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SUMMARY

This paper describes a new class of algorithms for integrating linear second order equations, and those
containing smooth nonlinearities. The algorithms are based on a combination of ideas from standard New-
mark integration methods, and extrapolation techniques. For the algorithm to work, the underlying Newmark
method must be stable, second order accurate, and produce asymptotic error expansions for response quan-
tities containing only even ordered terms. It is proved that setting the Newmark parameter ¥ to 1/2 gives a
desirable asymptotic expansion, irrespective of the setting for . Numerical experiments are conducted for
two linear and two nonlinear applications.
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1 INTRODUCTION

Engineers need fast and accurate computational methods for the dynamical design,
analysis, and control of mechanical and structural systems. In the design and performance
evaluation of dualspin and flexible satellites, for example, very accurate computational
methods are needed for the long term prediction of position and attitude. Similarly, fast
computational methods are needed to simulate and control flexible robotic manipulators
and free flying robots. Since closed form analytic solutions are unavailable except for
a few specific cases, discrete numerical integrators must be relied on to predict system
behavior. Early numerical experiments, including ours [4,6], exposed weaknesses in the
use of traditional numerical integrators. The use of standard off-the-shelf Runga-Kutta
algorithms to integrate the dynamics of rigid body satellites spinning freely in space nearly
always results in a steady accumulation of energy. Thus, they are a poor guide to the
reliable prediction of long term dynamical phenomena, and highlight the need to design

new numerical integrators to calculate time-dependent system responses.

To provide guidance in the formulation of these computational models, researchers
are attempting to identify and classify the natural algebraic and geometric structures that
these dynamical systems possess [15,17]. If energy and/or norms of angular momentum are
are conserved in the continuous system response, then it is very desirable the same enti-
ties remain invariant in the discrete approximation. In the case of canonical Hamiltonian
systems, Feng Kang [14] has shown that it is possible to construct symplectic schemes of
arbitrary order accuracy, which are A-stable and conserve all invariants up to second order.
Some recent algorithms [1,22] for noncanonical Hamiltonian systems have been shown to

conserve energy exactly, but are only second order exact in their response estimates. As a

3



result, when large time-steps are used in simulation studies of long-term dynamical behav-
ior, displacements can be completely out of phase after only several hundreds timesteps;

examples may be found in Austin, Krishnaprasad, and Wang [1], and Hoff and Taylor [11].

Experience indicates that while numerical algorithms may be designed to conserve
some integrals of motion, they cannot be expected (in general) to conserve all integrals
of motion. Marsden. et al. [17] suggest that numerical algorithms be crafted to conserve
exactly some integrals of motion important for design, with other integrals possibly being
conserved. This approach has several problems. First, it is not hard to find engineering
applications where the equations of motion are so nonlinear, it is unlikely that a discrete
approximation will be found to satisfy even one invariant of motion. And when the system
is relatively uncomplicated, and such a discrete approximation can be found, performance
may still be less than satisfactory (as already noted above). Moreover, it may be argued
that even if a discrete numerical approximation theoretically conserves selected invariants
exactly, its implementation will at most conserve the same quantities to machine precision;
this will be approximately 16 decimal places accuracy for double precision calculations on

standard engineering workstations.

A second strategy for developing numerical algorithms, and the approach that is fol-
lowed in this paper, is to find efficient ways of systematically computing displacements and
velocities to an arbitrarily high order of accuracy. This approach offers several computa-
tional benefits. First, it is easy to show that all system invariants, which are simple
polynomial functions of displacement and velocity, will be preserved to the same order of
accuracy as the displacements and velocities. Second, the equations of motion may be nat-

urally partitioned for concurrent computations in a network of engineering workstations;
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for details, the interested reader is referred to Austin and Voon [2].

The purpose of this paper is to present the formulation of a new algorithm that uses
ideas from Newmark integration and extrapolation techniques to accurately compute long
term dynamics. The scope of applications is limited to two classes of finite dimensional

systems, namely:

[a] Mass-Spring Systems : Linear undamped (and damped) single (and multiple) de-
gree of freedom systems moving under free and forced vibrations.

[b] Connected rigid body assemblies : Applications include the attitude dynamics
of rigid body and dualspin spacecraft subject to zero external forces, dynamics of
floating rigid body components connected by hinges, and the attitude control of free-
flying robots. For discussions, see the work of Sreeneth [23,24], Yang [26], and Byrne
[4]. Also, see Posbergh [19] for the formulation of a geometrically exact rod model as

a series of springs and masses.

Numerical experiments are conducted to assess the effectiveness, and demonstrate the lim-

itations of proposed algorithm.

2 EQUATIONS OF MOTION

We assume that the dynamical behavior of each application may be written as a family

of n 2nd order differential equations:

M [&(t), z(8)] £() + F [2(2), z(8)] = P (¢) (1)

with initial conditions z(0) and #(0). Here z(t) = [z1(t),z2(%) ... acn(t)]T is a (n x 1) vector
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of system displacements, M [£(t),z(¢)] a (n X n) mass-type matrix, F'[£(t),z(t)] a (n x 1)
general force vector, and P(t) a (n X 1) vector of external loads applied at the nodal degrees
of freedom. An alternative, but equivalent form of (1) is obtained by setting w(t) = (t),

and rewriting the equations of equilibrium as 2n first order equations, i.e.:

2| _ w(t)
y(t) = [wu)] = vl = [M*[w(tm(t)} [P(t) — Flu(t), 2(t))] @)

In the case of linear second order dynamical systems, for example, often F(w(t),z(t)) =
[clw(t) + [k]z(t) - here [c] and [k] are (n x n) damping and stiffness matrices - and

M [2(t), z(t)] is a constant mass matrix [m]. Equation (2) may be written:

1= 3] = [ pow o] [o0] * o] @

Equation (3) underscores the fact that the complete dynamics are characterized by time
variations in displacements and velocities alone. Accelerations are recovered via back sub-
stitutiion into (1). From a computational standpoint, it is desirable to work with (1)

because it has only n equations, versus 2n for equations (2) and (3).

