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The current study investigated the effect of action-outcome agency, or one’s 

ability to guide behavior during reinforcement learning, on reward and loss 

processing in a gambling task. Thirty undergraduates (13 females; M age = 19.57, SD 

= 2.18) completed two computer gambling tasks, one designed to exhibit high levels 

of action-outcome agency and one with low, while attached to a 128-channel EEG 

system. Time-frequency event-related potential (TF- ERP) analysis was conducted on 

the acquired EEG data. ERP components associated with reward and loss processing 

were significantly dampened in the low action-outcome agency task relative to the 

high action-outcome agency task. Interestingly, TF-ERP analysis demonstrated a 

significant effect of action-outcome agency on gain-loss differences in theta but not 

delta frequencies, suggesting a more central role of loss processing in guidance of 

goal-directed behavior. These results challenge components of the well-established 

predicted response-outcome (PRO) model of reinforcement learning.  
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Chapter 1: Introduction 

The current study investigated the effect action-outcome agency had on theta and 

delta processing in the FN component. Action-outcome agency, or control over the 

ability to enact an action that elicits a desired outcome, is a core process underlying 

task learning and goal-directed behavior modulation. Within ERP literature, the 

feedback negativity (FN) component has been conceptualized as a marker of this 

adaptive learning process due to the prevalence of this component during processing 

of task feedback, i.e. errors, gains, losses. Conflicting findings have tied the FN 

component to both positively and negatively-valenced stimuli, suggesting the relative 

importance of positive and negative stimuli processing to the learning process. A 

recent integrative model hypothesized that the FN is modulated by surprising 

outcomes, regardless of valence. This predicted response-outcome (PRO) model 

conceptualizes activity in the anterior cingulate cortex (ACC) as a constantly 

updating outcome predictor, which perceives any surprising stimuli that deviates from 

the expected outcome as particularly salient (Alexander & Brown, 2011). Within the 

context of this model, we hypothesized that both negatively and positively-valenced 

feedback would modulate the FN component when the task allowed participants to 

have control over the ability to garner the most desirable outcomes. 

Methodologically, previous attempts to investigate the effect of action-outcome 

agency on adaptive learning have focused on conventional time-domain measures of 

FN activity. But time-domain approaches have not been effective for disentangling 

feedback processing related to positively and negatively-valenced stimuli.  Newer 

time-frequency ERP analysis approaches, on the other hand, have distinctly linked 
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theta and delta frequency activity to processing of negative and positive stimuli, 

respectively, allowing the measures in the current study to isolate negative and 

positive feedback processes that could be modulated differently with and without 

action-outcome agency.  

Action-outcome agency   

 There is a growing body of ERP research that focuses on the neural 

mechanisms underlying adaptive behavior. In laboratory experiments, learning 

adaptive behavior has been effectively operationalized as task optimization through 

reinforcement learning. A necessary element of reinforcement learning is the ability 

to create an association between actions and outcomes (Holroyd & Coles, 2002, 

2008). Action-outcome agency refers to a person’s capacity to control the association 

between action and outcome in order to learn the most adaptive action-outcome 

pairing and optimize performance. To achieve optimal performance on a specific 

task, task stimuli must be evaluated for relative motivational value, valence, and 

expectancy. Optimal performance can represent everything from an elimination of 

errors in a learning task to a maximization of monetary gain in a generic gambling 

task. In either case an optimal performance can be achieved through the continuous 

evaluation of action-outcome pairs. The participant must learn which action yields the 

most desired outcome; without this knowledge optimization cannot be achieved. A 

common assumption underlying learning optimal goal-directed behavior states that 

for learning to take place the participant must have agency over the action-outcome 

pairing (Yeung et al., 2005). Behavior can only be perceived as adaptive if one 

believes their behavior produces a desired outcome. Thus, and central to the current 
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project, optimization of a task is thought to be fundamentally blunted when one’s 

actions are not tied to the resultant outcomes.  

ERP indices of reinforcement learning processes: ERN, FN, and RewP  

 Many EEG studies have investigated the ERP components that are elicited 

when participants are provided with feedback during reinforcement learning tasks. 

Reinforcement learning refers to the process utilized within an uncertain environment 

to avoid negative outcomes and obtain positive ones through trial and error. On each 

trial of the undefined task, one analyzes and internalizes the difference between the 

expected outcome and the presented outcome to influence the action on the next trial 

(Sutton & Barto, 1998). Early work isolated a negative deflection in the ERP 

waveform that was elicited approximately 80-100ms after an incorrect response. This 

error-related negativity (ERN) was elicited by speed-related tasks after a participant’s 

response to a trial was incorrect, which deviated from the participant’s expectation of 

delivering a correct response (Coles et al., 1995; Falkenstein et al., 1995; Carter et al., 

