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An Updating Algorithm forSubspace TrackingG. W. Stewart�ABSTRACTIn certain signal processing applications it is required to compute thenull space of a matrix whose rows are samples of a signal with p com-ponents. The usual tool for doing this is the singular value decompo-sition. However, the singular value decomposition has the drawbackthat it requires O(p3) operations to recompute when a new samplearrives. In this paper, we show that a di�erent decomposition, calledthe URV, decomposition is equally e�ective in exhibiting the null spaceand can be updated in O(p2) time. The updating technique can berun on a linear array of p processors in O(p) time.1. IntroductionMany problems in digital signal processing require the computation of an approxi-mate null space of an n�p matrix A whose rows represent samples of a signal (see[9] for examples and references). Speci�cally, we must �nd an orthogonal matrixV = (V1 V2) such that1. AV1 has no small singular values.2. AV2 is small.In this case we say that A has approximate rank k, where k is the number ofcolumns in V1. In applications V1 corresponds to the signal while V2 correspondsto noise. We will call the space spanned by the columns of V2 the error space.As the signal changes, so does its error space. Since the ab initio computationof an error space is expensive, it is desirable to use the previously computed errorspace adaptively to approximate the new error space|a process that is generallycalled updating. Our speci�c updating problem can be described as follows.�Department of Computer Science and Institute for Advanced Computer Studies, Universityof Maryland, College Park, MD 20742. This work was supported in part by the Air Force O�ceof Scienti�c Research under Contract AFOSR-87-0188.1



2 Subspace TrackingGiven the error space of a matrix A compute the error space of the matrixAz = 0@ �AzH 1A ;where z is a new sample and � � 1 is a \forgetting factor" that damps out thee�ect of the previous samples. To simplify the exposition, we will take � = 1 inthis paper (however, see the end of x2, where the problem of tolerances is treated).The usual approach to computing error spaces has been via the singular valuedecomposition [4, 8]. Speci�cally, there are orthogonal matrices U and V suchthat UHAV = 0@ �0 1A ;where � = diag(�1; : : : ; �p)with �1 � � � � � �p:The procedure for computing error spaces is to determine an integer k such that�k is above the noise level, while �k+1 is below it. The columns of V correspondingto �k+1; : : : ; �n then span the error space.Although the singular value decomposition furnishes an elegant solution to theproblem of calculating error spaces, it has two disadvantages: it is expensive tocompute and it is di�cult to update. The initial cost of computing a singularvalue decomposition would not be an objection, if the decomposition could becheaply updated; however, all known updating schemes require on the order of p3operations (e.g., see [2]). Recently, abridged updating schemes that produce anapproximate singular value decomposition have been proposed [7]. However, thee�ectiveness of this approach has not yet been demonstrated.The di�culties in working with the singular value decomposition have sparkedan interest in rank revealing QR decompositions, which decompose the matrixinto the product of an orthogonal matrix, an upper triangular matrix, and apermutation matrix in such a way that the e�ective rank of the matrix is obvious[3]. However, a QR decomposition|even a rank-revealing one|does not providean explicit basis for the error space. In this paper, we will consider an intermediarybetween the singular value decomposition and the QR decomposition|a two-sided orthogonal decomposition that we will call the URV decomposition|thathas some of the virtues of both.