3 ONESTEP INTEGRATION SCHEMES

Suppose that solutions to (1)-(3) are required for time te[tq,t4+a¢]. Irrespective of
whether the underlying dynamics are described as families of first order or second order

equations, numerical solutions require accurate approximations to:

vi(tae ar) = vilts) + / " ) (4)

q
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where fi(¢,y(t)) is the k" component of the equation of motion. In problem formulations
based directly on d’Alembert’s principle, (yx(t), fx(t, y(¢))] pairs exist for displacement and
velocity, and velocity and acceleration, respectively. Similarly, in problem formulations
based on Lagrange’s equations and/or Hamilton’s equations, [yx(t), fx(t,y(¢))] pairs exist

for the generalized co-ordinates and momenta.

A wide variety of onestep numerical integration schemes approximate (4) by dividing
the time interval {t4,tq4+ a:¢] into N equal intervals of distance h = t44; —tg4, and sequentially

applying the explicit onestep formula
Y(tgrn) = y(te) +h- Bty y(ty), k) + O(RPTY). (5)

Here & : R x R*™ x R — R?" is called the increment function of the method, and y(t,)

is the exact solution at time t,. For numerical methods that have implicit increment

functions, we write

y(tgrn) = y(te) + 7 U (g, tarn, y(te), y(tgrn), h) + O(RPFH) (6)

where ¥ : R x R x R*"™ x R*"® x R — RR*". It is important to note that when the onestep
truncation error is O(hP*™1), the global error is a combination of local plus transported
errors, and is O(h?). A detailed proof is given in Chapter 3 of Hairer et al. [9]. Moreover,
multistep methods may be interpreted in the framework of (4) by simply rewriting the

numerical schemes as onestep methods in a higher dimensional space [9].



4 BACKGROUND TO EXTRAPOLATION METHODS

Perhaps the most straight forward way of increasing numerical accuracy is to divide
the interval [y, ¢4+ a:] into smaller increments of h. While this strategy may be acceptable
for short periods of simulation, it places the designer at odds with the need to compute the

long-term time evolution of dynamical systems without resorting to excessive computational

effort.

The algorithm developed in this paper hinges on the existence of an asymptotic expan-
sion for the global error in the numerical method. Although the benefits of these expansions
were known to Richardson {20,21], the formal theory for their existence is due to Gragg (8]

and Stetter [25]. Gragg’s ideas are most succinctly stated:

(a) Theorem : (due to Gragg) Suppose that a given method with sufficiently dif-
ferentiable (smooth) increment function ®(-) satisfies the consistency condition

B(tq,y(tg),0) = f(t4,y(ty)) and possesses an asymptotic expansion:

y(tq-l-h) =y(tq) +h- (I)(tqv y(tq)7 h)+

dpr (AP 4+ o+ dpk(ORPTE + O(RPTHEY) (7)

for the local error. If N steps of integration are computed to cover the time interval
At, (i.e. At = tgeae — ty = N -h), then the global error has an asymptotic

expansion of the form:
u(trne) — Y(tgrnt) = ep(t) - AP + -+ epii(t) - APTE 4+ B ()AL (8)

where u(ty4¢) is the numerical solution at time #,4 a¢, and e,(¢) are solutions to the
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inhomogeneous equations:
. df
ép(t) = @(t,y(t))ep(t) —dp+1(t), such that ep(ty) =0 (9)

and Ej(t) is bounded for t; <t < tg4a and 0 < h < h,. f(+) and @(-) are as defined

in equations (2) and (5), respectively.

An abbreviated version of the proof to Gragg’s theorem may be found in Hairier and Lubich

[11].

[a]

It is important to note that:

The existence of equations (7)-(9) requires f(-) be sufficiently differentiable over the
complete time interval of interest; hence use of the word smooth in the title of the
paper. This condition automatically precludes the use of extrapolation methods for

applications containing sharp material (or geometric) discontinuities.

As stated, equations (7)-(9) are for an explicit increment function. Subsequent work
by Setter [25] has established that asymptotic expansions of the form (8) also exist for

implicit onestep methods.

Extrapolation techniques require the underlying numerical method to be stable. Al-
though explicit numerical integrators, such as Euler, are much less computational work
that implicit schemes, they are notorious for being only conditionally stable [7,9]. In

this study, base steps are computed with implicit increment functions that are A-stable.

Preservation of the asymptotic expansion requires that the equations (7) be solved
exactly at each timestep. However, it is demonstrated in the following sections that
even when nonlinearities force the equations to be solved iteratively, very favorable

increases in numerical accuracy are still possible.

9



The most important extrapolation methods are those that remain invariant under the
switching of parameters tq < tgqn, y(tq) < y(te+1r), and integration order h < —h. For

example, if:

y(tern) = y(tg) + h - U(tg, tern, y(ty), y(ten), h) + O(R?) (10)
is equivalent to

y(tg) = y(tgsn) — h- U(tgrn,tq, Y(tg+n) y(ty), —h) + O(h*) (11)

then the method is said to be symmetric. Instead of having an asymptotic expansion of

the form:
u(tgrae) =y(terar) + Az A 4+ AN + A0
AsAt® + AgAt® + Az AT 4+ - (12)
where the coefficients A2, A3 --- A7 .- are solutions to (9), numerical integrators with

symmetric increment functions have asymptotic expansions of the form:
u(tgrnt) =y(terar) + A A2 + AN+ AsAt® + - - (13)

