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ABSTRACT

In certain signal processing applications it is required to compute the
null space of a matrix whose rows are samples of a signal with p com-
ponents. The usual tool for doing this is the singular value decompo-
sition. However, the singular value decomposition has the drawback
that it requires O(p*) operations to recompute when a new sample
arrives. In this paper, we show that a different decomposition, called
the URV, decomposition is equally effective in exhibiting the null space
and can be updated in O(p?) time. The updating technique can be
run on a linear array of p processors in O(p) time.
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In certain signal processing applications it is required to compute the
null space of a matrix whose rows are samples of a signal with p com-
ponents. The usual tool for doing this is the singular value decompo-
sition. However, the singular value decomposition has the drawback
that it requires O(p*) operations to recompute when a new sample
arrives. In this paper, we show that a different decomposition, called
the URV, decomposition is equally effective in exhibiting the null space
and can be updated in O(p?) time. The updating technique can be
run on a linear array of p processors in O(p) time.

1. Introduction

Many problems in digital signal processing require the computation of an approxi-
mate null space of an n x p matrix A whose rows represent samples of a signal (see
[9] for examples and references). Specifically, we must find an orthogonal matrix

V = (Vi V3) such that

1. AV} has no small singular values.

2. AV5 1s small.

In this case we say that A has approximate rank k, where &k is the number of
columns in Vj. In applications Vj corresponds to the signal while V5 corresponds
to noise. We will call the space spanned by the columns of V; the ERROR SPACE.
As the signal changes, so does its error space. Since the ab initio computation
of an error space is expensive, it is desirable to use the previously computed error
space adaptively to approximate the new error space —a process that is generally
called uvppaTiNG. Our specific updating problem can be described as follows.
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Given the error space of a matrix A compute the error space of the matrix

where z is a new sample and # < 1 is a “forgetting factor” that damps out the
effect of the previous samples. To simplify the exposition, we will take 3 =1 in
this paper (however, see the end of §2, where the problem of tolerances is treated).

The usual approach to computing error spaces has been via the singular value
decomposition [4, 8]. Specifically, there are orthogonal matrices U and V' such

that
by
URNAV = ( ) ,
0
where
Y = diag(o1,...,0,)
with

0-12”'20-]?‘

The procedure for computing error spaces is to determine an integer k such that
oy 1s above the noise level, while o1 is below it. The columns of V' corresponding
to oky1,...,0, then span the error space.

Although the singular value decomposition furnishes an elegant solution to the
problem of calculating error spaces, it has two disadvantages: it is expensive to
compute and it is difficult to update. The initial cost of computing a singular
value decomposition would not be an objection, if the decomposition could be
cheaply updated; however, all known updating schemes require on the order of p*
operations (e.g., see [2]). Recently, abridged updating schemes that produce an
approximate singular value decomposition have been proposed [7]. However, the
effectiveness of this approach has not yet been demonstrated.

The difficulties in working with the singular value decomposition have sparked
an interest in rank revealing QR decompositions, which decompose the matrix
into the product of an orthogonal matrix, an upper triangular matrix, and a
permutation matrix in such a way that the effective rank of the matrix is obvious
[3]. However, a QR decomposition — even a rank-revealing one — does not provide
an explicit basis for the error space. In this paper, we will consider an intermediary
between the singular value decomposition and the QR decomposition —a two-
sided orthogonal decomposition that we will call the URV decomposition —that
has some of the virtues of both.
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In the next section we will introduce the URV decomposition and its rank
revealing variant. This section also contains a discussion of how to determine
rank in the presence of errors. Since the updating will be accomplished by plane
rotations, we give a brief review of their properties in §3. In the following section
we will show how to compute a rank revealing URV decomposition of a triangular
matrix. This special case will be used in §5 where we show how to update a rank
revealing URV decomposition in such a way that it remains rank revealing. In §6
we will show that the updating algorithm can be implemented on a linear array
of processors in such a way that it runs in O(p) time. Finally, in the last sections
we will make some general observations on the updating algorithm.

Throughout this paper || - || will denote the Euclidean vector norm and the
Frobenius matrix norm defined by

TAIP = las .
]
The smallest singular value of a matrix A will be written inf(A).

