k   , reds represent

 0 0.28k   , 

blues represent 0 0.14k   , and blacks represent 0 0.07k   . 
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Figure 3.10 (a) | | | |n i t ne    as a function of 
0/k k  with 3-point fitting method in the 

MPE solver.  
01/ 0.25k c t   and different 's  denoted by different colors for both red 

shift 
0/ 0k k   and blue shift 

0/ 0k k  . The orange curve is for the 
0 0.56k   , red is 

0 0.28k   , blue is 0 0.14k   , and black is 0 0.07k   . (b) Action versus time with 

3-point fitting method in the MPE solver produced by WAKE with 0 0.28k   (red) and 

0 0.14k   (blue) simulating the Shadwick’s 1D explicit simulation case. 
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(a)

(b) 

 

Figure 3.11 (a) 
2

0| / |NA A as a function of 0/k k  with 4-point fitting method in the FWE 

solver . 01/ 0.028k c t  and different 's  denoted by different colors for both red shift 

0/ 0k k   and blue shift 0/ 0k k  . The orange curve is for the case 0 0.56k   , red is 

0 0.28k   , blue is 0 0.14k   , and black is 0 0.07k   . (b) Action versus time with 

4-point fitting method in the FWE solver produced by WAKE with 0 0.28k   (red) and 

0 0.14k   (blue) simulating the UMD laser-plasma system. 
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(a)

(b) 

 

Figure 3.12 (a) 
2

0| / |NA A as a function of 0/k k  with 01/ 0.028k c t  and 0 0.14k    

for 3-point fitting method (dashed curve) and 4-point fitting method (solid curve). (b) Action 

versus time produced by WAKE with 0 0.14k   for 3-point and 4-point fitting methods 

simulating the UMD laser-plasma system. 
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Chapter4: Pulsed Mid-infrared Radiation from Spectral 

Broadening in Laser Wakefield Simulations  

 

4.1 Introduction 

 A short (<100 fs), intense (>10
17 

W/cm
2

), optical laser pulse propagating through 

underdense (n~10
18

/cm
3

) plasma ponderomotively excites plasma waves. Plasma electrons are 

pushed forward at the pulse front, repelled laterally in the body of the pulse, and converge on axis 

one plasma period later.  As a result, the electron density increases at the front, decreases in the 

middle and can increase again at the back of the pulse. The density variations of the plasma wave 

provide a dynamic dielectric response that modifies the pulse spectrum [38,40-42]: the spectrum 

blue-shifts where the electron density is rising in time and red-shifts where the electron density is 

falling in time. For pulse durations commensurate with the plasma period, red-shifting dominates 

the spectral evolution and occurs where the body of the pulse sits in a region of falling electron 

density. The red-shifting can lead to a broadband spectrum extending well into the mid-infrared 

(MIR), wavelengths ranging from 3 to 7 microns, corresponding to 70-90% wavenumber shifting 

for a 800nm wavelength laser pulse, and whose properties are determined by those of the initial 

pulse and the plasma through which it propagates [47]. Because of its spectral proximity to the 

natural frequencies associated with molecular vibration, a tunable MIR source could be used to 

probe fundamental physical processes in liquids and materials or induce time-dependent 

structural changes in biological assemblies [47,48]. To this end, we investigate the parametric 

dependence of the conversion from optical to MIR energy in underdense plasma.  

The extent of spectral shifting depends on the temporal gradient in the electron density and the 

distance over which the gradient is sustained [38,40-42,47]. The conversion to MIR thus relies 

critically on increasing and maintaining the ponderomotive force [24-26]. At low powers, 
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preformed plasma channels can provide radial confinement and maintain the ponderomotive 

force. At higher powers, the radial expulsion of electrons initially focuses the pulse and can result 

in a transient self-guiding structure: relativistic self-focusing and guiding [4,27-30]. Additionally, 

the local reduction in group velocity accompanying the red-shifting compresses the pulse [75,78-

80]. Both nonlinear localization effects can enhance the ponderomotive force and consequently 

the electron density gradient. If the ponderomotive force is sufficient, complete cavitation of the 

electron density can occur and is often referred to as the ‘bubble regime’ [8-10]. 

