
ABSTRACT 

Perkinsus marinus, the causative agent of Dermo disease in eastern oyster 

Crassostrea virginica has been a great hurdle for oyster population restoration along the 

atlantic and gulf coasts of USA. Iron was shown to be an essential element for P. marinus 

growth and virulence, but iron uptake pathways have not been elucidated.  

 The Natural Resistance-Associated Macrophage Protein (Nramp), an iron 

transporter initially identified in the mouse as a marker for resistance to intracellular 

pathogens, was also proposed as a potential virulence factor for intracellular pathogens. An 

Nramp homologue was identified by our laboratory in P. marinus (PmNramp1). In this 

study, two other PmNramp isotypes (PmNramp2 and PmNramp3) were identified through 

genome mining followed by molecular characterization. The three PmNramp isotypes are 
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encoded by genes of distinct organization, and are all transcribed in parasite trophozoites 

cultured in defined medium. Transcripts of a number of P. marinus genes, including 

PmNramp isotypes, superoxide dismutases (PmSOD), ascorbate peroxidase (PmAPX) and 

heat shock proteins (PmHSP70 and PmHSP90) display a trans-splicing leader (SL) highly 

similar to that from dinoflagellates. No changes in transcription levels of those genes were 

detected by real-time quantitative reverse transcription PCR (qRT-PCR), under 

iron/manganese overload, iron depletion, and host hemolymph exposure, suggesting a 

constitutive polycistronic transcription in the parasite.  

Functional studies by yeast complementation assays suggested iron uptake 

activity by PmNramp1, but not for PmNramp2 and PmNramp3. Prediction of PmNramp1 

topology by homologous modeling indicated that PmNramp1 is an integral protein with 

12 transmembrane segments (TMS). The central position of the Nramp-specific triplets 

Asp-Pro-Gly (TMS1) and Met-Pro-His (TMS6) in a three-dimensional (3D) arrangement 

formed with TMS3 and TMS8 provided the mechanistic basis for iron acquisition via 

PmNramp1. Site-directed mutagenesis of selected residues in the TMS6 triplets in 

PmNramp1 resulted in loss of complementation of the mutant in yeast. A chimeric 

protein with PmNramp1 N- and C-termini and a PmNramp3 core structure from TMS1 to 

TMS12 actively complemented yeast growth, suggesting that PmNramp3 can function as 

an iron transporter. A phylogenetic analysis indicated that all the three PmNramp 

isotypes are of the archetype Nramp cluster. Protein sequence divergence among 

PmNramp isotypes was not related to diversification of critical functional elements, 

which remained constrained by purifying selection. This result was consistent with the 

function of both PmNramp1 and PmNramp3 as iron transporters in yeast, despite their 



different evolutionary rate and substitution patterns. Subcellular localization of PmNramp 

isotypes in P. marinus trophozoites is in progress. PmNramp3 was shown to localize on 

cell peripheral when the parasite proliferates by binary fission. The data were consistent 

with the previous observation that iron is important for P. marinus growth.  

As the first functional study of Nramp homolog in protozoan parasites, the work 

in this dissertation may serve as a platform for research in other protozoan Nramp and 

iron transporters.
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CHAPTER 1 INTRODUCTION AND BACKGROUND 

INFORMATION 

1.1 Introduction  

Dermo disease and P. marinus 

Perkinsus species, are parasites of oysters, abalones, clams, and scallops, and 

have caused substantial damage to these fisheries worldwide [1, 2]. P. marinus is a 

facultative intracellular parasite that causes “Dermo” disease in the eastern oyster C. 

virginica [3]. Over the last 10-15 years, the range of P. marinus infection has extended 

along the Atlantic coast from New Jersey to Maine [4-6] with catastrophic consequences 

for local fisheries and the health of coastal waters [7]. The life cycle of P. marinus 

includes a free-living stage (zoospore) and a non-motile vegetative stage (trophozoite). 

Upon entering the host, most commonly by ingestion during filter-feeding, trophozoites 

are phagocytosed by oyster hemocytes where they are able to survive and proliferate 

inside a phagosome-like structure. Although the infection mechanism has not been fully 

elucidated, a galectin of unique structure plays a significant role in parasite entry into the 

host hemocytes [8]. Migration of infected hemocytes throughout the host tissues leads to 

systemic infection and eventually death [3, 9]. In the environment, transmission of P. 

marinus between oysters likely occurs when released trophozoites from infected oysters 

are filtered by adjacent individuals [7].  

Importance of iron for Perkinsus marinus survival and virulence 

Iron is a critical factor for Perkinsus growth and infection. In the eastern oyster C. 

virginica, the infection intensity of the protozoan parasite P. marinus increases with 
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environmental iron concentrations in a dose-dependent manner [10]. By adding 

deferoxamine (DFO) into the culture medium, the parasite growth was significantly 

inhibited; however, supplementing with the appropriate iron equivalents to saturate the 

DFO can rescue the parasite’s growth [11]. One potential explanation for the importance 

of iron for P. marinus infection is that iron is the cofactor for the enzymes in the 

antioxidant pathways in the parasite. The hypothesis was proposed that P. marinus can 

overcome oyster oxidative burst by degradation of host-originated reactive oxygen 

species (ROS) [12, 13]. The identification of the key elements PmSOD1, PmSOD2, 

PmAPX and PmAPX2 in P. marinus antioxidant pathway [14-16] provided a molecular 

evidence for the ROS detoxification activity in the parasite.  The fact that both the two 

SOD isotypes in P. marinus are iron-dependent indicates a potential connection between 

iron acquisition and P. marinus anti-oxidant pathway function. Despite our long 

acknowledgement of the importance of iron for P. marinus, no iron uptake pathways 

were identified. The research work in the dissertation is essentially the first exploration of 

iron acquisition pathways in this parasite. The outline for the following part of the 

dissertation is as below 

 Background  

o Iron-uptake in host and protozoan parasites 

o role of Nramp in the tug-off war for iron 

 Chapter 2: molecular identification of two other P. marinus Nramp 

isotypes (PmNramp2 & PmNramp3) after the characterization of 

PmNramp1 
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 Chapter 3: functional analysis of PmNramp isotypes in the aspects of 

transported substrates and 3D structure 

 Chapter 4: subcellular localization of PmNramp isotypes in P. marinus 

 Chapter 5: phylogeny analysis of PmNramp isotypes 

 Chapter 6: summaries and future directions 

1.2 Background                                                                                 

Iron is a critical trace element for both hosts and pathogens 

Iron is an essential trace element for almost all organisms. Function as enzyme 

cofactor makes iron indispensable in a variety of biological activities, including oxygen 

transport in red-blood animals [17], DNA synthesis [18], electron transport [19] and 

others. The delicate balance orchestrated by iron uptake, transport, storage and release is 

pivotal since this metal can be a double-edged sword due to its redox-activity [20]. 

Therefore, every single taxon has evolved a rigorously controlled iron homeostasis 

system that fits its ecological niche. At the host-pathogen interface, the control of the 

balance becomes more intricate when two highly-evolved iron-acquisition systems 

compete directly with each other. During co-evolution of hosts and pathogens, pathogens 

have evolved efficient iron scavenging machineries to divert iron from host molecules, 

while the hosts have developed coordinated responses to infection, embargoing access to 

endogenous iron reserves. This strategy constitutes the basis of the concept of “nutritional 

immunity” [21, 22].  
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The iron-metabolism systems of host cells have been summarized in recent 

reviews [20, 23-25]. Based on functions, the elements involved in host iron homeostasis 

fall into at least eight categories: redox active (e.g., Dcytb), sensing (e.g., transferrin 

receptor 2), delivery (e.g., transferrin), import (e.g. divalent metal transporter 1, 

transferrin receptor 1), recovery (e.g. haptoglobin), storage (e.g. ferritin), export (e.g. 

ferroportin), metabolic regulation (e.g., intracellular, iron responsive protein 1 and 

endocrine, hepcidin).Some of these functions have been adapted to host defense against 

microbial pathogens. During infections, a large amount of lactoferrin is released for tight 

binding of ferric iron even in acid conditions. Siderocalin, also called lipocalin2, is able 

to interfere the pathogenic siderophores function via direct binding. The host resistance 

marker to intracellular pathogens, Nramp1 is recruited to the phagosomal membrane to 

withdraw iron away from pathogens [20, 23]. 

Host iron metabolism and nutritional immunity 

Mammalian hosts use iron as the oxygen carrying element. Approximately 70% 

of the body iron exists in hemoglobin in red blood cells (RBCs) and erythroid precursors. 

As the biggest iron sink in the body, the iron supply for hemoglobin production in 

erythroid precursors is mostly through the iron delivery molecule Tf (transferrin) that 

undergoes the endocytosis pathway. Two of the other highly-expressed molecules, six-

transmembrane epithelial antigen of the prostate-3 (STEAP3) [26, 27] and DMT1 

(divalent metal transporter) [28] are the ferrireductase and the ferrous iron transporter in 

the endosomes (Fig. 1). Iron delivery to other tissues may involve different molecules, 

such as H- and L-ferritin which allow iron entry into cells via distinct endocytic receptors 
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TIM-2 [29] and Scara5 [30], respectively.  Also DMT1 and Zip14 facilitate non-Tf bound 

iron uptake [31]. 

There are two potential ways for the endosomal iron to reach mitochondria, the 

factory for heme and iron-sulfur cluster synthesis. One way of endosomal iron supply to 

mitochondria comes from low molecular weight complexes in the cytosolic labile iron 

pool (LIP); beside,  protein-to-protein or compartment-to-compartment iron delivery to 

mitochondria was also proposed based on the study in hbd mutant mice [32-35]. It is 

believed that mitochondria have redundant iron transporters and one of the identified 

carriers is mitoferrin [36, 37]. Cytotoxic over-accumulation of free iron or heme is 

avoided in the erythroid precursors by the expression of two isoforms of ferroportin (+/- 

IRE, [38] ) and the heme exporter Feline leukemia virus, type C, receptor (FLVCR) [39, 

40], respectively. 

Mammalian erythroid precursors eventually develop into mature RBCs that have 

no nucleus and little repair capacity [41]. After 100 to 120 days spent in the blood 

circulation, RBCs become senescent. In the absence of infection, macrophages recycle 

iron from senescent RBCs, through erythrophagocytosis, and more generally from effete 

cells (e.g., PMNs, polymorphonuclear neutrophils). Senescent cells are engulfed and 

broken down within macrophages and iron is liberated from heme molecules by heme 

oxygenases (HO1 and HO2). Besides active phagocytosis of senescent cells, 

macrophages are also able to scavenge Tf-bound and Lf (lactoferrin)-bound [42] iron as 

well as hemoglobin-haptoglobin complexes. During hemolysis, haptoglobin binds to 

hemoglobin to prevent oxidative activities [43, 44].  The membrane receptor CD163 can 

interact with the hemoglobin-haptoglobin complex and internalize both molecules 
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through endocytosis. If severe hemolysis happens and haptoglobin is exhausted, CD163 

can scavenge hemoglobin directly through the same pathway [45]. Unless under 

pathological conditions, macrophages normally accumulate little iron, and when plasma 

level is high, the excess is primarily stored in the ferritin of hepatocytes. 

Macrophages expressing the exporter ferroportin-1 (FPN1) release iron into the 

circulation, acting as the recycling factory for ~90% of body iron. This activity 

corresponds to M2 macrophages in terms of activation states [46, 47]. M2 macrophages, 

by definition, stimulated with the Th2 cytokines interleukin 4 (IL4) and/or IL13, are 

functionally distinct from M1 macrophages, stimulated with the Th1 cytokine interferon 

gamma, IFNγ and/or bacterial lipo-polysaccharide (LPS) [48]. M2 macrophages are 

heterogeneous and include immunologically quiescent cells (M0). In steady state 

conditions, these phagocytes contribute to maintain self-tolerance and efficient iron 

recycling though anti-inflammatory circuits that are enforced by lipid ligands of the 

nuclear receptors families PPAR and LXR [49-51] as well as binding of external 

phosphatidyl-l-serine to stereospecific receptors [52, 53]. M2 macrophages are also 

crucial for tissue repair and the resolution phase of inflammatory responses [54]. 

However, sensing infection through activation of pattern recognition receptors 

[e.g., Toll-like receptors (TLRs), NOD-like receptors (NLRs), RIG-I-like receptors 

(RLRs) etc.] activates macrophage microbicidal functions (M1), which are amplified by 

inflammation and the acute phase response.  Notably, M1 macrophages sequester iron by 

secreting hepcidin, reducing FPN1 expression and increasing the synthesis of H-ferritin 

[46, 47] (Fig. 1). Both M1 macrophages and hepatocytes secrete H-ferritin; the presence 

of this acute phase protein has profound immunological consequences because its 
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receptor TIM-2 acts as a negative regulator of Th2 cytokines [29]. Consistent with 

macrophage polarization towards iron recycling vs. iron sequestration, all known iron 

metabolism-related molecules expressed in macrophages are tightly regulated during 

immune responses [25]. These apparently opposite roles of macrophages in iron 

metabolism make them key players in host-pathogen interactions. 

As most of the iron required for erythropoiesis comes from macrophage 

erythrophagocytosis, the remaining portion that is necessary to compensate body losses is 

obtained from diet.  Dietary free iron is acquired through the apical membrane of 

epithelial cells from the small intestine (enterocytes). The duodenal cytochrome-b (Dcytb) 

[55, 56] and possibly other reductases convert ferric iron into ferrous iron ready to be 

transported into the cell by DMT1, also described as Nramp2 [28, 57]. Enterocytes are 

also able to absorb iron from heme molecules using the heme carrier protein-1 (HCP1) 

through the endocytic pathway. When diet is replete with iron, uptake through DMT1 

dominates because HCP1 remains located inside endosomal vesicles, but heme uptake 

provides an alternative pathway in conditions where iron is scarce [58]. After transit 

through enterocytes, iron is relocated to the basal membrane and exported through FPN1 

[59, 60]. Subsequently iron is oxidized by hephaestin (Hp), and released into the 

circulation system in the form of transferrin-bound iron (diferric transferrin, Fig. 1). 

RBCs, macrophages, enterocytes and hepatocytes play different roles in iron 

homeostasis but cellular activities are generally subjected to both endogenous regulators 

and a systemic, integrated control.  Eukaryotic cells rapidly and coordinately regulate 

iron and energy metabolisms by sensing the intracellular free iron status as well as the 

presence of ROS, reactive nitrogen species (RNS) and/or hypoxia through the use of 
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labile 4Fe-4S cluster-protein complexes, such as the cytoplasmic aconitase/iron response 

protein 1 (IRP1) or Fe- and 2-oxoglutarate-dependent dioxygenases [that target hypoxia-

inducible factors (HIFs), and IRP2 for degradation).  Reduction in available iron 

stimulates IRP activities which modulate the stability mRNA encoding iron trafficking 

and storage factors that functions to replenish cellular stores.  Hypoxia (mimicking iron 

deficiency) triggers HIFs activities which reduce the expression of hepcidin in 

hepatocytes [61] and upregulate iron uptake in enterocytes [62]. 

Hepatocytes scavenge circulating iron from Tf, heme and ferritin. Most of iron 

homeostasis proteins, for instance, Tf, haptoglobin and hepcidin are synthesized by 

heptocytes [20]. Identification of hepcidin as the key molecule for systemic regulation of 

iron metabolism was instrumental in understanding the complexity of iron homeostasis 

[63, 64]. Circulating hepcidin binds specifically to FPN1 on the membrane of cells (e.g. 

macrophages, enterocytes and hepatocytes) and triggers intracellular degradation of 

FPN1 that prevents iron exit from cells [65-67]. Hepcidin binding to FPN1 also 

transduces regulatory signals in macrophages that suppress pro-inflammatory secretions 

[68]. Liver hepcidin secretion is finely tuned by various sensors of body iron, which 

include TfR2 and Human hemochromatosis protein (HFE), neogenin, hemojuvelin (HJV) 

and Bone Morphogenetic Proteins (BMPs) or the growth differentiation factor 15 

(GDF15).  TfR2, a low affinity receptor, senses Tf saturation (apo/diferric Tf) and 

depends on the MHC Cl I-like molecule HFE to activate hepatocytes’ secretion of 

hepcidin [69].  The bone morphogenic protein BMP6 also contributes to sense systemic 

iron levels; its binding to hepatocyte BMP receptors is regulated by neogenin and HJV 

and can lead to mothers against decapentaplegic homolog (SMAD)-dependent activation 
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of hepcidin antimicrobial peptide (HAMP) gene [70]. In contrast, hepcidin expression is 

down-regulated by elevated serum levels of GDF15, a member of the transforming 

growth factor beta (TGF-β) superfamily secreted by erythroid precursors from 

thalassemia patients [71]. 

Hepcidin secretion is also regulated in coordination with host immune response to 

infection.  This is not surprising given that this amphipatic peptide is a member of the 

defensin family of antimicrobial peptides [72].  Host response to infection stimulates the 

release of hepcidin together with inflammatory cytokines both from hepatocytes and M1 

macrophages [46, 47], forming a complex iron immunity network (Fig. 1).  Hepcidin 

secreted by M1 macrophages works in an autocrine fashion to down-regulate FPN1 and 

ensure iron retention in macrophages [73, 74]; hepcidin localized inside mycobacteria-

containing phagosomes showed anti-microbial activity [75]. Circulating IL-6 further 

stimulates hepcidin expression and release by hepatocytes [76]. In addition to blocking 

cellular iron efflux, hepcidin also impairs the expression of DMT1 and Dcytb in 

enterocytes and limits dietary iron uptake [77, 78]. Pro-inflammatory cytokines such as 

IL-1, TNF-α and IL-6 also upregulate ferritin expression and down-regulate TfR 

expression in the reticuloendothelial system.  IFN-γ and TNF-α also increase NRAMP1 

and DMT1 expression [79, 80] and contribute to iron sequestration in M1 macrophages. 

Increased iron retention in cells causes hypoferremia and eventually sabotages 

erythropoiesis by handicap of hemoglobin synthesis, a phenomenon alternatively termed 

anemia of chronic disease or anemia of inflammation [81].  

In contrast, anti-inflammatory cytokines, such as IL-4, IL-10 and IL-13 induce the 

expression of CD163 by M2 macrophages for uptake of hemoglobin/haptoglobin 
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complex [82] as well as necessary molecular functions to maintain iron flux and 

homeostasis (e.g., Tf, TfR1, HFE, STEAP3, DMT1, FPN1, IRPs, [46, 47]. Thus, 

hepatocytes and macrophages are key cells for maintenance of iron homeostasis which 

perform distinct functions depending on the physiological context, indicating either 

steady state conditions or immune response to infection and/or inflammation.  
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Fig. 1 
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Fig. 1.  Mammalian iron metabolism is regulated by innate immunity. 

A. Iron homeostasis in erythroid precursors. Bone marrow precursors that generate RBC 

acquire iron mostly via the Tf-TfR pathway. The highly-expressed Steap3 reduces ferric 

iron to ferrous iron. DMT1 transports divalent iron out of the endosomes for downstream 

usage, mostly heme synthesis in mitochondrion. As a protection against heme overload, 

surface FLVCR can transport excess heme out of erythroid precursors.  

B. Iron homeostasis in Enterocytes. Enterocytes mediate dietary iron uptake to upload Tf 

in the circulation. Ferric iron in the proximal intestinal lumen is first reduced to ferrous 

iron by the iron reductase Dcytb, and is then transported into enterocytes by DMT1. 

Heme uptake by surface receptor HCP1 is a backup system for iron acquirement under 

conditions of iron depletion.  

C. Liver constitutes the headquarters for iron metabolism regulation. Most molecules 

involved in iron metabolism are synthesized in hepatocytes which can acquire iron 

through multiple pathways. In addition, hepatocytes release hepcidin, the peptide 

hormone that regulates iron metabolism systemically. 

D. Macrophages serve as an iron recycling factory in resting conditions. Senescent RBCs 

and apoptotic cells are engulfed and degraded by macrophages which become polarized 

towards M2 phenotype for efficient iron recycling. Iron is released after the heme 

molecules are oxidized by HO and NRAMP1 may promote iron recycling from the 

phagosome. Besides, M2 macrophages can also scavenge hemoglobin directly by the 

surface receptor CD163, and acquire other iron-containing molecules, including Tf, Lf 

(refer to the text for details). M2 macrophages release iron through the exporter FPN1. 
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Upon detection of pathogen-associated molecular patterns, macrophages up-regulate M1 

functions and secrete hepcidin locally. Hepcidin, together with the inflammatory 

cytokines released during the immune response form a complex iron immunity network 

that coordinates host defenses against pathogens. The effects of stimuli that polarize 

macrophages towards a type 1 (e.g., PAMPs/LPS, IFNγ, TNFα, IL1 and IL6) or type 2 

(e.g., IL10 and IL4/13 cytokines) phenotypes are indicated in red and green colors 

respectively. Their impact on the functions of hepatocytes, enterocytes and erythroblasts. 

“+” or “-” represents up- or down-regulation respectively. Pro-inflammatory cytokines 

block body iron cycling by increasing intracellular retention, which reduces Tf saturation 

in the circulation; they also stimulate microbicidal functions of M1 macrophages. In case 

the immune response is inefficient, it will lead to tissue damage, hypoferremia and 

eventually anemia of chronic disease. In contrast, anti-inflammatory cytokines can 

reverse this trend by promoting iron circulation and tissue repair, and restoring iron and 

immune homeostasis (refer to text for details). 

 



14 
 

Iron acquisition by protozoan parasites 

As antagonists of host iron homeostasis, pathogens have developed an array of 

mechanisms to acquire iron and interfere with host regulation of iron metabolism, 

including carrier, uptake and storage functions. Iron acquisition in pathogens has long 

been recognized as an expression of virulence [83-85] and iron starvation constitutes a 

possible avenue for pathogen elimination [86, 87]. Our knowledge about bacterial [84, 88] 

and fungal [85, 89, 90] iron uptake pathways is better established than that of protozoan 

parasites. However, utilization of drugs targeting pathogen iron trafficking pathways as a 

treatment for parasite infection preceded that for bacteria [87]. Artemisinin extracted 

from plant Artemisia annua has been used as anti-malaria drugs in China since 17th 

century. The working mechanism of artemisinin has not been fully elucidated, but it is 

known to have multiple targets in the parasite Plasmodium falciparum [91]. It is 

generally accepted that iron, heme and ROS are important in the antimalarial activity of 

Artemisinin, possibly interrupting ferriheme storage, the final step in the unique P. 

falciparum iron trafficking pathway [87] by inducing rapid and dramatic iron-catalyzed 

ROS accumulation in plasmodia mitochondria [92]. Iron chelators, such as DFO, 

salicylaldehyde isonicotinoyl hydrazone (SIH) and deferiprone that actively kills malaria 

parasites in vitro were selected for further evaluation as a regimen or potential 

chemotherapeutic adjuvant treatment in human [93, 94].  

