
ABSTRACT

Title of dissertation: ALGORITHMS FOR ONLINE
ADVERTISING PORTFOLIO
OPTIMIZATION AND CAPACITATED
MOBILE FACILITY LOCATION

Mustafa Sahin, Doctor of Philosophy, 2017

Dissertation directed by: Professor S. Raghavan
The Robert H. Smith School of Business

In this dissertation, we apply large-scale optimization techniques including

column generation and heuristic approaches to problems in the domains of online

advertising and mobile facility location.

First, we study the online advertising portfolio optimization problem (OAPOP)

of an advertiser. In the OAPOP, the advertiser has a set of targeting items of interest

(in the order of tens of millions for large enterprises) and a daily budget. The objec-

tive is to determine how much to bid on each targeting item to maximize the return

on investment. We show the OAPOP can be represented by the Multiple Choice

Knapsack Problem (MCKP). We propose an efficient column generation (CG) al-

gorithm for the linear programming relaxation of the problem. The computations

demonstrate that our CG algorithm significantly outperforms the state-of-the-art

linear time algorithm used to solve the MCKP relaxation for the OAPOP.

Second, we study the problem faced by the advertiser in online advertising in

the presence of bid adjustments. In addition to bids, the advertisers are able to

submit bid adjustments for ad query features such as geographical location, time of

day, device, and audience. We introduce the Bid Adjustments Problem in Online

Advertising (BAPOA) where an advertiser determines base bids and bid adjustments

to maximize the return on investment. We develop an efficient algorithm to solve the

BAPOA. We perform computational experiments and demonstrate, in the presence

of high revenue-per-click variation across features, the revenue benefit of using bid

adjustments can exceed 20%.

Third, we study the capacitated mobile facility location problem (CMFLP),

which is a generalization of the well-known capacitated facility location problem

that has applications in supply chain and humanitarian logistics. We provide two

integer programming formulations for the CMFLP. The first is on a layered graph,

while the second is a set partitioning formulation. We develop a branch-and-price

algorithm on the set partitioning formulation. We find that the branch-and-price

procedure is particularly effective, when the ratio of the number of clients to the

number of facilities is small and the facility capacities are tight. We also develop a

local search heuristic and a rounding heuristic for the CMFLP.

ALGORITHMS FOR ONLINE
ADVERTISING PORTFOLIO

OPTIMIZATION AND CAPACITATED
MOBILE FACILITY LOCATION

by

Mustafa Sahin

Dissertation submitted to the Faculty of the Graduate School of the
University of Maryland, College Park in partial fulfillment

of the requirements for the degree of
Doctor of Philosophy

2017

Advisory Committee:
Professor S. Raghavan, Chair/Advisor
Professor Bruce Golden
Professor MohammadTaghi HajiAghayi (Dean’s Representative)
Dr. Abhishek Pani
Professor Courtney Paulson

c© Copyright by
Mustafa Sahin

2017

to clare, chubbs, and lily...

ii

Acknowledgments

I don’t think I can thank my advisor, Prof. Raghavan, enough for his guidance

and support, for challenging me and keeping me focused, and for inspiring me to

strive for the better. This degree would not be possible without him. I am hoping

to keep learning from him for many years to come.

I would like to thank Prof. Golden for his invaluable feedback on this disser-

tation, and advice and support for my career. I am thankful for the indispensable

contributions of my co-authors, Dr. Halper, Dr. Pani, and Prof. Salman, to my

research, and to this dissertation. I wish to thank Prof. HajiAghayi and Prof.

Paulson for being in my dissertation committee, and their feedback and insights.

I would like to thank all my friends and family here and back home who, despite

the sizable distance and time difference, were there for me whenever I needed. Don,

Jordan, and Mary, aka the Marlbrough Family. I cannot believe I was fortunate

enough to have them as my roommates. I will always cherish the years we spent

together. No doctoral degree would be possible in the Smith School without Justina

Blanco. However, in this instance, my life wouldn’t be possible without her and

Talha Aziz, aka my US parents. They have guided and helped me every step of the

way, but perhaps most importantly, introduced me to my wife, Clare.

Last but certainly not least, I would like to thank my wife for her unyielding

support and understanding. She gave me the fuel and the motivation to complete

this dissertation, which I dedicate to her and the girls.

iii

Table of Contents

List of Tables vi

List of Figures vii

1 Introduction 1

2 Large-Scale Advertising Portfolio Optimization in Online Marketing 7
2.1 Related Work . 14
2.2 Modeling the OAPOP as an MCKP 20

2.2.1 Structural Properties of the Solution to the MCKP-LP 22
2.2.2 Sorting Algorithm for the MCKP-LP 26
2.2.3 Linear Algorithm for the MCKP-LP 30

2.3 Column Generation Algorithm . 32
2.3.1 Initial Solution Procedure . 33
2.3.2 Column Generation Procedure 34

2.3.2.1 Generating Columns 36
2.3.2.2 Removing Columns 39
2.3.2.3 Overall Implementation and Running Time Analysis 40

2.4 Branch-and-price Algorithm . 45
2.5 Computational Results . 48

2.5.1 Generating Online Advertising Instances 49
2.5.2 Results for Online Advertising Instances 53
2.5.3 Results for Literature Instances 60

3 Targeted Online Advertising with Bid Adjustments 69
3.1 Related Work . 76
3.2 The Bid Adjustment Problem in Online Advertising 78
3.3 Iterative Adjustment Algorithm . 82

3.3.1 Base Bid Subproblem . 83
3.3.2 Feature Adjustment Subproblem 85
3.3.3 The Multiple Choice Knapsack Problem 90
3.3.4 Summary of the Steps in the Iterative Adjustment Algorithm 93

iv

3.4 Formulating the BAPOA as an MIP 95
3.5 Computational Results . 99

3.5.1 Data Generation . 101
3.5.2 MIP Instances . 108
3.5.3 Online Advertising Instances 113
3.5.4 Creating Advertising Campaigns 121

4 The Capacitated Mobile Facility Location Problem 129
4.1 Related Work . 134
4.2 Integer Programming Formulations 137

4.2.1 Layered Graph Formulation 137
4.2.2 Set Partitioning Formulation 142

4.3 Column Generation and Branch-and-Price Procedure 146
4.3.1 Column Generation Procedure for LP2 147
4.3.2 Branching Scheme . 149

4.3.2.1 Binary Branching . 149
4.3.2.2 Partition Branching 150
4.3.2.3 Hybrid Branching 151

4.3.3 Columns Management . 151
4.3.3.1 Setting initial columns 152
4.3.3.2 Adding columns through pricing 155
4.3.3.3 Managing active columns 156

4.4 Heuristics . 156
4.4.1 LP Rounding Heuristic . 156
4.4.2 Local Search Heuristic . 158

4.5 Computational Results . 160
4.5.1 Test Instances . 160
4.5.2 Computational Settings . 162
4.5.3 Homogeneous Facilities Case 163

4.5.3.1 Comparison of the LP Relaxations 164
4.5.3.2 Comparison of the Lower Bounds 166
4.5.3.3 Comparison of the Upper Bounds 167

4.5.4 Heterogeneous Facilities Case 173

5 Concluding Remarks 178

v

List of Tables

2.1 CPU times (in seconds) for Constant OA instances 54
2.2 CPU times (in seconds) for Random OA instances 55
2.3 CPU times (in seconds) for CPC OA instances 56
2.4 CPU times (in seconds) for UC instances 60
2.5 CPU times (in seconds) for WC instances 62
2.6 CPU times (in seconds) for SC instances 65

3.1 Bids and corresponding number of clicks, cost, and revenue data . . . 74
3.2 Distribution of clicks and cost, and revenue-per-click based on feature

combinations. 74
3.3 The Flat Bid revenue as a percentage of the IAA revenue for 1,000,

5,000, 10,000 and 25,000 keyword instances 115

4.1 Comparison of the quality of LP1 and LP2 when |V |/|F | ≤ 10 and
|T | = 1. 170

4.2 Comparison of the quality of lower bounds obtained from IP1, IP1*
and IP2 when |V |/|F | ≤ 10 and |T | = 1. 171

4.3 Comparison of the quality of upper bounds obtained from IP1, IP1*,
IP2, LP2RH, and LSH when |V |/|F | ≤ 10 and |T | = 1. 172

4.4 Comparison of the quality of LP1 and LP2 when |V |/|F | ≤ 10 and
|T | = 2. 175

4.5 Comparison of the quality of lower bounds obtained from IP1, IP1*
and IP2 when |V |/|F | ≤ 10 and |T | = 2. 176

4.6 Comparison of the quality of upper bounds obtained from IP1, IP1*,
IP2, and LP2RH when |V |/|F | ≤ 10 and |T | = 2. 177

vi

List of Figures

2.1 Hierarchical structure of an advertising portfolio 11
2.2 Graphical representation of the upper convex hull of levels 23
2.3 Upper convex hull of keywords . 25
2.4 Sorted list of marginal revenue-to-cost ratio 25
2.5 Illustration of the sorting algorithm for the MCKP-LP 25
2.6 Left and right branches for the fractional keyword. 47
2.7 Sample chart of the estimated cost vs the estimated number of clicks 51
2.8 Average CPU time per 1 million keywords vs number of keywords for

Constant, Random, and CPC OA instances 57
2.9 Average CPU time per 1 million keywords vs number of levels for

Constant, Random, and CPC OA instances 59
2.10 Average CPU time per 1 million keywords vs budget percentage for

Constant, Random, and CPC OA instances 61
2.11 Average CPU time per 1 million keywords vs number of keywords for

UC, WC, and SC instances . 64
2.12 Average CPU time per 1 million keywords vs number of levels for

UC, WC, and SC instances . 66
2.13 Average CPU time per 1 million keywords vs budget percentage for

UC, WC, and SC instances . 67

3.1 Hierarchical structure of an advertising portfolio featuring bid adjust-
ments . 72

3.2 A sample chart of the bid vs the estimated number of clicks 102
3.3 A sample chart of the bid vs the estimated cost 104
3.4 IAA and Flat Bid revenues as percentages of the CPLEX upper bound

for 5% budget . 109
3.5 IAA and Flat Bid revenues as percentages of the CPLEX upper bound

for 10% budget . 110
3.6 IAA and Flat Bid revenues as percentages of the CPLEX upper bound

for 15% budget . 111
3.7 IAA and Flat Bid revenues as percentages of the CPLEX upper bound

for 20% budget . 112

vii

3.8 IAA and Flat Bid revenues as percentages of the CPLEX upper bound
for {5%, 10%, 15%, 20%} budget averaged over ε = {0%, 10%, 20%} . 113

3.9 The Flat Bid revenue as a percentage of the IAA revenue for 1000
keywords for {5%, 10%, 15%, 20%} budget 116

3.10 The Flat Bid revenue as a percentage of the IAA revenue for 1000
keywords and {3, 6, 12, 24} number of times of day. 117

3.11 The running time of the IAA per 1000 keywords vs |K| 118
3.12 The running time of the IAA per 1000 keywords vs ν 119
3.13 The running time of the IAA per 1M feature combinations vs the

number of feature combinations. 120
3.14 The total running time of the subproblems in IAA per 1M feature

items vs the number of feature items. 121
3.15 The IAA-Agglo and IAA-Omni revenue as a percentage of the IAA-

Individual revenue for ε = 0% . 125
3.16 The IAA-Agglo and IAA-Omni revenue as a percentage of the IAA-

Individual revenue for ε = 10% . 126
3.17 The IAA-Agglo and IAA-Omni revenue as a percentage of the IAA-

Individual revenue for ε = 20% . 127

4.1 Original and layered graph representations of a solution to an instance
of the CMFLP . 138

4.2 An example demonstrating LP2 provides a tighter linear program-
ming relaxation bound than that of LP1 146

4.3 An example demonstrating LP1 is feasible for an infeasible problem
whereas LP2 is infeasible . 146

viii

Chapter 1: Introduction

Business analytics stands atop of three pillars; descriptive, predictive, and

prescriptive analytics. They co-exist in a feedback loop as equally important com-

ponents. On one hand, the ubiquity of and the ability to quickly process data

enable firms perform descriptive and predictive analytics at a very high level gain-

ing invaluable insights and looking into the future with unprecedented accuracy and

granularity. On the other hand, performing prescriptive analytics in this environ-

ment often means dealing with decision problems with massive inputs that need

to be solved very quickly. In today’s fast paced operational landscape, problems

are only getting larger while feedback loops are getting shorter and shorter. Firms

now have less time to perform effective prescriptive analytics, which often entails

efficiently solving complex and large-scale problems. In this dissertation, we develop

solution methods for large-scale decision problems, focusing on both the quality and

the efficiency of the methods, in the context of online advertising and logistics.

In Chapter 2, we study the online advertising portfolio optimization problem

(OAPOP) faced by an advertiser. Online advertising spending has soared in the

US (and worldwide), growing from $7.26 billion in 2003 to $72.5 billion in 2016

[PwC Report, 2017]. Advertisers have an overwhelming task in managing online

1

advertising portfolios with millions of targeting items (e.g., keyword, cookies, web-

site, etc.) across many platforms (e.g., Google, Facebook, etc.) and formats (e.g.,

search, display, etc.). The OAPOP allows the advertiser to consolidate advertising

campaigns across many platforms and formats into a single large-scale portfolio and

operate under a single advertising budget. In a typical online advertising auction,

the advertising platform collects bids from advertisers for a given targeting item

and determines the order of ads that are displayed. The advertiser, on the other

hand, has to decide which targeting items to bid on and how much, which plat-

forms and formats to advertise on, all within an advertising budget. Fortunately,

advertisers have ample resources to build predictive models for relevant advertising

metrics (e.g., number of clicks, number of impressions, cost-per-click, etc.) at a tar-

geting item level for different platforms and formats. In addition to data collected

by the advertiser, advertising platforms provide detailed data of past performance

and forecast for relevant advertising metrics.

We show when the advertiser has available predictive models that would pro-

vide expected cost and revenue data for a given bid amount, the OAPOP can be

modeled as a Multiple Choice Knapsack Problem (MCKP). However, given the size

of advertising portfolios in industry, the number of targeting items and bid amounts

considered in the OAPOP can be in the order of billions. We therefore explore an

efficient solution approach that would adequately address the operational require-

ments (e.g., the problem is solved multiple times throughout the day). We first

elaborate on some structural properties of the optimal solution for the linear pro-

gramming relaxation of the problem. We discuss existing methods, their strengths

2

and shortcomings, and offer an efficient column generation algorithm. We assess

the efficiency of the column generation algorithm in simulated data sets based on

a sample collected from “Google Keyword Planner”, with up to 2.5 billion decision

variables, which reflects the size of the advertising portfolios currently encountered

in industry. Our findings indicate the column generation algorithm significantly out-

performs (10 times faster in some cases) the state-of-the-art linear time algorithm

under practical settings.

In 2013, Google and Bing have introduced “Enhanced Campaigns” that al-

low advertisers to more effectively target desired user characteristics. In enhanced

campaigns, the advertisers can adjust their bids based on ad query features. Such

features include geographical location, time of day, device, audience, etc. Every

time an ad query is received, these adjustments are multiplied by a base bid to

reach a final bid, which is then submitted to the auction. These adjustments al-

low advertisers to favor some features over others based on their cost and revenue

implications. Bid adjustments are a relatively recent development in online adver-

tising. Even though it is of extreme importance to advertisers, the problem has not

been adequately addressed in the literature from a budget optimization and revenue

management standpoint.

Enhanced campaigns provide a more sophisticated bidding language, provid-

ing an opportunity to build upon our approach in Chapter 2 to take advantage of

bid adjustments. The model and solution approach discussed in Chapter 2 provides

a high level budget allocation to campaigns operating under enhanced campaigns

bidding language (presently, Google and Bing campaigns). However, we can further

3

increase the advertiser’s return on investment by using bid adjustments for these

campaigns. In Chapter 3, we address the need for an efficient and high quality

algorithm that can take advantage of bid adjustments and introduce the Bid Ad-

justments Problem in Online Advertising (BAPOA). We model the BAPOA as a

mathematical program. However the way bid adjustments interact in the bidding

language leads to computational challenges. We show that the mathematical pro-

gramming formulation can be decomposed into two subproblems. One to determine

bids, one to determine bid adjustments. We develop an efficient algorithm to solve

the BAPOA by iteratively creating and solving the two subproblems. We evaluate

the quality of the algorithm in comparison to upper bounds obtained from a mixed

integer program (the BAPOA can be modeled as a mixed integer program for a dis-

crete approximation) on small instances, and show that the algorithm provides near

optimal solutions on these instances. On experiments performed in industry scale

data sets (generated based on a sample collected from Google Keyword Planner),

we observe the benefit of using bid adjustments increase as the revenue variation

increases across features. Our algorithm for the BAPOA operates for a given set of

campaigns and ad groups. However, the formation of campaigns and ad groups is a

crucial part of the advertiser’s task since different formations will yield different re-

sults. We therefore explain how clustering can be used on the adjustments obtained

by our algorithm to form campaigns and ad groups to maximize the effectiveness of

bid adjustments.

In Chapter 4, we discuss the capacitated mobile facility location problem (CM-

FLP). In the CMFLP, the objective is to move mobile facilities from their existing

4

locations to new locations and assign clients in such a way that the total weighted

distance traveled by facilities and clients is minimized. In addition to various supply

chain applications, the problem finds an application in humanitarian relief logistics

where mobile clinics (cancer screening units, blood banks, eye clinics, vaccination

booths, etc.) serve people who would otherwise have limited access to healthcare.

This application typically results in large-scale problems with many healthcare fa-

cilities need to be located to serve large number of patients. We propose a set

partitioning formulation and an efficient column generation procedure to solve the

linear programming relaxation. We find that the column generation procedure is

particularly effective both in terms of solution time and quality, when applied to

settings encountered in the mobile healthcare application. We develop a branch-

and-price algorithm to solve the CMFLP. Through computational experiments, we

demonstrate the quality of the branch-and-price algorithm in comparison to a state-

of-the-art commercial solver. In large-scale instances, the branch-and-price algo-

rithm significantly outperforms the state-of-the-art solver, finding better upper and

lower bounds for the problem.

The rest of this dissertation is organized as follows. In Chapter 2, we discuss

the Online Advertising Portfolio Optimization Problem. In Chapter 3, we introduce

the Bid Adjustment Problem in Online Advertising that is suited for platforms and

formats operating with bid adjustments. In Chapter 4, we study the capacitated

mobile facility location problem. We deliver concluding remarks in Chapter 5. Note

that Chapters 2-4 are self contained in terms of motivating their respective prob-

lems, discussing related work and contributions, developing models and solution

5

approaches, and discussing computational experience.

6

Chapter 2: Large-Scale Advertising Portfolio Optimization in Online

Marketing

Online advertising revenues in the United States have grown from $7.26 bil-

lion in 2003 to $72,5 billion in 2016, the growth from 2015 to 2016 alone was 21.8%

[PwC Report, 2017]. Social media and mobile based advertising made great strides

in the last few years and are responsible for 22.5% and 50.5% of total revenue in 2015,

respectively. From an advertiser’s perspective, maximizing return from online adver-

tising efforts became an increasingly difficult endeavor. This has led to the develop-

ment of software like Adobe Marketing Cloud (http://www.adobe.com/marketing-

cloud.html), DoubleClick by Google (www.doubleclickbygoogle.com), Kenshoo In-

finity (http://kenshoo.com), and Marin Software (http://www.marinsoftware.com/)

that help advertisers manage their online advertising campaigns.

In this chapter, we study the Online Advertising Portfolio Optimization Prob-

lem (OAPOP) faced by an advertiser who wishes to maximize the return on online

advertising investment subject to an advertising budget. A constant flow of data

and shifting consumer patterns require fast solution methods for the OAPOP. The

problem needs to be solved and resolved multiple times throughout the day. The

portfolios advertisers are interested in can contain tens of thousands of targeting

7

items (e.g., keywords, cookies, websites, demographic dimensions etc.) for small

businesses and millions for large enterprises. In addition, the same targeting items

may appear across multiple advertising platforms (e.g., Google, Bing, Facebook

etc.) and formats (e.g., search, display, etc.). Therefore, the size of the portfolio

considered may easily reach tens of millions since a targeting item under different

advertising platforms and formats counts as different targeting items for the pur-

poses of bidding and allocating budget. Further, with new ad delivery channels on

the rise, such as Snapchat and programmatic TV ads, the size of these problems

will only increase with time

The two main bidding options used in online advertising are; performance

based bidding, and impression based bidding. In performance based bidding, also

known as cost-per-click (CPC) bidding, the advertiser is only charged for an ad if the

ad gets clicked whereas in impression based bidding, also known as cost-per-mille

(CPM) bidding, the advertiser is charged for impressions regardless of whether or

not the ad gets clicked. In 2016, 64% of online advertising revenue resulted from

CPC bidding whereas CPM bidding was responsible for 35% of the revenue [PwC

Report, 2017]. The search advertising format, which roughly made up half of online

advertising revenue in 2016, typically operates under CPC bidding. In contrast,

the display advertising format operates under both CPC and CPM bidding, and

accounted for roughly 45% of online advertising revenue in 2016. In both search and

display advertising, the advertisers provide portfolios of targeting items to various

advertising platforms along with bidding options (i.e., CPM or CPC), bid amounts,

and budgets. Every time a query is received, the platform matches the query to

8

advertisers’ portfolios and determines which ads are displayed as well as how much

to charge each advertiser based on bid amounts and bidding options. A query

can range from a keyword search in search advertising to a website visit in display

advertising. There are billions of queries generated everyday resulting in hundreds

of millions of dollars in advertising spending.

Every advertising platform has its own rules governing the payment and the

allocation of the ads. However, every major platform (e.g., Google,1 Bing,2 etc.)

holds a generalized second price auction for each query. For example, in Google

search advertising, the page position of an ad is determined based on the so called

‘Ad Rank’ of the ad. The Ad Rank is calculated using various features including bid

amount, click probability, landing page experience, ad relevance, and ad formats.

When a keyword is searched, Google calculates the Ad Rank of each advertiser who

placed a bid on the keyword. Then the advertiser with the highest Ad Rank gets the

top position on the page and if clicked, the advertiser pays the minimum bid amount

that would maintain the position of the advertiser. The subsequent page positions

are awarded in decreasing order of Ad Rank and the advertisers are charged for clicks

in a similar fashion. In display advertising, Google’s auction mechanism is similar to

that of search advertising save for some minor differences. For instance, since both

CPC and CPM bidding options are allowed, different options may compete in the

same auction. Google converts CPC bids into an equivalent CPM bid by estimating

the expected clicks an ad would get for a thousand impressions. More information

1Explained by Google’s Chief Economist Hal Varian, https://youtu.be/5ZnWq0XMClc
2https://advertise.bingads.microsoft.com/en-us/blog/post/september-2013/bing-ads-auction-

explained-how-bid,-cost-per-click-and-quality-score-work-together

9

on Google’s auction mechanisms for search3 and display4 advertising formats are

available online.