Subspace Tracking 3In the next section we will introduce the URV decomposition and its rankrevealing variant. This section also contains a discussion of how to determinerank in the presence of errors. Since the updating will be accomplished by planerotations, we give a brief review of their properties in x3. In the following sectionwe will show how to compute a rank revealing URV decomposition of a triangularmatrix. This special case will be used in x5 where we show how to update a rankrevealing URV decomposition in such a way that it remains rank revealing. In x6we will show that the updating algorithm can be implemented on a linear arrayof processors in such a way that it runs in O(p) time. Finally, in the last sectionswe will make some general observations on the updating algorithm.Throughout this paper k � k will denote the Euclidean vector norm and theFrobenius matrix norm de�ned bykAk2 =Xi;j jaijj2:The smallest singular value of a matrix A will be written inf(A).2. URV DecompositionsSuppose for the moment that A has rank k. Then there are orthogonal matricesU and V such that A = U 0@ R 00 0 1A V H; (2:1)where R is an upper triangular matrix of order k. We will call this decompo-sition a URV decomposition. Unlike the singular value decomposition the URVdecomposition is not unique; in fact, the singular value decomposition is itself aURV decomposition. However, we will be concerned with the case where R is notdiagonal but fully triangular.Now suppose that A is nearly of rank k in the sense that its singular valuessatisfy �1 � � � � � �k > �k+1 � � � � � �p;where �k is large compared to �k+1. It can be shown that there is a URV decom-position of A of the form A = U 0@ R F0 G 1A V H; (2:2)where



4 Subspace Tracking1. R and G are upper triangular,2. inf(R) �= �k,3. qkFk2 + kGk2 �= q�2k+1 + � � � + �2p.The singular value decomposition itself is a example of such a decomposition, butthere are many others. We will call any such decomposition a rank revealingURV decomposition. From such a decomposition we can extract the error sub-space, just as we did with the singular value decomposition. However, as we shallsee, rank revealing URV decompositions are easier to compute and update thanthe singular value decomposition.In practice the small singular values of A will come from noise, and the usermust furnish a tolerance to distinguish them from the singular values associatedwith the signal. Unfortunately, the relation between noise and the small singularvalues is not simple, and the mathematical form of the tolerance is a matter ofsome delicacy.We will adopt a very simple model. Suppose that A has the formA = Â+ E;where Â has rank exactly k. We will assume that the errors are roughly of thesame size|say �|so that when the forgetting factor is taken into account, Ehas the form E = 0BBBBBB@ �n�1eH1�n�2eH2...eHn 1CCCCCCA ;where the components of the ei are approximately � in size. Let the columns ofV2 form an orthonormal basis for the error space of Â. Then our tolerance shouldapproximate the norm of AV2 = EV2(remember ÂV2 = 0). Now the ith row of EV2 consists of p � k elements of sizeroughly �n�i�. Consequently,kEV2k2 �= (p � k)�2 nXi=1 �2(n�i) � (p � k)�1� �2 :



Subspace Tracking 5before1 2 3 4 5 6 7X X X 0 0 X EX �X X X 0 E Eafter1 2 3 4 5 6 7X X X X 0 X EX 0 X X 0 X EFigure 3.1: Application of a Plane Rotation�Consequently the tolerance|call it tol| should be chosen so thattol � s p � k1� �2 �: (2:3)Note that it is better to choose tol a little too large than too small. In thelatter case, the dimension of the error space will be underestimated. On the otherhand, if the tolerance is a little too large and there is a good signal to noiseratio, the tolerance will insinuate itself between the signal and the noise, and thedimension of the error space will be correctly estimated.3. Plane RotationsThe chief computational tool of this paper is the plane rotation, which will be usedto introduce zeros selectively into matrices to be updated. Since treatments ofplane rotations are widely available (e.g., see [4]), we will not go into the numericaldetails here. Instead we will sketch the few basic facts needed to understandthe updating algorithm and introduce some conventions for describing reductionsbased on plane rotations.Figure 3.1 shows two rows of a matrix before and after the application of aplane rotation. The X's represent nonzero elements, the 0's represent zero ele-ments, and the E's represent small elements. The plane rotation has been chosen