 As previously mentioned, host iron metabolism is closely regulated by cytokines 

to ensure that iron is sequestered away from pathogens detected by the host. Most, if not 

all, pathogens interfere with host innate immune system by modulating cytokine 

production, and potentially creating a micro-environment conducive for iron uptake. 
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Indeed, protozoan parasites are able to disturb host innate immune responses notably by 

“confusing” macrophages. A comparative study of macrophage response to the 

kinetoplastid parasites Leishmania spp. and Trypanosoma cruzi by Zhang and colleagues 

[95] indicated that L. mexicana infected macrophages show no significant transcriptional 

response. IL-12 is a key cytokine for the generation of protective immunity to L. major 

infection. It has been reported that IL-12 secreted by M1 macrophages (and/or mature 

dendritic cells) can activate NK cells and CD8+ T cells to drive the development of a Th1 

type immune response, including the production of IFN-α [96, 97]. However, L. major 

promastigotes are able to inhibit the macrophage release of IFN-α/β [98]. It seems that 

the major strategy used by Leishmania spp. is impeding the host Th1 immune response, 

while T. cruzi actually induces a delayed activation of IFN response [95, 99] that can be 

related to the parasite’s unique ability to escape from the parasitophorous vacuole (PV) to 

the cytosol. Moreover, the transcriptional profile of macrophages infected by T. cruzi is 

closer to the response of macrophages stimulated by cytokine IL-4, IL-10 and IL-17 than 

M1 macrophages [95]. Different from these two kinetoplastid parasites, Toxoplasma 

gondii is a strong inducer of cell-mediated immunity, and a large amount of 

proinflammatory cytokine is produced during in vivo infection. However, intracellular 

infection by T. gondii actively down-modulates host proinflammatory signaling pathways 

potentially by histone modification of inflammatory cytokine genes [100].  

It is probable that by interfering with host innate immunity, parasites are able to 

deregulate iron metabolism and ensure access to iron for their survival. It seems that 

protozoan parasites are able to obtain different forms of iron depending on their living 

environment. Protozoan parasites can usually be classified as extracellular or intracellular 
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pathogens, while some have complicated life cycles involving extracellular and 

intracellular stages. A summary of common protozoan parasites, their particular parasitic 

niches, and the iron-containing molecules in those niches is illustrated in table 1. For 

some parasites listed, however, there is no information available on iron acquisition 

pathways, and comparing information about the parasites living in a similar niche may 

reveal some clues to the elucidations for iron uptake.  

 



17 
 

Table 1. Common protozoan parasites and their parasitic niches in host 

Infected organ/ host cell types Iron containing moleculesa Protozoan parasite 
Gut/NA Transferrin, lactoferrin Giardia, Entamoeba,  Isospora, Balantidium  

GU tractb/NA Transferrin, lactoferrin Trichomonas, Trtrichomonas 
Bloodstream/ NA Transferrin, hemoglobin, lactoferrin Plasmodium, Trypanosoma, Leishmania promastigotes 

Liver/ NA Transferrin, lactoferrin, hemoglobin, 
ferritin Entamoeba 

CNSc/ NA Neuroglobin Naegleria 
Spleen, liver/ Macrophage Transferrin, ferritin, hemoglobin Leishmania amastigotes, Toxoplasma gondii 

Muscle/ Muscle cells Myoglobin Trypanosoma cruzi, T. gondii 
CNS/ Astrocyte Neuroglobin Trypanosoma, T. gondii 

 

a All the potential iron-containing molecules in the particular organs are listed. Only some of them were identified to be the iron 
source for protozoan parasites 
b Genitourinary tract 
c Central nerve system
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1. Iron acquisition by extracellular protozoan parasites 

One advantage for mammalian bloodstream parasites is that they reside in the 

largest iron reservoir. Around 70% of the total iron in the host exists in the form of 

hemoglobin [101]. In addition, 90% of iron recycling from RBCs depends on the 

endosomal transferrin cycle (Tf-TfR1-Steap3-Dmt1). As a tradeoff for easy access to iron 

though, bloodstream parasites are under the direct challenge of humoral immunity. T. 

brucei, the parasite causing African trypanosomiasis, stays and multiplies in mammalian 

bloodstream throughout the whole infection cycle, obtaining iron from host Tf and using 

surface antigenic variation as primary mechanism of immune evasion. In chronic 

trypanosomiasis, the parasite can also invade CNS. In contrast, Plasmodium sporozoites 

get into host bloodstream when infected insect vectors, Anopheles spp. are taking a blood 

meal. After their invasion into hepatocytes, Plasmodium sporozoites develop into 

merozoites that are released again into the circulation to invade RBCs. T. cruzi and 

Leishmania spp. have also complicated life cycles with intracellular and extracellular 

stages. They are both injected by insect vectors into host subcutaneous tissues and reach 

the host cells within which they multiply (muscle cells for T. cruzi and macrophages for 

Leishmania). Entamoeba histolytica is a strictly extracellular parasitic protozoan that 

infects humans and other primates. The non-infectious cysts enter the host via 

contaminated food and water, and undergo maturation and a unique excystation process, 

in which one single cyst is converted into eight trophozoites that migrate to the large 

intestine and invade the intestinal mucosa. As the infection develops, the parasites gain 

access to liver, lung and brain via the blood circulation [24]. 

Leishmania promastigotes 
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As early as 1994, Wilson and colleagues demonstrated the acquisition of iron 

from host transferrin and lactoferrin by Leishmania promastigotes, and at the same time, 

they ruled out the possibility of other iron uptake pathways, such as siderophore-

mediated iron chelation and cleavage of host iron-binding proteins [102].  In addition, it 

was shown that transferrin uptake is delayed relatively to the lactoferrin uptake. The 

potential explanation given by the authors was that the transferrin acquisition mechanism 

had to be up-regulated. This study also presented several possible mechanisms for 

transferrin and lactoferrin uptake. A membrane receptor for transferrin and/or lactoferrin 

may be involved in the uptake and the inhibition of uptake of lactoferrin or transferrin by 

each other, suggesting a common receptor or a convergent pathway for uptake, which 

would be difficult to reconcile with the lag in transferrin uptake. A second line of thought 

is that a reductase is involved in iron acquisition, a strategy that has been demonstrated in 

Cryptococcus neoformans [103], Saccharomyces cerevisiae [104], and Histoplasma 

capsulatum [105]. Those potential uptake pathways were tested in a subsequent paper by 

the same group. It was found that host lactoferrin and transferrin bind non-specifically to 

a 70kDa parasite protein (Fig. 2). On the other hand, iron uptake using transferrin and 

lactoferrin was inhibited by competing ferric reductase activity and enhanced in the 

presence of a reducing agent like DTT. Therefore, these authors proposed a model for 

promastigote uptake of iron, in which the reduction of extracellular iron is followed by 

the transport of ferrous iron through transporter(s). The transporter involved in this 

process was identified recently by Huynh and colleagues [106] in Leishmania. 

amazonensis and L. major.  This Leishmania iron transporter (LIT1) is a membrane 

protein extensively similar to the ferrous iron transporter from Arabidopsis thaliana IRT 
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(iron regulated transporter), a member of the ZIP (Zrt-, Irt-like proteins) family. In L. 

amazonensis, a GFP-tagged LIT construct is expressed at the plasma membrane and in a 

perinuclear compartment, likely a megasome.  

In contrast to lactoferrin and transferrin uptake, hemoglobin endocytosis by L. 

donovani promastigotes is mediated through a specific protein located in the flagellar 

pocket[107]. Hemoglobin uptake as an avenue for heme acquisition is secondly relevant 

since Leishmania lacks a complete heme biosynthesis pathway. Electron and immune-

fluorescence microscopy showed that uptake begins with the binding of hemoglobin in 

the flagellar pocket, and is followed by internalization in early-endosome-like 

compartments, and eventual dispersion through the whole parasite cell [108] (Fig. 2). 

Trypanosoma brucei 

For T. brucei, the major source of iron is host transferrin [109]. First, transferrin 

binds to the flagellar pocket via a hetero-dimeric glycosylphosphatidyl-inositol-anchored 

receptor encoded by the genes ESAG-6 and ESAG-7 which are expressed in mammalian 

hosts [109].  Both ESAG-6 and ESAG-7 are localized upstream of and are co-transcribed 

with the gene coding for the parasite variant surface glycoprotein (VSG) in poly-cistronic 

transcription units [109]. There are several distinct expression sites containing different 

copies of these genes that encode TbTfR subunits with quite distinct affinities for Tf. 

Two hypotheses have been proposed for the advantages of expressing transferrin 

receptors with different affinities. First, due to its complex life cycle, T. brucei may need 

a repertoire of high affinity transferrin receptors directed toward proteins from different 

hosts. At any particular time point, the T. brucei population in a host expresses transferrin 

receptors encoded by different expression sites, with one of these being active in the 
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majority of the population. Despite that the host immune system may kill a large portion 

of the parasite population; this is also the tactic for the parasites to “fool” the immune 

system for the selection of the next population to expand. The other theory is that the 

diversified TfR can ensure the efficient iron uptake during chronic infection when the 

host immune system generates anti-TbTfR antibodies. It is still under debate what benefit 

exactly the parasite gains from the multiple and various TfR genes [109-111]. After 

binding, Tf is internalized through clathrin-coated vesicles to the endocytic pathway for 

degradation in the parasitic lysosomes [24] (Fig. 2). One cysteine protease is essential for 

the digestion of Tf [112].  

Entamoeba histolytica 

Iron availability is critical for anti-oxidative activity in E. histolytica since the 

parasite has iron-type SOD [113], further, iron is an important factor in adherence and 

cytotoxicity of E. histolytica to CHO cell monolayers [114]. The effect of Lf on the 

amoeba depends on the host iron physiological and dietary conditions. Holo-lactoferrin 

can specifically bind to two membrane proteins, internalized by caveolin-like protein to 

endosomal/lysosomal pathway. It is noteworthy that apo-lactoferrin can be used 

synergistically with human milk IgA and lysozyme as an anti-amoeba drug. It was shown 

that apo-lactoferrin binds to amoebic phospholipids and cholesterol, which are released 

before lysis. The same microbicidal effect of apo-lactoferrin was demonstrated in Giardia 

lamblia infection [24].  

E. histolytica is an aggressive iron scavenger capable of acquiring iron from 

almost all host iron-containing molecules. The parasite can spread to multiple organs 

through the systemic circulation and produce enzymes to rupture host cells. It has been 
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revealed by electron microscopy that E. histolytica trophozoites can ingest both dead and 

live RBCs [115].  Surface proteins, such as haemolysins and phospholipases [116] can 

bind and lyse the membrane of RBCs so that released hemoglobin is internalized for 

degradation.  It seems that extracellular parasites, such as Leishmania promastigotes and 

E. histolytica have developed a repertoire of surface proteins to bind to host iron-

containing molecules. At least two surface proteins from E. histolytica can bind to Tf, 

and one of them might be homologous to human TfR1 since it can be recognized by anti-

human TfR1 monoclonal antibody. After binding, Tf is internalized through clathrin-

coated vesicles [117], similar to T. brucei Tf scavenger pathway. The more astonishing in 

E. histolytica iron mining strategy is that this parasite can lyse enzymatically the 

hepatocyte membrane and absorb iron directly from host ferritin, which contains 1000-

fold more iron than Hb. Ferritin molecules are first bound to the surface protein, followed 

by cleavage into fragments, and internalization via clathrin-coated vesicles to the 

lysosomes [24] (Fig. 2). 

Tritrichomonas and Trichomonas 

Like E. histolytica, Tritrichomonas spp. can produce adhesive molecules to 

increase adherence to vaginal epithelial cells [118, 119]. Iron uptake pathways of 

Tritrichomonas spp. show versatile iron utilization by mucosal parasites. In 

Tritrichomonas, the majority of iron is associated with ferridoxin [120] that plays a 

critical role in glycolysis. The lack of mitochondria makes glycolysis the only energy 

generating avenue for the parasite. In its unique organelle, the hydrogenosome, 

carbohydrate metabolism activity is closely correlated with iron availability [121]. 

Therefore, it is not surprising that Tritrichomonas can acquire iron from wide-range 
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molecules via multiple pathways. Iron from different kinds of siderophores [122] can be 

used by T. foetus through pinocytosis, and siderophore-associated iron is probably 

released in acidic vesicles in the parasites. Since T. foetus can parasitize both the bovine 

vagina and uterus, it has access to both Lf and Tf [123]. Lf is taken through the 

endocytosis [124] pathway via a specific-receptor [125], while, Tf is processed by non-

specific pathways similar to those discussed in Leishmania promastigotes. An acidic 

environment is built around the parasites to release iron from Tf, followed by reduction 

of ferric iron and transport of ferrous iron [85, 123]. The in vitro uptake of low-molecular 

weight iron complex occurs in the same manner as Tf acquisition in vivo [125] (Fig. 2).  

The causative agent of human trichomoniasis, Trichomonas vaginalis uses 

adhesins, such as AP51 and AP65, for double functions as both adhesive molecules and 

binding proteins to heme and hemoglobin [126]. There are interesting reports about 

IRE/IRP-like systems in T. vaginalis to regulate expression of virulence factors such as 

adhesion and cysteine proteinase that induce apoptosis of host cells[127, 128], consistent 

with the ancient origin of the IRE/IRP system in evolution. Further, a lactoferrin-specific 

binding protein has been reported [129]. Like E. histolytica, T. vaginalis can also 

specifically bind to RBC and alternatively use hemoglobin as the iron source [130]. 

Other extracellular protozoan parasites 

The iron uptake pathways indentified in extracellular protozoan parasites 

discussed above are illustrated in Fig. 2. However, our knowledge about iron acquisition 

pathways used by extracellular parasitic protozoans is still lacking for most species. 

Although it has been demonstrated that Giardia infection results in decreased iron level 

in patient serum[18], which is probably a outcome from hypoferremia due to the host 
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immune response to withhold iron, nothing is known about Giardia iron uptake. We 

don’t know how Naegleria fowleri  acquire iron from the host, while inhibition of the 

parasite by iron chelators was reported [131]. Iron-type mitochondrial SOD was 

identified in Cryptosporidium parvum [132] and based on a recent report, an ATP half-

transporter CpABC4 in the parasite was characterized as iron-sulfur cluster transporter 

[133]. There is not yet any report on the iron uptake in parasites Isospora or Balantidium.
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Fig. 2 
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Fig. 2. Summary of iron uptake pathways identified in extracellular protozoan 

parasites.  

Extracellular parasites are surrounded by high concentrations of host iron-associated 

molecules. Host Tf can be obtained by extracellular parasites following specific- and 

non-specific binding. Examples of specific-binding of Tf by parasite surface receptors are 

provided by Trypanosoma and Entamoeba. The system for non-specific binding and 

uptake of Tf is generally coupled with a ferric reductase and a ferrous iron transporter. 

This strategy is shared by Leishmania and Trichomonas. Host Lf can also be acquired via 

specific- and non-specific pathways. Leishmania expresses non-specific surface protein 

to capture Lf while Tritrichomonas owns Lf-specific receptors. In addition to Tf uptake 

pathways, Entamoeba can also acquire iron from hemoglobin and ferritin. Entamoeba has 

the ability to bind and rupture RBC, or even engulf the whole RBC. Entamoeba is also an 

example of iron acquisition from hepatocyte ferritin by secreting perforing enzymes that 

destroy the hepatocyte membrane and digesting the liberated ferritin. All receptor-

specific binding of host molecules are followed by internalization inside vesicles and 

degradation in lysosomes. Details can be found in text.
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Iron acquisition by intracellular protozoan parasites 

As compared to extracellular pathogen varieties, our knowledge about iron 

acquisition mechanisms in intracellular parasites, with the exception of Leishmania 

amoastigotes, is even more limited.  

Leishmania amastigotes 

The intracellular parasite lifestyle of Leishmania amastigotes comprises the same 

set of iron acquisition pathways as promastigotes [134] that is supplemented to facilitate 

iron delivery of through the physical and immune barriers inside host cells. Tf has been 

suggested to be the source of iron for L. amazonesis and L. pifanoi, because gold-labeled 

Tf was detected in the parasitophorous vacuole (PV) seven day post-infection [135]. This 

was unexpected since Tf is delivered through the early endosomal pathway while the PV 

is formed after late endosomal pathway. To explain the unusual appearance of Tf in the 

PV, evidence was presented in pulse-chase experiments that the macrophage endosomal 

pathway is subverted by Leishmania infection. Recently, it has been found that in 

addition to developing ways to acquire host iron from different sources, Leishmania 

parasites deplete the labile iron pool of Nramp1-/- macrophages [136]. As mentioned 

above, upon infection macrophages normally reduce their capacity for iron uptake and 

increase the expression of the iron storage protein ferritin.  But within 12 h after L. 

donovani infection, mouse TfR1 (mTfR1) was up-regulated; similar up-regulation was 

detected in macrophage treated with DFO. Increased mTfR1 expression was the result of 

enhanced mRNA stability via the augmented IRE/IRP  interaction [136]. Notably, though 

all the experiments by Das et al. (2009) were performed within 24 h after infection, and 

detection of Tf in PV was carried on day 7 after infection [135], re-routing of transferrin 
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was observed both at 60 min and 18h post-infection [136]. Combining those results, it 

may be inferred that depletion of the host cell labile iron pool can benefit the parasite 

during early stages of infection. Meanwhile, alteration of host endosomal trafficking 

pathway actually starts as early as the first hour of infection, which sets the stage for 

gaining iron later in the process as host cells are stimulated to replenish their iron pool.   

It remains unclear how the parasite actually depletes the host labile iron pool. Das 

and colleagues pointed out the possible role of Leishmania intracellular iron scavenging 

pathways and suggested that they may provide new drug targets. But macrophages used 

in these studies lacked a functional Nramp1, which artificially limited host cell capacity 

to counter-act Leishmania activity and expel iron from PV. Nevertheless, another 

interesting finding [137] is that a protein from L. tarentolae extracts can interact with 

mammalian IRE. An alternative possibility might thus be that Leishmania secrete a 

protein to perturb directly the host cell IRP/IRE regulatory network, “simulating” iron 

starvation to upregulate TfR1 and reduce ferritin expression. In any case LIT is another 

important player for iron acquisition by amastigotes. LIT expression is accelerated under 

iron depletion conditions, such as expression of host Nramp1, suggesting competition for 

iron between LIT and host Nramp. LIT knockout has no significant effect on 

differentiation of promastigotes into amastigotes, but it abolishes amastigote division and 

the parasite virulence, indicating that LIT has a critical role at the intracellular stage. 

Other intracellular protozoan parasites 

The exact iron acquisition pathway in malaria parasite Plasmodium spp. is still unknown 

though it is clear that malarial pathogenesis results in delocalization of systemic iron 

(Nweneka CV et al., 2009). In 1988, it was pointed out that if host Tf is one of the iron 
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sources for the parasites, it is not delivered via host TfR1 [138]. Detection of ferric 

transferrin reductase on the plasma membrane of infected RBCs and the expression of 

parasite-derived TfR in RBC membrane indicated a possible transferrin-dependent iron 

uptake [139]. Radioactive-labeled transferrin failed to enter the parasites; however, 

radioactive-labeled low molecular-weight iron-complex can reach both uninfected, 

infected RBC and the parasites, suggesting a transferrin-independent iron uptake pathway 

[140]. It would be very surprising that Plasmodium embedded in a huge hemoglobin pool 

cannot exploit this easy iron source. It is known that inhibition of heme synthesis can 

impair hepatic development of P. yoelii [141]. The HOs that catalyze iron release from 

heme molecules were thought to be absent in the parasites until recently, when such 

activity was detected for a HO-like protein located in apicoplast [142]. Also, it seems 

worth noting that plasmodia genomes encode a predicted Nramp homolog,  

It is not clear either how T. gondii parasites gain access to host iron, although two 

Toxoplasma proteins from endocytic rhoptries were demonstrated to bind human 

lactoferrin [143]. Further information may be obtained from T. gondii intracellular 

parasitism of placental trophoblasts. The concomitant presence of pregnancy and 

intracellular infections for which host protection depends on Th1 response is well 

documented. Immunocompetent individuals resolve T. gondii infection by relying on 

secretions of IFNγ, IL1β and TNFα, but during pregnancy, anti-inflammatory cytokines 

such as IL-4, IL-10 and TGF-b dominate to maintain immunological tolerance, together 

with innate antimicrobials such as defensins [144]. Fetal growth depends on transfer from 

maternal blood of various nutrients and molecules, including diferric Tf, which proceeds 

across polarized epithelial cells by receptor-mediated transcytosis [145]. Trophoblasts are 
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frequently parasitized by T. gondii, and in vitro this infection can be controlled by 

neutralizing endogenous IL-10 and TGF-β and providing IFN-γ [146]. This suggests that 

this parasite hijacks a vulnerable iron pool within trophoblasts. Besides, T. gondii [147] 

and Trypanosoma cruzi [148, 149] can invade muscle cells and CNS, and it was 

hypothesized that host myoglobin and neuroglobin could protect the parasites from 

nitrosative stress. The above reports imply that the parasites have access to the particular 

iron-containing molecules, but whether they use those molecules as iron source needs 

further investigation. 
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Fig. 3 
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Fig. 3. Summary of iron uptake pathways identified in Leishmania amastigotes.  

For intracellular parasites (e.g. the Leishmania spp. amastigote stage), new challenges 

arise from the host’s physical and immune barriers that defend iron store against potential 

pathogens. The blue arrows indicate the pathways in uninfected or M2 host macrophages, 

and the red arrows represent steps following the parasite entry. In uninfected host cells, 

transferrin receptors bind circulating transferrins and are endocytosed. In addition, M2 

macrophages phagocytose effete cells and recycle their internal iron. Following 

acidification of endosomes/phagosomes, ferric iron is released and converted to ferrous 

iron by Steap3, before being translocated by Nramp2/Dmt1into the host cytoplasmic LIP, 

together with iron extracted from heme. Because M2 macrophages express FPN1, the 

majority of cytoplasmic ferrous iron is exported, oxidized by ceruleoplasmin and then 

loaded onto Tf while the excess is stored in ferritin in the ferric form. Leishmania 

amastigotes may be able to deplete host cell LIP by mimicking iron starvation that would 

ultimately down-regulate host ferritin while up-regulating transferrin receptor expression 

(indicated by red arrows). Increased trafficking of diferric transferrin into the endocytic 

pathway would facilitate parasite-driven delivery of host iron to PV. As part of host iron 

recycling machinery and macrophage defense system, Nramp1 is recruited to the 

membrane of late endosomes/lysosomes and PV to withdraw iron from these 

compartments. However, parasitic LIT may compete with Nramp1 to secure iron import 

from the PV lumen into the amastigote parasites. 
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Identification of Nramp as a marker for resistance to infection  

Nramp1 (natural resistance-associated macrophage protein 1) was identified from 

a survey of inbred mouse strains in a model of Salmonella typhimurium infection. Results 

showed that resistant (LD100>104-105 bacteria) or susceptible (LD100<100 bacteria) 

phenotypes to Salmonella infection were controlled by a single locus (Ity) [150]. 

Similarly, another group showed independently that the replication of Leishmania 

donovani in mouse tissues was either allelic or tightly linked to Lsh [151]. More recently, 

a third locus (Bcg) was mapped to the same region of mouse chromosome 1 (Bcg/Lsh/Ity 

locus) [152] in in vivo studies of mycobacteria replication [151-154]. In each case the 

resistant allele that permitted restriction of intracellular replication of the infectious 

agents was shown to be dominant. By positional cloning the chromosomal region 

covering the Bcg/Lsh/Ity locus was found to encode six candidate genes, and was 

expressed exclusively in macrophages extracted from spleen and liver [152]. The highly 

hydrophobic integral trans-membrane protein encoded by this mRNA was reminiscent of 

a transporter or an ion channel. Later studies rigorously demonstrated that Nramp1 

(Bcg/Lsh/Ity gene or Slc11, Solute carrier 11) was involved in host resistance to 

intracellular infections. Interestingly, it was a single Gly169Asp substitution in predicted 

TMS4 of the protein that was responsible for the susceptibility trait. These findings 

spiked the search for Nramp in humans where it was also shown to be associated with 

resistance to infection with a variety of intracellular pathogens. This studies revealed that 

Nramp as a promising marker for resistance to intracellular pathogens. Prompted by this 

possibility, strong interest was generated in searching for this marker in agriculturally 
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important animal species such as of chickens and cattle, to increase the overall level of 

genetic resistance by using selective breeding programs [155-157]. Pursuing the same 

objectives, the Nramp gene has also been described in numerous wild and farmed fishes 

[158-163]. 