1998). Additionally, Gehring and Fencsik (2001) demonstrated that errors that more 

closely resembled the correct response elicited comparatively smaller ERNs than 

errors that were more dissimilar to the correct response. Further work with 

reinforcement learning tasks focused on a similar negative deflection that was 

associated with processing of feedback that denoted the participant’s response was 

not optimal (Gehring and Willoghby, 2002; Milter et al., 1997). This negative 

deflection linked with processing of positive or negative feedback was labeled the 

feedback-ERN or feedback negativity (FN).  The FN component is observed as a 

negative deflection at medial-frontal electrodes, which occurs in the range of 180-350 
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ms post-stimulus (Miltner et al., 1997; Gehring and Willoughby, 2002). Source-

localization EEG studies and functional magnetic imaging (fMRI) work have 

provided evidence for the localization of both the ERN and FN components to the 

ACC, (Dehaene et al., 1994; Gehring and Willoughby, 2002) which has been widely 

implicated in reinforcement learning processes (Crino et al., 1993; Ito et al., 2003; 

Monchi et al., 2001; Bush et al., 2002; Delgado et al., 2003).  

While the ERN and FN play functionally similar roles in the monitoring and 

processing of errors, evidence suggests that the FN is also sensitive to reward-related 

processing. Broadly, previous research has posited that the FN demonstrated 

differential activity to negatively and positively valenced outcomes, with the FN 

being relatively diminished or non-existent to positive outcomes (Miltner et al., 1997; 

Gehring and Willoughby, 2002). Incorporating theories of reinforcement learning in 

addition to evaluative processing, several studies have found that the FN is elicited by 

unexpected negative but not unexpected positive outcomes, providing support for 

differential learning processes for feedback with opposite valence (Holroyd & 

Krigolson, 2007; Miltner et al., 1997). Others posit that modulation of the FN by 

unexpected positive or negative outcomes is dependent on the parameters of the task 

and the relative purpose of a participant’s goal-directed behavior (Holroyd et al., 

2002; Holroyd et al., 2004; Nieuwenhuis et al., 2004). Thus, there are reasons to think 

that both positively and negatively-valenced feedback may be integral to the 

reinforcement learning process.    

Recently, a focus on the role of rewards in reinforcement learning has begun 

to emerge. Instead of further emphasis on the modulation of the FN component by 
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unexpected negatively-valenced feedback, researchers have investigated the lack of 

negative deflection present on gain or correct trials. These studies argue that the core 

processing during this time window (around 250 ms post-stimulus) is characterized 

by a positive deflection in response to rewarding stimuli: the reward positivity 

(RewP) ERP component (Holroyd et al., 2008; Potts et al., 2006; Holroyd et al. 2011; 

Proudfit, 2012). Holroyd et al. (2011) interprets the role of the RewP in a learning 

context to be similar to that of the FN -- to evaluate whether the desired outcome was 

achieved. He describes this as a reward prediction error (RPE) signal, which is 

enhanced for more unexpected positive outcomes (Holroyd et al., 2011; Holroyd & 

Coles, 2002). From this perspective, it is not the error stimuli that are primarily 

guiding task learning behavior, but the processing of unexpected rewards. Both FN 

and RewP components are understood to index processing of unexpected outcomes in 

line with a reinforcement learning conceptualization. This work now provides the 

opportunity to assess the relative roles of positive or negative feedback valence is in 

question – e.g. is one’s trial and error learning of appropriate actions influenced more 

by unexpected positively or negatively-valenced outcome feedback? 

PRO model 

Debate over the exact role of the FN and RewP components within the 

reinforcement learning process contributed to the development of the predicted 

response-outcome (PRO) model, which integrates evidence from previous research in 

the reinforcement-learning field. This model posits that activity in the mPFC and 

ACC (which previous work has linked to activity in the FN) creates representations of 

the likelihood of specific outcomes, regardless of valence (Alexander & Brown, 
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2011). These regions are proposed to house representations of all the possible 

outcomes of an action and frequently update the likelihood of each outcome with 

each new feedback presentation. Each representation integrates both positively and 

negatively valenced information to form a cost-benefit analysis for possible actions, 

and the action with the most favorable cost-benefit difference will be the action 

chosen by the participant. In order to learn which outcome is the most beneficial 

option, there needs to be a mechanism to detect differences in the presented feedback 

and the current mental representation of that action-outcome pair. Alexander and 

Brown suggest that the functional activity in the ACC is a central mechanism for 

detecting discrepancies between predicted and presented outcomes, and signals for 

modification of the mental representation. Thus, the PRO model supports the 

importance of unexpected negative and positive feedback indexed in the FN and 

RewP components.   

Time-Frequency analysis  

Review of the conflicting findings on the role of the FN and RewP 

components poses a key question relevant to feedback learning -- do the core 

processes underlying these observed feedback component more directly reflect the 

influence of rewarding and positive outcomes, errors and negative outcomes, or some 

combination of the two? Methodologically it has been difficult to disentangle the 

effects of these processes because they overlap in time. Therefore, it is useful to 

separate unique processing within the time-domain through time-frequency analysis.  

