THESIS REPORT
Ph.D.

Supported by the
National Science Foundation
Engineering Research Center

Program (NSFD CD 8803012),
the University of Maryland,
Harvard University,
and Industry

Ph.D. 92-13

Wavelets and Time-Frequency Methods in
Linear Systems and Neural Networks

by Y.C. Pati
Advisor: P.S. Krishnaprasad



Wavelets and Time-Frequency Methods in Linear Systems and
Neural Networks

by
Yagyensh C. Pati

Dissertation submitted to the Faculty of The Graduate School
of The University Of Maryland in partial fulfillment
of the requirements for the degree of
Doctor of Philosophy
1992

Advisory Committee:

Professor P. S. Krishnaprasad, Chairman/Advisor
Associate Professor W. Dayawansa

Professor S. Marcus

Professor M. C. Peckerar

Professor C. A. Berenstein






ABSTRACT

Title of Dissertation: Wavelets and Time-Frequency Methods in
Linear Systems and Neural Networks

Yagyensh C. Pati, Doctor of Philosophy, 1992

Dissertation directed by: Professor P. S. Krishnaprasad

Department of Electrical Engineering

In the first part of this dissertation we consider the problem of rational approx-
imation and identification of stable linear systems. Affine wavelet decompositions
of the Hardy space H?(II*), are developed as a means of constructing rational ap-
proximations to nonrational transfer functions. The decompositions considered here
are based on frames constructed from dilations and complex translations of a single
rational function. It is shown that suitable truncations of such decompositions can
lead to low order rational approximants for certain classes of time-frequency localized
systems. It is also shown that suitably truncated rational wavelet series may be used
as ‘linear-in-parameters’ black box models for system identification. In the context of
parametric models for system identification, time-frequency localization afforded by
affine wavelets is used to incorporate a prior: knowledge into the formal properties
of the model. Comparisons are made with methods based on the classical Laguerre
filters.

The second part of this dissertation is concerned with developing a theoretical
framework for feedforward neural networks which is suitable for both analysis and
synthesis of such networks. Qur approach to this problem is via affine wavelets and
the theory of frames. Affine frames for L2, are constructed using combinations of
sigmoidal functions and the inherent translations and dilations of feedforward net-
work architectures. Time-frequency localization is used in developing methods for the
synthesis of feedforward networks to solve a given problem.

These two seemingly disparate problems both lie within the realm of approximation

theory, and our approach to both is via the theory of frames and affine wavelets.
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Chapter 1

Introduction

As is perhaps suggested by the title, this dissertation is composed of two somewhat
distinct parts. The first part (Chapters 3 and 4) is concerned with the approximation
and identification of causal linear time-invariant systems using time-frequency local-
ized rational (wavelet) representations. In Section 1.2 below we give a brief description
of the problem and an outline of the work done.

In the second part of this dissertation (Chapter 5) we address the problem of
developing a formal mathematical framework suitable for both analysis and synthesis
of feedforward neural networks using wavelet theory. An outline of the problem and
a summary of our results are given in Section 1.3.

A common thread in the approach taken here to the above two problems is the
theory of frames and affine wavelets. A second area of commonality in these two
seemingly disparate problems is that both fall within the realm of approximation

theory.

1.1 Affine Wavelet Transforms

In its continuous form, the (affine) wavelet transform is an integral transform against
dilations and translations of a single function called the analyzing wavelet, where for

an analyzing wavelet g, the translations and dilations are of the form g(“‘b)( z) =



al/?‘g(ax —b). In Chapter 2 we define, and briefly review some properties of, wavelet
transforms on L?(IR) . Although the use of dilations and translations of a single
function is not new (c.f. [AK69]), the more tecent application of these téchniques
to signal analysis may be traced to J. Morlet [MAFG82, GM84], who proposed the
use of “wavelets of constant shape” for the analysis of seismic signals. In [MAFGS82,
GM384] and subsequent papers [GMP85, GMP86], in which the name was shortened to
“wavelets”, attention was restricted to what is now known as the continuous wavelet
transform where the dilations and translations vary continuously (i.e. (a,b) € IR\ 0 X
R).

Generalization of the concept of bases in Hilbert spaces leads to the notion of what
are called frames (c.f. [Dau90, DS52]). A review of the key aspects of frame theory
is provided in Chapter 2, and is supplemented by material in Appendix C. The most
important property of frames is that the sequence of numbers obtained by taking
inner products of a vector f, in a Hilbert space H, with the elements of a frame for H,
comprise a complete and ‘stable’ representation of the vector f. In [DGMS86] discrete
forms of the wavelet transform were considered in which dilations and translations
were restricted to discrete lattices so that the resulting translates and dilates of the
analyzing wavelet formed frames. This was a first step towards the construction
of a number of orthonormal wavelet bases (c.f. [Mey86, Bat87]). The subsequent
development of the theory of multiresolution analyses [Mal89a], provided a framework
for the study of a class of orthonormal wavelet bases, and led to the construction of
families of compactly supported orthonormal wavelet bases by Daubechies [Dau88al.
Most of the activity involving wavelet transforms in signal analysis has since been
restricted to orthonormal wavelet bases, partly due to their appealing computational
properties and their connections to FIR filters and subband coding (c.f. [Dau88al).
In this dissertation the emphasis is on wavelet frames rather'than orthonormal bases.

Perhaps the most useful property of affine wavelet transforms, is the time-
frequency localization which arises from the use of dilations and translations together

with an ‘admissibility’ requirement which forces the analyzing wavelet to be approx-



imately a bandpass function. By time-frequency localization, we are referring to the
fact that a wavelet transform approximately provides a frequency analysis of signals,
locally in time. This should be viewed in analogy with the short time Fourier trans-
form (STFT), where window functions are used to achieve time localization of the
frequency analysis. Thus the wavelet transform is well-suited to the analysis of sig-
nals with time-varying frequency content. There exist numerous examples in nature
of signals with such time-varying frequency content. One interesting example pointed
out in [Dau90] is that of music. A musical score (c.f. Figure 1.1) may be regarded
as a time-frequency localized representation in which the length of a note is its time

duration and the particular note specifies the frequency content. Other examples of
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Figure 1.1: “Dancing Wavelets”, by F. W. Meacham (Willis Woodward & Co. 1892)

such signals include visual images, where now we have to consider the two-dimensional
notion of spatio-spectral localization, for instance, edges in an image may be regarded
as a spatially-localized high frequency components. Much of the work described in this

dissertation is directly aimed at exploiting the time-frequency localization afforded by

affine wavelets.



1.2 Rational Wavelets in Approximation and Identifi-

cation of Stable Linear Systems

A recurring theme in the study of linear dynamical systems is the approﬁmation of
transfer functions by rational functions. It is well-known that given a transfer function
G(s), the system described by G has a finite-dimensional state space realization if and
only if G is a rational function of s. The problem of rational approximation arises
in two contexts associated with linear dynamical systems. First there is the problem
of model order reduction where high-order (often infinite-dimensional) systems are to
be approximated by lower order systems. In this case it is assumed that the system
(transfer function) is known. The second setting in which the problem of rational
approximation arises is that of system identification. In this case it is assumed that
the true system is not known, and a model of the system is to be constructed based

on observations of the input-output behavior.

1.2.1 Rational Wavelet Approximations of Stable Linear Systems

Rational approximation of infinite-dimensional systems is a topic which has received
considerable attention. The problem is that of approximating (nonrational) transfer
functions of infinite-dimensional systems by a low-order rational approximants. A va-
riety of rational approximation techniques, have been proposed and studied over the
years. Among these are methods based on Hankel singular values, truncations of bal-
anced realizations, Pade approximations, and truncations of Fourier representations
with respect to specific orthonormal bases (c.f. [GLP90, GLP91a]). Among the issues
which are addressed in this area are: (i) the rate of convergence of approximation as
model order is increased, (ii) optimally convergent methods, (iii) ease of computation,
(iv) the class or classes of problems well-suited to a given method.

In Chapter 3, we propose a new method for use in the problem of rational ap-

proximation of a class of stable transfer functions. The transfer functions of interest

here are contained in the Hardy space H*(II*) where II'", denotes the right-half com-



plex plane Re s > 0. Our approach utilizes decompositions of H?(II*), via frames
constructed from dilations and complex translations of a single real-rational analyz-
ing wavelet. The considerable freedom in the choice of rational analyzing wavelets
is demonstrated via a characterization of all rational analyzing wavelets for H2(IIT)
in Theorem 3.4. One of the main results of Chapter 3 is Theorem 3.3 which shows
that for functions in H?(II'*) which are Laplace transforms of real-valued functions in
L2(0,00) , it is possible to regroup terms in wavelet series based on rational analyzing
wavelets, such that each term in the new series is a real-rational function. We refer to
the series obtained via such regroupings as a wavelet system (WS) decomposition. A
wavelet system decomposition may be viewed as a parallel decomposition of systems,
via time-frequency localized finite-dimensional systems. The method we propose for
rational approximation of transfer functions is based on particular truncations of WS
decompositions. For certain classes of time-frequency localized systems, such trunca-
tions can lead to fairly low order approximants. Our approach was in part motivated
by the observation that transfer functions arising from physical systems often lend
themselves to reasonably compact time-frequency localized representations. We also
examine some of the properties of WS decompositions including minimal state space
realizations of truncated WS representations, and establish coarse bounds on the ap-

proximation error for the truncated series.

1.2.2 Rational Wavelet Models in System Identification

System identification is a process of using observed data to determine usable descrip-
tions of unknown dynamical systems. Here we are concerned with systems with the
explicit assumptions of linearity, time-invariance, and causality. System identifica-
tion plays a crucial role in any design process involving physical systems, and thus
is deserving of the extensive attention which it has received. For a thorough treat-
ment and survey of much of the work in the area of system identification we refer to
[Eyk74, Lju87, UR90, Str81, Wel81, You81]. Descriptions of systems obtained via the

identification process may be either in parametric or nonparametric form. In this dis-



sertation attention is largely restricted to parametric descriptions. Methods leading
to parametric descriptions of systems are termed parametric identification methods.

The essential steps in the process of parametric identification are: (i) experiment
design for the collection of data, (ii) selection of a parametric model set, and (iii)
selection of an identification scheme to fit the model to the data via estimation of the
parameters. It has often been noted that the most important as well as difficult step
in this process, is the selection of a suitable parametric model set. It is important that
any a priori knowledge or engineering intuition about the unknown system be incorpo-
rated into the formal properties of the parametric model set. The types of parametric
‘ models we consider here are typically called ‘black-box’ models, and are characterized
by the fact that the parameters in the models have no physical significance.

In Chapter 4, we show that truncations of WS representations, may be used as
linear-in-parameters black-box models for the purpose of identification. It is also
shown that the time-frequency localization of the component systems of a WS model,
offer a convenient means of incorporating time and frequency domain a prior: infor-
mation into the model. The forms of prior knowledge considered are time constants,
delays, and frequency weighting. An important feature of WS models is that both
time and frequency domain information may be treated simultaneously, as opposed
to the separate treatment encountered in most schemes.

We make comparisons of WS models with methods based on the classical La-
guerre filters. Laguerre filters, which form orthonormal bases for H2(I[*), have been
extensively studied in the context of system identification and rational approxima-
tion. The use of Laguerre filters in system identification apparently dates back to
Wiener [Wie56]. There has recently been considerable renewed interest in Laguerre
methods due to computational simplicity of these techniques relative other (optimal)
approximation schemes such as Hankel norm optimal methods. More recent work on
Laguerre filters may be found in [Mak90a, Wah91, Par91, Mak90b, DZP90} aﬁd the
references contained therein. We demonstrate by means of examples, that for certain

important classes of systems, the performance of the WS approximation may be far



superior to that of Laguerre methods.

1.3 Wavelet Analysis and Synthesis of Feedforward

Neural Networks

Over the past few years there has been a great deal of interest in the study and appli-
cations of neural networks. Neural networks are a class of computational architectures
characterized by large numbers of simple processing elements which are interconnected
in a weighted manner. The term neural reflects the initial biological inspiration for
such networks. Feedforward neural networks, which comprise an important subclass
of neural networks, are characterized by a well defined (forward) direction of signal
flow, and have found applications in the approximation of (static) mappings from
discrete data.

Problems of approximation of static mappings arise within a variety of contexts.
Examples of static map learning problems to which feedforward networks have been
applied may be found in areas such as speech recognition [LZ89], control and identifi-
cation of dynamical systems [NP90] and robot motion control [Kup88] [KW90], among
others. There of course exist numerous methods from mathematical approximation
theory which may also be considered for application to these problems. The appeal
of the feedforward network methodology derives from empirically demonstrated suc-
cess in problems involving mappings where the domain or range, or both are of high
dimension. For such high-dimensional problems, the more structured approaches of
classical approximation theory often prove to be computationally intractable.

The empirical success of feedforward networks in approximation problems
prompted questions regarding the class or classes of mappings which may be approxi-
mated within these architectures. In ansvs}er to these questions, a number of rigorous
mathematical descriptions of the approximating properties of feedforward networks
(c.f. [Cyb89, Cyb88, HSW89, HSW90]) were put forth. Most of these descriptions

rely on arguments of density, of the class of maps that can be implemented within a

|



feedforward network, in various function spaces. Thus these results should be viewed
as theoretical justification for the use of feedforward networks in certain classes of
approximation problems. However, a unknown entity in these formulations was the
exact feedforward network implementation of a given mapping from a suitable class.
In this sense the above results are nonconstructive and provide no further insight
into the problem of synthesis of feedforward networks. The problem of feedforward
network synthesis is that of designing a network suited to solve the approximation
problem at hand. Thus arises the question: is it possible to construct a theoretical
framework for feedforward networks which first of all provides a constructive analysis
of the approximation properties of feedforward networks, and secondly, is amenable
to the development of synthesis algorithms.

In Chapter 5 we utilize the theory of frames and affine wavelets to develop a for-
mal mathematical framework suitable for both analysis and synthesis of feedforward
neural networks. Our approach was initially motivated by the observations that (i)
there exists an inherent translation and dilation structure in feedforward networks,
and (ii) the flexibility of frame theory permits considerable freedom in the selection
of analyzing wavelets. It is shown that the commonly-used ‘sigmoidal activation func-
tions’ may be combined in a manner so as to form admissible analyzing wavelets, and
thereby frames for L2, within the standard architecture of feedforward networks. In
this manner we obtain a constructive analysis result for the approximation of square
integrable functions by feedforward networks. We also show that time-frequency lo-
calization properties of affine wavelets can form the basis for the development of

systematic network synthesis methods.



Chapter 2

Background on Wavelet

Transforms and Frames

2.1 Preliminaries

Given the wide range of conventions used in the fields of engineering, mathematics,
and physics, this section covers the various definitions which will be used throughout
this dissertation.

Most of this dissertation deals with the Hilbert space L%(IR) , the space of all
measurable finite energy functions, i.e all measurable functions defined on the real

line such that
2
dz < oo.
|if@Pds < o

This space is equipped with a standard inner product, denoted by (-, -).
(£,9)= | F@)g@)i.

2.1.1 Fourier and Laplace Transforms
Fourier Transforms on L%(IR)

The definition of Fourier transform which is used here is according to the convention

commonly used in engineering literature.



Given a function f € L*(RR) its Fourier transform f is defined as,

flo)= [ f@)e=da,

where convergence of the integral is taken in the L2 sense. The corresponding inversion

formula is,
1 FON iwe
flz)= E/Rf(w)e dz.

The unitary nature of the Fourier Transform is expressed in Parseval’s theorem.

Theorem 2.1 (Parseval) Given f € L2(IR) with Fourier transform f,

2, 1 / Rk
J @ e = o= [ [fe) do.
A generalization of Parseval’s theorem which is attributed to Plancheral is, the fact

that,

1 /-
(£,9) = 5= (F.39)-
Laplace Transforms

For functions defined on the positive half-line IR the (unilateral) Laplace transform
is defined by,

[e.o]

F(s) 2/ f(z)e™*dz,

0
where the integral converges on a half-plane Re s > o, ¢ being the abscissa of conver-
gence. Inversion of the Laplace transform is accomplished by the inversion formula,
+i

” F(s)eds,

y—100

1
f@)=5-
where 7 is taken larger than the abscissa of convergence.

2.1.2 Time-Frequency Localization

The notion of localization in joint time-frequency space is important in many areas of
signal analysis and is crucial to the utility of wavelet transforms. In this section we

introduce, and to some extent formalize the concept of time-frequency localization.
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In the context of time-frequency localization, we are interested in functions which
are essentially time-limited to some interval [—T,T] and essentially band-limited to
some frequency range [Qg, Q1] U[—Qo, —Q;]. One measure of how well a function is
localized in either the time or frequency domains is given in terms of the second mo-
ments (or variances) of the squared magnitude functions. There is however a limit to
the extent of joint time-frequency localization attainable, which is specified by Heisen-
berg’s inequality. Heisenberg’s inequality states that both for the second moment of
|7|? and the second moment of | f|? cannot simultaneously be made arbitrarily small,
and in fact the the product of these two second moments is bounded below away from

zero. More precisely, we have the following classical result (c.f. [DMT2]).

Theorem 2.2 (Heisenberg’s inequality) For f € L3(R) ,

/]Rz2|f(x){dz X /sz‘f(w)rdwz%”ﬂ]“. (2.1.1)

Equality in (2.1.1).is achieved only by functions which are constant multiples of the
Gaussian function. Thus Gaussian functions are optimally concentrated in joint time-
frequency space.

Let us make the following definitions for the centers of concentration of functions

f, whose Fourier transforms have even magnitude || (—w)| = f(u,)|

Definition 2.1 Given a function f € L?(IR) , with Fourier transform 7, such that
|f(=w)l = | F(w)];
(1) The center of, concentration, z.(f), of f, is defined as

= L z z 2v.’1?.

(2) the center of concentration, we(|f|?), of | f12, (or center frequency of f) is defined

as

- 1 oo 24,
i) = o ||l



Note that this definition also applies to functions whose Fourier transforms are sup-

ported strictly on IR*. If we now define the second moments,

]

o —L T — 2 T 2 T
() = = =)

#ﬂi /Ooo(w - wc(f)zlf(w)’2dw,

~

a(f)

I

Thus o(f) and o ]?) may be respectively used as measures of time and frequency

localization.

A second related view of time-frequency localization may be stated in terms of
regions which contain most of the ‘energy’ in the signal. Let us define two projection

operators Py and Q7 on LZ(IR) by,
(-P/f:f)(w) = X[_Q,Q] (w)f(w)
(QTf)(fL') = X117 (Ilf)f(a:),

where x, denotes the indicator function of the interval I. Using these definitions we

assume that the functions f of interest to us are such that,

(L= Qr)fll < e and [[(L- (P, = Pa,))fll <e (2.1.2)

To relate Qo, Q1 and T to a function f € L?(IR) in a more precise manner, we make

the following definitions.

Definition 2.2 Given f € L2(R), f : R — R, with Fourier transform f, and

centers of concentration z.(f) and w.(|f1?),

P(fie) = {[wo,wl] t|ze(f) = ol = |z(f) — @] and /x |f(2)|*dz < éllfl|2}>

€R\[x0,x1]

and,

P9 = {lwosn] s wo = max(0,&%), lwe(If1?) = Tl = lwelIF*) =l ,

and ]|f(w)|2dw < a|f||2}.

weR\[wg,w1

12



(1) The epsilon support (or time concentration) of f, denoted e-supp(f,€) is the set
[€o(f),z1(f)] € P(f;¢€) such that,

|zo(f) = 21(f)l = inf plxo ~z1].

To,T1E€

(2) The epsilon support of | f|2 (or frequency concentration of f) denoted
c-supp(|f|2,€) is the set [wo(F),wi(f)] € P(f;©) such-that
wi(f) —wo(f)l = inf _ |wr —wol.
[wow1]€P
Remark: The e-support of f is the smallest (symmetric about z.(f)) interval
containing (1 —€)x the total signal energy. Note that when z.(f) = 0, taking
zo(f) = —z1(f) = =T, Qo = wo(f), Q1 = w1(f), and € = € Equation 2.1.2 is

satisfied.

2.1.3 Time-Frequency Localized Representations and Windowed

Fourier Transforms

In a variety of applications of signal processing one often encounters problems where
it is desirable to analyze the frequency content of a signal locally in time. Examples of
applications where joint time-frequency localized representations are desirable can be
found for instance in image processing [Mal89c] [Mal89b] [Dau83] [PZ88], and analysis
of acoustic signals [KMMG87]. To illustrate this point, consider the function f defined
on [~=,n] shown in Figure 2.1. Since the trigonometric system { (\/2_)—1 ei”t}, is an
orthonormal basis for the Hilbert space L?[—m, 7], we can represent f by its Fourier

expansion

1 .
f(t) = Z Cn\/—_—ﬁtnt, (213)
nel 2m
where the Fourier coefficients ¢,,’s are computed via the inner products,

1 /7" —_ t
Cp = —— e~ " dt.
\/27" —7rf

The representation in (2.1.3) gives a precise frequency analysis of the signal f, in the

sense that since each basis function is exactly localized in the frequency domain at w =

13



n, the coefficients ¢, readily reveal the presence or absence of these frequencies in the
signal. However, since each basis element has constant magnitude (= (\/ﬂ>—1) over
the entire interval [—, 7], the coefficients are obtained by integrating contributions of
the corresponding frequencies with equal Wéighting over the entire time span. Hence
the ¢,’s cannot readily reveal the fact that the signal is mostly flat and that high

frequency components are localized to a short time interval. It is the need to analyze
2 T T L} T T ¥ ‘
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Figure 2.1: Example of signal with time-varying frequency content.

such signals with time-varying frequency content which has led to the study of function
decompositions which naturally capture this behavior. Such decompositions call for
‘basis’ functions which are themselves well-localized in both time and frequency. We
refer to such decompositions as time-frequency localized representations.

The short-time (or windowed) Fourier transform (STFT) was developed as one
means of obtaining such a time-frequency localized representation. The STFT in-
volves multiplying a signal f by a window function ¢ and then computing the Fourier
coefficients of the resulting product fg. Usually the window function g is chosen to be
either compactly supported or at least rapidly decaying. Hence if the window function

g is centered at z = 0, the Fourier coefficients of fg give a picture of the frequency

content of . f locally in time near z = 0. Further analysis of the signal may then be per-

14



formed by shifting the window function in time and once again computing the Fourier
coefficients of f multiplied by the shifted window function g(z — o). Repeating this

process, results in a doubly indexed set of coefficients,

mnlf)= [ f(@)g(e = nzo)e™ ™% da, myne Z. (2.1.4)

which provide a frequency analysis of f over different (localized) regions of time. A
question that naturally arises regarding the STFT is; do the coeflicients {c,.(f)}
provide a complete and ‘stable’ representation of the original signal f. As we will see
in Section 2.2.4, this question may be addressed using the theory of frames. Gabor
in [Gab46] proposed a transform of the form in (2.1.4) for use in data transmission
using a Gaussian window function g. Gabor originally proposed this transform with

Zowo = 27, which in fact results in unstable reconstructions (c.f. [Dau90}).

Remark: Here we refer to the coefficient sequence {¢,n(f)}, as a complete rep-
resentation of f, if f, can be reconstructed from the sequence. If furthermore, the

reconstruction of f, is via a bounded operator, we refer to the representation as stable.

2.2 Wavelet Transforms

2.2.1 Weyl-Heisenberg Wavelets and the Windowed Fourier Trans-

form

From another viewpoint, the coefficients {c,, ,} in the windowed Fourier transform
(2.1.4), are obtained via the L2(IR) inner products of f with a sequence of functions
{9m,n} Which are generated via modulations and translations of a single function g. If
we define the modulation and translation operators £, and T} on L2(IR) respectively

by,

(Baf)(@) = €*f(2)
(Tof)(z) = f(z-b),



then we have
Imn(2) = (Ernwy Tnzod)(2) = €™ g(z = nzo).

The sequence gy, , thus defined can be regarded as samples on a discrete sublattice of

time-frequency space of the functions
g(p’Q) = (EpT43)(z) = eing(i’; - q),

where p and ¢ are now continuous variables in IR. An important property of the

functions ¢("9 is the resolution of the tdentity expressed in

[ (7.5 dpda = 2xlgl 71

The resolution of the identity implies that given the function,

(@5)(p,q) = (£,9%9) € LA(R?) (2.2.5)

we can recover f via the reconstruction formula,

f=5= [ [{5.69) g>Ddpdg. (2:2:6)

The mapping @ : L2(IR) — L2(IR?) as defined in (2.2.5) is often referred to as the
continuous Weyl-Heisenberg wavelet transform. The resolution of the identity tells us
that ® is an isometric mapping up to a constant factor from L%(IR) to L2(IR?) . And

the reconstruction formula (2.2.6) defines for us the inverse transform.

Remark: The name Weyl-Heisenberg is used in reference to the fact that the op-
erations of modulation and translation arise via the action of the left-regular repre-
sentation of the Weyl-Heisenberg group on LZ(IR) . Affine wavelet transforms which
we introduce in the next section are also associated with the representation of a Lie
group on L?(IR) , namely the affine (or az + b) group.

} Clearly the continuous Weyl-Heisenberg wavelet transform (® f)(p, q) = < f g(T’vq)>

is a complete and ‘stable’ representation of any function f € L?(IR) . Consider now

16



the case where instead of allowing p and ¢ to vary continuously, we select a discrete

lattice {(Pn,qn)}, and define the mapping @, on L*(IR) by

o4f = {(f,9®))}. (2.2.7)

In this case the mapping @, is known as the discrete Weyl-Heisenberg wavelet trans-
form. Thus the STFT can now be viewed as a discrete Weyl-Heisenberg wavelet
transform. Of course there remains the question of whether knowledge of the se-
quence {< 5 g(p"’q")>} is sufficient to recover the function f in a stable manner. As
we will see in Section 2.2.3 the answer to these questions rely on selection of the dis-

crete lattice {(pn,¢n)} such that the sequence of functions {gPm} forms a frame for

L(IR) .