Figure 4.1 illustrates the co-localization of the pulse and plasma wave. In the simulation a 

pulse with an initial wavelength of 800 nm, energy of 0.5 J, and duration of 30 fs is injected into a 

plasma of density 4.3x10
18

 cm
-3

. The top row display the laser pulse intensity and electron density 

as a function of radius r  and moving frame coordinate ct z   , where c  is the speed of light, 

initially and after 4.9 mm of propagation on the left and right respectively. At 4.9 mm the pulse 

has undergone significant transverse and temporal compression. The body of the pulse sits in a 

region where the electron density is falling in time and the region trailing the pulse is completely 

devoid of electrons. On the bottom row the corresponding Wigner distributions, representations 

of the local pulse spectrum, are plotted as a function of normalized wavenumber 0/k k  and  . 

The negative gradient in electron density along the pulse has resulted in the average pulse 

wavenumber dropping to nearly half its initial value, and the minimum wavenumber extending 

into the MIR.  

The remainder of this chapter is organized as follows. Section 4.2 describes the 

ponderomotive guiding center, quasi-static plasma response model and the tenuous plasma, full 

wave equation (FWE) used in the simulations. In Sec. 4.3, the role of wave action conservation 

and pulse energy depletion in spectral shifting is discussed. Simulation results for pre-formed, 

fully ionized plasmas are presented in Sec. 4.4. In this section, we examine MIR generation for 

parameters relevant to the University of Maryland laser system, and examine the parametric 
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dependence of MIR energy on laser power, pulse length, and plasma density. Section 4.5 

concludes the chapter with a summary of our results.  

 

4.2 Plasma Response and Propagation Model  

We adopt the ponderomotive guiding center, quasi-static, full wave equation model Eq. (4.1) 

(previously Eq. (1.7)) to describe the evolution of the plasma and laser pulse.  

2 2
2

0 2 2 2

2 1 4ˆ ˆe

e

ne
ik A A

c t c t m c



 


    
     

    
,    (4.1) 

where 
en  and    

 are the average electron density and relativistic factor, e  is the fundamental 

unit of charge, 
em  is the electron mass, and the angular bracket signifies that an average over an 

ensemble of particles that stream through the plasma wake generated by the laser pulse is to be 

taken.   

The model separates the electric and magnetic fields into fast and slow components. The fast 

evolution occurs on the time scale of the optical period, and the slow evolution on the time scale 

of the pulse duration or plasma period. The plasma electrons conserve canonical momentum in 

responding to the fast components, and respond on the slow time scale to both the slow 

components of the fields (the plasma wake) and the ponderomotive force associated with the laser 

pulse. The laser pulse envelope evolves on the slow time scale, responding to changes in the 

plasma density. On the fast time scale, the electric field is approximated as divergence free. The 

equations describing the separation of time scales are derived in Ref. 26 for the case of a slowly 

varying envelope description of the laser pulse. They have been updated in Chap.3 and are further 

expanded here to account for large shifts in the spectral content of the laser pulse.  

We note that 0k  appearing in Eq. (4.1) is a reference wave number, and that the evolution of 

the vector potential A is unchanged by a transformation that shifts the value of 0k  and adds a 

wavenumber shift to the phase of the envelope. This is because the slowly varying plasma density 
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responds only to the magnitude of the envelope, Â . Thus, the validity of Eq. (4.1) does not 

require that the envelope be slowly varying on the scale of the initial wavelength, 

0
ˆ ˆ| / | | |A k A  . However, the multiple time scale approach does require that the pulse 

envelope evolves slowly as it propagates 
0

ˆ ˆ| ( / ) | | / |ik A A c t    . The advantage of 

retaining the second order time derivative and the numerical implementation of Eq. (4.1) are 

described in Chap.3. 

 

4.3 Spectral Shifting in Tenuous Plasma  

As a laser pulse propagates through plasma, it loses energy by exciting plasma waves 

[8,38,41,42, 81]. At the same time the laser pulse spectrum is modified. These processes are 

related to each other through the conservation of wave action. A consequence of the 

ponderomotive guiding center description of the plasma response is that the plasma current on the 

right hand side of Eq. (4.1) is proportional to, and in phase with, the vector potential. The rate of 

energy transferred to the electromagnetic wave can be calculated as the power the ponderomotive 

force does on the plasma current [81]. It follows from this that the action, as in Eq. (3.7), 
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 
 
 ,    (4.2) 

is conserved [82]. We compare this quantity with twice the energy stored in the fast varying 

electric field, as in Eq. (3.8), 

2
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d
U d x k i A x t d x dkk A




 
  


  

     ,  (4.3) 

representing the sum of the electric and magnetic field energies which are approximately equal. 