Nramp functions in metal homeostasis  

Functional studies revealed that Nramp homologs are proton-dependent divalent 

metal transporter with a high affinity for Mn2+ and Fe2+. Heterologous expression studies 

of Nramp family members from various organisms have identified several metal 

substrates, including Cd2+, Cu2+, Co2+ [164-166],  and even Ca2+ [167]. Besides the 

mammalian Nramp1, the Nramp isotype, Nramp2, or DMT1 was identified and 

characterized [168]. A mutation (G185R) at the Nramp2 locus causes microcytic anemia 

and iron deficiency in the mk mouse and the Belgrade rat [169, 170], a pathology 

associated with decreased iron uptake in the duodenum, and impaired iron metabolism in 

peripheral tissues. Nramp2 is believed to function as the major transferrin-independent 

iron uptake system at the intestinal brush border, and in the transport of transferrin iron 

across the membrane of acidified endosomes as part of transferrin cycle [171]. 

Nramp homologs are ubiquitously present in virtually all taxa. In yeast, the 

Nramp homologs SMF1 and SMF2 transport Mn2+, but also Cd2+, Cu2+ and Co2+ at lower 

rate, while SMF3 is presumed to mostly transport Fe2+ [166]. The fruit fly Nramp 

homologue, malvolio, is expressed primarily in the brain, and mutations at this locus 

cause a sensory-neuron defect in taste discrimination. The mutant phenotype can be 

corrected by dietary Fe2+ or Mn2+, and by expression of mammalian Nramp1 in malvolio 

transgenic flies [172]. The plant Nramp family has been well documented in both 
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genomic and EST databases, demonstrating that genes from this family are present in 

virtually all plants studied at the molecular level. Functionally, plant Nramp genes 

complement yeast mutants deficient in the uptake of several metals, including Fe2+, Mn2+, 

and Zn2+, suggesting that their function as metal transporters is conserved across various 

taxa. Schistosoma mansoni, an intravascular human parasite with a high nutritional and 

metabolic demand for iron, has two Nramp homologues (SmDMT1A and SmDMT1B) 

with different expression patterns and subcellular compartmentalization. SmDMT1 

localizes primarily to the tegument, suggesting that the parasite uses this transporter for 

iron acquisition [173]. 

Nramp as a potential microbial virulence factor 

As mentioned above, iron, and possibly other divalent cations are necessary for 

the growth of microbial pathogens and parasites; therefore, their metal transporters have 

been investigated as candidate virulence factors. Manganese was recognized as necessary 

for virulence in certain bacteria, and one of the reasons is that some bacteria use 

manganese as their SOD cofactor [174].  The bacterial Nramp homologs MntH (H+-

dependent Mn transporter) are widespread. Disruption of MntH in Escherichia coli and S. 

typhimurium does not affect bacterial growth under aerobic conditions in minimal or rich 

medium, implying that MntH is not essential for growth under normal laboratory 

conditions [175, 176], and at least one potentially redundant manganese acquisition 

system (e.g. ATP-binding cassette transporter) is present in pathogenic enterobacterial 

microorganisms [177]. The lack of a strong growth phenotype suggests either that Mn2+ 

is not critical for growth or that other enterobacterial transporters can compensate for the 

loss of MntH-mediated uptake. However, elimination of the Gram positive Bacillus 
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subtilis mntH gene prevented bacterial growth in Mn-limited medium, implying that 

bacterial physiology influences mntH phenotype [177]. It was demonstrated in E. coli 

that overexpression of mntH from a plasmid could restore growth of the temperature 

sensitive hflB1 mutant, which requires high intracellular metal concentrations to grow at 

non-permissive temperatures [177]. In addition, when MntH was overexpressed, E. coli 

cells become more sensitive to Mn2+, Cd2+, Co2+, Fe2+, Ni2+, and Cu2+ and direct 

measurements of radio-label uptake showed that E. coli MntH has higher affinity for 

Mn2+ [176]. Likewise, it was confirmed that overexpression of mntH renders both E. coli 

and S. typhimurium more sensitive to growth inhibition by Mn2+ and Cd2+, and that the 

loss of mntH rendered them more sensitive to hydrogen peroxide but not to superoxide. 

Although bacterial pathogens acquire host iron and other divalent metals via multiple 

routes, Nramp homologs (MntH) identified in M. tuberculosis [178], M. leprae [179], and 

Salmonella spp. [175] represent potential virulence factors.                                                                          

A “tug-of-war” for iron through host and pathogen Nramp homologs  

The concept of "nutritional immunity" defines the dynamic interaction between 

pathogens and hosts, including the competition for essential nutrients such as small 

organic molecules, amino acid, fatty acids, nucleotides and other co-factors [22]. Hence, 

the innate resistance to infection by intracellular pathogens is, at least in part, derived 

from basal metabolic functions, and influenced by genetic factors [21]. An instructive 

example for nutritive host–pathogen competition is represented by the mutual 

requirement for iron, manganese, and potentially other divalent cations. One illustrative 

example is the divalent cation transporter Nramp, which plays roles in both trace metal 

acquisition and natural defense against intracellular pathogens.  
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Two different theories have been proposed about how the host Nramp1 functions 

in defense against intracellular pathogens. One theory implies that Nramp1 might 

increase intraphagosomal Fe2+, and through the Haber-Weiss/Fenton reaction facilitates 

the generation of microbicidal reactive oxygen species [180, 181]. The second suggests 

that Nramp1 deprives the intraphagosomal pathogen of Fe2+ and other divalent cations 

critical for growth and for the pathogen’s effective antioxidant defense [182-184]. 

Accumulating evidence further supports the prime role of Nramp as a first line defense 

that limits essential metal availability to intracellular pathogens, not only in animal hosts 

but also in amoeba and plants [185]. In M. tuberculosis, it has been suggested that the 

prokaryotic Nramp homolog (MntH) might be in direct competition with the host Nramp 

for iron and other divalent cations [178]. A proposed “tug-of-war” for iron between 

oyster and P. marinus Nramp is illustrated in Fig. 4, in which the host Nramp1 mediates 

efflux of divalent cations (including Fe2+ and Mn2+) from inside the phagosome and into 

the cytoplasm. Acidification of the phagosomal space by vacuolar H+/ATPase would 

provide the proton gradient as the driving force for metal efflux. Deprivation of Mn2+ and 

Fe2+ could deplete the parasite of nutritional metals, prevent success of individual 

survival strategies (virulence factors), and/or disable the pathogen-encoded detoxifying 

enzymes (SOD, APX, among others). The microbial archetype Nramp homologs likely 

function by a similar mechanism, both for the acquisition of metals from the environment, 

and in the competition for the same substrate(s) with their host counterpart(s). This 

question was raised whether there is a “tug-of-war” for iron between oyster hemocytes 

and intracellular P. marinus. As mentioned before, iron is critical for P. marinus growth 

and prevalence of infection, but no iron uptake pathway has been identified. Exploring 
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Nramp homologs in P. marinus and the functional characterization of the homolog(s) 

may not only provide a novel avenue for disease intervention, but also shed some light on 

the Nramp-involved iron metabolism in other intracellular protozoan parasites. 
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CHAPTER 2 MOLECULAR CHARACTERIZATION 

OF TWO NOVEL NATURAL RESISTANCE-ASSOCIATED 

MACROPHAGE PROTEIN ISOTYPES (PMNRAMP2 AND 

PMNRAMP3) IN PERKINSUS MARINUS 

SUMMARY 

Perkinsus marinus, a pathogenic intracellular protozoan parasite of the eastern 

oyster, Crassostrea virginica, requires iron for proliferation and virulence. In a previous 

study, a divalent metal transporter (PmNramp1) was described as a potential iron 

transporter in the parasite. In this chapter, two extra P. marinus Nramp homologs 

designated PmNramp2 and PmNramp3 are described. Among the three PmNramp 

isotypes, PmNramp2 was similar to PmNramp1 in the aspects of amino acid sequence 

and exon-intron boundaries. Nucleotide and amino acid sequences analyses indicate that 

PmNramp2 and PmNramp3 encode predicted membrane proteins of 649 and 559 amino 

acids respectively. Topology prediction software programs suggest 10 to 12 TMS in both 

PmNramp2 and PmNramp3. Regular RT-PCR was performed to detect the transcript of 

the three PmNramp isotypes, and indeed, the three Nramp isotypes are transcribed in 

cultured P. marinus trophozoites. All the PmNramp isotopes have a SL at the 5’ ends. 

The sequence of the SL is highly similar to dinoflagellate SL. Further examination 

proved the presence of the SL in other genes of the parasite. P. marinus heat shock 

proteins (PmHSP70 and PmHSP90) and antioxidant gens, including superoxide 

dismutases (PmSOD1 and PmSOD2) and ascobate peroxidases (PmAPX1 and PmAPX2) 

are trans-spliced. Iron overload, iron depletion and host serum challenge did not change 

the transcript level of PmNramp isotypes and tested antioxidant genes as accessed by 
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quantitative PCR (Q-PCR). Temperature change did not have a significant impact in 

PmHSP transcription. The identification of SL and the lack of change in transcription 

suggest a constitutive polycistronic transcription in P. marinus. 

INTRODUCTION 

Once inside the oyster hemocyte, P. marinus must acquire from the host trace 

elements, such as iron, which are essential for pathogen survival. A putative divalent 

cation membrane transporter that may be responsible for iron uptake is previously 

identified in P. marinus (hereafter designated as PmNramp1) [186], which is the first 

report about Nramp homologs in alveolates. The cDNA sequence of PmNramp1 was 

obtained and sequenced. PmNramp1 cDNA turns out to be 2,082 base-pair (bp) long with 

a CDS for 518 amino acids. Topology prediction implies that PmNramp1 is an integral 

membrane protein with 12 TMS. Southern blot analysis indicates PmNramp1 exists as a 

single copy gene in P. marinus strain TXsc (ATCC number 50849) [186]. 

In mammals, two different Nramp isotypes are characterized [162, 168, 169, 187]. 

While baker yeasts, Saccharomyces cerevisiae, has three Nramp homologs [188, 189]. P. 

marinus genome database provides a powerful tool for searching genes of interest. As a 

continuous study of the identification of PmNramp1, the possibility of other Nramp 

isotypes in P. marinus was explored since Nramp can exist as several different forms in 

an organism. In this chapter, two new PmNramp isotypes were described in the aspects of 

gene organization and transcription regulation.  
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MATERIALS AND METHODS 

Perkinsus marinus cultures 

The Perkinsus marinus strain CB5D4 (ATCC# PRA-240) [190] was propagated 

in Perkinsus standard culture medium [Dulbecco modified Eagle's (DME): Ham's F12 

(1:2) with 5% fetal bovine serum (FBS)] at 28 °C [191]. The details about the culture 

medium composition are listed in table 2. 

Genome mining 

cDNA and amino acid sequences of P. marinus Nramp (PmNramp1) [186] were 

used as query in the search of potential homologs in the P. marinus genomic database 

(http://blast.jcvi.org/er-blast/index.cgi?project=pmg). Two contigs were identified in the 

TIGR database using BLASTn, or tBLASTn programs in the BLOSUM62 matrix, 

respectively. The consensus sequences of the contigs were then used in NCBI BLASTx 

program (www.ncbi.nlm.nih.gov) to confirm their identity as Nramp homologs. 
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Table 2. The composition of Perkinsus marinus culture medium  

Chemical name Final concentration 

Dulbecco' modified Eagle's medium (DMEM) (Sigma Aldrich, St. Louis, MO) 5 mg/ml 

Ham's F12 nutrients mixture (HAM’s F12) (Sigma Aldrich, St. Louis, MO) 10 mg/ml 

artificial seawater (Instant Ocean, Mentor, OH) 15 mg/ml 

4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid 
(HEPES) 50 mM 

sodium bicarbonate 3.6 mM 

penicillin G 100 U/ml 

streptomycin sulfate 100 U/ml 

fetal bovine serum (FBS) 5% 

* Adjust pH to 6.6 

Nucleic acid extraction and cDNA cloning and sequencing 

Parasite cultures in log phase were harvested by centrifugation for 10 min at 500 g 

and the pellets were used for either total RNA extraction with the RNeasy Mini Kit 

(Qiagen, Valencia, CA) or DNA extraction with the QIAamp tissue kit (Qiagen) 

following the manufacturer’s instructions.  

Table 3. Primers used for amplifying Perkinsus Nramp genes 
Primer Primer sequence PCR reaction 
PmNR1f 5’-TCT TCG CTG TTG GCA TAT TG-3’ RT-PCR of PmNramp1 PmNR1r 5’-TCT ATG GAA GCA GCA CAT CG-3’ 
PmNR2f 5'-CGC TAG GCT CGG TTT TGT AA-3' RT-PCR of PmNramp2 PmNR2r 5'-ATG CAT TGA TGC CGT TCA TA-3' 
PmNR3f 5'-CGC TAG GCT CGG TTT TGT AA-3' RT-PCR of PmNramp3 PmNR3r 5'-CAC TGC GGA ACC CAA TAC TT-3' 

PmNR2fullcDNAf 5'-ATT ATT ATG TCT ATT GTC GC-3' Amplification of PmNramp2 
full cDNA 

PmNR3fullcDNAf 5'-ATG GGG TCG TCC GAA CCA TA-3' Amplification of PmNramp3 
full cDNA 
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One microgram of P. marinus RNA was transcribed into cDNA using GeneRacer 

Core Kit (Invitrogen, San Diego, CA) according to the manufacturer’s protocol; another 

microgram of total RNA was used to generate first-strand cDNA as reported elsewhere 

[192]. Based on the partial sequences of the PmNramp homologues obtained from 

genome mining, gene specific primers (PmNR2f, PmNR2r, PmNR3f, and PmNR3r, 

Table 2) were designed using the web-based software Primer3 (http://frodo.wi.mit.edu/) 

for RT-PCR. The 5’ and 3’ ends were subsequently obtained by rapid amplification of 

cDNA ends (RACE) with the GeneRacer kit (Invitrogen). For 3’ RACE, the method 

described by Borson was also used [192]. The 5’ and 3’ RACE products were cloned into 

the pGEM-T vector (Promega, Madison, Wisconsin), and sequenced (3120X/Genetic 

Analyzer, Applied Biosystems, Carlsbad, California). Finally, to confirm the full-length 

PmNramp2 and PmNramp3 cDNA sequences, primers were designed to target the 

predicted 5’ UTR (Table 2) to amplify the full cDNA by 3’ RACE. Products were cloned 

and sequenced as above. All PCR reactions were performed using High Fidelity Taq 

DNA polymerase (Takara, Otsu, Shiga, Japan), with the following settings: 94°C /5min, 

35 cycles of 94°C/1 min per kbp, 50-60°C/30sec, and 72°C/2-4min. 

Identification of trans-splicing leader in other genes 

In order to test if other genes in P. marinus are trans-spliced, a forward primer 

was designed based on the 22 nucleotide sequence (SL forward, Table 4) and reverse 

primers were designed based on the cDNA sequenced of P. marinus SOD1, SOD2, 

APX1, APX2 cDNA sequences [14, 15]. Reverse primers were also designed based on 

partial cDNA sequences of two potential heat shock proteins, HSP70 (Accession # 

XM_002774278) and HSP90 (Accession # AY391259) identified in P. marinus genome 
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database (Table 4). RT-PCR using P. marinus cDNA as template was performed. PCR 

product was purified and sequenced to verify that the targeted anti-oxidant genes are 

actually amplified. 

Table 4. Primers used in testing of trans-splicing leader in other genes 
Primer Primer sequence 
SL forward 5’-TCC GTA GCC ATC TTG GCT CAA G-3’ 
SOD1reverse 5’-CAG CAG CGA TGC TAT TCA AA-3’ 
SOD2 reverse 5'-GCC TTT CGC ATG AAG TTC TC-3' 
APX1 reverse 5'-CGA TAC CCT CCT TTC CAT CA-3' 
APX2 reverse 5'-CCT CGC TAC CGT TGG TGT AT-3' 
HSP70 reverse 5’- GTTGCTCTTGCCAGTGGACTTA-3’ 
HSP90 reverse 5’- CAACACGGACCTTGTCAGCA-3’ 

 

Challenge experiment design 

Perkinsus marinus cells were grown as described above to log phase (optical 

density at 600 nm = 1.2).  Cells were pelleted by centrifugation at 1000 g for 5 min, 

washed with culture  medium (DME-HAM based) to remove FBS and inoculated into 

culture mediums including fetuin (1.7 mg/ml) as iron supplement to a final cell number 

around 8 Х 106 cell/ml (optical density at 600 nm = 0.64).  

Cation overload and depletion conditions were set up in DME-HAM base 

medium with fetuin as follows:  iron overload: FeCl2 (Sigma) stock solution (25 μg/ml) 

was added to the medium to reach the final concentration of 100 and 400 μM.  

manganese overload: MnCl2 (Sigma) stock solution (1M) was added to the medium to 

reach the final concentration of 0.3 and 0.8 μM.  iron depletion: DFO (Sigma) stock 

solution (20 mg/ml in P. marinus culture medium) was added to the culture medium to 

the final concentration of 0.01 and 0.08 mg/ml. To study the effect of host factor on the 
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expression of PmNramp isotypes, over one hundred oysters were ordered from Mook Sea 

Farm, Inc. (Walpole, ME).  All the oysters were notched and hemolymph was withdrawn 

from the adductor muscle with a 22 G needle and 3 ml syringe and collected in 1.5 ml 

eppendorf tubes on ice. A piece of oyster tissue was dissected from every oyster for DNA 

extraction using DNeasy Blood&Tissue Kit (Qiagen) followed by infection check via 

PCR-based assay [193]. Due to a high infection rate, a limited amount of uninfected 

oyster sera was available and the final concentration of oyster serum in the culture 

medium was 5%. All the culture medium was filter sterilized with 0.2 μm VacuCap 90 

(Gelman Sciences, Port Washington, NY) after preparation. To test the transcription 

regulation of PmHSP70 and PmHSP90, P. marinus culture was grown to log-phase 

(OD=0.6) and split to three groups: one stayed in optimal 28°C, one was put in 4°C and 

the other one in 37°C for 2 hs.   

All the challenge experiments were carried out in duplicates. During the time of 

experiment, parasite cells were incubated in 75 ml cell culture flask (Corning, Corning, 

NY) under 28°C. 0.5 ml culture was withdrawn for OD measurement using UV-1601 

UV-visible spectrophotometer (Shimadzu, Columbia, MD ) at different time points (at 

t=0, 18 hours, 2 days, 4 days, 7 days and 9 days). Meanwhile, 7.5 ml culture was taken 

from each flask for RNA extraction and eventually Q-PCR. 

RNA extraction and reverse transcription 

P. marinus cells were pelleted by centrifugation at 1000 g for 5 min. QIAshredder 

(QIAGEN) was used to homogenize the cells. RNeasy Mini Kit (QIAGEN) was used for 

RNA extraction from all the samples. Elimination of DNA contamination was achieved 

by using the RNase-Free DNase Set (QIAGEN). The final concentration of RNA from 
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each sample was measured by NanoDrop ND-1000 spectrophotometer (NanoDrop 

Products, Wilmington, DE). One microgram of RNA was used for the synthesis of the 

first-strand cDNA using RevertAid™ First Strand cDNA Synthesis Kit (Fermentas, 

Ontario, Canada). 

Quantitative PCR 

The primers used in QPCR were designed using the free primer design tool 

OligoPerfect™ Designer from Invitrogen 

(http://tools.invitrogen.com/content.cfm?pageid=9716). All the primers sets (Table 5) 

used in QPCR were confirmed to have application efficiency from 90% to 110%. All the 

genes that are known to be trans-spliced, including the three PmNramp isotypes, PmSOD 

isotypes and PmAPX isotypes were tested for transcriptional change. Partial cDNA 

sequences of P. marinus 18S gene (Accession number ti:1520534126), heat shock protein 

were obtained from P. marinus genome database 

(http://blast.ncbi.nlm.nih.gov/Blast.cgi?PROGRAM=blastn&BLAST_SPEC=TraceArchi

ve&BLAST_PROGRAMS=megaBlast&PAGE_TYPE=BlastSearch) was also included 

in the QPCR. All QPCR reactions were performed using Sybr Green PCR master mix 

(Applied Biosystems) in 7500 Fast Real-Time PCR system (Applied Biosystems), with 

the following settings: 50 °C /2 min, 95°C /10 min, 40 cycles of 95°C /15 sec, 60 °C/ 1 

min. 
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Table 5 Primers used in quantitative PCR 
Target 
gene Forward primer Reverse primer 

Pm18S 5’-GCATTTGCCAAGGATGTTTT-3’ 5’-AAATTAACGACCCCCAATCC-3’ 
PmNramp1 5’- TTTGCTGCACGGTATCAGAG-3’ 5’- GGCATAATAACTGCGCCAAT-3’ 
PmNramp2 5’- GGCATTCACAGGTTTCCAGT-3’ 5’- CCTCTACGGCAATTCTCTGC-3’ 
PmNramp3 5’- CAGCCGCTGATACTTTCACA-3’ 5’- GAAGCAAGCGCACATTATCA-3’ 
PmSOD1 5’- CTGGCAAGCCTTTTAACCAG-3’ 5’- CGCTGAACTCCTCCTTGAAC-3’ 
PmSOD2 5’- GGGGAGAATGTGTTCAATGC-3’ 5’- GCCTTTCGCATGAAGTTCTC-3’ 
PmAPX1 5’- GCCTTCAAAGATCGTTCTGG-3’ 5’- CGATACCCTCCTTTCCATCA-3’ 
PmAPX2 5’- GGGCTTCAATGATCAGGAGA-3’ 5’- CCTCGCTACCGTTGGTGTAT-3’ 

PmHSP70 5’- GATAACCAGCCTGGTGTGTTGA-3’ 5’- GTTGCTCTTGCCAGTGGACTTA-
3’ 

PmHSP90 5’- AGGCCAATGGCACCCTTACT-3’ 5’- CAACACGGACCTTGTCAGCA-3’ 
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RESULTS 

Identification of two novel PmNramp isotypes 

Genome mining of PmNramp homologs was performed with bi-direction BLAST. 

Both PmNramp1 cDNA and amino acid sequences were used as queries in BLASTn and 

tBLASTn programs respectively in the P. marinus genomic databases 

(http://blast.jcvi.org/er-blast/index.cgi?project=pmg, previous TIGR Perkinsus marinus 

Sequence Database).  Two contigs were returned as hits. One contig (No. 21203) came 

out as hit when PmNramp1 cDNA sequence was used as query; another different contig 

(No. 22669) was shown as hit when PmNramp1 amino acid sequence was used as query. 

The consensus sequences from the two contigs were then used as queries in NCBI 

BLASTx program (http://blast.ncbi.nlm.nih.gov/Blast.cgi) and both of them turned out to 

be Nramp homologs. Gene specific primers were designed based on the consensus 

sequences and used in regular RT-PCR. As shown in Fig.4, all the three PmNramp 

isotypes cDNA was amplified by those primers, indicating that all the three PmNramp are 

transcribed in the parasite trophozoites cultured in standard medium. 