2. URV Decompositions

Suppose for the moment that A has rank k. Then there are orthogonal matrices

U and V such that
P Vi (2.1)
0 0

where R is an upper triangular matrix of order k. We will call this decompo-
sition a URV decomposition. Unlike the singular value decomposition the URV
decomposition is not unique; in fact, the singular value decomposition is itself a
URYV decomposition. However, we will be concerned with the case where R is not
diagonal but fully triangular.

Now suppose that A is nearly of rank & in the sense that its singular values
satisfy

01 2+ 20> Opq1 =+ 2 Op,

where oy, 1s large compared to oj4q. It can be shown that there is a URV decom-
position of A of the form

A:U(RF)WH (2.2)

where
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1. R and G are upper triangular,
2. inf(R) = oy,
3IFIR+ G2 = oty + - 4 o2

The singular value decomposition itself is a example of such a decomposition, but
there are many others. We will call any such decomposition a RANK REVEALING
URV decomposition. From such a decomposition we can extract the error sub-
space, just as we did with the singular value decomposition. However, as we shall
see, rank revealing URV decompositions are easier to compute and update than
the singular value decomposition.

In practice the small singular values of A will come from noise, and the user
must furnish a tolerance to distinguish them from the singular values associated
with the signal. Unfortunately, the relation between noise and the small singular
values i1s not simple, and the mathematical form of the tolerance is a matter of
some delicacy.

We will adopt a very simple model. Suppose that A has the form

A=A+ E,

where A has rank exactly k. We will assume that the errors are roughly of the
same size —say €—so that when the forgetting factor is taken into account, F
has the form
671—1611{
| o
€n
where the components of the e; are approximately ¢ in size. Let the columns of
V5 form an orthonormal basis for the error space of A. Then our tolerance should
approximate the norm of

AV, = EV,

(remember A‘/Q = 0). Now the ith row of EV; consists of p — k elements of size
roughly 3" *e. Consequently,

o (P=k)e

BV = (p = ket g < B2
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BEFORE
1 2 3 4 5 6 7
XXX 0 0 X E
X XXX 0EE
AFTER
1 2 3 4 5 6 7
X X X X 0 X E
X 0 X X 0 X

Figure 3.1: Application of a Plane Rotation
<&

Consequently the tolerance —call it tol —should be chosen so that

tol > /| —e. (2.3)

Note that it is better to choose tol a little too large than too small. In the
latter case, the dimension of the error space will be underestimated. On the other
hand, if the tolerance is a little too large and there is a good signal to noise
ratio, the tolerance will insinuate itself between the signal and the noise, and the
dimension of the error space will be correctly estimated.

3. Plane Rotations

The chief computational tool of this paper is the plane rotation, which will be used
to introduce zeros selectively into matrices to be updated. Since treatments of
plane rotations are widely available (e.g., see [4]), we will not go into the numerical
details here. Instead we will sketch the few basic facts needed to understand
the updating algorithm and introduce some conventions for describing reductions
based on plane rotations.

Figure 3.1 shows two rows of a matrix before and after the application of a
plane rotation. The X’s represent nonzero elements, the 0’s represent zero ele-
ments, and the E’s represent small elements. The plane rotation has been chosen
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to introduce a zero into the position occupied by the checked X in column 2. When
the rotation is applied the following rules hold.

. A pair of X’s remains a pair of X’s (columns 1 and 3).

. An X and an 0 are replaced by a pair of X’s (column 4).

1

2

3. A pair of 0’s remains a pair of 0’s (column 5).

4. An X and an E are replaced by a pair of X’s (column 6).
5

. A pair of E’s remains a pair of E’s (column 7).

The fact that a pair of small elements remains small (column 7) follows from
the fact that a plane rotation is orthogonal and cannot change the norm of any
vector to which it is applied. This is one of the key observations of this paper,
since the point of the updating algorithm is to keep small elements small.

It requires about 4p multiplications and 2p additions to apply a plane rotation
to two rows of length p. The multiplication count can be reduced by using so-called
fast rotations; however, in either case the work involved is O(p).