2.2.2 Affine Wavelet Transforms

Modulations and translations as described in the last section are not the only means
of generating a family of time-frequency localized functions from a single suitable
analyzing function. Let us consider instead the actions of dilation and translation
provided by the left-regular representation of the affine (az +b) group on L2(IR) . Let
D, denote the dilation operator on L?(IR) defined by ,

(Daf)(z) = a'/*f(az), a#0,

and define

W48 (2) = (D, Tyh)(z) = a*/*h(az — b).

In the Weyl-Heisenberg case, there were no restrictions placed on the analyzing func-
tion in deriving the resolution of the identity. In the affine case however, we are
forced to consider only analyzing functions h, which satisfy the following admissibility

condition,

Ch = /R de < 0. (22.8)

|
Any h € L?(IR) satisfying the admissibility condition (2.2.8), is called an admissible
analyzing wavelet (c.f. [HW89, Dau90]).

17



Remark: Note that for any function A with sufficient decay at oo, the admissibility
condition is equivalent to requiring that [ h(z)dz = 0.
Given an admissible analyzing wavelet h € LZ(IR) , there exists once again a

resolution of the identity which may be expressed as

0= [ () o) 2,

for all f,g € L?(R). Analogous to the Weyl-Heisenberg case, we can define an
operator W : LZ(IR) — L%(IR?) by,

(W £)(a,b) = (£, 48}, (2.2.9)

The mapping W defined in (2.2.9) is called the continuous (affine) wavelet trans-
form, and furthermore the resolution of the identity in this case gives the following

reconstruction formula,
1 dadb
- (2:0)\ p(a:b) 2227
f= Ch//<f,h >h - (2.2.10)

Remark: Note that in Equation (2.2.10) the measure used for integration is now

a~%dadb.
Once again as in the Weyl-Heisenberg case we can consider a discrete lattice

{an,b,} and define the corresponding discrete wavelet transform W, on L%(RR) by,

Wif = {(f plantn)) L, (2.2.11)

Here also we need to ask the questions regarding completeness and stability of the

sequence {<f, h(“"'b")>}.

2.2.3 Bases and Frames in Hilbert Spaces

By definition, an orthonormal basis for a separable Hilbert space H is a sequence
{hn}C H of normalized (|| - | = 1) vectors, which is complete in the sense that the
closed linear span of {h,} is dense in H, and furthermore the vectors are mutually

orthogonal, i.e.

<hn7 hfm) = 5m,n'

18



A key property of an orthonormal basis, known as Parseval’s identity, is that the
sequence of (Fourier) coefficients obtained via inner-products of f € H and the basis

elements h,, is such that,

YW ha)® = 117113

n
Hence the sequence of Fourier coefficients with respect to an orthonormal basis
form a square-summable sequence. Furthermore by the Riesz-Fischer theorem we
know that every square-summable sequence may be obtained in this manner. Par-
seval"s identity together with the Riesz-Fischer theorem shows that the operator
I :L2R) — €3(Z%, T : f — {{f,hs)} is a unitary operator. Hence, given an
orthonormal basis {h,} for a Hilbert space H, we have the following Fourier expan-

sion of any f € H, 4
F= fihn) b (2.2.12)

Thus for an orthonormal basis {h,}, the sequence of Fourier coefficients {{f, h,)} is
a complete and stable representation of f.

Orthonormal bases are not the only sequences with this property. If we relax the
requirement of orthogonality and normalization, while retaining the weaker property

of linear independence, we can consider sequences which are know as Riesz bases (c.f

[You80]).

Definition 2.3 A sequence of vectors {h,}C H is called a Riesz basis if the sequence
is complete in H and there exist two constants 0 < Cy < Cy < oo, such that for

arbitrary positive m and arbitrary scalars {ai,...,an},

m ’ m m )
Cl z |a"n|2 < ” Z a'nh'n.”2 < CZ |an| .
n=1 n=1 n=1
FEquivalently,

(1) The vectors {h,} are linearly independent and,

(2) There exist constants 0 < A < B < co such that for any f € H,

AlIFIP < DO UFhad® < Bl A
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Given a Riesz basis {h,} for a Hilbert space H, the Hahn-Banach theorem asserts
the existence of a unique biorthogonal sequence {g,} ({hn,gm) = 6m ) such that for

every f € H,

f= Z(fvhn)gn = Z(f,gn>hn

n

Hence in the case of Riesz bases as well, the sequence {({f,h,)} is a complete and

stable representation of any f € H.

The notion of frames is yet another level of generalization of orthonormal bases
where even linear independence can be sacrificed while still retaining the properties
of completeness and stability. Note that in sacrificing linear independence, strictly
speaking, we will not even have a (Schauder) basis.

Frames, which were first introduced by Duffin and Schaeffer in [DS52], are defined

as follows.

Definition 2.4 Given a Hilbert space H, a sequence of vectors {hn}or_.o C H, is

called a frame if there exist constants A > 0 and B < oo such that
AFIP <301 < frbn > P < Bl (2.2.13)

for every f € H. A and B are called the frame bounds.

Remarks:

(a) A frame {h,} with frame bounds A = B is called a tight frame.

(b) A frame {h,}, which ceases to be a frame upon removal of a single element, is

called an ezact frame.
(c) Every orthonormal basis is a tight exact frame with A = B = L.

(d) A tight frame of unit-norm vectors for which A = B = 1 is an orthonormal

basis.
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Given a frame {h,} in the Hilbert space H, with frame bounds A and B, define
the operator I' : L3(IR) — £2 by

Tf={{f ha)} (2.2.14)

Remark: Note that in general due to the redundancy allowed by not requiring
linear independence, the range of the operator ' will not be all of £2, but instead
a closed proper subspace of 2. In Section 2.3.1 we describe how this redundancy
is useful in providing ‘robust’ representations. Here robustness refers to the fact
that the reconstruction error induced by perturbations of the coefficients {(f, hn)}, is

diminished due to a projection operation onto the range of T.

Definition 2.5 Given a frame {h,} for a Hilbert space H, the frame operator S :
H — H is defined as S = I'*T", where I'* is the adjoint of I'. Thus for any f € 'H,

Sf=><filhn > b (2.2.15)

Some properties of the frame operator which follow from the definition of a frame

are collected together in the following theorem.

Theorem 2.3 ([DS52]) (1) S is a bounded linear operator with AI < § < BI,

where I s the identity operator in H.
(2) S is an invertible operator with B~*I < §~1 < A™'I.

(3) Since AI < S < BI implies that |1 — 735 S| <1, S can be computed via the

Neumann series,

-1 2 OOI 2 5}c 2.2.16
STe= s\ arEd) ¢ (2216)

(4) The sequence {S~th,} is also a frame, called the dual frame, with frame bounds

B! and A1,
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By the above properties of the frame operator, we have the following representation

theorem for H with respect to a frame or associated dual frame.

Theorem 2.4 ([DS52]) Given any f € H, f can be decomposed in terms of the

frame (or dual frame) elements as

F=d <85 >hy =3 < filhn> S h,. (2.2.17)

In general frame representations are not unique, i.e. it is possible that that sequence
{en} = {{f, 57 h,)} is not the only sequence of coefficients such that f = Y cphn.
However the following theorem shows that any other sequence of expansion coefficients

must be related to the sequence {{f, 5~ 1h,)} via a Pythagorean relation.

Theorem 2.5 ([DS52]) Given f € H, if there exists another sequence of coefficients
{an} (other than the sequence {< f,S7'h, >}) such that f = 3 ayh,, then the a,’s

are related to the coefficients given in (2.2.17) by the formula,

Slanl? =Y 1< £,5 e > P+ 301 < £,57 ey > ~anl?. (2.2.18)

Remark: Note that by Theorem 2.5, the sequence of coefficients obtained via the

inverse frame operator is optimal in the sense of minimum ¢? norm.

2.2.4 Discrete Wavelet Transforms and Frames

Armed with the theory of frames, it is now possible to discuss completeness and stabil-
ity of the discrete wavelet transforms ®; and W defined in Section 2.2. Simply stated,
it is necessary to select the discrete lattices {(pn,¢.)} and {(an,b,)}, in such a man-
ner that the sequences {g(”"’q")} and {h(a"’b")} respectively form frames for L2(IR) .
As this dissertation deals almost exclusively with affine wavelets, we restrict discus-

sion to the affine case and make some remarks regarding discrete Weyl-Heisenberg
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wavelets at the end of this section. In the affine case we restrict attention to regular
discrete lattices in which discretization of dilations is treated exponentially. That is,
we consider discrete lattices of the form {(af’,nbo)},, ez for fixed constants ag > 1
and by > 0. We note that it is not necessary to restrict to lattices of this form and
in general even the requirement of regular lattices is not necessary. We refer readers
interested in more general discretizations to [FG] in which frames are constructed by
utilizing the underlying group structure.

Given ag > 1, bg > 0, and an admissible analyzing wavelet ¢ € L2(IR) define,
Ymn(2) = (Dag Tuto¥)(2) = ag *(af'z - nbo). (2.2.19)

Daubechies in [Dau90] studied the problem of constructing frames of the form {tm, »}.
Under very mild additional hypotheses on the analyzing wavelet 1, it is possible to
determine values of the dilation stepsize ag and translation stepsize bg such that the
family of functions {1} is a frame for L2(IR) . In this case we say that (¢, ag, bo)
generates an affine frame for L2(IR) . Given an admissible mother wavelet ' € L*(R) ,
the following theorem by Daubechies [Dau90] can be used to numerically determine

values of the parameters ag and by for which (¢, ag, bo) generates an affine frame for

LZ(R) .
Theorem 2.6 ([Dau90)]) Let h € L3(IR) and a > 1 be such that:

(1)

m(h;a) = essI lml; Zlh(a W) >0 (2.2.20)
E a
(2)
M(h;a) = ess sup Z |h(a™w)|? < oo (2.2.21)
lwl€fl,a] m
3 )
i /b)Y 28(~ 21k /D)2 = 2.2.22
g_%?;ﬂ(%k/b) B(-27k/b) /" =0, ( )
where

B(s) = ess sup Z lh(amu)]]h(a w - s)l.

lwl€ll,a]l “m
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Then there exists B, > 0 such that (h,a,b) generates an affine frame for each 0 < b <
B..

Proof: See Appendix A
The following is a useful corollary of the above theorem.

Corollary 2.1 ([Dau90]) Ifh € L3(IR) anda > 1 satisfy the hypotheses of Theorem
2.6 then,

B, > b, = inf{b] m(h;a) - 2 f: B(2rk/b)/28(-2xk /)2 < 0} (2.2.23)

k=1

and for 0 < b < b, the frame bounds A and B can be estimated as,

A > b7t (m(h; a) -2 i ﬂ(?wk/b)l/zﬂ(-—%k/bf”)
k=1
B < bt (M(h; a)+2 f: B(27k/b)/*3(-2rk /b)1/2> (2.2.24)

k=1

Given an affine frame {ty, ,} for L2(IR) , it is clear that the operator I' defined
in Section 2.2.3 is precisely the discrete wavelet transform operator Wy (see (2.2.11)).
Hence by the frame property, Wy is a bounded operator from L?(IR) to ¢*(Z?). Fur-
thermore, using the frame operator 5 = W;W,, we get the following wavelet decom-

position of L2(IR) :

=3 Y (A5 Ynn) brms (2.2.25)

mEZ nEZ

and the corresponding dual frame decomposition,
5= Y i tmn) S (2.2.26)
mel nel
Since the frame property assures that the frame operator S is bounded and has
bounded inverse, we see that in the case where ¥, , is a frame, Wy f is a complete

and stable representation of any f € L*(IR) .
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Remarks: Our discussion in this section has been limited to the general setting of
frames of affine wavelets. It is however possible to construct orthonormal bases of
affine wavelets (c.f. [Dau88a]) and also biorthogonal systems (Riesz bases) of affine
wavelets (c.f [Chu92]). However the constructions of orthogonal or even biorthogonal

wavelets are too restrictive for the applications considered in this dissertation.

Remarks on Discrete Weyl-Heisenberg Wavelets

In the Weyl-Heisenberg case as well, a theorem similar to Theorem 2.6 is given in
[Dau90]. The regular discrete lattices for the Weyl-Heisenberg wavelets are such
that both modulations and translations are treated linearly; i.e. lattices of the form
{(mpo,nqo)}. A point to be made regarding Weyl-Heisenberg wavelets is that it is
natural to define the time-frequency density in terms of the product poge. Further-
more, there exists in this case a critical density, such that the family of functions
{g(mm’"q")} can only form a frame if the product poqo, is less than or equal to this
critical density. For pogo greater than the critical density, {g(mm’"q")}, will be incom-
plete. In contrast to this, there exists no such critical density in the affine case, and

in fact it is not possible to define an equivalent notion of density (c.f [Dau90]).

2.2.5 Time-Frequency Localization Properties of Wavelets

Perhaps the most useful property of wavelet decompositions, is the property of time-
frequency localization. To illustrate the manner in which time-frequency localization
arises in affine wavelets, recall the admissibility condition (2.2.8) which the analyz-
ing wavelet must satisfy. Satisfying (2.2.8) imposes the requirement that the Fourier
transform of the analyzing wavelet ¥ must have a zero at w = 0, i.e. @(O) = 0.
Furthermore, the admissibility condition requires that |1/A1(w)12 — 0, faster than w. In
addition, given smoothness assumptions on ¢ € L2(IR) , we know that IZ(LJ) — 0 as
w — 0. Thus, an admissible analyzing wavelet must approximately mimic the behav-
ior of a ‘bandpass’ function. The required decay in the time domain approximately

localizes the analyzing wavelet in time. In general of course there are only moderate



constraints on the decay at infinity in both the time and frequency domains. However,
within the constraints imposed by Heisenberg’s inequality, there is still a great deal of
freedom in the choice of analyzing wavelets with reasonably fast decay in both time
and frequency. Since an affine frame is constructed via translations and dilations of
the analyzing wavelet v, we need to look at how these operations affect the time-
frequency concentration of 1 . Assume the analyzing wavelet 1 is concentrated on

the rectangle of time-frequency defined by,

Qo,0(¥) [20(®), 21(9)] X [wo(¥), wi()]

R() x Q).

Il

Recalling the dilation property of the Fourier transform,
F 1% -
flaz) = a7  f(a7lw),

we see that the translates and dilates %y, , are concentrated on time-frequency rect-

angles defined by,

Qm,n('l/))

lag™ (@o(¥) + nbo), a5 ™ (z1(¥) + nbo)] X [ag'wo(4h), a™w1(¥)]
= R('(/)m,n) X Q(d’m,n)

Thus dilation shifts the frequency concentration of the wavelets on a logarithmic
scale. For large values of m the frequency concentration is shifted to the higher
frequencies and as m decreases, the frequency concentration shifts towards zero. This
is illustrated by Figure 2.2, where we see that as m gets large, the function ¢ gets
narrower and thereby includes higher frequency components. Translation simply shifts
the time concentration by steps proportional to ag™bg. The factor ag™, appearing in
the translation stepsize accommodates the dilations by keeping the translation steps

small for large m (narrow functions), and larger for large m (wide functions).

Windowed Fourier Transforms vs. Affine Wavelets

There is an important distinction between the type of time-frequency localization aris-

ing in the Weyl-Heisenberg case and the type of time-frequency localization afforded
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Figure 2.2: (a) Translations in the time domain. (b) The effect of dilations in the

time domain (c) The effect of dilations in the frequency domain
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by affine wavelets. In the Weyl-Heisenberg case the ‘width’ of the window function
remains constant, and it is via the exponential modulation that higher frequencies are
analyzed. Exponential modulation corresponds to a linear shift of the frequency con-
centration. Thus in the Weyl-Heisenberg case the extent of localization in time (and
frequency) remains constant. In the affine case higher frequencies are analyzed using
narrower functions. More precisely, the time concentration of the wavelet shrinks in
size as m gets large. This feature is useful in ‘zooming in ’ on details of a signal.
For instance in image analysis if one were trying to identify the location of an edge,
it is necessary to be able to identify a high frequency component which is sharply
localized in time. The trade-off is that in the frequency domain, the frequency con-
centration gets wider at higher frequencies. Simply stated affine wavelets allow us
to resolve lower frequencies with greater accuracy than higher frequencies. In many
applications this is a very natural phenomena. For example, processing of acoustic

signals by the human cochlea can be modeled in this manner (see [YWS92]).

2.3 Finite Wavelet Approximations

In practice it is necessary to consider only finitely many terms in the wavelet decom-
position. This leads to the question of how well a given function can be represented
by truncations of a wavelet decomposition. In general, arbitrary truncations can re-
sult in arbitrarily large errors. However in the case where the functions of interest
are well-localized in time-frequency, it is possible to bound the approximation error
associated with particular types of truncations. Daubechies in [Dau90] examined this
problem, and derived upper bounds on the approximation error for a particularly
important class of truncations. Suppose we are interested in functions f which are
essentially time-limited to [T, 7] and essentially band-limited to the frequency range
[Q0, 2] U[-Q0, —1]. That is, we assume that the functions f of interest to us are
such that,

I(L-Qr)fll < ¢ and ||(X~(Pa, - Pa,))fll <« (2.3.27)
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Given an affine frame {1,, ,} where the analvzing wavelet is itself well localized in
time-frequency, we can ask the following question: for any given ¢ > 0, is there a finite
subset B, (T, Q0,Q1) C Z? such that the error in approximating f by
J= > (s ¥mn) 5™ Wm,n (2.3.28)
(m,n)€B(T,Q0,01)
is less than €|| f]|. The answer to this question was prvided by Daubechies in [Dau90].

For a function f which is essentially concentrated (as defined by Equation (2.3.27))

on the rectangle

Qf = ["-T7 T] X [‘QOaﬂl],

in time-frequency, it is possible to construct an enlarged box containing Q such that
by including in B.(T,Qg, Q) all indices (m,n) corresponding to wavelets 1, ,, with
concentration centers in this enlarged box, the error in approximating f by f (2.3.28)

is bounded above by €. A precise statement of this result is in the following theorem.

Theorem 2.7 ([Dau90]) Let {hy.n} be a frame for L2(IR) with frame bounds A and

B, and associated dual frame { S~ hy, ). Assume that
[p@)] < € loff (14 w20,
with B > 0 and a > 1. Also assume that for some v > 1/2,
/(1 +22) [h(e)]? < oo.

Now if we choose T >0, and 0 < Qo < §4, then for any € > 0, there exists a finite

subset B(T, Qo, Q1) C Z?, such that for all f € L*(IR) ,

If - > (£, homn) S |

(m,mn)eBe(T Q0,80 )

1/2 ,
<(3) 0= Qo)A+ 1= Pay + Pa)f| +llfI]
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Remarks: The error bounds of Theorem 2.7, are derived using the dual frame re-
construction formula and cannot trivially be extended to the frame reconstruction
formula. This is primarily because in general the dual frame elements will not be
generated as translates and dilates of a single function and may have localization
properties different from those of the original wavelets. However we note that in the
éase where the frame is tight (A = B), Theorem 2.7 as stated above is also applicable
for the frame reconstruction formula since in this case, the frame operator is a multiple

of the identity. In particular, for a tight frame (f, S hpmn) = A7 (f, Amn)-

2.3.1 Robustness of Frame Representations

As noted in [Dau90], time-frequency localized frame representations are in general
quite robust against perturbations of the coefficient values. This insensitivity can be
attributed to both time-frequency localization and the redundancy of frames. Time-
frequency localization helps by localizing errors due to particular coefficients; i.e. in
any given region of time-frequency, errors in the coefficient values cannot all contribute
equally to errors in the frame representation.

Robustness due to redundancy of the frame can be best described in terms of the
range of the operator I defined in Section 2.2.3. As noted earlier (c.f. remark following
Equation 2.2.14), the closed range of T', for a frame whose elements are not linearly
independent, is a proper subspace of £2(Z). Therefore if the frame reconstruction
formula (Theorem 2.4) is applied to vectors ¢ € ¢2, which are not necessarily in the

range of I, i.e. if we consider the formula,

Z Cns—lhm

then this consists of: (1) a projection of {2onto Ran T, and (2) inverting I' on its
range. Since errors in the coefficients will in general ‘live’ on all of ¢2, application
of the reconstruction formula will reduce the norm of error component due to the

projection onto Ran I'. The greater the redundancy of the frame, the smaller the

range of I'. Hence for very redundant frames, this reduction in the effects of errors is
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more pronounced.
The robustness of redundant frame representations is a very useful property when

dealing with numerical computation of wavelet decompositions, as the effects of nu-

merical errors are thus reduced.

2.4 Computing Wavelet Frame Decompositions

In principle, given an affine frame {¢,,,}, and a function f € L2(IR) , the coefficients,

eman(F) = (£, 5 ¥mn)

may be computed by first computing the elements of the dual frame {S~1¢,, .} using
the Neumann series expansion for the inverse frame operator S~! and then computing
the inner products of f with elements of the dual frame. However in practice, this
may prove to be an extremely cumbersome computation, especially in cases where the
frame is not close to being a tight frame (B/A = 1). By the frame prbperty, we know

that
2 B/A -1
2 g BAZL
A+B "> BjA+1

Hence the rate of convergence of the Neumann series (2.2.16), is governed by how

ja

‘snug’ the frame is (i.e. by how close B/A is to 1).

Computation via Sampled Convolutions

In the case of a tight frame, the computation is greatly simplified since in this case
S n = A"y, . Furthermore the inner products (f, ¥ ) are easily computed

by noting that these are simply regular samples of convolutions. More precisely,
<f) ¢1n,n) = ./]R, f(:v)agn/zd)(ag‘w — nbo)d:z

(f * m (nbo),

where 9, , denotes the reflection of 1., o about the origin, i.e. d’;,o(x) = Yo —T).

il

Hence using the convolution theorem for Fourier transforms, {(f,¥mn)} is easily

computed.

31



The above formulation may also be used to simplify computation in the case of
frames which are not tight. This can be done by using the fact that the frame operator

S (and therefore S—1) is self-adjoint, to write,

(£,5 bmn) = (71 f,mn)

Thus the inverse frame operator series need only be applied once to compute S~1f,
and then the coefficients may be computed as samples of convolutions as described

above.

Normal Equations

Expansions with respect to frames are in general not unique due to the lack of linear in-
dependence. It can be seen however, from Theorem 2.5 that among all possible expan-
sion coefficients for a given function f, the coefficient sequence c(f) ={(f, S~ )}

is optimal in the sense of minimum ZZ(Zz) norm. That is, if {a, ,} is such that

f=222 mptmn
then,
ZZ ‘<f’ S—1¢m’">‘2 < Z Z |ctm,nl -

This property may be utilized to formulate the coefficient computation problem as a

constrained optimization problem. Namely,

minimize ZE [04m,n’2
e n
such that f = ZZ am,nd’m,n-
m n

Consider now the case of a finite wavelet approximation to f,

faf= 3 amnbmn (2.4.20)
(mmn)el
Let Span{h,} denote the closed linear span of the vectors {h,}. It is clear that

f can Dbe represented exactly by the expansion in (2.4.29) if and only if f €
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Span{t¥my, (m,n) € I}, where Span{h,}, denotes the closed linear span of the vec-
tors {hn} . If f & Span{tmn, (m,n) € I} then the ‘best’’ approximation to f in
terms of the finite subset of frame elements with indices in 7 is the projection of f
onto Span{t¥mn, (m,n) € Z}. In this case, we would like to compute the coefficients
of expansion of the projection of f onto Span{¥u,, (m,n) € Z}. It can easily be
shown that any finite number of vectors form a frame for their span (c.f. [Pat91]). In

this case we can reformulate the optimization problem stated above as,

minimize Z [t

(mmn)el
such that
1f= 2 empbmal® =minllf= 3 amutmal®
(m,n)EI (m,n)EI

(2.4.30)

The optimization problem defined by (2.4.30) is convex. Hence, one means of solving
(2.4.30) is by direct optimization.

Consider now the normal equations associated with the problem of minimizing
I|f = SN, exhi||®. The normal equations are obtained via the first-order optimality

condition,
0 Y )
bjk”f— ;Ckhk” =0, k=1,...,N,
and may be written as,
PC =W (2.4.31)

where, P is the N x N matrix defined by,

P = [P;] = [(hr, k)]s (2.4.32)
W= [(fiha), ..., (f )T, (2.4.33)
and C = [¢1,...,cn] is the vector of coefficients.

'With respect to the L*(IR) norm.
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Suppose now that we are searching for the minimum norm solution to the normal
equations (2.4.31). It is well-know that the Moore-Penrose generalized inverse Pt =

(P*P)~1P*, generates the minimum norm solution to (2.4.31), as
C = P'w,

Whenever the (P*P)~1, exists. In cases where the problem is very ill-conditioned,
stabilizing techniques such as singular value decomposition may be used to compute
the generalized inverse.

Thus the solution to the normal equations via the generalized inverse provide
another means of computing the frame decomposition coefficients. For numerical so-
lutions where we are dealing with discrete samples of the functions the inner products

in the definition of the normal equations may be approximated by sums.