Examples of implicit numerical methods having symmetric increment functions are the

midpoint rule

y(tq+h) _ y(tq) Th f(tq +2tq+h , y(tq) +23/(tq+h)) (14)
and the trapezoidal method
Y(tgsn) = y(tg) + g [f(tg, y(tg)) + f(g+r, y(g+n))]- (15)
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Now let uy?, (y(tq), At) be the computed numerical solution from ny steps of length At/ny
using a numerical method of m!* order accuracy. Furthermore, assume that the computa-
tion starts from exact solution y(¢4). Richardson observed [20,21] that improved numerical
approximations could be obtained by solving the same problem over a prescribed base
step At several times with successively smaller internal timestep lengths. If the under-
lying numerical methods is 2nd order accurate, then this gives a sequence of numerical

approximations:
u?zl (y(tq)’ At) 3u312 (y(tq)v At) s 7u31k (y(tq)a At)

for the set of increasing integers ny, ny -+ ni. Several numerical sequences have been pro-
posed, including that of Romberg {1,2,4,8,16,32,---}, Bulirsch [3] {1,2,4,6,8,12,---},
and the double harmonic sequence {2,4,6,8,10,12,14,---}. In each case, linear combina-
tions of the numerical approximations are taken to eliminate the coefficients A4;. Succes-

sively refining At according to the Romberg sequence, for example, gives:

uZ (y(ty), At) = y(tesae) + ij A D (16)

2

L

33 [Atri (17)

u% (y(tq)7 At) = y(tgrar) + Z Az
i=1

Now the benefits of (13) compared to (12) are evident - subtracting (16) from 4 times

equation (17) gives:
[4-y(tgrar) —y(tgra)] = [4-u3() — ui()] +0[AtY]
=[4—1]-u3(-) + 0 [At] (18)

thereby estimating the integral with two additional order of accuracy. For the Romberg

sequence of internal timestep lengths it is relatively straight forward to show that successive
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applications of the formula:

2),,() ()
(42) 1y _ 4t/ uin () = ui() (19)
U(ar) - 4(s/2) — 1

will systematically eliminate higher order coefficients in the error polynomial. Here r is the
number of intervals taken to integrate across the At time-step, and s the order of accuracy

for the numerical estimate.

5 NEWMARK FAMILY OF INTEGRATION METHODS

Newmark integration methods [12,18] approximate the time dependent response of
linear and nonlinear 2nd-order equations by insisting that equilibrium be satisfied only at
a discrete number of points (or timesteps). If ¢, and ¢4 A, are successive timesteps in the

integration procedure, then the two equations of equilibrium that must be satisfied are:
M [2(tg), 2(tg)] E(tg) + F [2(2,), 2(tg)] = P (2,) (20)

and

M [2(tg+at), 2(tgr an) E(tgrac) + F [#(tgran), 2(tgrae)] = P (tgsnr). (21)

Now let’s assume that solutions to (20) are known, and (21) needs to be solved. At each
timestep there are 3n unknowns corresponding to the displacement, velocity, and acceler-
ation of each component of z. Since we only have n equations, the natural relationship
existing between the acceleration and velocity, and velocity and displacement must be

enforced to reduce the number of unknowns to n. That is:

T(tgrar) = 2(ty) +/t e Z(r)dr \ (22)

q

te4nt
:r(tq+At)=m(tq)+/t ' #(r)dr (23)

q
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where z(t,) and z(t,) are the velocity and displacement at timestep ¢,, and Z(7) is an

unknown function.

The Newmark family of integration methods assume that: (a) acceleration within
the timestep behaves in a prescribed manner, and (b) the integral of acceleration across
the timestep may be expressed as a linear combination of accelerations at the endpoints.

Discrete counterparts to (22)-(23) for the update velocity and displacement are:

(tgrad) = d(tg) + A1 = 7)i(t) +7E(trad) (04
ltgs 00) = 2lty) + Da(ty) + S1(1 — 28)8(tg) +285(t s ) (25)

with the parameters v and § determining the accuracy and stability of the method under

consideration. Equations (24) and (25) are substituted into (21), written in the form

9(-) = M [E(tgra0)] - E(tgrar) — Pltgrar) = 0
and solved by iteration. Finally, £(¢4+a:) is back substituted into (24) and (25) for the
update in velocity and displacement.

Remark 1 : It is well known that when v = 1/2 and § = 1/4, acceleration is constant

within the timestep t € [t, 14+ a¢], and equal to the average of the endpoint accelerations,

1.e:

2 92 2

< <

5() = Z(tq) + i(tqm:)] Bt + [&s(tq+At) —é(tq)] — () + [é_x_(@] (26)

In such cases, approximations to the velocity and displacement will be linear and parabolic,

respectively. Moreover, when (20) takes the form:
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[m] &(2q) + ] 2(tq) + (K] (ty) = P(ty) (27)

equations (21) may be written

[M] AZ(tg) = [AP] (28)

pe, oF

where [M] = [m]+ - [c] + 1 (k]

and [AP] = P(tgsar) — P(ty) — Ot[e]i(ty) — At[k] [:i:(tq) + %’fi(tq)] .

This discrete approximation is second order accurate and unconditionally stable. It con-
serves energy exactly for the free response vibration of linear undamped SDOF systems;

see Chapter 9, page 512 of Hughes [12] for a proof. This property will be important for the

algorithm presented in the following sections.
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6 NEWMARK-EXTRAPOLATION ALGORITHM

The algorithm proposed in this paper draws on ideas from Newmark integration and
Richardson’s Extrapolation. The approach is motivated by a desire to work directly with
2nd order equations, if possible, and by the observation that improved numerical estimates

of response will result when equations (22) and (23) are evaluated with increased precision.

Instead of simply refining the step length of the numerical method, the idea is to
integrate across the time interval ¢ € [tq,t4+a¢] several times with successively refined step
lengths. In each case, the Newmark method is used as the base integrator. It is proposed
that with a judicious choice of Newmark parameters v and £ the underlying method will
be second ordér accurate, stable, and have asymptotic error expansions for the velocity
and displacement components containing only even ordered terms. Thus, extrapolation
may be used to obtain improved estimates of displacement and velocity, with updates in
acceleration being computed via back substitution of the extrapolated displacements and

velocities into the equations of equilibrium.