 Past work from our lab and others has demonstrated that the FN component 

can be separated into independent processing in theta and delta frequencies (Bernat et 
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al., 2008; Bernat et al., 2011; Bernat et al., 2015). In a gambling task adapted from 

Gehring and Willoughby (2002) that is similar to the gambling tasks utilized in this 

current study, these studies found that theta activity was modulated by negative 

salient feedback attributes (losses) while delta was modulated by positive primary 

feedback (gains). Additionally, both theta and delta activity explain unique variance 

when considered in a regression model predicting the time-domain FN. Thus, for 

activity within the time-domain window associated with feedback processing, time-

frequency analyses can index modulations in separable brain systems engaged 

differentially by positive and negative feedback, suggesting that theta and delta 

activity are a better fit as indices for the proposed functional roles of FN and RewP 

components, respectively. Using this approach, feedback processing associated with 

the FN and RewP components can then be better isolated and analyzed separately, 

providing an important approach to assessing processing underlying reinforcement 

learning.  

Efforts to manipulate action-outcome contingencies 

Previous work has manipulated action-outcome contingencies and assessed 

FN and RewP activity, in the time-domain, and this work provides an important 

starting point for this proposed project. Yeung et al. (2005) hypothesized that if the 

FN were a result of reinforcement learning processes, and not simply due to stimulus 

evaluation, then the FN would only be generated when participants had agency or 

control over the selection of their outcome. To assess this hypothesis, Yeung et al. 

developed a “Choice” and “No-choice task”. The Choice task allowed the participant 

to choose between two options, while the No-choice task presented only one option 
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that the participant was forced to choose. Yeung and his colleagues found that both 

tasks generated a FN, challenging previous conceptualization of the FN as an 

indicator of action-outcome learning. However, this study did find that the No-choice 

task elicited a smaller FN relative to the Choice task on loss-gain trial differences. 

Because of the overlap between FN and RewP components, the time-frequency 

approaches proposed in the current work may help isolate the relevant processes.   

Current Study 

 In the current study, through utilization of time-frequency approaches, we will 

assess the effect manipulating participant control over task action-outcome 

contingences has on loss and gain processing. In order to manipulate control, we 

designed two gambling tasks, in which the feedback (i.e. monetary gain or loss) was 

either causally linked to participant response choice or not. Within these tasks, 

designated “high-control” and “low-control” respectively, participants were able to 

choose between two options that resulted in different monetary feedback (high-

control) or “chose” between two identical options with identical outcomes (low-

control). ERPs associated with gain and loss feedback were computed and assessed in 

theta and delta frequency bands. This involves three central hypotheses:  

 

1. We predicted a diminution in ERP amplitude in both delta and theta in the 

low-control task, due to anticipated decreased attention and motivation 

concerning a task with which a participant has no control.  

2. We predicted a greater decrease for loss trials (relative to gains) in the low-

control condition compared to high-control, due to participant’s decreased 
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control over action-outcome contingencies in the low-control condition. We 

expected to see this effect in theta because theta processing has been shown to 

be more sensitive to loss feedback.   

We predicted a greater decrease for gain trials (relative to losses) in the low-

control condition relative to the high-control, due to participant’s decreased control 

over action-outcome contingencies in the low-control condition. We expected to see 

this effect in delta because delta processing has been shown to be more sensitive to 

gain feedback. 
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Chapter 2: Methods 

 

Participants 

 

A total of 35 undergraduate students were recruited from a large state 

university in the southeast. Four of these subjects were excluded due to excessive 

artifacts (>50% of trials rejected using methods described below) and one was 

excluded due to data collection error. A total of 30 participants remained for analysis 

(13 females; M age = 19.57, SD = 2.18). All participants were 18 years of age or 

older and were screened for neurological conditions, visual impairments, and/or 

traumatic brain injuries. Before starting the study, students provided informed consent 

and were given the option of course credit or monetary compensation ($10/hr) for 

their participation. 

Procedure 

 
Data collection was conducted in a dimly lit, sound-attenuated room. 

Experimental stimuli were displayed in the center of a 21-inch Dell high-definition 

CRT color monitor placed 100cm from the seated participant. Stimuli were presented 

with E-Prime 1.1. Participants provided behavioral responses to the task through the 

use of a PST Serial Response box (Psychology Software Tools, Inc.).  

 Subjects performed two tasks that were modified versions of a two-choice 

gambling task developed by Gehring and Willoughby (2002). In the first task, 

participants were instructed to choose between two presented squares, each of which 

contained a monetary amount corresponding to 5 cents or 25 cents. Once the subject 

chose one of the two squares, each square would turn red or green signaling whether 

the participant’s choice resulted in a win or a loss of the money amount. The winning 
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color was counterbalanced between subjects; for half of the participants green 

designated a win and red designated a loss, and the opposite was true for the 

remaining participants. Participants were told they were given 20 cents at the 

beginning of the task. Prior to task administration, subjects completed a brief set of 

practice trials, during which data were not collected.  