There are two ways online advertising impacts advertiser revenue. First, clicks

that directly result in sales. Second, clicks and impressions that do not directly result

in sales but build brand awareness, which over time, results in sales. For each query

of a targeting item, the bid amount determines the page position and the respective

click outcome resulting in a payment based on the bidding option. Over a time hori-

zon (e.g., an hour, a day, etc.), a query for a targeting item may be received many

times. The average number of clicks, number of impressions, and amount paid can

all be viewed as functions of the bid amount. Therefore, a bid amount can be linked

to an expected cost over a given time horizon. All the data required to estimate

the expected cost are provided by advertising platforms in detailed historical per-

formance reports and forecasts. Moreover, by using methods such as Pixel Tracking

and URL redirects the advertiser can track direct sales outcomes of each click, and

indirect sales outcomes of impressions and clicks. In essence, regardless of bidding

option, advertising platform, or advertising format, a bid amount can be linked to

estimates of expected cost and expected revenue for every targeting item. Using these

estimates, an advertiser can consolidate all online advertising campaigns under one

portfolio and operate under a common budget over a specified time horizon.

An advertiser has multiple ad campaigns each with a budget (e.g., daily)

that needs to be specified to the advertising platform. Each campaign has a set

3Adwords Auctions: https://support.google.com/adwords/answer/142918?hl=en
4Display Network Auctions: https://support.google.com/adwords/answer/2996564?hl=en

10

Portfolio

Campaign
1

Campaign
2

Ad group
1,1

Ad group
1,2

Targeting
item
1,1,1

Targeting
item
1,1,2

Ad group
2,1

Targeting
item
2,1,1

Targeting
item
2,1,2

Targeting
item
1,2,1

Figure 2.1: The hierarchical structure of a portfolio with 2 campaigns, 3 ad groups,
and 5 targeting items. In this portfolio, Campaign 1 represents a search format
campaign in Google Adwords, whereas Campaign 2 represents a display format
campaign in Bing Ads. The OAPOP is solved for a specified portfolio budget,
however, ad platforms require the advertisers to submit a separate budget for each
campaign. After determining optimal bids for every targeting item in the portfolio
by solving the OAPOP, the advertiser can aggregate the expected cost for each
targeting item in a given campaign and submit it as the campaign budget.

of ad groups which in turn have a set of targeting items. The advertiser needs to

determine a bid for each targeting item in an ad group. Figure 2.1 schematically

represents the structure of the advertiser’s problem. Note that the total expected

cost of a campaign based on the determined bids would be set as the budget of that

campaign, ensuring the sum of campaign budgets across all the campaigns add up to

the total advertising budget. This allows the campaigns to be combined into a single

advertising portfolio optimization problem, which we refer to as the OAPOP. In the

OAPOP, given campaigns across various bidding options, advertising platforms, and

advertising formats, the advertiser needs to decide how much to bid on each targeting

item to maximize the total expected revenue while ensuring the total expected cost

11

does not exceed the specified budget. This problem can be modeled as a multiple

choice knapsack problem (MCKP). In the MCKP, the objective is to select at most

one item (bid amount) from each class (targeting item) such that the sum of the

weights (expected cost) of selected items does not exceed the capacity (budget) while

the total reward (expected revenue) is maximized.

Much of the previous research (discussed in Section 2.1) has focused on other

aspects of the problem (e.g., game-theoretic results or simplified/smaller versions of

the problem faced by advertisers in practice). As the scale and volume of online

advertising has increased so has the need for an efficient solution to the OAPOP. Our

research is motivated by the daily operational problem faced by an advertiser with

a large advertising portfolio. In this setting it is necessary to solve huge OAPOPs

rapidly (e.g., solving the OAPOP in seconds multiple times a day for portfolios

with tens of millions of targeting items). In addition, advertisers need to assess the

revenue-cost trade-off of using different budget values. Therefore, it is important

to develop a solution method where this trade-off can be assessed efficiently. In

settings such as Real Time Bidding Display and Facebook FBX, the advertiser is

provided information on a cookie in real-time and has to submit a bid in less than

20 milliseconds. To address these strict latency requirements, typically an offline

problem is solved (where a set of cookies is treated as a targeting item) to determine

the average optimal bid and adjustments to this offline bid are made in real time

based on the ad request features. The OAPOP solution can be used to determine

the offline optimal bid for the target.

Our Contributions: In this chapter, we model the advertiser’s Online Adver-

12

tising Portfolio Optimization Problem as a MCKP (an integer program) by linking

bid amounts for targeting items to expected cost and revenue. Due to the structural

properties of the linear programming relaxation of the MCKP (MCKP-LP) its so-

lution has at most one targeting item that is fractional. This solution can easily be

rounded to obtain a feasible solution to MCKP; which we find for all practical pur-

poses can be considered as “optimal” (since it is well-within the optimality tolerance

limit of most commercial optimization solvers) for the large-scale instances consid-

ered in this chapter. We propose a scalable column generation algorithm to rapidly

solve enterprise size MCKP-LP instances. Through computational experiments con-

ducted on problem sets based on instances in online advertising and literature, we

demonstrate the column generation algorithm significantly outperforms the state-of-

the-art linear time algorithm proposed by Dyer [1984] and Zemel [1984]. In addition,

the column generation algorithm can provide solutions for different budget values

(for revenue-cost trade-off analysis) in a single run of the algorithm, a feature Dyer’s

and Zemel’s algorithm does not possess. We show the column generation algorithm

solves problems with 2.55 billion variables (corresponding to 50 million targeting

items) in the order of a few minutes on a personal computer.

The rest of the chapter is organized as follows. Section 2.1 provides a litera-

ture review. In Section 2.2, we describe the advertiser’s problem and elaborate on

the structural properties of the MCKP along with two solution approaches for the

MCKP-LP. We provide the sorting algorithm for the MCKP-LP originally proposed

by Sinha and Zoltners [1979], which we use as a building block for the column gener-

ation (CG) algorithm described in Section 2.3. We also provide a high level overview

13

of the Dyer’s and Zemel’s (DZ) algorithm. In Section 2.4, we explain how to embed

the CG algorithm within a branch-and-bound framework to solve MCKP (although

this was never necessary for OAPOP instances we discuss the branch-and-bound

framework for completeness). In Section 2.5, we discuss our computational expe-

rience on large-scale simulated online advertising instances with up to 50 million

targeting items and 2.55 billion bid levels. Although we perform online advertising

computations in the context of Google Adwords, the computational setting and re-

sults are valid for other online advertising platforms (e.g., Bing Ads) and formats

(e.g., display format, social ads).

2.1 Related Work

The rapid online advertising revenue growth in the last fifteen years resulted in

increased research activity in the Operations Research, Computer Science, Informa-

tion Systems, and Marketing communities. There is a significant body of research

on mechanism design problems faced by advertising platforms. To list a few, Feng

et al. [2007] model and compare various ad allocation mechanisms. The authors re-

port that allocating purely based on bid is as efficient as allocating based on bid and

relevance when bids and relevance are positively correlated. Varian [2007] explicitly

calculates the Nash equilibria of the Google Adwords auctions and shows that the

generalized second price auction is not incentive compatible and is not equivalent to

the Vickrey-Clarke-Groves (VCG) mechanism. Edelman et al. [2005] and Aggarwal

et al. [2006] independently prove that truth telling is not a dominant strategy for

14

generalized second price auctions and Aggarwal et al. [2006] develop a mechanism

called the laddered auction where bidding true valuations is an optimal strategy.

The problems faced by the advertisers started to gain some attention in recent

years. Rusmevichientong and Williamson [2006] formulate the advertisers’ keyword

selection problem in three settings. First, they describe a static setting where the

click-through rates and expected profits are fixed and known. In the second setting,

the expected profits are known but the click through rates are unknown while in the

third setting, both the click through rates and the expected profits are unknown.

The static setting is modeled as a variation of the stochastic knapsack problem and

used as a baseline for an adaptive algorithm that solves the other settings. The

authors do not model multiple bid levels and therefore are unable to capture the

effect of different bid levels on cost and revenue. Ghose and Yang [2009] use a

six-month panel data to model the relationship between the click through rates,

conversion rates, cost-per-click, and the ad position. The authors show the revenue

generated from a click is not uniform across all positions. Though not addressed

in the paper, the study makes a compelling case for using optimization methods

that take into account different bid levels resulting in different expected costs and

revenues. Feldman et al. [2007] consider a problem where the advertiser has a set of

keywords and search queries for each keyword. Then the authors try to maximize

the total number of clicks such that the total cost does not exceed the capacity. The

authors offer two approximation algorithms, the strategy in the first algorithm is a

two-bid uniform strategy where the advertiser randomizes between two bid amounts

for all keywords, which results in a (1−1/e) approximation guarantee. The strategy

15

in the second algorithm is a uniform bid strategy that uses one bid amount for all

keywords, which results in a (1/2) approximation guarantee. Note, however, that in

practice advertisers are highly unlikely to use uniform bidding strategies (i.e., the

same bid amount for all keywords).

Borgs et al. [2007] consider the bidding problem among multiple bidders with

limited budgets for multiple keywords with multiple ad slots. The authors intro-

duce a bidding heuristic based on marginal return-on-investment across all keywords.

When all bidders use the same heuristic, it triggers a cycling behavior. The authors

show that the cycling can be eliminated by introducing random perturbations to

bids. Muthukrishnan et al. [2007] study the stochastic budget optimization problem

for multiple keywords and single slot auctions where the budget and the set of key-

words are known whereas the number of searches and clicks for each keyword are

assumed to be probabilistic. The authors consider three types of randomness, the

number of searches and clicks vary but proportions of clicks for different keywords

stay the same, each keyword has its own probability distribution for searches and

clicks, and the number of searches and clicks come from scenarios each of which spec-

ifies the exact number of searches and clicks for every keyword. The authors provide

structural and approximation insights for each type of randomness. Abhishek and

Hosanagar [2013] consider the advertiser’s bid determination problem with multiple

keywords in multi-slot auctions. The authors propose a stochastic model where ex-

pected value (e.g., revenue) is maximized subject to a budget. Under mild technical

conditions and the assumption that the advertiser has detailed information on the

number of competing bids for each keyword and their distributions, the authors are

16

able to derive a closed form expression for the optimal bid. This approach works

for small problems (like the 247 keyword problem considered in their paper) but

does not scale up to large problems for two reasons. First, they dualize the budget

constraint and solve the problem using Lagrangian relaxation. This requires repeti-

tively solving the problem using a subgradient approach (i.e. changing the Lagrange

multiplier and resolving the problem) which can be notoriously slow to converge.

Second, the burden of collecting information on competitors’ bids on each keyword

is quite significant, and in fact not practically feasible due to the opaque nature of

all ad platforms.

As discussed earlier, we model the OAPOP as a multiple choice knapsack

problem. The MCKP is a well-studied variant of the knapsack problem where

the choice of selecting an item is replaced by the requirement to select exactly

one item out of each class of items. Lin [1998] provides a survey and Kellerer

et al. [2004] discuses solution methods for the MCKP. Sinha and Zoltners [1979]

highlight and prove structural properties of the linear programming relaxation of

the MCKP (MCKP-LP). They use these properties to develop a sorting algorithm

for the MCKP-LP. They embed this approach into a branch-and-bound algorithm

for the MCKP. Dyer [1984] and Zemel [1984] independently provide a linear time

algorithm for the dual of the MCKP-LP. Pisinger [1995] provides a primal version

of the algorithm with a few improvements and an expanding core approach to solve

the integer version of the MCKP. Unfortunately, the sorting algorithm proposed

by Sinha and Zoltners [1979] is not viable for large-scale problems as it requires

the entire data set containing tens of millions of targeting items and billions of bid

17

levels to be sorted. Although Dyer’s and Zemel’s linear time algorithm represents

the state-of-the-art in terms of solving the MCKP-LP, there are significant benefits

(where rapid solutions are of paramount importance) in online advertising if one is

able to solve the MCKP-LP and thus, the OAPOP faster. Our column generation

algorithm for the MCKP-LP (applied to the OAPOP) addresses this shortcoming.

Some versions of the advertiser’s problem have been modeled as variants of the

multiple choice knapsack problem previously in the literature. Pani [2010] models

the OAPOP as an MCKP in the context of sponsored search and employs a column

generation algorithm for the LP relaxation of the MCKP. In addition, the author

provides a proof of correctness for the sorting algorithm introduced by Sinha and

Zoltners [1979] using the complementary slackness property of linear programming.

We also provide this proof for completeness. We use this work as a building block for

our column generation algorithm. Zhou et al. [2008] consider the problem of bidding

on a single keyword and model it as an online multiple choice knapsack problem (O-

MCKP). The classes in the O-MCKP correspond to time intervals (e.g., 24 hourly

time intervals in a day) and items in a class correspond to ad slots. The advertiser

needs to determine a bid amount for the keyword and is only allowed to change it

between time intervals. In the beginning of each time interval before determining

the bid amount, the authors assume the advertiser knows the cost and revenue of

each ad slot for that time interval. While cost and revenue for the succeeding time

intervals are not known by the advertiser, cost-to-revenue ratio of each ad slot is

assumed to be in the range [L,U]. The authors offer an online bidding strategy

for each time interval with a competitive ratio (against an omniscient bidder who

18

knows cost and revenue of every ad slot of every time interval a priori) of ln(U/L)+2.

Note that the algorithm is of little practical importance due to its large competitive

ratio. More importantly, the model setting fails to account for the budget alloca-

tion trade-off between keywords present in a multiple keyword portfolio. Zhou and

Naroditskiy [2008] go one step further and consider multiple keywords in the online

problem. In each time interval, keywords are considered sequentially in an online

fashion. They assume the revenue-to-cost distribution for all keywords in subse-

quent time intervals is independently and identically distributed. They call this

the stochastic multiple choice knapsack problem (S-MCKP). The authors propose a

heuristic algorithm for the S-MCKP, using Lueker’s algorithm ([Lueker, 1998]) for

the online knapsack problem. Again, considering the problem in an online fashion

does not allow for trade-offs between keywords to be considered as effectively as in

the OAPOP. Further, the assumption of an independent and identical distribution

of revenue-to-cost for all time intervals and all keywords is not supported by data

in practice. Berg et al. [2010] consider the advertiser’s problem with a soft budget

constraint where overages are penalized. They model it as a penalized multiple

choice knapsack problem (P-MCKP). Under a very restrictive assumption that the

overall penalty function (which is a function of the amount the budget is exceeded

by) can be separated out by keyword and that this separable penalty function is

convex for each keyword, it is very easy to show that the original sorting algorithm

for the MCKP can be applied to the problem. However, this restrictive assumption

has no connection to problems faced in practice.

We note that when the budget has flexibility, the typical approach in practice

19

is to solve the OAPOP with different budget values and assess the trade-off between

the increased revenue and any penalties. As we will see in Sections 2.2 and 2.3 this

can actually be done in one run of the Sinha and Zoltners [1979] sorting algorithm

as well as our column generation algorithm, but not in the Dyer’s and Zemel’s

algorithm.

2.2 Modeling the OAPOP as an MCKP

In the OAPOP, the advertiser has under consideration a set of targeting items

and an advertising budget. For each targeting item, the advertiser needs to deter-

mine a bid amount from a set of possible bids (i.e., set of bid levels) that will be

submitted to the ad platform for a specified time horizon. Since the largest fraction

of targeting items are “keywords”, for brevity, we use “keyword” instead of “target-

ing item” henceforth. However, it is important to note that the model, the solution

approach, and the computational insights directly apply to all types of targeting

items (e.g., cookies, websites, demographic dimensions, etc.) concurrently present

in the portfolio. We choose a time horizon of ‘one day’ as is common in practice;

although none of our methods or conclusions are affected by a different time hori-

zon (in fact, if different bid amounts are desired through the 24 hours of a day, a

keyword may be represented as 24 different keywords, one for each hour of the day).

We assume the advertiser has available daily expected cost and revenue estimates

for each bid level. In addition to building predictive models based on historical

data, there are many sophisticated tracking tools available that help advertisers de-

20

termine these estimates, e.g., Google Adwords Keyword Planner. The objective of

the advertiser is to maximize the daily expected revenue across all keywords and

all possible bid levels given the daily budget. Let K be the set of keywords and

Pi = {0, 1, 2, . . .} the set of bid levels for keyword i. The advertiser has a total

budget of B. Every keyword i ∈ K and level j ∈ Pi has a nonnegative expected

cost-revenue pair (cij, rij) where j = 0 such that (ci0, ri0) = (0, 0) is designated as

the zero bid level. If the selected bid level for keyword i is j then the expected daily

cost is cij and the expected daily revenue is rij. Let xij be a binary variable taking

the value 1 if the advertiser places a bid on keyword i at level j, and 0 otherwise.

Then we have the following integer program (IP).

Maximize
∑
i∈K

∑
j∈Pi

rijxij

Subject to
∑
j∈Pi

xij = 1 i ∈ K (2.1)

∑
i∈K

∑
j∈Pi

cijxij ≤ B (2.2)

xij ∈ {0, 1} i ∈ K, j ∈ Pi

The objective function maximizes the total expected revenue across all keywords

and bid levels. Constraint set (2.1) states exactly one bid level is chosen for each

keyword. Constraint (2.2) ensures the total budget is not exceeded. The advertisers

problem as formulated above is a Multiple Choice Knapsack Problem (MCKP),

which is NP-Hard. The advertiser typically has the option to pause a keyword in

the portfolio, which corresponds to not placing a bid for the keyword. In some cases,

21

the advertiser may wish to keep the keyword active on the portfolio at the minimum

allowable bid level. The amount of the minimum allowable bid varies based on the

advertising platform. For instance, the minimum allowable bid is $0.01 in Google

Adwords. In the case of minimum allowable bids, the zero bid level can be adjusted

to correspond to the minimum allowable bid level by setting B = B −
∑

i∈K ci0,

R′ =
∑

i∈K ri0, cij = cij − ci0, and rij = rij − ri0 for all j ∈ Pi. After the problem is

solved, R′ would be added to the objective value to calculate the actual revenue.

2.2.1 Structural Properties of the Solution to the MCKP-LP

We now discuss some well known properties of the solution to the MCKP-LP

which we will use in our column generation algorithm. For ease of exposition, we

will present these results in the context of the OAPOP.

Proposition 2.2.1 LP Dominance. If some levels j, j′ and j′′ for keyword i

such that cij′′ > cij′ > cij and rij′′ > rij′ > rij satisfy the following

rij′′ − rij′
cij′′ − cij′

≥ rij′ − rij
cij′ − cij

then level j′ is said to be LP-dominated by levels j and j′′. There exists an optimal

solution to the MCKP-LP where xij′ = 0.

Proof See Sinha and Zoltners [1979].

The proposition essentially states that a convex combination of levels j and

j′′ outperforms the selection of level j′ for keyword i. Using this LP Dominance

22

ri

ci

rij'' - rij

cij'' - cij

j

j''

j'

rij

rij'

rij''

cij''cij'cij

Figure 2.2: The upper convex hull of levels for keyword i.

property, it immediately follows that the LP-Dominating levels for keyword i form

the upper convex hull of the revenue-to-cost function as shown in Figure 2.2. In

other words, the only levels with nonzero values in the solution to the MCKP-LP

lie on the upper convex hull of the revenue-to-cost function for keyword i. Let Ωi

denote the set of levels that form the upper convex hull of keyword i. Without

loss of generality, assume levels in Ωi are in nondecreasing order of cij. Throughout

the chapter, we use (·) to map the order of a level in Ωi to a level in Pi. For

example, if Pi = {0, 1, 2, 3, 4, 5, 6} and Ωi = {0, 2, 6, 4}, then (0) = 0, (1) = 2,

(2) = 6, and (3) = 4. For any keyword i ∈ K, we have (0) = arg minj∈Pi{cij}

and (|Ωi| − 1) = arg maxj∈Pi{rij} for Ωi. Let r̄i(j) = ri(j) − ri(j−1) be the marginal

revenue, c̄i(j) = ci(j) − ci(j−1) be the marginal cost and δi(j) = r̄i(j)/c̄i(j) be the

marginal efficiency of keyword i and bid level (j). We now review a well known

sorting algorithm [due to Sinha and Zoltners, 1979] for the MCKP-LP. We prove

the correctness of the algorithm [differently than Sinha and Zoltners, 1979] in a

23

manner that will be useful in the development of the column generation algorithm

for the OAPOP. First, we describe a couple of useful properties that follow from

LP-Dominance.

Proposition 2.2.2 For Ωi, (0) = 0, (1) = arg maxj∈Pi\{(0)}{rij/cij}, and δi(1) =

ri(1)/ci(1).

Proposition 2.2.2 states that of all the levels for keyword i, the second level on

the upper convex hull (i.e., level (1)) has the highest revenue/cost ratio.

Proposition 2.2.3 δi(j′+1)(ci(j) − ci(j′)) ≥ ri(j) − ri(j′) for all j ∈ {0, . . . , |Ωi| − 1},

j′ ∈ {0, . . . , |Ωi| − 2}.

Proposition 2.2.3 states that given a level (j′) on the upper convex hull of

keyword i, the incremental revenue/cost ratio for any pair of levels (j), (j′) such that

j > j′ is less than or equal to the marginal efficiency of level (j′ + 1). Conversely,

the incremental revenue/cost ratio for any pair of levels (j), (j′) such that j < j′ is

larger than or equal to the marginal efficiency of level (j′ + 1).

Let Ω = {(i, j) | i ∈ K, j ∈ Ωi} and let MCKP-LP(Ω) denote the LP relax-

ation of MCKP where all LP-dominated levels are removed from the problem. The

MCKP-LP(Ω) can be formulated as,

Maximize
∑
i∈K

∑
j∈Ωi

rijxij

Subject to
∑
j∈Ωi

xij = 1 i ∈ K (2.3)

24

r1

c11 2 3

5

7.2

8

r2

c21.5 2 4

6

7
7.5

0.5

2

Figure 2.3: Upper convex hull of keywords 1 and 2

∆̄ r̄i(j) c̄i(j) δi(j)

(1,(1)) 5 1 5
(2,(1)) 6 1.5 4
(1,(2)) 2.2 1 2.2
(2,(2)) 1 0.5 2
(1,(3)) 0.8 1 0.8
(2,(3)) 0.5 2 0.25

1

Figure 2.4: Sorted ∆̄

Figure 2.5: Illustration of the sorting algorithm for the MCKP-LP

∑
i∈K

∑
j∈Ωi

cijxij ≤ B (2.4)

xij ≥ 0 i ∈ K, j ∈ Ωi

By Proposition 2.2.1, solving the MCKP-LP(Ω) is equivalent to solving the MCKP-

LP.

The structural properties of the MCKP-LP allow for the development of effi-

cient algorithms. We review two combinatorial algorithms for the MCKP-LP that

takes advantage of these structural properties.