Premultiplication by a plane rotation operates on the rows of the matrix. We
will call such rotations LEFT rRoTATIONS. Postmultiplication by RIGHT ROTATIONS
operates on the columns. Analogous rules hold for the application of a right
rotation to two columns of a matrix.

When rotations are used to update a URV decomposition, the right rotations
must be multiplied into V. To get a complete update of the decomposition, we
must also multiply the left rotations into /. However, in most signal processing
applications U is not needed, and this step can be omitted.

Algorithms that use plane rotations are best described by pictures. To fix our
conventions, we will show how the matrix

()

can be reduced to upper triangular form by left rotations. Here we assume the R
is itself upper triangular.

The reduction is illustrated in Figure 3.2. The elements of R and 2! are rep-
resented generically by r’s and z’s. The first step in the reduction is to eliminate
the first element of 2™ by a rotation that acts on z" and the first row of R. The
element to be eliminated has a check over it and the two rows that are being
combined are indicated by the arrows to the left of the array.
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Figure 3.2: Reduction to Triangular Form
<

According to this notation, the second step combines the second row of R
with 2/ to eliminate the second element of the latter. Note that 7y, which is
zero, forms a pair of zeros with the first component of z, so that the zero we
introduced in the first step is not destroyed in the second step. The third and
fourth steps of the reduction are similar.

For column operations with right rotations we will use an analogous notation.
The main difference is that the arrows will point down to the columns being
combined.

4. Deflation and Refinement

In applications we can expect occasional changes in the rank of the matrix A. An
increase in rank usually makes itself felt in an obvious way. On the other hand,
a decrease in rank can hide itselt in the matrix R of the URV decomposition.
Thus any updating algorithm must be able to detect rank degeneracy in R and
act accordingly. In this section we will show how to compute a rank revealing
URV decomposition of a & x k upper triangular matrix R.

The first step is to determine if R is defective in rank—that is, if inf(R) is
less than a prescribed tolerance (see the discussion at the end of Section 2). This
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— W 0 0 0
— w — W 0 0
w — W — W 0
w w — w 1

Figure 4.1: Reduction of W
<

problem has been extensively studied under the rubric of condition estimation
(see [6] for a survey), and there exist reliable algorithms that, given a triangular
matrix R, produce a vector w of norm one such that with

b= Rw

we have

0 = ||b]| = inf(R). (4.1)

The algorithms generally require a single solution of a triangular system whose
matrix is R and therefore require only O(k*) work.

The next step is to determine a sequence VH, V2 ... V! of rotations that
eliminate the first £ — 1 component of w, so that w is zero except for its last
component, which is one. The reduction is illustrated in Figure 4.1. Let Q" =
VI VH, ...V denote the product of the rotations obtained from this step.

Next we determine an orthogonal matrix P such that PYR(Q) is upper triangu-
lar. This may be done by applying V4, V5, ..., Vi_; from the right to R as shown
in Figure 4.2. The result of applying a rotation V; to two columns of R is to
place a nonzero element below the diagonal of R. A left rotation then eliminates
this element and restores triangularity. The matrix P is the product of the left
rotations. The entire process requires only O(k?) time.

The appearance of the quantities e in the last array of Figure 4.2 is meant to
indicate that ry; must be small on completion of the process. In fact, the norm
of the last column is the number 1 defined by (4.1). To see that this is true, note
that from (4.1)

v = P = (PPRQ)(Q"w) = R

Since the last component of w’ is one and all its other components are zero, we
see that the last column of R is #'. Since the norm of a vector is unchanged when
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Figure 4.2: Triangularization of RQ)
<

it is multiplied by a unitary matrix, it follows that
1°]] = 11l = 7.

Since n = inf(R), we have produced a URV decomposition that reveals that R
has a small singular value. We can continue the process with the leading principle
matrix of R’ of order k£ — 1.

Although this procedure solves the problem of deflating a rank deficient tri-
angular matrix, it is possible to refine the decomposition, bringing it nearer to
diagonality. The procedure begins by reducing the first £ — 1 elements in the last
column of R to zero. This is done by a sequence of right rotations. The process
is illustrated in Figure 4.3. Again only O(k?) time is required. However, the right
rotations must be accumulated in V.