 The second task, much like the first, consisted of two squares containing 

money amounts corresponding to 5 or 25 cents. Similarly, participants received 

feedback (i.e. whether they won or loss) when the two squares turned red or green. 

However, unlike the first task, both squares contained the same monetary amount and 

lead to the same outcome. For example, if two squares were presented with 5 cents 

displayed within each square, then the feedback would consist of both of the squares 

signifying a loss. Thus, whichever square the participant chose would lead to the 

same monetary gain or monetary loss. As with the first task, participants completed a 

brief set of practice trials prior to task administration. The first task was referred to as 

the “high-control task” while the second task was deemed the “low-control task”. 

Participants were not aware of this distinction, but were explicitly told that the two 

squares in the low-control task “will always display the same point amount and the 

outcome will be the same on both sides.” 

Psychophysiological Data Acquisition 

Electroencephalographic data were collected using a 128-channel Synamps 

RT amplifier (Neuroscan, Inc.) and Neuroscan 128-channel Quik-Caps (sintered Ag-

Ag/Cl; non-standard layout). Ten channels around the ears were removed due to 

inadequate scalp connection, leaving 113 channels available for analysis. Bipolar 
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horizontal channels were placed on the outer canthus of both eyes, and bipolar 

vertical channels were placed above and below the left eye. Impedances in all 

electrodes were below 10 kΩ. During recording EEG signals were referenced to the 

vertex electrode (between Cz and CPz) and rereferenced to the averaged mastoid 

signals offline. EEG signals were collected through an analog 0.05 to 200 Hz 

bandpass filter and digitized at 1000 Hz.  

Data Preprocessing 

 Epochs three seconds in length were extracted from the continuous data from 

1000ms pre-stimulus to 2000ms post-stimulus with a 150ms pre-stimulus baseline. 

Data were corrected for ocular artifacts using an algorithm developed by Semilitsch 

and colleagues (1986), and implemented in the Neuroscan Edit 4.5 software 

(Neuroscan, Inc.). Data were downsampled to 128 Hz using the Matlab resample 

function (Mathworks, Inc.), which applies an anti-aliasing filter during resampling. 

Trial-level artifact rejection was performed in a two-step process. Whole trials were 

rejected if activity at F3 and F4 exceeded ±100 µV in either the pre- (-1000 to -1ms) 

or post-stimulus (1 to 2000ms) time windows. Within-trial individual electrodes were 

rejected if activity exceeded ±100 µV within the same pre- and post-stimulus 

window. This removed 11% of all trials from analysis. Through visual analysis of the 

averaged waveforms, 37 electrodes out of 3,051 total electrodes were identified as 

disconnected during recording and were removed from analysis. After preprocessing, 

the data were averaged according to feedback type (i.e. wins or losses).   

Time-Domain FN Amplitude Identification 
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 Time-domain (TD) measures of evoked amplitude were extracted for the FN 

component. The FN component was defined as a negative deflection ranging from 

180 to 350 milliseconds post stimulus. All time ranges were converted to bins, where 

each 1000 millisecond epoch consisted of 128 bins.  

Time-Frequency Evoked Power 

 Trial-averaged ERPs were pre-filtered using 3rd order Butterworth filters to 

isolate theta (3Hz highpass filter, 8Hz lowpass filter) and delta (4 Hz lowpass filter) 

activity. We have employed this filter approach to isolate theta and delta activity in 

past studies (Bernat et al., 2011; Nelson et al., 2011; Harper et al., 2014; Bernat et al., 

2015). Filter cutoffs were chosen based on visual inspection of the unfiltered grand 

average time-frequency representation. Filtered signals were transformed to time-

frequency (TF) representations using the binomial reduced interference distribution 

(RID) variant of Cohen’s class of transforms, with 32 time bins per second and 2 

frequency bins per Hz. The RID transform was appropriate for these analyses because 

of the transform’s ability to better represent lower frequency activity.  

Principal component analysis (based on the covariance matrix with Varimax 

rotation; Bernat et al., 2005) was applied independently to the theta and delta filtered 

decompositions within a 0-14 Hz frequency window and 0-1000 millisecond post-

stimulus time window. This principal component analysis (PCA) as applied to the 

time-frequency domain is equivalent to its application the frequency or time domain. 

The covariance data matrix consists of time-frequency points as vectors and 

subject/electrodes/trial-averaged scores as rows (see Bernat et al., 2005 for a detailed 

explanation of this methodology).  
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The grand average TF-PCA decomposition is displayed in Figure 2. One 

principal component (PC) was extracted independently for the theta and delta 

decompositions. For the theta decomposition, the PC explained 40.56% of the total 

variance. PC1 reflected medial frontal theta activity during the FN component 

(approximately 250-450ms). For the delta decomposition, the PC explained 68.14% 

of the total variance and reflected centro-parietal activity within an approximate 200-

500 ms time window. Nine-electrode clusters depicting the mean PC-weighted TF 

evoked energy for theta and delta PCs were used for statistical analyses (see Figure 

3).  