25

2.2.2 Sorting Algorithm for the MCKP-LP

To easily follow the sorting algorithm consider the problem with a single key-

word. Then for a given budget B, the optimal revenue is given by the point on

the convex hull corresponding to a cost of B. This corresponds to a solution that

either selects a single level or two levels - one with a cost larger than B and one

with a cost smaller than B. The sorting algorithm concatenates all the levels on the

convex hull of every keyword into a single sorted list ∆̄ (sorting is based on marginal

efficiency δij). It selects the levels in the sorted list ∆̄ in order until the budget is

exhausted. Let n =
∑

i∈K |Pi|, then the running time of the sorting algorithm is

O(
∑

i∈K |Pi| log |Pi| + n log n) where the first term is for deriving the convex hull

(assuming cij can be in arbitrary order) of every keyword i ∈ K and the second

term is for sorting ∆̄.

Algorithm 1 describes the procedure which we illustrate with a small example

in Figure 2.5. In the example, the keyword set is K = {1, 2}, where (c1, r1) =

{(0, 0), (0.5, 2), (1, 5), (2, 7.2), (3, 8)}, (c2, r2) = {(0, 0), (1.5, 6), (2, 7), (4, 7.5)}, and

B = 3. We derive the upper convex hull for each keyword as depicted in Figure 2.3,

i.e., Ω1 = {0, 2, 3, 4}, Ω2 = {0, 1, 2, 3}. Initially, we set C = B, R = 0, x1(0) = 1 and

x2(0) = 1. Then we calculate the marginal efficiency for each level in the convex hull

of each keyword, e.g., δ1(2) = 7.2−5
2−1

= 2.2. We populate and sort ∆̄ in nonincreasing

order of δi(j) as shown in Figure 2.4. As the first level, we select the level with the

largest marginal efficiency in ∆̄, i.e., (1, (1)) and set R = R + r̄1(1) = 0 + 5 = 5,

C = C − c̄1(1) = 3 − 1 = 2, x1(0) = 0, x1(1) = 1, ∆̄ = ∆̄ \ {(1, (1))}, and ∆ =

26

Algorithm 1 Sorting Algorithm for MCKP-LP

1: derive Ωi for all i ∈ K
2: set R = 0, C = B, set xi(0) = 1 for all keywords i ∈ K.
3: set ∆̄ = {(i, (j)) | i ∈ K, j = 1, . . . , |Ωi| − 1} and sort ∆̄ in nonincreasing order

of δi(j)
4: set ∆ = {(i, (0)) | i ∈ K}
5: while C > 0 do
6: select (i, (j)) = arg max(i,(j))∈∆̄ δi(j)
7: ∆ := ∆ ∪ {(i, j)}, ∆̄ := ∆̄ \ {(i, j)}
8: if C − c̄i(j) < 0 then
9: set xi(j) := C/c̄i(j), xi(j−1) := 1− xi(j), R := R + r̄i(j)xi(j), C := 0

10: else
11: set xi(j) := 1, xi,(j−1) := 0, R := R + r̄i(j), C := C − c̄i(j)
12: end if
13: end while

∆ ∪ {(1, (1))}. Second, we select (2, (1)) and set R = R + r̄2(1) = 5 + 6 = 11,

C = C − c̄2(1) = 2 − 1.5 = 0.5, x2(0) = 0, x2(1) = 1, ∆̄ = ∆̄ \ {(2, (1))}, and

∆ = ∆ ∪ {(2, (1))}. Third, we select (1, (2)), however since C − c̄1(2) < 0, we set

x1(2) = C/c̄1(2) = 0.5, x1(1) = 1−x1(2) = 0.5, R = R+r̄1(2)x1(2) = 11+2.2×0.5 = 12.1,

C = 0, ∆̄ = ∆̄ \ {(1, (2))}, and ∆ = ∆ ∪ {(1, (2))}. We terminate the algorithm

since C = 0 with R = 12.1, x1(1) = 0.5, x1(2) = 0.5, and x2(1) = 1.

Theorem 2.2.4 The MCKP-LP can be solved by the sorting algorithm outlined in

Algorithm 1.

Proof Consider the dual of the MCKP-LP(Ω).

Minimize Bθ +
∑
i∈K

λi (2.5)

Subject to cijθ + λi ≥ rij i ∈ K, j ∈ Ωi (2.6)

θ ≥ 0 (2.7)

27

At the termination of the sorting algorithm, define A = {i | i ∈ K, xi(0) 6= 1} and

Ā = K \A and construct a dual solution by setting θ = δs(`+1) where s denotes the

last keyword and (` + 1) denotes the last level selected by the sorting algorithm,

λs = rs(`+1) − θcs(`+1), λi = 0 for i ∈ Ā, and λi = rij′ − θcij′ for i ∈ A \ {s}

where j′ = {j | j ∈ Ωi, xij = 1}. We show that the solution obtained from the

sorting algorithm and the constructed dual solution satisfy primal feasibility, dual

feasibility, and the complementary slackness conditions.

1. Primal Feasibility. By construction.

2. Dual Feasibility. Constraint (2.7) is satisfied since θ = δs(`+1) ≥ 0. Consider

constraint set (2.6), for a keyword i ∈ Ā, λi = 0 and the constraint trivially

holds for j = (0). For j = Ωi \ {(0)}, the constraint set becomes δs(`+1) ≥ rij
cij

,

which holds since the sorting algorithm selects level (` + 1) for keyword s

and does not select any level from keyword i. Therefore, δs(`+1) ≥ δi(1) holds

for all i ∈ Ā. Combining with Proposition 2.2.2, we have δs(`+1) ≥ δi(1) =

maxk∈Ωi
rik
cik
≥ rij

cij
for every j ∈ Ωi \ {(0)}.

For a keyword i ∈ A, the constraint set becomes

cijδs(`+1) + rij′ − cij′δs(`+1) ≥ rij j ∈ Ωi,

or, δs(`+1)(cij − cij′) ≥ rij − rij′ j ∈ Ωi.

Let (k) = j′, then (k) is the last level selected for keyword i by the sorting

algorithm, i.e., (k + 1), . . ., (|Ωi| − 1) are not selected. Therefore, δs(`+1) ≥

28

δi(k+1). Combining with Proposition 2.2.3, we get

δs(`+1)(cij − cij′) ≥ δi(k+1)(cij − cij′) ≥ rij − rij′ j ∈ Ωi,

or, δs(`+1)(cij − cij′) ≥ rij − rij′ j ∈ Ωi.

3. Complementary Slackness. For constraint (2.4), θ
(
B −

∑
i∈K
∑

j∈Ωi
cijxij

)
= 0 is satisfied since the budget B is exhausted in the sorting algorithm. For

constraint set (2.6), xij(cijθ+λi−rij) = 0 for i ∈ K, j ∈ Ωi is satisfied for i ∈ Ā

since xij = 0. For i ∈ A and j 6= j′ ∈ Ωi, xij = 0, and for j′, λi = rij′ − cij′θ

by construction.

The following well known property of the solution to the MCKP-LP immedi-

ately follows Theorem 2.2.4.

Proposition 2.2.5 LP Fractional variables. There exists an optimal solution

x∗ = {xij | i ∈ K, j ∈ Pi} for the MCKP-LP that has either zero or two fractional

variables. When x∗ has no fractional variables it is optimal for the MCKP. When

x∗ has two fractional variables, they correspond to two adjacent levels in Ωi for a

single keyword i.

When an advertiser has a flexible budget and wishes to perform a trade-off

analysis between revenue and cost, the usual practice is to solve the problem with

different budget values and compare the solutions. The sorting algorithm can pro-

vide solutions for different budget values on a single run. Observe that the marginal

efficiency of a bid level does not depend on the budget. Therefore if the problem

29

is solved for the maximum budget value in consideration, the amount spend by the

algorithm can be tracked to obtain solutions for all the other budget values. In ad-

dition, although we focus on expected revenue maximization, the sorting algorithm

can be modified to maximize expected profit (defined as revenue minus cost for a bid

level) by updating the stopping criterion. To maximize expected profit, we simply

terminate the algorithm when the marginal efficiency of a selected level is less than

or equal to 1. We note that these desirable properties of the sorting algorithm (i.e.,

solving for different budget values on a single run and maximizing expected profit)

are preserved in our column generation algorithm.

2.2.3 Linear Algorithm for the MCKP-LP

Dyer [1984] and Zemel [1984] independently provide an O(n) time algorithm

for the MCKP-LP, which we refer to as the DZ algorithm. Dyer [1984] and Zemel

[1984] observed there are only two variables in each constraint in the dual of the

MCKP-LP. Using this observation, they developed a linear time algorithm (that

avoids sorting) to solve the dual. We describe the main ideas of the algorithm based

on a primal variant of the DZ algorithm due to Pisinger [1995].

The algorithm is focused on finding the optimal dual value θ, and it does so

by guessing a value of θ and with it an associated feasible dual solution. This dual

solution is used to construct a primal solution using the complementary slackness

conditions. If the primal solution is feasible the algorithm terminates. If the primal

solution is infeasible (i.e., the guessed value of θ is not optimal) the algorithm ac-

30

cordingly adjusts the guess and continues until at termination it obtains the optimal

solution.

In one iteration of the algorithm, each keyword is considered. For a given

keyword, it pairs all of its bid levels (if there are an odd number of levels one level

is left unpaired). Let j′ and j′′ be two bid levels for keyword i that are arbitrarily

paired, and assume without loss of generality cij′ < cij′′ (if cij′ = cij′′ , the level with

the smaller cost can be deleted from the problem). The algorithm calculates their

associated slope
rij′′−rij′
cij′′−cij′

. The algorithm then determines the median slope over all

keywords and pairs. The median slope provides their “guess” for the value of θ.

With this guess the other dual variables are set as λi = maxj∈Pi{rij − θcij},

and let Qi(θ) = arg maxj∈Pi{rij− θcij} denote the set of bid levels of keyword i that

achieve the value λi (based on the dual solution constructed and complementary

slackness these are the only levels of keywords i that can be non-zero in the primal

solution). Next, si = arg minj∈Qi(θ){cij} identifies the bid level in Qi(θ) with the

smallest cost, and li = arg maxj∈Qi(θ){cij} identifies the bid level in Qi(θ) with the

largest cost (these may be the same or different items). If the budget B is less

than
∑

i∈K cisi , or the budget B is greater than
∑

i∈K cili then we do not have the

optimal solution (as any solution constructed will exceed, or not achieve the budget

respectively). Otherwise, we have the optimal solution to the problem. In the case

that B <
∑

i∈K cisi , for every pair (ij′, ij′′) with
rij′′−rij′
cij′′−cij′

≤ θ it deletes bid level j′′

(as it is possible to show this will not be in the optimal solution. In the case that

B >
∑

i∈K cili for every pair (ij′, ij′′) with
rij′′−rij′
cij′′−cij′

≥ θ it deletes bid level j′ (as it is

possible to show this will not be in the optimal solution). The procedure continues

31

iteratively until we find the optimal solution.

Each iteration can be done in linear time (as a function of the total number of

levels n in the problem). By showing that at least a sixth of the levels remaining are

deleted in each iteration; they show that the overall running time of the algorithm

is linear. Note that though the algorithm has a linear theoretical run time, it needs

to scan through all the remaining levels in every iteration to evaluate the removal

criteria. Therefore, it has a large constant factor.

In essence, the algorithm works as a column “removal” algorithm. Considering

only one bid level is selected for each keyword, in the worst case the algorithm needs

to remove all levels except the optimal level from every keyword. In the advertiser’s

problem, the budget is small relative to the maximum amount possible to spend, we

therefore consider a column generation approach especially suited for the advertiser’s

problem. This, as we demonstrate in our computational experiments, results in

significant gains in computational time while solving the OAPOP.

2.3 Column Generation Algorithm

The advertiser’s problem can contain tens of millions of keywords and may

need to be solved multiple times in a day. The daily budget is typically very small

relative to the maximum amount possible to spend (the value is generally in the

order of up to 5%, and never more than 20% of the maximum amount possible to

spend, for the vast majority of portfolios). In this setting, the budget will likely

be exhausted before the latter levels on the convex hull of a keyword can be se-

32

lected by the sorting algorithm. In fact, for a significant fraction of keywords, the

optimal solution may be to select the zero (i.e. minimal) bid level. We therefore em-

ploy a column generation algorithm that generates levels of the convex hull only as

needed. The column generation algorithm has two phases. The initialization phase

and the selection/generation phase. In the initialization phase, an initial solution to

the MCKP-LP is obtained by considering a subset of columns (levels) in the prob-

lem. The procedure is described in Section 2.3.1. In the selection/generation phase

(described in Section 2.3.2) we use this initial solution along with delayed column

generation to select levels in the same order as the sorting algorithm (i.e. without

explicitly generating the entire upper convex hull and the associated sorting). In

each iteration of the delayed column generation procedure, the bid level with the

largest marginal efficiency is selected, and the bid level necessary to infer the se-

lection of the bid level with the largest marginal efficiency in the next iteration is

generated. The procedure terminates when the budget is exhausted and the optimal

solution to the MCKP-LP is obtained.

2.3.1 Initial Solution Procedure

In the initial solution procedure, we set the first two levels in the convex

hull for every keyword as the initial set of columns. Then we solve the MCKP-

LP for the initial set of columns and calculate the value of the dual variable θ.

The first two levels in the convex hull for keyword i ∈ K are easily identified. By

Proposition 2.2.2, the first level is always the zero bid level, i.e., (0) = 0, and the

33

second level is the level with the largest {rij/cij} for j ∈ Pi. Let Ω′ ⊆ Ω such

that Ω′i ⊆ Ωi for every keyword i ∈ K. We set Ω′i = {(0), (1)} for each keyword

i ∈ K and set Ω′ = {(i, j) | i ∈ K, j ∈ Ω′i} as the initial set of levels. Let θ(Ω′)

denote the value of the optimal dual variable θ for the MCKP-LP(Ω′). Define

Υ = {(i, j) | δij ≥ θ(Ω′), (i, j) ∈ Ω′} where Υ represents the levels selected in the

optimal solution for the initial set of columns.

To solve the MCKP-LP(Ω′), we first check whether there are enough levels

in Ω′ to exhaust the budget. If
∑

i∈K c̄i(1) < B, then the optimal solution to the

MCKP-LP(Ω′) can be obtained by setting Υ = {(i, (1)) | i ∈ K} and θ(Ω′) = 0

by complementary slackness. Otherwise the MCKP-LP(Ω′) can be solved optimally

via the Split Procedure outlined in Algorithm 2 by setting M = Ω′ and C = B.

Essentially, we are trying to find via binary search the marginal efficiency of the last

level selected from the portfolio (i.e., the optimal dual variable θ(Ω′)). Since there

is only one value for marginal efficiency for each keyword, this can be accomplished

by binary search. Note that X = [X1 | X2 | X3 | . . .]δ indicates X is partitioned

such that min(i,j)∈Xk{δij} ≥ max(i,j)∈Xk+1
{δij}. Since the median of M can be found

in O(|M |) time, the split procedure runs in O(|K|) time.

2.3.2 Column Generation Procedure

The delayed column generation procedure takes the solution obtained from

the initial solution procedure as input. It adds the column with the largest reduced

cost to the problem, then resolves the problem and repeats this procedure until we

34

Algorithm 2 Split Procedure
1: Input: M,C
2: find the median δi′(1) in M
3: reorder M such that M = [M+ | (i′, (1)) |M−]δ
4: if

∑
(i,(1))∈M+ ci(1) > C then

5: Split Procedure(M+, C)
6: else if

∑
(i,(1))∈M+∪{i′} ci(1) ≤ C then

7: C := C −
∑

(i,(1))∈M+∪{i′} ci(1)

8: Split Procedure(M−, C)
9: else

10: θ(Ω′) := δi′(1)

11: end if

obtain the optimal solution to the MCKP-LP(Ω). While this is conceptually the

idea, this approach is computationally efficient in terms of implementation only if

we minimize the burden associated with finding the column with the largest reduced

cost.

We first observe that the column that is not in the current set of columns

(i.e., Ω \ Ω′) with the largest reduced cost (for constraint set (2.6)) corresponds to

the keyword and level with the largest marginal efficiency. For the current set of

columns Ω′, the reduced cost for keyword i and level j is rij − cijθ(Ω′)− λi. Recall

that λi = ri(j′)−θ(Ω′)ci(j′) where (j′) ∈ Ω′i is the last level selected for keyword i. In

a column generation procedure, we wish to select the level with the largest reduced

cost. In other words, we wish to select arg max(i,j)∈Ω\Ω′
{
rij−ri(j′)
cij−ci(j′)

| rij−ri(j′)
cij−ci(j′)

> θ(Ω′)
}

.

For keyword i, the level in Ωi \ Ω′i with the largest reduced cost, by Proposition

2.2.3, corresponds to the level with the largest marginal efficiency, i.e., δi(j′+1) =

maxj∈Ωi\Ω′i

{
rij−ri(j′)
cij−ci(j′)

}
. Therefore, the keyword and level in Ω \ Ω′ with the largest

reduced cost is the keyword and level with the largest marginal efficiency, i.e.,

arg maxi∈K δi(j′+1).

35

Rather than update the solution after generating a column (which requires

insertion into the list of columns in the problem), we will use the insight gained from

the delayed column generation procedure to replicate the order in which keywords

and levels are selected in the sorting algorithm (without the overhead of generating

the entire convex hull and sorting).

2.3.2.1 Generating Columns

To replicate the sorting algorithm’s order of selecting keywords and levels, we

create and maintain a “candidate list” from which selections are performed. After

the initial solution procedure, we designate Υ as the candidate list. Without loss

of generality, suppose the marginal efficiency of levels in Υ after the initial solution

procedure are ordered and labeled as δ1(1) ≥ δ2(1) ≥ The first level selected

by the column generation procedure corresponds to δ1(1), i.e., (1, (1)), since it has

the largest marginal efficiency in the problem. Then the second level to be selected

corresponds to max{δ1(2), δ2(1)}. However, level (1, (2)) is not in Υ and therefore

needs to be generated. Note that generating level (1, (2)) does not require us to

derive the entire upper convex hull for keyword 1. The next level, i.e., level (1, (2)),

in the convex hull corresponds to the level that has larger cost than the current

level, i.e., level (1, (1)), and has the largest revenue-cost ratio in relation to the

current level. In other words, if the current level is (i, (j)), then the next level in the

convex hull is (j + 1) = arg maxj′∈Pi|cij′>ci(j)
rij′−ri(j)
cij′−ci(j)

. After generating level (1, (2))

and inserting it into Υ, we can determine the second level to be selected. Suppose

36

δ1(2) > δ2(1), then the second level the procedure selects is (1, (2)) and it is inserted

into Ω′. It is important to note that by asserting δ1(2) > δ2(1), we can conclude

level (1, (2)) has the largest reduced cost (i.e., largest marginal efficiency) in Ω \Ω′.

The third level to be selected corresponds to max{δ1(3), δ2(1)}. After generating level

(1, (3)) and inserting it into Υ, we can now determine the third level to be selected.

The column generation procedure selects levels in this fashion, and generates and

inserts levels into Υ that are necessary to infer the subsequent selections. Each

selected level is removed from Υ.

After the initial solution procedure, the levels in Υ are in no particular order

of δij. We can sort and maintain levels in Υ in nonincreasing order of δij, then the

level with the largest marginal efficiency can be accessed in O(1) time. Considering

some levels in Υ may never be selected by the procedure, maintaining the entire

list as a sorted list may not be worthwhile. In addition, levels generated by the

column generation procedure are also inserted into Υ, which further complicates

the maintenance issue. To ensure the level with the largest marginal efficiency in

the candidate list can be accessed in O(1) time, we create two sublists Λ and Π such

that Υ = Λ∪Π. We designate Π as the candidate sublist for levels generated by the

column generation procedure and Λ as the candidate sublist for levels inherited from

the initial solution. We set Λ = Υ and Π = ∅ after the initial solution procedure.

The levels selected from Π are inserted into Ω′ thus expanding the set of current

levels. On the other hand, the levels selected from Λ are already in Ω′ since they

were inherited from the initial solution.

Maintaining Λ and Π warrants different approaches since only extractions

37

are performed on Λ whereas both insertions and extractions are performed on Π.

Therefore, we maintain Π as a priority queue implemented as a binary heap. A

binary heap provides O(1) time access to its largest element and allows for O(log |Π|)

time insertion and extraction. In contrast, since we only perform extractions on Λ,

we maintain it as a partially sorted list. We partition and reorder Λ into κ buckets

such that Λ = [Λ1 | · · · | Λκ]δ. The partitioning can be achieved by placing each

(i, (1)) ∈ Λ into one of κ buckets where each bucket corresponds to an interval of

δ. We have picked uniform bucket intervals assuming no prior knowledge of the

distribution of δi(1), (i, (1)) ∈ Λ. Note that placing all items in their respective

buckets takes O(|Λ|) regardless of the number of buckets or interval lengths. Let

γ =
max(i,(1))∈Λ δi(1) −min(i,(1))∈Λ δi(1)

κ

then Λk is defined as

Λk = {(i′, (1)) | δi′(1) ∈ Λ, max
(i,(1))∈Λ

δi(1) − (k − 1)γ ≥ δi′(1) ≥ max
(i,(1))∈Λ

δi(1) − kγ}

In our column generation procedure, no level from Λk can be selected before

every level in Λk−1 is selected. The procedure only needs to search inside one bucket

to find the level that can be selected. In the first iteration of the column generation

procedure, the level with the largest marginal efficiency is in Λ1. If Λ1 is fully sorted,

then the largest element in Λ1 can be accessed in O(1) time. Therefore, we start the

procedure by fully sorting Λ1, once every level is selected from Λ1, then we fully sort

38

Λ2, and so on. With this approach, the buckets are only sorted when needed. To

identify the level with the largest marginal efficiency in Υ, we compare max(i,j)∈Λ δij

with max(i,j)∈Π δij, which can be done in O(1) +O(1) = O(1) time.

2.3.2.2 Removing Columns

It is easy to observe that θ(Ω′) ≤ θ(Ω′′) if Ω′ ⊆ Ω′′. So as columns are added

to the problem θ(Ω′) will only increase. Thus, columns with negative reduced cost

need not be considered for selection. Notice this implies all keywords for which

xi(0) = 1 in the initial solution will stay at the zero bid level in the optimal solution

to the problem. Every time a column with positive reduced cost is added to the

problem, we need to update the solution and determine θ(Ω′). Rather than doing so,

we calculate a dual lower bound θ for θ(Ω′) such that θ ≤ θ(Ω′) and update θ using

the bucket structure of Λ. This effectively allows us to remove columns in batches.

Recall that θ(Ω′) cannot decrease as Ω′ expands, therefore θ is a valid lower bound

for any θ(Ω′′) where Ω′ ⊆ Ω′′. In the column generation procedure, after level (i, j)

is generated, we compare the marginal efficiency of the level with θ. If δij ≤ θ, then

there is no need to insert the level into the candidate sublist Π. We now elaborate

on updating the dual lower bound θ.