The over bar denotes a Fourier transform with respect to   with the transform variable k ,  

ˆ( , , ) ( , , ) ikA x k t d A x t e   

   .     (4.4) 
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A characteristic wavenumber, k  , can be defined and used to monitor spectral 

modification. In particular, we define an average wavenumber with respect to the spectral action 

density as 

2 2 2

2 2

| |

| |

L
d x dkk A U

k
Id x dkk A





 
 

 
.     (4.5) 

Equation (4.5) demonstrates that while the action is constant, the characteristic wavenumber must 

decrease in proportion to the pulse energy. An expression for the rate of energy depletion and 

accompanying spectral shifting can be derived when plasma waves are weakly excited. For an 

initial pulse envelope  

2 2

0
ˆ( , , 0) sin( / 2 )exp( / )A x t a c r w          (4.6) 

defined on the interval 0 2c   , where 0a  is the peak normalized vector potential of the 

laser field, w  is the spot size, and   the full width at half maximum (FWHM). The spectral 

shifting rate 
1 /k d k dz     for linear plasma wave excitation is given by   

22

4 2
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sin( )1 1 1
1
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p p
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k wd k P

k dz c k w P

 

    

       
        

          

,  (4.7) 

where 
2

0[ ] 21.5( / )P GW a w  , * 0.345P GW , 
2 24 /p e ee n m  , and /p pk c . The 

dependence of Eq. (4.7) on physical parameters can be explained as follows. By increasing the 

pulse power or decreasing the spot size, the work done by the laser pulse on the plasma increases 

through an enhanced ponderomotive force. For small pulse length, 1p   , the shifting rate is 

proportional to pulse length as the ponderomotive force is active over an extended duration and 

performs more work on the plasma. At ~ 2p  , the spectral shifting rate is maximized due to 

the weak resonance associated with matching the pulse length to the plasma period. Increasing 
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the pulse length beyond ~ 2p   provides additional pulse energy but weakens the longitudinal 

ponderomotive force, diminishing the shifting rate.  

While Eq. (4.7) provides some qualitative insight on the parametric dependence of the 

shifting rate, its quantitative predictive capability is limited. Figure 4.2 shows the characteristic 

wavenumber as a function of distance for a 17 TW, 40 TW, and 60 TW, laser pulse propagating 

in a plasma channel with on axis density 4.3x10
18 

cm
-3

. The pulse was initialized with a 

wavelength of 800 nm, temporal FWHM of 30 fs, and a spot size of 25 m matched to the plasma 

density’s radial parabolic profile [83]. The reduced group velocity accompanying the red-shifting 

causes the radiation to slide backwards in the moving frame coordinate,  . Each curve terminates 

when the radiation reaches the simulation boundary in   of 288 fs.  The rate of spectral red-

shifting increases with power, but the wavenumber does not drop linearly with distance as 

predicted by Eq. (4.7).  The inset displays a comparison of Eq. (4.7) with the simulation results 

for the initial stage of propagation. For the comparison, Eq. (4.7) has been corrected with the 

effective relativistic mass increase contributed by the electron quiver energy 

(
2 1/4

0/ [1 2 ]p p a   ).  For lower powers and short propagation distances, the linear theory 

matches the simulations well. The onset of pulse self-focusing and compression, and electron 

cavitation result in the deviation between theory and simulation for higher powers and longer 

propagation distances. Furthermore, as seen in Figs. 4.1 and 4.2, the characteristic wavenumber 

cannot diagnose the spectral range of the pulse. The characteristic wavenumber for the 17 TW 

pulse in Fig. 4.2 terminates at 0/ ~ 0.5k k   corresponding to ~1.6 m  , while in Fig. 4.1 

the spectral range for the same power extends below 0/ ~ 0.2k k , ~ 4 m  . These strongly 

shifted components of the pulse represent the MIR radiation, wavelengths from 3 to 7 m .  
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4.4 Simulation Results 