Remarks: In searching for the minimum norm sequence of coefficients as above,
where only a finite number of coefficients are involved, technically we are no longer
computing the coefficients ¢, = (f, S ' ) with respect to the original frame
{¥mntmmez- 'In fact what we are doing is computing the frame expansion of the
orthogonal projection of f onto H = Span{¢y,, (m,n) € I}, with respect to the
frame {¢myn, (m,n) € I}, for H. Hence, in general the set of coefficients {cx i, will
not agree with the corresponding coefficients computed with respect to the infinite
frame. In cases where the index set Z, is large and such that {®m,,, (m,n)‘E 1},
covers ‘most’ of the time-frequency concentration of f, the error between the two sets
of coefficients will be small. The advantage to computing the coefficients with respect
to the new (finite) frame is that in general the quality of approximation will be better

than if a truncation of the infinite frame expansion were used (see Appendix C).
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Chapter 3

Rational Wavelet
Decompositions of Stable Linear

Systems

In this chapter we study wavelet decompositions of the Hardy space H2(IIt*), (where
II* denotes the half-plane Re s > 0) via real-rational analyzing wavelets. The re-
striction of rationality of the analyzing wavelet leads us to consider affine frames for
H%(II*). The space H? was in fact considered among the first investigations of con-
tinuous wavelet transforms [GM84]. With the recent development of multiresolution
analyses and the resulting orthonormal bases of wavelets for LZ(IR) , attention has
shifted primarily to the study of wavelet transforms on L2(IR) . Our use of frames
rather than orthonormal systems, is further motivated by recent results which have
shown that there do not exist any ‘nice’ orthonormal wavelet bases for H*(II*) as-
sociated with a mutiresolution analysis. This result is discusséd in further detail in
Section 3.6.

Of particular interest here, are functions in H2(II*) arising as Laplace transforms
of real-valued functions in L2(0,00) , as these include transfer functions of stable,

causal, linear time-invariant systems. We use the notation H (II%) for this class of
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functions. In Section 3.3, it is shown that by starting with a real-rational analyzing
wavelet and appropriately grouping terms in a wavelet decomposition, functions in
HZ (1) may be represented as infinite sums of time-frequency localized, real-rational
functions of bounded McMillan degree. We refer to such representations as , wavelet
system (WS) decompositions of Hi(II*). One of the main results of this chapter is
Theorem 3.3, which shows the existence of such real-rational (WS) decompositions.
A real-rational function in HZ(H"') can of course be viewed as the transfer function
of a stable, finite-dimensional, causal, linear time invariant system. Thus wavelet
system decompositions are representations of (possibly infinite-dimensional) systems,
as infinite parallel connections of time-frequency localized finite-dimensional systems.
Such representations are useful in constructing finite-dimensional approximations to
systems. In Section 3.5 we consider the problem of constructing a causal rational ap-
proximation to a causal nonrational transfer function by selecting a finite number of
terms from the WS expansion. For dynamical systems with transfer functions which
are well-localized in time-frequency, this approach can generate low-order approxi-
mants. Some aspect of WS decompositions, including minimal state-space realizations

are investigated in 3.3.

3.1 Background on Hardy Spaces

In this section we review some basic properties of the Hardy spaces HP(II) where
IT*is the right-half complex plane Re s > 0. For a more complete exposition of the

properties of these spaces see [Hof88, Dur70, Gar81].

Definition 3.1 Given a function F which is analytic in IIt, F is said to belong to

the class HP(II1), 0 < p < o0 if
sup/ |F(z + iy)[P dy < 0. (3.1.1)
>0 J—-00

A function F which is analytic in IIT, is said to belong to class H*(II)if,

sup | F(z + ty)| < oo. (3.1.2)
z>0
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For 1< p< oo, HP(II*) is a Banach space with norm defined by (3.1.1) for p < oo
and by (3.1.2) for p = .

Some of the most basic properties of H?(II*) are captured by the following theorem

(c.f. [Hof88]).
Theorem 3.1 Given F € HP(II"), the following are true:

(1) The nontangential limit of F exists at almost every point on the imaginary azis.

(2) The boundary value function of F is in L?(IR) and,

T

o+ i) = - [ Fl) ey

dw, x>0

(3) The functions F,.(y) = F(z + iy) converge in LP norm to F(iy) as z — 0.

Note: The boundary value function (c.f. [Gar81]) of F' € HP(IT*) is defined via the

limit F*(iw), of F(s) as s — iw, nontangentially i.e.

F*(iw) = N lim  F(s), a >0,

a(tw)ds—iw

where for a > 0, A4(iw) is the cone defined by,
A(w)={s=z+wyel:|y-w| < ac}.

Of particular interest in the context this dissertation is the space H?(II*). The
space H2(IT) is a Hilbert space with the inner product defined by,

(F, Gy = / Z F(iw)Glim)de.

One can view H?(II*) as a space whose elements are transfer functions of causal input-
output stable linear systems. This statement is precisely captured by the following

classical result of Paley and Wiener.



Theorem 3.2 (Paley-Wiener) A complez-valued function F is in H*(II1) if and
only if,
Fo)= [ fmea
0

for some f € L?(0,00) . Furthermore this representation is unique.

Thus by the above theorem, H?(II*) arises as the Laplace transform of square-
integrable functions on the half-line [0, o0). For any F € HZ(II*) define the restriction

of F to vertical lines in the right half-plane by,
Fo(y) = F(z +14y), >0.

Also define the Fourier transform along vertical lines in II*by,

~

1 : )t
Fp(u) = %/RF(Q: + 1y)e"Vdy

for F € H%(II*). Note that this definition of the Fourier transform on H?(II*) actually
corresponds to our previous definition of the inverse Fourier transform. By Theorem
3.1, we know that boundary values of functions in H*(II*) are in L?(IR) . However,

since by the Paley-Wiener

51-7; /R F(iw)e“tdw = 0 for ¢ <0, (3.1.3)
boundary values of functions in HZ(II*) comprise a subspace, denoted HZ (IR), of
L2(IR) characterized by the Fourier transform vanishing on the negative half-line
(3.1.3). It can also be shown that H2 (IR) is a closed subspace of L*(IR) . The orthog-
onal complement of H} (IR) in L*(IR) , denoted HZ(IR), comsists of functions whose
Fourier transforms vanish on the positive half-line. Elements of H2 (IR) are boundary
values of functions in H2(I[~) where II~ is the half-plane Re s < 0. Functions in
H2?(II*) are completely characterized by their boundary values since by Theorem 3.1,
the boundary value function F(iw), can be analytically continued to recover F' on the
right-half complex plane via the Poisson integral. By the maximum principle, we also

know that | F||gz = ||F||zz where F is the nontangential limit of F.
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Remarks: In what follows, we take the liberty of identifying H?(II*) with H% (R),
keeping in mind that element of the latter are boundary values of functions in H2(TT).
We use w to denote the real frequency variable and write F(w) to denote the boundary
value function F(iw). The complex frequency variable will be denoted by s = z + 7y.

We also adopt the following notation in the remainder of this dissertation:

RH?(II*) : Real-rational functions in H2(II*), that is rational functions in H2(IIH)

with real coefficients.

H{(IIF) @ Functions in H2(IT*) which are Laplace transforms of real-valued functions

in L2(0,00) .

Note that RH*(IT*) ¢ HE(ITH).

3.2 Wavelet Transforms on H?*(II*)

When H2(TIH) is considered as a closed subspace of L2(IR) , it is easy to see how
wavelet theory developed for L?(IR) may be applied to H*(IT*). Let ¥ € H?(IIt) be
an admissible analyzing wavelet for H?(II*), where admissibility is now defined by
applying the admissibility condition (2.2.8) to the restriction of ¥ to vertical lines in

It ie.

~ 2

(o)

Cy, = / P2 g < oo, z > 0. (3.2.4)
Ryl
As in the case of L2(IR) it is possible to define a continuous wavelet transform on
H?(II") with respect to ¥ as follows. Let,
V@b (s) = (T3D,)¥(s) = |a|*/? U(as — ib), a,beR, a>0.

Then for any F' € H2(II*) define the continuous wavelet transform on the line Re s = =
by,

WeF(a,b) = (£, 1Y) = /R Fo(y)u) (y)dy. (3.2.5)
Inversion of this transform is accomplished by the inversion formula,

1 da db
WoF(a,b)¥ ) (y)———.
Cy, -/]R/]R (e, D)% (¥) a?

Fo(y) =
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To define a discrete wavelet transform with respect to ¥, let
Uon(s) = a6”/2\11(a6n3 —inby) ap>0, RNes=z.

Assume ¥ satisfies the admissibility condition and let ag > 0 and bg be such that the
family {¥m,n}mnez> is a frame for D which is a closed subspace of L>(IR) . Thus for
any F € H2(II*) we have that

Fo@) = 35 (F 5 W) U,

where S is the frame operator associated with the frame {¥,, }.

3.3 Wavelet System Transfer Functions

Here we restrict discussion to affine frames constructed on the imaginary axis. Hence
we require admissibility of the analyzing wavelet ¥(s) for Re s = 0 and consider the
boundary values of H2(IIt).

Let ¥(w) denote the nontangential limit of an admissible analyzing wavelet ¥(s)
and let (ag,bo) be such that (¥,ag,bo) generates an affine frame for H*(TI*). Then

any F € HX(II'*) can be represented as
F@)=>"3" cma¥mna(w), (3.3.6)

where as before ¥, ,(w) = agn/z\lf(ag‘w— nbo), and one set of suitable coefficients may
be computed using the inverse of the frame operator (see (2.2.17)). Assuming that
F € H2(II*) is the Laplace transform of a real-valued weighting pattern in L*(0,00) ,
(i.e F € HE(II1)), and ¥ is a real-rational analyzing wavelet (¥ € RH?(II*)), we can
ask the question; is an arbitrary truncation of the frame expansion (3.3.6) the transfer
function of a real weighting pattern? Since RH?(II") arises as the image under the
Laplace transform of a class of real-valued weighting patterns, if the analyzing wavelet
¥ € RH2(IT) then W p(—w) = ¥, (w) for n = 0 and m € Z. However, this

symmetry is violated for n # 0. Hence arbitrary truncations of the series (3.3.6), will
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not in general result in real-rational functions, i.e.

Z c'm.,'n.‘Ilm,n ¢ RHZ(H+)7
neJ

for arbitrary finite index sets J. This observation motivates the following definition

of a wavelet system transfer function.

Definition 3.2 Given ¥ € RH?(IT*) C H3(IIT) ¢ wavelet system transfer function

s defined as a function of the form,
G™"(8) = AV n(S) + Yy —n ()
where @ denotes the complex conjugate of a.

Proposition 3.1 Let F(s) be a real-rational function in H2(IIt). Then, the wavelet

system transfer function defined by
G™"(8) = 0Finn(8) + @Fm —n(8),

is also a real-rational function in H2(IIT).
Proof: Since HZ(II*) is a closed linear space, it is clear that G™™(s) € H2(IIT). It
is also clear that G™™(s) is rational. To show that G™"(s) is real-rational we only

need to show that
GM(—w) = @_m’n(w).

Now,

G"M(—w) = aFpa(~w)+TF —n(-w)
= aa?*F(—alw — nby) + TaT* F(—alw + nbo)
= aay/*F(~(af'w + nbo)) + @ag /> F(—(af'w — nbo))
= adl*F(alw + nbo) + @ay *F(al'w — nbo)
= oF ., n(W)+TFpa(w)

= G"w). =
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One set of suitable coefficients in the wavelet decomposition (3.3.6), is given by

emm = (F, 57 W, ). The utility of the notion of wavelet system transfer functions

hinges on the requirement that

emn = (F, 87 W) = (B 8710, ) = T (33.7)

However, in general there is no reason to expect these coefficients to satisfy this kind
of symmetry condition. We now show that this symmetry is satisfied for a sufficiently
interesting class of functions in H?(II'*), namely the class HZ (II1).

As a first step, in verifying condition (3.3.7), consider the following proposition.

Proposition 3.2 Let f and g be boundary values of functions in H2(IIT). Also let f
and g be such that f(—w) = f(w), and g(—w) = g(w). then,

(fa gm,n) = <fa gm,—-n)-

Proof: (See Appendix B)

Remark: Note that if we were to consider only tight frames, Proposition 3.2 is
sufficient to guarantee that (3.3.7) is satisfied for all F € H(II*), since in the case
of a tight frame the frame operator is a multiple of the identity.

The following lemma states that for general affine frames, (3.3.7) is satisfied for

all F € HE(II).

Lemma 3.1 Let f and g be boundary values of functions in H2(II*) such that
f(—w) = f(w), and g(—w) = g(w). Let ap > 0 and bo be such that {gmn},, ez

is a frame and let S be the associated frame operator. Then,

Cmn = <f’ S—lgm,n> = (f’ S_lgm,—n> = Cm,—n-

Proof: Since the frame operator S is self-adjoint,

<f7 S-—lgm,n> = <S_1fagm.n> .
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Therefore by Proposition 3.2 we need only check that if f(-w) = f(w) then
ST f(~w) = §-1f(w). Now,

. 2 & 2\ .
(ST ) (~w) = m,; (I— g BS) f(—w). (3.3.8)
Let
Gm,n(w) = (f, gm,n>gm,n(w) + (fv gm,—n) gm,—n(w) meZ,nc Z+7 n#0
Gm'o(w) = (f,9m0) gmo(w) meZ.
Then
(SH(=w) = > [Gm’o(—W) + i Gm’”(—W)}
m n=1
= Z [vao(w) + Z_; G™ "(w)}
= (5H)w)
Thus,

(- 559) ] =)= (1= 555) 7@ |

and together with (3.3.8), we get (S71f)(—w) = (S~ f)(w), which completes the

proof. m

As a step in formalizing later discussion, let us define a transform operator which
may be associated with the grouping suggested by the definition of WS transfer func-
tions. We refer to this transform as a wavelet system transform on H (II+). We begin

by defining the space which contains the image of H} (II*) under the WS transform

operator.

Definition 3.3 Define R(J) as the space of sequences of functions { Fi.}res such that
F, € RH*(TI*) C H3(IIY) for allk € J, and

D" Fill3e < oo, (3.3.9)
ke

where J, is a countable (indez) set.
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Definition 3.4 (Wavelet System Transform) Let ¥ € H2(II*) be an admissible
real-rational analyzing wavelet and ag > 0, by such that (¥, ag, bo) generates an affine
frame for H2(II™). Let S be the associated frame operator. The Wavelet System
transform is defined by the operator Hy : HE (IT1) — R(Z x ZY),

HyF = {men}mEZ, neZt

where for any F € HE(IIT), F™™ is given by,

Frow) = (FS 7 W) Un(w) + (B S W ) Wn ()
m € Z,n € Z*\{0},
F™0w) = (F,57Wpno)Uno(w) meZ. (3.3.10)

The operator Hy defines an invertible isometry from H?(IIt) to R(Z x Z™), (where

(3.3.9) defines the norm on R(J)).

Remark: A second definition could be used for the space contajning Ran Hy. We
could define R(J) as in Definition 3.3, with (3.3.9) replaced by the requirement that
2 1Pkl < oo

keJ
This is possible using the knowledge that {¥,,,} is a frame and that [|¥p, .|| = C
for all (m,n) € Z?* and some finite constant C. To explicitly see how this works, let
F € H%(1I"), (thus (3.3.7) is satisfied), and let A and B be the upper and lower frame

bounds associated with the frame {¥,, , }. Thus,

Z |F™m)? = Z llemo Umoll® + Z llemn¥mn + €my—nTm,nll?
meZneZ” meZ neZ* \{0}
< Z ||Cm,0‘1’m,0“2 + Z (”Cm,n\pm,n” + ch-n\ym»"”y
mel neZ* \{0}
< C* Z lcm,ol2 + E (lemnl + lcmv“”‘)z
meZ neZ* \{0}
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< CPY demol?+4 > lemal?
mel neZt\{0}
S 02 E 2 ‘Cm,OlZ + 4 Z lcm,n‘2
meZ neZ* \{0}
= 207 Y lemnl® <2C%B||F|? < 00
m,nez

However, in this case Hy would no longer be an isometry.
Inversion of Hy involves a simple summation of terms in the sequence {F™"}, and

together with Proposition 3.1 and Lemma 3.1, gives us the following decomposition

theorem for HE (IIT).

Theorem 3.3 (Wavelet System Decomposition of Hi(II*)) Let ¥ € RH2(ITH)
be an admissible analyzing wavelet, and let ag > 0, by be such that (¥, ag, bg) generates

an affine frame for H2(II*). Then, any F in HL (ITT) may be represented as,

F=Y%" i‘ Fmm, (3.3.11)

m n=0

where, each F™™ (€ RH?(IIT)) is a wavelet system transfer function defined by,

Ft = (B8 W) U + (B 5 W )Wy, mEZ, n€Z+\{0}

F™ = (F,5Wno)¥pno meZ. (3.3.12)

Remark: Of subsequent significance is the fact that if the analyzing wavelet ¥ is of

degree N, then the degree of each wavelet system transfer function F™", is bounded

by 2N.

3.3.1 Examples: Rational Analyzing Wavelets for H*(II*)

Example 1

As an example of a rational analyzing wavelet for H2(II*), consider the function

1
=——,  7,£>0.
Groire 17
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It is easily verified that W(s)is in H*(II"") and furthermore ¥ is an admissible analyzing

wavelet i.e.,
/]R\Il(z +1iy)dy=0 for z > 0.

Taking the inverse Laplace transform of ¥, the weighting pattern (t) corresponding
to ¥ is given by,
o(t) = Ele " sin(€t) fort >0
0 fort <0
The H*(IT*) norm of ¥ can also be found to be,
192 = 2m (_1_ B cos(arctan(§/7))>
e\ Ve

Figures 3.1 and 3.2 show this analyzing wavelet ¥, evaluated on the imaginary axis,

and the corresponding weighting pattern ¢ for different values of ¢ and ~.

Constructing an Affine Frame for H2(I[*) from ¥:  For the purpose of numer-
ically determining values of the dilation stepsize ag and translation stepsize by such
that (¥, ag, by) generates an affine frame for H%(IIT) we can utilize Theorem 2.6 and
Corollary 2.1. Figures 3.3-3.4 show the results of applying Theorem 2.6 and Corollary
2.1 for the case where ag = 2.0. Hence for ag = 2.0 and 0 < by < 17 the sequence

{¥,,} forms an affine frame for H*(I["*).

Example 2

For a second family of rational analyzing wavelets for H2(IIT), consider the functions,

1
VE(8) = ——r; ; k=2,3,....
(3) (S—{-p)k, p>01 » 9y

The corresponding weighting patterns are,

Wr(t) =

tk—l —pt.
k-1 °

Admissibility is easily verified since,

L wdt = <(k?11)!)2/0wt2k_36_2mdt

1 2 2 2
((.k — 1)!) (2k — 3)1(2a)7*™*? < oo.
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Figure 3.1: H3(II'*) wavelet ¥ for v = 5,¢ = 1, and weighting pattern 1.
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Figure 3.2: H*(II*) wavelet ¥ for v = 5, = 10, and weighting pattern .
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Figure 3.3: Estimates of frame bounds, using H2(II*) analyzing wavelet ¥ of Example

1, with ¥ = 5.0, £ = 1.0 and ap = 2, as translation stepsize bg is varied. Solid curve:

lower frame bound A; Dashed curve:upper frame bound B. .
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Figure 3.4: Ratio (B/A) of estimated frame bounds, using H?(II*) analyzing wavelet

¥ of Example 1, with v = 5.0, £ = 1.0 and ag = 2, as translation stepsize bg is varied.

Solid curve: B/A; Dashed line: constant=1.0.
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Figure 3.5 shows this wavelet and the corresponding weighting pattern for p = 5.0,k =

2.0. As in the last example the frame parameters can be numerically determined with

0.04 Real Part 0 Imaginary part
0.03 -
002k | 0.01 -
.01+ -
00 -0.02 -
0 -
-0.01 0.03
0 50 0 50
w : w
2 x10-3 Modulus 0.08 Impulse Besponse
1.5 E 0.06 -
1+ 1 0.04} -
0.5F - 0.02+ 4
0 0
0 50 0 5 10
w t

Figure 3.5: H2(IT*) analyzing wavelet ¥ for p = 5.0, k = 2 and corresponding weight-

ing pattern

the help of Theorem 2.6. Figures 3.6-3.7 show the results of this exercise for the case
where ap = 2.0 and £ = 2, and p = 5.0. Hence for ag = 2.0 and 0 < by < 17 the

sequence {¥,, ,} forms an affine frame for HZ(II+).
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Figure 3.6: Estimates of frame bounds, using H2(IIT) analyzing wavelet ¥ of Example
2, with p = 5.0, k£ = 2.0 and ag = 2, as translation stepsize bg is varied. Solid curve:

lower frame bound A; Dashed curve:upper frame bound B.
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Figure 3.7: Ratio (B/A) of estimated frame bounds, using H%(II*) analyzing wavelet
U of Example 2, with p = 5.0, £ = 2 and ap = 2, as translation stepsize by is varied.

Solid curve: B/A; Dashed line: constant=1.0.



Aside from the examples of the last section we can ask for a characterization of all

admissible rational H?(IIT) analyzing wavelets. The following theorem provides such

a characterization.

Theorem 3.4 Let ¥ € RH2(II), and let (A, B, C) be a state space realization of V.

Then the following are equivalent:
(1) ¥ is an admissible H2(II*) analyzing wavelet.
(2) s¥(s) — 0, as s — co.
(3) CB =0.
Proof: Recall that,

dnf 1 100 n
<-Zl—t7' >t=0 = —2—7;—1:/_1'003 F(s)ds

Thus if f(t), has a zero of order k4 1, at t = 0, i.e.
df dkf
10 = (ﬁ)t_—_o T (W) —o =0,

/ s"F(s)ds=0, n»=0,1,...,k. (3.3.13)

—100

then

This requires that F(s) goes to zero faster than 1/s¥+! as s — co. For rational F(s),
this means,

F(s) — for s — 0.

TR
Conversely for F(s) with this asymptotic behavior, we can deduce that f(t) has a zero
of order k 4+ 1, at ¢t = 0, (c.f. [Gui63]). Therefore sF(s) — 0, as s — oo, if and only
if f() has a first order zero at t = 0. This gives | f(#)|?, a second order zero at t = 0,
and therefore admissibility of F.

Thus s¥(s) — 0, for s — oo, if and only if ¥, is admissible. Equivalence of
sF(s) = 0, to CB =0, is easily seen from the Laurent series expansion of F}

o0
F(s) = Z hys™*,

k=1



where the Markov parameters h; are given by,

hy = CAF1B. N

3.4 Properties of Wavelet System Decompositions

3.4.1 Time-Frequency Localization

As noted earlier, time-frequency localization is perhaps the most beneficial property
of affine wavelet representations. Wavelet system transfer functions inherit the time-
frequency localization properties of the underlying (rational) wavelets. As in Section
2.2.5, let Q(¥) = [wo(V),w;(¥)] denote the frequency concentration of ¥ and R(¥) =
[to(¥),t1(¥)] (o > 0) denote the time concentration of ¥ (computed via the inverse
Laplace transform). Then V¥ is a function which is concentrated in the time frequency
plane on the rectangle @ = Q(¥) x R(¥) and each of the WS transfer functions are

concentrated on rectangles

Qnn = [ag™ (wo(¥) + nbo), ag™ (wi({¥) + nbo)] X [ag'to(¥), a™ 1 (V)]

= Q(Umn) X B(¥rm ). (3.4.14)

Figure 3.8, shows the distributidn of the rectangles Q,,, in the time-frequency plane.
Since the wavelets for H2(IT*) are constructed in the frequency domain, the time
and frequency axes are interchanged when compared with the corresponding picture
for wavelets constructed in the time-domain, i.e. it is now the time axis which is
treated logarithmically. In some sense, this interchange of the localization in time and
frequency is more natural for the decomposition of linear systems than the localization

arising from wavelets constructed in the time-domain. To see this, note that:

o Near ¢t = 0, while time localization is good, the frequency concentration of each

wavelet system encompasses a large band of frequencies.
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Figure 3.8: Time-frequency concentrations of wavelet systems.

e For ¢t > 0, frequency localization is very good so that it is possible to ‘zoom’ in

on narrow frequency bands, whereas localization in time is poor.

Often, in the case of physical systems, high-frequency components of the impulse re-
sponse are localized near the time-origin (c.f. Figure 4.4). Furthermore away from the
origin, the impulse response decays ‘smoothly’. The form of time-frequency concen-
tration arising in WS transfer functions allows us to capture this behavior efficiently,
since relatively few terms are required near the time-origin to capture a broad range
of frequency components. Moreover, away from the time-origin, the narrower localiza-

tion in frequency allows us for example to represent a narrow band of low frequencies.

3.4.2 Poles and Zeros

Often a great deal of insight into the behavior of a system may be derived from a

description of the poles and zeros. Given the poles and zeros of the analyzing wavelet



¥, we may examine the manner in which the poles and zeros of the WS transfer
functions are influenced by the translations and dilations. Assume first of all that ¥
has no real axis poles and that ¥ is a degree N real-rational function in H?(IT*). Let

{pk,p_k}ivﬁ be the set set of poles of ¥(s), and {zj,'z‘;}jd be the set of zeros of V.

Since ¥ is real-rational, ¥ can be written as

L P _ L))
) = 3 T GG -5

where, P(s) and ((s) are coprime. Thus,

ap!? [1;(ag*s — z; — inbo)(ag's — Z7 — inbg)
[Ti(af's — pr — inbo)(ad's — Pr — inbo)

a10n/2 Hj(s = Bij(m,n))(s — v;(m,n)) _ Pra(s)

k(s = me(m, m))(s = ve(m, )~ Qmm(s)’

A\I/m’n(s) =

(3.4.15)

where,

Br(m,n) = ag™(z; +inby)  Ye(m,n) = ag"(Z; + inbo) (3.4.16)

i

ne(m,n) ag " (pr + inbg)  vg(m,n) = ag™(Pr + 1nbo). (3.4.17)

Note that ni(m, —n) = Ug(m,n) and vp(m, —n) = Tg(m, n) and Bx(m, —n) = Fe(m,n)
and y¢(m, ~n) = Bx(m,n). Therefore the poles of G™™(s) = a¥p n(s) + T¥m,—n(s)
are

{ﬂk(m,n)fﬁﬁ(m, n)?’/k(m7n)7l/_k(m7n)} . (3418)

Thus the effect of dilations and translations upon poles is,

o Dilations move the poles of G™™ radially away from and towards zero. As the
dilation index m increases, the poles move towards zero and as m decreases
the poles move away from zero. However, the poles remain in the closed left

half-plane which is crucial since otherwise the G™™ would not remain in H*(IIT).

e The complex translations simply translate the poles along vertical lines in the

left half-plane.