Let ω denote the set of levels selected from Π and define c̄(X) =
∑

(i,j)∈X c̄ij

where X is an arbitrary set of levels. After the initial solution procedure, B − c̄(Λ)

denotes the leftover budget. Initially, ω = ∅ and we insert levels selected from Π into

ω. Suppose c̄(ω) ≥ B − c̄(Λ) is satisfied in some iteration of the column generation

39

procedure, then there are now enough levels in Ω′ added from Π to exhaust the

budget. Therefore we set θ = min(i,j)∈Λκ δij. Note that if B − c̄(Λ) = 0, i.e.,

the budget is exhausted in the initial solution, then c̄(ω) ≥ B − c̄(Λ) is satisfied

after the initial solution. Suppose c̄(ω) ≥ B − c̄(Λ) + c̄(Λκ) is satisfied in some

iteration. Then the levels in ω have large enough total marginal cost that if we

were to solve the MCKP-LP(Ω′), the budget would be exhausted before any level

from Λκ can be selected. Therefore, we have θ(Ω′) ≥ δij for every (i, j) ∈ Λκ.

Thus, the entire bucket Λκ can be removed from consideration since no level from

Λκ will be selected. However, calculating θ(Ω′) exactly would require us to solve

the MCKP-LP(Ω′). Instead we set the dual lower bound θ = min(i,j)∈Λκ−1 δij since

θ(Ω′) ≥ min(i,j)∈Λκ−1 δij, that is, the marginal efficiency of the last level selected when

solving the MCKP-LP(Ω′) is at least min(i,j)∈Λκ−1 δij. After updating θ, we repeat

the process for bucket Λκ−1 by checking whether c̄(ω) ≥ B− c̄(Λ) + c̄(Λκ) + c̄(Λκ−1)

is satisfied in some iteration. In general, to check if we can remove bucket Λk from

consideration, we check whether c̄(ω) ≥ B − c̄(Λ) +
∑κ

t=k c̄(Λt) is satisfied. The

bucket structure of Λ allows us to update the dual lower bound in this fashion.

Note that c̄(Λk) and min(i,j)∈Λk δij can be determined for every k = 1, . . . , κ as the

buckets are created, thus require no additional computations.

2.3.2.3 Overall Implementation and Running Time Analysis

The column generation procedure is outlined in Algorithm 3. The procedure

takes the initial set of levels Ω′, the values for variables x, the set of selected levels

40

∆(Ω′), the set of levels removed from consideration ∆̄(Ω′), the remaining budget

C, the total revenue R, the dual lower bound θ, the candidate sublists Λ and Π,

ω, ρ, and k as inputs. Before executing the procedure, we set x = {xij | xi(0) =

1, xij = 0, i ∈ K, j ∈ Pi \ {(0)}, ∆(Ω′) = {(i, (0)) | i ∈ K}, ∆̄(Ω′) = ∅, C = B, and

R = 0, θ = θ(Ω′), Λ = Υ, Π = ∅, ω = ∅. If B − c̄(Λ) > 0 after the initial solution

procedure, then we set k = κ + 1 and ρ = B − c̄(Λ), otherwise we set k = κ and

ρ = c̄(Λκ). In line 3 of Algorithm 3, the level with the largest marginal efficiency

is selected from the candidate list Λ ∪ Π. When a level is selected, the remaining

budget and total revenue are updated as in the sorting algorithm. Between lines

15 and 18, the dual lower bound is updated and levels that cannot be selected are

removed from Λ. In line 24 of Algorithm 3, the level (i, (j + 1)) is generated by

calling Generate Level((j + 1)) outlined in Algorithm 4. In line 25, the marginal

efficiency of the generated level is compared to the dual lower bound. However, the

level is only added to Π if its marginal efficiency is larger than the dual lower bound.

The column generation procedure terminates when the budget is exhausted.

The column generation procedure outlined in Algorithm 3 takes the initial

solution and provides an optimal solution to MCKP-LP(Ω). Recall that ∆ is the

set of levels selected by the sorting algorithm and ∆̄ is the set of remaining levels

(i.e., levels that are not selected by the sorting algorithm). By definition, ∆∪∆̄ = Ω.

When the column generation algorithm terminates, ∆(Ω′) = ∆ and is in sorted order

of δij. On the other hand, ∆̄(Ω′) ⊆ ∆̄ since the column generation algorithm only

generates the levels in the convex hull as needed. Note that the column generation

algorithm can be modified in the same manner as the sorting algorithm to maximize

41

expected profit. Furthermore, like the sorting algorithm, the column generation

algorithm only needs to be executed once to solve for different budget values as

described in Section 2.2. This is possible since the column generation algorithm

performs identical selections to that of the sorting algorithm. However, the DZ

algorithm cannot easily be modified to maximize profit and can only provide a

solution for one budget value.

Algorithm 3 Column Generation Procedure

1: Input: Ω′,x,∆(Ω′), ∆̄(Ω′), R, C,Λ,Π, θ, ω, ρ, k,
2: while C > 0 do
3: (i, (j)) = arg max(i,(j))∈Λ∪Π δi(j)
4: ∆(Ω′) := ∆(Ω′) ∪ {(i, (j))}
5: if C − c̄i(j) < 0 then
6: set xi(j) := C/c̄i(j), xi(j−1) := 1− xi(j), R := R + r̄i(j)xi(j), , C := 0
7: else
8: set xi(j) := 1, xi,(j−1) := 0, R := R + r̄i(j), C := C − c̄i(j)
9: end if

10: if (i, (j)) ∈ Λ then
11: Λ := Λ \ {(i, (j))}
12: else
13: Π := Π \ {(i, (j))}, ω := ω ∪ {(i, (j))}
14: Ω′i := Ω′i ∪ {(i, (j)}
15: if c̄(ω) > ρ and k > 0 then
16: ∆̄(Ω′) := ∆̄(Ω′) ∪ Λk, Λ := Λ \ Λk, k := k − 1
17: θ := min(i,j)∈Λk δij, ρ := ρ+ c̄(Λk)
18: end if
19: end if
20: if C = 0 then
21: θ(Ω) := δi(j)
22: ∆̄(Ω′) := ∆̄(Ω′) ∪ Λ ∪ Π
23: else
24: Generate Level(Ω′i, (j + 1))
25: if δi,(j+1) > θ then
26: Π := Π ∪ {(i, (j + 1))}
27: else
28: ∆̄(Ω′) := ∆̄(Ω′) ∪ {(i, (j + 1))}
29: end if
30: end if
31: end while

42

Algorithm 4 Generate Level

1: Input: (j + 1)
2: reorder Pi such that Pi = [P+

i | ci(j) | P−i]c
3: Pi := P+

i

4: (j + 1) = arg maxj′∈Pi
rij′−ri(j)
cij′−ci(j)

.

When the column generation algorithm terminates, a feasible integer solution

x{0,1} can be obtained by rounding the fractional MCKP-LP solution, i.e., setting

x{0,1} = x, x
{0,1}
s(`) = 1, and x

{0,1}
s(`+1) = 0, where (s, (`+1)) denotes the last level selected

by the column generation procedure. The objective value corresponding to x{0,1} is

calculated by R{0,1} = R − r̄s(`+1)xs(`+1). Therefore, R{0,1} is at most r̄s(`+1)xs(`+1)

away from the optimal integer solution. Commercial solvers typically decide integer

optimality by comparing the best available bound and the best integer solution

value. If the best integer solution value is within a certain percentage (also called

the optimality tolerance) of the best available bound, then the best integer solution

is declared optimal. Regardless of the number of keywords, the column generation

algorithm finds an optimal solution to the MCKP-LP with at most two fractional

variables. Due to the large number of keywords in the online advertising application,

we typically have R >> max(i,j)∈Ω r̄ij. Therefore the difference between the rounded

integer revenue R{0,1} and LP relaxation revenue R is very small compared to R.

In addition, as the number of keywords increase, the marginal revenue loss incurred

by rounding one fractional variable decreases. In fact, in every instance we have

experimented, the rounded integer solution was also optimal for the MCKP given the

same optimality tolerance used by CPLEX. However, in other settings different from

the OAPOP, the gap between the rounded integer solution and the LP relaxation

43

bound may not he within the optimality tolerance. We therefore provide a branch-

and-price algorithm in Section 2.4 to optimally solve the MCKP using the column

generation algorithm. The branch-and-price algorithm uses a partition branching

rule on the last keyword and level selected by the algorithm. After branching, we

update Λ and Π to maintain their structure, which in turn helps us rapidly solve

the MCKP-LP for the child node.

In Algorithm 4, reordering Pi takesO(|Pi|), identifying (j+1) also takesO(|Pi|)

and the levels cannot be in Ωi are deleted from Pi. In the worst case, Pi = Ωi and

all levels are generated, which takes O(|Pi|) +O(|Pi|− 1) + . . .+O(1) = O(|Pi|2) for

keyword i. However, in the advertiser’s problem, it is very likely most levels will not

be generated. The running time of the column generation procedure depends on the

number of levels selected. Suppose given budget B, the number of levels selected

by the procedure can be represented by some function f(B) =
∑

i∈K fi(B). The

running time of the column generation algorithm, i.e., the total running time of the

initial solution procedure and the column generation procedure, can be expressed

as O(n + |K| + |K| log |K| + f(B) log f(B) +
∑

i∈K fi(B)Pi). O(n) time is spent

identifying (i, (1)) for all i ∈ K. Split Procedure takes O(K) time. O(|K| log |K|+

f(B) log f(B)) time is spent maintaining Λ and Π, though maintaining Λ may be

much faster depending on the interval selection, κ, and the number of levels removed

due to dual lower bound. Finally, it takes O(
∑

i∈K fi(B)Pi) to generate levels.

At first glance, the running time of the column generation algorithm may seem

larger than the running time of the DZ algorithm, however the column generation

algorithm can potentially run very fast where B is small relative to the maximum

44

amount possible to spend. In fact, we demonstrate the relationship between B and

the running time of the column generation algorithm in Section 2.5.

2.4 Branch-and-price Algorithm

The MCKP can be solved with a branch-and-price algorithm where upper

bounds are obtained from the column generation algorithm and the lower bounds

are obtained from rounded integer solutions. In an optimal solution to MCKP-LP,

only two convex hull levels from the same keyword s can be non-zero, and if two are

nonzero, they must be adjacent levels (`), (`+1) ∈ Ωs. We therefore use a branching

strategy (originally proposed in Beale and Tomlin [1970]) that splits Ps into two sets

P
(<)
s and P

(>)
s such that P

(<)
s = {j | csj ≤ cs(`), j ∈ Ps} and P

(>)
s = Ps \ P (<)

s . By

splitting Ps, we create two child nodes corresponding to P
(<)
s (left branch) and

P
(>)
s (right branch) as depicted in Figure 2.6. We now describe how easily the CG

algorithm can be applied to both children, taking advantage of the computational

effort already incurred in computing the solution for the parent node. Note that

this cannot be done in the DZ algorithm in an efficient way; making it unsuitable

to use in a branch-and-bound approach.

For both child nodes, the corresponding MCKP-LP can be solved by the col-

umn generation procedure outlined in Algorithm 3 with two minor modifications.

First, we should not execute line 22 during the branch-and-price algorithm since

we would like to maintain the structures of Λ and Π for the child node. Second,

in line 3, instead of selecting (i, (j)) = arg max(i,(j))∈Λ∪Π δi(j), we need to select

45

(i, (j)) = arg max(i,(j))∈Λ∪Π∪∆̄(Ω′) δi(j) since the levels pushed into ∆̄(Ω′) because of

the dual lower bound may be eligible to be selected after branching. Feasible integer

solutions can be obtained by rounding the LP relaxation solution as described in

Section 2.3.

For the parent node of both branches, P p
s corresponds to the set of levels, Ω′ps

corresponds to the upper convex hull, and (cpsj, r
p
sj) correspond to the cost-revenue

pairs for keyword s. Bp denotes the budget and xp,∆(Ω′)p,Λp, Πp, Rp, and kp denote

the final values of the inputs after the column generation terminates for the parent

node.

On the left branch, the computations for the child node are fairly straight-

forward. Branching on P
(<)
s corresponds to adding the constraint

∑
j∈P (>)

s
xsj = 0

to the problem. We remove the levels that cannot be in the solution by setting

Ps = P
(<)p
s . There is no need to derive Ω′s from scratch, it can be obtained from the

parent node by setting Ω′s = {j | csj ≤ cs(`), j ∈ Ωp
s}. However, we have to remove

(s, (` + 1)) from ∆(Ω′) and (s, (` + 2)) from Π or ∆̄(Ω′) since (` + 1), (` + 2) 6∈ Ω′s,

we set ∆(Ω′) = ∆(Ω′)p \ {(s, (` + 1))}, ∆̄(Ω′) = ∆̄(Ω′)p \ {(s, (` + 2))} and Π =

Πp \ {(s, (` + 2))}. The solution x remains the same after branching except for xsj

where csj ≥ cs(`), j ∈ P p
s so we set x = xp, then set xs(`) = 1 and remove xsj from x

for csj > cs(`), j ∈ P p
s . We reduce the objective value R = Rp− r̄s(`+1)x

p
s(`+1) since Rp

contains the marginal revenue generated by level (` + 1). Similarly, we restore the

remaining budget to reflect the removal of level (`+ 1) by setting C = c̄s(`+1)x
p
s(`+1).

Finally, we set Λ = Λp B = Bp, k = 0, θ = 0 and execute Algorithm 3.

On the right branch, branching on P
(>)
s corresponds to adding the constraint

46

r

c

Figure 2.6: Left branch (P
(<)
s) and right branch (P

(>)
s) for keyword s and fractional

levels (`), (`+ 1) ∈ Ωs.

∑
j∈P (<)

s
xsj = 0 to the problem. We set Ps = P

(<)p
s , unlike the left branch, the

levels in Ps no longer involve the zero bid level (cs0, rs0) = (0, 0). We designate

level j′ = arg minj∈P ps |csj>cs(`) csj as the zero bid level by setting csj = cpsj − c
p
sj′ and

rsj = rpsj − rps,j′ for j ∈ Ps such that csj > cs(`). Then we update the budget to

B = Bp− cs0. With the change in the budget, the solution x′ can no longer be used

for the child node. We reset the solution x = {xij | xi(0) = 1, xij = 0, i ∈ K, j ∈

Ω′i\{(0)}. However, the solution can be calculated by using the lists from the parent

node. We remove the levels corresponding to keyword s from ∆(Ω′), ∆̄(Ω′) and Π

by setting ∆(Ω′) = ∆(Ω′)p \{(s, (j)) | 1 ≤ j ≤ `+1}, ∆̄(Ω′) = ∆̄(Ω′)p \{(s, (`+2))}

and Π = Πp \ {(s, (`+ 2))}. We find the new level (1) for keyword s by calculating

(1) = arg maxj∈Ps{rsj/csj} and set Π = Π∪{δs(1)}. Then we set Λ = Λp∪∆(Ω′) and

∆(Ω′) = ∅ respectively. Note that after the column generation algorithm terminates

for the parent node, we have min(i,j)∈∆(Ω′)p δij ≥ max(i,j)∈Λp δij. Therefore setting

Λ = Λp ∪∆ can be done in O(1) time. Finally, we set R = 0, C = B, and k = 0,

θ = 0 and execute Algorithm 3.

47

2.5 Computational Results

To test the performance of the column generation (CG) algorithm for the

OAPOP, we perform computational experiments on a large set of simulated online

advertising instances. Section 2.5.1 describes our procedure to generate simulated

online advertising (OA) instances; based on sample real world online advertising

data collected from Google Keyword Planner. These instances contain anywhere

between 1 million and 50 million keywords, and between 10 and 50 bid levels for each

keyword; resulting in MCKP problem instances with as many as 2.55 billion variables

and 50 million constraints. While our focus is to understand the performance of the

CG algorithm on OA instances, we also wanted to study the behavior of the CG

algorithm on other types of MCKP instances that have been considered previously

in the literature. To this end, in addition to the OA instances we generated MCKP

instances similar to those considered previously in the literature [see Pisinger, 1995].

Since literature instances are not of the massive scale that we are able to solve with

the CG algorithm we used existing approaches in the literature to generate new

MCKP instances (section 2.5.3 discusses these instances). For both sets of instances,

we compare the performance of the CG algorithm with that of the DZ algorithm

[our implementation follows Pisinger, 1995]. We discuss these results in Sections

2.5.2 and 2.5.3. Both the CG and DZ algorithm are implemented in C++ and all

computational experiments are performed on a computer with Intel Xeon E5-1620

v3 CPU @ 3.50 GHz and 32GB RAM running 64-bit Windows 7.

48

2.5.1 Generating Online Advertising Instances

The advertiser’s problem can have hundreds of thousands to tens of millions of

keywords. In online advertising, we experiment with |K| = {1, 5, 10, 25, 50} million

keywords and |Pi| = |P | = {10, 20, 30, 40, 50} bid levels excluding the zero bid level.

We set ci0 = 0 and ri0 = 0 for all i ∈ K in every type of instance. Note that

an instance with |K| = 50 million and |P | = 50 has 2.55 billion variables. For

the CG algorithm, we did not devote special effort to tune κ. After preliminary

computational experiments, we set κ = 100 and use uniform bucket intervals as

described in Section 2.3.2 for all instances. To generate an instance for the OAPOP,

we need to generate cost-revenue pairs for every keyword.

To generate online advertising instances, we sampled keywords from the Key-

word Planner tool of Google Adwords. Given keyword i, bid bij, a time period, and

a geographical location, the Keyword Planner tool provides an estimate for the num-

ber of clicks, number of impressions, cost, click-through-rate (CTR), average cost

per click (CPC), and average position on the screen. The advertiser can estimate a

revenue-per-click (RPC) for each keyword using historical browsing data. Using the

estimated cost and the estimated number of clicks provided by the Keyword Planner

tool, we generate cost-revenue pairs. For a bid amount bij, let ϕij be the expected

number of clicks, cij be the expected cost and let RPCi be the revenue-per-click for

keyword i, then the expected revenue can be calculated as rij = RPC × ϕij. In

the MCKP, every level j ∈ Pi for keyword i corresponds to a bid amount bij that

can be used to generate the cost-revenue pairs (cij, rij). In online advertising, ad

49

slot allocations are typically determined through a generalized second price auction.

Therefore, there is a bid amount bi,|Pi| large enough such that the cost and number

of clicks do not increase for bids larger than bi,|Pi|. Bidding more than bi,|Pi| will not

affect the number of clicks or the cost since the number of clicks depends on the

page position and the cost depends on the value of the next highest bid (both of

which do not change).

We sampled the estimated cost and the estimated number of clicks over a

period of one day for 600 keywords and 20 bid levels using the Google Keyword

Planner tool. We picked medium-high volume keywords from a wide variety of

industry categories including retail (apparel, footwear, etc.), insurance, and financial

services. For each keyword i, we plotted ϕij vs cij and observed the relationship

between ϕij and cij generally follows a logarithmic function which can be captured

as

ϕij = βi0 + βi1 ln cij. (2.8)

Using the dataset, we estimated βi0 and βi1 for each keyword i using the ordinary

least squares (OLS) method. For instance, in Figure 2.7, we present ϕij vs cij for

keyword “automotive insurance” with 20 bid levels. The relationship between the

number of clicks and cost is captured by the function ϕij = βi0 + βi1 ln cij where

βi0 = −43 and βi1 = 41 are estimated by the OLS method. For “automotive

insurance”, coefficient of determination (R2) value is 0.99, which indicates a strong

fit for the function. In fact, the average coefficient of determination (R2) value was

50

y = - 43 + 41ln(x)
R² = 0.99

0

50

100

150

200

250

300

350

400

0 2000 4000 6000 8000 10000 12000 14000

N
u

m
b

er
 o

f
C

lic
ks

Cost ($)

Figure 2.7: The estimated cost vs the estimated number of clicks for keyword “au-
tomotive insurance” for 20 bid levels collected from Google Keyword Planner.

0.92 over the 600 keywords we sampled. Therefore we used the logarithmic function

(2.8) to generate the number of clicks as a function of the cost.

When we analyzed the distribution of the OLS estimates for βi0 and βi1 over

the 600 keywords in our dataset, we found βi0 followed a Cauchy distribution and

βi1 followed a log-normal distribution with a coefficient of correlation ρ = −0.82

(indicating they are highly correlated). We randomly draw correlated βi0 (from

the Cauchy distribution) and βi1 (from the log-normal distribution) values using

copulae. Copulae are widely used to draw correlated multivariate random numbers

from different distributions. After experimenting with Normal, Student’s t, Clayton,

and Gumbel copulae, we observed Gumbel copula provided the best fit for the

sample. We therefore used Gumbel copula to draw correlated βi0 and βi1 values.

To generate an instance for online advertising, we draw βi0 and βi1 values for

each keyword. The number of clicks is then set to ϕij = βi0 + βi1 ln(cij + ψi) for

j = 0, 1, . . . , |Pi| for a given value of cij where ψi = e−βi0/βi1 . The second term ψi

51

inside the logarithm needs some explanation. Since, the number of clicks associated

with not bidding (bid level 0) is 0, we need to ensure that the logarithmic function

stays non-negative for all values of cij ≥ 0. Setting ψi = e−βi0/βi1 ensures this.

It turns out that due to the correlation between βi0 and βi1, ψi is usually a very

small constant relative to cij (indicating a very small perturbation to the sampled

functions). During data generation, we ensure that ψi values are within the range

found for the sample of 600 keywords. In other words, if after drawing βi0 and βi1

values we find that ψi = e−βi0/βi1 is outside the range for the sample we discard this

draw.

We now discuss how we select the range of values for the bid levels—and thus

the costs and number of clicks (which in turn will yield the revenue). We first select

the cost associated with the largest bid level. We want to choose this largest bid level

at a point where the logarithmic function has relatively flattened out (this ensures

that increasing the bid amount beyond bi,|Pi| does not affect the number of clicks

significantly). To do so, note the slope of the logarithmic function
dϕij
dcij

= βi1
cij+ψi

. Let

ε denote the desired value of the slope at ci,|Pi|. A simple calculation shows that

ci,|Pi| = βi1/ε− ψi. Once we have the cost associated with the largest bid level, we

generate all the other costs cij as

cij =
j

|Pi|
· ci,|Pi| for j = 0, 1, . . . , |Pi| − 1.

In our experiments, we set ε = 0.1.

We experiment with three alternatives of RPCi for the OA instances (the

52

revenue associated with a bid level is calculated by multiplying the expected number

of clicks with the RPC). First, we set RPCi = 1 for all i ∈ K, which we call

“Constant OA” instances (this sets the revenue-per-click associated with different

keywords to the same value). Second, we set RPCi ∼ U(1, 100) for all i ∈ K where

x ∼ U(a, b) indicates x is uniformly distributed between a and b. We call these

set of instances “Random OA” instances. Third, we set RPCi equal to the average

cost-per-click (CPC) for keyword i (in the ϕij vs cij function), which we call “CPC

OA” instances5. In practice, we would not expect RPCi to be constant, totally

random, or same as average CPC. However, the performance of the CG algorithm

for these three extreme cases (with wide variety in behavior) should signal its ability

to handle practical instances.

Notice that our logarithmic function does not have any random noise term

(i.e., all points generated lie on this logarithmic function). This has a drawback in

that all points generated are on the convex hull of the revenue-to-cost curve, thus

making the instances harder to solve (as the algorithm cannot eliminate any points

due to the fact that they are not on the convex hull).