The full cDNA sequences of the two new Nramp genes, hereafter designated 

PmNramp2 (GenBank accession No. EU589239) and PmNramp3 (GenBank accession 

No. EU836690) were obtained. The first in-frame initiator methionine codon of CDS is 

located at position 37 of the PmNramp2 cDNA sequence. PmNramp2 CDS was 1,947-bp 

long, encoding a putative protein of 649 amino acid residues with a predicted molecular 

mass of 70.5 kDa. The PmNramp3 cDNA was 1,726-bp long with a 1,677 bp CDS. The 
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putative PmNramp3 protein has 559 amino acids and is predicted to be 60.0 kDa. No 

canonical polyadenylation signals were identified in PmNramp2 or PmNramp3. 
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Fig. 4 
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Fig. 4. RT-PCR analysis of PmNramp isotypes in P. marinus trophozoites. 

cDNA of P. marinus trophozoites was used as template in regular RT-PCR. Gene-

specific primers used in the RT-PCR are listed in Table 3. cDNA: P. marinus cDNA; 

gDNA: P. marinus genomic DNA; N: water as negative control; M: 100-1.5kb DNA 

marker.1.2% agarose gel, ethidium bromide, 1X tris-acetate-EDTA.  
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Gene organization of PmNramp isotypes 

Gene structures were compared between the three PmNramp isotypes. Exon-

intron boundaries were obtained by alignment of sequences of genomic DNA and cDNA 

from the three PmNramp isotypes using the commercially-available software Sequencher 

4.2.2 (Gene Codes Corporation, Ann Arbor, MI). A side-by-side comparison of gene 

organization of the three PmNramp isotypes was shown in Fig. 2. PmNramp2 has 7 exons 

interrupted by 6 introns. Most of the exon/intron boundaries were characterized by the 

canonical splicing signal (GT/AG) with the exception of GT/GC non-canonical splicing 

signal in PmNramp2 intron 3. The translational start codon was within the exon 1 and the 

termination codon (TGA) was located in exon 7, which has a 3’ UTR more than 1 kb-

long. PmNramp3 has 14 exons interrupted by 13 introns and the start and stop codons 

were located in the first and the last exons, respectively. The exon/intron organization of 

PmNramp2 is similar to PmNramp1, which contained 8 exons, instead of the 7 exons 

reported in a previous study [186].  
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Fig. 5 

 

Fig. 5. Gene organization of PmNramp homologs.  

Comparison of cDNA and gDNA sequences revealed exon-intron structures of the three 

PmNramp isotypes. Exons and introns are indicated by filled or open boxes, respectively 

The x-axis indicates size in bp. 
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Amino acid alignment of PmNramp isotypes with human Nramp2 homolog 

A pairwise amino acid sequence alignment (Fig. 6) of PmNramp2 and PmNramp3 

with human Nramp2 (GenBank accession No. BAA24933) and PmNramp1 (GenBank 

accession No. AAQ94879)  is shown in fig. 6 and the identity and similarity of the 

compared Nramp homologs are summarized in table 6. It seems that PmNramp1 and 

PmNramp2 display the highest identity in protein sequences (51%). Despite the low 

identity and similarity, conserved domains can be seen from the alignment (Fig. 6). In 

addition, PmNramp1 and PmNramp2 share most of the same exon boundaries in the 

amino acid sequence as indicated by numbered arrows (Fig. 6). 

Table 6 Identity and similarity of PmNramp isotypes 

Identify (Similarity) PmNramp2 PmNramp3 HsNramp2 
PmNramp1 51% (67%) 47% (63%) 35% (51%) 
PmNramp2  40% (56%) 30% (47%) 
PmNramp3   33% (50%) 
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Fig. 6 
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Fig. 6. Multiple alignment of deduced amino acid sequences of PmNramp1, 

PmNramp2 and PmNramp3 with human Nramp2 (HsNramp2).  

Amino acid sequences of PmNramp isotypes were aligned using Mega 4.0 [194, 195] and 

displayed with GeneDoc [196]. Identical residues were highlighted at three cutoffs (50, 

75 and 100 %). Arrows represent the exon boundaries in the protein sequence with the 

number indicating corresponding PmNramp isotype number. 
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PmNramp mRNA is trans-spliced with trans-splicing leader highly identical to 

dinoflagellate splice leader 

Analysis of the 5’ cDNA sequences of PmNramp2 and PmNramp3 revealed a 20 

nt stretch that was absent in PmNramp2 and PmNramp3 genomic vicinities (Fig. 7A). 

Reexamination of the 5’ sequence of PmNramp1 [186] revealed the same feature (Fig. 

7A). This stretch of nucleic acid sequence has a good but not perfect match is displayed 

with the SL sequence from dinoflagellates (Fig. 7B). All mRNA of the three P. marinus 

Nramp genes are trans-spliced with a conserved SL. 

Comparison of genomic DNA and cDNA of PmNramp isotypes revealed that at 

the junction between SL sequence and the 5’ UTR of PmNramp, the genomic DNA 

sequence bears a dinucleotide AG (Fig. 7B) consistent with the common canonical cis- 

and trans-splicing acceptor boundary, apparently serving as the acceptor site of SL [197]. 

In dinoflagellate, a conserved “CGTGTGC” sequence was identified immediately 

upstream of the 3’ acceptor splice site AG of analyzed genes [198]. However, no such 

conserved sequence was found in any of the three PmNramp isotypes. Interestingly, some 

SL sequences from both PmNramp2 and PmNramp3 isotypes carry a thymidine deletion 

at the same position (Fig. 7A). 
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Fig. 7 

A. 

 

B.  
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Fig. 7. The conserved SL sequence from P. marinus Nramp mRNAs.  

A. alignment of the 5’UTRs of P. marinus Nramp cDNAs and corresponding gDNA 

sequence revealed the 22-nt SL marked by box. The canonical splicing acceptor sites AG 

and the translation starting sites ATG were also highlighted. B. Alignment of the 5’ end 

of PmNramp isotype cDNA. The consensus SL sequence from dinoflagellates is 

compared with that from P. marinus. dino: dinoflagellate consensus SL ( D = T, A or G); 

The 22-nt SL sequence is highlighted by a square box. PmNR1-SL: all the SL sequences 

from three independent clones of PmNramp1 show the same sequence; PmNR2-SL1 and 

PmNR2-SL2: two different SL sequences with a deletion in one of them were obtained 

from three independent clones; PmNR3-SL1, PmNR3-SL2 and PmNR2-SL3: three SL 

sequences with either deletion or nucleotide substitution were identified in 5’ ends of 

PmNramp3 mRNA. 
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Other genes in P. marinus are trans-spliced 

RT-PCR using forward primer designed based on SL sequence and reverse primer 

based on cDNA sequences of P. marinus SOD1, SOD2, APX1, APX2, HSP70 and 

HSP90 generated amplification product that was subsequently sequenced. Sequencing 

result indicates that all the four genes in P. marinus antioxidant pathway, and two of the 

heat shock proteins, HSP70 and HSP90, are trans-spliced with the same SL as in 

PmNramp genes. Alignment of 5’ end sequences is shown in Fig. 8. 
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Fig. 8 

 

 



62 
 

Fig. 8. The conserved SL sequence from other genes in P. marinus  

5’ end of P. marinus SOD1, SOD2, APX1, APX2, HSP70 and HSP90 cDNA are aligned 

with dinoflagellate SL sequence. The black box indicates the SL identified in mRNA of 

those genes. 
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Trans-spliced P. marinus genes show no obvious transcriptional regulation  

Transcriptional regulation of PmNramp isotypes and P. marinus anti-oxidant 

genes were investigated under several conditions, including iron overload, manganese 

overload, iron depletion, and oyster serum challenge. Transcription regulation of 

PmHSP70 and PmHSP90 were tested under drastic temperature change. There was no 

obvious change in the transcript level for all the tested genes despite the affected P. 

marinus growth under the treatments (Fig. 9 to17).  

P. marinus growth shows no significant difference when the iron concentration is 

as high as 60 times (400 μM Fe) of the standard medium (Fig.9), implying the parasite’s 

capability to adapt to a high-iron environment. A 15-time manganese overload (0.3 μM 

Mn) shows no significant impact on P. marinus growth while a  500-time overload (10 

μM Mn) shows approximately 15% inhibition in cell multiplication. Iron depletion 

caused by 0.01 and 0.08 mg/ml DFO result in a 5% and 12% decrease in growth 

respectively. A 10% reduction in cell growth was induced by 5% oyster serum in the 

medium. For all the tested conditions, the change in Ct value under the challenging 

conditions did not significantly exceed the change in the control group (standard medium 

with no supplements) during the time window of the study. In addition, all the PmNramp 

isotypes and PmSODs transcript gave a highly similar Ct value; while the two PmAPX 

isotypes shared a similar transcriptional level as indicated by the similar Ct value. The 

first-strand cDNA with 10-time dilution was used to test the expression of 18S rRNA 

gene, and it shows the slightest change among all the test genes during the study. In order 

to confirm that the lack of change in transcription indicated by QPCR is not an artifact, P. 

marinus heat shock protein HSP70 and HSP90 transcript were tested when the 
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temperature was changed to 4°C and 37°C for 2 h. There is not significant change in Ct 

values (Fig. 17) despite the possible of HSP protein expression regulation [199]. The 

examination of 5’ cDNA sequences of HSP70 and HSP90 revealed the presence of trans-

splicing leader shown in Fig. 9. The lack of transcription regulation by QPCR reflects the 

probability of constitutive polycistronic transcription suggested by the trans-splicing of 

those genes. Since there was no significant change in Ct values, all the Ct values 

presented from Fig. 9 to Fig. 17 are raw data without normalization. 
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Fig. 9 
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Fig. 9. Expression of PmNramp1 upon different treatments. 

Ct values obtained by QPCR are indicated in colons and the growth of P. marinus (cell 

number) is indicated by lines. A. iron overload (100 and 400 μM). B. manganese 

overload (0.3 and 10 μM). C. iron depletion by DFO (0.01 and 0.08 mg/ml). D. oyster 

serum challenge (5%).  
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Fig. 10  
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Fig. 10. Expression of PmNramp2 upon different treatments. 

Ct values obtained by QPCR are indicated in colons and the growth of P. marinus (cell 

number) is indicated by lines. A. iron overload (100 and 400 μM). B. manganese 

overload (0.3 and 10 μM). C. iron depletion by DFO (0.01 and 0.08 mg/ml). D. oyster 

serum challenge (5%).  
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Fig. 11  
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Fig. 11. Expression of PmNramp3 upon different treatments. 

Ct values obtained by QPCR are indicated in colons and the growth of P. marinus (cell 

number) is indicated by lines. A. iron overload (100 and 400 μM). B. manganese 

overload (0.3 and 10 μM). C. iron depletion by DFO (0.01 and 0.08 mg/ml). D. oyster 

serum challenge (5%). 
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Fig. 12 
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Fig. 12. Expression of PmSOD1 upon different treatments. 

Ct values obtained by QPCR are indicated in colons and the growth of P. marinus (cell 

number) is indicated by lines. A. iron overload (100 and 400 μM). B. manganese 

overload (0.3 and 10 μM). C. iron depletion by DFO (0.01 and 0.08 mg/ml). D. oyster 

serum challenge (5%). 
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Fig. 13 
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Fig. 13. Expression of PmSOD2 upon different treatments. 

Ct values obtained by QPCR are indicated in colons and the growth of P. marinus (cell 

number) is indicated by lines. A. iron overload (100 and 400 μM). B. manganese 

overload (0.3 and 10 μM). C. iron depletion by DFO (0.01 and 0.08 mg/ml). D. oyster 

serum challenge (5%). 
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Fig. 14
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Fig. 14. Expression of PmAPX1 upon different treatments. 

Ct values obtained by QPCR are indicated in colons and the growth of P. marinus (cell 

number) is indicated by lines. A. iron overload (100 and 400 μM). B. manganese 

overload (0.3 and 10 μM). C. iron depletion by DFO (0.01 and 0.08 mg/ml). D. oyster 

serum challenge (5%). 
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Fig. 15
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Fig. 15. Expression of PmAPX2 upon different treatments. 

Ct values obtained by QPCR are indicated in colons and the growth of P. marinus (cell 

number) is indicated by lines. A. iron overload (100 and 400 μM). B. manganese 

overload (0.3 and 10 μM). C. iron depletion by DFO (0.01 and 0.08 mg/ml). D. oyster 

serum challenge (5%).
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Fig. 16  
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Fig. 16. Expression of Pm18S upon different treatments. 

Ct values obtained by QPCR are indicated in colons and the growth of P. marinus (cell 

number) is indicated by lines. A. iron overload (100 and 400 μM). B. manganese 

overload (0.3 and 10 μM). C. iron depletion by DFO (0.01 and 0.08 mg/ml). D. oyster 

serum challenge (5%). 
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Fig. 17 

A 

B
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Fig. 17. Expression of PmHSP70 and PmHSP90 transcript upon temperature 

changes. 

Lon-phase P. marinus trophozoites were incubated in three different temperatures. After 

two-hour incubation, cells were harvested for QPCR analysis. Ct values are presented in 

colons. 
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DISSCUSSION 

Research work on Nramp was incipiently focused on host homologs mostly 

because Nramp was first identified in mammals as resistance marker [152-154]. After 

that, Nramp homologs were characterized in other animals, plants [156, 159], protozoans 

[186], and bacteria [176, 200], almost all the taxonomic groups. Therefore, Nramp has 

been considered as a molecule that involves in host-pathogen interaction. The number of 

Nramp isotypes varies substantially from organism to organism as mentioned in 

introduction. With regards to protozoan parasites, a single putative Nramp archetype was 

annotated in the genome databases of Plasmodium spp. (http://plasmodb.org/plasmo/), T. 

gondii (http://toxodb.org/toxo/), and Neospora caninum (http://toxodb.org/toxo/, Gene ID 

NCLIV_038890), respectively. PmNramp1 was the first characterized Nramp homolog in 

protozoan parasites. It was considered as a single copy gene in the oyster parasite P. 

marinus based on the Southern blot analysis [186]. In order to answer the question 

whether there are more Nramp isotypes in the parasite, genome mining was performed in 

the P. marinus genome database (http://www.tigr.org/tdb/e2k1/pmg/). Two contigs 

containing partial Nramp homolog were fished out by BLAST using cDNA and amino 

acid sequences respectively. RT-PCR result shows the expression of the three PmNramp 

isotypes, indicating potentially critical functions of these genes in parasite metal 

metabolism during this particular life stage.  

Analysis of the full cDNA sequences reveals the presence of the predicted SL in 

all PmNramp cDNAs. The same SL was found in the 5’end of cDNA of P. marinus 

antioxidant pathway, such as SOD1, SOD2 [14, 15], APX1, and APX2 (unpublished 

data). Trans-splicing has been detected in nematodes, platyhelminths, cnidarians, rotifers, 
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ascidians, appendicularians, and dinoflagellates [197, 198, 201, 202]. This process makes 

it possible to translate polycistronically transcribed nuclear genes. A recent thorough 

investigation of transcript and genomic arrangement of the SL RNA in phylogenetically 

and ecologically diverse dinoflagellates from four different orders reveals that the 

majority of dinoflagellate SL RNA transcripts are 56-59 nt although the size of SL RNA 

can range from 42 to 92 nt. The SL RNA genes are organized in both single gene tandem 

repeats and in mixed SL RNA-5S rRNA arrangements. The highly complex and 

diversified genomic arrangements of SL RNA gene in dinoflagellates is the result of 

genomic duplication and recombination in each dinoflagellate lineage, while the length 

and the secondary structure of the SL RNA is conserved during evolution [203]. However, 

the bigger picture about dinoflagellate spliced leader RNA gene arrangement in genomic 

level is still unavailable. Since P. marinus genome annotation is still underway, it is not 

known if P. marinus has various SL RNA genes with different sequence length and 

genomic arrangement as dinoflagellates. Constitutive polycistronic transcription and 

trans-splicing also occur in flagellated trypanosomatid parasites, including Leishmania, 

Trypanosoma brucei, and T. cruzi [204]. Analysis of the complete genome of L. major 

[205], T. brucei [206], and T. cruzi [207] reveals that majority of genes are organized in 

the form of PGCs (polycistronic gene clusters) in all the chromosomes. A striking 

synteny is observed in the genome of trypanosomatids for protein-coding genes [208]. 

All the genes that reside on the same PGC are transcribed at the same level as the 

consequence of polycistronic transcription [204].  This is a reminisce of the interesting 

result in QPCR that all the PmNramp isotypes and PmSOD isotypes transcript give a 

highly similar Ct value presenting a similar transcriptional level. The questions raised 
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here are first, whether P. marinus genes are organized into PGCs and if so, whether they 

are located in the same PGC. Furthermore, unique machinery for transcription and 

processing of mRNA has been uncovered behind this unique genomic organization in 

trypanosomatid parasites. In L. major, the transcription of the whole chromosome 1 starts 

bidirectionally towards the telomere in the TSS (transcription start sites) between the two 

divergent PGSs [209]. Long G- or C-tracts instead of canonical promoter elements, such 

as TATA box were found in TSSs. The polyadenylation of a gene is dictated by the trans-

splicing of the upstream adjacent gens since the selections of splice site determines that 

selection of the polyadenylation site [210], which can also explain the absence of 

polyadenylation signal in PmNramp genes. The completion of genome annotation of P. 

marinus can answer some fundamental questions about gene expression and regulation of 

the parasite. 

The lack of transcription regulation of PmNramp isotypes implies a significant 

role of post-transcription regulation. In Trypanosoma spp., all the genes are trans-spliced 

[211, 212] and the SL is a conserved 35-nt stretch. The constitutive transcription of all 

the genes makes RNA interference (RNAi) an important avenue for expression regulation 

for the parasite and a widely-used knockdown technique in Trypanosoma research [213-

216]. In the P. marinus genome database, some components of the RNAi machinery have 

been identified by BLAST, indicating a possible regulation of expression through RNAi 

[217]. Acquisition of iron and other divalent cation is vital for P. marinus; therefore, the 

presence of PmNramp mRNA ready for protein synthesis would secure an immediate 

response to metal requirements. P. marinus may have one or two ferritins, based on 

querying the genome with Chlamydomonas reinhardtii ferritin sequences (GenBank 
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accession No. AF503338 and EU223296) [218], suggesting the potential iron storage 

ability and consistent with high-iron tolerance in P. marinus. 

Bioinformatic searches for regulatory RNA elements [219] in either 5’ or 3’ UTR 

of the PmNramp mRNA sequences failed to identify any sequence motifs, such as IRE. 

In vertebrates, the biosynthetic rates for ferritin and the TfR1 are regulated by iron. A 

highly conserved IRE in the 5’ UTR of the ferritin mRNA and the 3’ UTR of mammalian 

TfR1 mRNA mediates iron-dependent post-transcriptional control of their expression 

[213, 214]. A similar element has been reported in the 3’-UTR of vertebrate Nramp2 

sequences [215, 216]. The IRE functions by forming a specific stem-loop structure that 

interacts with IRP in an iron-dependent fashion. Though both animal cytosolic aconitase 

(ACO) and bacterial ACO are able to switch to IRP function, playing a key role in the 

regulation of iron homoeostasis, plant ACO, however, is not converted into an IRP. Thus, 

the absence of IRE in P. marinus may not be surprising since IRP/IRE signaling may 

have been preserved only in metazoans [220]. Nevertheless, it can still be too early to 

exclude IRE/IRP systems as mean of regulation for PmNramp expression. IRE/IRP like 

systems has been reported in some protozoan parasites. In Trichomonas vaginalis [127] 

and Plasmodium falciparum [221], atypical IREs have been identified despite the 

structure deviation compared to the consensus mammalian IRE. Binding activity of the 

IRP-like protein to mammalian IRE was demonstrated in P. falciparum [222, 223] and 

Leishmania tarentolae [137]. The definite function of the IRE/IRP like system in 

protozoan parasites still awaits further investigation 

The regulation of Nramp expression can be realized through different ways for 

different isotypes in a single organism. In yeast, the three Nramp prototypes are regulated 
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differently: the vacuolar iron transporter Smf3 is controlled at the transcriptional level 

[188], while the manganese transporter Smf1 and Smf2 proteins are constitutively 

expressed and trafficked to either degradation or secretory pathways depending on 

manganese availability [224]. Since manganese is so critical for yeast metabolic activity, 

quick response to manganese limitation or toxicity is important. In addition, Nramp 

transporters display broad selectivity for divalent metals, including some that are highly 

toxic. Hence, rapid trafficking of transporters may allow dynamic control of metal-ion 

fluxes, and be beneficial for unicellular organisms. Because all three PmNramp isotype 

transcript lacks known nucleotide sequence motifs and are detected in trophozoites 

cultured in standard conditions, it is possible that the proteins are subject to translational 

and post-translational regulation mechanisms. In addition, the localization of the 

transporters can be changed by protein trafficking so as to regulate the protein function in 

the parasite.  
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CHAPTER 3 PHYLOGENETIC ANALYSIS OF THE 

PMNRAMP ISOTYPES  

SUMMARY 

Phylogeny analysis indicates that the three PmNramp isotypes form a moderately 

tight set of archetype Nramp subgroup II.  They are fairly close relatives of animal and 

higher plant Nramp, and to a less extent to homologues from apicomplexans and ciliates. 

No evidence of positive selection was found among the three isotyes. PmNramp3 stands 

out from the three isotypes when they are subjected to molecular evolutionary analysis. 

By Tajima’s test of relative evolutionary rate, a similar evolutionary rate is shown in 

PmNramp1 and PmNramp2, while PmNramp3 shows a distinct rate; PmNramp1 and 

PmNramp2 display a homogenous substitution pattern, however, PmNramp2 and 

PmNramp3 demonstrate heterogeneous pattern. It seems that PmNramp genes evolved by 

successive duplications of PmNramp2, first yielding PmNramp3 and more recently 

PmNramp1. Protein sequence divergence among PmNramp isotypes was not related to 

diversification of critical functional elements, which remained constrained by purifying 

selection. This result is in consistence with the function of both PmNramp1 and 

PmNramp3 as iron transporter in yeast despite their different evolutionary rate and 

substitution patterns.  

                                                 
 The results in this chapter is obtained through the collaboration with Dr. Mathieu F. Cellier 
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INTRODUCTION 

Five Nramp phylogroups were identified to provide a plausible pathway 

describing the evolution of the Nramp family, from sodium- or proton-motive substrate 

symport in bacteria, to metal nutrition, eukaryotic host cell defense and brain function 

[225]. Among the five subgroups of Nramp, the most ancient homologs are prokaryotic 

MntH B that can date back to the apparition of anoxygenic photosynthetic organism. 

With the increase of the oxygen concentration in the atmosphere, MntH A homologs 

merge during the aerobic organism evolution. The origin of eukaryotic prototype Nramp 

is likely to be MntH A, which is transfer to Eukaryotes due to an endosymbiotic event.  

Early gene duplication of prototype Nramp gives rise to archetype Nramp. Close 

relationships between MntH C group and some prototype Nramp, and within MntH C 

group irrespective of bacterial phylogeny, indicate eukaryotic gene transfer toward 

bacteria [226]. However, no direct eukaryotic source of mntH C genes has been identified 

to date, and this complication warrants careful phylogenetic studies of Nramp homologs 

in unicellular eukaryotes. Therefore, a hypothetic evolutionary pathway of Nramp is 

presented as Outgroup > MntH B > MntH A > eukaryotic duplication/divergence of 

proto- and archetype Nramp > MntH C (C , C , C ) [227].   