The step by step algorithm for P levels of extrapolation using a Newmark base method,

parameter settings # and v, and a Romberg sequence of refinement is:

[1a] Initialization : For each component of velocity and displacement, dynamically allo-
cate memory for a (P x P) extrapolation table. Lambert [16] reports that in practice

P typically falls into the range 4-7.

[1b] Select a timestep At. In some cases this may be the maximum timestep length for
algorithm stability, while in other instances it may be a suitably small At needed to

draw a smooth graph of response.
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[2a] Outer Loop : For Newmark Integration, g = 1 to nsteps
[2b] Set t, =[g—1]- At
[3a] Inner Loop 1 : Fori=1to P
(3b] Incremental timestep At; = | 8%
[4a] Inner Loop 2 : For k = 1 to 20—
[4b] Calculate P(t) at time tx = t, + k- At,
[4c] Solve M [z(tx)] - Z(tx) = P(tx)
[4d] Update : 2(tg) = 2(tk—1) + At; - [(1 — v)E(tk—1) + vE(tr)]
2(te) = 2(tior) + O i(teer) + |52 11— 28)E(temn) + 285 (1)
[4e] End Inner Loop 2

[3d] Put displacement z(t,+a:) and velocity (ts+a¢) components in position u?(-) of Ex-

trapolation Table [1].

Steps Stepsize 0 [At2] 0 [At4] 0 [ . ] 0 [Atz(l’—l)"
1 At ()
2 At/z u% ) u%()

2P~ 1 A2 |l () | wpe-n() | W(EHD ()

Table [1] : Extrapolation Tableau for Romberg Sequence

[2c] End Inner Loop 1 : Note : Each component of this loop may be computed in

parallel.

[lc] Use equation (19) to calculate columns 2-P of each extrapolation table. The lower
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most right entries of Table [1], uzgfil))(-), are taken as the starting displacement and

velocity components for the next time-step.

[1d] Back substitute the displacement and velocity vectors from Step [lc] into equation

(21), and solve for acceleration vector £(tg4a¢).

[le] End Outer Loop

The Newmark parameters v and (3 are selected according to a dual set of criteria; in
addition to requiring the base method be second order accurate and stable, asymptotic
error expansions for updates in velocity and displacement must contain only even ordered

terms.

6.1 Accuracy and Stability

For linear dynamical systems of the type mentioned above, the Newmark method is
second order accurate if and only if ¥ = 1/2. Setting v = 1/2 and 8 = 1/4 results a
method that is unconditionally stable. For nonlinear systems y = f(#,y), which are twice
continuously differentiable in ¢ and y, the trapezoidal rule is stable, convergent, and second
order accurate [13]. The other common choice of parameters is ¥ = 1/2 and # = 1/6; it
corresponds to a linear time variation in acceleration, quadratic variation in velocity, and
cubic variation in displacement. The price for increased accuracy (i.e. a smaller coefficient
for the local truncation error) is conditional stability. This feature is of little benefit
because the purpose of the extrapolation is to eliminate the truncation errors completely,

irrespective of their size.
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6.2 Asymptotic Error Expansion

The goal of this section is to determine which settings of v and S result in asymptotic
expansions for the local error containing only even ordered powers of At. First, assume

that M [-] is invertible. Equations (20)-(21) may be written:
i(ty) = M7 [a(ty), 2(tg)] - [P (tg) — F[2(2q), 2(tg)] (29)
and

F(tgrar) = M7 [E(tgrar), (tgrar)] - [P (terar) — F[E(tgra), 2(terad)]  (30)

Substituting equations (29)-(30) into (24)-(25) and rearranging terms gives a pair of implicit

equations for the update in velocity and displacement. They are:

x.(tq+At) = i(tq) + At- ¥ (tqatq-i-Ata m(tq), i’(tq)’ x(tq+At)a z(tg+a), At) (31)

where @y () = (1—7) - M7 [(ty), z(tg)] - [P (tg) — F[E(tq), 2(tg)]] +

v M7 [E(tgrar), 2(tgran)] - [P (tgrad) — F[E(tg+at), 2(terad)]]
and

x(tH-At) = w(tQ) + At- Ty (tqvtq+Ata w(tQ)’ j:(tq)’ x(tﬁ-ﬂt)’ j:(tq-i-Ai)v At) (32)

where Wy (-) = &(ty) + [_Az—t
[%t_] 28 - M7 [E(tgran) e(tqrad)] - [P (tgrad) = Fli(tgrad), #(fgrad]]-

] (1=28)- M7 a(ty), a(tg)] - [P (2g) — F [2(te), 2(t))] +

Assume that ¥(-) and ¥,(-) are continuously differentiable with respect to the displace-

ments and velocities over the complete time interval [t,,t,4+A¢]. Equations (31) and (32)
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will have even ordered asymptotic expansions if the interchange of parameters ¢4 « t,4 Ay,

z(ty) « z(tgrar), 2(ty) & (tgrar) and At — —At leaves the equations invariant. In

other words, equation (31) must be identical to

i(tq) = i(tq+At) — At ¥, (tq+At7tq>$(tq+At)vi(tq+At)v$(tq)vi(tq)7 , —Ot)

(33)

where Uy (1) = (1 —7) - M7 [2({g+at), 2(tgrar)] - [P (tg+ar) — Fla(tgrar), o(terar)]] +

- M7 (), 2(tg)] - [P () — F (tg), 2(tg)]]

Equating coefficients gives 1 — v = «4, i.e. v = 1/2. Similarly, the displacements will

have even ordered asymptotic expansions if the interchange of parameters t; <> f4+as,

z(ty) — z(tgrar), (tg) & (tg+a:) and At & —Atin

. At ) )
T(tg+at) = z(ty) + Dta(ty) + '2_[(1 —28)i(ty) + 284(tg+a1)]
gives a numerical scheme equivalent to

z(ty) = z(tg+at) — Dti(tgrar) + ATt[(l — 2B)E(tgrat) + 2B2(ty)]

Recall that ¥ = 1/2. Substituting

Btgrae) = 8(tg) + S5 [5(t) + E(fesar)

2
into (35) and rearranging terms gives
(tgrae) =z(tq) + Ati(ty) +
At A%

5 [E(t) + E(tgrad)] = —=[(1 = 28)é(terad) + 2Bi(tq)]-

<

(34)

(33)

(36)

It is evident that the coefficients in (34) and (36) will be identical for any value of 3. -
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Remark 2: A natural question to ask is whether or not “other combinations of v and S

are admissible when the system dynamics are linear ?” Consider, for example, the linear

SDOF model

E(ty) + 2ew(ty) + wzm(tq) = P(t,).