6 Subspace Trackingto introduce a zero into the position occupied by the checked X in column 2. Whenthe rotation is applied the following rules hold.1. A pair of X's remains a pair of X's (columns 1 and 3).2. An X and an 0 are replaced by a pair of X's (column 4).3. A pair of 0's remains a pair of 0's (column 5).4. An X and an E are replaced by a pair of X's (column 6).5. A pair of E's remains a pair of E's (column 7).The fact that a pair of small elements remains small (column 7) follows fromthe fact that a plane rotation is orthogonal and cannot change the norm of anyvector to which it is applied. This is one of the key observations of this paper,since the point of the updating algorithm is to keep small elements small.It requires about 4p multiplications and 2p additions to apply a plane rotationto two rows of length p. The multiplication count can be reduced by using so-calledfast rotations; however, in either case the work involved is O(p).Premultiplication by a plane rotation operates on the rows of the matrix. Wewill call such rotations left rotations. Postmultiplication by right rotationsoperates on the columns. Analogous rules hold for the application of a rightrotation to two columns of a matrix.When rotations are used to update a URV decomposition, the right rotationsmust be multiplied into V . To get a complete update of the decomposition, wemust also multiply the left rotations into U . However, in most signal processingapplications U is not needed, and this step can be omitted.Algorithms that use plane rotations are best described by pictures. To �x ourconventions, we will show how the matrix0@ RxH 1Acan be reduced to upper triangular form by left rotations. Here we assume the Ris itself upper triangular.The reduction is illustrated in Figure 3.2. The elements of R and xH are rep-resented generically by r's and x's. The �rst step in the reduction is to eliminatethe �rst element of xH by a rotation that acts on xH and the �rst row of R. Theelement to be eliminated has a check over it and the two rows that are beingcombined are indicated by the arrows to the left of the array.



Subspace Tracking 7! r r r r0 r r r0 0 r r0 0 0 r! �x x x x =) r r r r! 0 r r r0 0 r r0 0 0 r! 0 �x x x =) r r r r0 r r r! 0 0 r r0 0 0 r! 0 0 �x x =)r r r r0 r r r0 0 r r! 0 0 0 r! 0 0 0 �x =) r r r r0 r r r0 0 r r0 0 0 r0 0 0 0Figure 3.2: Reduction to Triangular Form�According to this notation, the second step combines the second row of Rwith xH to eliminate the second element of the latter. Note that r21, which iszero, forms a pair of zeros with the �rst component of xH, so that the zero weintroduced in the �rst step is not destroyed in the second step. The third andfourth steps of the reduction are similar.For column operations with right rotations we will use an analogous notation.The main di�erence is that the arrows will point down to the columns beingcombined.4. De
ation and Re�nementIn applications we can expect occasional changes in the rank of the matrix A. Anincrease in rank usually makes itself felt in an obvious way. On the other hand,a decrease in rank can hide itself in the matrix R of the URV decomposition.Thus any updating algorithm must be able to detect rank degeneracy in R andact accordingly. In this section we will show how to compute a rank revealingURV decomposition of a k � k upper triangular matrix R.The �rst step is to determine if R is defective in rank|that is, if inf(R) isless than a prescribed tolerance (see the discussion at the end of Section 2). This



8 Subspace Tracking! �w! www =) 0! �w! ww =) 00! �w! w =) 0001Figure 4.1: Reduction of W�problem has been extensively studied under the rubric of condition estimation(see [6] for a survey), and there exist reliable algorithms that, given a triangularmatrix R, produce a vector w of norm one such that withb = Rwwe have � � kbk �= inf(R): (4:1)The algorithms generally require a single solution of a triangular system whosematrix is R and therefore require only O(k2) work.The next step is to determine a sequence V H1 ; V H2 ; : : : ; V Hk�1 of rotations thateliminate the �rst k � 1 component of w, so that w is zero except for its lastcomponent, which is one. The reduction is illustrated in Figure 4.1. Let QH =V Hk�1V Hk�2 � � �V H1 denote the product of the rotations obtained from this step.Next we determine an orthogonal matrix P such that PHRQ is upper triangu-lar. This may be done by applying V1, V2, : : : , Vk�1 from the right to R as shownin Figure 4.2. The result of applying a rotation Vi to two columns of R is toplace a nonzero element below the diagonal of R. A left rotation then eliminatesthis element and restores triangularity. The matrix PH is the product of the leftrotations. The entire process requires only O(k2) time.The appearance of the quantities e in the last array of Figure 4.2 is meant toindicate that rkk must be small on completion of the process. In fact, the normof the last column is the number � de�ned by (4.1). To see that this is true, notethat from (4.1) b0 � PHb = (PHRQ)(QHw) � R0w0:Since the last component of w0 is one and all its other components are zero, wesee that the last column of R is b0. Since the norm of a vector is unchanged when



