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1 Introduction

Information Dynamics is a framework for agent-based systems that gives a central position to the role
of information, time, and the value of information. We illustrate system design in the Information
Dynamics Framework by developing an intelligence game called AD involving attackers, defenders
and targets operating in some space of locations. The goal of the attackers is to destroy all targets.
Target destruction takes place when the number of attackers in the target’s neighborhood exceeds the
number of defenders in this neighborhood by a value WINNING_DIFFERENCE. The goal of defenders
is to prevent attackers from achieving their goal.

The model that we present has attributes that, when appropriately used, can generate either stati-
cally or dynamically features such as:

e hierarchy of agents (e.g., information collectors and controllers)
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e information fusion

e restricted communication models

2 Model

2.1 Space

The game is played on a rectangular board of size XMAX by YMAX. Each location L is identified
by its (x,y) coordinate, 0 < x < XMAX, 0 <y < YMAX, and can be in one of two states, acces-
sible or inaccessible. Accessible locations can be occupied by one or more entities involved in the
game. Inaccessible locations can not be occupied by any entity. For a given location L we define
neighborhood of L as:

neighborhood(L) = {all accessible locations X for which |[X.x —L.x| <1 and |[X.y —Ly| <1
and not (X.x = L.x and X.y = L.y)}

2.2 Entities involved in the game

The board is populated with following entities:

o attacker agents
e defender agents

e targets

Each agent has a unique identifier. The parameters ENTITY_IDS and INITIAL_POSITIONS describe,
respectively, the identifiers and initial positions of the entities on the board. At each instant an
entity occupies one accessible location of the board. An accessible location can have one of the
following configurations of entities at any instant:

e cmpty
e one or more attacker
e one or more defender

e 3 target

2.3 State of the agent

The state maintained at each agent contains a set of variables encoding the information that the
agent gathered, for example, the time-stamped history of scan results, received messages, and results
of move operations. Moreover the agent’s state may contain any information that agent derived from
its state.
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2.4 Allowed actions for attackers and defenders
An agent at location L can perform following actions:

e Move(loc): to a location loc in its neighborhood. The operation returns boolean value of
true when the move succeeded and false when the operation failed (due to the location being
inaccessible, occupied by a target, or occupied by agents of different type).

e Scan(loc): a neighboring location. The result of the scan operation consists of following data:

— occupancy type - specifies the type of entities at the location. Possible values are:
0 - empty location
1 - location occupied by the agents of the same type

*
*
* 2 - location occupied by the agents of the opposite type
* 3 - location occupied by a target

)

4 - inaccessible location
— expected number of entities at the location (used for occupancy type 2)

— maximal deviation from the expected value (used for occupancy type 2)

There is a function SCAN_RESULT_FUNCTION that defines distribution of values.

e Chat(agent.id(s)): communicate with other agents. An agent can send one message to CHAT_DEGREE

other agents of its kind. The message may contain part or all of the perceived world informa-
tion of the agent. The message is sent using the destination agent’s identifier as the receiver
address. An agent can receive multiple messages from other agents of its kind.

2.5 Strategy of the agent

Each agent defines a STRATEGY_FUNCTION that implements its logic of execution. The function
may make use of the agent’s state and perform actions allowed for the agent.

2.6 Allowed target actions

At each instant a target is located at a board location. The target can move to a neighboring empty
location. Each target has a distribution function TARGET_MOVE_DIST defining the probability of
target to move to one of neighboring locations or to stay at the current location.

Notes: The TARGET_MOVE_DIST function may depend on location or its neighborhood. For exam-
ple, the function may define equal probabilities for 8 neighboring locations and currently occupied
location. On the other hand we can have the distribution preferring moves in a given direction.

2.7 Goal of the attackers

The goal of the attackers is to destroy all targets. The destruction of a target takes place when the
number of attackers in the target’s neighborhood exceeds the number of defenders in this neighbor-
hood by WINNING_DIFFERENCE.

AD game January 31, 2002 Page 3



2.8

Goal of the defenders

The goal of the defenders is to prevent attackers from destroying targets.

3

3.1

Sample strategies

Attacker’s strategy

Each of attacker agents executes following strategy:

3.2

move randomly searching for a target

once the target is sensed decide whether to chase. To do so agent performs random selection
between two choices: follow the target or ignore the target.

if the attacker decides to follow the target it starts moving in direction of board position where
the target was last sensed. Moreover the attacker sends messages to other attackers giving
them coordinate of the current target’s location.

each agent that is not currently chasing a target and receives message from other agent starts
moving towards the direction specified in the message

the chase ends once either the chased target is destroyed or a specified timeout expires

Defender’s strategy 1

Each of defender agents executes following strategy:

3.3

move randomly searching for a target

once the target is sensed the defender remains near the target and sends messages to other
defenders which include endangered target’s location

each defender that is not currently protecting any targets and receives the message starts
moving towards the location specified in the message

the defense stops only if the target is destroyed. In this case defender starts searching for new
target.

Defender’s strategy 11

Each of defender agents executes following strategy:

move randomly searching for a target

once the target is sensed and the number of other defenders in the neighborhood is smaller
than specified value the defender remains near the target
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e if the defender finds out that the number of attackers exceeds the number of defenders in the
target’s neighborhood, it sends messages to other defenders which includes endangered target’s
location

e cach defender that is not currently protecting any targets and receives the message starts
moving towards the location specified in the message

o the defense stops once the number of attackers in the target’s neighborhood becomes smaller
than the number of defenders in this area

4 The simulator

We developed a software package that may be used to perform simulation of agents’ behavior in the
environment described above. The user specifies strategy functions for each entity taking part in
the game and the system performs discrete simulation. Figures 1 and 2 are examples of the board
situations as seen in the user’s interface. Figure 1 shows execution with defenders using strategy I,
while Figure 2 shows execution with defenders using strategy II.
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Figure 1: Sample game with defenders executing the strategy 1. Targets are depicted as red squares, attackers as
black dots, and defenders as green dots.
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Figure 2: Sample game with defenders executing the strategy II. Targets are depicted as red squares, attackers
as black dots, and defenders as green dots.
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