The current taxonomic distribution of Nramp phylogenetic subgroups is the 

outcome of the Nramp evolution combined with the selective loss of certain subgroup in 

certain organisms. MntH A homologs are broadly shared, while mntH B genes are 

prevalent among anaerobic genera. The distribution of MntH C ranges from wide (MntH 

Cα) to limited to gut-associated bacteria (MntH Cβ) or Gram negative soil bacteria 

(MntH Cγ).  In eukaryotes, the taxonomic distribution of both archetype and prototype 
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Nramp is diverse, including Bikonts (Plantae, Chromoalveolates) and Unikonts 

(Amebozoa, Fungi and Animals; [226, 228]).  Though subgroup I of Nramp archetype 

comprises homologs found in monocots and eudicots plants, Nramp archetype subgroup 

II is shared by organisms from both Unikonta and Bikonta.  Prototype Nramp display 

more restricted distribution (Amebozoa and Fungi, green and red Algae and lower plants, 

e.g., bryophytes), which seems to be the result of selective loss of this isoform in animals, 

higher plants (monocots, eudicots) as well as in Chromoalveolates; in contrast, most 

fungi lost archetype Nramp isoforms, except some species that diverged basally. 

Four different approaches have been used to phylotype PmNramp1 and other 

putative apicomplexan Nramp homologs (Plasmodium falciparum, P. yoelii and 

Toxoplasma gondii). It was indicated that PmNramp1 and apicomplexan Nramp genes 

share a same archetype Nramp ancestor; while, apicomplexan Nramp, especially 

Plasmodium spp. Nramp, is obviously divergent from other archetype Nramp. It seems 

that the closest homologues of PmNramp1 and apicomplexan Nramp are plant and 

Dictyostelium discoideum homologues [228]. With the identification of the extra two 

PmNramp isotypes, the phylogeny of PmNramp is revisited in this chapter. In addition, 

the evolution of the three PmNramp isotypes is proposed. 

MATERIALS AND METHODS 

Phylogenetic analysis  

To phylotype the three PmNramp, a representative set of eukaryotic homologs 

was selected to generate multiple alignments using full-length amino acid sequences and 

the softwares Clustal X [229]or Muscle [230], which were edited manually and used 



91 
 

alternatively to compare phylogenies.  Sets of parsimony-informative sites 

(corresponding to at least two different amino acids, and at least two of them occuring 

with a minimum frequency of two, [195]) were also examined as an alternative to full-

length sequences to examine tree robustness.  A consensus phylogenetic tree was 

established by implementing several approaches using different substitution models.  The 

rate of amino acid variation among sites was modeled using the WAG amino acid 

substitution matrix [231] and a discrete Gamma distribution [232]. Phylogenies were 

inferred using three different types of calculations: i) changes probabilities along the tree 

branches were determined by Quartet Puzzling and Maximum Likelihood using Tree-

Puzzle (Schmidt HA & A von Haeseler, 2007); ii) pairwise evolutionary distances 

(numbers of substitutions) were deduced by using the Minimum Evolution/Neighbor-

Joining method [233] and allowing heterogeneous pattern of substitution across the 

lineages [234]  as well as pairwise or complete deletion modes [195]; iii) Maximum 

Parsimony [235] was used to deduce the evolutionary transitions required to explain the 

observed amino acid distributions [195].  The consistency of each calculation was 

estimated by bootstrapping ([236]; 3000 replicates) and the confidence score of tree 

nodes was compared.   

To evaluate the type of selective pressure exerted on Perkinsus gene sequences, 

Kumar’s modification of the Pamilo-Bianchi-Li method was used to analyze the relative 

abundance of synonymous (S) and nonsynonymous (N) substitutions in codon-by-codon 

pairwise comparisons (Fig. 18 and 19) of the three aligned PmNramp nucleotide 

sequences [195, 237].  After estimating the number of synonymous substitutions per 

synonymous site (dS) and the number of nonsynonymous substitutions per 
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nonsynonymous site (dN) as well as their variances, Var(dS) and Var(dN), the level of 

significance at which the null hypothesis of neutral evolution (H0:  dN = dS) may be 

rejected was tested considering three alternative hypotheses (AH1: dN  dS, strict 

neutrality; AH2:  dN > dS, positive selection; AH3:  dN < dS, purifying selection).  A two-

tailed Z-test was used to determine the level of significance of the difference dN - dS 

(AH1) and a one-tailed Z-test was applied to examine the other hypotheses (AH2,3).  

Both pairwise and complete site-deletion options were used to compare the results 

obtained; the variance of the difference dN - dS was calculated by bootstrap resampling 

(3000 replicates).  

Molecular evolutionary gene analyses 

The molecular clock hypothesis was evaluated using Tajima’s relative rate test, 

which implies equality of evolutionary rate between two sequences, irrespective of a 

substitution model and whether or not the substitution rate varies among sites [195, 238].  

Pairs of PmNramp nucleotide or amino acid sequences were compared, using the third 

sequence as an outgroup.  Tajima’s method uses a chi-square (χ2) test to estimate the 

independence of paired observations on two variables; a value of the corresponding 

probability (p < 0.05) was used to reject the molecular clock hypothesis.  

Homogeneity of substitution patterns was derived from pairwise sequence 

comparisons using the Disparity Index test, which calculates the extent of differences in 

base or amino acid residue composition between sequences.  The probability p of 

rejecting the null hypothesis that sequences evolved with the same pattern of substitution 

was determined using a Monte Carlo test and bootstrap resampling (3000 replicates; [194, 

195]).  
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Tridimensional structural models were obtained for PmNramp 1 and 3 using the 

default parameters of the meta server I-Tasser [239]as previously described [240].
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Fig. 18 
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Fig. 18. Amino acid alignment of the three PmNramp isotypes 

The alignment was generated using Mega 4.0 [195] and displayed with GeneDoc [196]. 

Identical residues are highlighted at three cutoffs (50, 75 and 100 %). The N-terminal 

sequences of PmNramp isotypes are omitted to avoid the variation caused by the 

potential signal peptides.  
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Fig. 19 
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Figure continued
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Figure continued 

 

 

 

  

 

 

 

Fig. 19. Codon-by-codon cDNA alignment of PmNramp isotypes 

The cDNA sequences of PmNramp isotypes are aligned codon-by-codon based on the amino acid alignments in Fig. 18. The 

alignment was generated using Mega 4.0 [195] and displayed with GeneDoc [196]. 
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RESULTS AND DISCUSSION 

Taxonomic distribution of Nramp in eukaryotes 

A linearized phylogenetic tree showing key nodes supported by high bootstrap 

values obtained by different methods is presented in Fig. 20.  The three Perkinsus Nramp 

sequences (PmNramp1-3) form a moderately tight set among other homologs that 

together constitute Nramp archetype subgroup II.  The three PmNramp thus represent 

fairly close relatives of animal Nramp, similarly to the homologs found in most other 

Chromoalveolate genomes to date, including some Stramenopile spp. (e.g., PsoNR1a, Fig. 

20 and Table 7), and to a lesser extent those from Apicomplexans and Ciliates, which 

appear more divergent (e.g., Tthe1-3, Fig. 20).  Also, the diatom Thalassiosira possesses 

an Nramp homolog (TpseNR) resembling more the archetype I found in Plantae. 

Assuming a hypothetical common ancestry for Chromoalveolates and Plantae [241-243], 

this might suggest an ancient origin for Nramp archetype I and II paralogs in Bikonta, 

and selective loss of subgroup I in most Chromoalveolates.   

The distribution of prototype and archetype Nramp in both Unikonta and Bikonta 

suggest an ancient origin/duplication corresponding to early stages in the emergence of 

eukaryotic cells.  To verify this possibility a taxonomically broad database of expressed 

sequence tags (TBestDB, [244]) was searched by Blast analyses using prototype and 

archetype Nramp as queries; individual eukaryote databases of the DOE JGI genome 

portal were queried as well.  The results presented in Table 10 show that archetype 

Nramp are present in several species of Chromoalveolates (Dinoflagellates; 

Apicomplexans: Hemisporozoans and Coccidians; Stramenopiles: Oomycetes and 
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Pelagophyceae; Haptophytes), as well as in Plantae (archetype I or II, Rhodophytae, 

Chlorophytae), Amoebozoa, basal Fungi (Mucoromycotina, Zygomycota) and Eumetazoa.   

Regarding prototype Nramp, several DNA sequences found in Bikonta (Excavata: 

Jakobids and Euglenoids; Plantae: Glaucophytae and Chlorophytae) represent potential 

candidates, albeit derived from 3’ mRNA ends, which encode parts of Slc11 transporters 

that are little conserved and thus yielding weakly supported relationships (Fig. 21 B).  

However, phylogenetic analyses performed with the 5’ ESTs enable to distinguish Nramp 

prototype from archetype I with confidence (Fig. 21 A).  Together with prior data 

obtained with full-length sequences, the present results thus support the conclusions that 

the duplication and divergence of proto- and archetype Nramp, and the later 

diversification of archetype Nramp in subgroups I and II, both predated the emergence of 

Unikonta and Bikonta.  Subsequently, organisms independently conserved one type or 

another or both.  In Alveolata, it is the Nramp archetype II that was selectively retained, 

and which was triplicated in both the Dinoflagellate Perkinsus and the Ciliate 

Tetrahymena.
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Fig. 20 
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Fig. 20. Simplified phylogeny of PmNramp1-3 

The consensus tree presented was obtained using Mega 4.0 [195]; it was linearized by 

assuming equal evolutionary rate among lineages [245] and drawn to scale by calibration 

using a time of divergence between Nramp1 and 2 of 350 million years ago [185]. 

Phylogeny was inferred using a set of 340 parsimony-informative sites derived from full-

length sequence initially aligned with the Muscle algorithm; the Minimum Evolution 

method was implemented based on distances computed using the Equal Input amino acid 

substitution model [246] and considering both differences in the composition bias among 

sequences and rate variation among sites modeled with a gamma distribution (shape 

parameter = 1.41). The percentage (>50%) of replicate tree nodes inferred from 3,000 

bootstrap samplings are indicated while less reproducible partitions were collapsed. 

Percentage replicates of the main nodes (divergence of proto- and archetype Nramp; 

archetype I and II Nramp) obtained by other approaches are also indicated (Maximum 

Parsimony and Maximum Likelihood, Fig. 22 B & C). The non-linearized version of this 

phylogenetic reconstruction is presented in Fig.  24 A, together with those produced by 

other approaches (Fig. 22 B & C) as well as using full-length sequences (Fig. 22 D & E). 

Following are indicated the SLC11 phylogroups (bold) and full names of the organisms 

(italics) included in this analysis: Outgroup: CellO, Cellulophaga; MntH B: CacetB, 

Clostridium acetobutylicum, CtepiB, Chlorobium tepidum; Prototype Nramp: ScSmf1-3, 

Saccharomyces cerevisiae, LbicNR1, Laccaria bicolor, RoNR1a, Rhizopus oryzae, 

BdenNR1, Batrachochytrium dendrobatidis, CreNR, Chlamydomonas reinhardtii , 

PhysNR1, Physcomitrella patens, DdNR1, Dictyostelium discoideum, CmNR1, 

Cyanidioschyzon merolae; Archetype Nramp, type I: OsjNR1,3, Oryza sativa japonica, 
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TpseNR, Thalassiosira pseudoana, CmNR2, C. merolae, OtauNR, Ostreococcus tauri; 

Archetype Nramp, type II: TtheNR1-3, Tetrahymena thermophila, PblaNR2, Phycomyces 

blakesleeanus, PmNramp1-3, Perkinsus marinus, PsoNR1a, Phytophthora sojae, DdNR2, 

D. discoideum, OsjNR2, O. sativa japonica , PhysNR2, P. patens, MbreNR, Monosiga 

brevicollis, ReniNR, Reniera, NvecNR, Nematostella vectensis, HsNR1,2, Homo sapiens. 

The distribution of the taxa sampled is given in Table 7.
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Table 7. Taxonomic distribution of known eukaryotic Nramp homologs 
Taxa Species Prototype Nramp Archetype Nramp 

 I II 

           Hemisporozoan Plasmodium (6)   1 
Neospora   1 

           Coccidian Toxoplasma   1 
      Apicomplexan     

      Dinoflagellates Perkinsus   3 
Ichthyophthirius   2 

      Ciliates Tetrahymena   3 
   Alveolata     

      Pelagophyceae 
Aureococcus   2 
Hyaloperonospora   1 
Saprolegna   1 

      Oomyceta Phytophthora (2)   1-4 
      Diatoms Thalassiosira  1  
  Stramenophiles     
  Haptophyta Emiliana   1 
Chromoalveolata     
          Spermatophytae   1-2 2-4 

Embryophytae 

Marchantia 1 1-  
Physcomitrella 1-  2- 
Chlorella   1 
Micromonas  1  
Ostreococcus (2)  1  
Volvox 1   
Chlamydomonas 2   

       Chlorophytae Scenedesmus 2   
  Viridiplantae     

  Rhodophytae Cyanidioschyzon 1 1  
Glaucocystis 1   

  Glaucophyteae Cyanidioschyzon 1   
Plantae     
  Euglenoids 
 

Euglena 1   
Reclinomonas 1   

  Jakobids Seculamonas 1   
Excavata     
               Bikonta     
               Unikonta     
Amoebozoa     
  Tubulinea Hartmanella  1  

  Mycetozoa Dictyostelium (2) 1  1 
Physarum 1  1 

Opisthokonta     
  Fungi     
     Mucoromycotina Cunninghamella   1 

Chytridiomycota Spizellomyces 1   
Batrachochytrium 1   

Zygomycota Rhizopus 2  2 
Phycomyces 2  2 

      Basidiomycota 
Ustilago 1   
Cryptococcus 1   
Phanerochaete 2   

  Ascomycota Neurospora 1   
Candida 4   

  Eumetazoa     
   Porifera Reniera   1 
      Cnidaria Nematostella   1 

       Metazoa Monosiga   1 
M. ovata 1   

          Vertebrata Homo sapiens   2 



105 
 

Fig. 21 
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Fig. 21.  Phylogenetic analyses of sequences derived from taxonomically diverse 

unicellular eukaryotes demonstrate prevalence of prototype Nramp (pN).  

The taxonomic distribution of the species studied is indicated in Supp. Table 2. Amino acid 

sequences deduced from expressed sequence tags (TBestDB) [244] and corresponding to either 

5’ (A) or 3’ (B) parts of suspected prototype SLC11/Nramp mRNAs were analyzed together with 

full-length control sequences of bacterial SLC11 homologs of eukaryotic origin [226], MCα, 

MntH Cα; Opitutus terrae (Verrucomicrobium), Rhizobium etli (α-proteobacterium), F. johnsonii 

(Flavobacterium) as well as Archetype I Nramp homologs (aN I) from the red alga C. merolae 

and the diatom T. pseudoana. These dendrograms were generated as described in Fig. 20 but 

without molecular clock assumption, and using the pairwise deletion option and a gamma 

distribution shape parameter of 1.5.   
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Phylogeny of Perkinsus Nramp1-3 proteins 

Assessment of the Nramp protein phylogeny (Fig. 20 and 21), regarding in 

particular the level of sequence divergence among PmNramp homologs as well as 

between this set and other Nramp archetype II, indicates two main properties: i) 

compared to their Alveolatan relatives, in Apicomplexans and Ciliates, the PmNramp 

sequences did not diverge extensively from the other members of the archetype II group; 

and, ii) compared to other unicellular organisms that possess multiple genes, the extent of 

apparent divergence among PmNramp polypeptides (e.g., PmNramp3) appears 

significant.   

First, the absence of the PmNramp sequence set from the cluster formed by the 

Nramp from Ciliates and Apicomplexans (Fig. 22 D & E) was unexpected, based on the 

commonly accepted phylogeny of Dinoflagellates as sister group of Apicomplexans, and 

the more basal divergence of Ciliates (Moore RB et al., 2008, Sanchez-Puerta & 

Delwiche, 2008, Nash EA et al., 2008); however this result may be a simple consequence 

of variations in DNA maintenance and overall GC percent, which is very low in both 

Ciliates and Apicomplexans.  Secondly, PmNramp paralogs appeared consistently more 

divergent than T. thermophila paralogs in various phylogenetic trees (longer branches for 

PmNramp paralogs, Fig. 19 and Fig. 21); even though similar patterns were observed in 

both species, with two homologs relatively close and another more distant.  The extent of 

sequence divergence among Perkinsus Nramp resembled more that existing between 

yeast Smfps, suggesting perhaps some functional significance. 
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Fig.22
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Fig. 22. Detailed phylogeny of P. marinus Nramp homologs (PmNramp1-3) 

demonstrates they belong to the Nramp Archetype II group.  

A. The dendrogram presented was generated as described in Fig. 20 but without the 

molecular clock assumption, and using additional sequences which showed more 

significant disparity in amino acid composition bias (Archetype Nramp, type II: PfalNR, 

Plasmodium falciparum, PvivNR, P. vivax, PberNR, P. berghei, TgoNR, Toxoplasma 

gondii, EhuxNR, Emiliana huxleyi; Prototype Nramp: UmayNR, Ustilago maydis; 

Outgroup: NphaO). B & C. Dendrograms generated using the same set of sequences and 

parsimony-informative aligned sites as in (A), by implementation of Maximum 

Parsimony (B) and Maximum Likelihood (C) approaches. D & E. Dendrograms 

generated using full-length sequences (same set as (A-C), 1136 sites) and a gamma 

distribution shape parameter = 1.0; D, Minimal evolution; E, Maximum Likelihood. 

Scales indicate the number of amino acid substitutions per site.          
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Analysis of Perkinsus Nramp1-3 gene evolution 

Closer examination of PmNramp sequence variation was undertaken to address 

specifically the possibility of functional divergence between PmNramp3 and PmNramp1 

and/or 2.  Regarding the closely related PmNramp1 and PmNramp2 genes, analyses of 

the relative abundance of synonymous and nonsynonymous substitutions in codon-by-

codon pairwise sequence comparisons showed that the hypothesis of strict-neutrality 

could be rejected (dN - dS = -5.554, p=0.000 using pairwise deletion, and dN - dS = -6.264, 

p=0.000 for complete deletion) in favour of the alternative hypothesis of purifying 

selection (dS - dN = 5.45, p=0.000 for pairwise deletion and dS - dN = 6.056, p=0.000 for 

complete deletion).  Second, Tajima’s test of relative rate of exchange between aligned 

sequences supported the molecular clock hypothesis, i.e., similar evolutionary rates for 

PmNramp1 and 2 genes (χ2 test values of 0.89, p = 0.346, for nucleotide sequences, and χ2 

test values of 0.11, p = 0.745, for amino acid sequences).  Third, estimation of the 

homogeneity of substitution pattern per site between aligned sequences indicated 

homogeneous protein sequences (Disparity index null), as well as homogeneous 

nucleotide sequences (Disparity index < 0.260, with p > 0.1, excepted for the third 

position of the codons).  Thus, PmNramp1 and 2 gene sequences are homogeneous, 

evolving at similar rates under purifying selection that favors synonymous substitutions.   

PmNramp3 sequence relationships with PmNramp1 or 2 contrasted with the 

similarities between the two latter.  Hence, the relative abundance of synonymous and 

nonsynonymous substitutions between PmNramp3 and PmNramp1 or 2 were similar, 

suggesting neutral evolution; Tajima’s test of constancy of evolutionary rates between 

PmNramp3 and PmNramp1 or PmNramp2 sequence yielded χ2 test values respectively of 
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57.56, p = 0.00000 and 71.87, p = 0.00000 enabling to strongly reject the molecular clock 

hypothesis.  In fact, PmNramp3 sequence exhibited high counts of unique transitions and 

transversions (133 and 210) relatively to PmNramp1 (86 and 85) or PmNramp2 (77 and 

77).  Applying then Tajima’s test to amino acid sequences confirmed different rates of 

evolution for PmNramp3 compared to PmNramp1 or 2 (χ2 test values of 30.83, p = 

0.00000 and 27.61, p = 0.00000).  In addition, PmNramp3 was distinguished from 

PmNramp1 by measuring the heterogeneity of substitution pattern per site in pairwise 

sequence alignments with PmNramp2.  The disparity index between PmNramp3 and 2 

was independent of the third codon position, and it was also significant using the protein 

sequences (0.449, p = 0.019), while borderline non-significant heterogeneity was detected 

between PmNramp3 and PmNramp1 protein sequences, or between the mRNA sequences 

when using only the two first codon positions.  

Detailing evolutionary patterns of Perkinsus Nramp1-3 genes domains 

These results obtained using full-length sequences suggested that purifying 

selection and more or less ancient gene duplications, yielding first PmNramp2 and 3, and 

then PmNramp1, may explain the observed sequence relationships of PmNramps.  To 

validate our interpretation, Tajima’s rate test was employed to analyze less variable 

subsets of sites, spanning either the four TMS believed to constitute the transmembrane 

cations core conductive pathway (TMS1, 3, 6, 8) or the five successive TMS constituting 

a domain repeat (N-terminal: 1-5, and C-terminal: 6-10) but excluding the more variable 

extra-membranous regions (N- and C-termini as well as the extra-loop 7/8).  These sets of 

sites differ by increasing sequence divergence, respectively ~ 25, 42 and 50 % and 

notably, in the proportion of sites divergent in all three sequences (~5, 9 and 19 %).   
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These amino acid data sets showed fairly constant proportions of isoform-specific 

sites, similar for PmNramp1 and 2, and about two-fold more for PmNramp3.  

Heterogeneous substitution patterns per site were found among PmNramp1 and 2 (N-

terminal domain, 0.232, p = 0.036) and between PmNramp2 and 3 (C-terminal domain, 

borderline significance, 0.299, p = 0.055).  Significant evolutionary rate variations were 

detected with the most divergent data sets (C-terminal domain) and involved PmNramp3 

and PmNramp1 or 2 (χ2 test values of 7.41, p = 0.00649 in both cases).   

Corresponding nucleotide sequence analyses revealed for the most conserved data 

sets (predicted translocation pathway and N-terminal domain) homogeneous substitution 

patterns per site, and purifying selection between PmNramp2 and 3 (respectively, dS - dN 

= 2.272, p=0.012 and dS - dN = 2.042, p=0.022, for pairwise deletion); purifying selection 

between PmNramp1and 2 was also confirmed with the three data sets (the predicted pore 

and both N- and C-domains, respectively, dS - dN = 3.064, p=0.001, dS - dN = 2.357, 

p=0.010 and dS - dN = 2.128, p=0.018) as expected from full-length sequence analyses.  

Lastly, Tajima’s evolutionary rate tests showed significant pairwise differences with all 

data sets only when PmNramp3 was tested (predicted pore: χ2 test value of 9.56, p = 

0.00199 vs. PmNramp1 or 2; N-terminal domain: 10.64, p = 0.00111 vs. PmNramp1 or 

11.92, p = 0.00055 vs. PmNramp2; C-terminal domain: 16.56, p = 0.00005 vs. 

PmNramp1 and of 14.3, p = 0.00016 vs. PmNramp2).   

Overall the results of domain analyses enable us to conclude that the four TMS 

forming the predicted translocation pathway are submitted to strong purifying selection, 

which was detected by comparing PmNramp2 and PmNramp1 or PmNramp3 coding 

sequences and demonstrating homogeneous substitution patterns per site between all 
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three gene and protein sequences; only PmNramp3 nucleotide sequence showed 

differences in evolutionary rate compared to PmNramp1 or PmNramp2.  Regarding the 

continuous N-terminal domain that spans TMS 1-5, purifying selection was still detected 

in comparisons using PmNamp2 coding sequence, but at the amino acid level, distinct 

substitution patterns per site were noted between PmNramp1 and 2 as well as almost 

significant evolutionary rate difference between PmNramp1 and 3.  Considering the C-

terminal domain without the extra-loop 7/8, significant variation in nucleotide 

substitution pattern was found between PmNramp2 and the two other genes; the 

corresponding variation in amino acid disparity index between PmNramp2 and 3 was 

borderline significant, while PmNramp3 exhibited significantly different amino acid 

substitution rate, though the evolution of this protein sequence remained neutral.   