Subspace Tracking 9# #r r r r0 r r r0 0 r r0 0 0 r =) ! r r r r! �r r r r0 0 r r0 0 0 r =) # #r r r r0 r r r0 0 r r0 0 0 r =)r r r r! 0 r r r! 0 �r r r0 0 0 r =) # #r r r r0 r r r0 0 r r0 0 0 r =) r r r r0 r r r! 0 0 r r! 0 0 �r r =) r r r e0 r r e0 0 r e0 0 0 eFigure 4.2: Triangularization of RQ�it is multiplied by a unitary matrix, it follows thatkb0k = kbk = �:Since � �= inf(R), we have produced a URV decomposition that reveals that Rhas a small singular value. We can continue the process with the leading principlematrix of R0 of order k � 1.Although this procedure solves the problem of de
ating a rank de�cient tri-angular matrix, it is possible to re�ne the decomposition, bringing it nearer todiagonality. The procedure begins by reducing the �rst k� 1 elements in the lastcolumn of R to zero. This is done by a sequence of right rotations. The processis illustrated in Figure 4.3. Again only O(k2) time is required. However, the rightrotations must be accumulated in V .The second step in the re�nement is to reduce R to upper triangular form bya sequence of left rotations as illustrated in Figure 4.4.This second step also requires O(k2) time, and the �nal matrix is clearly inURV form. However more can be said: the norm of the last column is less that theabsolute value of the (k; k)-element before the re�nement was begun. To see this,note that in the �rst step of the re�nement procedure, the (k; k)-element does notincrease. Thus at the end of the �rst step the norm of the last column is less than
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Subspace Tracking 11the absolute value of the (k; k)-element before the re�nement was begun. Thesame is true at the end of the second step, since this step uses only right rotationsand cannot change the norm of a column.In practice, the re�nement step can reduce the size of the part last column lyingabove the diagonal so that it is insigni�cant compared to the diagonal element.The e�ect of this is to polish the approximation to the error space. Whether there�nement is worth its cost will have to be determined experimentally. Preliminaryruns indicate that the re�ned version is preferable to the unre�ned version whenit is used with the music algorithm [5].5. Updating a URV FactorizationIn this section we will show how to update a rank revealing URV decompositionof A when a row zH is appended. Speci�cally we will suppose that A has theURV decomposition (2.2), where V is known. To decide what is small we willsuppose we have a user supplied tolerance, tol, and that� def= qkFk2 + kGk2 � tol:As is implied by (2.3), the tolerance may depend on dimensions of A and R andthe size of the forgetting factor.The �rst step is to compute (xH yH) = zHV;where x is of dimension k|i.e., the order of R. Our problem then becomes oneof updating the matrix Â = 0BB@ R F0 GxH yH 1CCA :There are two cases to consider. The �rst, and simplest occurs whenq�2 + kyk2 � tol: (5:1)In this case we reduce Â to triangular form by a sequence of left rotations as inFigure 3.2. Since the new value of � will be given by the left-hand side of (5.1),we are assured that within our tolerance the rank cannot increase. However, it is