Inter-trial Phase Synchrony  

 Inter-trial Phase Synchrony (ITPS) was computed for each type of trial (i.e. 

monetary gains and losses) in both the theta and delta frequency ranges. ITPS 

measured the consistency of responses on different trials by analyzing the similarity 

or synchronicity between oscillations in the ERP waveform. More consistent ERP 

responses may be interpreted as greater cognitive regularity or efficiency during 

feedback processing.  

Inter-channel Phase Synchrony 

 Similarly, inter-channel phase synchrony (ICPS) measures computed the 

synchrony between signals present in different EEG channels, which correspond to 

various brain regions. ICPS was calculated through time-varying, frequency-locked 

phase synchrony computations based on Cohen’s class of time frequency 

distributions. (Aviyente et al., 2011). Channels associated with brain regions of 

particular interest in this study were extracted for further analysis (see figure 4). 
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Specifically, ICPS between medial frontal channels, which correspond with theta 

activity in the anterior cingulate cortex, and lateral frontal channels have been used to 

denote engagement of the cognitive control network (Aviyente & Multu, 2011; 

Aviyente et al., in press). The cognitive control network involves lateral prefrontal 

cortex, orbitofrontal cortex, and the inferior frontal gyrus and is associated with 

mental representations of expected outcomes that are used to guide behavior (Miller 

& Cohen, 2001). Previously, it has been found that engagement of the lateral 

prefrontal cortex, or cognitive control network, is greater during trials that require 

more cognitive resources, such as response inhibition during a no-go trial or response 

conflict during incongruent Flanker trials (Aviyente et al., in press; Moran et al., 

2015; Bolanos et al., 2013) 

Data Analytic Plan 

 To evaluate the effect of task type on theta and delta processing, 2X2 repeated 

measures ANOVAs were computed with task type and feedback type (wins and 

losses) as within-subject factors. These ANOVAs were computed separately for theta 

and delta PCs for the three measures included in the analyses: amplitude, ITPS, and 

ICPS. To further investigate the relationship between task type and feedback 

processing in theta and delta, paired t-tests for all measures were computed for gain 

and loss trials separately within the two gambling tasks. Additionally, regression 

analyses including time-frequency amplitude, ITPS, and ICPS measures were 

computed to investigate whether any of these time-frequency measures explained 

unique variance within feedback processing in each task type. Finally, JZS Bayes 

factor repeated measures ANOVAs were conducted to compare alternative models to 
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the null and compare main effect models and interaction models in amplitude, ITPS, 

and ICPS measures. 

Design Considerations 

 Extensive considerations were made when developing the high and low-

control tasks. Previously, Yeung and colleagues implemented their choice and no-

choice tasks to investigate action-outcome processing. To manipulate action-outcome 

processing, the choice task allowed the participant to choose one of four stimuli (i.e. 

four possible buttons) that would either show a monetary gain or loss. In the no-

choice task the participants were told the task was similar to roulette. Participants 

were only able to press one button, which would start the spinning wheel. Then 

almost 2 seconds later the wheel would stop on one of the four possible options and 

gain or loss feedback would be presented.  

The design of the high-control task was very similar to that of Yeung’s choice 

task. In the high-control task the participant could choose between two stimuli (i.e. 

two button options) and would be shown the gain or loss feedback for both options. In 

comparison, the design of the low-control task was significantly different from that of 

Yeung’s no-choice task to make the action-outcome agency manipulation more 

explicit. Similar to the high-control task, the low-control task contained two stimuli 

options and feedback would be displayed for the chosen and unchosen option. 

Participants were explicitly told that the stimuli and outcome for each trial would be 

the same before they began the task. Unlike Yeung’s no-choice task where 

participants still had control over the timing of the task and when they pressed the 

button to start the spinning wheel, the low-control trials would result in the same 
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outcome, regardless of when the participant pressed a button. Additionally, Yeung 

and colleagues informed the participants that the task was like roulette, but did not 

explicitly say that the timing of their button press had no effect on the outcome. Thus, 

the low-control task, more so than the no-choice task, disallowed participants to be 

under any illusion that their choice would affect the resulting outcome.  

 The two tasks described above were administered within a protocol containing 

five total gambling tasks. In order to minimize the introduction of additional noise, 

the five tasks were administered in the same order for each participant. Because of 

this design decision, the high-control task was always completed before the low-

control task. This experimental consideration could lead to habituation effects; the 

ERPs elicited from the low-control task would be smaller than those elicited by the 

high-control task simply because the participant was more familiar with the task 

stimuli. Without knowing whether differences in ERP amplitude between the high 

and low-control tasks were due to habituation effects or valid differences in the 

processing of task stimuli, no interpretations concerning feedback processing can be 

made.   