We therefore conclude that the presence of three PmNramp genes is consistent 

with sequential gene duplications of PmNramp2 yielding first PmNramp3, and more 

recently PmNramp1.  PmNramp3 is the most divergent homolog among the three 

PmNramp isotypes, but this divergence may not be related to functional diversification. 

The yeast complementation data are consistent with the phylogeny test since both 

PmNramp1 and PmNramp3 function as iron transporter. The functional data reinforce the 

proposed PmNramp1 homologous structural model, and together with the molecular 

evolutionary gene analyses indicating that the hydrophobic core of PmNramp paralogs 

remained constrained by purifying selection, suggest that PmNramps function as proton-

dependent iron transporters.
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CHAPTER 4 FUNCTIONAL CHARACTERIZATION OF 

THE PMNRAMP ISOTYPES 
 

SUMMARY 

Yeast mutant strain fet3fet4 has defect in both high- (fet3) and low-affinity (fet4) 

iron transporters. Yeast complementation assay using fet3fet4 indicates iron uptake 

activity of PmNramp1. PmNramp2 and PmNramp3 cannot complement fet3fet4 growth 

in low iron conditions. Expression of PmNramp isotypes in yeast was investigated. It was 

found out that PmNramp2 cannot be transcribed in yeast. PmNramp3 protein was 

expressed in a much lower level compared to PmNramp1. Subcellular localization of 

PmNramp1 by IFA showed a cell peripheral localization, which is absent in PmNramp3 

immunostaining. A PmNramp1 and PmNramp3 chimera made by substituting the 

predicted PmNramp3 N- and C-termini with the corresponding part of PmNramp1 was 

expressed in the peripheral of yeast cells as accessed by IFA. Chimeric PmNramp3 was 

able to complement fet3fet4 growth in the medium without iron supplement, indicating 

iron transport function of PmNramp3.  

 

INTRODUCTION 

Knowledge about Nramp transport substrate comes from studies performed in 

different expression systems: 1) Xenopus oocyte expression system [247] 2) yeast 

complementation assay [247, 248] 3) mammalian cell lines [165, 249] 4) knockout or 

knockdown of endogenous genes [250]. There are pros and cons in the three different 
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methods. Xenopus oocyte electrophysiology studies are relatively expensive and require 

dedicated facilities to hold the animals. Demonstration of metal accumulation in the 

oocyte, in most of the case by measuring of radioactive isotope is needed after the 

electrophysiology studies. The advantage is that several metal substrates can be tested by 

exposing mRNA-injected oocytes to the substrate of interest. Yeast complementation is a 

low-cost one-step experiment compared to Xenopus oocyte electrophysiology study; 

however, a particular mutant strain is required for particular substrate at most cases. 

Mammalian cell lines are usually used in iron uptake study in virtue of fluorescence dye 

calcein that can get into the live cell and be quenched after binding to iron. It is possible 

that exogenous Nramp from another species cannot be expressed properly in 

heterologous systems, which make knockout/knockout of Nramp a valuable strategy if 

those molecular tools are available.  

In this chapter, yeast complementation assays were performed to test the potential 

iron and manganese transport activity of PmNramp isotypes. The expression and function 

of PmNramp isotypes in yeast were investigated in details. 

MATERIALS AND METHODS 

Yeast strains and plasmid 

Yeast mutant fet3fet4 was kindly provided by Dr. Eide (University of Wisconsin-

Madison, USA) and Dr. Jones (Queensland Institute of Medical Research, Australia). 

This yeast strain grows poorly under iron-limiting conditions because it has mutated low-

affinity and high-affinity iron transporters (MATα; ura3; trp1; leu2; his3; can1; fet3:: 

HIS3; fet4:: LEU2) [251, 252]. 
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For the test of manganese transport activity, the yeast mutant smf1smf2 was 

provided by Dr. Gros (McGill University, Canada). Smf1smf2 mutant cannot survive 

EGTA challenge in submillimolar concentration under oxidative stress since the high-

affinity manganese transporter is inactivated (MATa ura3–52 leu2–3 -112 gal2 

SMF1::LEU2, SMF2::LEU2) [253]. It also grows poorly in alkaline medium. 

To express PmNramp isotypes in yeast, the corresponding CDS with HA tag in C-

terminus was cloned into the NotI site of the expression vector pFL61 (a gift from Dr. 

Jones, Queensland Institute of Medical Research, Australia), which has an active yeast 

GPK (glycogen phosphorylase kinase) promoter. 

Culture and transformation of yeast cells 

 Fet3fet4 yeast cells were first streaked onto YPAD agar (10g/L Bacto yeast 

extract, 20g/L Bacto peptone, 20g/L D-glucose, 40mg/L adenine hemisulphate, 20g/L 

Bacto agar) supplemented 50 μM FeCl3. After 3 to 4 days of growth, yeast cells from the 

agar medium were inoculated into YPAD liquid medium with 50 μM FeCl3 and 

incubated over-night at 30°C with shaking (250 rpm). Yeast was transformed using 

lithium acetate method [254] and selected for growth on synthetic-defined (SD) medium 

(6.7 g/L yeast nitrogen base, 20g/L D-glucose, 20 mg/L L-tryptophan, 20 mg/L L-

histidine, 30 mg/L L-leucine, 20 mg/L methionine, 20 mg/L adenine hemisulphate, 20 

g/L Bacto agar, pH 5.6), which is appropriate auxotrophic requirements.  

Transformation and expression of PmNramp isotypes in transformed yeast  

Total DNA was extracted from transformed yeast cells using the QIAamp tissue 

kit (Qiagen) following the manufacturer’s instructions. Extracted DNA was used for the 
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confirmation of the vector existence by PCR using PmNramp isotype specific primers 

and pFL61 vector primer (Table 8). Total RNA was extracted from the transformed yeast 

cells with the RNeasy Mini Kit (Qiagen). RT-PCR was performed to examine the 

expression of PmNramp mRNA in yeast using gene specific primers (Table 2). Yeast 

cells were ruptured by glass beads. The enriched membrane fraction of yeast protein was 

prepared by 1% Triton X100 in Tirs buffer and SDS sample buffer for Western blot to 

test the expression of PmNramp protein using monoclonal anti-HA antibody 3F10 

conjugated with biotin (Roche Applied Science, Indianapolis, IN) and strepatavidin-

peroxidase (Sigma).  

Table 8. Primers used in N- and C-terminus swapping and yeast complementation 

Construction of chimeric PmNramp2 and PmNramp3 

To test the metal transport capacity of PmNramp2 and PmNramp3, their N- and 

C-termini were swapped with counterparts of PmNramp1 (Fig.23). For N-terminus 

swapping, a BamHI restriction site was introduced by PCR in the coding regions of all 

the three isotypes, using the primers indicated in Table 8.  To verify that introducing of 

this restriction site dose not perturb PmNramp1 function, PmNramp1 with the BamHI site 

was included as a control in yeast complementation assays. For C terminus swapping, an 

MscII site was identified upstream of PmNramp1 TMS12, and was introduced to the 

corresponding positions in PmNramp2 by PCR with the primers listed in Table 8. An 

Primers Sequences PCR reactions 
pFL61F 5’- GTTTTTCAAGTTCTTAGATGC-3’ Screening for yeast transfectants 
pFL61R 5’- AGCGTAAAGGATGGGG-3’ 
BamHI-PmNR3core 5’- GGATCCCGTTACGCCGGCCCGGGATG-3’ Terminus swapping in 

PmNramp3 SphI-PmNR3coreR 5’- GCATGCCAACTCAGACTGCACTGCTG-3’ 
BamHI-PmNR2core 5’- GCATGCCAACTCAGACTGCACTGCTG-3’ Terminus swapping in 

PmNramp2 MscI-PmNR2coreR 5’- TGGCCAATCTAAGGGGACCAGTGTAG-3’ 
BamHI-PmNR1core 5’- GGATCCAAGTATGCTGGTCCTGGTTG-3’ Insertion of BamHI site in 

PmNramp1 BamHI-PmNR1coreR 5’- GGATCCCTTAGCACCGGGCGGGTCAA-3’ 
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SphI site was found in the same proximal region of PmNramp1.  For the replacement of 

PmNramp3 C-terminus, the SphI site was added into PmNramp3 CDS. The graphic 

demonstrations about domain swapping are in Fig. 23. Despite the changes in amino acid 

sequence of PmNramp2 and PmNramp3 after domain swapping due to insertion of the 

restriction sites, the core structures from TMS1 to TMS10 were kept intact in both 

molecules (Fig. 23).  
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Fig. 23 
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Fig. 23. N- and C-termini swapping of PmNramp1 to PmNramp2 and PmNramp3 

A BamHI site was introduced to PmNramp2 (PmNR2swap) and PmNramp3 

(PmNR3swap) for N- terminal swapping. The same BamHI site was introduced to 

PmNramp1 (PmNR1swap) to verify that the mutation does not perturb PmNramp1 

activity. For C-terminal swapping, an MscI site and an SphI site in PmNramp1 was used 

for PmNramp2 and PmNramp3 domain swapping respectively. The core structures 

formed by TMS1 to TMS10 were kept intact. 
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IFAs to detect PmNramp protein expression in fet3fet4 

Fet3fet4 yeast cells transformed with PmNramp1, PmNramp3 and chimeric 

PmNramp3 were harvested for IFAs. Cells were fixed in 4% formaldehyde in SD 

medium at room temperature for 30 minutes. After that, yeast cells were centrifuged at 

3000 g for 5 minutes and washed three times in 0.1 M potassium phosphate buffer 

containing 1.2M sorbitol (pH 7.5). In the same buffer, yeast cell wall was digested by 50 

μg/ml lyticase (Sigma) at 30°C for 5 hours.  Cells were centrifuged, re-suspended in PBS 

with 3% BSA, applied to the slide wells (Thermo Scientific), and allowed to sediment for 

40 minutes. Cell were dehydrated 6 minutes in cold methanol (-20 °C), washed in cold 

acetone (-20 °C) for 10 seconds, and dried at room temperature. IFA was performed as 

follows. Every sample is incubated with 3% PBS-BSA as blocking agent in room 

temperature for 1 h. Primary antibody mouse anti-HA, monoclonal 16B12 (Invitrogen) 

was added into 3% PBS-BSA in 1:100 dilution and incubated with every sample for 1 h 

at room temperature. After three washes in PBS for 5 minutes, secondary antibody (goat 

anti-mouse FITC conjugated) (Sigma) was added into 3% PBS-BSA in 1:1000 dilution 

and incubated in dark for 1h at room temperature. After three washes in PBS for 5 

minutes, samples were stained with DAPI (Invitrogen, Carlsbad, CA) in 1:1000 dilution 

for 10 minutes followed by 3 washed in PBS. ProLong Gold antifade reagent (Invitrogen) 

was applied onto each sample as the mounting solution, and the slide was stored in dark 

at 4 °C. The samples were examined using Nikon Eclipse E800 fluorescence microscope, 

and images of the cells were taken with SPOT RT2540 camera (Diagnostic Instruments, 

INC., Sterling Heights, MI)                                                                                                                            
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Yeast complementation assay of transformed fet3fet4 

Complementation experiments in fet3fet4 mutant were performed following 

methods of Eide and colleagues [252]. The Arabidopsis thaliana ferrous iron transporter 

(AtIRT1) [255] known from previous yeast complementation assays to be an efficient 

Fe2+ transporter [248], was incorporated into pFL61 vector (gift from Dr. Jones, 

Queensland Institute of Medical Research, Australia) and was used as positive control. 

As a negative control, yeast was transformed with pFL61 vector alone.  

Transformed yeast was grown in SD medium supplemented with 50 μM FeCl3 

over night. Yeast cultures were adjusted to OD=1.0 measured by UV- Visible 

spectrophotomerter (Shimadzu, UV-1601). 3 μl of yeast cultures diluted 1, 10, and 100 

times was pipette onto SD agar medium supplemented with 50 μM, 20 μM and 0 μM 

FeCl3, and incubated at 30 °C. After 5 days of incubation, the pictures of the agar plates 

were taken using Gel Logic 200 Imaging System (Kodak). For iron uptake assay in liquid 

medium, 100 μl yeast cultures with OD 1.0 were seeded into 30 ml fresh SD medium 

with 20 μM FeCl3 and incubated at 30 °C with shaking (250 rpm). OD values were 

measured at different time points using UV-visible spectrophotometer in triplicates.  

Complementation assay of yeast smf1smf2 

The same expression vector pFL61was used for expression of PmNramp isotypes 

in smf1smf2. The transfection procedures were the same as mentioned above. The yeast 

Nramp homolog Smf1 was incorporated into pFL61 vector and used as a positive control. 

Transformed cells were grown on YPD (2% bacto-peptone, 1% yeast extract, 2% 

dextrose) supplemented with 50 mM Na-Mes (pH 6), 0.5 mM methyl viologen (Sigma) 
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and 3mM EGTA.  For complementation of the sm1smf2 mutant on alkaline solid medium, 

transformed yeast cells were placed on YPD medium adjusted to pH 7.9 by 50 mM Tris-

Cl.  

RESULTS 

Expression of PmNramp isotypes in fet3fet4 

PCR of genomic DNA extracted from transformed fet3fet4 showed amplification 

of PmNramp-containing pFL61 vectors (Fig. 24 A). RT-PCR using PmNramp isotypes 

specific primers confirmed the transcription of PmNramp1 and PmNramp3 mRNA (Fig. 

24 B), but not PmNramp2 RNA. Western blot using anti-HA monoclonal antibody picked 

up expressed PmNramp1-HA and PmNramp3-HA (Fig. 24 C). As shown in the results, 

only PmNramp1 and PmNramp3 were expressed as protein, however, PmNramp1 protein 

was expressed in a higher level than PmNramp3. The predicated sizes for PmNramp1 and 

PmNramp3 are 60.7 KDa and 60.0 KDa respectively (http://expasy.org/cgi-bin/pi_tool). 

While the indicated sizes in Western blot (Fig. 24 C) for PmNramp3 is much bigger than 

60.0 KDa, which can be the result of anomalous migration of membrane proteins in SDS-

PAGE. The multiple bands and the smear in the blot for PmNramp1 can be also due to 

the anomalous migration and potential carbohydrate modification of the protein.   

The expression of PmNramp proteins in yeast cells were tested by immunofluorescence 

assays (Fig. 24 D). Consistent with the western blot results, PmNramp3 is expressed, but 

not in a high level as PmNramp1. PmNramp1 is localized both inside the cell and also in 

the peripheral. PmNramp3 did not show a cell peripheral localization, but a diffusive 

pattern of localization.
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Fig. 24 
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Fig. 24. Transformation and expression of PmNramp isotypes in fet3fet4. 

A. Transformation of PmNramp isotypes in yeast. Genomic DNA (gDNA) extracted 

from yeast transformed with PmNramp1 (lane 1), PmNramp2 (lane 2), PmNramp3 (lane 

3) full-length cDNA or pFL61 (lane 4) was used as template in PCR to confirm the 

presence of PmNramp containing vector in yeast cells  

B. Transcription of PmNramp isotypes in yeast. RT-PCR was performed to check the 

expression of PmNramp1 (lane 5), PmNramp2 (lane 6) and PmNramp3 (lane 7) mRNA 

in yeast.  

C. Western blot of PmNramp isotypes in yeast. Enriched membrane fractions were 

prepared from yeast transformed with PmNramp1 (lane 8), PmNramp2 (lane 9), 

PmNramp3 (lane 10) or pFL61 (lane 11), separated by 12% SDS-polyacrylamide gel 

electrophoresis, and probed by immunoblotting with the anti-HA high-affinity 3F10 

antibody conjugated with biotin and strepatavidin conjugated with horseradish peroxidase.  

D. IFA of PmNramp1 and PmNramp3 in fet3fet4 yeast cells. All the PmNramp isotypes 

were tagged with HA epitope. Monoclonal mouse anti-HA antibody and anti-mouse 

antibody conjugated with FITC were used to visualized PmNramp1 and PmNramp3 

protein localizations in yeast cells. Nucleus positions were indicated by DAPI staining. 
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PmNramp1 complements the growth of fet3fet4 

In SD agar medium supplemented with 0 and 20 μM FeCl3, fet3fet4 expressing 

PmNramp1 grows better than yeast that contains the empty cloning vector (Fig. 25 A). 

The growth of yeast transformed with PmNramp1 entered the exponential growth much 

earlier than cells transformed with pFL61 vector alone (Fig. 25 B), thereby demonstrating 

the function of PmNramp1 as an iron-transporter. 
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Fig. 25 
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Fig. 25. Yeast complementation assay of PmNramp isotypes in fet3fet4 

Fet3fet4 yeast cells were transformed with the three PmNramp isotypes or positive 

control AtIRT1, which were all inserted in the expression vector pFL61. Cells were also 

transformed with the empty expression vector as negative control. The transformed yeast 

cells were subjected to complementation assays in both agar and liquid medium. A, 

growth of serially diluted yeast cells after 5 days incubation at 30°C on SD medium 

supplemented with 50, 20, or 0 μM FeCl3. B, growth in liquid SD medium supplemented 

with 20 μM FeCl3 as indicated by OD600. 
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Fet3fet4 complementation assay of chimeric PmNramp2 and PmNramp3  

Based on the previous study in Nramp protein family, the N- and C- termini of 

NRAMP could be closely related to the expression and localization of the protein in a 

heterologous system [256, 257]. Following the same line of thought, since PmNramp1 

can be properly expressed in fet3fet4, the N- and C- termini of PmNramp1 was swapped 

to PmNramp2 and PmNramp3 without interrupting any of the predicted TMS1-10 (Fig. 

23). The chimeric PmNramp3 was expressed in the yeast cell peripheral (Fig. 26 A), and 

PmNramp3 showed a significant complementation activity in both solid and liquid 

medium after domain swapping (Fig. 26 B, C). Chimeric PmNramp2 cannot be obtained 

in 4 independent transformation of yeast fet3fet4. The result implies that both PmNramp1 

and PmNramp3 can function as iron transporters. 
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Fig. 26 
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Fig. 26. Complementation of iron deficiency phenotype of yeast fet3fet4 mutant by 

chimeric PmNramp3. 

A, IFAs of chimeric PmNramp3. The chimeric PmNramp3 was tagged with HA epitope. 

Monoclonal mouse anti-HA antibody and anti-mouse antibody conjugated with FITC 

were used to visualized PmNramp1 and PmNramp3 protein localizations in yeast cells. 

Nucleus positions were indicated by DAPI staining. Yeast cells transformed with empty 

pFL61 vector was used as negative control. 

B, Yeast complementation assays of chimeric PmNramp3 in solid medium. Serially 

diluted cells transformed with PmNramp1 and chimeric PmNramp3 after domain 

swapping (PmNramp1swap & PmNramp3swap) were incubated 5 days at 30°C on SD 

medium supplemented with 50, 20 or 0 μM FeCl3.  

C, Yeast complementation assays of chimeric PmNramp3 in liquid medium. Yeast cells 

transformed with PmNramp1 and chimeric PmNamp3 were incubated in liquid SD 

medium supplemented with 20 μM FeCl3. The growth curve of the cells is indicated by 

OD600. 
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Yeast complementation assay in smf1smf2 

Under the treatment of EGTA and oxidative stress induced by methyl viologen, 

smf1smf2 yeast cells transformed with PmNramp1 grow better than yeast cells 

transformed with empty vector, PmNramp2, and PmNramp3 (Fig. 27 A). However, there 

was not obvious complementation by PmNramp1 when yeast cells were grown under the 

alkaline condition (Fig. 27 B). 
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Fig. 27 
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Fig. 27. Complementation assay of yeast strain smf1smf2 in solid medium.  

Smf1smf2 yeast were transformed with expression vector pFL61 containing Smf1, 

PmNramp1, PmNramp2 or PmNramp3 tagged with HA or pFL61 vector alone. A, 

Growth of serially diluted cells after 5 days at 30°C on SD medium containing 3mM 

EGTA. B, Growth of transformed yeast cells after 5 days at 30°C in YPD medium (pH 

7.9) supplemented with 50mM Tris-Cl.
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DISCUSSION 

The data showing that PmNramp1 is able to complement iron transport activity in 

yeast constituted the first piece of information about iron uptake in P. marinus. The 

function of PmNramp1 as manganese transporter remains to be further investigated since 

the data in yeast complementation is not yet confirmative. Nramp homologs usually have 

a wide substrate range with high affinity to divalent iron and manganese [184]. Most of 

the Nramp homologs identified so far can transport both iron and manganese although 

some of them have a preferred substrate. Another heterologous expression system may be 

needed to further investigate manganese transport function of PmNramp1. If manganese 

is not a physiologically-related substrate for PmNramp1 in P. marinus, there are potential 

manganese uptake pathways.  BLAST searches in P. marinus genome data base using 

amino acid sequences of yeast PHO84 and A. thaliana MTP11 suggest a potential low-

affinity manganese transporter (GenBank Accession number XP_002781691) PHO84 

[258] and a CDF (Cations Diffusion Facilitators) Metal Tolerance Proteins MTP11 

(Accession number XP_002777192) that has a signature DXXXD domain for manganese 

transport [259]. 

Although PmNramp1 was able to complement iron uptake in fet3fet4, PmNramp2 

and PmNramp3 indicate no complementation in yeast. The lack of complementation by 

PmNramp2 is caused by the problematic expression of the gene, and the failure of 

complementation by PmNramp3 is probably because the protein cannot be targeted to 

yeast cell surface (Fig. 24). In previous studies of Nramp function in heterologous 

systems, substitution of N- and C-termini with other Nramp homologs was key to 

improve the expression and change subcellular compartment localization. A chimera of 
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yeast smf1 with mammalian Nramp2 termini was made to enable electrophysiology study 

in Xenopus oocytes [257, 260]. Based on the model of MntH [240], the hydrophobic core 

formed by TMS1-10 is closely related to substrate transport, and TMS11 and TMS12 

may serve as anchors for the molecule. The N- and C-domain substitution strategy was 

adopted to circumvent the expression problem of PmNramp3. Since PmNramp1 can be 

expressed in yeast, a PmNramp1 and PmNramp3 chimera with an intact hydrophobic 

core formed by PmNramp3 TMS1-10 was generated. The chimera demonstrated an iron 

uptake function in fet3fet4. The results is consistent with the prediction by evolutionary 

studies (Chapter 3) that the protein sequence divergence among the three PmNramp 

isotypes is probably not related to the diversification of critical function elements, since 

PmNramp3 showing the greatest divergence in amino acid level can function as iron 

transporter as PmNramp1. 

The functional studies in yeast systems implies the possibility that PmNramp1 

may serve as the surface transporter for the uptake of environmental iron while 

PmNramp3 could be in charge of supply for downstream iron utilization inside the cells. 
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CHAPTER 5 STRUCTURAL AND MECHANISTIC 

STUDIES OF THE PMNRAMP ISOTYPES 
 

SUMMARY 

Homology modeling of PmNramp1 predicted the 12 transmembrane segments 

(TMS) typical of the archetype Nramp proteins, and showed symmetric organization of 

the conserved hydrophobic core (TMS1-10) in two repeated domains of inverted 

topology typical of several families of cation-driven transporters (including Slc5 and 

Slc6). The center position of the Slc11-specific triplets Asp-Pro-Gly (TMS1) and Met-

Pro-His (TMS6) in a three-dimensional arrangement formed with TMS3 and TMS8 

provides the mechanistic basis for iron acquisition via PmNramp1. Mutations of the 

residues in the central triplets located in TMS1 and TMS6 abolished the complementation 

of fet3fet4 by PmNramp1. Mutants with mutations on TMS1 were expressed in a much 

lower level compared to wild-type PmNramp1 protein, and mutants with mutations on 

TMS6 showed a similar expression level. IFAs revealed that mutations on TMS6 did not 

change the protein localization as compared to the wild-type PmNramp1. Therefore, our 

data supported the critical functional roles played by the residues on TMS6.  