12 Subspace Tracking# #f f f fg g g g0 g g g0 0 g g0 0 0 gy y y �y =) f f f fg g g g0 g g g! 0 0 g g! 0 0 �g gy y y 0 =) # #f f f fg g g g0 g g g0 0 g g0 0 0 gy y �y 0 =) f f f fg g g g! 0 g g g! 0 �g g g0 0 0 gy y 0 0 =)# #f f f fg g g g0 g g g0 0 g g0 0 0 gy �y 0 0 =) f f f f! g g g g! �g g g g0 0 g g0 0 0 gy 0 0 0 =) f f f fg g g g0 g g g0 0 g g0 0 0 gy 0 0 0Figure 5.1: Reduction of yHpossible for the rank to decrease. Hence we must check and possibly reduce R asdescribed in x4. The time required for this case is O(p2).If (5.1) is not satis�ed, there is a possibility that there is an increase in rank.Since the increase in rank can be at most one, the problem is to transform thematrix to upper triangular form without destroying all the small values in F andG. The �rst step is to reduce yH so that it has only one nonzero component andG remains upper triangular. The reduction is illustrated in Figure 5.1. Since Rand xH are not involved in this part of the reduction, we show only F , G, and yH(n.b., the f 's in the �gure represent entire columns of F ).



Subspace Tracking 13Finally, the entire matrix R f f f f0 g g g g0 0 g g g0 0 0 g g0 0 0 0 gxH y 0 0 0is reduced to triangular form in the usual way to give a matrix of the formR y f f f0 y g g g0 0 g g g0 0 0 g g0 0 0 0 g0 0 0 0 0 (5:2)Then k is increased by one, and the new R is checked for degeneracy and if neces-sary reduced as described in x2. The result is the updated URV decomposition.6. ParallelizationIn this section we will show that the updating algorithm can be implemented onan array of p processors to yield an O(p) algorithm. To simplify matters, wewill consider shared memory implementation; however, it will be clear that thealgorithms can be implemented on a linear array of distributed memory processors,provided �ne-grain communication is su�ciently fast|e.g., on a linear systolicarray.Since we are concerned with the existence of a parallel algorithm, rather thanin the details of a particular implementation, we will use the method of prece-dence diagrams. The idea is to write down an order in which operations canbe performed consistently and then assign operations to processors in such a waythat no two simultaneous operations are performed by the same processor. In ourcase, the assignments will amount to making each processor responsible for a rowof the matrix and its neighbors.



14 Subspace Tracking� 1 � 2 � 3 � 4 �� 2 � 3 � 4 � 5 �� 3 � 4 � 5 � 6 �� 4 � 5 � 6 � 7 �� 5 � 6 � 7 � 8 �Figure 6.1: Precedence Diagram for V P1 � � �Pp�1�We begin with the updating of V by rotations. Speci�cally we desire to com-pute V P1 � � �Pp�1, where Pi combines columns i and i+ 1 of V . Figure 6.1 showsa precedence diagram for this computation for p = 5. The circles represent ele-ments of V . The numbers between any two circles represent the time at whicha rotation can be applied to the two corresponding elements. We will call thesenumbers ticks.The increasing ticks in the �rst row re
ect the fact that Pi must be appliedbefore Pi+1. From an arithmetic point of view, the ticks need not increase aswe go down a column, since a right rotation can be applied simultaneously toall the elements of a pair of columns. We have allowed the ticks to increase tore
ect the realities of communication: on a shared memory system, there will becontention along a column as the processors attempt to access the same rotation;in a distributed memory system the rotation must be passed down the column. Ingeneral, the method of precedence diagrams does not require one to write downthe best diagram|only a correct one.Figure 6.2 shows the assignment of operations to processors. Operations be-tween two horizontal lines are performed by the same processor, which, as we haveobserved, amounts to an assignment of the elements of V by rows to the proces-sors. The diagram makes it obvious that the updating of V can be performedwith p processors in about 2p ticks.Let us now consider a more complicated case: the reduction of R in Figure 4.2.The construction of an appropriate precedence diagram is simpli�ed by the factthat the right rotations can be applied in their entirety before the left rotationsare generated and applied. Thus we can construct the the diagram for the rightrotations and then �ll in the left rotations in a suitable manner. The result isshown in Figure 6.3. A number between two circles in a row represents a right