For the purposes of conducting the analysis, it is convenient to define the column vector

2(tg) = [z(tq), :i'(tq)]T and write the discrete update for Newmark in first order form

Ar[Dt] - 2(tgr o) = A2 [At] - 2(2g) + Ltg, te+ at, O] (37)
where Ay [At] = L4 AEGT 208w
! - Atyw? 1+ 2eAtyw

Aq [At]

I

[1 ~ AP /2(1 = 28)w? A1 — At(1 — 2;3)&;)}
— A1 — y)w? 1—-2A%41 — v)ew

and L[ty tesar, At

[Aﬁ /2-1(1-2B)P(t,) + QﬁP(tq+At)]]
At-[(1=7)P(ty) + vP(tg+al)] '

Recasting equations (37) in the form of (6) gives

Htgrar) = 2(tg) + At ¥y (tgrtg+ar, 2(tg), Ot) (38)

where W,(:) = [—41:-&[—?—@} (A2[At] — A [A]) - 2(ty) + Lty terarn Ot)]. (39)

In is important to note that in (38) the notation ¥1(-) is used for a (2n x 1) column vector

composed of equations ¥y(-) and ¥5(-) in (31) and (32), respectively. The interchange of
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parameters t; < tgar, At & —At, and z(t,) < z(t44a¢) will leave the numerical method

unchanged if and only if

ATHAL - Ap[At] = AT [-At] - A [- At (40)

and  Lltg,terae, At] + Ai[At]- AT =At]- Litgy aesty, — O8] = 0. (41)

Plugging equations (40)-(41) into Mathematica [27] and solving for solutions gives v = 1/2

and any value £.
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7 NUMERICAL EXPERIMENTS

This section presents the results of four numerical experiments; three examples and
one counter example. Unless otherwise stated, simulations are conducted using v = 1/2
and # = 1/4. The extrapolation computations consists of four levels of stepwise refinement

matching the Romberg sequence, i.e. At, At/2, At/4, and At/8, i.e.:

{ ot ‘1 1 stao
at/2
| ll ™ J‘ 2 staps
at/a
| | 1 | | ‘s
[ 1 1 0 | 4steps
at/s
1 1 { ! i ! \ ! [ ]
l i 1 | i 7 3 0 i @stens

They are conducted without stepsize and error control in the sense of Deuflhard [7]. In order
to benchmark the accuracy of the proposed Newmark-Extrapolation algorithm against
traditional approaches (for equivalent computational work per unit increment of time), the
timestep for the standard Newmark integration procedure is divided by 15 - i.e. step length
At
15 |*
The accumulation of differences between analytic and numerical response quantities is

captured by defining the area of component error as:

i=N
Error Area = stepsize - Analytic(t) — Numerical(t)|; 42)
p i

=1

where N equals the total number of integration timesteps over the simulation time inter-
val. The parameters Analytical(t) and Numerical(t) are analytic and numerical solutions
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Component x : Analytic x(0.03) = -0.47884882915567743984

Steps | Stepsize 0 [At2] 0 [Atﬂ 0 [Atﬁ] 0 [Ats]
1 At |-0.47827819849
2 St 1-0.47870594155 | -0.47884852258
4 8t 1-0.47881309285 | -0.47834880995 | -0.47884882911
8 &L |-0.47883989418 | -0.47884882795 | -0.47884882915 | -0.478848829155675

Component z : Analytic £(0.03) = 0.99280863585386625224
Steps | Stepsize 0 [At?] 0 [At!] 0 [At°] 0 [At?)
At 0.99282582702
% 0.99281294252 | 0.9928086477

%—t 0.99280971308 | 0.9928086366 | 0.99280863586

%—t— 0.99280890519 | 0.9928086359 | 0.99280863585 | 0.992808635853866

o0 | > DN |

Table [2] : Simulation components after 1 Time Step

to components of response (acceleration, velocity, and displacement), and system invari-
ants (total angular momentum, energy and so on). All calculations were done in double

precision arithmetic on a SUN workstation.

7.1 Example 1 : Undamped SDOF Oscillator

The free vibration response of an undamped SDOF oscillator is studied as a means of
gaining insight into the behavior and properties of the Newmark-extrapolation algorithm.
If the mass m = 1 and stiffness k = 16, with initial conditions x(0) = 1 and #(0) = 0, then

the analytic solution is:

z(t) = cos(4t) (43)
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Propagation of Energy Errors
Steps Stepsize 0 [At?] o [Att] o [At°] 0 (A
1 At 0.000000
2 ot 1.77e-15 4.12e-08
4 ot 1.77e-15 2.58e-09 1.1le-11
8 & -3.55¢-15 1.61e-10 1.66e-13 -6.21e-15

Table [3] : Energy Errors for Newmark-Extrapolation at Time Step 1

The simulation timestep in the Newmark-Extrapolation algorithm was set at At = 0.03
seconds. For equivalent computational work per unit time, the simulations were repeated
for the standard Newmark algorithm using At = 0.002 seconds and 15 times the number

of time steps.