4.4.1. Observation of MIR  

We first examine the conversion of spectral energy into the mid-IR for parameters relevant 

to the current laser-plasma capabilities at the University of Maryland. A laser pulse with an initial 

wavelength 800 nm, spot size 25 m, temporal FWHM 30 fs and power 17 TW (normalized 

vector potential 
0 0.45a  ), is injected into a plasma channel with an on axis electron density of 

4.3x10
18 

cm
-3

 and propagates over a total distance of 12.3 mm. The corresponding critical power 

for self-focusing, 
217( / )cr pP GW  , is 7 TW. In Fig. 4.3, the spectral energy density, the 

integrand of Eq. (4.3), is plotted as a function of normalized wavenumber, k/k0, at propagation 

distances of z = 0, 2.46, 4.94 and 7.9 mm, represented by the color red, grey, dark grey and black 

respectively. For reference, the pulse energy has dropped to 55% of the initial energy by 7.9 mm. 

The spectral density is broadened and red shifted as the pulse propagates. At 7.9 mm, the spectral 

intensity extends to wavelengths longer than 4.7 m (red arrow).  

The blue curve in Fig. 4.3 displays the spectral density at z = 7.9 mm when the pulse 

propagates through a uniform plasma (no pre-formed channel). In spite of surpassing the self-

focusing condition, / 2.4crP P  , the pulse diffracts in the uniform plasma, limiting the spectral 

broadening and MIR energy. At 17 TW, the radial confinement provided by pre-formed channel 

maintains the pulse intensity over an extended distance, allowing additional spectral broadening 

and increasing the mid-IR energy.  

Figure 4.4 displays the cumulative energy UC [mJ] as a function of k/k0 at distances of z = 0, 

2.46, 4.94 and 7.9 mm in a plasma channel and at z = 7.9 mm in a uniform plasma demarcated by 

the colors red, grey, dark grey, black and blue respectively. The cumulative energy, the integral of 

the spectral energy density up to k, represents the energy contained in wavenumbers less than or 

equal to k. Wavelengths longer than 4.7 m (red arrow) account for 15 mJ after 7.9 mm of 

propagation in the plasma channel (black) with a conversion efficiency from the initial pulse 
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energy of 2.9%. Without a preformed channel (blue), the conversion efficiency is zero for 

wavelengths longer than 2.5 m. 

Figure 4.5 (a) is the radially averaged intensity profile of the MIR pulse found by spectrally 

filtering in the range 0<k<0.2k0 as a function of  and z. The MIR pulse appears at a propagation 

distance near 7.9 mm consistent with Figs. 4.3 and 4.4 with a temporal FWHM of 30 fs or two 

cycles of 4.7 m light. The MIR pulse gradually lengthens due to group velocity dispersion, and 

quickly falls back in ξ due to the smaller group velocities associated with the longer wavelengths. 

Although the MIR pulse moves backwards in the speed of light frame, it continues to propagate 

in the forward direction. Figures 4.5 (b) and (c) display the filtered MIR pulse as a function of r 

and  at z = 7.9 and 8.4 mm respectively. The pulse undergoes some diffractive spreading but 

remains mostly confined within the preformed channel. This is a result of the plasma channel 

guiding condition being independent of frequency. After the spectrally broadened pulse has left 

the channel, a long wave pass filter can be applied to extract the MIR radiation.   

 

4.4.2. Parametric Dependence of MIR Energy Generation 

Maximization of the MIR energy is essential for its use in applications. To this end, we now 

investigate the parametric dependence of energy conversion to MIR on initial pulse power, pulse 

duration, and plasma density. Because the spectral shifting rate depends on all of these 

parameters, all results are plotted at the distance where the characteristic wavenumber shift, Eq. 

(4.5), is maximized. All scalings are performed in a plasma channel with matched spot size of 25 

m unless otherwise state. The overall trend is that MIR efficiency increases with the 

ponderomotive force up to electron cavitation where the efficiency saturates.  