 

INTRODUCTION 

The function of transporters is intimately determined by their transmembrane 

arrangement, which enables them to carry solutes. Genetic studies using prokaryotic and 
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eukaryotic Slc11  homologs and various topological reporters have yielded a consensus 

transmembrane topology placing both ends of the Slc11 hydrophobic core (TMS1-10) on 

the cytoplasmic side of the membrane, but some extra-membranous loops remain to be 

tested experimentally [188, 261-263].  The global Slc11 transmembrane topology also 

fits a predicted tridimensional fold, which is conserved among apparently distant families 

of Na+- and H+- dependent transporters showing less than 15% overall amino acid 

sequence identity, including Slc6, [264], Slc5, [265], Slc23, [240, 266], and Slc7 [267]. 

Obtaining consistent models by threading using structural templates unrelated by 

sequence may thus provide, even with moderate accuracy due to remote homology, good 

structural indication of functional significance.  

Nramp homology modeling was performed by threading Slc11 sequences onto a 

structure representative of Na+-coupled amino acid transporters (Slc6), and it was tested 

both functionally and topologically using several Slc11-specific mutants of E. coli MntH 

[240]. Further threading using available resources and the ever expanding RCSB Protein 

Data Bank (PDB; http://www.rcsb.org/) confirmed this model, because three novel 

structures that were solved for members from apparently unrelated families of cation-

driven transporters revealed a conserved architectural fold [265-267]. 

According to such conserved tridimensional structure, the Slc11 hydrophobic core 

comprises two domains that are direct repeats with inverted topology.  The two specific 

triplets Asp-Pro-Gly (TMS1) and Met-Pro-His (TMS6) would occupy the central position 

                                                 
In topology, the terminology Slc11 is used instead of Nramp for convenient comparison to other 

Slc members. 
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and together with segments of TMS3 and TMS8, form a three-dimensional arrangement 

enabling directional cation symport [264-266].  The TMS1 Asp-Pro-Gly motif 

contributes to proton-binding and -motive force, shown by the loss of H+ uptake in E. coli 

MntH Asp34 mutants, while the TMS6 Met-Pro-His motif mediates pH-dependent 

regulation consistent with requirement for E. coli MntH His211 for Cd2+ uptake at neutral 

pH.  These two Slc11-invariant sites were accessible in situ, respectively to fluorescein-

maleimide and N-ethylmaleimide, while three others were not, corresponding to 

transmembrane Asn residues that could mediate inter-helix interactions key for transport 

[240].  

The similar structures solved for the transporters Mhp1, LeuT, vSGLT and ApcT 

appear to represent discrete steps in a ‘gated-pore’ transport cycle common to diverse 

families of cation-driven carriers, respectively open-to-out, open-to-out and ‘occluded’ 

by substrate and closure off from external bulk water, and open-to-in [264-267]. Hence, 

utilization of a cation-motive force to symport substrate may constitute the functional 

activity that preserved a common architecture among many families of solute carriers in 

absence of obvious sequence similarity. These structures also revealed an internal 

symmetry with two 5 TMS repeats assembled in inverted orientations placing the 

cosubstrates binding sites at the apex of a cavity formed in part by TMS 1, 3, 6 and 8. 

In this chapter, 3D models of PmNramp1 protein were proposed by homology 

modeling. The 3D models provided a mechanistic basis for the iron transport activity of 

PmNramp1 as implied by the functional studies in Chapter 4. To test the accuracy of the 

models, the predicted central residues involved in substrate translocation were mutated by 
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site-directed mutagenesis, and the resulted mutants were tested by yeast complementation 

assays.  

 

MATERIALS AND METHODS 

Structural analysis of PmNramp1 by homology modeling 

 Tridimensional structural models were obtained as previously described [240] for 

the three PmNramp isotypes using either MODELLER with consensus restraints, or with 

the default parameters of the programs developed by the Zhang laboratory including 

iterative TASSER simulations (I-TASSER)[239], with the default parameters of the 

programs developed by the Zhang laboratory including the Local Meta-Threading-Server 

(LOMETS) [268], which  generates 3D models by collecting consensus target-to-

template alignments from 9 locally-installed threading programs, the MUlti-Sources 

ThreadER (MUSTER) [269], which combines sequence profile-profile alignment with 

multiple structural information. The PDB coordinates calculated by the different 

programs were used with the freeware viewer Pymol (DeLano WL: The PyMOL 

molecular graphics system, http://www.pymol.org) to visualize the 3D models. 

Site-directed mutagenesis 

To test the structural/functional value of the predicted model and the importance 

of the canonical triplets in TMS1 and TMS6 for PmNramp1 function, selected amino acid 

resides were mutated by site-directed mutagenesis using QuikChange II site-directed kit 

(Stratagene, Santa Clara, CA). The primers used for introducing the mutations are listed 
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in Table 9. All mutations were confirmed by sequencing the plasmids prior to the yeast 

complementation assay. Expression and subcellular localization of mutated PmNramp1 

protein in fet3fet4 was assessed by Western blot and IFAs 

Yeast cells were ruptured by glass beads. The enriched membrane fraction of 

yeast protein was prepared by 1% Triton X100 in Tirs buffer and SDS sample buffer for 

Western blot to test the expression of PmNramp protein using monoclonal anti-HA 

antibody 3F10 conjugated with biotin (Roche Applied Science, Indianapolis, IN) and 

strepatavidin-peroxidase (Sigma). IFAs were performed as described in Chapter 4.               

Table 9. Site directed mutagenesis of PmNramp1 

 TMS Mutations Primers 

Mut1 TMS1 Asp76Glu 5’- CATTGGCCTATCTCGAACCTGGTAATTTAGAAGCCG -3’ 

Mut2 TMS1 Gly78Ala 5’- CATTGGCCTATCTCGATCCTGCTAATTTAGAAGCCG -3’ 

Mut1&2 TMS1 Asp76 Glu+ 
Gly78Ala 5’- CATTGGCCTATCTCGAACCTGCTAATTTAGAAGCCG -3’ 

Mut3 TMS6 Met250Ala 5’- GGCGCAGTTATTGCTCCGCATAACCTCTACCTGCAC -3’ 

Mut4 TMS6 His252Tyr 5’- GGCGCAGTTATTATGCCGTATAACCTCTACCTGCAC -3’ 

Mut3&4 TMS6 Met250Ala + 
His252Tyr 5’- GGCGCAGTTATTGCTCCGTATAACCTCTACCTGCAC -3’ 

 

RESULTS 

Functional features predicted from protein sequence structural modeling analysis  

Multiple alignments of the sequences encoding the PmNramps and human 

Nramp2 proteins (Fig. 28) show residue conservation predominantly in the Slc11 

                                                 
 This part of result was generated through the collaboration with Dr. Mathieu F. M. 

Cellier 
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hydrophobic core and invariant residues forming clusters in areas corresponding to the 

TMS1-10. This conservation suggests that PmNramps may function as transporters which 

complete transmembrane (re)arrangements to carry solutes by using energy.  

Fig. 29 shows the best models obtained by threading PmNramp1 sequence on 

available PDB templates, which detail alternating conformation states presumed to affect 

PmNramp1 TMS1, 3, 6, and 8 during metal uptake activity, based on the solved 

structures of Mhp1 [266] and vSGLT (Vibrio parahaemolyticus sodium/galactose 

symporter) [265]. An open-to-out conformation would allow cation cosubstrates to reach 

their translocation site, approximately in the middle of the plasma membrane and 

involving the Slc11-specific residues Asp-Pro-Gly (TMS1) and Met-Pro-His (TMS6) as 

well as other residues from TMS3 and 8. After the PmNramp1 isomerisation, an open-to-

in conformation would enable the release on the other side of the membrane of the cation 

solutes.  As shown in Fig. 28, clusters of residues invariant among PmNramps are found 

along these TMS predicted to line a central transmembrane aqueous translocation 

pathway (TMS1, 3 , 6, 8) supporting their functional role.  

The sequence of the “conserved transport motif” (indicated by dash line, Fig. 28) 

is now predicted as integral to TMS8 in the tridimensional Slc11 model structure 

obtained by threading [240, 263]. Such “conserved transport motif” was initially 

proposed to form a cytoplasmic re-entrant loop, situated immediately downstream of a 

shorter TMS8, and predicted to contribute to cations selection by analogy with the “pore 

region” of K+ channels and glutamate and GABA transporters [270]. This suggestion was 

re-evaluated because i) the “pore region” of the GABA and serotonin transporters 

corresponds in fact to the TMS8 in LeuT-based models [271, 272], and ii) indeed, the 
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GABA transporter “pore region” was demonstrated experimentally to form a 

transmembrane helix lining the aqueous translocation pathway [271].  

 



144 
 

Fig. 28 

 

 

 

 

 

 

 



145 
 

Fig. 28. Display of predicted structure by alignment of PmNramp isotypes with 

human NRAMP2. 

Amino acid sequences alignment of human NRAMP2 with the three PmNRAMP 

isotypes. The predicted TMS are annotated. The conserved “transporter signature motif” 

is indicated by dash line. The triplets in TMS1 and TMS6 were indicated by red boxes. 

The alignment was generated using Mega 4.0 [194, 195] and displayed with GeneDoc 

[196]. Identical residues were highlighted at three cutoffs (50, 75 and 100 %). 
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Fig. 29 
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Fig. 29.  Hypothetic model for transmembrane symport of divalent metals and 

protons via PmNramp1.  

A short version of PmNramp1 (Pm1_NCD, 485 residues; VKFSF…. EDLMG) was used 

to generate alignments that mapped PmNramp1 residues to homologous sites in candidate 

template crystal structures, using the parameters provided by the developers of multiple 

threading approaches, and models generated by two different approaches were compared. 

The models shown were derived either from Microbacterium liquefaciens nucleobase-

cation- symport1 transporter, in open-to-out conformation (A), or from the Vibrio 

parahaemolyticus sodium/galactose symporter, in open-to-in conformation (B). Two 

views are presented for each model as indicated, one from the external surface (outside) 

and one parallel to the membrane with the TMS 4 and 9 in front. For each view, either the 

485 residues structure is shown or only the residues that constitute the TMS1, 3, 6 and 8.  

A possible pathway of metal and proton symport is outlined. 
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Site-directed mutagenesis of PmNramp1 predicted functional residues 

A multiple alignment allowing flexibilities was obtained for the X-ray structures 

of 5 cation-driven transporters with inverted symmetry, which represent distinct 

intermediates in a conserved transporter cycle: 2 open to out, one occluded from both 

sides and 2 open to in (respectively, Mhp1, LeuT, BetP, SGLT1 and ApcT). Though 

these X-ray structures represent distant families of transporters, superposition 

demonstrates remarkable spatial conservation: a common core spanning ~200 equivalent 

positions (e.p.) and 3.4 Å overall Root Mean Square Deviation (RMSD). The RMSD is 

not distributed homogenously along the 10TMS hydrophobic core and for instance, 

TMS1 exhibits remarkable 3D conservation while the structure of TMS6 apparently 

evolved with less constraint (Fig. 30 A, left panel).  It seems there is a functional 

correlate as LeuT (Slc6) TMS1 interacts with both the driving cation (dark blue sticks) 

and substrate (orange sticks) and TMS6 only binds the substrate (orange sticks). One 

speculation is that TMS6 evolved more in relation to different substrate geometries and 

TMS1 coupled of the cation-driving force and substrate translocation pathway. The 

triplets targeted for mutagenesis represent candidate substrate binding contacts both on 

TMS1 (DPG, Mut1, 2) and TMS6 (MPH, Mut3, 4). 

Mutation of the targeted amino acids in TMS1 and TMS6 abrogate PmNramp1 

iron uptake activity in the yeast mutant fet3fet4. The loss of complementation resulted 

from both single and double mutations on each of the TMS (Fig. 30 C, D). Inspection of 

protein expression levels of the mutants tested showed that mutations in TMS1 impaired 

PmNramp1 expression in yeast, while mutations in TMS6 preserved PmNramp1 

heterologous expression levels (Fig. 30 A, right panel). Therefore, because the TMS1 
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mutant protein was expressed in a much lower level than the wild type, it is not possible 

at this time to establish a strong correlation between the losses of complementation by 

TMS1 mutants to the functional roles of the mutated resides in iron uptake. In contrast, in 

addition of showing similar expression levels, IFAs revealed that mutants in TMS6 

showed a similar localization in yeast cells as compared to the wild type PmNramp1 

protein. Therefore, the failure of complementation by TMS6 mutants is likely to result 

from the disruption of the iron transport mechanism caused by the mutation of those 

specific function-related residues. 
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Fig. 30 
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Fig. 30. Complementation assays of yeast fet3fet4 mutant after mutations of key 

residues in PmNramp1.  

A, Left panel, view of superimposed TMS1 and TMS6 of carriers from 5 evolutionary 

distant families (Mhp1, LeuT, BetP, SGLT1 and ApcT) showing LeuT residues engaged 

in substrate binding (orange sticks) and those interacting with the driving-cation (Na2 site, 

dark blue sticks); the corresponding sites in other transporters are represented with yellow 

and light blue sticks, respectively. The areas targeted for mutagenesis are indicated. Right 

panel, western blot of the membrane-enriched extract from yeast cells transformed with 

mutated PmNramp1.  

B, IFAs of yeast cells transformed with TMS6 mutants. All the PmNramp1 mutants were 

tagged with HA epitope. Monoclonal mouse anti-HA antibody and anti-mouse antibody 

conjugated with FITC were used to visualized protein localizations in yeast cells. 

Nucleus positions were indicated by DAPI staining. 

C, Left panel, growth of serially diluted cells transformed with PmNramp1 with 

mutations at TMS1 after 5 days at 30°C on SD medium supplemented with 50, 20 or 0 

μM FeCl3. Right panel, growth of TMS1 mutants in liquid SD medium supplemented 

with 20 μM FeCl3.  

D, Left panel, growth of serially diluted cells transformed with PmNramp1 with 

mutations at TMS6 after 5 days at 30°C on SD medium supplemented with 50, 20 or 0 

μM FeCl3. Right panel, growth of TMS6 mutants in liquid medium supplemented with 20 

μM FeCl3. 
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DISCUSSION 

Yeast complementation assay suggested the iron uptake function in PmNramp1 

and PmNramp3. Following the concept that protein function is the reflection of protein 

structure, we modeled PmNramp1 3D structure by homologous threading (Fig. 29). The 

3D model of PmNramp1 fits the iron complementation activity in the yeast. As a further 

confirmation of the model, mutations on the central triplets Asp-Pro-Gly (TMS1) and 

Met-Pro-His (TMS6) of PmNramp1 abolished the complementation. It turned out that 

mutants with mutated TMS1 triplet were not expressed properly compared to wild-type 

PmNramp1; while mutants with mutated TMS6 triplet were expressed as normally as 

intact PmNramp1. Therefore, the failure of complementation may be due to the structure 

interference while the interruption of complementation by mutants in TMS6 is probably 

due to the functional damage. It seems that mutations in TMS1 have a greater impact on 

PmNramp structure.  Although the equivalent TMS1 mutants in the E. coli MntH or 

mouse Nramp2 are efficiently expressed in the homologous cells, causing significantly 

impaired transport activity; when transformed into yeast, the mouse Nramp2 D86A 

mutant exhibits a noticeable reduced expression [273]. These observations suggest that 

although the mutation in TMS1 does not affect Nramp expression in the homologous 

cells, it can severely impair expression in the heterologous system. Mutation in TMS6 

seems to have little impact in Nramp homolog expression in either homologous or 

heterologous expression system. In a recent study on E. coli MntH, site-directed 

mutagenesis of several highly-conserved residues in TMS6, including those tested here, 

kept endogenous expression in a moderate to normal level compared to wild type [274].  
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Mouse Nramp2 with mutated TMS6 tripeptide could be stably expressed in smf1smf2 

yeast and CHO (Chinese hamster ovary) cells [256]. 

Substitution of Asp34 in MntH with Gly or more conservative Asn can abolish 

both Me2+ and H+ transport [275, 276]. Equivalent mutant Asp86Ala in mouse Nramp2 

failed to complement yeast strain smf1smf2; the same mutant showed no metal transport 

activity in CHO cells [273]. Consistent with those reports, our result about PmNramp1 

mutant Asp76Glu supported the key role of the Asp residue in Nramp function. The other 

residue Gly78 in PmNramp1 TMS1 was indicated to be necessary in this site. The 

equivalent mutation was tested in E. coli MntH [276] and mouse Nramp2 [256]. 

Regardless of the nature of the substitution, mutation in the corresponding Gly site 

resulted in the loss of function. In TMS6 triplet, the Met residue seems to be 

indispensable. Substitution of this residue with Ala in PmNramp1 abrogated the 

complementation function as iron transporter. Substitution of the corresponding Met 

residue in E. coli MntH with either Ile or Lys demolished transport activity despite the 

similar side chain volumes of Met and Ile [274]. Site-directed mutagenesis of His residue 

in TMS6 triplet seems to have a mild effect on transport function, and the nature of the 

substitution can have different impact. The choices of amino acid for substitution of the 

targeted residue could be made on different basis. Some of the substitutions that appeared 

in the literature were chosen based on the evolutionary analysis and the others were based 

on the biochemical features of the amino acid residues. Chaloupka et al. made the His211 

residue to Tyr mutation in -E. coli MntH that is equivalent to PmNramp1 His252 

substitution in this study, since tyrosine is the most prevalent substitution for this residue 

in the phylogenetic outgroup [275]. This mutation significantly reduced the sensitivity of 
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E. coli growth under toxic concentration of metals. Proton uptake of H211Y mutant was 

detected only with the substrate Cd2+. Substitution of H211A imposed a milder effect on 

MntH function. E coli carrying this mutation showed a higher sensitivity to toxic metal 

compared to H211Y mutant, albeit at a reduced level compared to wild type; the co-

transport of proton and metal were restored [275]. Tyr possesses an acid side chain while 

His exposes a basic imidazole group, and therefore, mutation of His to Ala is more 

neutral compared to substitution with Tyr. In mouse Nramp2, the equivalent residue 

His267 was characterized to be highly mutation sensitive. Substitution with Ala, Cys and 

Arg all resulted in severe or complete loss of function. Lower pH conditions seem to 

restore the transport activity of mutant His267A, while decreasing pH has little effect on 

the function of wild type mouse Nramp2. Therefore, the hypothesis was raised that His211 

might involve in pH-dependent regulation of MntH transport activity [273]. While 

Haemig and colleagues argued that their result did not support the pH regulation function 

of the equivalent His residue in E. coli MntH. They pointed out that His211 did not play a 

critical role in Mn2+ binding because substitution at this site kept Km values similar to 

wild type. In addition, lower pH did not give obvious advantage to the mutant H211Q in 

transport activity as seen in mouse Nramp2 mutant H267A [274]. The divergence in 

results can caused by the difference in the nature of substitution (H267A, H267C, and 

H267R by Lam-Yuk-Tseung et al.; H211A, H211Y by Chaloupka et al.; H211Q by 

Haemig et al.). Secondly, the data on mouse Nramp2 were generated in heterologous 

expression systems, including yeast and CHO cells. Despite the difficulty in judgment of 

the actual function of His residue in TMS6 triplet, it can still be concluded that this 

residue is closely involved in Nramp homolog function. 
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In summary, the results from our functional studies buttress the relevance of the 

TMS 1 and 6 predicted to exert pseudo-symmetric roles in substrate transport, and 

support a possible direct role of TMS6 residues in iron uptake. These results provide 

novel evidence consistent with the 3D model for the Slc11 family that is based on remote 

homology with cation-driven transporters with inverted symmetry. Sequence divergence 

among PmNramp homologs correspond predominantly to regions predicted extra-

membranous (Fig. 22), which can nevertheless harbor site-specific signals for protein 

localization and/or turnover. Distinct Lys residues in yeast Smf1p N-terminal hydrophilic 

sequence are targeted for Rsp5p dependent ubiquitination to promote endocytosis in 

response to external cadmium [277] and to toxic manganese [278]. These observations 

suggest that divergent sequences amongst PmNramp extra-membranous regions may still 

contain residues useful for post-translational regulation of expression, subcellular 

localization and trafficking of PmNramps in response to environmental metals. Although 

PmNramp1 failed to transport manganese, because most Slc11 homologs show relatively 

low selectivity for divalent metals it is possible that PmNramps can transport other metals. 

Constitutive mRNA expression of PmNramp1-3 in trophozoites in vitro, and extensive 

protein sequence variation in extra-membranous regions raise a possibility for dynamic 

post-translational control of expression, location and turnover of PmNramps. One 

possible scenario is that PmNramp1 might function as the prominent isotype for uptake 

of exogenous iron into the parasite cells, whereas PmNramp2 and PmNramp3 could 

function downstream of PmNramp1 for intracellular iron trafficking in relocation and 

storage. The key finding that PmNramp1 functions in uptake of exogenous iron in yeast 

provides the molecular and biochemical basis for prior observations on the effect of 
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environmental iron in enhancing infection prevalence and intensity, promoting parasite 

proliferation. The identification of PmNramp1 as a potential mediator of parasite 

virulence opens new avenues for exploring novel strategies of intervention. 
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CHAPTER 6 SUBCELLULAR LOCALIZATION OF THE 

PMNRAMP ISOTYPES 
 

SUMMARY 

The subcellular localization of PmNramp isotypes was investigated via IFA. Anti-

serum against selected antigenic peptides from PmNramp isotypes was raised in rabbits. 

The IgG fraction was purified from the serum and tested for specificity by Western blot. 

Based on the Western blot result, PmNramp1 and PmNramp3 were expressed in cultured 

P. marinus while PmNramp2 expression was no detected.  

IFAs of PmNramp isotypes in P. marinus trophozoites are still in progress. The 

IFAs of PmNramp3 in log-phase trophozoites, showed a cell surface staining when the 

parasite proliferates by binary fission. These data indicated potential roles of PmNramp3 

in parasite growth. 

 

INTRODUCTION 

A number of organisms are known to have multiple Nramp genes. Three Nramp 

isotypes haven been identified in the ciliate protozoan Tetrahymena thermophila, the 

baker yeast Saccharomyces cerevisiae, and the nematode Caenorhabditis elegans. The 

three T. thermophila Nramp homologs were annotated in the genome database.  n S. 

cerevisiae, Nramp homologs Smf1p and Smf2p perform non redundant roles as 

manganese transporters, with Smf1p mediating rapid massive influx at the plasma 
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membrane and Smf2p in charge of down-stream manganese utilization. Differently, Smf3 

in S. cerevisiae plays a role in iron homeostasis [188].  Three C. elegans Nramp 

homologs are identified and Smf1 and Smf3 are expressed in intestine, functioning as 

manganese transporters and as part of innate immunity in the nematode [250]. Based on 

previous data, two of the three P. marinus Nramp homologs, PmNramp1 and PmNramp3 

can function as iron transporters (Chapter 3). Information about PmNramp1 and 

PmNramp3 localization in the parasite can shed some light on the in vivo function of the 

transporters. 