2.5.2 Results for Online Advertising Instances

We experiment with five different |K| and |P | values, and three different

RPC types as stated. For each instance, we experiment with budgets of B =

5This can be calculate analytically as follows. For keyword i, we define average cost-per-click
as the ratio of the average cost to the average number of clicks. Over the range [0, ci,|Pi|], the
average cost is calculated as ci,|Pi|/2 . The average number of clicks is calculated by taking the

definite integral
∫ ci,|Pi|
0

βi0 + βi1 ln(c−ψi) dc and dividing by ci,|Pi|. After evaluating the integral,

the average cost-per-click for keyword i is
c2i,|Pi|

2(βi0ci,|Pi|+βi1((ci,|Pi|−ψi) ln(ci,|Pi|−ψi)−ci,|Pi|))
.

53

B = 0.5% B = 1% B = 5% B = 10% B = 20%
|K| |P | CG DZ CG DZ CG DZ CG DZ CG DZ

1M

10 0.16 2.03 0.19 2.03 0.28 1.90 0.45 1.98 0.73 2.34
20 0.22 2.56 0.23 2.62 0.59 2.87 0.91 3.03 1.58 3.70
30 0.28 3.20 0.34 3.23 1.03 3.42 1.55 3.67 2.71 4.54
40 0.38 3.71 0.41 3.65 1.26 4.29 2.64 4.42 4.36 5.74
50 0.41 3.99 0.45 3.98 1.58 4.48 2.57 5.02 5.02 6.28

Average 0.29 3.10 0.32 3.10 0.95 3.39 1.62 3.62 2.88 4.52

5M

10 0.87 10.09 0.94 10.11 1.22 10.14 2.28 10.31 3.62 12.24
20 1.17 12.78 1.26 13.24 3.60 14.23 5.43 15.38 9.19 18.98
30 1.65 16.37 1.89 16.15 6.12 17.57 9.06 18.63 15.48 23.61
40 1.87 18.39 2.28 18.64 7.11 21.20 13.45 22.74 25.44 29.03
50 2.17 19.91 2.51 20.11 8.35 22.92 14.82 24.55 28.50 32.21

Average 1.55 15.51 1.77 15.65 5.28 17.21 9.01 18.32 16.45 23.21

10M

10 1.72 20.61 1.89 20.14 2.59 20.00 4.88 21.15 7.94 25.01
20 2.50 26.50 2.65 25.60 7.32 29.17 11.65 30.47 20.65 38.47
30 3.37 33.04 4.13 33.49 13.03 34.51 19.86 38.05 35.13 48.05
40 3.95 38.21 4.62 37.74 15.62 42.84 28.84 45.80 55.44 57.33
50 4.41 40.83 5.20 41.04 17.19 46.63 32.06 49.75 60.53 63.68

Average 3.19 31.84 3.70 31.60 11.15 34.63 19.46 37.04 35.94 46.51

25M

10 4.65 51.62 4.88 51.76 7.02 52.59 13.46 50.97 23.43 61.74
20 6.51 63.07 7.00 67.25 20.08 74.19 32.17 80.59 58.56 95.43
30 8.67 82.38 10.47 84.60 35.44 89.12 54.15 96.08 94.60 119.43
40 10.05 96.47 11.86 96.81 40.86 106.44 78.72 116.16 150.38 146.06
50 11.36 104.40 13.43 103.91 45.33 115.47 85.32 124.13 163.55 162.72

Average 8.25 79.59 9.53 80.87 29.75 87.56 52.76 93.58 98.11 117.08

50M

10 9.66 105.63 10.47 96.72 14.85 105.83 29.38 105.54 50.81 125.47
20 13.56 134.30 14.65 131.15 42.01 149.23 67.91 159.07 124.63 188.87
30 17.66 169.76 20.97 169.35 73.80 177.39 113.97 191.76 200.49 238.92
40 20.51 189.90 24.93 190.43 85.54 211.02 166.75 231.12 317.24 293.84
50 23.31 204.17 27.39 206.37 92.10 225.12 180.07 249.94 342.51 324.33

Average 16.94 160.75 19.68 158.81 61.66 173.72 111.62 187.48 207.14 234.28

Table 2.1: CPU times (in seconds) for Constant OA instances

{0.5%, 1%, 5%, 10%, 20%} of
∑

i∈K maxj∈Pi cij. In other words, B = 20% indicates

the advertising budget is set to 20% of the maximum amount the advertiser can

spend on the portfolio. In total, there are 5 × 5 × 5 × 3 = 375 combinations of

number of keywords, number of bid levels, budget, and RPC type. We provide the

CPU times of both the CG and DZ algorithms for all 375 instances in Tables 2.1 -

2.3. However, for ease of reference and discussion, we provide summary results for

both algorithms in Figures 2.8 - 2.10. For each chart, y−axis provides the average

CPU time per 10 million keyword levels in seconds while x−axis compares number

of keywords (|K|), number of bid levels (|P |), and budget percentages (B). We

discuss these results in terms of average CPU time per 10 million keyword levels

54

B = 0.5% B = 1% B = 5% B = 10% B = 20%
|K| |P | CG DZ CG DZ CG DZ CG DZ CG DZ

1M

10 0.16 1.76 0.19 1.81 0.27 1.79 0.48 1.94 0.84 2.32
20 0.19 2.42 0.22 2.47 0.59 2.76 1.11 2.86 2.18 3.46
30 0.28 3.01 0.36 2.98 1.11 3.37 1.95 3.53 3.58 4.39
40 0.33 3.59 0.41 3.49 1.48 4.20 3.01 4.27 5.66 5.29
50 0.39 3.74 0.47 3.78 1.67 4.42 3.18 4.62 6.22 5.94

Average 0.27 2.90 0.33 2.90 1.02 3.31 1.95 3.44 3.69 4.28

5M

10 0.72 9.41 0.75 9.47 1.28 9.38 2.33 10.14 5.16 12.39
20 1.05 12.73 1.26 12.68 3.53 14.10 7.25 14.24 14.91 18.02
30 1.51 15.82 1.98 15.48 7.13 17.86 12.93 18.41 24.57 22.39
40 1.93 17.94 2.32 18.07 9.41 20.70 18.78 22.07 36.99 27.30
50 2.18 19.42 2.70 19.42 10.05 22.57 20.92 23.95 39.44 30.20

Average 1.48 15.06 1.80 15.02 6.28 16.92 12.44 17.76 24.21 22.06

10M

10 1.45 18.81 1.56 19.05 2.89 18.92 5.37 20.05 11.51 23.56
20 2.26 24.87 2.53 25.65 7.97 28.80 16.16 30.23 33.51 35.99
30 3.18 31.68 4.18 31.37 15.30 35.63 28.95 36.77 53.70 44.68
40 3.93 35.79 4.98 36.26 20.55 41.98 40.76 45.07 81.17 55.15
50 4.32 38.52 5.62 39.09 22.15 45.60 43.31 47.97 85.64 60.56

Average 3.03 29.93 3.77 30.28 13.77 34.19 26.91 36.02 53.11 43.99

25M

10 3.90 48.02 4.20 47.10 7.69 48.05 14.96 50.23 32.81 60.86
20 5.73 64.65 6.72 65.35 21.37 72.09 44.41 75.47 93.10 90.67
30 8.61 79.45 11.22 78.97 41.92 88.83 78.36 92.80 148.22 112.07
40 9.73 91.64 13.51 88.75 55.38 106.67 112.94 111.79 223.31 137.98
50 11.31 98.28 14.56 95.38 59.22 114.13 118.83 119.39 237.81 152.79

Average 7.86 76.41 10.04 75.11 37.12 85.95 73.90 89.94 147.05 110.87

50M

10 7.97 94.21 8.81 96.22 16.21 96.80 31.29 102.96 71.35 124.68
20 11.90 128.54 13.98 127.19 44.93 146.05 95.52 150.90 202.58 177.56
30 16.97 158.93 22.87 160.84 88.39 180.49 165.78 181.13 320.67 222.41
40 19.84 183.67 26.60 183.66 116.89 210.93 239.30 226.48 480.26 277.56
50 22.40 197.40 29.33 197.03 124.05 225.80 251.36 241.47 507.10 308.18

Average 15.82 152.55 20.32 152.99 78.09 172.01 156.65 180.59 316.39 222.08

Table 2.2: CPU times (in seconds) for Random OA instances

since the theoretical running time of the DZ algorithm is O(n) where n =
∑

i∈K |Pi|.

Note that in all charts, the CPU times are averaged over the omitted dimensions.

For instance, in Figure 2.8, the CPU times are averaged over different number of

bid levels and budget percentages.

Across different number of keywords, number of bid levels, and budget per-

centages, we observe the CG algorithm significantly outperforms the DZ algorithm

and the RPC type does not significantly affect the running time of either algorithm.

However, it is worth noting that Random OA and CPC OA instances take slightly

longer to solve for the CG algorithm. In Figure 2.8, we observe the CPU time grows

linearly for the DZ algorithm as expected from its theoretically linear running time.

55

B = 0.5% B = 1% B = 5% B = 10% B = 20%
|K| |P | CG DZ CG DZ CG DZ CG DZ CG DZ

1M

10 0.17 1.90 0.19 1.89 0.20 1.90 0.51 1.81 0.76 2.32
20 0.20 2.50 0.23 2.50 0.59 2.76 1.09 2.89 2.06 3.64
30 0.28 3.14 0.33 3.12 1.11 3.39 1.90 3.51 3.37 4.45
40 0.33 3.68 0.39 3.60 1.37 4.04 2.73 4.31 5.27 5.43
50 0.41 3.89 0.45 3.98 1.54 4.35 3.14 4.60 5.83 6.08

Average 0.28 3.02 0.32 3.02 0.96 3.29 1.88 3.42 3.46 4.38

5M

10 0.78 10.11 0.81 9.98 1.15 10.08 2.29 9.39 4.32 12.25
20 1.12 12.92 1.23 12.78 3.45 14.07 6.71 14.84 13.79 18.27
30 1.53 16.21 1.90 15.94 7.01 17.46 11.90 18.17 22.89 22.62
40 1.84 18.72 2.15 18.13 8.85 20.61 17.39 21.89 34.93 27.99
50 2.14 20.08 2.45 19.61 9.53 22.20 18.31 23.49 37.41 30.30

Average 1.48 15.61 1.71 15.29 6.00 16.88 11.32 17.56 22.67 22.28

10M

10 1.65 20.37 1.72 19.92 2.42 19.94 4.73 18.22 9.59 23.57
20 2.40 25.74 2.67 25.99 7.41 28.41 14.45 29.67 30.36 36.30
30 3.32 32.70 3.87 33.12 15.26 34.06 26.54 35.57 50.39 45.58
40 3.79 37.19 4.56 37.32 18.89 40.69 36.88 44.44 76.22 56.11
50 4.37 40.33 5.32 40.33 20.11 44.06 39.27 47.27 80.86 62.06

Average 3.11 31.27 3.63 31.33 12.82 33.43 24.37 35.03 49.48 44.73

25M

10 4.52 49.27 4.84 49.90 6.88 51.04 13.49 49.14 27.52 60.97
20 6.38 66.32 7.04 64.96 20.58 72.45 40.44 75.33 84.83 92.02
30 8.67 80.92 10.55 82.15 42.09 86.39 72.91 91.71 137.34 112.13
40 10.14 96.16 12.37 94.65 50.84 101.95 103.37 110.32 211.82 140.38
50 11.50 101.49 13.93 102.06 53.98 109.22 108.25 119.36 226.22 154.64

Average 8.24 78.83 9.74 78.74 34.87 84.21 67.69 89.17 137.55 112.03

50M

10 9.72 103.49 10.34 102.12 14.32 101.98 28.69 95.75 60.45 124.66
20 13.31 132.41 14.68 132.80 43.06 141.88 85.96 151.04 184.72 187.67
30 17.96 166.14 21.33 165.77 88.59 170.60 155.80 182.86 299.43 231.21
40 20.84 189.01 24.59 190.13 106.66 209.26 217.37 225.73 455.97 281.91
50 23.85 205.00 28.21 203.32 114.08 223.91 231.18 239.12 475.72 309.82

Average 17.13 159.21 19.83 158.83 73.34 169.53 143.80 178.90 295.26 227.05

Table 2.3: CPU times (in seconds) for CPC OA instances

However, averaging across other dimensions, the CG algorithm also shows near lin-

ear growth as the number of keywords increases. The slight upward trend can be

explained by the O(|K| log |K|) term in the theoretical running time of the CG al-

gorithm. Recall that we use κ = 100 for both |K| = 1M and |K| = 50M. When

|K| = 50M, each bucket, on average, will contain 50 times the number of convex

hull levels compared to when |K| = 1M. Therefore, sorting each bucket will take

longer when |K| = 50M. A good choice for the number of buckets (κ) parameter

would potentially mitigate the growth as |K| gets larger. In any case, a near linear

growth on the running time for the CG algorithm demonstrates the ability to scale

up and handle even larger instances.

56

0.0

0.5

1.0

1.5

0 10 20 30 40 50

|K| (in millions)

C
P

U
 ti

m
e

pe
r

10
M

 le
ve

ls
 (

s)

CG−Constant DZ−Constant

0.0

0.5

1.0

1.5

0 10 20 30 40 50

|K| (in millions)

C
P

U
 ti

m
e

pe
r

10
M

 le
ve

ls
 (

s)

CG−Random DZ−Random

0.0

0.5

1.0

1.5

0 10 20 30 40 50

|K| (in millions)

C
P

U
 ti

m
e

pe
r

10
M

 le
ve

ls
 (

s)

CG−CPC DZ−CPC

Figure 2.8: Average CPU time per 1 million keywords vs number of keywords for
Constant, Random, and CPC OA instances

57

In Figure 2.9, the CPU time has a near linear increase for the CG algorithm

whereas for the DZ algorithm, the CPU time decreases as the number of bid lev-

els increases. For instances with larger bid levels, the computational overhead is

distributed over a larger number of keyword levels (recall that we report the CPU

time per 10 million keyword levels) resulting in a decrease in the CPU time of the

DZ algorithm. However, the decrease starts leveling out at 40 bid levels and we

expect it to be leveled out for larger number of bid levels. On the other hand, the

increase in the number of bid levels has a near linear effect on the CPU time for the

CG algorithm despite the nonlinear term for generating bid levels in its theoretical

running time. In practice, the advertisers do not estimate large number of bid levels

for a keyword due to the cost associated with estimating each bid level. Therefore,

for practical purposes (where the number bid levels is typically less than 20), the CG

algorithm provides significant computational improvement over the DZ algorithm.

In Figure 2.10, we can clearly observe the effect of budget increase on the

CPU time of the CG algorithm. This is inevitable since many nonlinear terms in

the theoretical running time of the CG algorithm are functions of the budget. On

the other hand, despite its theoretically linear running time, the budget percentages

over 1% results in an increase on the CPU time of the DZ algorithm. After a

closer examination of the algorithm and the data set, we observe that the log-

curvature of the cost-revenue function causes the DZ algorithm to remove less levels

per iteration for larger budget percentages, which in turn increases the CPU time.

For budget percentage 0.05%, the CG algorithm is about 10.5 times faster than

the DZ algorithm across three RPC types. For budget percentage 5%, the CG

58

0.0

0.5

1.0

1.5

2.0

2.5

10 20 30 40 50

|P|

C
P

U
 ti

m
e

pe
r

10
M

 le
ve

ls
 (

s)

CG−Constant DZ−Constant

0.0

0.5

1.0

1.5

2.0

2.5

10 20 30 40 50

|P|

C
P

U
 ti

m
e

pe
r

10
M

 le
ve

ls
 (

s)

CG−Random DZ−Random

0.0

0.5

1.0

1.5

2.0

2.5

10 20 30 40 50

|P|

C
P

U
 ti

m
e

pe
r

10
M

 le
ve

ls
 (

s)

CG−CPC DZ−CPC

Figure 2.9: Average CPU time per 1 million keywords vs number of levels for Con-
stant, Random, and CPC OA instances

59

algorithm is still about 3.3 times faster than the DZ algorithm. However, when the

budget percentage is around 20%, the CG algorithm finally catches up with the DZ

algorithm for Random and CPC instances. Although, it is important to note that

in online advertising, the daily budget is typically set to a small amount compared

to the maximum amount possible to spend. Therefore, for the purposes of online

advertising, the CG algorithm would be preferable to the DZ algorithm.

B = 0.1% B = 0.5% B = 1% B = 2.5% B = 5%
|K| |P | CG DZ CG DZ CG DZ CG DZ CG DZ

1M

10 0.19 1.86 0.28 1.90 0.33 1.86 0.45 1.97 0.50 1.92
20 0.31 2.40 0.48 2.32 0.58 2.47 0.81 2.37 1.03 2.48
30 0.44 2.84 0.77 2.87 0.98 2.81 1.34 2.86 1.69 2.79
40 0.64 3.15 1.11 3.14 1.51 3.21 1.97 3.25 2.39 3.20
50 0.84 3.63 1.54 3.54 1.98 3.57 2.70 3.51 3.18 3.56

Average 0.48 2.78 0.84 2.76 1.08 2.78 1.45 2.79 1.76 2.79

5M

10 0.92 9.64 1.33 9.31 1.56 9.45 2.18 9.63 2.65 9.53
20 1.51 12.36 2.51 12.48 3.21 12.48 4.37 12.81 5.45 12.39
30 2.34 14.34 4.06 14.46 5.18 14.82 7.24 14.38 9.03 14.62
40 3.25 16.12 5.96 15.79 7.69 16.19 10.33 16.66 12.70 16.30
50 4.26 17.83 7.91 18.33 10.33 17.89 13.82 17.96 16.57 18.02

Average 2.46 14.06 4.35 14.07 5.59 14.17 7.59 14.29 9.28 14.17

10M

10 1.76 19.28 2.62 19.59 3.23 19.38 4.51 19.02 5.49 18.88
20 3.11 25.13 5.10 24.85 6.44 25.01 8.89 25.07 11.06 24.98
30 4.79 28.72 8.25 29.41 10.73 28.80 14.81 29.34 18.55 29.52
40 6.55 32.78 12.00 32.87 15.49 32.59 21.00 32.75 26.29 33.51
50 8.58 36.10 16.12 36.04 20.97 36.50 28.13 35.44 33.67 35.24

Average 4.96 28.40 8.82 28.55 11.37 28.45 15.47 28.32 19.01 28.42

25M

10 4.68 49.64 6.99 49.41 8.77 49.80 11.95 49.67 14.74 49.72
20 7.99 62.00 13.03 62.53 16.63 62.76 23.03 61.12 29.25 63.13
30 12.06 73.57 20.92 73.93 27.41 73.16 37.78 72.53 48.27 74.72
40 16.61 82.04 29.95 82.26 38.99 81.90 53.91 83.27 67.38 82.24
50 21.57 91.42 40.51 91.10 52.57 92.13 71.48 91.07 85.72 91.70

Average 12.58 71.73 22.28 71.84 28.87 71.95 39.63 71.53 49.07 72.30

50M

10 9.42 93.49 14.15 98.59 17.58 99.59 24.01 100.22 30.55 100.25
20 16.21 125.28 26.68 127.91 34.06 126.81 46.50 127.98 59.98 129.46
30 24.06 144.00 42.40 147.09 54.54 148.81 76.03 146.73 98.47 148.61
40 33.13 160.65 60.39 167.87 78.44 167.78 108.59 167.48 136.10 165.89
50 43.46 183.80 81.06 181.38 105.50 182.26 144.61 181.30 174.67 183.16

Average 25.26 141.45 44.93 144.57 58.02 145.05 79.95 144.74 99.95 145.47

Table 2.4: CPU times (in seconds) for UC instances

2.5.3 Results for Literature Instances

The most common approaches in the literature to generate MCKP instances

are called uncorrelated (UC), weakly correlated (WC), and strongly correlated (SC)

60

0.0

0.5

1.0

1.5

2.0

0 5 10 15 20

B (%)

C
P

U
 ti

m
e

pe
r

10
M

 le
ve

ls
 (

s)

CG−Constant DZ−Constant

0.0

0.5

1.0

1.5

2.0

0 5 10 15 20

B (%)

C
P

U
 ti

m
e

pe
r

10
M

 le
ve

ls
 (

s)

CG−Random DZ−Random

0.0

0.5

1.0

1.5

2.0

0 5 10 15 20

B (%)

C
P

U
 ti

m
e

pe
r

10
M

 le
ve

ls
 (

s)

CG−CPC DZ−CPC

Figure 2.10: Average CPU time per 1 million keywords vs budget percentage for
Constant, Random, and CPC OA instances

61

B = 0.1% B = 0.5% B = 1% B = 2.5% B = 5%
|K| |P | CG DZ CG DZ CG DZ CG DZ CG DZ

1M

10 0.17 2.15 0.23 2.12 0.27 2.11 0.34 2.12 0.42 2.04
20 0.25 2.96 0.37 2.92 0.51 2.95 0.66 2.96 0.84 2.83
30 0.41 3.39 0.62 3.34 0.81 3.42 1.14 3.42 1.39 3.31
40 0.53 3.84 0.89 3.88 1.20 3.87 1.70 3.82 2.02 3.95
50 0.69 4.29 1.23 4.35 1.56 4.26 2.20 4.12 2.77 4.23

Average 0.41 3.33 0.67 3.32 0.87 3.32 1.21 3.29 1.49 3.27

5M

10 0.80 10.80 1.08 11.08 1.29 10.83 1.69 10.94 2.20 10.87
20 1.34 14.66 2.01 14.01 2.56 14.73 3.45 14.82 4.29 14.79
30 2.00 17.49 3.23 17.53 4.21 17.66 5.68 17.47 7.18 17.47
40 2.81 19.44 4.65 19.78 6.02 19.75 8.30 19.44 10.44 19.23
50 3.53 21.70 6.27 22.01 8.30 21.54 11.28 21.67 13.95 21.70

Average 2.09 16.82 3.45 16.88 4.48 16.90 6.08 16.87 7.61 16.81

10M

10 1.64 22.42 2.29 21.89 2.78 22.07 3.56 20.61 4.38 21.48
20 2.71 29.59 4.23 29.34 5.20 29.86 7.04 29.69 8.99 30.16
30 4.13 35.52 6.80 35.60 8.64 35.72 11.70 35.66 14.88 34.77
40 5.60 39.28 9.58 39.83 12.42 39.39 17.07 39.83 21.28 39.39
50 7.24 43.43 12.68 42.78 16.61 43.60 22.89 43.73 28.55 43.38

Average 4.26 34.05 7.12 33.89 9.13 34.13 12.45 33.90 15.62 33.84

25M

10 4.29 56.44 5.99 55.75 7.18 55.47 9.45 56.44 11.95 54.52
20 6.91 75.24 10.66 75.79 13.21 73.90 18.35 75.75 23.14 75.11
30 10.45 88.48 16.86 88.03 21.53 89.00 30.11 89.01 37.99 86.35
40 13.90 100.34 23.99 99.50 30.86 99.29 43.12 99.65 54.43 97.58
50 17.99 109.54 32.14 109.14 41.59 109.33 57.95 110.07 72.43 108.92

Average 10.71 86.01 17.93 85.64 22.87 85.40 31.80 86.19 39.99 84.50

50M

10 8.58 113.66 12.04 112.94 14.54 109.92 19.31 111.23 24.40 112.21
20 13.99 151.94 21.42 150.65 27.19 151.60 37.05 150.31 47.27 151.93
30 20.69 179.49 34.31 179.03 43.42 180.27 60.79 179.00 77.11 178.67
40 28.30 197.62 48.42 200.69 62.34 198.98 86.85 198.48 110.14 199.87
50 36.38 220.32 64.33 220.23 84.04 220.21 117.03 220.69 146.64 217.54

Average 21.59 172.61 36.10 172.71 46.30 172.20 64.21 171.94 81.11 172.04

Table 2.5: CPU times (in seconds) for WC instances

instances. Since the CG algorithm applies to the MCKP-LP, we also test it on these

instances (we note these instances are quite different in structure from the OAPOP

instances). We adapt the methods described in Pisinger [1995] to generate large-

scale UC, WC, and SC instances (the instances we generate are orders of magnitude

larger than those available in the literature) with the settings below. We refer to

these as “literature instances”.