The pulse power at fixed pulse length is varied through the laser pulse amplitude while the 

other parameters remain unchanged from Sec. 4.4.1.  Figure 4.6 (a) shows the cumulative energy 

UC [mJ] as a function of 0/k k  for initial powers of 40 TW, black line, and 17 TW, grey line, 
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with and without a channel, the solid and dashed lines respectively.  The larger pulse powers 

clearly increase the energy content in the MIR range. As discussed above, the pre-formed channel 

keeps the 17 TW pulse radially confined extending the distance over which the pulse undergoes 

spectral broadening. At 40 TW, / 5.7crP P  , self-focusing ensures radially confinement of the 

pulse and the pre-formed channel is no longer required: the cumulative MIR energy resulting 

from channeled and non-channeled propagation is nearly identical.  

Figure 4.6 (b) displays the conversion efficiency, the cumulative energy UC divided by the 

initial laser pulse energy, as a function of initial laser pulse power for the wavelength ranges λ≥6 

μm, λ≥4 μm and λ≥2 μm. The efficiency exhibits a threshold behavior with power. The weak 

power dependence of efficiency above threshold results from relativistic mass increases to the 

electrons, nonlinear laser pulse evolution, and saturation of the index of refraction gradient 

through electron cavitation. The electron quiver momentum and consequently the effective mass 

increase with power. A larger ponderomotive force is required for the same displacement in 

electron density. As a result, the scaling of electron density gradient with pulse power weakens as 

power is increased: en P    for 0 1a   and 
1/2

en P   for 0 1a  .   

For the density considered, the critical power for self-focusing is 7crP TW . The 17 TW 

and 40 TW pulses undergo stronger nonlinear self-focusing, which increases the ponderomotive 

force. In addition to transverse compression, spectral broadening of the pulses causes self-

steepening or temporal compression. The group velocity decreases as the wavelength increases in 

a plasma, so that initial red-shifting at the front of the pulse causes pulse energy to coalesce at the 

back of the pulse. The enhanced amplitude and reduced pulse length both contribute to an 

increased ponderomotive force. As the pulse becomes radially and temporally localized, the 

ponderomotive force expels an increasing number of electrons. Eventually the ponderomotive 

force is large enough to expel all the electrons, cavitation. Further increasing the power causes 
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cavitation earlier in the pulse, but at the same time reduces the temporal region of the pulse that 

undergoes spectral broadening.  

To examine the dependence on pulse length, we fix the pulse energy at 0.5 J. For 

comparison with the previous case, this can be considered a power scaling at fixed energy. As 

before the on-axis plasma density is 4.3x10
18 

cm
-3

 corresponding to a resonant FWHM 

/ 27R p fs    . Figure 4.7 shows the conversion efficiency as a function of initial pulse 

length for the wavelength ranges: λ≥6μm, λ≥4μm and λ≥2μm. The conversion efficiency drops 

with increasing pulse length. As discussed above, for pulse durations longer than the resonant 

FWHM, the longitudinal ponderomotive force weakens with increasing pulse length. Additionally, 

the initia l power is decreased as pulse length is increased: ~1/P  . The drop in power weakens 

both components of the ponderomotive force. A reduced ponderomotive force provides less 

charge displacement, a smaller index gradient, and less spectral broadening. The dashed lines 

above and below the λ≥2μm curve illustrate the minor effect of adding a negative and positive 

chirp respectively. For each pulse duration, the chirp is calculated assuming a 30 fs bandwidth 

limited pulse.  

We now consider the dependence of MIR generation on the on-axis plasma density. The 

laser power and temporal FWHM are fixed at 17 TW and 30 fs respectively. The resonant 

density, defined by /p   , is initially 
18 33.4 10 cm . Figure 4.8 shows the conversion 

efficiency as a function of plasma density for the wavelength ranges λ≥6 μm, λ≥4 μm and λ≥2 

μm. The critical power varies from 10 TW at 
18 33 10 cm  to 4.6 TW at 

18 36.5 10 cm . The 

increase in efficiency from 
18 33 10 cm  to 

18 33.4 10 cm  for λ≥2 μm can be attributed to the 

enhanced plasma wave amplitude at the resonant density. As the density is increased, the drop in 

critical power provides additional self-focusing and an enhanced ponderomotive force, more 

charge displacement, and increased spectral broadening observable in the increased efficiency for 

λ≥4 μm and λ≥6 μm. 
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As a final note we compare the cumulative energies resulting from the FWE and MPE 

solvers for a 30fs, 40 TW pulse propagating in a plasma channel with on axis density 

18 34.3 10 cm . Figure 4.9 shows the fractional difference in cumulative energies UC resulting 

from the two approaches ((UcFWE-UcMPE)/UcFWE). The discrepancy in the cumulative energy is 

largest where the discrepancy in the dispersion is also large: below 
0/ .10k k   (see Fig. 3.1 in 

Chap 3). The MPE over and under predicts the energy below and above 
0/ .10k k   respectively. 