Figure 3.9 illustrates the behavior of the poles of G™".
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Figure 3.9: Behavior of poles of WS transfer functions
If we write G™"(8) = Np,n(8)/ Dinn($), then the zeros of G™™(s) are the roots of

Nin(s) = aPpn(8)Dm,—n(8) + @Pm,—n(8)Dp.n(s)
= aJ](s = Bi(m,n))(s — 7i(m,n)) T](s = T(m,s n))(s — 7a(m, n))
J k
+EH(3 - ﬂ—,(m,n))(s - F;(m, n)) H(s — mk(m, n))(s = vi(m,n)).
J k

Without actually deriving expressions for the zeros of G™"(s) we make the following

observations:

The zeros of G™"(s) occur in complex conjugate pairs.

For n # 0, if G™™ has no real-axis poles, then N,,,(s) and D, are coprime,

and therefore G™"(s) is a strictly proper rational function of order 2.V.

For n = 0 pole-zero cancellation results in G™"(s) of order N.

If [(n) is the number of poles of G™™ on the real axis then the order of G™"(s)

is 2N — I(n).

[
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3.4.3 State Space Realizations of Wavelet System Transfer Functions

Let (t) be the weighting pattern (i.e. inverse Laplace transform) corresponding to
the real rational H*(II*)-wavelet ¥ and define the triplet (4, B,C) to be a minimal
realization of ¥. In this section we examine the question of realizations of the WS
transfer function G™"(s) = a¥p, n(8)+ @Y —n(s). Let ag and ay denote respectively

the real and imaginary parts of a. Since (A4, B, () is a realization of ¥,

¥(t) = C exp(At)B.
Taking the inverse Laplace transform, the weighting pattern corresponding to G™"(s)
is,

Gmalt) = aagy™?

Blag 1) 4 Fag ™ (ag M) ot
= aam/2¢(aamt)2 [aR cos(nag "bot) — ag sin(nagmbot)] (3.4.19)
= aaam/zc exp(ag™ At)Beinao-mbot 4+ a'a(;m/ZC exp(ag™ At)Be—inao—mbot

= aa(;mﬂC' exp((ag™A + inag byl )t)B

+3ag™*C exp((ag™ A — iag™nboI)t)B. (3.4.20)

Equation (3.4.20) immediately provides a complez realization of G"™"(s) which is

ag™ A + ina; "bol 0
Apn = | ° o (3.4.21)
0 ag™A — inag ™ bol
Bmn = [B BT (3.4.22)
Con = |ag™aC ag™’ac]. (3.4.23)

However, since 1y, »(2) is a real weighting pattern, we need a change of basis to give

us a real realization. The differential equations corresponding to (3.4.23) are
£y = (ag™A+ inag"bol)zy + Bu
£y = (ag™A —inag"bol)zy + Bu (3.4.24)

and the output map is given by

Y= agm/zaCxl + agm/ZEing. (3.4.25)



Let, 21 = (21 4 #2) and 2, = i(z1 — z3). Then we get

%

i

ag " Az + nag™bozg + 2Bu

2‘2 = aEmAZZ - nagmbozl. (3426)
Under this transformation the output map becomes

y = aamﬂ (arC(z1 + 22) + ta;C(z1 — z3))

= a;™*(arCz +ia;Cz). (3.4.27)
From (3.4.26) and (3.4.26) we get the following real realization of G™"(s),

ag™ A mnag™bol

Apn = , n#0  (3.4.28)
—nag bl  ag™A

Bmn = [2B 0T, n#0 (3.4.29)

Con = [a65™2arC ag™?aiC], n#0  (3430)

(Amos Bmo:Cmo) = (a3™A, B,a3™?aC) (3.4.31)

It is interesting to note that, in this form (3.4.28-3.4.30), the dilations and translations
which appear in the WS transfer function G, ,(s) affect the state space realization

via dilations and translations as well, i.e.

o 0 0 -I
Apn = ag — nbg , n#0.
A I 0

3.4.4 Parallel Connections of WS Transfer Functions

In constructing rational approximations (see Section 3.5), we will be considering par-

allel connections of WS transfer functions of the form,

Gr(s)= > G™"(s), (3.4.32)
(mn)ed

=1

[



where J is a finite index set. Given Equations (3.4.28-3.4.30) defining the realization

(Am s B,.n,n, Cm ) of G™™(s), a state space realization of G 7(s) is readily obtained.

B ]
Apynt 0
Aml,n% 0
0
Ay = Amz,‘n% 0 (3.4.33)
0 ml,n%
0
| 0 0 ]
T
By = [Bpns Byt ) (3.4.34)
Cs = [Coynts Corgntr ] (3.4.35)

3.4.5 Minimality of State Space Realizations

An obvious question that can be asked regarding the realization (3.4.33-3.4.35) of
G 7(s) is whether such a realization is minimal in the sense of being both controllable

and observable. We have the following result,

Theorem 3.5 Let ¥ € H2(II) be an admissible rational analyzing wavelet, let {p;}
denote the poles of U and let (A, B,C) be a minimal realization of ¥ (of dimension
N). Also let J be a finite, bounded index set. Then

(a) The realization (3.4.28-3.4.30) of G™"(s) is minimal for all (m,n) €
J if and only if, for each j = 1,..., N, there does not exist a nonzero
integer k, such that.

.~

I .
il Z RN (3.4.36)

bo

(b) The realization (3.4.33-3.4.35) of G 7(s) is minimal if,

(1) (Amn, Bmas Cimyn) as defined in (3.4.28-3.4.30) is a minimal realiza-
tion of G™™(s) for all (m,n) € J, and
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(2) For each pair (j,1) € {1,...,N} x {1,..., N}, there does not ezist a

nonzero integer k, such that.

1 —XRe pj> _ .
Togag log (_%e o) = k. (3.4.37)

Proof: (See Appendix B.1) m.

Remarks: The proof of the above theorem relies on there being no cancellations of
poles by zeros in the required combinations of translates and dilates of the analyzing
wavelet. Note also that (3.4.36) implies that the poles of any nonzero translate (n # 0)

of the analyzing wavelet remain away from the real-axis.

3.4.6 Example: Wavelet System Decomposition
Example 1: Heat Equation with Dirichlet Boundary Control

Consider a system defined by the partial differential equation,

je))
w

_ 0%z, z — z =1
5 2(0)=0, (1) = u(?) (3.4.38)

y(t) = Z(:EO’ t)

Q|
&
|

This system has transfer function [Cur88]

By assuming lowpass characteristics of the sensor where the measurement y, is made,

we can write the overall transfer function as ,

1 sinh/szg

Gle) = s+ m sinh+/s

(3.4.39)

A decomposition of G(s) (with zo = 0.5) was computed using 12 dilation levels (m =
—5,...,6) and up to 33 translations at each dilation level. The analyzing wavelet
used is that of Example 1, in Section 3.3.1, with ¥ = 5 and £ = 1. The results of this
decomposition are shown in Figures 3.10-3.12 which are different representations of

the magnitude of the wavelet system expansion coefficients. Along the dilation axis,



zero corresponds to the lowest dilation level (m = —5), and along the translation axis -
zero corresponds to n = 0. Figures 3.10 and 3.11 are 3D and contour plots respectively
of the coeflicient magnitudes and Figure 3.12 is a density plot in which each rectangle

is shaded according to the corresponding coefficient magnitude. The key feature in

Translations

Figure 3.10: Wavelet system decomposition of heat equation transfer function - 3D

plot of magnitude of expansion coefficients

this decomposition, which is probably most obvious in the density plot (Figure 3.12)
is that the magnitudes of the coeflicients are very well concentrated. This feature,
which is due to the time-frequency localization properties of affine wavelets, permits
us to pick a finite number of ‘significant’ terms in the wavelet system decomposition.
In doing so, a finite-dimensional approximation to the original transfer function is
obtained. Using the results of Section 3.4.3, it is also possible to immediately write

down a minimal state space realization of the approximating system.
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Figure 3.11: Wavelet system decomposition of heat equation transfer function - con-

tour plot of magnitude of expansion coefficients
3.5 Rational Wavelet System Approximations

Wayvelet system decompositions as in (3.3.11) provide a means of representing non-
rational transfer functions in H?(II*) as infinite sums of rational transfer functions®.
As mentioned earlier, our primary objective in deriving such a decompositibn is to
devise a systematic method of constructing rational approximations. What is required
now is a mechanism which allows for judicious selection of a finite number of terms
from the expansion in (3.3.11) which will allow useful approximation of a nonrational

transfer function. For this purpose we utilize the localization properties afforded us

!Note that causality is preserved due to the property described by Equation (3.1.3)
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Figure 3.12: Wavelet system decomposition of heat equation transfer function - density

plot of magnitude of expansion coefficients

by affine wavelets.

For a significant class of transfer functions arising from physical systems, the WS
decomposition will result in a reasonably compact representation in the sense of well
localized and rapidly decaying coefficients. This phenomenon can be explained on the
basis of the time-frequency localization properties of the WS transfer functions and
the observation that H2(II*) transfer functions arising from physical systems are often
well localized in time-frequency as well. It is possible to devise a variety of schemes,
each relying on time-frequency localization properties, for the selection of terms in a
WS decomposition for use in a finite-dimensional approximation.

One possible choice for the selection of a finite-dimensional WS approximation can

62



be based upon knowledge of the time-frequency concentration of the (nonrational)
transfer function which is to be approximated. For example given that the time-
frequency concentration of a transfer function f € H%(II*) is Q(f) we can select a
subset of the wavelet system transfer functions based upon the size of Q(f)( Qm.n,
where Q, ,, is the concentration of the WS transfer function G™™(s). Daubechies in
[Dau90] provides bounds for the error of such approximations in terms of the energy of
f outside Q(f). A second selection scheme could consist of first computing the wavelet
expansion coefficients for a large number of terms and then simply discarding those
terms with ‘small’ coefficients. This second method is similar to those used to achieve
signal or image compression via wavelet decompositions (c.f. [CMQW90, Wic89]).
One such selection criterion, can be based upon the £2 norm of the coefficients. Assume
that the WS decomposition of a transfer function G has been computed, and let
Qn, = (G, 5‘1\Ilm,n> denote the coefficients. We choose the K largest coefficients,
(whose indices we store in an index set J), where K = #(J) is the smallest integer

such that,
2
E(m,n)EJ 1am,n]
Z(m,n) |am,n|2

where 0 < § < 1 is some predetermined tolerance. We now define a rational approx-

2 (1—'6)7

imation, Gz, to G as, G7(8) = X(mnes G™"(s). Note that the results of Section

3.4.3 immediately provide a minimal state space realization of G 7.

3.5.1 Approximation Error Bounds

The following lemma provides a bound on the approximation error using the scheme

just described.

Lemma 3.2 Let {z,}. € Z be a frame for a Hilbert space H, with frame bounds A

and B. Assume ||z,|| = 1, for alln € Z. For any f € H, define an approrimation f
to f by,

=3 (£.57 ) o,

neJ
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where J 1is an index set, chosen to satisfy

5 [(55715)

neJ
for 0 <6 < 1. Then,

2
’

Y216 Y [(£.57 )
nel

~ B
— flI2 < =112
17 - 7P < 62071
Proof: By the frame condition,

B f-FIP < X0 (5 - Fostas)| < a7MiF - AP
keZ

Since, f— f = Yong7 (f>S7'@n) zn, we have two coefficients sequences representing

the expansion of f — f with respect to the frame {z,}. Therefore by Theorem 2.5,

S [ps7e) 2 S -Ts Tl
ngJ ke

Therefore,
B - < S F-Fosm)|
kel
< S |(ns7en)]
ng¢J
< o f(nsn)
ke
< sATIA?
from which the result follows. ]

Remark: The error bound in Lemma 3.2 is established in the general setting of
frames in Hilbert spaces. When applied to the specific case of affine wavelet frames, the
bound may prove to be quite conservative. This is because time-frequency localization

properties of affine wavelets are not exploited in the lemma.

3.5.2 Example: Rational WS Approximation

As an example, consider the WS decomposition of the heat equation transfer function

in Section 3.4.6. Letting § = 0.4 the above described scheme results in the selection
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of 7 terms, with a corresponding normalized L? approximation error of 0.109, and an

approximating system of dimension 22.

3.6 Some Motivation and Remarks in Retrospect

A point should be made regarding our motivation for constructing affine frames in
the frequency (Laplace) domain as opposed to directly decomposing weighting pat-
terns via affine wavelets in the time domain. First of all, our approach naturally
preserves causality of the approximating system since each term in the WS expansion
is in H?(II'*) and therefore corresponds to the transfer function of a causal system.
If one were to use affine wavelets in the time domain, special ‘tricks’ need to be ap-
plied to preserve causality since (even in the case of compactly supported wavelets),
translations would eventually result in a noncausal wavelet. Secondly, there would
be no mechanism for retaining rationality of the Laplace transforms of the individual

wavelets, since translations (delays) prevent this.

Orthonormal Wavelet Bases for H2 ?

In the beginning of this chapter, it was mentioned that there are certain difficulties
associated with constructing ‘well-behaved’ orthonormal wavelet bases for H?(II*). To
fully clarify this statement would require some description of the recently formalized
subject of multiresolution analyses [Mal89c]. We forgo such a description and refer to
[Dau88a] for a thorough treatment of the subject.

It is well-known that associated with every multiresolution analysis of L?(IR) (or
H?), there exists an orthonormal wavelet basis. In fact, to date, all known examples of
orthonormal wavelet bases can be associated with multiresolution analyses. In the case
of L2, it is possible, via multiresolution analyses, to construct orthonormal wavelet
bases which are very well-behaved in the sense of the wavelets being arbitrarily smooth
and being well-localized in time-frequency. However, if one considers the space H?(II 1)

instead, the situation is quite different. In fact it is not even possible to construct an



orthonormal basis of wavelets in H*(II*) with continuous and well localized Fourier

transform via multiresolution analyses. More precisely, there is the following theorem

of Jaffard [Jaf89, JL.92].

Theorem 3.6 There exists no orthonormal basis of wavelets for H2(II*) generated
via the framework of multiresolution analyses, with an analyzing wavelet ¥ such that

1Z s continuous and,
‘Qb/(c\u)‘ < Clw|™ for any a > 1/2.

In particular this rules out smooth and well-localized orthonormal bases of rational
wavelets for H*(IT*). Although it has not been demonstrated that multiresolution
analyses are the only means of constructing wavelet orthonormal bases, it remains an
open problem to construct an orthonormal wavelet basis (even for L2(IR) ) which does
not arise in this way. The above theorem suggests that if one wishes to use rational
analyzing wavelets, it is perhaps necessary to consider the more general setting of

frames (including Riesz bases).

3.7 Summary

In this chapter we have introduced a new decomposition (which we refer to as a
wavelet system (WS) decomposition) of the Hardy space H?(II*), and examined some
properties of this decomposition.

The main result of this chapter is in Theorem 3.3 which states that functions in
HZ (II*) may be represented as infinite sums of time-frequency localized, real-rational
functions of bounded degree. Construction of the WS representation is based on an
appropriate grouping of terms in an affine wavelet frame decomposition of HZ(IIT),
where the analyzing wavelet is real-rational. For a real-rational analyzing wavelet of
degree N the terms in a WS expansion are either of degree N or 2V. From a systems
viewpoint, WS decompositions are representations of causal LTI systems as infinite

parallel connections of causal, time-frequency localized, finite-dimensional systems
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of dimension bounded by 2N. Theorem 3.4 gives a characterization of all rational
analyzing wavelets for H*(II'*), and demonstrates the large amount of freedom offered
by frame theory for the selection of ‘basis’ functions.

WS decomposition naturally leads to methods for constructing rational approx-
imations to nonrational transfer functions in H2(II*). Criteria for selecting a finite
number of terms from the infinite wavelet system expansion rely on compactness
of representation which arises due to time-frequency localization properties of the
wavelet systems. Coarse bounds on the L? approximation error were established, for
one particular selection criterion. It was also shown that state-space realizations of
WS approximations are easily generated from a minimal state-space realization of the
analyzing wavelet. Furthermore, easily verified conditions for the minimality of such
realizations were derived. Much work remains to be done to understand the approach
proposed here against the background of prior work on L? and H* approximation

theory (c.f. [GLP91b, GLP90, GLP91a, Bar87]).
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Chapter 4

System Identification Using

Wavelet System Models

In this chapter we discuss the use of wavelet system representations for the purpose
of identification of an unknown causal linear time-invariant system. The problem of
identification may be formulated as the determination of a system model representing
the essential aspects of an existing systeﬁl (or a system to be constructed) and pre-
senting knowledge of that system in usable form [Eyk74]. For a slightly more concrete
definition in the present context, consider a linear system of the form shown in Figure
4.1, where h(:) is the weighting pattern (impulse response), u(-) is the input, y(-)

is the output, and v(-), is a disturbance (noise). In reference to Figure 4.1, system

v(t)

'

Unknown
u(t) ———p Dynamical (1)
System

Figure 4.1: Open loop setting for system identification.
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identification deals with the problem of constructing usable mathematical models of
the system h, based on observed data (u and y). There exists a vast collection of
literature devoted to the subject of system identification which we do not attempt to
review here. A number of good survey papers and books with extensive references
have been written on various aspects of the subject which we refer the reader to for
further details (see e.g. [Eyk74, Lju87, UR90, Str81, Wel81, You81]). Here we only
review some of the basic philosophy of system identification with particular empha-
sis on the choice of model sets. We discuss in some detail the role which wavelet
system representations can play in system identification and highlight some of the
resulting benefits by means of examples. Here we treat truncated WS representations
.as linear-in-parameters, black-box model sets for system identification. A key feature
of WS models, is time-frequency localization which provides a convenient means of
incorporating time and frequency domain a prior: knowledge in the formal properties
of a parametric model. Our use of truncated WS representations is close in spirit to
the use of truncated Laguerre-Fourier series as rational parametric models. Laguerre
filters form a class of orthonormal bases for H*(II*), and have received considerable
attention in the areas of rational approximation and system identiﬁcatipn. We make
both qualitative and numerical comparisons of some key properties of WS models and
Laguerre models. The two examples considered in the numerical comparisons are:
(1) approximation of ‘cochlear’ filter transfer function and, (2) approximation of a
second-order system with delay. Numerical results of these two examples suggest that
the performance of WS models may be far superior to that of Laguerre models for an

important class of systems.

4.1 Overview of System Identification

Among the various methods for system identification, a clear distinction may be made
between parametric and non parametric techniques. We briefly outline some of the

essential ideas of both nonparametric and parametric identification identification.
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4.1.1 Nonparametric Identification Methods

As opposed to parametric methods which attempt to estimate parameters of some
given system structure, nonparametric methods deal with estimating points on an
unparameterized system model. In the time-domain, nonparametric identification
attempts to estimate the impulse response of an unknown system. The essential

relationship on which nonparametric impulse response estimation is based is,

Ruy(T) = (h * Ruu) (7'), (411)

where R, is the autocorrelation function of the input u, and R, is the cross-
correlation function of the input u, and the output y. Frequency-domain nonparamet-
ric identification deals with estimation of the transfer function of an unknown system,

and is in general based upon the frequency-domain expression of Equation 4.1.1:
Suy(iw) = H(1w)Syy(tw). (4.1.2)

In Equation 4.1.2 Sy, and S,y are the spectrum and cross-spectrum respectively ob-
tained via the Fourier transform of R,, and R,,, and H(iw) is the frequency response
of the system.

The methods of nonparametric identification are primarily concerned with the
estimation of the functions R, and R,, (time-domain), or Sy, and Sy, (frequency-
domain). For a survey of some of these techniques see [Wel81].

Due to the current emphasis on control synthesis and design tools which rely on
parametric models, it is often necessary to construct a parametric model from the
results of nonparametric identification. We will discuss the use of wavelet system
representations for the purpose of generating parametric models from nonparametric

forms in Section 4.2.2.

4.1.2 Parametric Identification Methods

The basic methodology of parametric identification consists of the following four steps

which are depicted in Figure 4.2 (adapted from [Lju87]).
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Model 0.K.
- _J

Figure 4.2: Parametric system identification loop.

Experiment design and collection of data. An essential property of data col-
lected for the purpose of identification is that it be ‘informative enough’ for the con-
struction of a reliable model. The imprecise notion of data which is ‘informative
enough’ may be precisely formulated with respect to a given model set (see [Lju87}).
A well designed identification experiment is one which results in the collection of such

informative data.

Selection of a (parameterized) model set. For parametric identification, a fam-
ily of parameterized candidate models must be selected within which the search for a
suitable model is to be made. It has often been noted that selection of an appropriate
model set is the most important as well as the most difficult step of the identification
process. Choosing a good model set for a particular problem involves incorporating a
combination of a priori knowledge and engineering intuition into the formal properties

of the chosen collection of models.
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Selection of identification method. A large proportion of the system identifi-
cation literature has been devoted to design and selection of identification methods.
A key feature of every identification method is the particular criterion that is chosen
to make precise the notion of which of the models in the model set ‘best’ repre-
sents the data. A very broad categorization of the variety of proposed identification
methods would lead us to select between techniques which treat the problem in ei-
ther the deterministic or the stochastic settings, and also select between time-domain
and frequency-domain methods. Once again we give reference to the survey papers

[Lju87, UR90, Str81, Wel81, You81] for further detail.

Model validation. Having selected a model from the model set according to the
criterion of fit defined by the selected identification method, model validation is the
process of determining how well the model describes the unknown system based on
further experiments. Following model validation the identified model is either accepted
or rejected. If the model is rejected, the identification process may be repeated,
possibly with new data, a different model set, and a different identification method.
Here attention is largely restricted to the problem of selecting a suitable model
set as this is where wavelet system representation provides a new approach. We shall
consider only models of the form commonly known as black boz models. Parameters
of a black box model have no real physical significance in relation to the physical
system being modeled. Black box model parameters should be viewed as a means of

for approximating the input-output behavior of the system.

4.2 Parametric Identification Using Wavelet System
Model Sets

As mentioned above, the importance and difficulty of selecting an appropriate model
set has often been noted. The difficulty lies in first developing a priori knowledge

and engineering insight to recognize what are the relevant aspects of the unknown
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system that should be captured by the identified model, and then incorporating this
knowledge into the choice of a model set. It is necessary that the model set be ‘rich’
enough to capture the relevant aspects of the system while, at the same time, it
is important that the complexity of the model be kept as low as possible. In this
section we discuss how model sets which consist of appropriately truncated wavelet
system representations, can be used to incorporate certain forms of @ priori knowledge,
namely joint time-frequency information about the systems’ behavior. The manner in
which wavelet system representations are used here is very close in spirit to the use of
truncated Laguerre representations in system identification (c.f. [Mak90a, Mak90b,
Wah91, Par91]. We discuss some of the key similarities and differences in these two
approaches.

From Chapter 3, we know that any transfer function G € HZ (1) may be repre-
sented by its WS decomposition,

G(s)= > iGm’"(s), (4.2.3)

meZ n=0

where G""(s) are the wavelet system transfer functions obtained via the wavelet
decomposition of G with respect to a real-rational analyzing wavelet ¥ € RH?(TI).
If we rewrite Equation 4.2.3 as,

G(S) = Z am,O\I’m,O(S) + Z [am,n \pm,n(s) + Gmon LDm,—n(s)]
med n=1

> i G™" (55 @), (4.2.4)

med n=0
we see that this is precisely a parametric model for transfer functions in Hg (IIT),

where the parameters are the wavelet expansion coefficients {au, »} et From

mEZ,

a computational point of view, it is perhaps easier to separate the real and imaginary

parts of each WS transfer function G™"(s), and write,

Re G = Re o RNe (\pm,n + lI’m,—n) —Imalm (‘I"m,n - \pm,—n)

ImG™ = ReaIm (Vpa+Vm-n)+ImaRe (Vimpn— Vi —n),

since the coefficients and functions appearing in the expressions are then real-valued.
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In practice of course it is necessary to select a truncation of the model in (4.2.4)
for use as a model set for identification purposes. That is, we consider model sets of

the form

M* =L M(a) = Z G™™(s;a) + a €D CLHZ?) (4.2.5)
mmneJ

and then select an appropriate parameter estimation technique to estimate the pa-
rameters « based on observed data. We will not discuss any of the possible choices for
parameter estimation using wavelet system models. It should be noted however that
since the parameters in the WS model appear linearly, it is possible to use least-squares
techniques (see [Lju87] for a treatment of many of the available choices). Models such
as this are often referred to as linear-in -parameters models.

As we shall see below, it is in the selection of this truncation, that certain forms

of a priori knowledge and engineering intuition may be incorporated.

4.2.1 Incorporating A Priori Knowledge in WS Model Sets

Here we consider two forms of a prior: knowledge which are commonly used in system
identification: (1) knowledge of important frequency bands (frequency-domain), (2)
knowledge of delays and time constants present in the system (time-domain). These
two forms of a priori information are often treated separately in choosing model sets
for identification. However, in the case of time-frequency localized model sets, such as
given by WS representations, there is a natural mechanism for treating time-domain
and frequency-domain information simultaneously.