The detailed life cycle of P. marinus is not yet clearly documented. Ultrastructural 

features of in vitro P. marinus culture were studied by Sunila, et al. (2004) [279]. During 

vegetative cell cycles, P. marinus cells divide either by schizogony or binary fission with 

the formal one being the common way of proliferation [279]. A graph about different cell 

types during P. marinus schizogony was presented in Fig. 31. Different cell types can be 

distinguished based on morphology and size. Large log-phase trophozoites (16 μm in 

diameter) are characterized by eccentric nuclei. Large log-phase trophozoites then 

develop to young log-phase schizonts with subdividing cytoplasm compartmentalized by 

daughter cell walls. After completion of schizogony, young log-phase schizonts turn to 

mature log-phase schizonts (20 μm in diameter), characterized by clear vacuoles and 

spherical nuclei. Despite the completion of division, the daughter cells are still bounded 

by the common schizont cell wall. After 24h, these daughter cells are released and 

become small log-phase trophozoites (5 μm in diameter) that develop to large log-phase 

trophozoites when there is plenty of nutrition in the medium. When the parasite 

population is large, the nutrients in the culture medium are depleted and metabolites from 
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the log-phase growth are built up. P. marinus growth enters the stationary phase. Mature 

log-phase schizonts become stationary-phase schizonts (10 μm in diameter) and small-

log phase trophozoites turn into stationary-phase trophozoites [279]. 

In this chapter, subcellular localizations of PmNramp homologs were examined. 

Parasite cell from both exponential and stationary growth phases are investigated to test 

the possible life-stage dependent change in protein trafficking. In C. elegans, Smf1 has 

different expression patterns in embryo and adult nematodes [250]. Since both 

PmNramp1 and PmNramp3 can potentially function as iron transporters (Chapter 4) and 

iron is an essential element for P. marinus growth [10, 11], DFO chelation challenge is 

also included in the experiments.
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Fig. 31 
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Fig. 31. A diagrammatic drawing of cell cycle of cultured P. marinus.  

A. Large log-phase trophozoites in DME/F12 based medium. B. Young log-phase 

schizonts or internally subdividing mother cells containing daughter cells. C. Mature log-

phase schizonts with daughter cells in a common schizont cell wall. D. Small log-phase 

trophozoites ready for the next division cycle. E. Stationary-phase schizonts limited by 

scarce nutrients. F. Stationary-phase trophozoites (modified from Sunila et al., 2001).  
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MATERIALS AND METHODS 

Generation of PmNramp antibodies 

Rabbit antiserum (Open biosystems, Huntsville, AL) was raised against selected 

peptides on all the three PmNramp isotypes. The selected peptides are predicted to be 

part of the topological loop between TMS7 and TMS8 as indicated in Fig. 32. IgG 

subgroups were purified from both anti-serum and pre-immune serum using Protein A 

sepharose 4B (Sigma) and stored in PBS containing 0.02% NaN3. The purified IgG 

antibodies were tested in Western blot by comparing the results from anti-serum IgG and 

pre-immune IgG. Because the pre-immune serum for PmNramp1 was missing, membrane 

extract from yeast cell fet3fet4 transformed with HA-tag PmNramp1 was used to test 

purified PmNramp1 IgG. Monoclonal anti-HA antibody was used as a reference to detect 

PmNramp1 protein as described in Chapter 3. All the Western blots were performed 

using chemiluminescent detection (Pierce Biotechnologies, Rockford, IL) of HRP-

conjugated goat anti-rabbit IgG antibodies (Bio-Rad, Hercules, CA). 
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Fig. 32 
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Fig. 32. Rabbit antiserum was raised against peptides predicted to be the loops 

between TMS7 and TMS8. 

Amino acid sequences of PmNramp isotypes aligned using MEGA 4.1 and displayed by 

GeneDoc. The peptides selected to raise antiserum are indicated in red box. The positions 

of TMS based on the 3D model (Chapter 5) were indicated by lines. The selected 

peptides are part of the loop between TMS7 and TMS8.
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Western blot analysis of PmNramp isotypes 

Both the water soluble and the membrane-bound proteins from P. marinus were 

used in Western blot. The parasite cells are ruptured by vortexing together with glass 

beads. The soluble phase is stored in 50 mM Tris-HCl, pH 7.4 and the membrane 

enriched section was dissolved first in the same Tris buffer containing 1% Triton X-100, 

and then SDS sample buffer . The amount of protein used in Western blot is normalized 

to cell number. P. marinus cells were cultured in standard culture medium [191] and the 

cell number used in protein extraction is calculated based on OD600 as described in 

Chapter 2. For water soluble fraction, 1 ml buffer was used to extract protein from 12 x 

108 cells; for membrane-bound fraction, 1 ml buffer was used to dissolve membrane 

protein from 30 x 108 cells. 27 μl protein extracts were loaded for PmNramp1 and 

PmNramp2 western blot, and 18 μl extracts were loaded for PmNramp3 Western blot. 

IFAs in P. marinus cells  

After confirming the specificity of the IgG, IFAs were performed in P. marinus 

cells at exponential growth and stationary phase. At both stages, parasite cells were 

challenged with 0.02 mg/ml DFO for one day before the cells were harvested for IFAs. P. 

marinus cells were fixed in culture medium with 3% formaldehyde for 40 min at room 

temperature, then washed with PBS twice, followed by permeabilization in PBS 

containing 0.1% Triton X-100 for 30 min. Cells were washed in PBS before blocked with 

3% BSA in PBS for 1 hour at room temperature. Cells were incubated with purified IgG 

in PBS containing 3% BSA in 1:50 dilution for 1h at room temperature. After three 

washes with PBS for 5 minutes, cells were incubated with FITC-conjugated donkey anti-

rabbit IgG (Invitrogen, Carlsbad, CA) in PBS containing 3% BSA in 1:1000 dilution for 
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1 h at room temperature. Cells were washed three times with PBS for 5 minutes. After the 

nucleus staining with DAPI (Invitrogen, Carlsbad, CA) in 1:1000 dilution for 10 minutes 

followed by 3 washed in PBS, the cells were mounted on immunofluorescence slides 

(Thermo Scientific). The slides were examined using Nikon Eclipse E800 fluorescence 

microscope, and images of the cells were taken with SPOT RT2540 camera (Diagnostic 

Instruments, INC., Sterling Heights, MI). 

RESULTS 

Western blot on parasite lysates using purified PmNramp IgG 

 Western blot analysis using IgG purified from anti-serum against selected 

PmNramp1 peptides recognize a single band in P. marinus membrane-bound protein 

fraction (Fig. 33 A). No specific bands were detected in soluble fraction of the protein. In 

order to test the specificity of the IgG against the PmNramp1 peptide, membrane-bound 

protein from yeast cell fet3fet4 transformed with PmNramp1-HA was used as a reference. 

Both the IgG and anti-HA antibody show a smear signal in the same position. 

For PmNramp2 western blot, no bands were detected in western blot using 

purified IgG in both the soluble and the detergent phase. A dot blot using the antigen 

peptide showed signals with different intensities consistent with the amount of peptide 

applied. BSA serves as negative controls in the dot blot (Fig. 33 B). The negative result 

in detection of PmNramp2 in western blot, together with the detection of PmNramp2 

peptide by the IgG, indicated that PmNramp2 may not be expressed as protein in 

trophozoites under this condition. 
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For PmNramp3 IgG western blot, a series of bands were detected for the 

membrane-fraction protein extract. It is known that Nramp proteins can be carbohydrate 

modified. The bands with different sizes can be the isomers during the carbohydrate 

modification process. No bands were detected using pre-immune serum and in the 

soluble fraction of the protein (Fig. 33 C).   The amount of the protein loaded for 

PmNramp3 is half of that in PmNramp1 and PmNramp2 western blot, but the PmNramp3 

bands shows a higher intensity compared to PmNramp1. Therefore, PmNramp3 is 

expressed in the highest level. The predicted size for PmNramp3 protein is 60 KDa, 

which is much smaller than the indicated size in the Western blot. The carbohydrate 

modification and the highly hydrophobic character of the membrane protein may cause 

the anomalous migration of the protein in SDS-PAGE.
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Fig. 33 
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Fig. 33. Western blot analysis of PmNramp isotypes using purified IgG 

A. Western blots of PmNramp1. Lane 1, detergent extraction of P. marinus protein; lane 

2, water-soluble protein from P. marinus; lane 3, membrane protein extracted from 

fet3fet4 transformed with HA-tagged PmNramp1, probed with PmNramp1 IgG; lane 4, 

same as lane 3 but probed with anti-HA antibody. 

B. Western blots of PmNramp2. Lane 1, detergent extraction of P. marinus protein; lane 

2, water-soluble protein from P. marinus; lane 3, dot blot with PmNramp2 antigen 

peptide and BSA as negative control. 

C. Western blots of PmNramp3. Lane 1, detergent extraction of P. marinus protein 

probed with pre-immune IgG; lane 2, same as lane 1, but probed with purified 

PmNramp3 IgG; lane 3, water-soluble protein from P. marinus.
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Localization of PmNramp3 in log-phase P. marinus trophozoites 

In large log-phase trophozoites, when the parasite underwent schizogony, 

PmNramp3 seemed to localize on the dividing boundary of the cell; when the parasite 

proliferate by binary fission (indicated by two nuclei stained with DAPI), the protein 

appeared to be on the cell surface (Fig. 34). 
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Fig. 34 
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Fig. 34. Localization of PmNramp3 in log-phase P. marinus by fluorescence 

microscopy. 

IFAs in extracellular P. marinus cells at the exponential growing stage using purified 

anti-PmNramp3 rabbit IgG as primary antibodies and FITC-conjugated anti-rabbit IgG as 

secondary antibodies. Nucleic dye DAPI was used to reveal the location of nuclei. In 

non-permeabilized parasite cells dividing by schizogony, PmNramp3 seemed to be on the 

dividing boundary. For log-phase parasites in the process of binary fission, PmNramp3 

protein appeared to be targeted to the cell surface. 
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DISCUSSION 

The western blot of PmNramp1 using purified anti-PmNramp1 IgG detected a 

band corresponding to a protein with a molecular weight much smaller than expected. To 

examine the possibility that other protein different from PmNramp might contain a 

similar peptide that justified cross-reactivity in P. marinus, a search for a protein with a 

similar antigenic peptide was performed. In the P. marinus genome archive, the NCBI 

tBLASTn program (Search translated nucleotide database using a protein query, 

http://blast.ncbi.nlm.nih.gov/Blast.cgi?PROGRAM=tblastn&BLAST_PROGRAMS=tbla

stn&PAGE_TYPE=BlastSearch&SHOW_DEFAULTS=on&LINK_LOC=blasthome) 

was launched using the PmNramp1 antigenic peptide as query. Two hits were obtained, 

and one of them is PmNramp1. The other one is PmNramp2 that has a stretch of peptide 

sharing 50% identity to the query. Therefore, we concluded that the higher mobility 

(apparent smaller size) of the protein as indicated by the western blot, could be the result 

of anomalous protein migration due to the particularly high number of hydrophobic 

domains. Alternatively, the PmNramp1 protein could have been degraded in the parasite, 

and the band detected was actually part of the protein. However, it may be worthwhile to 

validate the specificity of anti-PmNramp1 antibody by using the antibody against other 

potential epitopes in the recombinant protein. 

In yeast, the PmNramp3 protein was not targeted to cell peripheral before the 

domain swapping (Chapter 4). The subcellular localization of PmNramp3 also showed a 

different pattern in P. marinus trophozoites as compared to the transformed yeast cells. In 

our preliminary study, PmNramp3, which was expressed poorly in yeast, was localized in 

parasite cell periphery during binary fission. The reason(s) for the discrepancy in the 
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subcellular localizations in the trophozoite and yeast are unclear, and but it becomes clear 

that P. marinus is very different from yeast in the various aspects of its complex life 

stages. As an intracellular parasite, P. marinus has co-evolved with its host, which is not 

the case for S. cerevisiae. Besides, the multiple modes of proliferation are also distinct 

between the two organisms. S. cerevisiae divides mostly by budding, but not schizogony 

or binary fission as P. marinus. Therefore, the protein regulation and targeting systems in 

the two organisms may be also very different, and the functional studies in an 

heterologous system such as yeast might not fully reflect the actual mechanisms that take 

place in the parasite. 

The function of PmNramp2 remains unresolved. No functional data about 

PmNramp2 could be obtained by yeast complementation, because no PmNramp2 

transcript was detected in yeast cells. Previous data showed a constitutive transcription of 

PmNramp2 RNA in P. marinus, while western blot indicated PmNramp2 is not translated 

under this particular life stage. It is noteworthy that the PmNramp2 RNA has a 3’UTR 

over 1000bp long (Chapter 2), and it become an interesting question whether this 

extensive 3’UTR might be involved in translational regulation. In addition, the 

PmNramp2 protein sequence was predicted to have a signal peptide targeted to 

chloroplasts (Chapter 2). Several lines of evidence supported the existence of a putative 

plastid in Perkinsus spp. [280-282] and several plastid-related pathways were identified 

in P. marinus EST database [217], however, it still not clear yet if P. marinus 

trophozoites do have plastid, and if this organelle only appear in certain life stage(s).  

Localization of PmNramp1 and PmNramp3 remained unchanged upon DFO 

exposure, despite the fact that it can cause growth inhibition [11]. It may implies that 
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other redundant iron uptake pathways are up-regulated, or alternatively that from an 

energy consumption standpoint the inhibition in growth (up to 10%) at the DFO 

concentration tested is not dramatic enough to alter PmNramp trafficking. Thus, a higher 

concentration of DFO should be tested in future studies to examine this possibility, and 

investigate the impact of iron starvation on the subcellular localization of the PmNramp 

proteins. 

In a non-synchronized P. marinus culture in the exponential growth phase, the 

parasite displays multiple cell division mechanisms, including schizogony and binary 

fission [3, 279]. Our observations are consistent with the report that schizogony is the 

most common way of proliferation. Our preliminary data on subcellular localization of 

Nramp isotypes suggests a role of PmNramp3 in the cell division process, and therefore, 

the targeting of PmNramp3 protein should be tightly controlled. During proliferation, 

parasite cells undergo an active process in which a number of enzymes are involved and 

numerous metabolites are generated. One of the enzymes is the ribonucleotide reductase 

(RR), an iron-dependent enzyme that converts ribonucleotides (NTPs) into 

deoxyribonucleotides (dNTPs) for DNA synthesis [283]. Therefore, iron is highly 

demanded during DNA duplication. On the other hand, abundant ROS are generated 

during the cell proliferation process and in addition to damage to DNA, membrane 

structures, and proteins, ROS can also interfere with the cell cycle [284]. Therefore, the 

activity of the antioxidant pathway has to be maintained and even enhanced during this 

process, and it is noteworthy that P. marinus trophozoites express several anti-oxidative 

pathway components [217], among which two SOD isotypes are iron-containing 

enzymes[14, 16, 285]. Thus, it is possible that PmNramp3 localizes on the cell membrane 
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during binary fission to facilitate rapid iron acquisition for both the nutrient supply and 

antioxidant protection. Another connection between iron transporters and cell division in 

protozoan parasites can be seen in Leishmania. The ferrous iron transporter LIT is an 

important player for iron acquisition by Leishmania amastigotes. The LIT knockout 

parasite has no significant effect on differentiation of promastigotes into amastigotes, but 

it abolishes amastigote division and the parasite virulence, indicating that LIT has a 

critical role at the intracellular stage [106]. The exact localization of PmNramp isotypes 

awaits further investigation. Nevertheless, the data in PmNramp3 localization is 

consistent with the importance of iron for P. marinus survival and growth.  
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CHAPTER 7 SUMMARY AND FUTURE DIRECTIONS 

Functional studies of PmNramp isotypes 

P. marinus has three Nramp isotypes with distinct gene organizations. All the 

PmNramp RNA is trans-spliced with a splicing leader sharing a high similarity with 

dinoflagellates (Chapter 2). PmNramp1, but not PmNramp2 and PmNramp3 can 

complement iron uptake activity in the yeast mutant fet3fet4. The failure of 

complementation of PmNramp2 and PmNrmap3 in the complementation assay could 

result from difficulties in their expression in a heterologous system. However, the 

chimeric PmNramp3 with PmNramp1 N- and C- termini was able to complement iron 

uptake in the mutant yeast. The proposed 3D structure of PmNramp1 provides a 

mechanistic basis for iron acquisition via PmNramp1 (Chapter 5). A phylogenetic 

analysis suggested that all the three PmNramp isotypes are archetype. The protein 

sequence divergence among PmNramp isotypes was not related to diversification of 

critical functional elements, which remained constrained by purifying selection. 

Therefore, the function indicated by yeast complementation as iron transporter for both 

PmNramp1 and PmNramp3 is consistent with the phylogeny prediction (Chapter 3). The 

IFAs in P. marinus is ongoing, but a preliminary study showed distinct localization of the 

PmNramp isotypes in the cultured trophozoites, which appeared to relate to the cell 

division mode. Further, this study showed a plasma membrane localization of PmNramp3 

during parasite binary fission (Chapter 6).  

It has been reported that P. marinus requires iron for in vitro cell growth [11] and in 

vivo infection [Gauthier and Vasta, unpublished; [10]]; however, no information about P. 

marinus iron acquisition pathways was available until the demonstration of iron uptake 
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activity of PmNramp1 and chimeric PmNramp3 by yeast complementation (Chapter 4) in 

this study. The results obtained in this study contributed to the renewal of NSF grant that 

supported it, and the continuing financial support will enable the completion of the 

functional study in PmNramp isotypes. 

Based on the literature, Nramp homologs are able to transport a wide range of 

divalent metals, with a high affinity to iron and manganese [286]. In this study, however, 

we were unable to confirm manganese transport by the PmNramp isotypes by 

complementation of the smf1smf2 yeast mutant. In the future, the yeast mutant 

smf1Δsmf2Δsod2Δ could be used to test the potential manganese transport by PmNramp1, 

since the triple mutant has a higher demand for manganese as compared to the double 

mutant smf1smf2 [253]. Alternatively, the metal (iron and manganese) accumulation in 

yeast transformed with PmNramp isotypes can be examined by inductively coupled 

plasma-MS (ICP-MS). No data about PmNramp2 transport substrate was obtained, since 

PmNramp2 could not be expressed in yeast cells. Electrophysiology studies in Xenopus 

oocytes may be enable the identification of the transport substrate(s) of PmNramp 

isotypes, including PmNramp2.  

The subcellular localization of PmNramp3 in P. marinus during parasite binary 

fission indicated important roles of the transport during cell division. The hypothesis can 

be PmNramp3 is trafficked to the plasma membrane for the uptake of exogenous iron. 

For better understanding of PmNramp isotype localization, new antibodies directly 

conjugated with FITC can be generated against selected portions of the PmNramp 

isotypes produced as recombinant proteins. Another approach to test if the PmNramp 

isotypes are critical for parasite division is by monitoring parasite growth after knock-
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down or knock-out of PmNramp genes. Despite the fact that the knock-down or knock-

out techniques for P. marinus are not yet available, the developed transfection system 

[190] and the success in gene knockdown in Giardia using morpholinos [287] may open 

the new avenues to the development of new molecular tools for research in P. marinus. 

Domain swapping as a novel approach for functional studies of protozoan Nramp in 

heterologous systems 

Heterologous expression systems have long been the methodology for functional 

study of Nramp homologs. However, expression of Nramp homologs in heterologous 

systems can be problematic. To overcome this technical problem, substitution of Nramp 

N- and C-termini has been applied to facilitate the expression [257, 260].  Based on the 

data in Chapter 3, domain swapping can have an impact on both Nramp protein 

expression efficiency and protein trafficking. The success of PmNramp1 expression in 

yeast indicated that N- and C-termini of PmNramp1 may serve as the substitutions in 

other protozoan Nramp homologs that cannot be properly expressed in yeast 

complementation assays. 

P. marinus and oyster hemocyte interaction: the “tug-of-war” for iron 

Our preliminary data indicated that Easter oyster C. virginica can express two 

different Nramp isotypes, and one of which is up-regulated in oyster hemocytes when the 

oyster is challenged by LPS. With the findings of PmNramp isotypes as iron transporters, 

P. marinus and oyster hemocytes may serve as a model to study the “tug-of-war” for iron 

between host and protozoan parasites. As mentioned before, in Leishmania amastigotes, 

LIT knockout abolishes amastigote division and the parasite virulence, and LIT 
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expression is accelerated under iron depletion conditions, such as expression of host 

Nramp1 [106], suggesting competition for iron between LIT and host Nramp. The 

function of LIT seems to potentially overlap with the function of PmNamp3 in the aspect 

of parasite proliferation. In order to test the function of PmNramp isotypes in P. marinus 

and oyster hemocyte interaction, immunostaining of PmNramp3 and other PmNramp 

isotypes after phagocytosis of P. marinus by oyster hemocytes may be performed. The 

identification of PmNramp isotypes as iron transporters and the presence of host Nramp 

after detection of infection suggested that P. marinus trophozoites and oyster hemocyte 

may serve as a model system for the study of tug-off-war for iron between host and 

intracellular parasites. 

Other potential iron uptake pathways in P. marinus 

 Besides further investigation of PmNramp functions, the data included in the 

dissertation also raised a number of other questions. It seemed that DFO challenge did 

not seem to change the trafficking of PmNramp isotypes despite the obvious inhibition in 

parasite growth. This observation led to the hypothesis that there other iron uptake 

pathways might be functional in P. marinus. It is worth to mention that the defined 

culture medium is rich in iron (1.7 mg/ml ferritin), and when there is no increased need 

for iron, a potential low-affinity iron transporter may be enough for the iron supply in the 

parasite. In addition, two homologs of facilitator of iron transport (Accession number 

XM_002764818 and XM_002781371) were annotated in P. marinus genome data base. 

P. marinus genomic organization and post-transcription regulations 
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The identification of SL in P. marinus and the lack of transcriptional regulation in 

the tested genes opened some interesting questions about P. marinus genomic 

organization. The presence of SL and the lack of transcription regulation suggest 

polycistronic transcription in P. marinus, which means genes are organized in different 

units and the genes in the same unit are transcribed into polycistronic RNA precursors. 

The identification of the transcription starting sites in P. marinus chromosomes, and a 

rigorous investigation of P. marinus genome organization may provide a detailed picture 

about the biology of the parasite. Noticeably, transcriptional regulation in P. marinus was 

shown in a trans-spliced gene. Transcript of P. marinus cyclins isotypes Pmacyclin1 was 

significantly increased when the cells were actively dividing [288]. There are two 

hypothetic explanations for the increased transcript: (a) upregulation of transcription, and 

(b) increased RNA stability as a post-transcriptional regulation. For genes lack of 

transcriptional regulation, the importance of post-transcriptional regulation that including 

RNA processing and export, RNAi, RNA stability and translation regulation [289] 

becomes obvious. No annotation of a complete RNAi machinery in the P. marinus 

genome. Our data in PmNramp2 provided a potential example of translational regulation. 

In cultured P. marinus trophozoites, PmNramp2 is transcribed, but no protein expression 

was detected by Western blot. The PmNramp2 gene structure has one unique feature 

compared to PmNramp1 and PmNramp3. The PmNramp2 transcript has a 3’-UTR about 

1k bps, much longer than the PmNramp1 and PmNramp3 3’-UTRs, and it could be 

possible that the PmNramp2 3’UTR plays a role in translation. In Leishmania and 

trypanosomes, 3’-UTRs seemed to be the origination site of translation regulation, and 
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the change in the secondary structures of 3’-UTR may directly influence translation 

efficiency [289]. 
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