 Two elucidate this potential confound, average ERP waveforms from the five 

tasks were analyzed. Delta activity for gain trials and theta activity for loss trials from 

the high and low control tasks were compared with the final gambling task 

administered in the protocol (see Figure 5). The average amplitude for delta on gain 

trials in the high-control task was 20 microvolts, while the average amplitude for the 

low-control task was approximately 10 microvolts. However, the average delta 

amplitude on gain trials in the final gambling task of the protocol was again 20 
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microvolts. Thus, even though the gambling tasks involved similar stimuli, there was 

no evidence of habituation because the final task in the protocol elicited ERP 

amplitude similar to that of the first experimental task (i.e. the high-control task).  
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Chapter 3: Results 

 

Effect of task type on theta and delta amplitude processing  

 Figures 6 and 8 display the results for theta amplitude gain and loss 

processing in the high-control and low-control tasks. To assess the effects of task type 

and feedback type in theta, a repeated measure 2X2 ANOVA was computed. The 

interaction between task and feedback was significant (F(1,29)=13.256, p=0.001). 

Paired t-tests were used to better understand the nature of the significant interaction. 

During the high-control task, theta amplitude was significantly enhanced for loss 

trials compared to gain trials (t=3.448, p=0.002). However, during the low-control 

task there was no significant difference between gain and loss trials (t=1.626, 

p=0.115).   

 The results of delta amplitude processing of gain and loss trials in both tasks 

can be seen in figures 7 and 8. To test the effect of task type and feedback type in 

delta amplitude processing another repeated measure 2X2 ANOVA was conducted. 

The interaction between task and feedback was not significant (F(1,29)=0.158, 

p=0.694). Main effects for task type and feedback type were significant 

(F(1,29)=51.621, p<0.001, F(1,29)=5.373, p=0.028, respectively). Paired t-tests for 

both high and low-control tasks displayed enhanced amplitude processing for gain 

trials compared to loss trials. A test of simple effects between gain and loss trials was 

significant in the low-control task and the difference was trend level in the high-

control task (high-control task: t=1.703, p=0.099; low-control task: t=2.330, 

p=0.027).  



 

 20 
 

 Finally, an overall 2X2X2 ANOVA was performed to confirm that there was 

a difference in the task by feedback interaction in theta and delta frequencies. The 

three-way interaction between frequency, task, and feedback was significant 

(F(1,29)=5.715, p=0.024).   

Effect of task type on theta and delta ITPS processing  

 Figures 6 and 8 display the results for theta ITPS gain and loss processing in 

the high-control and low-control tasks. To assess the effects of task type and feedback 

type in the theta ITPS measure, a repeated measure 2X2 ANOVA was computed. The 

interaction between task and feedback was significant (F(1,29)=7.195, p=0.012). 

Similarly, paired t-tests were used to better understand the nature of the significant 

interaction. During the high-control task, theta ITPS was significantly enhanced for 

loss trials compared to gain trials (t=3.299, p=0.003). While no significant difference 

between gain and loss trials was found in the low-control task (t=1.717, p=0.097).  

 The results of delta ITPS processing of gain and loss trials in both tasks can be 

seen in figures 7 and 8. To test the effect of task type and feedback type in delta ITPS 

processing a repeated measure 2X2 ANOVA was conducted. The interaction between 

task and feedback was not significant (F(1,29)=0.086, p=0.772.) Main effects for task 

type and feedback type were significant (F(1,29)=66.890, p<0.001, F(1,29)=9.697, 

p=0.004, respectively). A test of simple effects between gain and loss trials 

demonstrated significantly enhanced ITPS for gain trials for both tasks (high-control 

task: t=2.427, p=0.022; low-control task: t=2.585, p=0.015).  

 Again, an overall 2X2X2 ANOVA was performed. The three-way interaction 

between frequency, task, and feedback was significant (F(1,29)=5.993, p=0.021).   
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Effect of task type on theta ICPS processing  

 Results for ICPS between medial-frontal and lateral prefrontal electrodes in 

the theta frequency are displayed in figures 6 and 8. A repeated measure 2X2 

ANOVA demonstrated a significant interaction between task and feedback type 

(F(1,29)=12.64, p=0.001). Paired t-tests computing the difference between gain and 

loss feedback showed significantly enhanced ICPS on loss trials in the high-control 

task and not in the low-control task (high-control task: t=4.829, p<0.001; low-control 

task: t=1.459, p=0.155). 