It is common practice in systexﬁ identification to estimate parameters using some
form of frequency weighting. That is, given some a priori knowledge or intuition
regarding the frequencies which are important in the particular application, identifi-
cation methods are designed so as to emphasize good models over these frequencies or
frequency bands. One method of doing so involves the‘ use of a frequency weighting

function in the cost function associated with the particular identification method. For
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example a scaler cost function of the form,

J(6) = /R (G(w36) - G()) 0(w) (Glw; 6) - G(w))do,

may be used, where C'(w) is a frequency weighting function used to emphasize par-
ticular frequency bands. Other schemes for emphasizing good modeling in particular
frequency bands involve e.g prefiltering of the data (see [Lju87]).

Another problem of some significance in system-identification, is the approxima-
tion of delays in the system. Systems with delays are of course infinite-dimensional
systems (with nonrational transfer functions). In such cases finite-dimensional (ratio-
nal) approximations are required. A priori knowledge of time-delays can be incorpo-
rated into certain rational model structures such as Laguerre models which we discuss
in Section 4.3, and WS models as wili be discussed later.

The most important property of wavelet system representations in the context of
black box models, is that they provide a straightforward means of capturing time-
varying frequency behavior. Since each wavelet system transfer function G™" is
localized in time-frequency on rectangles Q,, ,,, we can define regions of time-frequency
on which we would like to concentrate our model set. Figure 4.3 graphically illustrates
the various ways in which a priori time-frequency information can be incorporated
into a model.

In this section we discuss the use of a priori knowledge in WS models from the point
of view of time-frequency localization. This point of view is useful in developing an
intuitive understanding. In Section 4.5, a priori knowledge in WS models is discussed

from the slightly more concrete point of view of pole-placement.

Time-Domain Information

Delays: Consider a system with impulse response A(-) € L2(O, oo) which includes
a delay T; i.e.

h(t) =0, for t <.
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Figure 4.3: Time-Freqﬁency weighting schemes: (a) Frequency weighting, (b) Time

weighting: Delays and time constants, (¢) Joint time-frequency weighting.
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Assuming we have some a priori knowledge or estimate of 7, this knowledge can
be incorporated in a WS model by only including dilation indices m such that
R(¥,.»)N0,7] = 0, where R(V,,,) is the time concentration of the wavelet U,n

(c.f. (3.4.14)). Such a choice concentrates the model outside the time interval [0, 7].

Time Constants: Knowledge of dominant time constants of the system to be ap-
proximated is approximately the knowledge of the time-concentration of the impulse
response. A priori information regarding time-constants may also be used in the

selection of dilation indices m, to include in the WS model.

Remark: Note that since dilations are used to represent both delays and time con-
stants, it is reasonable to expect that there may arise situations where these two goals
are conflicting. This is in fact the case, as will be shown in Section 4.5. A similar

situation arises in the case of Laguerre models as well.

Frequency-Domain

Knowledge of important frequency bands is easily utilized in a WS model by simply
choosing translation indices n such that the frequency concentrations Q(¥,, ,,), ‘cover’

the frequencies of intertest.

Joint Time-Frequency Space

In the case of physical dynamical systems, the impulse response in often best described
in terms of its fume-varying frequency content. This point is best illustrated by means
of the “typical” impulse response shown in Figure 4.4 (a). It is clear that high-
frequency components of this impulse response are localized near the origin. Also
away from the origin, we see primarily low-frequency behavior, i.e high frequency
components are associated with short time constants and longer time constants are
associated with low frequency behavior. This is in fact the form of time-frequency

localization that arises in WS models (see Figure 3.8). Once again this can be used

-1
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Figure 4.4: Impulse response exhibiting time-varying frequency content.

to explicitly determine the choice of dilations and translations (indices (m,n)) to be

included in the model.

4.2.2 Fitting WS Models to Nonparametric Models

Wavelet system models can also be used to construct parametric models based on the
results of a nonparametric identification procedure. In particular, given a nonpara-
metric transfer function estimate G NP, we can ‘fit’ a parametric WS model to G NP
by computing the decomposition,
Gws= S &mp
(mn)eg
In fact, the nonparametric model C:’Np, can provide precisely the type of a prior:
knowledge about the time-frequency content of system, that is required to make a
sensible choice of the index set .7, as discussed in Section 4.2.1. We will illustrate the

use of this technique by example in Section 4.7.1.
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4.3 Laguerre Decompositions

Laguerre functions have been studied extensively in the contexts of system identifi-
cation and approximation of infinite-dimensional systems. The use of Laguerre de-
compositions in this context is very close to the spirit of our work using wavelet

system decompositions and it is worthwhile to make an assessment of some of the key

similarities and differences.

We begin by reviewing some of the basic properties of Laguerre polynomials the
associated orthonormal bases of L2(0,0) (and consequently H2(II*)). A thorough

treatment of this subject may be found for instance in the book of Szego [Sze39].

4.3.1 Laguerre Polynomials and Orthonormal Bases

The classical Laguerre polynomials L,,(t) are defined by,

t

Ln(t) = E‘%(tme‘t), m=0,1,... (4.3.6)

€
m!
If we define,

bm(t) = e V2L (1),

we have the following well known results.

Theorem 4.1 (Szego[Sze39])

(1) The Laguerre functions {¢m}°_o form an orthonormal basis for L2(0, 00) .
(2) The Laguerre functions {¢m}_ are dense in L'(0,00).

(3) For allt >0,

lom(H) <1, m=0,1,2,... (4.3.7)

(4) For any fized to > 0,

- ~1/4
max |ém ()| = O(m™"/%).

79



As a natural modification of the classical Laguerre functions, let,

#E (1) = /2pe P L, (2pt), p>0; m=0,1,2,...

Then it follows from Theorem 4.1 that the sequence {¢%, };o—g is an orthonormal basis
for L2(0,00) , and that properties analogous to those listed in the Theorem 4.1 can
be derived. The constant p > 0 is known as the Laguerre shift parameter, for reasons

which will be clarified in Section 4.6.2.

Remark: Note that ¢, is simply a dilation of ¢, by a factor of 2p.
Hence we have the Fourier decomposition of g €L%(0,00) with respect to the La-
guerre basis {¢?, }2_,

g= i (g, 8%) #5,- (4.3.8)

m=0
Remark: Although convergence of the series (4.3.8) is in general only guaranteed
in the L? sense, convergence in other norms (e.g. || - |l1, || - |leo) can be established

under suitable hypotheses on g, as will be mentioned later.

Laguerre Function Bases for H2(IT)

Taking the Laplace transform of ¢%,, let

@%(s)‘z(ﬁﬁl)(s)zﬁ(-gi—;;)m, m=0,1,2.... (439

By the Paley-Wiener theorem and Parseval’s theorem, {®%,}7°_¢, is an orthonormal

m=0?

basis for H?(IT+). Hence for any G € H*(IIT),
oo 2p (8 — p>m )
G = P (G)L— | —— R 4.3.10
> a@LE (55 (43.10)

where the coefficients ¢Z,(G), are given by the appropriate inner-products.
Remark: The Laguerre series representation (4.3.10) is a decomposition of any
transfer function in H2(II*) via rational transfer functions with a single real pole

—p < 0, with increasing multiplicity. This fact may cause slow convergence of the

series (4.3.10) for certain classes of transfer functions as described in the next section.
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4.4 A Priori Knowledge in Laguerre Models

We briefly review the mechanisms available for the incorporation of a priori informa-
tion in Laguerre models. The essential forms of prior information that may be used

in Laguerre models are: (1)knowledge of time delays, and (2) knowledge of dominant

time-constants.

4.4.1 Representation of Delays in Laguerre Models

It has often been noted that Laguerre models are suitable for representing delays
(c.f. [Mak90a, Par91, DZP90]). To understand how time delay information may be
incorporated in a Laguerre model, let us introduce the following equivalent definition
of the Laguerre basis which is given in terms of a time-domain shift operator (c.f.
[Mak90a]).
Define T
T=(V-pl)(V+pD)7",
where p > 0, and V' is the infinitesimal generator of the semigroup {7 }r>o of all right
shifts on L2(0,c0) , i.e.
fort<r

(T-£)(t) =

fe=7) fort>r
and V, is defined by,
.1
Vi=lim= (T, - D),
where the limit is in the strong sense. Thus if f is absolutely continuous with f(0) = 0,

V f = —df [dt. The operator T is called the cogenerator of the semigroup {T;},>0. T

is a shift operator in the sense that,

T is an isometry,

and  (T™)" — 0, strongly as n — oo.
T is called the Laguerre shift on 1L2(0,00) , and T and T* are given explicitly by,

(TF) (1) =fm~%4¥ﬂwvmw
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(T°)(t) = f(t)-2p / " =) f(r)dr

Now a second equivalent definition of the Laguerre functions ¢?, may be made in

terms of the Laguerre shift operator T,

P (t) = /2pT™e P, (4.4.11)

Hence, the Laguerre functions are generated by right shifts of a single function, where
the shift is defined by the Laguerre shift operator.

To see the effect of the Laguerre shift operator from a slightly different viewpoint

[DZP90], note that
. 1—sr/2N\V
-8T
¢ —1\}1—I+noo<1+s7'/2N) )

Thus, the all-pass factors of degree m in the Laguerre filters ®2,(s), can provide a

(4.4.12)

good representation of a time delay 7. From (4.4.12), we see that the pole location p
of the Laguerre model should be interpreted as p = 2N/7 for a good representation
of a time delay 7 by a N*® order Laguerre model. This is precisely the mechanism -
available for the incorporation of a priori knowledge of time-delays in a Laguerre
model. Namely the pole location p and model order N may be selected so as to

provide a good representation of the delay 7.

4.4.2 Use of Time Constant Information in Laguerre Models

As noted earlier a Laguerre model has only a single real left half plane pole at —p. Thus
in representing transfer function G with a single dominant pole, it is reasonable to
expect that knowledge of the dominant pole of G can be incorporated into a Laguerre
model via the selection of the Laguerre pole —p. It is also reasonable to expect slow
convergence of the series (4.3.10) if G has a highly resonant dominating pole.

To make the above statements more precise, consider the linear fractional trans-

formation,
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which is a conformal mapping of the left half-plane II~, onto the open unit disk. Let
G be a finite-dimensional transfer function with poles {7;}. It can be shown (see e.g.

(Wah91]) that in this case, the rate of convergence of the Laguerre series (4.3.10) is

governed by the magnitude of the z-plane poles,

Ye+ D
Y — P

: (4.4.13)

of the discrete-time system G (p(z + 1)/(z—1)). In particular convergence will be

slow for z-plane poles close to the unit circle. For any given pole v of G(s),

. . +
P = 7| = argmin 2P,
k=P
The minimum value is determined by,
7+ el )? [kl + Re 1
Te = 7] 17| — Re v
1+ cos(8) 9
——= = cot“ (/2
1 — cos(f) cot™(6/2),

where 75 = |7k €. Hence, the minimum value is given by,

Yk + p*
Tk — P*

= |cot (arg(yx)/2)| . (4.4.14)

Thus there exists a notion of an ‘optimal’ choice of the Laguerre shift parameter p
to capture the effect of dominant poles. Consequently, we may make the following

observations regarding the the choice of p.

(1) For a high rate of convergence of the Laguerre series, p should be chosen such that

1/pis close to the dominating time-constants of the system to be approximated.

(2) If the system to be approximated possesses highly resonant dominant poles, i.e.
poorly damped complex poles, convergence of the series will be slow, since the
Laguerre pole is on the real-axis. This can also be seen from (4.4.14), noting

that for a highly resonant pole v, arg(yx) = =/2.

(3) If the system G has a wide range of time-constants, resulting in the poles being

scattered, convergence will be slow. This is because in this case, for any choice
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of p, |vx — p| will be large for some k, and consequently there will be z-plane

poles close to the unit circle.

Thus knowledge of dominant time-constants may be incorporated in a Laguerre
model via the choice of the Laguerre shift parameter p. Clearly difficulties with the

rate of convergence arise when there is more than one time-constant involved and

these are widely separated.

Extended Laguerre Series and Frames

It has been suggested [Wah91] that for systems with m, dispersed time-constants, the
rate of convergence may be improved by considering models of the form,
m mj—=1 ‘ Nk
G(s) ~ ; kzz;) czf(a)s—% ({—i}) , (4.4.15)
where the a priori knowledge of time constants has been incorporated in the choice
of the m parameters p;. It was also suggested in [Wah91] that improved convergence
rates for systems with highly resonant poles may be obtained by replacing the Laguerre
filters with the so-called Kautz filters which have a single pair of complex poles.
The improved Laguerre model (4.4.15), must be treated as an ad hoc formulation
if one is restricted to the setting of orthonormal bases. However it is possible to make

sense of such a formulation using frame theory as is stated in the following theorem.

Theorem 4.2 Let {pl,...,pK}, be a finite collection of positive constants, and let
&%, denote the mth order Laguerre function with Laguerre shift parameter p;. Then
the doubly-indezed sequence of functions {@f,{; j=1,...,K; m= 0,1,2,...}, s a
tight frame for H2(II*) with frame bounds A = B = K.

Proof: Since for any fixed j, {‘I’f,{ };’,‘;;0, is an orthonormal basis for HZ(II),

> |(Fe%)

m=0

= |FII?, VF € H2(WIt),j = 1,..., K.

Thus .
)3DS |(F,o%)

7=1m=0

foKFR.

84



Hence any F € H?(IIT), has the representation,

K oo

S (R sTieR) ol

j=1m=0

K o
= K'Y (Fek) el (4.4.16)

j=1m=0

F

We shall refer to the representation (4.4.16) as an eztended Laguerre series (ELS)

representation. Clearly the ELS representation is not unique.

Remark: It is convenient at this point to note an important similarity between
the extended Laguerre sedries (4.4.16) and wavelet system representations. As noted
earlier ®2 (see (4.3.9)) is simply a dilation of the function ®! by a factor of 2p.
Furthermore in the last section it was shown that the Laguerre basis may be viewed
as being generated via right shifts of a single function, where the shift is defined by
the Laguerre shift operator. Consequently the extended Laguerre series (4.4.16) is a
representation via dilates and shifts of a single function, where the dilation operator
is as defined in Chapter 2, but the shift operator is now the Laguerre shift.

For Laguerre models, all a priori knowledge must be used in selection of the single
parameter p. In particular for representation of a delay 7 , we would like to choose
p = 2N/7, where N is the order of the Laguerre model, and knowledge of a dominant
time-constant T, leads us to choose p = 1/T. Clearly there may arise situations where
these two goals are conflicting, for example in the case of a long time-delay 7, and a
small time constant T', or vice-versa. Furthermore, it is clear that there is no direct

mechanism for the use of frequency information in Laguerre models.

4.5 A Priori Knowledge in WS Models Revisited

In light of the description of a priori knowledge in Laguerre models, let us re-examine
the use of a priori knowledge in WS models from the somewhat more concrete point
of view of the poles of the model. Note that selection of the Laguerre shift parameter

p, is actually a process of modifying the basis functions to suit the problem at hand.



A similar technique may be used in the case of WS models, as is discussed in Section

4.5.3.

4.5.1 Time Delays and Time Constants

As mentioned in Section 4.2.1, the effects of a time-delay 7, can be captured in a
wavelet system model via the dilations. To make this statement more precise, consider
the dilation operator D, on L?(0,00) , as defined in Section 2.2. In particular, for
WS models, the appropriate dilations in the time domain are of the form Dao—m. The

adjoint D:_m, of this operator is simply D, since
0

(Dezmfig)

e sty

_ /0 " (0 g@ghdt = (£, Dupg)

Therefore the dilation operator is not a shift operator in the same sense as the Laguerre
shift operator T, since both D -m and D”_,, are (L%(0,00) ) isometries. However, we
0 0 .

can still view D%_m as a shift operator in the following sense
(D%_mqp) () —0asm— oo We[0,t], t>0,
(D:o_mw) () —0asm—o00  VtE[ty,00], t1 >€>0,
where 1 is the inverse Laplace transform of an admissible H?(II*) analyzing wavelet.

This shifting effect of the dilation operator is perhaps clearer if we look at time on a

logarithmic scale since
a—m/21/)(10 -—my _ . —mf2 _
0 gag™t) =ag ' "Y(logt — mlogao),

and we know that (0) = 0, by admissibility.

For a given delay 7, the dead-time can be approximated arbitrarily well by a WS
model. To see this let m, be the smallest integer such that ag™7 < 1. We can assume
without loss of generality that |(t)]> < et, for t < 1, and ¢ > 0. Recall that by the

admissibility condition, l¢(t)|2, must decay at least as fast as ¢, near ¢t = 0. Thus,

[ e utamaf e = [T ok d
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ag T ) ¢ 9
< e/ tdt:§<aamr) — 0 as m — oo.
0

So for good representations of the delay 7, we may select dilation indices m, such that

log T
m > .
~ logap

As in the case of Laguerre models, there is a tradeoff between the representation
of long delays and small time constants. The manner in which this tradeoff arises is
precisely the same in the WS case as it was in the Laguerre case. This follows from
the observation in Section 4.3.1 that the Laguerre function €2, is simply a dilation
of ®1 | by a factor of 2p. Hence in both cases, dilations are chosen to represent time

delays. The effect of dilations on time constants is easily seen by observing that if

If(H)] < Ce™, k>0

then |f(at)] < Ce ¥, k,a>0.

Hence for small dilation factors a, as are required by both WS and Laguerre models for
good representations of long delays, the time constant is large. Therefore convergence
of the WS series will in general be slow in cases where the time constants are small
and the delay is long.

It is clear from the above discussion that a priori information about a dominant
time constant 7' may be incorporated in WS models by selecting dilation indices m,
such that,

ag Ty = T,
where Ty, is the dominant time constant of the analyzing wavelet ¥. This of course
corresponds to placing the poles of the WS model on specific vertical lines in the

left half-plane. Note that WS models allow us to incorporate several scattered time

constants in this manner as well.

4.5.2 Dominant Frequencies

Prior knowledge of the frequencies associated with various time constants may also

be utilized in WS models by appropriate selection of dilation indices ». Approximate
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knowledge of time constants and associated frequencies corresponds to approximate
knowledge of the pole locations. Using dilations and translations together, poles of a
WS model may be pla’ced close to the approximate poles of the system. In fact the
poles of the WS model may be placed so that they cover a region in which the poles

of the true system are thought to be.

4.5.3 Optimizing the Analyzing Wavelet

Thus far we have not really utilized the full flexibility of frame theory other than
to construct decompositions in terms of rational analyzing wavelets. The underlying
structure of a wavelet system decomposition consists of the analyzing wavelet ¥, the -
dilation stepsize ag, and the translation stepsize by. There exists a great deal of
freedom in the choice of the triple (¥, aq,bo), within the restrictions of admissibility
and rationality of ¥ and the sequence {¥,, ,,} forming a frame. Thus we can consider
the problem of optimizing (¥, ag, bg), so as to suit the particular problem at hand. As
mentioned earlier, this is essentially the idea in choosing the Laguerre shift parameter
p, for the Laguerre basis. |
For the sake of convenience and to clarify the discussion, we restrict discussion
to the case where the analyzing wavelet ¥ is of McMillan degree N = 2, and has no
zeros. Let {7,7} denote the poles of ¥. Hence the poles of the WS transfer function

G™", are
ag™ (7 +inbo)  ag™ (¥ + inbo)
ag™ (v —inbo)  ag™(F — inbg)

Assume that we have a priori knowledge of a pole v of the system to be approx-
imated. Then we can try to reflect this knowledge in a WS model by: (1) selecting

dilation indices m such that,

Re v
S 4.5.17
g Re ,77 ( )
and (2) selecting translations corresponding translation indices n, such that
ag™nbg = Im v —ay"Im . (4.5.18)
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In general (4.5.17) and (4.5.18) will have only approximate solutions m and n. How-

ever we could also obtain exact solutions by modifying the frame ¥, ,, in the following

manner. Assume ag is fixed.

(1) Select the pole v, of the analyzing wavelet such that

Re v = Re v. (4.5.19)

Note that this involves simply dilating the analyzing wavelet ¥, and therefore

causes no problems with admissibility or forming frames.

(2) Select the translation stepsize bg, such that (¥, ag, bo), generates an affine frame,

and

n* = byt (Im v — Imy), (4.5.20)

for some integer n*. Note that there always exists such solutions to (4.5.20)
since by Theorem 2.6 there exists B., such that (¥, aq, bo), generates an affine

frame for every bg € (0, B;). Thus ,
1
bo==(Zm v —Imy)e€ (0, B,)
n
for |n| large enough.

This procedure places a pole of GO at v.
Multiple time constants (7%,...,T%), may be handled by looking for solutions

(m1,...,mg), to

oz g log (—Re v/Tj)=m;, j=1,...,k. - (4.5.21)

In general the above equations may have no exact solution and will therefore have to
be solved in an approximate (e.g. least squares) sense. Another approach would be
to match the longest time constant exactly according to the method described above
for a single time constant, and then solve (4.5.21) approximately to represent the
remaining time constants. Multiple frequencies associated with the time constants

may be handled analogously.
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A further level of optimization would be to tailor the form of the actual analyzing
wavelet to suit the problem. Here again the flexibility of frame theory can be utilized.
We will not discuss this approach here, but give reference to [CW90] for a discussion

of these types of ideas.

4.6 WS versus Laguerre Decompositions

There exist many similarities and as well as differences between wavelet system models
and Laguerre models. In this section we highlight some of these similarities and
differences. A key similarity between wavelet system decompositions and Laguerre
decompositions of HX(IIT), is that they both provide representations of HE (II)
in terms of rational functions. Hence truncations of either of these representations
give rational (H?) approximations to transfer functions in Hi(IIT). We restrict the
following discussion to the class H (IIT), as for all practical purposes this is the class

of interest when dealing with real physical systems with transfer functions in H2(II*).

4.6.1 Parallel versus Series Decompositions

There exists an essential structural difference between wavelet system decompositions
and Laguerre decompositions of H% (II*). Wavelet system decompositions, as noted
in Chapter 3, are inherently parallel decompositions in terms of finite-dimensional
systems in the sense that every term in the series is a rational function of degree
less than or equal to 2N where N is the McMillan degree of the analyzing wavelet
¥ € RH2(II*). Figure 4.5 graphically illustrates this parallel decomposition. Laguerre
decompositions (4.3.10), when viewed as parallel decompositions, consist of terms with
unbounded MacMillan degree (see Figure 4.6). It is perhaps more natural to think
of Laguerre decompositions as series decompositions via rational functions of fixed
degree, in particular degree 1 (see Figure 4.7). This structural difference is important
both from the point of view of identification and approximation. In the case of system

identification, we give the following argument in favor of the parallel decomposition
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Figure 4.5: Parallel decomposition via WS representations.
structure of wavelet system representations. Let,

Gws(s;a®) = Z G™"™(8, 0t ) (4.6.22)
(mnyeJ ‘

be the ‘identified’ wavelet system model of a unknown system G, i.e. o* is the pa-

rameter vector obtained via a chosen identification method. Similarly let,

n-—1 n—1
* : * 2 S = " e
Gr(s;c) = 3 @l (s)= 3 cmsv+7; (s_i—i) , (4.6.23)

m=0 m=0

be the identified Laguerre model of the same system. Let Dy s(a™) denote the set of

indices of zero (or negligible) components of the parameter vector o*, i.e.

Dws(e) = {(m,n) :

< € (m,n)ej}, e > 0.

Onn
Similarly for the Laguerre model let,
Dr(cy={m : |c&] <& me{0,1,...,n—1}}, €>0.

Now we can ask the the question; is it possible to further reduce the order of the model

given knowledge of the zero (negligible) coefficients (Dws(a™) and Dp(c")), without
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Figure 4.6: Laguerre representations in parallel form

adversely affecting the quality of the model? Clearly, in the case of the series structure

of the Laguerre model, this is directly possible if and only if n — 1 € Dp(c*). In that

case the Laguerre model order is reduced at least from n to n—1. However, in the case

of the WS model, the decoupled nature of the parallel structure allows us to reduce

the model order by simply removing any terms G™™ with indices (m,n) € Dws(a”).
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Figure 4.7: Series form of Laguerre representation
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The resulting decrease in model order is

N x {(m,n) € Dws(a*) : n=0}+2N x |{(m,n) € Dws(a™) : n# 0},

where N is the McMillan degree of the analyzing wavelet. (Assuming the minimality
conditions of 3.4.5 are satisfied.)

Hence in the case of WS models, it is possible to start with high-order models,
and then reduce the model order after parameters have been estimated by simply

removing terms corresponding to negligible parameter values.

4.6.2 A Priori Knowledge in WS Models versus Laguerre Models

A crucial basis for comparison of WS models and Laguerre models, is the manner in
which each of these two techniques facilitate the incorporation of a prior: information.
A priori knowledge in these models was discussed in in Sections 4.2.1 and 4.5, in the
WS case and in Section 4.4 for Laguerre models. The following is a qualitative list
comparing a priori knowledge in WS models with a priori knowledge in Laguerre

models.

(1) Both models facilitate the use of time constant and delay information. Further-
more both models suffer from a tradeoff between representing long delays and

representing short time constants.

(2) There exists no mechanism for incorporating frequency information such as
imaginary parts of poles in Laguerre models. Such information may be used

in WS models in the selection of translations.

(3) WS models can incorporate knowledge of multiple time constants while Laguerre

models may accurately represent only one.

(4) The only parameter of a Laguerre model is the Laguerre shift parameter p. This

is the primary cause of any shortfalls of the Laguerre models. WS models, on

the other hand, are extremely flexible. In selecting a WS model, one has the
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freedom to choose: (1) dilation and translation indices, (2) frame parameters
“ag, and bg, (3)pole locations of the analyzing wavelet, and (3) the form of the
analyzing wavelet. This flexibility can be utilized to adapt the model to a given

problem.