The second step in the refinement is to reduce R to upper triangular form by
a sequence of left rotations as illustrated in Figure 4.4.

This second step also requires O(k?) time, and the final matrix is clearly in
URYV form. However more can be said: the norm of the last column is less that the
absolute value of the (k, k)-element before the refinement was begun. To see this,
note that in the first step of the refinement procedure, the (&, k)-element does not
increase. Thus at the end of the first step the norm of the last column is less than
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Figure 4.4: Reducing the Last Row
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the absolute value of the (k,k)-element before the refinement was begun. The
same is true at the end of the second step, since this step uses only right rotations
and cannot change the norm of a column.

In practice, the refinement step can reduce the size of the part last column lying
above the diagonal so that it is insignificant compared to the diagonal element.
The effect of this is to polish the approximation to the error space. Whether the
refinement is worth its cost will have to be determined experimentally. Preliminary
runs indicate that the refined version is preferable to the unrefined version when
it is used with the MUSIC algorithm [5].

5. Updating a URV Factorization

In this section we will show how to update a rank revealing URV decomposition
H is appended. Specifically we will suppose that A has the
URV decomposition (2.2), where V is known. To decide what is small we will
suppose we have a user supplied tolerance, tol, and that

v < IFIE+ G < tol.

As is implied by (2.3), the tolerance may depend on dimensions of A and R and
the size of the forgetting factor.

of A when a row z

The first step is to compute
(e yh) =V,

where z is of dimension k—i.e., the order of R. Our problem then becomes one
of updating the matrix

F
G
H
There are two cases to consider. The first, and simplest occurs when

2+ |ly]|? < tol. (5.1)

In this case we reduce A to triangular form by a sequence of left rotations as in
Figure 3.2. Since the new value of v will be given by the left-hand side of (5.1),
we are assured that within our tolerance the rank cannot increase. However, it is
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Figure 5.1: Reduction of y!

possible for the rank to decrease. Hence we must check and possibly reduce R as
described in §4. The time required for this case is O(p?).

If (5.1) is not satisfied, there is a possibility that there is an increase in rank.
Since the increase in rank can be at most one, the problem is to transform the
matrix to upper triangular form without destroying all the small values in F' and

G.

The first step is to reduce y so that it has only one nonzero component and
(¢ remains upper triangular. The reduction is illustrated in Figure 5.1. Since R
and z% are not involved in this part of the reduction, we show only F', G, and y"
(n.b., the f’s in the figure represent entire columns of F').
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Finally, the entire matrix

kR 75 r7
0 9 9 9 g
0 0 g g g
0 0 0 ¢g ¢
0 000 ¢
24y 0 0 0

is reduced to triangular form in the usual way to give a matrix of the form

Ry f ff
0 v g 9y
009 99 (5.2)
00 0 ¢g g¢g
0000 g
00000

Then k is increased by one, and the new R is checked for degeneracy and if neces-
sary reduced as described in §2. The result is the updated URV decomposition.

6. Parallelization

In this section we will show that the updating algorithm can be implemented on
an array of p processors to yield an O(p) algorithm. To simplify matters, we
will consider shared memory implementation; however, it will be clear that the
algorithms can be implemented on a linear array of distributed memory processors,
provided fine-grain communication is sufficiently fast —e.g., on a linear systolic
array.

Since we are concerned with the existence of a parallel algorithm, rather than
in the details of a particular implementation, we will use the method of PRECE-
DENCE DIAGRAMS. The idea is to write down an order in which operations can
be performed consistently and then assign operations to processors in such a way
that no two simultaneous operations are performed by the same processor. In our
case, the assignments will amount to making each processor responsible for a row
of the matrix and its neighbors.
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Figure 6.1: Precedence Diagram for VP, --- P,
<

We begin with the updating of V' by rotations. Specifically we desire to com-
pute VP, --- P,_q, where P; combines columns ¢ and ¢ + 1 of V. Figure 6.1 shows
a precedence diagram for this computation for p = 5. The circles represent ele-
ments of V. The numbers between any two circles represent the time at which
a rotation can be applied to the two corresponding elements. We will call these
numbers TICKS.