Subspace Tracking 15� 1 � 2 � 3 � 4 �� 2 � 3 � 4 � 5 �� 3 � 4 � 5 � 6 �� 4 � 5 � 6 � 7 �� 5 � 6 � 7 � 8 �Figure 6.2: Assignment for V P1 � � �Pp�1�� 1 � 2 � 3 � 4 � 5 �6 7 8 9 10 11� 2 � 3 � 4 � 5 � 6 �8 9 10 11 12� 4 � 5 � 6 � 7 �10 11 12 13� 6 � 7 � 8 �12 13 14� 9 � 10 �14 15� 11 �Figure 6.3: Reduction of w and R�



16 Subspace Tracking� 14 � 12 � 10 � 8 � 6 �15 16 17 18 19 20� 13 � 11 � 9 � 7 � 5 �12 13 14 15 16� 10 � 8 � 6 � 4 �9 10 11 12� 7 � 5 � 3 �6 7 8� 4 � 2 �3 4� 1 �Figure 6.4: Reduction of y and G�rotation; between two circles in a column, a left rotation. From this diagram it isseen that the reduction can be carried out in about 3p ticks.Finally, we consider the most di�cult task of all: the construction of a prece-dence diagram for the reduction of y and G in Figure 5.1. The di�culty is thatthe right and left rotations must be interspersed; for if they are not, the rightrotations will �ll out the bottom half of G. The following precedence diagram isfor the matrix G, the matrix F being handled independently by other processors.This reduction requires about 4(p� k) ticks plus k ticks to apply the rotations toF . The other parts of the updating algorithm can be analyzed similarly. In allcases a row oriented assignment of elements to processors results in parallel im-plementations that take O(p) ticks.7. CommentsWe have shown how to update a rank revealing URV factorization of a matrix usingplane rotations. In this concluding section we will try to put our contribution inperspective.



Subspace Tracking 17Initialization. An attractive feature of the algorithm is that it requires no ini-tial calculation of a decomposition. Instead one starts with a degenerate URV de-composition, in which k = 0, F = 0, and V = I, and applies the updatingalgorithm as the rows of A enter. This is an important economy when it comesto implementing the algorithm with special purpose hardware.E�ciency. The total operation count for one update is a multiple of p2. Thisshould be contrasted with a cost of O(p3) for a complete update of a singularvalue decomposition. In addition, the updating algorithm is rich in left rotations,which need not be accumulated in some applications. In fact, if rank changes arerare, the algorithm will seldom use any right rotations.Reliability. The singular value decomposition is generally regarded as themost reliable technique for computing null spaces. However, the algorithm pre-sented here is almost as reliable. The crux of the matter is the reliability of thecondition estimator that produces the approximate null vector in (4.1). Althoughcounterexamples exist for most condition estimators, a wealth of experiments andexperience has shown them to be very reliable in real-life applications [6].E�ect of Rounding Errors. The algorithms proposed here are completelystable. Standard-rounding error analysis shows that the updated matrix is orthog-onally equivalent to an original matrix that is perturbed by quantities proportionalto the rounding unit times the norm of the matrix [10]. Moreover, the matrix Vdeviates only very slowly from orthogonality|the more so since V changes onlywhen a change in rank is suspected.Parallelization. We have seen that the algorithm can be implemented on alinear array of p processors so that it runs in order p time. On the other hand, thesingular value decomposition requires p2 processors to achieve the same updatingtime.Numerical Results. In [1], the algorithm has been used with the musicalgorithm to estimate directions of arrival from simulated data. The algorithmperforms well, estimating the rank correctly and providing a su�ciently accurateerror subspace to obtain the directions of arrival.Availability. An experimental fortran version of the algorithm is availableby anonymous ftp at thales.cs.umd.edu in the �le pub/reports/uast.f.AcknowledgementsThis work has its origins in a stimulating workshop on the singular value decom-position in signal processing, organized by R. J. Vaccaro. I am indebted to Frank
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