Unique variance explained by the different measures 

 Model residuals were extracted from regression analyses that included all 

time-frequency measures of gain/loss feedback differences in the theta frequency 

(amplitude, ITPS, and ICPS) and delta frequency (amplitude and ITPS). In total 5 

regressions were conducted with each of the five possible measures input as the 

dependent variable of the regression. The extracted residuals of each regression, with 

the constant removed, were then compared to zero in a one-sample t-test. Residual 

values significantly different from zero represented some additional unique variance 

explained by the dependent variable in the regression above and beyond the 

independent variable measures. For theta, only the ICPS measure was found to 

uniquely explain differences in gain and loss processing for the high-control task 

(t=2.308, p=0.028). In the low-control task, no measure in the theta frequency 

explained variance in gain/loss processing above and beyond the other measures. In 

both the high and low-control tasks, delta amplitude and delta ITPS did not provide 

any significantly unique contribution to the gain/loss differences.  
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Bayesian model comparisons 

All Bayesian analyses consisted of a model comparison approach using Bayes 

Factors within the repeated measures ANOVA framework (Rouder, Morey, 

Speckman & Province, 2012). This approach allowed us to investigate whether the 

data support one particular model above all others. Bayes Factor values greater than 1 

represent greater support for the alternative hypothesis, while Bayes Factors less than 

1 represent greater support for the null hypothesis. Table 1 displays the relative 

strengths of Bayes Factors with support for the alternative or null models (Jeffreys, 

1961). A JZS Bayes repeated measures ANOVA for theta amplitude using the default 

prior scales (r=0.707) revealed that the main effects model with task type and 

feedback type was preferred over the null model with BF10 = 1.46e7. These data 

indicate decisive evidence for the significant effects of both task type and feedback 

type on theta amplitude. However, comparison of the main effects model to the 

interaction model (i.e. task type X feedback type) provided substantial support for the 

interaction model as the more compelling model compared to the null (BF21 = 5.49). 

For delta amplitude there was again decisive evidence for the main effects model with 

task and feedback terms over the null (BF10 = 3.88e15). Interestingly, when 

comparing the main effects model to the model including the interaction, there was 

substantial support for the main effects model over the interaction model (BF12 = 

3.72). These findings are in line with the non-Bayesian analyses, which demonstrate 

that the interaction of task type and feedback type was significant in the theta but not 

delta frequency.  
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This pattern of results was also found in the ITPS and ICPS measures. For all 

frequencies and measures the main effects models were extremely compelling when 

compared to the null (BF10 ranging from 2.56e6 to 1.28e16). For the theta measures, 

ITPS and ICPS, the interaction model was supported over the main effects model. In 

theta ITPS there was weak support for the inclusion of the interaction term (BF21 = 

2.90), while in theta ICPS there was substantial support for the inclusion of the 

interaction term compared to the main effects model (BF21 = 7.15). Instead, in delta 

ITPS there was substantial evidence for the main effects model being more 

compelling than the interaction model (BF12 = 4.08). Again, these findings provide 

further support for the non-Bayesian analyses.  
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Chapter 4: Discussion 

The present study used time-frequency methodology to investigate the effect 

of action-outcome agency on gain and loss processing within our developed gambling 

tasks, designated high-control and low-control. As hypothesized, there was a global 

diminution in activity for the low-control task regardless of trial type and frequency. 

Because participants in the low-control task were instructed that their choices had no 

bearing on the subsequent monetary outcome, this finding could reflect an overall 

decrease in attention or motivation in this task relative to the high-control task. This 

result was seen in all three measurements analyzed in this study (i.e. ERP TF-

amplitude, TF-ITPS, and TF-ICPS), which supports our assertion that the low-control 

task sufficiently primed participants to internalize that they had no control over the 

low-control task’s action-outcome contingencies.  

Since the high-control task was very similar to gambling tasks used to elicit 

the FN and RewP components in past research, there were significant differences 

between gain and loss processing as predicted. Consistent with previous findings in 

this lab, in both gambling tasks theta amplitude activity was more sensitive to loss 

trials while delta amplitude was sensitive to gain trials (Bernat et al., 2011; Bernat et 

al., 2015). Interestingly, there were differences between theta and delta amplitude in 

the low-control task. Delta sensitivity to gains relative to losses was very similar (e.g. 

not significantly different) in both the high and low-control tasks. In fact, delta 

amplitude differences between gain and loss trials were actually nominally greater in 

the low-control task. In comparison, theta’s sensitivity to losses compared to gains 

was significant in the high-control task and relatively nonexistent in the low-control 
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task. We had hypothesized that in the absence of perceived control over action-

outcome contingencies there would be no difference between gain and loss 

processing in theta and delta, yet this effect was only seen in theta.  

 Similarly, TF-ITPS measures in both theta and delta frequencies displayed the 

same pattern of results as that of the amplitude measures. Delta ITPS was 

significantly enhanced for gain trials compared to loss trials in both the high and low-

control tasks, while theta ITPS was significantly sensitive to loss trials only in the 

high-control task. Therefore, delta gain trials in both tasks reflected more consistent 

and efficient processing than delta loss trials, while theta loss trials reflected more 

consistency in ERP response solely in the low-control task. Our TF-ICPS measure 

was utilized as an indicator of functional engagement of lateral prefrontal areas 

associated with cognitive control processes. In the theta frequency, functional 

connectivity between medial frontal regions (representative of theta amplitude 

activity) and lateral prefrontal regions was significantly increased for loss trials in the 

high-control task but not the low-control task. Thus, loss trials, which signaled a 

discrepancy from the desired outcome, triggered the recruitment of more cognitive 

resources to avoid future loss. This enhancement of cognitive control processes on 

loss trials was not seen in the low-control task, consistent with the idea that there was 

no need for further processing to modulate behavior on subsequent trials because 

there was no relationship between behavior and outcome. Additionally, theta ICPS 

was able to uniquely explain differences in feedback processing above and beyond 

theta amplitude and ITPS measures in the high-control task but not in the low-control 

task. The theta-ICPS measure, a signifier of engagement of cognitive control 



 

 26 
 

processing, explained unique variance in feedback processing only when participants’ 

had control over their action-outcome contingencies.  