At values of 
0/ .2k k  , the dispersion for both solvers is accurate and the fractional difference 

plateaus at a value representing the difference in pulse energy lost.  

 

4.5 Conclusions 

We have investigated the generation of MIR radiation from spectral broadening of high 

intensity, ultrashort laser pulses propagating through tenuous plasma. The ponderomotive guiding 

center, quasi-static, full wave equation model was adopted to simulate the laser pulse and plasma 

evolution. The conversion of optical energy to the MIR was examined as a function of laser pulse 

power, pulse length, and plasma density. The predominant trend was for the conversion efficiency 

to increase with the ponderomotive force up to the point of electron cavitation where the 

efficiency saturated.  The simulations show 1% conversion to MIR energy at wavelengths longer 

than 6 microns for laser powers greater than 20 TW.  

 

4.6 Appendix: Scaling of the Characteristic Wavenumber Shift 

It has been discussed in Sec. 4.3 that the change of the field energy UL is equal to the rate at 

which the ponderomotive force ~P PF V does work to the plasma current J [81], 

L
F

dU
P

dt
 ,      (4.8) 



84 

 

where Vp is the ponderomotive potential taken the time average of the vector potential A , 
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 , where n is the perturbed electron density. In the limit of a weak 

ponderomotive potential, n  satisfies a ‘linear inhomogeneous equation’ [81], 
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Pulse intensity also denpends on A , 
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where ω0 is the central frequency and 
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Peak power can be obtained by integrating intensity over r,  
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Laser energy UL can be obtained from integration over one pulse period, 
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On the other hand, it’s shown from Ref. 81 Eq. (6) that the rate at which the ponderomotive force 

does work to the plasma waves is  



85 

 

2 22

* 2 2 2
2

g p p p p p

F

g

v V V
P P rdr

c v mc mc

  
 

 
   
 
 

 ,   (4.14) 

where vg is the group velocity of the laser pulse and  ( , )p pV V r  is the Fourier component of 

the ponderomotive potential. Integrating over space gives 
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 is from the temporal dependence of pulse intensity Eq. 

(4.11). 

Scaling of the average spectral shifting rate can be derived from Eq. (4.5), 
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where Eq. (4.8) has been applied. From Eq. (4.13), (4.15) and assume vg~c, this yields Eq. (4.7) 
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Figure 4.1 Top: laser intensity and electron density as functions of channe l radius r and ξ at 

propagation distances of z = 0.0, left, and 4.9 mm, right. Bottom: Wigner distributions of the 

laser pulse as a function of normalized wavenumber and   at the same propagation distances. 
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Figure 4.2 Characteristic wavenumber <k>/k0 as a function of distance z for initial pulse 

powers of 17, 40 and 60 TW, represented by red, blue and black respectively. The inset shows 

a comparison with linear theory (dashed lines) for each case. 
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Figure 4.3 Spectral energy density of a pulse propagating in a plasma channel as a function 

of k/k0 at distances z=0, 2.5, 4.9 and 7.9 mm, represented by the red, grey, dark grey and 

black lines respectively; spectral energy density for a pulse propagating through a uniform 

plasma (no channel) is represented by the blue curve. The red arrow indicates where =4.7 

m. 
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Figure 4.4 Cumulative energy as a function of k/k0 at distances z=0, 2.5, 4.9 and 7.9 mm, 

represented by the red, grey, dark grey and black curves respectively; cumulative energy for 

the no channel case at z=7.9 mm represented by the blue curve . The red arrow indicates there 

are 15mJ of cumulative energy at =4.7 m. 
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Figure 4.5 (a) Retrieved profile of the filtered mid-ir pulse (0<k<0.2k0) radially averaged 

intensity as a function of (z,ξ). (b)(c) Filtered mid- ir pulse (0<k<0.2k0) as a function of 