Performance of Numerical Algorithm at Step 1

Tables [2] summarizes the component response of the Newmark-Extrapolation algo-
rithm after only 1 timestep; i.e. # = 0.03 seconds. The entries of column 3 correspond to
velocity and displacéement responses computed with the standard Newmark Method. Once
column 3 is filled in, equation (19) is used for the calculation of columns 4-6, with elements
u3(-) being taken as the starting displacement and velocity at timestep 2. A key point to
note from Table [2] is that convergence of the numerical solution to the analytic solution
1s much faster due to extrapolation (across the rows of the table) than by reduction of the

step size (moving down the columns).

Physical considerations dictate that energy will be conserved in (43). Table [3] tracks

the errors in the system energy at each stage of the extrapolation process for time step 1.
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As indicated in the opening sections, the standard Newmark method with v = 1/2 and 8 =
1/4 theoretically conserves energy exactly for this application, irrespective of the timestep
length. In practice, however, minor errors are introduced due to numerical roundoff (see
column 3 of Table [3]). Column 4 of Table [2] contains displacement and velocity estimates
that are 4th order accurate. The corresponding column in Table [3] contains large errors
in the energy of the numerical response; this observation is consistent with Dahlquist’s
stability criterion for this integration linear systems using a multi-step method [5]. As the
extrapolation process continues, progressively higher order estimates of response quantities
are obtained, and the energy error systematically approaches zero. Indeed, the final error

in energy is of the same order as would occur due to numerical roundoff.

Long Term performance of Numerical Algorithm

The numerical response of the Newmark-Extrapolation algorithm was calculated for
3000 seconds, using to 100,000 time steps of At = 0.03 seconds. This corresponds to

approximately 1910 full cycles of (43).

The first block of simulations corresponds to parameter settings v = 1/2 and § = 1/4.
The Newmark-Extrapolation algorithm (see column 3 of Table [4]) tracks the time varia-
tion in acceleration, velocity and displacement quantities much closer than the standard
Newmark method. The error area in energy for the standard Newmark method should the-
oretically be zero. However, an accumulation in roundoff errors gives an absolute integral
of energy errors 4.712 x 10~!!. The corresponding error area in energy given by Newmark-

Extrapolation is of the same order as the displacements and velocity, as expected.

A second set of simulations were conducted using v = 1/2 and § = 1/6. The objective
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Error Component Standard Newmark Newmark Extrapolation
Displacement 4.074 x 10° 5.304 x 1078
Velocity 1.629 x 10! 2.121 x 1077
Acceleration 6.518 x 10! 8.487 x 1077
Energy 4.712 x 10~11 9.514 x 1078

Table [4] : Error Area after 3000 Seconds

: gamma = 1/2 : beta = 1/4.

Error Component Standard Newmark Newmark Extrapolation
Displacement 2.037 x 10° 8.474 x 107°
Velocity 8.148 x 10° 3.380 x 1078
Acceleration 3.259 x 10! 1.356 x 1077
Energy 4.267 x 1073 1.186 x 1078

Table [5] : Error Area after 3000 Seconds : gamma = 1/2 : beta == 1/6.

was to verify that extrapolation would work for values of 3 other than 1/4, and to see how
much a linear variation in acceleration within the time step - versus constant acceleration
- affects numerical accuracy. In the analysis of a linear undamped free vibrating SDOF
systems, it can be shown - see Chapter 9 of Hughes [12] - that this Newmark method does
not conserve energy exactly, and is stable only when w - At < 3.464. For this application,

the product w - At = 0.12, so stability is not a problem.

The results of Tables [4] and [5] indicate that a linear approximation in accelera-
tion improves the numerical accuracy in displacements, velocities, and accelerations in
both the standard Newmark method and the proposed Newmark-Extrapolation algorithm.

For example, estimates of displacement from Newmark-Extrapolation, have error areas
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53.04 x 107 and 8.474 x 107 for the constant and linear acceleration approximations,
respectively. This improvement in numerical accuracy is minor, compared to that obtained

via extrapolation.

Comparison to Mid-point Rule

In the numerical solution of complicated dynamical systems, often the equations of

motion are written
9(-) = M [#(tg4ar)] - E(tgrnt) — Ptgrar) =0

and solved by iteration at each timestep. One problem with this approach is the potential
destruction of the asymptotic error expansion if the iterative solution to the equations
1s not sufficiently accurate; that is, compared to the so-called exact method using LU

decomposition. To see if this was likely to happen, the SDOF dynamics were written
)| _ [0 1] [% O] [r()
[;;;(t)] = [1 o |10 k| |zt)] (44)
Here z(t) and p(t) are the displacement and momentum - p(t) = m - 2(¢) - of the mass-
spring system. The discrete approximation to (44) using the midpoint rule is

pltgar)—p(ty) _ 1 p(torae)+p(ty)
S (B e

[Lqie_l:_lisl 1 0 k
At

z(tg-i-Ac)'l'J?(tg)
2

The alert reader will notice that energy is conserved when equations (45) are solved exactly.
Furthermore, in the solution of linear dynamical systems, the midpoint and trapezoidal

rules are equivalent simply because:

- f<w(tq)+;(tq+m)> _ %.t_.[f(m(tq)) + F(altgran))]
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Error Component Newmark-Extrapolation Midpoint-Extrapolation
Displacement 5.304 x 1078 5.222 x 1078
Velocity 2121 x 1077 2.089 x 1077
Energy 9.514 x 10~ 9.498 x 10~

Table [6] : Error Area after 3000 Seconds

Numerical solutions to (45) were calculated for 100,000 timesteps of At = 0.03 sec-
onds, the equations being solved at each timestep using the iterative procedure described
in Section 7.3. Table [6] shows the error areas for the Newmark-Extrapolation and the
midpoint formulation are similar, a good indication that the iterative equation solver is

working well.