Through analysis and interpretation of these results, one question remains: 

why is theta but not delta processing modulated by action-outcome agency? The PRO 

model proposed that discrepancies between actual and expected outcomes are 

monitored by activity originating in the ACC, regardless of outcome valence. If this 

were true, we would expect to see diminutions in gain/loss differences in the low-

control task in both theta (loss) and delta (gain) processing. The results of this study 

suggest that only processing of losses is central to updating mental representations of 

action-outcome contingencies and thus modulating behavior to attain optimal task 

performance. This interpretation challenges the position underlying the PRO model 

that discrepant outcomes, regardless of valence, affect the learning process. Instead, 

reward processing seems to be independent from the learning process and remains 

intact when the ability to modulate behavior is removed.   

Limitations and future directions     

 These results suggest that the reward processing underlying the FN is 

separable from the action-outcome processing thought to be characteristic of this 

component. In order to further elucidate existing literature surrounding the RewP 

component and challenge the main assumption within the PRO model, replication of 

these effects in larger samples is necessary. Also, since there is no gold standard task 

that manipulates action-outcome agency, future studies should continue to investigate 

the role of participant agency in action-outcome learning in a variety of learning 

tasks. Finally, this study demonstrated that the processing of negatively and 
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positively-valenced feedback within the FN time-domain component can be 

independently analyzed and be modulated differently. Utilizing the time-frequency 

approach to ERP analyses should be an integral addition to all future FN research to 

better extract elements that affect loss and gain processing separately. This study used 

new analytic methods to explore the relationship between learning and reward 

processing in the FN time component and found that losses and not gains were 

sensitive to manipulation of action-outcome agency, a vital component of task 

learning.  
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Tables 

 

Table 1. 

Bayes Factor interpretations for all possible Bayes Factor values. Potential values 

for all Bayes Factors that favor the null model (left-hand side) and values that favor 

an alternative model (right-hand side) are included.  

 

 

For Null For Alternative 

Weak Support 

 (Uninformative)  .33 – 1 1-3 

 Substantial  

 Evidence  .10 - .33  3-10 

 Strong  

 Evidence  .03 - .1 10 - 30 

 Decisive  

 Evidence  <.01 >100 
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Figures 

 
   High-Control Task                                      Low-Control Task 

 

Figure 1. Example trials from the high-control task (left) and low-control task (right). 

In the high-control task both the point amounts (25 vs. 5) and outcomes (red vs. 

green) are different. In the low-control task both squares show the same point 

amounts and outcome. 

 

Figure 2. Grand average TF-PCA solutions for theta (left) and delta (right) activity. 

One PC solutions were chosen for both theta and delta to best characterize the activity 
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within the FN time window. As predicted theta activity was maximal over medial-

frontal regions and delta activity was maximal over centro-parietal regions. 

 

Figure 3. Nine-electrode clusters were extracted for further statistical analysis based 

on the maximal theta and delta activity.    

 

Figure 4. Inter-channel phase synchrony (ICPS) was computed between medial-

frontal electrode 61 (red) and two lateral prefrontal electrodes 33 and 88 (blue).   
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Figure 5. Average delta amplitude on gain trials for the high and low-control tasks 

and the final gambling task administered (top row) and average theta amplitude on 

loss trials for the high and low-control tasks and the final gambling task (bottom 

row). 
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Figure 6. Time-domain and time-frequency plots for theta amplitude, ITPS, and ICPS 

measures. Plots display gain-loss differences for the high-control task (left) and the 

low-control task (right). Topographs display the distribution of the activity associated 

with the difference between loss (red) and gain (blue) trials and the significance of 

that difference. White in the significance topographs signifies a significance level < 

.05.   
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Figure 7. Time-domain and time-frequency plots for delta amplitude, ITPS, and ICPS 

measures. Plots display gain-loss differences for the high-control task (left) and the 

low-control task (right). Topographs display the distribution of the activity associated 

with the difference between loss (red) and gain (blue) trials and the significance of 

that difference. White in the significance topographs signifies a significance level < 

.05.    
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Figure 8. Average line plots for TF-Amplitude (top row), TF-ITPS (middle row), and 

TF-ICPS (bottom row) measures on both gain and loss trials. Mean values for the 

high-control task are represented in blue and values for the low-control task are 

represented in green. 
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