4.6.3 Frames versus Orthonormal Laguerre Bases in H(IT*)

Of some interest in this comparison of WS models and Laguerre models, are the
consequences of using frames rather than orthonormal bases. The two formulations
can be discussed in terms of ease of computation and ‘robustness’ of representation.
Given a particular (known) transfer function in H&(II1), in general it is easier to
compute the decomposition with respect to an orthonormal basis, than the decomposi-
tion with respect to a frame. In the specific case of Laguerre bases, the computation is

even further simplified by the well known recursion formula for Laguerre polynomials,

l.e.
2%k -1t 1-k

Lit) = =L -

Lk—Z’ k Z 27

with Lo(t) = 1 and Ly(¢) = 1 —t. For frames in general it is necessary to compute
the decomposition via the inverse frame operator, except for in the case of tight
frames where the computation is equivalent to that for a general orthonormal basis.
However, for identification purposes, there is little or no computational advantage in
using orthonormal systems since the parameters need to estimated via an identification
method and not computed directly from knowledge of the transfer function. A possible
exception to this is in the case where the model is is fit to a nonparametric model by
explicitly computing the expansion coefficients as in [CW92].

From the discussion in Section 2.3.1, redundant frame representations are more
robust with respect to perturbations in the coeflicients than are orthonormal basis
representations. From the point of view of identification, this is an important property
since parameter estimates are subject to inaccuracies including the effects of numerical

computation.
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4.6.4 Convergence In Other Norms

One of the important properties of Laguerre bases is the property of being uniformly
bounded bases (4.3.7). Uniform boundedness of the Laguerre bases is important in
establishing conditions for convergence of the partial sums of the Laguerre series
in norms other than H2(II*). Of particular significance for the purpose of robust
control synthesis is convergence in the H*°(Il* )norm. Convergence results in H*(II+),
and Ll(O,oo), with emphasis on the rate of convergence are discussed in [Mak90a,
Mak90b, GLP91b, Mak91], for Laguerre series representations. As yet we have no
analogous results for WS representations, although there is reason to believe that

suitable smoothness and decay hypotheses should lead to similar results.

4.7 Examples: WS vs Laguerre Decomposition

To illustrate some features of the comparison between Laguerre and WS models, we
consider the following two examples. In these examples, we use the H?(II*) ana-
lyzing wavelet of Section 3.3.1, Example 1, with v = 5.0,£ = 1.0, and frame pa-
rameters ag = 2.0,bp = 8.3. The corresponding frame bounds are approximately
A = 4.6, B = 6.6, which gives B/A = 1.4. The examples discussed below are based
on approximating frequency responses using both the Laguerre and WS models.v The
method used to construct WS approximations in these examples is as follows. First
a WS approximation is first computed using a high-order model. The lower-order
approximations are then computed by sequentially selecting terms with the largest
coefficients in the high-order approximation, and then refitting the corresponding ra-
tional functions to the data using singular value decomposition to solve the appropriate

normal equations (c.f. remarks at the end of Section 2.4).

4.7.1 Rational Modeling of Cochlear Filters

Within the mammalian inner ear lies a key component of auditory system known as

the cochlea. The cochlea performs much of the initial processing of acoustic signals.



The basilar membrane is a structure contained within the cochlea which roughly
speaking performs a frequency analysis of the signals. The basilar membrane is often
modeled as a bank of linear, constant-Q, bandpass filters. As a result of physiological
experiments, nonparametric models have been constructed to describe the frequency
response of these cochlear filters (see [YWS92]). For convenience in working with these
filters, parametric models are used to approximate the frequency response. These
models may be nonrational. However, it is also of considerable interest to construct
integrated circuit implementations of these filters (c.f. [Mea89, LKTS92]). For circuit
implementations of the cochlear filters, rational models are required. Figure 4.8, shows

the frequency response of one of these filters.
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Figure 4.8: Frequency response of a cochlear filter.

In this Section we apply both WS models and Laguerre models to approximating
the frequency response of the cochlear filters, and compare the results. For this
example, 1000 samples of the frequency response from w = 0, to w = 50, were used in

the approximation.
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WS Approximation of Cochlear Filters

The nonparametric model shown in Figure 4.8, provides precisely the forms of fre-
quency and time domain a priori information required to choose the initial dilation
and translation indices to be used in a WS model. Having selected the appropriate
dilation and translation indices, the resulting WS model (which may be of fairly high
order) can then be fit to the data. Figures 4.9-4.10 show the results of this process.
Figure 4.9 are three-dimensional and density plots of the magnitude of the coefficients
of the resulting rational approximation to the cochlear filter. The approximation to-
gether with the original function and impulse response are shown in Figure 4.10. It is
clear that the number of ‘significant’ coefficients is small. Thus to reduce the model
order, we can systematicly select truncations of this high-order model by eliminating
terms with small coefficients. In doing so, we generate a sequence of rational approx-
imations to the transfer function of the cochlear filter. Figures 4.11 — 4.13 show the
results of this process for different model orders N. The normalized (L%) approxi-
mation error is plotted as a function of model order in Figure 4.17. It is clear that we
can select a reasonably low-order rational approximation to the cochlear filter based
on the approximation error. However, we can also ask the question; what are the key
properties of the cochlear filters which should be captured by the model in order to
call it a ‘good’ approximation. It has been suggested, (c.f. [Sha85a, Sha85b]) that
three important properties of the the cochlear filters are: (i) location of the peak
magnitude of the frequency response, (ii) the sharp cutoff for high frequencies, and
(iii) rapid decay in the time domain. Due to the sharp cutoff for high frequencies, the
decay in the time domain is governed by how the frequency response behaves as w
goes to zero. From Figures 4.11 — 4.13, we see that all of these three properties can

be captured by rational WS approximations of fairly low order.
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Figure 4.9: Magnitude of coefficients in WS approximation to cochlear filter. Three-

dimensional plot (top) and density plot (bottom)
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Figure 4.10: High order WS approximation to cochlear filter frequency response.

Laguerre Approximation of Cochlear Filters

- Laguerre models may also be used for rational approximation of the cochlear filter
frequency response. The Laguerre shift parameter p, was selected via a manual op-
timization for a Laguerre model of order N = 10. Figures 4.14 - 4.16, show the
resulting Laguerre approximations for different models orders.  As should be ex-
pected, the Laguerre model demonstrates slow convergence in this case due to the
resonant components of the system. Moreover, it is evident that a very high order
Laguerre model is required to capture the three important properties of the system

mentioned above.

Discussion

Figure 4.17 is a plot of normalized approximation error versus model order for both
the Laguerre and WS model approximations to the cochlear filter frequency response.
It is clear from this plot that the WS models provide higher quality approximants

at low model orders. The error of the Laguerre approximant decreases exponentially
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Figure 4.11: WS approximation of cochlear filter for N = 4 (top), and N = 8 (bottom).

Solid curve: approximation; Dashed curve: nonparametric model
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Figure 4.12: WS approximation of cochlear filter for N = 16 (top), and

(bottom). Solid curve: approximation; Dashed curve: nonparametric model
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Figure 4.13: WS approximation of cochlear filter for N = 28 (top), and N = 60

(bottom). Solid curve: approximation; Dashed curve: nonparametric model
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Figure 4.14: Laguerre approximation (p = 8.4) of cochlear filter for N = 8 (top), and

N = 24 (bottom). Solid curve: approximation; Dashed curve: nonparametric model

103



0.2 Real Part 0.2 Imaginary Part

e
1

0.1}

i

-0.1

T
e

02 -0.2
0 50 0 50

0;025 Modulus Impulse Response

e (=]

o ¢
r— (=
th (%]

T )
Tiliiiiiszs
i

o

o

'OO
& S
T ]

0.2 , Real Part 02 Imaginary Part

0.1+

o
—
T
o
I
=
I

0.2 -0.2
0 50 0 50

N=52
0.025 Modulus Impulse Response

|
|

e
Q
[\¥]
T
e
1

o
(=]
—
h
T

2 o
5 2
T T

0.2
0
-0.2
0 50 0

Figure 4.15: Laguerre approximation (p = 8.4) of cochlear filter for N = 36 (top), and

N = 52 (bottom). Solid curve: approximation; Dashed curve: nonparametric model
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Figure 4.16: Laguerre approximation (p = 8.4) of cochlear filter for ¥ = 100 (top),

and N = 200 (bottom). Solid curve: approximation; Dashed curve: nonparametric
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Figure 4.17: Normalized approximation error versus model order for approximation

of cochlear filter frequency response using WS and Laguerre models

with model order. but the constant factor in the exponential is small (as is indicated
by the slope of the curve on a logarithmic scale). Although the error decreases quite
rapidly for the WS approximations, there is no clearly defined exponential rate of
convergence. This highlights a difficulty with the WS models, which is that conver-
gence rate estimates are difficult to obtain because of manner in which truncations are
selected. However, in any application, it is more important to have good convergence
than to have good theoretical estimates of the convergence rate. Note that the the
cochlear filter clearly defines a system which lends itself to compact time-frequency
localized representation. In some applications, keeping the number of parameters that
need to be estimated small may be more important than the model order, e.g. for
on-line estimation of parameters. A Nth-order Laguerre model requires N parame-
ters, whereas, for the example analyzing wavelet used here the number of parameters
in a Nth order model is N/2, (N/4 complex parameters). Figure 4.18 is equivalent

to Figure 4.17, where now the abscissa represents the number of parameters in the
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model.

4.7.2 Approximation of a Delay System

Consider now the simple delay system with transfer function,

e—ST

G(s) = (4.7.24)

s2+qist+q
Once more, we apply both WS and Laguerre techniques to approximating this system.
To make this example somewhat more interesting, we select 7, g1, and gg, such that the
representation of the delay and the time constant of the system cause poor convergence
of both the Laguerre and WS appfoximations. We wil use 7 = 2.0,¢1 = 1.25,¢2 =
0.40625. For this example, 700 samples of the frequency response from w = 0, to

w = 20, were used.
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Figure 4.18: Normalized approximation error versus number of parameters for ap-

proximation of cochlear filter frequency response using WS and Laguerre models
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WS Approximation of Delay System

It is more revealing in this example to consider the quality of the various approxima-
tions in the time domain. In Figure 4.19 the coefficient magnitudes for a high order
WS approximation of the delay system (4.7.24) are plotted. Note that the coefficients
are well-localized. An interesting feature of the decomposition shown in Figure 4.19
is that if we equate the dilation axis to the time axis and the translation axis to the
frequency axis, we see that the delay in the system is visually evident in the coeffi-
cients. Figures 4.20-4.21 show the WS approximations of the impulse résponse of the

system 4.7.24 for various model orders N.

Laguerre Approximation of Delay System

Laguerre approximation of the delay system 4.7.24 requires a careful selection of the
Laguerre shift parameter p. In many cases optimal selection of p, may be quite
difficult as we shall show shortly. To illustrate just how significant the choice of p
" can be, consider Figure 4.22 in which two curves are plotted for the time-domain
approximation error for Laguerre approximants of the system (4.7.24). For the first
curve p, was held constant at p = 1.56, as the model order was varied. This value
of p was chosen by manual optimization for a eighth order model. Note that the
convergence of the Laguerre approximants'in this case is too slow to be of any practical
utility. The second curve, which demonstrates much better convergence, was obtained
by manual optimization of p, every time the modei order was changed. The problem
with the time domain convergence of the Laguerre approximants with p fixed can
partly be attributed to the finite length of the data in the frequency domain and the
fact that the Laguerre functions decay only as s~!, at infinity. The point to be made
however is that the choice of p, can be crucial especially for low order approximants as
noted in [CW92]. The problem of choosing optimal values of p, may in fact prove to
be quite difficult due to the complicated dependence of the error on p . This is perhaps

best illustrated by Figure 4.23, which is taken from Cluett and Wang [CW92]. The



Figure 4.19: Magnitude of coefficients in WS approximation of delay system. Three-

dimensional plot (top) and density plot (bottom)
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Figure 4.20: WS approximation of delay system for N = 6,12,30. Solid curve: ap-

proximation of impulse response; Dashed curve: actual impulse response
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Figure 4.21: WS approximation of delay system for N = 40,60,80. Solid curve:

approximation of impulse response; Dashed curve: actual impulse response
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Figure 4.22: Normalized (time-domain) error in Laguerre approximation of the exam-

ple delay system

surface shown in Figure 4.23 is the £2 norm of the first N, Laguerre coefficients, where
N is model order, in the Laguerre approximation to a frequency response estimate for a
laboratory scale process trainer (see [Lju87]; data available in MATLAB (DRYER2)).
For good approximations, it is desirable to choose p so as to maximize the value of the
function plotted in Figure 4.23. It should be noted that the surface in Figure 4.23, is
for approximation of a particular system and in general the dependence of the error
on p, and model order may be far more complicated.

Figures 4.24-4.25 show the Laguerre approximation of the impulse response of the
system (4.7.24), using the manually determined values of p, shown in Figure 4.22.
The (time-domain) approximation error is plotted against the model order in Figure

4.26 for both the Laguerre and WS models.
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parameter p

Figure 4.23: Surface representing norm of Laguerre approximant to a frequency re-

sponse estimate for a laboratory scale process trainer. Taken from Cluett and Wang

(1992)
4.8 Summary

In this chapter we examined some aspects of the use of truncated WS representations
as parametric ‘black box’ models for system identification. The manner in which WS
representations are used here is closest in spirit to the use of Laguerre function repre-
sentations in the approximation and identification of linear systems. Some properties
of WS models which make them amenable to use in problems of system identification

and rational approximation are:
(1) WS models are linear-in-parameters.

(2) Both time and frequency domain a priori information may be incorporated in

WS models.

(3) The parallel nature of the models allow for a second stage of model reduction

following parameter estimation.

(4) The underlying building blocks of WS models are based on frames and thus

there exists a great deal of flexibility in the choice of these building blocks.
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Figure 4.24: Laguerre approximation of delay system for N = 8, 10, 30. Laguerre shift
parameter p is indicated on the plots. Solid curve: approximation of impulse response;

Dashed curve: actual impulse response
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Figure 4.25: Laguerre approximation of delay system for N = 40,60,80. Laguerre
shift parameter p is indicated on the plots. Solid curve: approximation of impulse

response; Dashed curve: actual impulse response
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Figure 4.26: Approximation error versus model order for approximation of the example
delay system by Laguerre models and WS models. The Laguerre shift parameter p,

was ‘manually optimized’ each time the model order was increased.

It was shown that WS models may perform considerably better than Laguerre
models for certain classes of problems. Much of the difficulty with the Laguerre model
can be associated with the fact that there is only one parameter, namely the Laguerre
shift parameter p, which can be used to control the performance of the Laguerre model
far any given problem. Table 4.1 briefly summarizes some aspects for comparison of
WS models and Laguerre models. A column is included for the extended Laguerre
models (c.f. Section 4.4) which possess some characteristics of both WS models and
the classical Laguerre models.

Some, as yet unanswered, questions which we regard as topics for further research

are

(1) What are the theoretical rates of convergence for WS approximation of vari-
ous classes of transfer functions, and how do these compare with other known

rational approximation techniques such as Laguerre approximation.
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(2) What can be said about the selection of truncations of WS representations so

as to ensure optimal’ convergence.

(3) Under what conditions can convergence of WS approximations in other norms,

in particular the H°(II*) norm, be established.

The answer to the first question above may in general be quite complicated since it
depends on the particular scheme employed for the selection of truncations.

We also showed that the ad hoc procedure (c.f. (4.4.15)) suggested by Wahlberg
[Wah91], for improving the performance of Laguerre models on systems with multiple
dispersed time constants, leads to a class of extended Laguerre series representations
when viewed from the viewpoint of frame theory. This observation creates a framework

for analyzing the convergence properties of such models.
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WS Laguerre Extended
Laguerre
Model type black-box, black-box, black-box,
linear-in- linear-in- linear-in-
parameters parameters parameters
Approximation H2(1I+) H2(IIH) H?(TTH)
space
Decomposition parallel series parallel-series
structure
A priori knowledge | multiple time constant, | multiple
time constants, | delay time constants,
delays, delays
frequency ranges
Representation frames orthonormal frames
bases
Adaptability  of | m, n, (ag,bo, ¥) | p, model order | {p;}7;, K,
model mode] order
Sensitivity to pa- | robust for re- | sensitive robust due to
rameter dundant frames redundancy
perturbations
Convergence  in | Undetermined Heo(IT), —
other norms L (R*), for

certain classes

Table 4.1: WS vs Laguerre models
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Chapter 5

Wavelet Analysis and Synthesis

of Feedforward Neural Networks

In this chapter, we investigate the use of affine wavelet frames in analyzing and syn-
thesizing fe;edﬁ)rward neural networks. Feedforward neural networks are ‘biologically
inspired’ computational architectures which have found application in problems of
approximating static mappings based on discrete data. As noted in Chapter 1, prob-
lems of this nature arise in a wide variety of fields. Clearly feedforward networks are
not the only means of solving such problems. Approximation theory is a very well-
developed area of mathematics, and there exist numerous ‘conventional’ approaches
to these problems (e.g. orthogonal basis approximations). The main attraction of the
neural network approach has been the empirically demonstrated success in problems
involving mappings with high-dimensional domains and/or ranges. For such probléms,
where the domain is high dimensional, the more structured techniques of classical ap-
proximation theory often lead to computationally intractable formulations. The use
of neural networks may be thought of as a somewhat naive approach in the sense
that to date there does not exist much structure in the approach. It has been known
for some time that feedforward networks with particular classes of ‘activation func-

tions’ are capable of generating ‘good’ approximations to certain classes of mappings.
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These results (c.f. [Cyb89, Cyb88, HSW89, HSW90]) have for the most part been
based on arguments of density of the class of mappings implementable in feedforward
networks, in various function spaces. These results may be regarded as justification
for the use of such networks in approximation problems. However, the nature of
these arguments do not reveal precisely the feedforward network implementation of
a given mapping. In this sense, they are nonconstructive results. It is thus natural
to ask whether there is an alternative formulation which allows one to describe the
approximation properties of feedforward networks and at the same time gain some
insight into the exact feedforward network implementation of a given mapping. In
this chapter it is shown that affine wavelet theory can provide precisely this type of
formulation. Our approach to this problem was initially motivated by the observa-
tion that feedforward neural network architectures inherently posses a translation and
dilation structure.” Furthermore, since the theory of frames permits a great deal of
flexibility in the choice of analyzing wavelets, it was natural to try to combine these
two observations to formulate a wavelet description of feedforward networks.

For the sake of completeness, we briefly review some of the salient features of the
feedforward network approach to approximation in Section 5.1. The remainder of this
chapter is organized as follows.

In Section 5.2 it is shown that the inherent translation and dilation structure
of feedforward networks may be utilized to implement affine wavelet decompositions
within the standard architecture of feedforward neural networks. For si£np1jcity we
restrict discussion primarily to single-input-single-output networks. However, the the-
oretical results of this chapter apply to the higher-dimensional settings as well, as is
briefly discussed in Sections 5.2.3 and 5.4.

Among topics which have received some research attention in the are of neural
networks, is the choice of ‘activation functions’. One of the most commonly used
activation functions is the so-called sigmoidal function. Section 5.2.1is concerned with
constructing affine (wavelet) frames using combinations of sigmoids. It is important

to point out that there is no a priori need to restrict oneself to sigmoidal activation
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functions. However, by doing so the power and flexibility of frame theory is clearly
demonstrated.

The main analysis result of this chapter is Theorem 5.1 which states that wavelet
decompositions of L?(IR) may be implemented within the standard architecture of
feedforward networks with sigmoidal activation functions. Thus for a given mapping in
L*(IR) , the feedforward network implementation can be readily computed. Theorem
5.1 is easily extended to higher dimensions (LZ(IR®) ), and we briefly describe this
extension in Section 5.2.3.

In Section 5.3 we outline two schemes in which spatio-spectral localization prop-
erties of wavelets are used to formulate synthesis procedures for feedforward neural
networks. It is shown that such synthesis procedures can result in systematic defi-
nition of network topology and simplified network ‘training’ problems. Most of the
weights in the network are determined via the synthesis process and the remaining
_ weights may be obtained as a solution to a convexz optimization problem. Since the
resulting optimization problem is one of least squares approximation, the remaining
weights can also be determined by solving the associated ‘normal equations’. The
synthesis schemes may be theoretically extended to higher dimensions. However,

A few simple numerical simulations of the methods of this chapter are provided in

Section 5.3.4.

5.1 Background on Feedforward Neural Networks

In this section we provide a brief introduction to the use of feedforward neural networks
to functional approximation problems.

Let © be a set containing pairs of sampled inputs and the corresponding outputs
generated by an unknown map, f : R™ — IR®, m,n < oo, i.e. O = {(2%,9%) : ¢’ =
f(z¥); ¢t e R™, yi e R*i=1,...,K, K < co}. We call O the training set. Note
that the samples in © need not be uniformly distributed. T he problem at hand is to

use the data provided in O to ‘learn’ (approximate) the map f. Many existing schemes
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to perform this task are based on parametrically fitting a particular functional form
to the given data. Simple examples of such schemes are those which attempt to fit
linear models or polynomials of fixed degree to the ciata in ©. More recently, nonlinear

feedforward neural networks have been applied to the task of ‘learning’ the map f.

5.1.1 Feedforward Neural Networks

The basic component in a feedforward neural network is the single ‘neuron’ model

depicted in Figure 5.1(a). Where u4,...,u, are the inputs to the neuron, ki, ..., k,

ul—w ki

.
un ———pkn
I (a)
ut
u2 y
un (b)

Figure 5.1: (a)Single neuron model. (b) Simplified schematic of single neuron

are multiplicative weights applied to the inputs, I is a biasing input, ¢ : R — IR,
and y is the output of the neuron. Thus y = ¢(3 1=, kiu; + I). The ‘neuron’ of
Figure 5.1(a) is often depicted as shown in Figure 5.1(b) where the input weights,

bias, summation, and function g are implicit. Traditionally, the activation function
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g has been chosen to be the sigmoidal nonlinearity shown in Figure 5.2. This choice

e o
[0, [oe}
T T

o
N
T

Figure 5.2: Sigmoidal activation function.

of g was initially based upon the observed firing rate response of biological neurons.
A feedforward neural network is constructed by interconnecting a number of neurons
(such as the one shown in Figure 5.1) so as to form a network in which all connections
are made in the forward direction (from input to output without feedback loops) as in
Figure 5.3. Neural networks of this type usually consist of an input layer, a number of
hidden layers, and an output layer. The input layer consists of neurons which accept
external inputs to the network. Inputs and outputs of the hidden layers are internal
to the network, and hence the term ‘hidden’. Outputs of neurons in the output layer
are the external outputs of the network. Once the structure of a feedforward network
has been decided, i.e the number of hidden layers and the number of nodes in each
hidden layer has been set, a mapping is ‘learned’ by varying the connection weights,
w;;’s and the biases, I;’s so as to obtain the desired input-output response for the
network!.

One method often used to vary the weights and biases is known as the backprop-

agation algorithm in which the weights and biases are modified so as to minimize a

1We will use w;, to denote the weight applied to the output O; of the 7*® neuron when connecting

it to the input of the :*" neuron. I, is the bias input to the 7** neuron.
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Input Layer

Hidden Layers

Output Layer

y
Figure 5.3: Multilayered feedforward neural network.

cost functional of the form,
E= Y [0° - s, (5.1.1)
(z',y')€®
where O' is the output vector (at the output layer) of the network when z* is applied

at the input. Backpropagation employs gradient descent to minimize E. That is, the

weights and biases are varied in accordance with the rules,

o8
oI,

Awij = —€T—

edwij and Al; = —¢

Remarks: Although feedforward neural networks have empirically demonstrated an
ability to approximate complicated maps very well using the technique just described,

to date there does not really exist a satisfactory theoretical foundation for such an
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approach. To clarify the meaning of a satisfactory theoretical foundation, let us list

some of the problems that one should be able to address within a good theoretical

setting.

(1)

(2)

(3)

Development of a well-founded systematic approach to choosing the number of
hidden layers and the number of nodes in each hidden layer required to achieve

a given level of performance in a given application.

Learning algorithms often ignore much of the information contained in the train-
ing data, and thereby overlook potential simplification of the weight setting
problem. As we will show later, preprocessing of training data can simplify the

training problem.

An inability to adequately explain empirically observed phenomena. For ex-
ample, the cost functional £ may possess many local minima due to the non-
linearities in the network. A gradient descent scheme such as backpropagation
is bound to settle to such local minima. However, in many cases, it has been
observed that settling to a local minimum of £ does not adversely affect over-
all performance of the network. Observations such as this demand a suitable

explanatory theoretical framework.

The methods of this chapter offer a framework within which it is possible to address

at least the first two issues above.

5.2

Dilations and Translations in SISO Neural Net-

works

In this section we shall demonstrate how affine wavelet decompositions of L2(IR) can

be implemented within the architecture of single-input-single-output (SISO) feedfor-

ward neural networks with sigmoidal activation functions. Consider the SISO feed-

forward neural network shown in Figure 5.4. Input and output layers of this network

each consist of a single node, whose activation function is linear with unity gain. In



~<—— weights W j's

‘ -a— bjases Ij's

--—— weights Wj,N+1'S

y

Figure 5.4: SISO feedforward neural network

addition, the network has a single hidden layer with N nodes, each with activation
function g(:). Hence the output of this network is given by

N

y = f(z) = Y winp9(wo e — ), (5.2.2)
j=1

where we have labeled the input node 0 and the output node N + 1.

The key observation here is that the mapping f (5.2.2) implemented by the SISO
feedforward network, is a linear combination of dilates and translates of a single func-
tion (the activation function g). Thus the mapping implemented in a SISO feedforward
neural network is precisely of the form of an affine wavelet decomposition (2.2.25).
The key differences are: (i) The summation in (5.2.2) is finite, and (ii) Even if we
permit infinitely many hidden layer nodes, and let g; = g(wo ;z — I;), the infinite
sequence {g,} will not necessarily be a frame for L2(IR) .