7.2 Example 2 : Damped SDOF subject to External Loading

Consider the damped SDOF subject to external loads:

E(t) +42(t) + 132(¢) = [%] e *! . sin[3t] (46)

If x(0) = 1 and #(0) = —2, then Laplace transforms gives an analytic solution:

-2t

54

z(t) = e 2" - cos[3t] + [e ][sin(Bt) — 3tcos(3t)]. (47)

The damped natural period of this system is approximately 2.3 seconds.

Simulation Results

200 timesteps of simulation were computed using Newmark parameters v = 1/2, 3

= 1/4, and timestep length At = 0.03 seconds. This corresponds to approximately 3 full
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cycles of motion. Table [6] shows that the standard Newmark algorithm produces error
areas of the order 10~¢. When the Newmark-Extrapolation algorithm is used to compute

the response, the same error areas are of the order 1071°,

Error Component

Standard Newmark

Newmark Extrapolation

Displacement 2.32 x 107° 8.067 x 10716
Velocity 9.30 x 107° 3.223 x 10716
Acceleration 3.36 x 107° 1.235 x 10719

Table [7] : Error Area after 200 Time Steps

7.3 Example 3 : Lagrangian Formulation for 2-Body Problem

The third application is a study of the dynamical behavior of two planar rigid bodies
connected by a frictionless revolute joint in a zero-gravity environment. Let the bodies
have masses m; and ms, and moments of inertia about their centers of mass I1 and Is.
Figure [1] shows that the centers of mass for each body are located at distances d; and d;
from the revolute joint. Moreover, the orientation of each body is described by the angle -

61(t) and 82(¢) - it makes to the x-axis, measured in an anti-clockwise direction.

In the absence of external torque the system is conservative. The total angular mo-

mentum of the system is

M =1 1][ L e-didy - cos(8a(t) — Gl(t))} [él(t)]. (48)

€ d1d2 . cos(92(t) - 91 (t)) I2 92“)
and the Lagrangian of the system

=1

5 [fléf(t) + LO2(t) + 200(¢) - 6x(t)e - dydy - cos(8a(t) — Ql(t))].

(49)
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Revolute Joint

_____________ mass 2
-
f”

Center of Mass for the System.

Figure [1] Configuration of Planar Two Body Dynamical System

In equations (48) and (49), € = (mym2)/(m1 + m2) is a reduced mass, and I; = I; + ed}
and I, = I, + ed% are augmented inertias of the bodies. The Euler-Lagrange equation
is used to .derive (see Sreenath et al. [23,24] for details) the equations of motion for this

system. They are:

L edids - cos(fa(t) — 91(t))] [él(t)} N
6d1 dg . COS(92 (t) - 91 (t)) I2 62(t)
€d1 dg . s1n(92(t) et 91 (t)) l: _zggg} =0. (50)

Notice that (50) is linear in angular accelerations, and falls into the class of problems
covered in (1). If angles and velocities are provided as initial conditions, then the starting

angular accelerations may be recovered directly from (50).
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Computational Implementation

The first step of the computational procedure is to write (50) in component form,

namely:

0 (él(t),ég(t)) = L61(t) + € didy - cos(Ba(t) — 61(£))Ba(2)
— 62(t) - edyd; - sin(62(t) — 61(t)) = O, (51)
g2 (61(t),92(t)) =f2é2 + €'d1d2 ‘COS(HQ(t) - Hl(t))Gl(t)

+ 62(t)-e-dydy - sin(62(t) — 61(t)) = O, (52)

where the subscripts take there usual meaning. The number of unknown variables at each
timestep is reduced to two by prescribing constant angular acceleration across each time

interval t € [ty,t4+¢]. In an analogous manner to equations (22)-(23), it follows that:

btgran) = Bt + [ briir =) + 5 i)+ bitiea0] . 59)

q
and
2 ..

Otorar) =0y + | T by = 8(tg) + 6t A + 2 [ftg) + Bltarad)] . (59)

q

Substituting (53)-(54) into (51)-(52) gives two nonlinear equations where the only unknowns

are é(tq+At). An iterative solution is computed by letting:
éf:;—ll-At = éf,q+At + Aéf, (55)
Oy tine = 05 (o ne + ABE. (56)

where Hﬁq-f-At is the k** iterate for acceleration component ¢ at time t44 a¢; here we have

dropped the notation 5(tq+ At) only to make the equations more compact. A sequence of
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iterative solutions is defined by taking a Taylor series expansions about g; (é’f‘q_*_m, éé,q-f—At)

and gg(é{‘yﬁm, é§,q+At) and truncating higher order terms. This gives:

0

. ; g ;
gl@f?ﬁ-mvek q+At) =g1(6} ,q+At’6k,q+At) + —..;:ﬂ“_Agf + —‘:k—l’—Aa:’zc +
1,q+At 892,q+At
O((A8})%,(A85)") = o, (57)
(ek,ﬁimaek;im) =92(9f,q+m’9§,q+m) + T—Aef + '176—‘1395 +
1,9+At ag2,q+[_\.t
O((A6F)%,(A65)%) = 0. (58)

Truncating the nonlinear terms of Af in (57)-(58), and rewriting in matrix form gives

P 20 k gk L
‘: 8918q+At 3926q+::>t :| [Agk] — [gl( 1,q+ A0 q+At) (59)
g2 g2 A8 9 9k
2
VN g2(07 FRYNT ,q+z_\.t)

which is solved for the incremental update in components (55)-(56). A concise statement of
(59) is J.h = -g. Iterations continue at each timestep until: (a) a preset maximum number
of iterations is reached, or (b) all changes in angular acceleration components from (55)-
(56) are less than a preset error value times the magnitude of the acceleration imbalance at
the beginning of the iterations. Moreover, divergence of the iterates is avoided by ensuring
lg(85 % A 051 L A0l is less than [lg(8%  A,, 65 1. a0)ll,- When this test fails, h is divided

by powers of 2 until the inequality is satisfied.