The increasing ticks in the first row reflect the fact that P, must be applied
before P;yq. From an arithmetic point of view, the ticks need not increase as
we go down a column, since a right rotation can be applied simultaneously to
all the elements of a pair of columns. We have allowed the ticks to increase to
reflect the realities of communication: on a shared memory system, there will be
contention along a column as the processors attempt to access the same rotation;
in a distributed memory system the rotation must be passed down the column. In
general, the method of precedence diagrams does not require one to write down
the best diagram —only a correct one.

Figure 6.2 shows the assignment of operations to processors. Operations be-
tween two horizontal lines are performed by the same processor, which, as we have
observed, amounts to an assignment of the elements of V' by rows to the proces-
sors. The diagram makes it obvious that the updating of V' can be performed
with p processors in about 2p ticks.

Let us now consider a more complicated case: the reduction of R in Figure 4.2.
The construction of an appropriate precedence diagram is simplified by the fact
that the right rotations can be applied in their entirety before the left rotations
are generated and applied. Thus we can construct the the diagram for the right
rotations and then fill in the left rotations in a suitable manner. The result is
shown in Figure 6.3. A number between two circles in a row represents a right
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Figure 6.3: Reduction of w and R
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Figure 6.4: Reduction of y and &
<

rotation; between two circles in a column, a left rotation. From this diagram it is
seen that the reduction can be carried out in about 3p ticks.

Finally, we consider the most difficult task of all: the construction of a prece-
dence diagram for the reduction of y and G in Figure 5.1. The difficulty is that
the right and left rotations must be interspersed; for if they are not, the right
rotations will fill out the bottom half of G. The following precedence diagram is
for the matrix (¢, the matrix F' being handled independently by other processors.
This reduction requires about 4(p — k) ticks plus k ticks to apply the rotations to
F.

The other parts of the updating algorithm can be analyzed similarly. In all
cases a row oriented assignment of elements to processors results in parallel im-
plementations that take O(p) ticks.

7. Comments

We have shown how to update a rank revealing URV factorization of a matrix using
plane rotations. In this concluding section we will try to put our contribution in
perspective.
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Initialization. An attractive feature of the algorithm is that it requires no ini-
tial calculation of a decomposition. Instead one starts with a degenerate URV de-
composition, in which £ = 0, F = 0, and V = [, and applies the updating
algorithm as the rows of A enter. This is an important economy when it comes
to implementing the algorithm with special purpose hardware.

Efficiency. The total operation count for one update is a multiple of p?. This
should be contrasted with a cost of O(p®) for a complete update of a singular
value decomposition. In addition, the updating algorithm is rich in left rotations,
which need not be accumulated in some applications. In fact, if rank changes are
rare, the algorithm will seldom use any right rotations.

Reliability. The singular value decomposition is generally regarded as the
most reliable technique for computing null spaces. However, the algorithm pre-
sented here is almost as reliable. The crux of the matter is the reliability of the
condition estimator that produces the approximate null vector in (4.1). Although
counterexamples exist for most condition estimators, a wealth of experiments and
experience has shown them to be very reliable in real-life applications [6].

Effect of Rounding Errors. The algorithms proposed here are completely
stable. Standard-rounding error analysis shows that the updated matrixis orthog-
onally equivalent to an original matrix that is perturbed by quantities proportional
to the rounding unit times the norm of the matrix [10]. Moreover, the matrix V'
deviates only very slowly from orthogonality —the more so since V' changes only
when a change in rank is suspected.

Parallelization. We have seen that the algorithm can be implemented on a
linear array of p processors so that it runs in order p time. On the other hand, the
singular value decomposition requires p* processors to achieve the same updating
time.

Numerical Results. In [1], the algorithm has been used with the MUSsIC
algorithm to estimate directions of arrival from simulated data. The algorithm
performs well, estimating the rank correctly and providing a sufficiently accurate
error subspace to obtain the directions of arrival.

Availability. An experimental FORTRAN version of the algorithm is available
by anonymous ftp at thales.cs.umd.edu in the file pub/reports/uast.f.
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