UC instances. The uncorrelated instances are generated by setting cij ∼ U(1, 1000)

and rij ∼ U(1, 1000) for all i ∈ K and j ∈ Pi \ {0}.

WC instances. The weakly correlated instances are generated by setting cij ∼

U(1, 1000) and rij ∼ U(cij − 10, cij + 10) for all i ∈ K and j ∈ Pi \ {0}.

62

SC instances. For the strongly correlated instances, we first generate c′ij ∼

U(1, 1000) and r′ij = c′ij + 10 for a given keyword i ∈ K and j ∈ Pi \ {0}. Then we

sort c′ij in nonincreasing and set cij =
∑j

k=1 c
′
ik and rij =

∑j
k=1 r

′
ik for all j ∈ Pi\{0}.

Note that for strongly correlated instances, Ωi = Pi, i.e. every level is in the convex

hull.

In literature instances, we have 375 combinations of number of keywords,

number of bid levels, budget, and correlation type. We experiment with B =

{0.1%, 0.5%, 1%, 2.5%, 5%} of
∑

i∈K maxj∈Pi cij. We discuss our findings in figures

as in the online advertising instances. However, the detailed tables containing the

results of the literature instances (that were used to generate the figures) are pro-

vided in Tables 2.4-2.6. In Figures 2.11 - 2.13, we discuss the performance of the

CG algorithm vs the DZ algorithm for UC, WC, SC instances. For all three types

of instances, the CG algorithm outperforms the DZ algorithm. In Figure 2.11, we

observe that SC instances are difficult for both algorithms and take the longest time

to solve. The CG algorithm performs a little faster for WC instances compared to

UC instances while the opposite is true for the DZ algorithm. For UC and WC

instances, the CPU time for the CG algorithm grows linearly. However, for SC in-

stances, the CPU time shows a slight nonlinear growth. We assert the convex hull

structure (i.e., number of levels in the convex hull) has more of an effect on the

CPU time for both algorithms compared to the revenue structure. In OA instances,

different revenue types do not affect the CPU time as significantly for either algo-

rithm. On the other hand, since all levels are in the convex hull in SC instances

and some levels may not be in the convex hull in UC and WC instances, CPU times

63

0.0

0.5

1.0

1.5

2.0

0 10 20 30 40 50

|K| (in millions)

C
P

U
 ti

m
e

pe
r

10
M

 le
ve

ls
 (

s)

CG−UC DZ−UC

0.0

0.5

1.0

1.5

2.0

0 10 20 30 40 50

|K| (in millions)

C
P

U
 ti

m
e

pe
r

10
M

 le
ve

ls
 (

s)

CG−WC DZ−WC

0.0

0.5

1.0

1.5

2.0

0 10 20 30 40 50

|K| (in millions)

C
P

U
 ti

m
e

pe
r

10
M

 le
ve

ls
 (

s)

CG−SC DZ−SC

Figure 2.11: Average CPU time per 1 million keywords vs number of keywords for
UC, WC, and SC instances

64

B = 0.1% B = 0.5% B = 1% B = 2.5% B = 5%
|K| |P | CG DZ CG DZ CG DZ CG DZ CG DZ

1M

10 0.14 2.56 0.31 2.53 0.38 2.50 0.69 2.53 1.05 2.47
20 0.37 4.12 0.81 4.01 1.12 4.07 1.81 4.03 2.57 4.12
30 0.84 5.40 1.51 5.23 2.04 5.26 3.14 5.24 4.12 5.13
40 1.03 6.52 2.23 6.55 3.28 6.47 4.70 6.35 6.61 6.46
50 1.11 7.07 2.33 6.99 3.49 7.02 5.26 6.93 7.19 6.90

Average 0.70 5.13 1.44 5.06 2.06 5.06 3.12 5.01 4.31 5.01

5M

10 0.72 12.67 1.45 12.56 2.09 12.75 3.99 12.76 5.99 12.53
20 2.14 20.55 5.13 20.53 7.46 20.76 12.04 20.25 17.07 20.48
30 5.10 26.63 9.67 26.26 13.20 26.40 20.02 25.88 27.75 25.66
40 6.22 32.96 13.53 32.42 19.08 32.85 30.23 32.37 42.87 32.10
50 6.68 35.58 14.54 35.57 20.48 35.37 32.35 34.95 45.01 34.99

Average 4.17 25.68 8.86 25.47 12.46 25.62 19.73 25.24 27.74 25.15

10M

10 1.50 25.99 3.15 25.99 4.45 25.83 8.55 25.72 13.26 25.44
20 4.66 41.87 11.22 41.43 16.46 40.97 26.85 40.73 38.27 41.31
30 10.61 54.15 21.19 52.60 29.16 52.67 43.77 52.29 61.17 52.35
40 13.04 66.13 29.09 67.17 41.61 65.61 65.54 65.44 92.01 64.58
50 14.16 71.62 31.40 71.17 43.74 71.23 69.61 70.12 97.48 68.95

Average 8.80 51.95 19.21 51.67 27.08 51.26 42.86 50.86 60.44 50.53

25M

10 4.07 65.91 8.81 63.73 12.51 61.11 24.26 63.29 37.24 63.17
20 12.15 103.18 30.87 101.45 45.01 103.40 74.02 101.45 106.58 101.43
30 28.66 135.13 57.63 131.71 78.84 132.46 121.76 130.00 168.31 127.27
40 34.90 166.66 78.75 161.71 112.62 166.05 180.26 162.08 252.88 161.98
50 37.30 177.87 84.01 176.87 119.76 177.67 190.77 174.71 266.93 173.61

Average 23.42 129.75 52.01 127.09 73.75 128.14 118.21 126.30 166.39 125.49

50M

10 8.58 129.73 18.11 130.15 26.71 129.98 52.46 126.13 80.67 129.08
20 24.66 208.81 64.23 207.17 95.72 202.55 159.84 204.56 231.32 203.07
30 59.28 269.90 122.80 265.70 169.14 263.20 260.16 258.24 363.23 254.22
40 72.32 332.30 168.48 332.59 240.90 329.47 385.20 325.90 543.41 324.25
50 78.28 356.29 179.73 351.69 255.09 356.26 405.43 346.96 572.13 345.79

Average 48.63 259.40 110.67 257.46 157.51 256.29 252.62 252.36 358.15 251.28

Table 2.6: CPU times (in seconds) for SC instances

differ significantly across UC, WC, and SC instances for both algorithms.

In Figure 2.12, we observe similar trends (compared to the OA instances) for

both algorithms. In Figure 2.13, we observe the CG algorithm takes longer on SC

instances as budget percentage gets larger whereas the growth in CPU time is not as

aggressive in UC and WC instances. For the DZ algorithm the difference between

UC, WC, and SC instances persists for any budget percentage and unlike in the

OA instances, the algorithm keeps growing linearly as budget percentage increases.

This cements our previous observation that the log-curvature of the cost-revenue

function causes the DZ algorithm to have different CPU times for different budget

percentages.

65

0.0

0.5

1.0

1.5

2.0

2.5

10 20 30 40 50

|P|

C
P

U
 ti

m
e

pe
r

10
M

 le
ve

ls
 (

s)

CG−UC DZ−UC

0.0

0.5

1.0

1.5

2.0

2.5

10 20 30 40 50

|P|

C
P

U
 ti

m
e

pe
r

10
M

 le
ve

ls
 (

s)

CG−WC DZ−WC

0.0

0.5

1.0

1.5

2.0

2.5

10 20 30 40 50

|P|

C
P

U
 ti

m
e

pe
r

10
M

 le
ve

ls
 (

s)

CG−SC DZ−SC

Figure 2.12: Average CPU time per 1 million keywords vs number of levels for UC,
WC, and SC instances

66

0.0

0.5

1.0

1.5

2.0

0 1 2 3 4 5

B (%)

C
P

U
 ti

m
e

pe
r

10
M

 le
ve

ls
 (

s)

CG−UC DZ−UC

0.0

0.5

1.0

1.5

2.0

0 1 2 3 4 5

B (%)

C
P

U
 ti

m
e

pe
r

10
M

 le
ve

ls
 (

s)

CG−WC DZ−WC

0.0

0.5

1.0

1.5

2.0

0 1 2 3 4 5

B (%)

C
P

U
 ti

m
e

pe
r

10
M

 le
ve

ls
 (

s)

CG−SC DZ−SC

Figure 2.13: Average CPU time per 1 million keywords vs budget percentage for
UC, WC, and SC instances

67

For budget percentage 0.1%, the CG algorithm is about 6 times faster than

the DZ algorithm in SC instances. However, for budget percentage 5%, the CG

algorithm takes slightly more time to solve than the DZ algorithm. For UC and WC

instances, the CG algorithms is still faster than the DZ algorithm at 5% budget,

however as the budget percentage further increases, we expect the DZ algorithm to

outperform the CG algorithm due to its linear running time. The contrast between

the algorithms under different budget percentages is by design. The CG algorithm

only generates bid levels as needed while the DZ algorithm removes bid levels that

it asserts cannot be in the optimal solution. In essence, the CG algorithm generates

columns whereas the DZ algorithm removes columns. In fact, the DZ algorithm

usually has to remove the majority of the levels from every keyword before it can

find the optimal solution. The CG algorithm only generates levels as long as there

is some budget remaining, therefore, the number of bid levels generated depends on

the budget. And for a low budget, the CG algorithm would be preferable to the DZ

algorithm.

68

Chapter 3: Targeted Online Advertising with Bid Adjustments

The year 2015 marked the twentieth anniversary of online advertising. No

other major advertising medium (radio, television, and cable) achieved the growth

online advertising had in its first twenty years [PwC Report, 2016]. In 2016, mobile

ad revenues accounted for 50.5% of the total ad revenue, surpassing desktop for the

first time [PwC Report, 2017]. Following a similar trend, social media advertising

grew 54% on average each year between 2012 and 2016, and was responsible for

22.5% of the total ad revenue in 2016. With new ad delivery methods, platforms,

and formats on the rise, the advertisers are now able to collect user characteristic

data at an unprecedented level of granularity and harvest the data to gain insights

on these characteristics. For instance, an advertiser may notice a trend where fe-

males between 25-35 years of age living in large cities and browsing on mobile devices

create more return (e.g., revenue) per dollar spent on advertising. In this scenario,

targeting this specific user characteristic might increase the return on investment.

However, it was not possible to target user characteristics at this level of granularity

in most advertising platforms and formats. Advertisers have devised ad-hoc methods

(e.g., making copies of ad campaigns with different user characteristics) to be able

to target user characteristics, albeit with limited effectiveness. In addition, these

69

ad-hoc methods have significantly increased the overhead of managing advertising

portfolios. In response to the clear need for an updated bidding language, Google, in

early 2013, introduced1 “Enhanced Campaigns”. One of the biggest changes in the

bidding language was the introduction2 of “bid adjustments” essentially allowing

advertisers to target user characteristics by modifying bids based on ad query fea-

tures. In the current bidding language, these features include geographical location,

time of day, device, and audience. On the one hand, bid adjustments create oppor-

tunities for advertisers to target desired user characteristics. On the other hand, a

more sophisticated bidding language significantly increases the complexity of man-

aging an advertising portfolio. In this chapter, we introduce the Bid Adjustment

in Online Advertising (BAPOA), where the return from an advertising portfolio is

maximized subject to an advertising budget in the presence of bid adjustments.

The introduction of bid adjustments altered the landscape of online advertis-

ing. A few months after Google, Bing adopted3 bid adjustments in their bidding

language. The rules for bid adjustments slightly vary between Google and Bing, and

search and display formats. Adjustments on location, time, and device can be made

on both Google and Bing, and both search and display formats. However, audience

adjustments vary based on platform and format. For instance, Google allows adjust-

ments to be made on “age” and “gender” in both search and display formats whereas

adjustments based on “parental status” can only be made in display format4. In

addition, the interactions between bid adjustments and the calculation of an effec-

1https://adwords.googleblog.com/2013/02/introducing-enhanced-campaigns.html
2https://support.google.com/adwords/answer/2732132?hl=en
3https://help.bingads.microsoft.com/apex/index/3/en-us/51004#!
4https://support.google.com/adwords/answer/2580282?hl=en

70

tive bid depend on where bid adjustments apply in the hierarchy of campaigns and

ad groups. In both Google and Bing, a campaign is defined as a collection of ad

groups and an ad group is defined as a collection of keywords (As in Chapter 2, we

refer to “targeting items” as “keywords” for brevity, however the setting and the

solution methods discussed in this chapter directly apply to any type of targeting

item (e.g., cookies, websites, etc.) operating under the same bidding language.).

Each keyword in an ad group needs to have a separate bid, which we refer to as

the “base bid”. However, bid adjustments can only be made at the campaign or

the ad group level depending on the type of feature and platform. For example, in

Google search format, location adjustments can only be made at the campaign level,

e.g., an adjustment for New York can be made for a campaign and the adjustment

would apply to every keyword in that campaign regardless of the ad group of the

keyword. On the other hand, device adjustments can be made at the ad group

level. Operating under the new bidding language, the advertiser needs to determine

a base bid for each keyword and a bid adjustment for each feature item (a feature

item is a member of the feature set, e.g., New York is a feature item for the location

feature) for each campaign (or ad group if adjustments can be made at the ad group

level). Figure 3.1 schematically represents the hierarchy of a hypothetical Google

advertising portfolio.

Under the new bidding language, the bid adjustments interact with each other

and with the base bids in a multiplicative manner. Suppose an advertiser identifies

users from District of Columbia (DC) on mobile devices browsing between 7-8 pm

as a desired user characteristic. Then by increasing the bid for DC between 7-8

71

Portfolio

Campaign
2

Ad group
1,1

Ad group
1,2

Keyword
1,1,1

Keyword
1,1,2

Ad group
2,1

Keyword
2,1,1

Keyword
2,1,2

Keyword
1,2,1

Bid Adjustments
(location, time)

Base Bids

Bid Adjustments
(device, age)

Campaign
1

Figure 3.1: The hierarchy of an advertising portfolio with two ad campaigns, three
ad groups and five keywords. There are four features for which the advertiser sets
bid adjustments. Location and time adjustments can be made at the campaign
level. Device and age adjustments can be made at the ad group level.

pm on mobile devices, the advertiser can make their ad appear at a higher position

on the page thus better target this user characteristic. However, the rules prohibit

adjustments to be made for the specific combination of user characteristics, i.e., fea-

ture combinations (e.g., DC, 7-8pm, mobile). Rather, the advertiser submits a base

bid for each keyword and bid adjustments for each feature item for each campaign

(assuming adjustments can be made at the campaign level for these features). Then

the individual adjustments are compounded for each feature combination leading to

an effective bid. For example, suppose the advertiser determines a base bid of $1

for a targeting item (e.g., “running shoes”), and sets the bid adjustments for the

campaign (containing “running shoes”) as 2 for DC, 0.8 for 7-8 pm, and 1.5 for mo-

bile devices. Then the effective bid for an ad query for “running shoes” originating

from DC between 7-8 pm on a mobile device is $1 × 2 × 0.8 × 1.5 = $2.4. Using

bid adjustments, the advertisers can potentially increase their bids for desired user

72

characteristics. They can also decrease their bids or not bid at all for certain feature

items. For instance, setting the bid adjustment to 0 for DC ensures the effective bid

is 0 for every feature combination containing DC for that campaign. Without bid

adjustments, the advertisers do not have this flexibility. They would have to submit

a flat bid, i.e., only the base bid, regardless of specific user characteristic targeted.

To illustrate the difference between using bid adjustments (and its potential

benefits) and using a flat bid, consider the following example. Suppose an advertiser

has a simple portfolio with one campaign, one ad group, and one keyword. The

advertiser is interested in submitting adjustments for two features; location and

device. The feature items for location are “DC” and “New York (NY)”, the feature

items for device are “mobile (M)” and “desktop (D)”. If the advertiser is using bid

adjustments, then the advertiser is expected to provide a base bid for the keyword,

and adjustments for DC, NY, M, and D for the campaign. On the other hand,

if the advertiser is not using bid adjustments, then only the base bid is required.

In Table 3.1, we provide bid amounts and corresponding number of clicks, cost,

and revenue data across all feature combinations. For simplicity, we consider three

discrete bid levels. For instance, if the advertiser bids $0.5, then the estimated

number of clicks is 120, the estimated cost is $55, and the estimated revenue is

$753.6. In Table 3.2, the distribution of clicks and cost, and the revenue-per-click

(RPC) for each feature combination is provided. For instance, mobile users in NY

account for 32% of the clicks and cost, and each click from these users leads to $12

in revenue. Suppose the total budget for the advertiser is $165. If the advertiser

is not using bid adjustments, i.e., using a flat bid, then the optimal solution is to

73

Bid ($) # of clicks Cost ($) Revenue ($)

0.5 120 55 753.60
1 175 165 1099.00
2 210 275 1318.80

Table 3.1: Bids and corresponding number of clicks, cost, and revenue data

Feature Combination Distribution RPC

DC & M 16% 5
NY & M 32% 12
DC & D 32% 2
NY & D 20% 5

Table 3.2: Distribution of clicks and cost, and revenue-per-click based on feature
combinations.

bid $1 which results in $1099.00 in expected revenue with an expected cost of $165.

However, if the advertiser is using bid adjustments, then the optimal solution is to

have a base bid of $1, an adjustment of 2 for NY, and an adjustment of 0.5 for D.

No adjustments are made for DC and M, i.e., the adjustments are set to 1. The

resulting expected revenue becomes $1198.20 with an expected cost of $165. In this

example, using bid adjustments provides a 9% increase in the expected revenue for

the same expected cost.

Our Contributions: The bid adjustments, when determined optimally, al-

low an unprecedented opportunity to effectively target desired user characteristics.

There is a clear practical need for a formal treatment of the problem and an efficient

and effective approach to determine bid adjustments. To that end, we introduce the

Bid Adjustment Problem in Online Advertising as an operational revenue manage-

ment problem faced by the advertiser. Given a portfolio (of campaigns, ad groups,

and keywords), the advertiser needs to determine base bids for keywords and bid

adjustments for ad groups and campaigns (depending on where the adjustments are

74

applied for a feature) such that the total expected revenue is maximized and the

total expected cost does not exceed the advertising budget. Based on predictive

models (provided by the advertiser) that estimate the expected cost and revenue

given a bid amount and the specific user characteristics, the BAPOA automatically

assesses the cost-revenue trade-off and determines bid adjustments such that desired

user characteristics are targeted effectively. We propose a (nonlinear) mathematical

formulation for the BAPOA. We then develop an algorithm where the mathemati-

cal formulation is decomposed into two tractable subproblems where base bids and

adjustments are iteratively determined. The algorithm provides a feasible set of

base bids and bid adjustments. We perform computational experiments on data

generated based on a sample collected from Google Keyword Planner. In small in-

stances (where it is possible to obtain upper bounds via CPLEX), we demonstrate

the iterative algorithm finds near optimal solutions. We show that the quality of the

iterative algorithm is robust under varying portfolio size, number of feature items,

revenue and cost structures, and budget. Our findings indicate in an environment

where there is significant variability in the cost-revenue trade-off as we vary user

characteristics, effectively using bid adjustments creates significant increase in ex-

pected revenue. Finally, we explain how the iterative algorithm can be used to

construct campaigns and ad groups and assign keywords to these campaigns and ad

groups (as opposed to campaigns and ad groups being already setup). The advertiser

only needs to determine the set of keywords of interest, the portfolio of campaigns

and ad groups can be constructed, and the base bids and bid adjustments can be

automatically determined with this procedure.

75

The rest of the chapter is organized as follows. In Section 3.1, we highlight

and discuss related work in the literature. In Section 3.2, we define the BAPOA and

develop a mathematical programming formulation for the BAPOA. In Section 3.3,

we show the mathematical programming formulation proposed in Section 3.2 can

be reduced to two types of subproblems and propose an iterative algorithm based

on the subproblems. In Section 3.4, we show how the BAPOA can be modeled as

mixed integer program with a discretization procedure. In Section 3.5, we discuss

the computational results on simulated advertising portfolios.

3.1 Related Work

The introduction of bid adjustments is a relatively recent development in on-

line advertising so virtually no research is conducted on the subject. Since Chapter

2 provides a comprehensive review of the traditional problems (that do not include

bid adjustments) in online advertising, we focus on studies highlighting the impor-

tance of user characteristic targeting and discuss the only article (to the best of our

knowledge) studying bid adjustments from a budget optimization standpoint.

The effectiveness of targeted advertising has been demonstrated in various

studies in the marketing community. Iyer et al. [2005] show that targeted advertis-

ing eliminates waste by focusing advertising efforts away from consumers who have

a preference for competing products. The authors argue while conventional wis-

dom suggests targeting should lead to lower advertising costs, the opposite is true

when advertising is expensive since increased effectiveness due to targeting justifies

76

additional advertising spending. The authors show the ability to target is more im-

portant for profitability than the ability to price discriminate. Beales [2010] studies

the effect of behavioral targeting in the context of online advertising. The author

argues behavioral targeting is more effective and results in more than twice the

conversion rate compared to run-of-network (where ads are placed in the advertis-

ing platform without targeting) advertising. Yan et al. [2009] perform an empirical

study on a click-through log of an online advertising platform. The authors show the

click-through rates can be improved significantly by targeted advertising in spon-

sored search. Farahat and Bailey [2012] study the marginal effectiveness of targeted

advertising in online advertising. The authors show that the average click is over

four times cheaper with targeted advertising and inducing brand-related searches

from an ad is nine times cheaper with targeted advertising.