To formulate a wavelet description of the feedforward network of Figure 5.4, it

is thus necessary to investigate frames generated by translations and dilations of the
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activation function g. In the next section we discuss how sigmoidal activation functions

may be combined to construct admissible analyzing wavelets and thereby affine frames.

5.2.1 Affine Frames From Sigmoids

As mentioned earlier, sigmoidal functions are among the most commonly used ac-
tivation functions in feedforward networks. Although it is not necessary to restrict
attention to sigmoidal activation functions, we do so here to illustrate the power and
flexibility offered by frame theory in the construction of analyzing wavelets. Recall
from Chapter 2 that essentially the only restriction on the analyzing wavelet is the
admissibility condition (2.2.8).

Consider the sigmoidal function, s(z) = (1 + e~%)~! shown in Figure 5.2. Since
s € L*(IR) , it is impossible to construct a frame for L?(IR) using individual translated
and dilated sigmoids as frame elements. Note however, that the difference of two

translated sigmoids is in L2(IR) for finite translations and that in general if we let

M M
o(z) = Z Sanbn () — Z Sendn (T) (5.2.3)

where M < oo and sq(z) = s(az — b), a,b < co then ¢ € L2(IR) . Furthermore, note
that the combinations (5.2.3) are precisely of the form which can be implemented in
the architecture of a feedforward network. With these observation, it is easily shown
that affine frames for L2(IR) may be constructed using analyzing wavelets generated
as combinations of sigm;)ids of the form (5.2.3).

Let s(z) = (14 e79)~! where ¢ > 0 is a constant which controls the ‘slope’ of
the sigmoid . To obtain a function in L2(IR) , we combine two sigmoids as in (5.2.3).
Let

o(z)=s(z+d)—s(z—d), 0<d < oo. (5.2.4)

So, () is an even function which decays exponentially away from the origin. Now,

let

¥(z) = ¢(= +p) =~ p(z - p)- (5.2.5)
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Figure 5.5: (Top) Analyzing wavelet candidate constructed from three sigmoids

(W(z) = s(z + 2) — 2s(z) + s(z — 2)). (Bottom) Square magnitude of the Fourier

transform of %, (|9]?).

Thus 4(-) (see Figure 5.5) is an odd function, with [%(z)dz = 0, which is dominated
by a decaying exponential. It is easily shown that ¢ satisfies the admissibility condition

(2.2.8). The Fourier transform of ¢ is given by

~ 271 sin(wd)
S(w) = TIWT = L 5.2.6
o) = [ o) nds = T omey (5.26)
Therefore the Fourier transform of % is,
- - , 47 si in(d
3w) = eI (0) - el = — T TP (507)

g  sinh(%%)

The function ® and the square magnitude of its Fourier transform ( |1/Av|2) are shown

in Figure 5.5 for p = d = 1 and ¢ = 2. Note that the function ¥ is reasonably

128



well-localized in both the time and frequency domains. Table 5.1 lists some relevant
parameters describing the (numerically determined) localization properties of 1. For

this choice of (p,d,q) (and in general whenever p = d) ¥ is a linear combination of

three sigmoids,
P(z) = s(z + 2) — 2s(z) + s(z — 2).

Figure 5.6 shows the implementation of ¢ in a feedforward network.

Figure 5.6: Feedforward network implementation of v

e | @ | 2¥) | we(|$?) | esupp(v,€) | esupp(|]?,?)

0.1(01}{ 0.0 0.9420 | [-2.15,2.15] | [0.2920, 1.5920]

Table 5.1: Time-frequency localization properties of ¥ for (p,d,q) = (1,1,2)
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Dilation and Translation Stepsizes for the Wavelet Constructed From Sig-

moids

As in Chapter 3, Theorem 2.6 may be applied to numerically determine translation
and dilation stepsizes ap and bg, for which the family of functions {®¥mn}, forms an
affine frame for L2(IR) , where the analyzing wavelet % is as in (5.2.5). Numerical
results of applying Theorem 2.6 and Corollary 2.1, with dilation stepsize ¢ = 2.0,
to the construction of an affine frame using the analyzing wavelet v (5.2.5) with
(p,d,q) = (1,1,2) are shown in Figures 5.7-5.8. Figure 5.7 shows the estimates of the
upper and lower frame bounds, A and B, for various values of the translation stepsize
b. Figure 5.8 is a plot of the ratio B/A versus the translation stepsize. From these
results we see that for a = 2p and 0 < b < 3.5, (¥, a,b) generates an affine frame for

L(IR) .

Remarks

The conditions in Theorem 2.6 and subsequently those in Corollary 2.1, in general
may be very conservative since the theorem relies on the Cauchy-Schwarz inequality
to establish bounds.

In some applications, it may be desirable to use a ‘sparsely distributed’ frame
to ‘cover’ a given time interval and frequency band using a small number of frame
elements. As can be seen from Figure 5.8, sparsity can be achieved to some extent at

the cost of ‘tightness’ of the frame.
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Figure 5.7: Estimates of frame bounds, using analyzing wavelet 1 constructed from

sigmoids, with ap = 2, as translation stepsize by is varied. Solid curve: lower frame

bound A; Dashed curve: upper frame bound B.
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Figure 5.8: Ratio (B/A) of estimated frame bounds using analyzing wavelet ¢ con-

structed from sigmoids, with ag = 2, as translation stepsize by is varied. Solid curve:

B/A Dashed line: constant=1.0
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5.2.2 Feedforward Network Analysis Theorem

It now follows that we have constructively proved the following analysis result for

SISO feedforward networks with sigmoidal activation functions.

Theorem 5.1 Feedforward neural networks with sigmoidal activation functions and
a single hidden layer can represent any function f € L2(R) . Moreover, given f €

L2(R) , all weights in the network are determined by the wavelet frame ezpansion of
5
f(:l?) = Z <f’ S_lwmn> 7J’mn(m)

m,n

Remarks:

(a) In this section we have concentrated on wavelets constructed from sigmoids. We
would however like to point out that the methods of this section are applicable
to a wide variety of choices of the activation function. For some examples of

other activation functions we refer the reader to [SW89].

(b) Among other activation functions used in neural networks, is the discontinuous
sigmoid (step) function. Note that using such a step function together with
the methods of this section results in a analyzing wavelet 1 which is the Haar
wavelet. Dilates and translates of the Haar function generate an orthonormal
basis for L(IR) . The Haar transform is the earliest known example of an affine

wavelet transform.

5.2.3 Wavelets For L*(IR*) Constructed From Sigmoids

Althbugh we shall primarily restrict attention to the one-dimensional setting (L*(IR) ),
wavelets for higher dimensional domains (L?(IR®) ) may also be constructed within
the standard feedforward network setting with sigmoidal activation functions. In ap-
plications such as image processing it is desirable to use wavelets which exhibit orien-

tation selectivity as well as spatio-spectral selectivity. In the setting of Multiresolution
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Analysis [Mal89c] for example, wavelet bases for L(IR?) are constructed using tensor
products of wavelets for L?(IR) and the corresponding ‘smoothing’ functions. This
method results in three analyzing wavelets for L?2(IR?) each with a particular orienta-
tion selectivity. However neural network applications do not necessarily require such
orientation selective wavelets. In this case, it is possible to use translates and dilates
of a single ‘isotropic’ function to generate wavelet bases or frames for L2(IR®) (c.f.
[Mal89b]). Figures 5.9-5.10 show both an isotropic mother wavelet and an orientation
selective mother wavelet for L?(IR?) which are implemented in a standard feedfor-
ward neural network architecture with sigmoidal activation functions. The wavelets of
Figures 5.9-5.10 are implemented by taking differences of ‘bump’ functions which are
generated using a construction given by Cybenko in [Cyb88]. As before, if we let s(-)
denote the sigmoidal activation function, Cybenko’s construction gives the following
formula for a N-dimensional bump function,
N
ol2) = s («zzs(wi +d) - o(ai - d)) ,
i=1

where z € RN, and z; denotes the i*® component of z. This is the N-dimensional
equivalent of the ‘bump’ function ¢ (see (5.2.4)), of the one-dimensional case. The
difference is that two hidden layers are required in the general N-dimensional case.
Figure 5.11 shows the feedforward network implementation of a two-dimensional bump
function. Admissible analyzing wavelets for L2(IRN) may be constructed by taking
appropriate differences of such bump functions. Thus the analysis result of Theorem
5.1 is easily extended to higher dimensions in this manner (with the appropriate

modification for two hidden layers).

Remérk: It is important to note however, that as the dimension N grows, the size
of the network grows quite dramatically. This is primarily due to the number of
sigmoidal nodes required to implement a single wavelet. Thus, although there are no

theoretical problems with this formulation, practical considerations may weigh quite

heavily in it’s use. This already suggests that if the wavelet formulation is to find
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Figure 5.11: Feedforward network implementation of two-dimensional ‘bump’ function

using sigmoidal activation functions.

practical use in feedforward neural networks, it is perhaps necessary to consider other

activation functions which more naturally give rise to N-dimensional wavelets.

5.3 Synthesis of Feedforward Neural Networks Using

Wavelets

In Section 5.2.1, it was shown that affine frames for L(IR) can be constructed based
on analyzing wavelets 9 which are constructed as combinations of sigmoidal func-
tions. From this was derived the analysis result Theorem 5.1 which states that any
function in LZ(IR) may be approximated by a feedforward network with one hidden
layer and sigmoidal activation functions. This result is analogous to the existence
results mentioned in the beginning of this chapter. There is however an additional
statement in Theorem 5.1. Namely, given a particular function in L2(IR) , its exact

feedforward network implementation is given by its wavelet decomposition. In this
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section, we shall examine some implications of the wavelet formalism for functional
approximation based on sigmoids, in the synthesis of feedforward neural networks.
As was described in Section 5.1.1, sigmoidal functions have served as the basis for
functional approximation by feedforward neural networks. However, in the absence of
an adequate theoretical framework, topological definitions of feedforward neural net-
works have for the most part been trial-and-error constructions. We will demonstrate,
by means of the simple network discussed in Section 5.2, how, it is possible to incorpo-
rate the joint time and frequency domain characteristics of any given approximation
problem into the initial network configuration.

Let f € L2(R) be the function which we are trying to approximate. In other

words, we are provided a set © of sample input-output pairs under the mapping f,
0 = {(z',y) : ¢* = f(a'); &', 4’ € R},

and we would like to obtain a good approximation of f. To perform the approximation
using a neural network, the first step is to decide on a network configuration. For this
problem, it is clear that the input and output layers must each consist of a single
node. The remaining questions are how many hidden layers should we use and how
many nodes should there be in each hidden layer. These questions can be addressed
using the wavelet formulation of the last section. We consider a network of the form
in Figure 5.4, i.e. with a single hidden layer. At this point, a traditional approach
would entail fixing the number of nodes N, in the hidden layer and then applying
a learning algorithm such as backpropagation (described in Section 5.1.1) to adjust
the three sets of weights, input weights {wo,j}ff:l, output weights {wj,NH}ff__l, and
the biases {I;}. We would like to use information contained in the training set O to,
(1) decide on the number of nodes in the hidden layer, and (2)simplify the training
algorithm.

Here we describe two possible schemes for use of the wavelet transform formulation
in the synthesis of feedforward networks. The first scheme captures the essence of how

time-frequency localization can be utilized in the synthesis procedure. However, this
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scheme is difficult 'to implement when considering high dimensional mappings and
in most cases will result in a network that is far larger than necessary; We also
outline a second méthod which further utilizes the time-frequency localization offeredv
by wavelets to reduce the size of the network. This second method is conce‘ivably a

more viable option in the case of higher dimensional mappings.

5.3.1 Network Synthesis: Method 1
Let f € L2(IR) be the function we are trying to approximate, and as before, let

Q(f) = [wminvwmaxL

denote the frequency concentration 2 of f. Also assume that there exists a finite

interval
R(f) = [:Emin’ xmax]a

in which we wish to approximate f. Our network synthesis procedure is described in

algorithmic form below.

Synthesis Algorithm:

Step I Our first step is to perform a frequency analysis of the training data. In
this step we wish to obtain an estimate ( f), of the frequency concentration Q(f), of
f based on the data contained in ©. A number of techniques can be considered for
performing this estimate. We will not elaborate on such techniques here. Let &y, be

our estimate of wyin, and Oymax be our estimate of wiax-

Step II We now use the knowledge of Q(f) and R(f), to choose the particular frame
elements to be used in the approximation. The main idea in this step is to choose only
those elements of the frame {t,,,} which ‘cover’ the region Q ¢ of the time-frequency
plane defined by

;= R(f) x Af),

2Assuming f is real-valued, we need only consider positive frequencies.
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which represents the'concentration of f in time and frequency as determined from the
data ©. Recall that, the time frequency concentration‘ of the wavelets t,, ,, is denoted
by,

Q) = R () X Qun ().

Figure 5.12 shows the location of Qy, and the Q. ,,’s together with the time-frequency
concentration centers (a:c(dJm,n),wc(th,nP) of the frame elements. Therefore to
‘cover’ Q¢(¢,€) we need to determine the index set Z of pairs (m, n) of integer trans-

lation and dilation indices such that,

QunN Qs #0, for (m,n) € L.

Step III Given Z, it is now possible to configure the network. From the manner in
which Z is defined, we expect to be able to obtain an approximation to f of the form
f@)x Y tmantma(z) = fl2). (5.3.8)

(mn)el
for € [Tmin, Tmax]- The approximation error in (5.3.8) can be made arbitrarily small
by allowing € and € to go to zero in the computation of the various concentration
regions used to define the sets Qf and Q,,n. This is because we know that {thmn} is

a frame and therefore it is possible to write f as

f(.’l:) = Z cm,n(f)‘/}m,n (539)

mnel
for some coefficients {c,,,(f)}. Returning to the single-hidden layer feedforward
network shown in Figure 5.4, choose the number of nodes in the hidden layer to be
equal to the number of elements in Z, i.e. N = #(Z) where the activation function
of each node is taken to be 1 (as in 5.2.5). Now if we set the weights from the input
node to the hidden layer and the biases on each hidden layer node to the dilation and
translation coefficients indexed by (m,n) €Z, then the output of the network can be

written as

Yy = Z C'ln,?Lu"?n,'rt(:v) (5310)
(m.n)GI
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where @ is the input of the network and ¢, ,,’s are the weights from the hidden layer
to the output node. We have therefpre obtained a network configuration which d.nnes
an output function (5.3.10) that is exactly of the form required to a- proximate the
function f (Equation (5.3.8))

it remains to determine the coefficients ¢, ,’s in (5.3.10) that will result in the

de-ired approximation.

5.3.2 Network Synthesis: Method II

The synthesis algorithin described above in Section 5.3.1 uses identification of an
‘important’ region Qy of the time-frequency plane. Critical to identification of this
region is the ‘bandwidth’ estimate made in Step 1. There are two significant drawbacks

of making such a bandwidth estimate:

(1) Estimation of spectral concentration of signals in high dimensions is computa-

tionally expensive.

(2) Any estimate of spectral concentration which relies on Fourier techniques is
going to generate a generalized rectangle in joint time-frequency space. For
many functions such.a rectangular concentration in time-frequency is simply an
artifact of the spatial nonlocality of the Fourier basis. For example, an estimate
of the frequency concentration of the signal in Figure 2.1 will generate a rectangle
in time-frequency as the concentration of the signal. If we then use this rectangle
to choose which elements of a wavelet basis to use to approximate the signal,
the time-frequency rectangle will dictate that large dilations (corresponding to
high frequencies) of the wavelets be used over the entire time interval. However,
since each wavelet is also localized in time. and high frequency components of
the signal are localized as well, this is clearly an excessive number of wavelets.

Large dilations can be used locally where needed.

Spatio-spectral localization properties of wavelets can be further exploited to reduce

the number of network nodes (wavelets) used in the approximation. The basic idea
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is that since wavelets are well-suited to identify spatially local regions of fine scale
(high frequency) features 1n a signal, locations and values local maxima of the wavelet
.approximation coefficients at one scale (dilation) indicate whether or not it is necessary
10 locally relne iiie appivaim=sz= by L wce of wavelets at finer scales (c.f. [MH]).
A network synthesis algorithm using this idea would be an édaptive proceduic of the

following form.

(1 Coustruct and train a network to approximate the mapping at some scale ag

over the entire spatial region of interest.

(2) Identify local maxima of the wavelet coefficients and locally refine the approxi-

mation by adding new dilations (nodes) to the network where needed.
(3) Repeat (2) until some stopping criterion has been satisfied.

Using a scheme sich as this would result in approximations being performed over

regions of time-frequency of the form shown in Figure 5.13. Some aspects of this

N

X .
min xmax

Figure 5.13: Form of time-frequency coverage from approximation scheme of Section

5.2.

scheme are discussed in [Pat91].
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5.3.3 Computation of Coeflicients (Training)
Variational computation of wavelet coefficients based on training data

Although the problem of determining the wavelet coefficients in a finite approximation
can be well formulated, we know of no analytic solution to the problem of explicitly
computing the coefficients, given cnly (possibly irregularly spaced) samples of the
function. We can however formulate tiie coefficient computation problem as a varia-
tional principle in a fashion analogous to learning algorithms such as backpropagation.

We define our cost functional to be

E = Z ”Ol - yiHZ = Z | Z C'ln,n¢7n,n(mi) - yi

(z'y')€® (z%,y")€O© (mm)el

2 (5.3.11)

where Q' is the oﬁtput of the network when &' is the input as in Section 5.1.1. We
choose the wavelet coefficients as those which minimize E. As a result of the wavelet
formulation, the weights to be determined appear linearly in the output equation of
the network. Thus E is a convez function of the coefficients {¢,, ,,} and therefore any

minimizer ¢* = {c*

m,n}(m nyeZ Of E is a global minimizer. Simple iterative optimization

algorithms such as gradient descent can be used to minimize F.

Remark: Since the cost functional (5.3.11) defines a linear least squares problem,
the training problem may also be solved via the normal equations as discussed in

Chapter 2.

5.3.4 Simulations

As a test of the neural network synthesis procedure described above, we simulated
a few simple examples. As a first test we chose the bandlimited function comprised
of two sinusoids at different frequencies, specifically f(z) = sin(275z) + sin(2710z)
which is shown in Figure 5.14. Taking 2,y = 0.0 and 2, = 0.3, 50 randomly spaced
samples of the function were included in the training set ©. A single dilation of the

mother wavelet was chosen (m = 6) which covered the frequency range adequately
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Figure 5.14: Original bandlimited function f(z) = sin(275z) + sin(27102), (solid

curve), and finite wavelet approximation (dashed curve).

(see Figure 5.15). Translations® of this dilation of ¢ which contributed significantly
in the interval [Zmin, Tmax] Were used, resulting in 40 hidden units. Applying a simple
gradient descent scheme to minimize E, an approximation to f was obtained. The
resulting approximation is shown in Figure 5.14 along with the original function.

A second, slightly more complicated, example was simulated by first generating a
‘random spectrum (Figure 5.16) which is concentrated in frequency and then samnpling
the corresponding function in the time domain. The result of this simulation using

again just one dilation of the mother wavelet is shown in Figure 5.17.

3These translations were integer multiples of the translation stepsize b.
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Figure 5.15: (Top) Wavelet 1,,, for n = 0,m = 6, (Bottom) Square magnitude of

Fourier transform of ¢, (n = 0,m = 6).
5.4 Summary

We have demonstrated that it is possible to construct a theoretical description of feed-
forward neural networks in terms of wavelet decompositions. This description follows
naturally from the inherent transl@tion and dilation structure of such networks. The
wavelet description of feedforward networks easily characterizes the class of mappings
which can be implemented in such architectures. Although such characterizations have
been previously provided in a number of different forms [Cyb89, Cyb88, HSW89], to
our knowledge, no previous characterization using sigmoidal activation functions is
capable of defining the exact network implementation of a given function. What is

distinctly different about the wavelet viewpoint is that it provides an extremely flexi-
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Figure 5.16: Frequency-concentrated ‘random’ spectrum.

ble (not necessarily orthogonal) transform formalism. This flexibility has been utilized
in this chapter to construct a transform based upon combinations of sigmoids. Once
again, we would like to point out that in general there is nothing special about sig-
moidal functions and that a variety of different activation functions, including e.g.
orthogonal wavelets can be of significant interest. Sigmoidal functions however hold
one attraction; such functions can be easily implemented in analog integrated circuitry
(see e.g.[MeaB9]). Aside from this, we have chosen to work with sigmoidal functions
only to demonstrate the general methodology that can be applied in the context of
feedforward neural networks.

In addition to providing a theoretical framework within which to perform analysis

of feedforward networks, the wavelet formalism supplies a tool which can be used to

incorporate spatio-spectral information contained in the training data in structuring of
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Figure 5.17: Frequency-concentrated signal corresponding to random spectrum in

Figure 14 (solid curve), and finite wavelet approximation (dashed curve).

the network. Two possible schemes to perform this task were described in Section 5.3.
Minimality in terms of the number of nodes in the network cannot be guaranteed using
these methods?. However, it is possible to estimate the approximation error ([Dau90])
in terms of the signal energy lying outside the chosen spatio-spectral region.

Here, attention has been primarily restricted to approximating functions in
L2(IR) . Most applications where neural networks are particularly useful involve map-
pings in higher dimensional domains (e.g. in vision, robot motion control, etc). Al-
though extensions of the methods of this chapter to higher dimensions are possible

(as described in Section 5.2.3), such extensions have the potential to be computation-

*This problem of large networks is particularly limiting when considering mappings in higher

dimensions
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ally expensive. We are currently studying the formulation of more conli)utationally
viable synthesis techniques for approximation of higher dimensional mappings using
feedforward neural networks.

Using the wavelet formalism to synthesize networks results in a greatly simpli-
fied training problem. Unlike the situation in traditional feedforward neural network
constructions, the cost functional is convex and thereby admits global mini. *izing so-
lutions only. Convexity of the cost functional is a result of fixing the weights in the
arguments of the nonlinearities so as to provide the required dilations and transla-
tions. Simple iterative solutions to this problem such as gradient descent are thus

justifiable and are not in danger of being trapped in local minima.
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Chapter 6

Conclusions and Discussion

In this dissertation we have examined two problems, both of which may be considered
under the heading of approximatfon theory. Specifically we considered the problems of
(i) rational abproximation and identification of stable linear systelﬁs, and (ii) develop-
ing a theoretical framework for analysis and synthesis of feedforward neural networks.
These problems were both addressed within the nonclassical setting of frames and
time-frequency localized representations. The key argum.ent to be made in support
of the use of frames rather than orthonormal systems is the tremendous flexibility of-
fered by frame theory in the selection of ‘basis’ functions. In many applications such
as those considered in this dissertation, the choice of ‘bases’ with suitable properties
is more important than orthogonality or even linear independence. The role played
by time-frequency localization in these applications is one of providing a systematic
procedure for approximation.

In Chapter 3 it was shown that frames for the Hardy space H?(II*), may be
constructed via dilations and translations of a single rational analyzing wavelet. Fur-
thermore, a characterization of all rational H?(IIT) analyzing wavelets was given in
Theorem 3.4. One of the main results of Chapter 3 is Theorem 3.3, which states that
transfer functions in H (IIT), may be represented as infinite sums of time-frequency
localized real-rational functions of bounded McMillan degree. The representation of

Theorem 3.3 arises via a regrouping of terms in wavelet series representations, where
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the analyzing wavelet is chosen to be real-rational. The seri.es obtained via this re-
grouping is called a wavelet system (WS) decomposition. Wavelet system decomposi-
tions are a means of representing causal LTI systems with square-integrable weighting
patterns as parallel combinations of time-frequency localized finite-dimensional sys-
tems. The key property of such decompositions, which makes them useful in problems
of rational appro:mation is the property of time-frequency localization. There are
of course systems for which time-frequency localization may offer no significant ad-
vantage in the construction of low-order approximants, e.g. systems with very large
‘bandwidths’, and slowly decaying impulse responses. However, for an important class
of physical systems, time-frequency localization can lead to compact representations.
For such systems, we showed that rational approximants of fairly low order may be
obtained by suitable truncations of the WS series. Furthermore we showed that min-
imal state space realizations for the approximating systems may be generated under
easily verified hypotheses on the poles of the analyzing wavelet. A coarse bound on the
approximation error was derived based on the ¢% norm of the expansion coefficients.
The methods of Chapter 3 were illustrated by the example of a nonrational transfer
function arising from the heat equation with Dirichlet boundary control.

In Chapter 4 we considered the use of truncated WS series as black-box rational
parametric models in problems of system identification. In this case as well, the key
property of of WS representations was shown to be time-frequency localization. It was
shown that time-frequency localization provides a convenient means of incorporating
a priori information about the unknown system into the formal properties of the
paﬁ-ametric model. Moreover, time and frequency domain a priori knowledge may
be treated simultaneously via WS models. We made both qualitative and numerical
comparisons of WS models and the classical Laguerre filter models. It was shown by
examples that the performance of WS models can be significantly better than Laguerre
models for some commonly encountered classes of systems. The main difficulty with
the Laguerre models is due to the fact that too much emphasis is placed on a single

parameter, namely the Laguerre shift parameter p. This difficulty has been noted on
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a number of occasions in the pasi:. We showed that the improvement on the Laguerre
model suggested by Wahlberg [Wah91] which involved the use of a finite number of
Laguerre shift parameters p;, may be formally interpreted in the context of frames.

In Chapter 5 we demonstrated that it is possible to construct a mathematical
description of feedforward neural networks via affine wavelet theory. In this descrip-
tion the inherent translation and dilation structure of such networks is utilized. The
wavelet description of feedforward networks identifies L? as a class of mappings which
can be implemented in such architectures. The flexibility of frame theory was utilized
in constructing wavelet transforms based on sigmoidal functions. It was pointed out
that we use sigmoidal functions here mainly to demonstrate the general methodol-
ogy, and to show that this methodology is applicable to the most commonly used
activation function. A key difference between the wavelet formulation and previous
characterizations of the approximating properties of feedforward networks with sig-
moidal activation functions, is the (nonorthogonal) transform formalism which gives
the exact feedforward network implementation of a given mapping.