(r,ξ) at distances z=7.9 and 8.4 mm. 
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Figure 4.6 (a) Cumulative energy at largest characteristic wavenumber shift as a function of 

k/k0 for initial powers P = 40 TW for the channeled (black, solid) and non-channeled (black, 

dashed) cases and 17 TW for the channeled (grey, solid) and non-channeled (grey, dahed) 

cases. (b) Mid-IR generation efficiency as a function of initial pulse power for λ6 μm, λ4 

μm and λ2 μm. 
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Figure 4.7 MIR conversion efficiency in the ranges λ ≥ 6μm, λ≥4μm and λ≥2μm as a function 

of initial temporal FWHM. The upper and lower dashed lines show the effect of negative and 

positive chirp respectively.  
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Figure 4.8 MIR conversion efficiency in the ranges λ6 μm, λ4 μm and λ2 μm as a 

function of on-axis plasma density.  
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Figure 4.9 Fractional difference in cumulative energies resulting from FWE and MPE 

approaches ((UcFWE-UcMPE)/UcFWE) as a function of k/k0 for a 30fs, 40 TW pulse propagating in 

a plasma channel. 

 



95 

 

Chapter5: Summaries 

 

We have studied the spectral broadening of intense laser pulses propagating in plasma for 

parameters relevant to Laser Wake Field Acceleration.  The studies were carried out using the 

two-dimensional simulation code WAKE, which makes a number of approximations that enable 

efficient calculation. Pulse evolution, energy depletion, conservation of action and spectral 

modification were closely investigated. Several measures of spectral diagnostics were considered 

including the Fourier spectrum, the rate of change of the envelope phase, and the Wigner function.  

Simulations of the 2006 LBNL experiments [18], the pulse compression experiments from 

Schreiber, et al. [75], and the explicit one dimensional simulations from Shadwick, et al. [41] 

were performed and compared. Results of the simulations verified that spectra were substantially 

modified for all three cases, and that the spectral changes and energy depletion were consistent 

with action conservation: for pulses causing complete cavitation, large wavenumber shifts 

0/ .80k k   were observed for propagation to a distance where 40%-50% of the pulse energy is 

depleted. The extended paraxial equation (modified paraxial equation-MPE) conserves action up 

to this distance.  

We have implemented a full time-space D’Alembertian in the laser field evolution 

equation (enveloped full wave equation-FWE) in WAKE. It has the following advantages: 

first, this solver has its own conserved action up till the distance where large wavenumber 

shift 0/ .80k k   happens; second, it has the advantage of better predicting the dispersion 

relation and eliminating the problematic divergence in the dispersion of the modified paraxial 

solver as wavenumber approaches zero, which is important especially when considering long 

wavelength generation.  

Numerical analysis has been conducted through simulation results for parameters relevant to 

the current laser-plasma capabilities at the University of Maryland for both FWE and MPE 
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solvers. The results that we find for pulse evolution, energy depletion, and spectral modification 

are remarkably similar to those previously studied three cases from Ref. 18,41,75. The accuracy 

of calculation is monitored by observing the time dependence of wave action. When a large 

spectral shift 
0/ .80k k   or complete cavitation occurs, action subsequently decays due to 

numerical damping and slowing down of the group velocities of the laser pulse, which propagates 

out of the simulation domain quickly. Numerical damping can be minimized by a combination of 

high resolution in ξ and higher order evaluation of ξ derivatives. Action does still decay after 

minimizing numerical damping, but due to convection out of the simulation domain, we conclude 

that WAKE is an accurate tool for studying energy depletion and spectral broadening in intense 

laser-plasma interactions.  

Generation of MIR radiation from the process of spectral broadening of high intensity, 

ultrashort laser pulses propagating through tenuous plasmas has also been studied. The 

ponderomotive guiding center, quasi-static, full wave equation model was adopted to simulate the 

laser pulse and plasma evolution. The conversion of optical energy to the MIR was examined as a 

function of initial laser pulse power, pulse length, and plasma density. The predominant trend was 

for the conversion efficiency to increase with the ponderomotive force up to the point of electron 

cavitation where the efficiency saturated. The simulations show 2% conversion to MIR energy at 

wavelengths longer than 6 microns for laser powers greater than 20 TW.  
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