All studies mentioned in Chapter 2 suffer from one common shortcoming, in

that none of the models make use of bid adjustments hence unable to capture the

user characteristic cost-revenue trade-off. To the best of our knowledge, Bateni

et al. [2014] performed the only study approaching bid adjustments from a budget

optimization standpoint. The authors consider a problem with a single keyword with

a unit base bid and two features. Each feature combination has a take-it-or-leave-

it price for a single-slot auction and the adjustments are multiplied to obtain the

effective bid. If the effective bid is more than the price, the price is paid and a reward

is collected. The objective is to maximize the total reward such that the total price

does not exceed the budget. The authors propose greedy algorithms and provide

approximation results for various price and reward structures. Unless the price and

77

reward are neatly structured (e.g., prices are multiplicative and reward-to-price ratio

is monotone), the problem has an approximation ratio of O(
√
n) where n denotes

the number of feature items. The authors conclude that even with a single keyword

with a unit base bid, two features, and single-slot auctions, the problem is hard to

approximate. Though it demonstrates the difficulty of the problem, this work is of

little practical importance since the assumptions (e.g., single keyword, single slot

auction, price-reward structure, unit base bid, etc.) are not valid in problems in

practice. In addition, the algorithms proposed have large approximation ratios and

does not extend to problems where there is more than one keyword and the number

of features is more than two.

3.2 The Bid Adjustment Problem in Online Advertising

In the BAPOA, ad queries for keywords arrive many times over a time horizon

(e.g., one hour, one day, etc.) and each query has a feature combination (e.g., New

York, 7-8pm, mobile device, female, 28 years old, etc.). The advertiser has available

the expected cost and revenue for every keyword given a bid amount and a feature

combination. Given the operational nature of the problem, the time horizon is

typically one day in practice. The forecasts provided by advertising platforms (e.g.,

Google Keyword Planner) tend to be more accurate for the near future spanning

shorter time horizons and for advertisers with longer advertising histories. For

example, an advertiser with a few years of advertising history can get a relatively

reliable forecast looking one day into the future as opposed to an advertiser with

78

one week of history looking three months into the future. In addition to the tools

and forecasts provided by the advertising platforms, the advertisers possess ample

historical performance and user browsing data to create accurate predictive models.

In the BAPOA, the objective is to determine a set of base bids for every

keyword and a set of bid adjustments for every feature item and every campaign

and ad group that would maximize the total expected revenue such that the total

expected cost does not exceed the advertising budget. Let H be the set of campaigns

and let Gh be the set of ad groups in campaign h ∈ H such that G =
⋃
h∈H Gh

denotes the set of all ad groups. For ad group g ∈ G, let Kg be the set of keywords

such that K =
⋃
g∈GKg denotes the set of all keywords. Define F as the set of

features such that F = {F1, F2, . . .} and define FH ⊆ F as the set of features

for which the adjustments can be made at the campaign level. Similarly, define

FG = F \FH as the set of features for which the adjustments can be made at the ad

group level. Let F be the feature combination set of F where F = {F1 × F2 × . . .}.

As an example, suppose there are two features; location and device. There are two

feature items for location; District of Columbia (DC) and New York (NY). There are

two feature items for device; mobile (M) and desktop (D). Then the set of features

can be defined as F = {F1 = {DC, NY}, F2 = {M, D}} and the set of feature

combinations becomes F = {{DC, M}, {DC, D}, {NY, M}, {NY, D}}. If location

adjustments can be made at the campaign level and device adjustments can be made

at the ad group level, then FH = {F1} and FG = {F2}.

Let β be the set of base bids such that β =
⋃
i∈K βi where βi ∈ [0,∞). In

both Google and Bing, a bid adjustment for a feature item can either be zero,

79

in that case the advertiser chooses not to bid on any combination containing the

feature item, or the bid adjustment has to be in a positive interval. To model the

adjustments, we use continuous and binary variables. Let α =
⋃
Ft∈F αt be the set of

continuous adjustment variables and y =
⋃
Ft∈F yt be the set of binary adjustment

variables such that if Ft ∈ FH , then αt =
⋃
h∈H,`∈Ft α

`
h and yt =

⋃
h∈H,`∈Ft y

`
h,

and if Ft ∈ FG, then αt =
⋃
g∈G,`∈Ft α

`
g and yt =

⋃
g∈G,`∈Ft y

`
g. For each feature

item ` ∈ FH , the continuous adjustment variable α`h ∈ [L`h, U
`
h] is applied to every

keyword in campaign h if binary variable y`h is 0. If y`h = 1 then the bid adjustment

is zero and the advertiser does not bid on any combination f ∈ F with ` ∈ f . The

domains for α`g and y`g for ` ∈ FG are defined analogously. Simply put, the bid

adjustment for campaign h and feature item ` ∈ FH can be stated as α`h(1 − y`h)

whereas the bid adjustment for ad group g and feature item ` ∈ FG is stated

as α`g(1 − y`g). Given a base bid and a set of bid adjustments, the effective bid

for keyword i ∈ Kg of ad group g of campaign h and combination f ∈ F can

be calculated as bfi = βi
∏

`∈fH α
`
h(1 − y`h)

∏
`∈fG α

`
g(1 − y`g) where fH ⊆ f and

fG = f \ fH denote the sets of feature items in f for which the adjustments can

be made at the campaign and the ad group level, respectively. Let cfi (b) and rfi (b)

denote the expected cost and revenue functions (obtained via predictive models)

for keyword i and combination f , i.e., if the effective bid is bfi , the expected cost

is predicted to be cfi (b
f
i) and the expected revenue is predicted to be rfi (bfi). The

BAPOA can be modeled mathematically as follows.

80

BAPOA(β,α,y):

max
β,α,y

∑
i∈K

∑
f∈F

rfi (bfi)

subject to
∑
i∈K

∑
f∈F

cfi (b
f
i) ≤ B (3.1)

bfi = βi
∏
`∈fH

α`h(1− y`h)
∏
`∈fG

α`g(1− y`g) h ∈ H, g ∈ Gh,

i ∈ Kg, f ∈ F (3.2)

βi ≥ 0 i ∈ K (3.3)

L`h ≤ α`h ≤ U `
h h ∈ H, ` ∈ FH (3.4)

L`g ≤ α`g ≤ U `
g g ∈ G, ` ∈ FG (3.5)

y`h ∈ {0, 1} h ∈ H, ` ∈ FH (3.6)

y`g ∈ {0, 1} g ∈ G, ` ∈ FG (3.7)

In the BAPOA(β,α,y), we need to determine the base bids and the bid ad-

justments such that the total expected revenue is maximized subject to a budget.

Constraint (3.1) ensures that the total expected cost does not exceed the budget.

Constraint set (3.2) calculates the effective bid for every combination of every key-

word by using the base bid and bid adjustments. Even though this formulation

reflects the current state of the bidding language where adjustments can only be

made at one of two levels (campaign or ad group level), observe that it can be ex-

tended to cases where adjustments can be made in arbitrary number of levels. The

81

BAPOA(β,α,y) is a non-smooth and non-convex problem, which makes it very

hard and impractical to solve. Therefore, we develop a mathematical programming

based heuristic algorithm to obtain a high quality solution to the BAPOA(β,α,y).

3.3 Iterative Adjustment Algorithm

We develop the Iterative Adjustment Algorithm (IAA) to obtain high qual-

ity feasible solutions for the BAPOA in reasonable computational time. In each

iteration of the IAA, we solve a series of subproblems to obtain base bids and bid

adjustments. If the subproblem is solved to obtain base bids, we assume the adjust-

ments for all features are known and fixed. If the subproblem is solved to obtain

bid adjustments for one feature (e.g., device), then we assume the base bids and

bid adjustments for other features (e.g., location, time) are known and fixed. Either

base bids or bid adjustments for one feature are determined every time a subprob-

lem is solved and they become inputs for the next subproblem. In Sections 3.3.1

and 3.3.2, we describe how the subproblems are set up. We then show that when

the feasible region is discretized, both types of subproblems can be modeled as a

Multiple Choice Knapsack Problem (MCKP). In Section 3.3.3, we show how the

solution to the linear programming relaxation of the MCKP can be used to obtain

feasible base bids and bid adjustments. In Section 3.3.4, we put the pieces together

and summarize the Iterative Adjustment Algorithm.

82

3.3.1 Base Bid Subproblem

Suppose α and y are known and fixed, then the BAPOA(β,α,y) can be

reduced to a subproblem where β is determined. Let BAPOA(β) denote the base

bid subproblem formulated as follows.

BAPOA(β):

max
β

∑
i∈K

∑
f∈F

rfi (bfi)

(3.1)− (3.7)

Constraint sets (3.4)-(3.7) can be removed from the BAPOA(β) since α and y are

fixed parameters. Furthermore, we only need βi to calculate the bid bfi , effectively

making cfi and rfi functions of βi. Therefore, we define ci(βi) =
∑

f∈F c
f
i (b

f
i) and

ri(βi) =
∑

f∈F r
f
i (bfi) as the total expected cost and revenue for keyword i corre-

sponding to base bid βi, and remove constraint set (3.2). We can now express the

BAPOA(β) more compactly as follows.

BAPOA(β):

max
β

∑
i∈K

ri(βi)

subject to
∑
i∈K

ci(βi) ≤ B

83

βi ≥ 0 i ∈ K

The BAPOA(β) is a simpler problem than BAPOA(β,α,y), however, it is still

a challenging problem to solve optimally. We now describe a discrete approximation

to the BAPOA(β) and show that it can be modeled as a Multiple Choice Knapsack

Problem.

Proposition 3.3.1 Discretize the domain of the base bid βi. Let P = {0, 1, . . .}

denote the set of base bid levels such that βij ≥ 0 is defined as the base bid value

corresponding to base bid level j ∈ P. Then the discretized BAPOA(β) can be

modeled as a Multiple Choice Knapsack Problem, which we denote as D-BAPOA(β).

Proof Given that the base bid βi has a discrete domain over the set of base bid

levels P , the D-BAPOA(β) is modeled as follows.

D-BAPOA(β):

max
β

∑
i∈K

ri(βi)

subject to
∑
i∈K

ci(βi) ≤ B

βi ∈ {βij | j ∈ P} i ∈ K

Define cij = ci(βij) and rij = ri(βij) as the total expected cost and revenue from

keyword i corresponding to base bid value βij. Let xij be a binary variable taking the

value 1 if βij is selected as the base bid level, 0 otherwise. Then the D-BAPOA(β)

84

can be restated as follows.

D-BAPOA(β):

max
x

∑
i∈K

∑
j∈P

rijxij

subject to
∑
i∈K

∑
j∈P

cijxij ≤ B

∑
j∈P

xij = 1 i ∈ K (3.8)

xij ∈ {0, 1} i ∈ K, j ∈ P

To ensure exactly one βij is selected as the base bid level, we replace the domain

constraint of βi with the constraint set (3.8) in the D-BAPOA(β). A discrete base

bid domain allows us to evaluate ci(βi) and ri(βi) over a discrete set of points and

parameterize them for the D-BAPOA(β). Thus, the D-BAPOA(β) is an MCKP

where each class corresponds to a keyword and each level corresponds to a base bid

value. Note that when we discretize the domain of the base bid, we designate level

0 ∈ P as the zero base bid level, i.e., βi0 = 0 for every keyword.

3.3.2 Feature Adjustment Subproblem

For Ft ∈ FG, suppose β, α\αt, and y\yt are known and fixed. Similar to the

base bid subproblem, the BAPOA(β,α,y) can be reduced to a subproblem where αt

and yt are determined. Note that we only derive the feature adjustment subproblem

and discuss the solution method for features where the adjustments are determined

85

at the ad group level, i.e., Ft ∈ FG. However, the feature adjustment subproblem

can be analogously derived and the solution method (discussed in Section 3.3.3)

directly applies for features where the adjustments are determined at the campaign

level, i.e., Ft ∈ FH . Let BAPOA(αt,yt) denote the feature adjustment subproblem

formulated as follows.

BAPOA(αt,yt):

max
αt,yt

∑
i∈K

∑
f∈F

rfi (bfi)

(3.1)− (3.7)

Constraint set (3.3) can be removed from the BAPOA(αt,yt) since β is a set of fixed

parameters. In addition, constraints pertaining to α \ αt and y \ yt in constraint

sets (3.4)-(3.7) can be removed from the BAPOA(αt,yt) since α\αt and y \yt are

known. Finally, cfi and rfi become functions of α`g and y`g where i ∈ Kg and ` ∈ f

since we only need α`g and y`g to calculate bfi . Therefore, constraint set (3.2) can also

be removed from the BAPOA(αt,yt). Define c`g(α
`
g, y

`
g) =

∑
i∈Kg

∑
f∈F|`∈f c

f
i (b

f
i)

and r`g(α
`
g, y

`
g) =

∑
i∈Kg

∑
f∈F|`∈f r

f
i (bfi) as the total expected cost and revenue for

ad group g and feature item ` corresponding to adjustment α`g(1−y`g). The objective

function of the BAPOA(αt,yt) can be restated as follows.

max
αt,yt

∑
i∈K

∑
f∈F

rfi (bfi) = max
αt,yt

∑
g∈G

∑
i∈Kg

∑
f∈F

rfi (bfi)

= max
αt,yt

∑
g∈G

∑
i∈Kg

∑
`∈Ft

∑
f∈F|`∈f

rfi (bfi)

86

= max
αt,yt

∑
g∈G

∑
`∈Ft

∑
i∈Kg

∑
f∈F|`∈f

rfi (bfi)

= max
αt,yt

∑
g∈G

∑
`∈Ft

r`g(α
`
g, y

`
g)

Constraint (3.1) in the BAPOA(αt,yt) can be restated in a similar fashion. Then

we can express the BAPOA(αt,yt) more compactly as follows.

BAPOA(αt,yt):

max
αt,yt

∑
g∈G

∑
`∈Ft

r`g(α
`
g, y

`
g)

subject to
∑
g∈G

∑
`∈Ft

c`g(α
`
g, y

`
g) ≤ B

L`g ≤ α`g ≤ U `
g g ∈ G, ` ∈ Ft

y`g ∈ {0, 1} g ∈ G, ` ∈ Ft

Similar to the base bid subproblem, we describe a discrete approximation

(where αt has discrete domain) to the BAPOA(αt,yt) and show that it can modeled

as a Multiple Choice Knapsack Problem.

Proposition 3.3.2 Discretize the domain of the adjustment α`g. Let P = {1, 2, . . .}

denote the set of adjustment levels such that L`g ≤ α`gj ≤ U `
g is defined as the

continuous adjustment value corresponding to adjustment level j ∈ P. Then the

discretized BAPOA(αt,yt) can be modeled as a Multiple Choice Knapsack Problem,

which we denote as D-BAPOA(αt,yt).

Proof Given that the continuous adjustment α`g has a discrete domain over the set

87

of adjustment levels P , the D-BAPOA(αt,yt) is modeled as follows.

D-BAPOA(αt,yt):

max
αt,yt

∑
g∈G

∑
`∈Ft

r`g(α
`
g, y

`
g)

subject to
∑
g∈G

∑
`∈Ft

c`g(α
`
g, y

`
g) ≤ B

α`g ∈ {α`gj | j ∈ P} g ∈ G, ` ∈ Ft

y`g ∈ {0, 1} g ∈ G, ` ∈ Ft

Define c`gj = c`g(α
`
gj, 0) and r`gj = r`g(α

`
gj, 0) as the total expected cost and revenue

from ad group g and feature item ` corresponding to adjustment α`gj where y`g is 0.

Let x`gj be a binary variable taking the value 1 if adjustment value α`gj is selected, 0

otherwise. Then the D-BAPOA(αt,yt) can be restated as follows.

D-BAPOA(αt,yt):

max
x,yt

∑
g∈G

∑
`∈Ft

∑
j∈P

r`gjx
`
gj

subject to
∑
g∈G

∑
`∈Ft

∑
j∈P

c`gjx
`
gj ≤ B

∑
j∈P

x`gj + y`g = 1 g ∈ G, ` ∈ Ft (3.9)

y`g ∈ {0, 1} g ∈ G, ` ∈ Ft

x`gj ∈ {0, 1} g ∈ G, ` ∈ Ft, j ∈ P

We replace the domain constraint of α`g with the constraint set (3.9) in the

88

D-BAPOA(αt,yt) to ensure either an adjustment value α`gj corresponding to ad-

justment level j is selected or y`g is 1. If y`g is 1, the adjustment is 0 for ad group g

and feature item `, then the expected cost and revenue for all feature combinations

f in ad group g such that ` ∈ f are also 0. We now show the D-BAPOA(αt,yt)

is equivalent to the Multiple Choice Knapsack Problem. First we replace y`g by a

binary variable x`g0 (i.e., y`g = x`g0). We expand P to include the zero adjustment

level {0} corresponding to y`g = 1 where c`g0 = 0 and r`gj = 0. Let G = G × Ft

be the set of ad group-feature item tuples. An element g ∈ G corresponds to a

specific ad group g ∈ G and feature item ` ∈ Ft tuple. For instance, suppose we

set up the BAPOA(αt,yt) for the location feature and the set of feature items is

Ft = {DC, NY} and the set of ad groups is G = {apparel, footwear}, then the set

of ad group-feature item tuples is G = {{apparel, DC}, {apparel, NY}, {footwear,

DC}, {footwear, NY}}. Finally, we define cgj = c`gj, rgj = r`gj, and xgj = x`gj. Then

the D-BAPOA(αt,yt) can be expressed as follows.

D-BAPOA(αt,yt):

max
x

∑
g∈G

∑
j∈P

rgjxgj

subject to
∑
g∈G

∑
j∈P

cgjxgj ≤ B

∑
j∈P

xgj = 1 g ∈ G

xgj ∈ {0, 1} g ∈ G, j ∈ P

The D-BAPOA(αt,yt) is a Multiple Choice Knapsack Problem where each class

89

corresponds to an ad group-feature item tuple, the level 0 corresponds to the binary

adjustment, and the remaining multiple choice levels correspond to adjustments.

Showing that both the base bid and the feature adjustment subproblems can

be modeled as an MCKP when the domain of the base bids and the continuous

adjustments are discretized results in a practical computational procedure to solve

the BAPOA.

3.3.3 The Multiple Choice Knapsack Problem

We discuss the Multiple Choice Knapsack Problem at length in Chapter 2. In

this section, we explain how a solution to the linear programming relaxation to the

MCKP (MCKP-LP) can be used to obtain a feasible solution to the BAPOA. We use

the column generation algorithm developed in Chapter 2 to solve the MCKP-LPs

corresponding to the base bid and feature adjustment subproblems. Generically, the

MCKP can be represented as follows where N is the set of classes and Pk is the set

of levels for class k.

Maximize
∑
k∈N

∑
j∈Pk

rkjxkj

Subject to
∑
k∈N

∑
j∈Pk

ckjxkj ≤ B (3.10)

∑
j∈Pk

xkj = 1 k ∈ N (3.11)

xkj ∈ {0, 1} k ∈ N, j ∈ Pk

90

N = K in the base bid subproblem and N = G in the feature adjustment subprob-

lem. Let MCKP-LP denote the linear programming relaxation of the MCKP.

Proposition 2.2.5 in Chapter 2 states that regardless of the number of classes

and levels in the problem, the number of fractional variables in the optimal solution

to the MCKP-LP is at most two. Since the MCKP is a discretized approximation

of the (base bid or feature adjustment) subproblem, this important result allows us

to easily obtain feasible solutions for the subproblem from the MCKP-LP solution.

The variables with integer values (i.e., xkj = 1) in the optimal MCKP-LP solution

directly correspond to discrete input values of base bids (in the base bid subprob-

lem) and bid adjustments (in the feature adjustment subproblem). We therefore

set the values of base bids and bid adjustments for these variables directly to their

corresponding discretized input values. However, taking the convex combination of

base bid (or bid adjustments) values corresponding to the two fractional variables

may result in an infeasible solution for the subproblem since the MCKP is only a

discretized approximation of the subproblem. Therefore, any base bid or bid adjust-

ment value not corresponding to a discretized input value in the MCKP may violate

the budget (and for the feature adjustment subproblem, the domain) constraint of

the BAPOA. To overcome this issue, we perform binary search between the base

bid (or bid adjustment) values corresponding to the two fractional variables until

we find a feasible base bid (or bid adjustment) value that exhausts the budget.

We now describe, mathematically, how the MCKP-LP solution can be used

to obtain a feasible solution for the (base bid or feature adjustment) subproblem.

After solving the MCKP-LP, let x∗ denote the optimal solution. In the base bid

91

subproblem, base bid βi′ can be set as βi′ = βi′j∗ for classes where xk′j∗ = 1 and

keyword i′ corresponds to class k′. Let xkj′ and xkj′′ be the two fractional variables

from class k corresponding to keyword i such that βij′ < βij′′ . Then define c̄i as the

budget allocated in the MCKP for keyword i such that c̄i = xkj′ckj′ + xkj′′ckj′′ . We

first set the base bid for keyword i as βi = xkj′βij′ + xkj′′βij′′ and compare the total

expected cost of keyword i (i.e., ci(βi)) with the budget allocated in the MCKP. If

ci(βi′) > c̄i, then βi is not a feasible base bid for keyword i since the expected cost

exceeds the budget. Under the assumption5 that cfi (b) and rfi (b) are nondecreasing

functions of b, there exists a feasible base bid value in the range [βij′ , xkj′βij′ +

xkj′′βij′′] that exhausts the budget. If ci(βi) ≤ c̄i then βi is a feasible base bid but

we might still find a better value for the base bid in the range [xkj′βij′+xkj′′βij′′ , βij′′].

In either case, we perform binary search to efficiently search the range such that βi

is a feasible base bid and ci(βi) is as close to c̄i as possible.

In the feature adjustment subproblem, suppose ad group-feature item tuple

g′ = (g′, `′) corresponds to class k′ such that xk′j∗ = 1, then the continuous and

binary adjustments can be set as follows.

α`
′

g′ = α`
′

g′j∗ if j∗ > 0

5There are various reports listed at https://moz.com/blog/google-organic-click-through-rates-
in-2014 demonstrating the click-through-rate is a nondecreasing function of the bid, coupled with
the fact that cost-per-click (or cost-per-mille in impression based pricing models) is a nondecreasing

function of the bid due to the auction mechanism, implies cfi (b) and rfi (b) are nondecreasing
functions of b

92

y`
′

g′ =


1 if j∗ = 0

0 otherwise

Let xkj′ and xkj′′ be the two fractional variables from class k corresponding to ad

group-feature item tuple g = (g, `) such that α`gj′ < α`gj′′ , then we initially set

the continuous adjustment α`g = xkj′α
`
gj′ + xkj′′α

`
gj′′ if j′ 6= 0, and α`g = xkj′′α

`
gj′′

otherwise. We initially set the binary adjustment y`g = 0. Then we perform binary

search (analogous to the base bid subproblem) to find a feasible adjustment value

for α`gj′′ that would use as much of the budget as possible. However, if α`g found via

binary search does not satisfy L`g ≤ α`g, then we set y`g = 1.

3.3.4 Summary of the Steps in the Iterative Adjustment Algorithm

We outline the Iterative Adjustment Algorithm in Algorithm 5. Let R(β) and

R(αt,yt) denote the revenue obtained from the base bid subproblem D-BAPOA(β)

and feature adjustment subproblem D-BAPOA(αt,yt), respectively. Initially, we

set α = 1 and y = 0. Solving the base bid subproblem when α = 1 and y = 0

provides a solution for the case where bid adjustments are not used, which we refer

to as the “Flat Bid” solution. In line 5, we solve the base bid subproblem and update

the base bids according to the MCKP-LP solution. At each iteration of the for loop

between lines 9 - 14, we solve the feature adjustment subproblem and update the

adjustments according to the MCKP-LP solution. The algorithm terminates when

it can no longer improve the best known solution with expected revenue R∗.