Simulation Results

Consider the response of the 2-body having properties my = 1, my = 2, dy = 1.0, d»
=1.5,I; = 1.0, and I, = 3.0. If the initial displacement and velocity vectors are [0,1] and

0.0, 5.0], respectively, then back substituting into equation (50) gives (approximate) start-
P y & 9 &
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Error Component Standard Newmark Proposed Algo

Lagrangian 4.421 x 1073 9.309 x 1010

Momentum Norm 1.351 x 108 2.293 x 10710

Table [8] : Error Area after 1000 Time Steps

ing angular acceleration components {13.133, —1.5768]. The norm of angular momentum is

25.20151152934070 and the Lagrangian 56.25.

The response of the 2-body was calculated for 1000 timesteps at At = 0.03 seconds
using the Newmark-Extrapolation algorithm (i.e. ¢ € [0,30] seconds). The computation
was repeated using the Standard Newmark algorithm for 15000 timesteps at At = 0.03/15
= 0.002 seconds. In both cases this interval of simulation corresponds to approximately 10

full cycles of the coupled rigid body components.

As indicated in equations (48) and (49), theore;cical considerations dictate that the
body momentum and energy will be constant. Consequently, error areas for momentum
and energy were calculated for both simulation cases, and are shown in Table [8]. They
indicate that the Newmark-Extrapolation is significantly more accurate than the standard

Newmark algorithm.

8.4 Counter Example 4 : Bilinear Mass-Spring System

The counter example demonstrates how the extrapolation process will fail when the
underlying equations of motion are not sufficiently differentiable, as required by Gragg’s

theorem. Consider, for example, the free vibration of a simple mass-spring SDOF oscillator
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having mass m, and a bilinear spring restoring force

F(z) = 10z, zone 1if | x | < 1.0;
T 110%(14+p(z—1)), =zome2for|x]| > 1.0.
where z is the displacement of the mass and p is a coefficient of strain hardening. If the
mass has displacement z(0) and velocity #(0) at time t = 0, then the analytic solution for

free vibration is a piecewise series of solutions
x(t) = Acos (w(z)t) + Bsin (w(x)t)

for displacements within each zone. The instantaneous circular frequency of the system
is given by w(z) = /[k(z)/m], where k(x) = dF(z)/dz is the tangent stiffness. The
coefficients A and B depend on the initial conditions as the system passes from one zone to
another. More important, let ¥(-) be the increment function - in the sense of equation (6)
- for the numerical method when the ’trapezoidal rule is used to approximate the update

in velocities and displacements. There does not exist a Lipschitz constant L such that

OU(t,z1) 0V(t,z,)
Oz Oz

| < Lizi —22|

for all z; and x5 in the neighborhood of x = +1. From a physical viewpoint, this translates
to a discontinuity in the third derivative in displacement at the boundary between zones
1 and 2. The necessary conditions for Gragg’s theorem are not satisfied, and as a result,

the extrapolation should fail as the boundary between zones 1 and 2 is crossed.
Simulation Results

For the numerical experiments, mass m was set to 1, strain hardening ratio p set to 0.5,

and the initial displacement and velocity at t = 0 set to 2 and 0, respectively. The system
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Component Analytic Numerical Error
Displacement | 1.079367284205931 | 1.079367284205930 | 0.000000000000001
Velocity -4.835406755059004 | -4.835406755059001 |-0.000000000000003
Acceleration |-10.396836421029658 | -10.396836421029651 | -0.000000000000007
Energy 17.500000000000000 | 17.499999999999972 | 0.000000000000028

Table [9] : System Components at end of Timestep 9

Component

Analytic

Numerical

Error

Displacement

0.877842947098626

0.877954601994794

-0.000111654896169

Velocity

-5.227371560478852

-5.224170476570483

-0.003201083908370

Acceleration

-8.778429470986259

-8.779546019947945

0.001116548961686

Energy

17.50000000000000

17.499999999954522

0.000000000045478

Table [10] : System Components at end of Timestep 10

has constant energy = 17.5. If At = 0.04 seconds, then the Newmark-Extrapolation scheme

crosses from zone?2 into zonel during the 10th timestep (starting at t = 0.40 seconds).

Table [9] shows that the analytic and numerical system parameters agree to approx-
imately 15 decimal places at the end of timestep 9. During timestep 10, each simulation
block starts in zone 2 and moves to zone 1. It is important to note that all sub-steps of
standard Newmark integration conserve energy, including those that cross the boundary
between zones. Still, the extrapolation of displacements and velocities fails, and is ac-

companied by a significant loss in accuracy for the system energy. The latter results are

summarized in Table [10].
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8 CONCLUSIONS

This paper has described the formulation of a new class of algorithms for integrating
linear second order equations, and those containing smooth nonlinearities. These algo-
rithms are based on ideas taken from standard Newmark integration methods, and extrap-
olation techniques. For the algorithm to work, the underlying Newmark method must be
stable, second order accurate, and produce asymptotic error expansions for the response
quantities containing only even ordered terms. It has been shown that second order accu-
racy and a desirable asymptotic expansion is achieved for Newmark parameters v = 1/2,
and any value of 8. This means that 8 may selected on the basis of stability considerations
alone. The numerical experiments indicate that the Newmark-Extrapolation algorithm is
capable (in certain situations) of tracking response quantities in excess of 1,000,000 times

more accurately than the standard Newmark method.

The current plan is to extend this work in two directions. First, algorithms of the type
developed here lend themselves to concurrent computing. A prototype environment for
distributed numerical computations is currently being developed. The algorithm’s perfor-
mance in this environment will be reported in future papers. Second, it is planned to extend
the extrapolation technique to single rigid body and coupled rigid body applications. The
challenge here is to try and find ways of doing extrapolation within the Lie Algebra of the
application at hand. By doing this, the hope is that it may be possible to compute refined

estimates of system response without destroying invariants, such as conservation of energy.
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