We also discussed the use of spatio-spectral localization properties of of affine
wavelets as a tool for the synthesis of feedforward networks, and showed that such

synthesis schemes lead to convex training problems.
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Appendix A

Proof of Daubechies’ Theorem

Since this dissertation makes extensive use of Theorem 2.6 and its Corollary, we include
the proof for the sake of completeness. The proof also illustrates the applicability of
this theorem in the case of the Hardy space H2. Proof of Theorem 2.6 relies on the

Poisson summation formula which we state below.

Lemma A.1 (Poisson Summation Formula) Let F denote the Fourier transform

of f. Then

L oom, a2
S flt+aT) = 1 3 e fin )
T T
nEZ ned

A commonly used form of the Poisson summation formula is,

PR el > 6t - 2f—"). (1.0.1)
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a
neZ ne
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m,n
1 ~~
% <f7 h7’n,n>

m,n

1 . -m — - -
= ™ [ [ e e R (a5 g ) flw) fle duodo

m,n

2

151



Applying the Poisson summation formula to the sum over n,

S )
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By first applying the Cauchy-Shwarz inequality to the integral on the right, and then

to the sum over m, we get
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Hence by hypothesis (3) there exists by > 0, such that
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miia) = ¥ (A-TRBGR) " >0,
h bo bo
';éO
which gives the lower frame bound 4 > 0. The upper frame bound follows in a similar

fashion. .



Appendiic B

Proofs from Chapter 3

Proof of Proposition 3.2
Without loss of generality we can consider the case m = 0. Therefore we need to

check that for b € IR,

/IR flw)g(w+ b)dw — (/}R flw)g(w— b)dw> =0. (2.0.1)

Consider the real and imaginary parts of the Lh.s. of Equation (2.0.1) separately.

Real part Taking the real part of Equation (2.0.1),

g(w+ b)dw - </]R flw)g(w - b)dw))

- m( F@)g(w + b)dw — / f(@)g (w—b)dw)
(L.
(-

g(w+b) - g(w—b)dw-l—/ f(w) (g(w+b) — (—b))dw)
/f—w (9= +8) = g(w = b)) dw
—l—/ flw)(glw+b) — g(w—b))dw)
= Re ([ f-) (ol (= 1) — g(~(oo+ b))
+ [T 50 (o0 4 8) ~ gl - B do

= e | [ T @00 gt b)do+ [ f) (gt ) = gl - b)) do

H(w) “H(w)
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- = Re (/Ooo {H(w)~ﬁ(w)} dw)#O

Imaginary part

( [ e+ 0o~ ( [ st - b)dw))

_ Ln</f@mw+bmwg/f@,w—mm0

T

=

= Im ([ () 9w+ )+ gw— b)) dw-{—/ (w+b)+g(w—-b))dw)

[ 5 49 + (- - B o

(L
= Im <
[ fw)(g(w+b)+ g(w —b))dw)
= Im (]Oof(—w (9(=( = 1)) g(~(w + b))

+/ f(w) (g{w +b) +g(w—b))dw)

= T | [T ) @@= ) + 5@+ ) do + [ ) (o +5) + gl — b)) d

Hio)
- Im ( /0 T H@) + W) dw> =0

Which proves the proposition m.

o
£

B.1

Proof of Theorem 3.5

We outline here the proof of Theorem 3.5.

Proof of part (a): Since (3.4.28-3.4.30)is a 2/N-dimensional realization of G™"(s),
we need only prove that the rational function G™™(s) is of order 2N for all n € Z,
n # 0 if and only if (3.4.36) holds.

The poles of G™"(s) (see (3.4.18)) are,

{nk(7nv n)» Tﬁc.(’lnv TL), Vk(m-/ n)? T/’;{(m, 71’)}
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where mi(m, n) and v (m, n) are defined by (3.4.17). Assuming (3.4.36) holds, ni(m.n)
and v (m,n) have nonzero imaginary parts for all m,n € Z. Therefore, at s =
nk(m, n) for example, the term,

H(s ~ Mk(m,n))(s — g(m,n))

k
which appears in the numerator polynomial N n(s) of G™™ will be 1.0nzero. Further-
more, the assumption that ¥ is of order N , implies that p; # 2z, for all z, k. Therefore
at s = ni(m,n) the remaining (nonzero) term in the numerator of G™" will be,

N n(i(myn)) = a H(s — Bi(m,n))(s — v;(m, n)) H(s = ME(m,n))(s — vg(m,n)),
J k

which shows that G™™ has no zeros at nk(m, n). Exactly the same argument can be
used to show that there is no cancellation with zeros for the remaining poies. Thus

G™" is of order 2N.

The converse is readily proved using a similar pole-zero cancellation argument. m

Proof of part (b): By hypothesis, (Amns Bmons Conm) is a minimal realization of
Gmn(s) = N n(8)/ Do () for all (m,n) € J. Therefore Npyn and D, ,, are coprime

polynomials. Consider the parallel combination of two WS transfer functions.
G7(8) = Grmyni (5) + Ging iy (9), (2.1.2)

where J ={(my,m), (ma,n2)}. In this case (N, (8), Dimgmy(s)) and

(V2,2 (8) Diny my (5)), are relatively coprime pairs. Rewriting (2.1.2),

Nj(s
69 = 523
Nmum (S)Dm2,ﬂ2 (3) + *szﬂn(s)Dﬂuﬂn (3)

Dml,nl (‘S)sz,m (8)

Therefore N7 and D 7(s) will be relatively coprime if and only if Dy, », and Dy, 0, ($)

are relatively coprime. The roots of Dy iny and Dy n, () are given by (3.4.18). Thus

Dy ny and Doy, 1, (8) will have a common root if and only if,

ag " (P14 imabo) = ag ™ (p; £ ingbo),



for some [ andj. Solving for n,

—1 777;1 —1my . my—ma
mo= g (aO pj — p1> + aq ny
0

(agll'i”LQ(%e p; +1Im p;) — (Re pr+1Im pl)> +apt T ™20y

i
bo
i (aml—mzzm T )i mi—mso
bo 0 P; m p ) n
i

% (az)nl"m%e p; — Re pl) (2.1.3)

However, by hypothesis (3.4.37) there can be no integer solution ny to (2.1.3) since
the imaginary part of (2.1.3) will always be nonzero. The above argument for two WS
transfer functions is easily extended to any finite number of WS transfer functions in

parallel. m
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Appendix C

Some Intuition on Frames

This appendix is included to help develop intuition and clarify some of the properties of
frames. A few new results are presented as well. Often the familiar finite-dimensional
Euclidean spaces RN, serve as a good place to develop intuition. For this reason, most

of the examples below are in the setting of IRYN.
C.1 Simple Examples of Frames
Let us begin with a few examples of frames in the plane IR*.
Example 1: Exact Frame with A # B
As a first example, consider the vectors,

2 = (1,007 and z; = (sinf, cos ).
Then, {z1, 22}, is a frame for IR? with frame bounds

A = 1-—cosf

B = 14 cosé.

The vectors in this frame are linearly independent, and hence form a Riesz basis for

IR%. Note that with § = /2, we get the standard orthonormal basis for IR2.
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Example 2: Redundant Tight Frame

Often the notion of tightness of a frame is confused with the notion of linear inde-

pendence. This next example illustrates the disjoint nature of these two concepts.

Let,

7 = (1,0)7
z, = (=1/2,V3/2)
z3 = (~1/2,~V3/2)

(see Figure C.1). Clearly the above three vectors are not linearly independent, but

Figure C.1: A redundant tight frame for IR2.

they do in fact form a tight frame for IR?, with A = B = 3/2. Thus any vector

y € IR?, may be written as

<y,5"'1:ck>zk = - 23: (y,2k) T

1 k=1

y:

3
k=

wins

The interesting thing about this example is that any n unit-length vectors, where n is
an odd, finite integer, will form a tight frame for IR? if they are distributed uniformly
in the sense of the angles 6 (see Figure C.1) between the vectors is § = 27/n. By a

leap of faith, it is convenient to think of tight frames as frames in which the frame

elements are uniformly distributed. It is clear however that tightness does not imply
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linear independence in any sense since by the above example, a tight frame may be
made arbitrarily redundant. Moreover, linear independence does not imply tightness.

as is clear from Example 1, and also the definition of Riesz bases.

C.2 Frame Expansion Coefficients

In this section we demonstrate some properties of fraiue expansions, in terms of the
expansion coefficients. Let {h,} be a frame for a Hilbert space H, and let f € H.

Consider the frame representation,

F=3 < £,5 hy > b (3.2.1)

For a redundant frame, the frame representation (3.2.1) is not in general unique,

and moreover, we know by Theorem 2.5 that if {a,} is another sequence such that
f =, anhy, then

Yan = 1< £, e > P> 1< £, e > —an ] (3.2.2)
The above equation defines a hyperplane in ¢2, and Theorem 2.5 may be interpreted
as saying that {< f, 57 'h, >} is the unique sequence of expansion coefficients which

is orthogonal to this hyperplane. Every sequence {a,} satisfving (3.2.2), does not

however comprise a representation of f, as the following proposition states.

Proposition C.1 Let {h;} be a frame for H, and let f € H, and {a,}€ {* such that
(3.2.2) is satisfied. Then it does not follow that f =3 aph,.
Proof: Let c; denote (f, S~'hy), and assume c¢; # 0 for some j. Now define a
sequence {ag}, by
0 J#k
=l lal® j=k

ag =

Then {a} satisfies (3.2.2) since,
Zlck—akIZ Zlak!2+2|ck|2 — 2Re chﬁ
. . 1 .
Solar? + 37 ferl® — 2Re i > lexl®
J

olar® =3 fer?

fl
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However, it is clear that we in general cannot write,

f= Zakhk = a;h;,

unless f is a multiple of the frame element /;. ®m.

C.2.1 Distribution of Coefficients

An interesting property of the coefficients ¢, = {f, 57 'h,), is the manner in which
they are ‘distributed’. Roughly speaking, the among all possible coefficient sequences
representing the function f, the sequence‘ {c,} is the most ‘uniformly distributed’.
This uniform distribution of coefficients is directly related to the minimum norm
property of {c,}. To clarify this statement, consider the following example of a frame

for IR2.
hi = (1,0)T and hy = hs = (0, L.

Thus {hi, ks, hs} is an inexact frame for R? with A=1, and B = 2. Thus if we
consider, the vector y = (0,1)7 as a test vector. then all representations of y with
respect to the frame {hy, ha, h3}, ie. all {0/17(1,2,(1;3} such that y = Z?zl a;h;, are
given by,

a1 =0 and ag+az=1.

Thus the minimum norm sequence is {c1, ¢z, ¢z} = {0,1/2,1/2}. This minimum norm
sequence clearly makes the most uniform use of the redundancy in the frame by
distributing the contributions of hy and hg evenly. The most ‘compact’ representation
of y in this case is {ay,a9,a3} = {0,1,0} (or {0,0,1}) , which makes no use of the
redundancy.

In many applications, such as signal compression, it is desirable to work with the
most compact representation. One criteria for measuring compactness of a represen-
tation is in terms of the entropy of the coefficients. For compactness, one would
like to minimize the entropy. This idea has been employed by Coifman et. al.

[CW90, CMQW90] for the selection of a ‘best (wavelet) basis’ for compression of
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signals. By the above example, it is clear that although the most distributed rep-
resentation is uniquely defined, the most compact representation is not in general
unique for redundant frames. One drawback of selecting the most compact represen-
tation with respect to a redundant frame, is that the robustness properties of frame
representations (see Section 2.3.1), are lost. This is because selection of the most

compact representation, involves eliminating the effects of redundancy.

C.3 Addition of Frames

It is interesting to examine what happens when frames for two subspaces M and N
of a Hilbert space H, are combined and considered as a frame for the direct sum
space M @ N. For the case in which the frames are actually orthonormal bases and
the subspacesl.M and N are orthogonal to one another, it is well-known that the the
union of the two frames forms an orthonormal basis for the orthogonal direct sum
space M ® N. However, in the general setting of frames, and subspaces which are not
orthogonal to one another, some fairly unexpected things can happen.

Here, we obtain results which rely on the subspaces M, and N being disjoint. We
show in Section C.3.1 that given subspaces M and N of a Hilbert space, and frames
associated with each of the subspaces, the union of the two frames is a frame for
M & N whenever the minimum angle, 8,, between the two subspaces is bounded away
from zero. We also show that the lower frame bound for the union of the two frames
can be bounded below in terms of the quantity (1 — cos#é,,), and bounded above
by the minimum of the lower frame bounds associated with the frames for M and
N individually. Results of this nature are useful when considering truncated frame
approximations. Some simple examples in which the frame bounds can be explicitly

computed are provided to demonstrate accuracy of the frame bound estimates.

C.3.1 Frames Generated by Subspace Addition

Definition C.1 Given two subspaces M and N of a Hilbert space H, the smallest
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angle 8,, between M and N s defined as,
cosb,, = sup sup |[< z,y>],

€M yeN
llell=1llyl[=1

where 8,, € [0,7&:/2].

We shall make use of the following Theorem in proving the main result (Theorem C.2)

of this section.

Theorem C.1 Let M and N be subspaces of a Hilbert space Hwith M NN = {0}.

And let Py and Py be orthogonal projectors on M and N respectively. Then

o | (Pv — Pn) =]
s€MBN, ||o]|0 [Eal

Proof: See [Ste73] ]

= sin 6,,.

Theorem C.2 Let M and N be nontrivial, closed subspaces of a Hilbert space H.
Let {z;} be a frame for M with frame bounds Ay and Byy, and {y;} be a frame for
N with frame bounds Ay and By. Define = Span({z;}U{y;})-

Let 8,,, denote the minimum angle between the subspaces M and N .

Then if, 0, > 0 {z;,y;} is a frame for  with frame bounds

Ag

v

ZQ = min(Ap, An) (1 — cosby,)

~ 1
< = By, B in(2, ————
Bg Bg = max(Buy, By) min(2, T cosb..

Proof:
Note that M (N = 0 by the hypothesis that 6,, > 0. So @ = M & N and thus if
g € Q there is a unique decomposition of g as g = z + y wherez € M and y € N.
Lower Frame Bound:

Take g € @ and let Py and Py be orthogonal projection operators onto M and

N respectively.

Sl<gzi>P+]<gy > ST < Pug,z; > P+ < Png,y; > |
J J

Al Pugl® + Anl| Py gl

> min(Anr, AN) {|Prgll? + | Prgll?} (3:3.4)

v

vV
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Now,

| Prgll® + || Pvgll* = ||Pmg — Pyngll* +2Re (Pug, Png)
, Py — Py)gll1% .
> Ju “(——fi—“—g—“—)g—”-} l9ll? = 21(Pug, Pro)l

= sin’® O llgll* — 21(Pug, Png)l

N/

sin 8, 19112 — 21| Prrglll| Pgl| cos 6,

> sin? O, gl — (| Pargll® + | Py gll?) cos b,
(3.3.5)
Therefore,
(IlPwgll? + | Pngli?) (1 + cos 6,,) > sin® O |g]]. (3.3.6)
Or equivalently,
. sin? g 1—cos? 0, 0 o
| Prgll® + | Prgll® > ﬁ#lw”? = WHQHZ = (1 = cos by, ) llgl* (3.3.7)

Thus from (3.3.4) and (3.3.7) we get

Zl <g,z; > |2 +| <4g,Y; > Iz > min(A,\/[,AN)(l — COS om) HgHz

J

Upper Frame Bound:

IA

dol<gai>P+<g,y > Bu||Prall® + Bwll Pygll?

J

IN

Bullgl* + Ballgl* < 2max(Bus, Bi)|[813.8)

Also,

il

| Pygll® + || Prgll? | Prvg — Prgll® + 2Re (Pug, Png)

< gl +2Re (Pug, Prg)
< llgli* + 201 Pregll| Pgll cos b
< Nl + (I1Pugll® + | Prgl?) cos b,

(3.3.9)
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Thus,

(IlParg]l* + 11 Prglf?) < lol* (3:3.10)

1 -~ cosb,,

So we also have,

1

dol<gzi> P+ <gy > < mabX(BM,BN)m@*‘HgH2 (3.3.11)
]' m

Therefore (by (3.3.8) and (3.3.11)),

1

o < Bg = max(Bpy, By) min( Sy—

)

It should be noted that the conditions under which Theorem C.2 guarantees the
union of two frames to be a frame for their combined span, are only sufficient con-
ditions. In fact in all finite-dimensional cases, these conditions are not necessary.
In these cases, estimates of the frame bounds can be made using knowledge of the
correlations ({z;,z;)) among the frame elements themselves. However as we show by
example in the next section, in an infinite-dimensional setting, the union of two frames
can fail to form a frame if 4,, = 0.

As can be seen from Equation (3.3.3), the estimate IZ{Q of Theorem C.2 for the
lower frame bound Ag is always less than or equal to min(Aas, Ay). We now show that
the actual lower frame bound Ag must indeed be less than or equal to min( A, An).

To show this we first prove the following lemma.

Lemma C.1 Let M and N be nontrivial, closed subspaces of a Hilbert space H,
MNON ={0}. Define@Q =M@ N. ThenVz* € M, 3 g* € Q such that

PMg* =z* and PNg* = 0. (3312)

In particular,

g =- Py)(I - PMPN)_la:*,

satisfies (3.3.12).
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Proof: First note that Vo € Q, (I — Py)z € N+ s= ondly since || Py Pyl < 1.
(I — Py Py)~! exists and is given by
(I=PuPy) 'z =3 (PyPy)z. (3.3.13)
k=0

For any z € M, (I — Py Py)~'z € M since every term of the series in the right hand
side of Equation (3.3.13) is in M and M is closed. Now let z = (I — Py Py)"1z* and
let g* = (I — Py)z. Clearly Pyg* = 0. Also,

PMg* = PM(I— PN)(I — PMPN)_I:L‘*

= Py(l- PMPN)_la:* — Py Py(I - PMPN)_l."{:*

(I = Py Py)~'a™ — PyyPy(I — PyPy) '2"
(since (I — Py Py)~'z* € M)

= (I-PyPy)I - PyPy)tz"=2* (3.3.14)

Theorem C.3 Let M and N be subspaces of a Hilbert space H. Let {z;} be a frame
for M with frame bounds Apr and By , and {y;} be a frame for N with frame bounds
An and By. Let 8, > 0 denote the minimum angle between the subspaces M and N
and define Q = M@ N. Then if Ag is the lower frame bound for the frame {z;} | {y;}
of @,

Ag < min(Apm. An).

. Proof:

Without loss of generality, assume Aps < An. Thus since Aps is the lower frame,

bound for the frame {z;} of M, for any € > 0, 3 z* € M such that

3Kz 2 < (Am + 9llz"|1*.

By Lemma C.1 3 ¢g* € @ such that Pypg* = ™ and Pyg* = 0.
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Therefore,

Yo Ha*zd* + > g™ )

i

S UPuvg™ 2 )+ Pyg™, yi)?
Z |<x*’$j)|2 +0
(Am + Olle™)|? < (Apm + )llg™|}?

IA

Thus Ag < Apm + € and since ¢ > 0 is arbitrary we have that Ag £ Ay =

min(Apr, AN). n

C.3.2 Examples

In this section we consider a few finite-dimensional examples in which the frame
bounds can be explicitly computed. The general methodology in these examples is as
follows.

Let T : H — £* be defined such that 7' : f — {< f,z; >} where {2;} is a frame
for H. Therefore the frame operator 5 = T™T. If we let {e;} be an orthonormal basis

for H then the matrix representation of T with respect to this basis is given by
W = [wij] = [z, ¢;)] -

Hence the upper and lower frame bounds are given by the upper and lower spectral
limits of W*W. In the finite dimensional case, the frame bounds can be computed as
the maximum and minimum eigenvalues of W*W or equivalently, the squares of the

maximum and minimum singular values of T'.

Example I: A frame for IR? from frames for 1-D subspaces

Let, z = (1,0)7 and y = (sin 0, cos#)”. Define M = Span{z}, N = Span{y}; so «
is a frame for M with frame bounds Apy; = Byr = 1 and y is a frame for N with

frame bounds Ay = By = 1. In this case 8,, = 6. Clearly for any angle § > 0,
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Span{z,y}=IR* = Q. Using the standard orthonorual Lasis for IR?, we get

1 0
W =
sinf co¢
Hence
Ag - Amin(W*W) = 1—cosf
Bg = Anax(W*W) = 1+ cosb

Since here the lower frame bound is equal to the lower frame bound estimate of The-
orem C.2, in this case Theorem C.2 provides both necessary and sufficient conditions.
Figure C.2 shows the actual upper and lower frame bounds for this example.

Upper and Lower Frame Bounds For 2-D Example

frame bounds

08} J
064

041

0.2f

0 10 20 30 40 50 60 70 30 90

subspace angle (degrees)

Figure C.2: Actual upper and lower frame bounds for two-dimensional example

Example II: A Frame for R? from frames for IR? and R

Let z, = (1,0,0)T, 2y = (0,1,0)T and y = (cosw cos b, sinw cos §,sin §)T. Let M =
Span{zq,z,} and N = Span{y}. Here 6,, = §. So for any 6 > 0M & N = IR3. For

this example,
1 0 0

W = 0 1 0

coswcosf sinwcosf sind



in this example as well, we have,

Ag = /\min(VV*VV) = 1-—cosf
Bg = Apax(W*W) = 14 cosé

Example 1II: Other Frames for IR? from frames for IR? nd R.

Let 21 = (1,0,O)T, 2z = (cosv,sinv,0)T and y = (cosw cos B, sin w cos 8, sin H)T. Let
M = Span{z1,z,} and N = Span{y}. Here Ay =1, Apy =1 —cosy and §,, = 6. So
forany 6§ >0 M & N = IR3. So,

1 0 0
W= cos 7y sin 0
coswcosf sinwcosf sinf
In this case, analytical expressions for the eigenvalues of W*W are quite complicated.
Thereiore we shall demonstrate the lower frame bounds numerically for a few values
of v and w. Figures C.3-C.7 each show for a particular value of y, the actual lower

frame bounds and the estimate provided by Theorem C.2 for different values of w.

03

0.25¢

02

0.15

Lower frame bound

G1F

0.0s}

0 10 20 30 40 50 60 70 80 90

Minimum subspace angle in degrees

Figure C.3: Example III with v = 7/4. Solid Line: Lower frame bound estimate;

Dashed lines: Actual lower frame bound for different values of w

It can be seen that the lower frame bound estimate becomes increasingly accurate as

approaches 7 /2. For small v the estimate is quite conservative for certain values of w,
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0451 o E
04 a0 - .

035} o 1

Lower frame bound

0 10 20 30 40 50 50 70 80 90

Minimum subspace angle in degrees

Figure C.4: Example III with v = 7/3. Solid Line: Lower frame bound estimate;

Dashed lines: Actual lower frame bound for different values of w

however in these cases, there also exist values of w for which the lower frame bound is
close to the estimate of Theoreni C.2. In this loose sense, the estimate of Theorem C.2

is as good an estimate as can be derived using knowledge of the minimum subspace

angle alone.

Lower frame bound

0 10 20 30 40 50 60 70 80 90

Minimum subspace angle in degrees

Figure C.5: Example III with v = 7/6. Solid Line: Lower frame bound estimate;

Dashed lines: Actual lower frame bound for different values of w
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0.7

0.6

05 %

04f

03F

Lower frame bound

0.2+

0.1

0 I 20 30 40 5o 60 70 80 90

Minimum subspace angle

Figure C.6: Example IIT with v = 37/8. Solid Line: Lower frame bound estimate;

Dashed lines: Actual lower frame bound for different values of w
Example IV: Violation of Lower Frame Bound when 4,, =0

By this infinite-dimensional example (which can be found in [Gil91]) we show that
the lower frame bound can indeed be zero in the case where 6, = 0.
Let {e;} be the standard orthonormal basis for ¢ and let v¢; = e3;, ¢; =

V1—1/j es; + /1/j e3j41. Thus the sequences .{t;}, and {¢;} are orthonormal

0.9

0.8+

0.7p

0.6

0S5p

0.4

Lower frame bound

0.3

025

0.1

0 10 20 30 40 50 60 70 80 90

Minimum subspace angle

Figure C.7: Example III with ¥ = 77/16. Solid Line: Lower frame bound estimate;

Dashed lines: Actual lower frame bound for different values of w
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sequences and thereby frames for their respective closed spans. However if we consider
the union of the two frames and take es;41 € Span{y;, ¢;} as a test vector, it is easily

seen that

. . 1 1 .
Z |<63k+1,¢j>|2 + Z ]<€3k+1,<l5j)!'~Z = E = EHC%HHZ'
J J

Hence since % — 0 as k — oo, the sequence {9;, ¢;} is not a frame for its span.

C.3.3 Discussion

In this section we have provided a geometric characterization of conditions which
guarantee that the union of two frames is a frame for tlie appropriate direct sum
space. The main result of this section is contained in Theorem C.2 which says that
given frames for subspaces M and N, the union of the frames is a frame for the direct
sum space M & N provided that the minimum angle between the two subspaces is
bounded away from zero. An estimate for the lower irame bound can be made in
terms of the quantity 1 — cos#,,. As mentioned in Section C.3.2, the lower frame
bound estimate in Theorem C.2 is in a sense the best estimate which can be made
using the minimum subspace angle alone. Furthermore, we have shown that the lower
frame bound is nonincreasing with respect to the lower frame bounds for the original

subspaces.
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