In the first iteration of the while loop in Algorithm 5, the adjustment values

93

Algorithm 5 Iterative Adjustment Algorithm

1: set R∗ := 0, R′ := −∞
2: set α = 1, y = 0
3: while R∗ > R′ do
4: set R′ := R∗

5: solve D-BAPOA(β), set β
6: if R(β) > R∗ then
7: set R∗ := R(β)
8: end if
9: for t = 1, . . . , |F | do

10: solve D-BAPOA(αt,yt), set αt, yt

11: if R(αt,yt) > R∗ then
12: set R∗ := R(αt,yt)
13: end if
14: end for
15: end while
16: return R∗

α`gj corresponding to adjustment levels j ∈ P in the discretization are selected such

that they span their respective ranges, i.e., α`gj ∈ [L`g, U
`
g]. In subsequent iterations

of the while loop, the adjustment values α`gj in the discretization are selected from

some neighborhood of α`g found in the previous iteration, i.e., α`gj ∈ [α`g− γ, α`g + γ].

In other words, in the initial iteration the discretization covers the entire domain,

but in later iterations the discretization is refined in the neighborhood of the current

solution.

Unlike the continuous adjustments, the base bid does not have an explicit up-

per bound, i.e., the bidding language does not prohibit the advertiser from using an

arbitrarily large base bid. However, since the ad positions on the page are awarded

according to a generalized second price auction (in bidding languages using bid ad-

justments), there exists a large enough bid where bidding more than that amount

has no effect on the cost-per-click, the number of clicks and the corresponding rev-

94

enue. In other words, there exists a threshold bid amount bf∗i large enough such

that for any bid bfi > bf∗i , we have cfi (b
f
i) = cfi (b

f∗
i) and rfi (bfi) = rfi (bf∗i). For the

IAA, we set the threshold bid amount b∗i for keyword i as b∗i = maxf∈F b
f∗
i In the

first iteration of the while loop we select base bid levels j ∈ P such that the dis-

cretization covers the entire domain βij ∈ [0, b∗i]. In the subsequent iterations, the

discretization of the base bid values is in the neighborhood of the βi found in the

previous iteration, i.e., βij ∈ [βi−γ, βi+γ]. For both the continuous bid adjustments

and the base bids, γ is made smaller after each iteration to increase the precision of

the search (and discretization).

3.4 Formulating the BAPOA as an MIP

We model the BAPOA as a mixed integer program and compare (in Section

3.5.2) the upper bound obtained from the mixed integer program with the feasible

solution obtained from the IAA for very small instances.

Proposition 3.4.1 Suppose the effective bid amounts bfi are discretized on the do-

main and any effective bid value between two discrete values is rounded down to the

lower one. Then the BAPOA can be modeled as a mixed integer program.

Proof To model the BAPOA as a mixed integer program, we use the discretized

effective bid amounts (e.g., corresponding to one cent increments since the effective

bid is rounded down to the nearest cent in Bing6). Let P f
i = {0, 1, . . .} denote the

set of bid levels for each increment in the discretization of the range [0, bf∗i] (where

6https://help.bingads.microsoft.com/apex/index/3/en-au/51004

95

bf∗i denotes the threshold bid). For instance, if bf∗i = $3 and the discretization is at

a “cent” level, then the set of bid levels is P f
i = {0, 1, . . . , 300} corresponding to bid

amounts {$0, $0.01, $0.02, . . . , $3}. To generalize, we have a set of bid levels P f
i for

every keyword i and combination f corresponding to bid amounts {bfi0, b
f
i1, . . .}. For

instance, if the effective bid bfi satisfies bfij ≤ bfi < bfi,j+1, then the bid is rounded down

to bfij and the expected cost and revenue corresponding to bid level j are realized.

A discrete bid space allows us to evaluate cfi (b) and rfi (b) for every bid level in P f
i

and parameterize them for the mixed integer program. Define cfij = cfi (b
f
ij) and

rfij = rfi (bfij) for each j ∈ P f
i as the expected cost and revenue corresponding to bid

level j. In addition, we take the logarithm (by using log adjustment(α′`h and α′`g)

and log base bid (β′i) variables) of the effective bid and express it as a summation

rather than a product. Let b′fij = ln bfij, L
′`
h = lnL`h, U

′`
h = lnU `

h. L
′`
g = lnL`g, and

U ′`g = lnU `
g . The BAPOA can be modeled with the mixed integer programming

formulation presented as follows.

BAPOA(MIP):

max
ξ,β′,α′,y

∑
i∈K

∑
f∈F

∑
j∈P fi

rfijξ
f
ij

subject to
∑
i∈K

∑
f∈F

∑
j∈P fi

cfijξ
f
ij ≤ B (3.12)

∑
j∈P fi

ξfij = 1 i ∈ K, f ∈ F (3.13)

96

∑
j∈P fi

b′fijξ
f
ij ≤ β′i +

∑
`∈fH

α′`h +
∑
`∈fG

α′`g − s
f
i h ∈ H, g ∈ Gh,

i ∈ Kg, f ∈ F (3.14)

β′i +
∑
`∈fH

α′`h +
∑
`∈fG

α′`g − s
f
i ≤ (3.15)

∑
j∈P fi \{|P

f
i |−1}

b′fi,j+1ξ
f
ij +M f

i ξ
f

i,|P fi |−1
h ∈ H, g ∈ Gh,

i ∈ Kg, f ∈ F (3.16)

L′`h ≤ α′`h ≤ U ′`h h ∈ H, ` ∈ F (3.17)

L′`g ≤ α′`g ≤ U ′`g g ∈ G, ` ∈ F (3.18)

M f
i (
∑
`∈fH

y`h +
∑
`∈fG

y`g) ≥ sfi i ∈ K, f ∈ F (3.19)

ξfi0 ≥ y`h h ∈ H, i ∈ K,

f ∈ F , ` ∈ f (3.20)

ξfi0 ≥ y`g g ∈ G, i ∈ Kg,

f ∈ F , ` ∈ f (3.21)

sfi ≥ 0 i ∈ K, f ∈ F

y`h ∈ {0, 1} h ∈ H, ` ∈ F

y`g ∈ {0, 1} g ∈ G, ` ∈ F

ξfij ∈ {0, 1} i ∈ K, f ∈ F ,

j ∈ P f
i

ξfij is a binary variable taking the value 1 if bid level j is selected for combi-

97

nation f and for keyword i where ξ =
⋃
i∈K,f∈F ,j∈P fi

ξfij. If binary variable y`h (y`g)

is 1 then the bid adjustment for feature item ` is 0 for campaign h (ad group g).

The log adjustments α′`h and α′`g , and log base bid β′i are continuous variables and

unrestricted in sign. The objective function maximizes the total expected revenue

across all keywords, combinations, and bid levels. Constraint (3.12) states the total

expected cost cannot exceed the budget. Constraint set (3.13) ensures that only

one bid level is chosen for each combination of each keyword. In constraint sets

(3.14) and (3.16), the logarithm of the effective bid is calculated based on the log

adjustments and the log base bid, then the corresponding bid level is identified. If

the logarithm of the effective bid is greater than ln bf∗i , the bid level corresponding

to the threshold bid bf∗i is selected. We set M f
i to a large enough constant such

that no effective bid can exceed M f
i . We set M f

i = ln(bf∗i
∏

`∈fH U
`
h

∏
`∈fG U

`
g) such

that keyword i is in ad group g of campaign h. The scaling variable sfi is used to

ensure an appropriate amount is subtracted from the effective bid in the event that

the bid adjustment for any feature item ` ∈ f is set to zero by the binary variable

y`h or y`g. By constraint sets (3.17) and (3.18), the adjustments are confined to their

ranges. Constraint sets (3.19) states sfi has to be zero unless y`h or y`g is 1 for at

least one feature item ` ∈ f . Finally, constraint sets (3.20) and (3.21) ensure that

if any of the adjustments for ` ∈ f is set to 0 by y`h or y`g, then the zero bid level

must be selected. After solving the model, the bid adjustment for campaign h and

feature item ` is eα
′`
h (1 − y`h). The bid adjustment for ad group g and feature item

` is eα
′`
g (1− y`g). The base bid for keyword i is βi = eβ

′
i .

98

The assumption that effective bids are discretized might seem restrictive at

first. However, both Google and Bing operate with bids up to two decimal places

(so the discretization is at the cent level). In fact, Bing6 explicitly states the bids

are rounded down to the nearest cent after bid adjustments are applied. Using

this assumption, we are able to model the BAPOA as a mixed integer program.

However, it is not a practically viable solution method since the size of real-world

problems renders the mixed integer program intractable to solve optimally. Suppose

an advertiser wishes to adjust bids for 30 locations, 24 time intervals, and 3 device

types (as in Section 3.5.3). It results in 2160 feature combinations for a single

keyword. Given that the advertiser has thousands of keywords, the problem may

contain millions of combinations. In addition, the number of bid levels exacerbates

the intractability. Since the bids are rounded down to the nearest cent, if the

threshold bid for a keyword and combination is $10, it results in 1001 bid levels

in the MIP formulation. Therefore, we use the mixed integer program as a tool to

validate the quality of the Iterative Adjustment Algorithm (in small instances) as

discussed in Section 3.5.2 .

3.5 Computational Results

We now assess the solution quality and the efficiency of the Iterative Adjust-

ment Algorithm in solving the BAPOA. The computational experiments are targeted

towards 1) evaluating the quality (in terms of solution produced) and the efficiency

(in terms of running time) of the IAA algorithm, and 2) demonstrating the benefits

99

of using bid adjustments. In Section 3.5.1 describe the data generation process. In

Section 3.5.2, on a set of instances with small number of keywords and feature items,

we compare the revenue obtained from the IAA solution and the Flat Bid solution

with the upper bound obtained from an MIP formulation (discussed in Section 3.4).

In Section 3.5.3, on instances with large number of keywords and feature items, we

perform solution quality and running time analysis and discuss benefits of using bid

adjustments. In Section 3.5.4, we discuss how we can use bid adjustments provided

by the IAA to form campaigns and ad groups, and how keywords can be assigned

to ad groups and campaigns to maximize the benefit of using bid adjustments.

In the IAA, all continuous adjustments are set to 1 and all binary adjustments

are set to 0 when the base bid subproblem is solved for the first time. Recall that the

base bids obtained from this subproblem constitutes a solution for the case where

bid adjustments are not used, i.e., the “Flat Bid” solution. To obtain a good quality

Flat Bid solution, we use |P| = 51 discrete base bid levels that uniformly span the

base bid range [0, b∗i] of keyword i the first time the base bid subproblem is solved. In

consequent iterations of the while loop of the IAA, we set |P| = 21 for the base bid

subproblem. In all iterations of the IAA, we use |P| = 20 discrete adjustment levels

for the adjustment subproblem. After preliminary computational experiments, we

found setting γ = 1 and discounting γ by 20% at the end of each while loop iteration

provides high quality solutions. In both Google and Bing, continuous adjustments

are limited to values in [0.1, 10]. Therefore, for all feature items ` ∈ F we set

L`g = 0.1 and U `
g = 10 if adjustments for feature item ` can be made at the ad group

level, and L`h = 0.1 and U `
h = 10 if adjustments can be made at the campaign level.

100

The budget parameter B is set as a percentage of the maximum amount possible to

spend. We calculate this amount as
∑

i∈K
∑

f∈F c
f
i (b

f∗
i) where bf∗i is the threshold

bid amount for keyword i and combination f . The IAA is implemented in C++. All

computational experiments are performed on a computer with an Intel Xeon CPU

E5-1620 v3 @ 3.50 GHz and 32 GB RAM running Windows 7.

3.5.1 Data Generation

As in Chapter 2, we use a sample collected from Google Keyword Planner to

generate the data for our computational experiments. We created a portfolio of 400

medium-high volume keywords from various industry categories (e.g., retail, finance,

technology, etc.), and collected forecast data for 20 bid amounts for each keyword.

For this sample data set, we found the following linear regression model accurately

predicts the number of clicks (i.e., ψi(b)) for a given bid amount (b),

ψi(b) = mi0 +mi1 ln b.

We fit the model parameters mi0 and mi1 using the ordinary least squares (OLS)

method for each keyword in our portfolio. The average coefficient of determination

(R2) value for the portfolio is 0.9, which indicates a strong fit. In Chart 3.2, we

present the OLS estimation for keyword “refinance mortgage” with mi0 = 122.46

and mi1 = 34.35. The data suggests diminishing returns on the number of clicks as

we increase the bid amount. In fact for a large enough bid amount, the ad will be

displayed at the top of the page in every search query. However, any bid amount

101

clicks = 34.35ln(b) + 122.46
R² = 0.9618

0

50

100

150

200

250

300

0 10 20 30 40 50 60

N
u

m
b

er
 o

f
cl

ic
ks

Bid

Keyword "refinance mortgage"

Figure 3.2: OLS estimation for ψi(b) = mi0 + mi1 ln(b) for keyword “refinance
mortgage”.

more than that will not increase the number of clicks, which supports our earlier

assumption. The limitation of using the model ψi(b) = mi0 +mi1 ln b to predict the

number of clicks is that as b approaches 0, ψi(b) approaches −∞. To remedy that,

we make the following modification,

ψi(b) = mi0 +mi1 ln(b+ e−mi0/mi1),

which ensures ψi(0) = 0. Note that the correlation between mi0 and mi1 leads to

e−mi0/mi1 being a very small constant.

In a similar fashion, after analyzing the sampled data for cost-per-click vs

bid amount, we found the following linear regression model accurately predicts the

102

cost-per-click (i.e., CPCi(b)) for a given bid amount,

CPCi(b) = m′i0b+m′i1b
2.

As in ψi(b), we fit the model parameters m′i0 and m′i1 using the OLS method for each

keyword in our portfolio. The average coefficient of determination (R2) value for the

portfolio is 0.98. In Chart 3.3, we present the OLS estimation for keyword “refinance

mortgage” with m′i0 = 0.6332 and m′i1 = −0.0074. Initially, we observe an almost

linear relationship between cost-per-click and bid amount. As we increase the bid

amount, the competition eventually eases up and the CPC decreases slowly, and

for a large enough bid, cost-per-click does not increase because of the generalized

second price auction mechanism. Note that m′i1 ≤ 0 for all keywords in our sample

leading to this observation. We define b∗i = maxbi CPCi(bi) =
−m′i0
2m′i1

as the threshold

bid. This value is found by setting the derivative dCPCi(b)
db

to zero and solving for

b. We assume for any bid bi such that bi > b∗i , we have CPCi(bi) = CPCi(b
∗
i) and

ψi(bi) = ψi(b
∗
i).

Over the sample of 400 keywords, we found (by using the distribution fitting

package “fitdistrplus” in R) the parameters mi0 and mi1 follow a bivariate log-

normal distribution. In a similar fashion, we found the parameters m′i0 and m′i1

follow normal and uniform distributions, respectively. To capture the correlation

between parameters m′i0 and m′i1 while sampling their respective distributions, we

use copulae. Copulae are widely used to generate jointly distributed random num-

bers from correlated univariate distributions. After experimenting with Normal,

103

CPC = -0.0074b2 + 0.6332b
R² = 0.9945

0

2

4

6

8

10

12

14

16

0 10 20 30 40 50 60

C
P

C

Bid

Keyword "refinance mortgage"

Figure 3.3: OLS estimation for CPCi(b) = m′i0b + m′i1b
2 for keyword “refinance

mortgage”.

Student’s t, Gumbel, and Clayton copulae, we observed Gumbel copulae provided

the best fit for our sample and therefore used a Gumbel copula. By drawing mi0,

mi1, m′i0, and m′i1 values from their respective distributions for each keyword, we

can generate the number of clicks function (ψi(b)) and the CPC function (CPCi(b))

for a keyword i. Given ψi(b) and CPCi(b) functions, the cost function ci(b) for a

keyword can be expressed as the product of number of clicks and cost-per-click, i.e.,

ci(b) = ψi(b)CPCi(b).

The number of clicks function ψi(b) provides us with the aggregate number of

clicks for keyword i for all feature combinations, i.e., ψi(b) =
∑

f∈F ψ
f
i (b). However,

to create an instance for the BAPOA, we need the number of clicks function ψfi (b)

for combination f of keyword i. In other words, we need the break down of the

total number of clicks for a keyword at the feature combination level. Keyword

Planner offers forecast on the fractions of clicks for location and device features.

104

For instance, Keyword Planner reports an estimate of 200 clicks over a day for

keyword “refinance mortgage” for a bid amount of $10. In addition, it also reports

50% of clicks will come from desktop computers and 20% of clicks will originate

from DC. For a sample of 200 keywords and 10 bid amounts, we have collected

data on fractions of clicks for location and device features. For location feature, we

have selected 30 most populous cities in the United States. For device feature, the

data provides fractions for desktop computers, tablets, and mobile devices. Keyword

Planner does not report forecast on the fractions of clicks for time feature. However,

we were able to obtain a typical distribution of fractions of clicks by time of day (for

every hour of the day) through our industry contacts.

Using the sample collected from Keyword Planner, we observed the fractions of

clicks follow a triangular distribution for both the location and the device features.

By sampling their respective distributions, we can generate fractions of clicks for

these features. Let p`i denote the value generated for the fraction of clicks for keyword

i and feature item ` ∈ F . Then we define the number of clicks function ψfi (b) as,

ψfi (b) = ψi(b)
∏
`∈f

p`i .

For example, suppose 10% of clicks originate from DC, 5% of clicks are between 5-6

pm, 50% of clicks are on mobile devices. Then we allocate 10%×5%×50% = 0.25%

of the clicks to originate from DC between 5-6 pm on mobile devices. Therefore,

ψfi (b) = 0.25%× ψi(b) where f corresponds to (DC, 5-6pm, mobile) combination.

The cost function ci(b) = ψ(b)CPCi(b) provides us with the aggregate cost for

105

keyword i for all feature combinations, i.e., ci(b) =
∑

f∈F c
f
i (b). At a disaggregated

level, the cost function for keyword i and combination f is represented as cfi (b) =

ψfi (b)CPCf
i (b) where CPCf

i (b) denotes the function of cost-per-click for keyword i

and feature combination f . When we analyzed data collected on Keyword Planner,

we observed the difference between the fractions of clicks and cost across feature

items (specifically location and device) to be negligible. For instance, if 10% of total

clicks originate from DC, then DC accounts for roughly 10% of the total cost. This

suggests the CPCf
i (b) function to be (presently) invariant to feature combinations,

i.e., CPCf
i (b) = CPCi(b). In addition, we set bf∗i = b∗i as the threshold bid amount

for keyword i and combination f .

We define the revenue function for a feature combination as the product of

number of clicks and revenue generated per click from that combination. In other

words, the revenue function for keyword i and feature combination f is, rfi (b) =

ψi(b)RPC
f
i where RPCf

i denotes the revenue-per-click for keyword i and feature

combination f . In our computational experiments, we aim to evaluate the benefits

of using bid adjustments under different scenarios. To that end, we create revenue-

per-click values for keyword i and feature combination f as follows.

RPCf
i = CPCi

∏
`∈f

ϕ`hgω
`
iδ
`,f
i

The first component of RPCf
i , CPCi, denotes the average cost-per-click for

keyword i which is CPCi = CPCi(b
∗
i /2). Suppose keyword i is assigned to campaign

h and ad group g, then the second component, ϕ`hg, denotes the random variation

106

generated at the campaign and ad group level for feature item `. We define ϕ`hg

as ϕ`hg = 10U [log10
1
ν
,log10 ν] where U [a, b] denotes a draw from the continuous uniform

distribution in the range [a, b]. We use the parameter ν to express the range of

random variation, as ν gets larger, ϕ`hg will be drawn from a larger range causing

the revenue-per-click to vary more and more across feature items. The way we

generate ϕ`hg ensures the random draws are centered around 1 with roughly half of

them below, and half above. In essence, this component allows us to capture cases

where some feature items have more revenue potential than others. If adjustment

` ∈ f can only be made at the campaign level, then we drop the subscript g; and

all keywords assigned to campaign h share the same ϕ`h value for feature item `.

If adjustment ` ∈ f is made at the ad group level, then all keywords assigned to

campaign h and ad group g share the same ϕ`hg value for feature item `.

The third component, ω`i , denotes the random noise generated at the keyword

level for each feature item defined as ω`i = U [1− ρ, 1 + ρ]. We use the parameter ρ

to express the range of random noise, as ρ gets larger, the revenue-per-click varies

more and more across the keywords in the same ad group (and campaign) for the

same feature item. Finally, the fourth component, δ`,fi , denotes the random noise

generated at the feature combination level for each keyword and feature item defined

as δ`,fi = U [1 − ε, 1 + ε]. We use the parameter ε to express the range of random

noise, as ε gets larger, the revenue-per-click varies more and more across feature

combinations for the same feature item.

For instance, if ν = 1, ρ = 0, and ε = 0, all feature combinations f of a

keyword have the same revenue-per-click without any variation or noise, which is

107

equal to the average cost-per-click, i.e., RPCf
i = CPCi. When ν > 1, ρ = 0, and

ε = 0, the revenue-per-click for each feature combination will be the product of the

average cost-per-click and ϕ`hg. Suppose combination f is (DC, 5-6pm, mobile) and

combination f ′ is (NY, 5-6pm, mobile), if ϕDC
hg = 2 and ϕNY

hg = 1, then RPCf
i =

2 × RPCf ′

i for every keyword in campaign h and ad group g. When ν > 1, ρ > 0,

and ε = 0, we add some noise at the keyword level. Finally, when ν > 1, ρ > 0,

and ε > 0, we add some noise at the keyword and feature combination level. With

these parameters, RPCf
i may not be exactly twice as much as RPCf ′

i in the above

example. In fact, depending on the choice of ρ and ε, the ratio of RPCf
i to RPCf ′

i

may vary significantly across keywords and feature combinations.

3.5.2 MIP Instances

We first assess the quality of solutions obtained from the IAA by comparing

it against instances of the BAPOA where it is possible to obtain high quality upper

bounds. Discretizing the domain of the effective bids naturally leads to a mixed

integer programming model that can only be solved for tiny instances. This MIP

model is discussed in Section 3.4. We call these tiny instances MIP Instances. We

solve these MIP instances using CPLEX 12.71 implemented in C++. However, due

to excessive computational times, we have limited CPLEX runs to one hour and use

the best available upper bound at the time of termination. We generated 5 MIP

instances each with 5 keywords (in MIP instances, every keyword is assigned to a

different campaign, therefore, there are 5 campaigns for 5 keywords), 4 location, 4

108

● ●
●

●
●

●

●

●

●

●

75

80

85

90

95

100

1 2 3 4 5 6 7 8 9 10

ν

%
 o

f C
P

LE
X

 U
B

●

IAA (ε=0%)

FB (ε=0%)

IAA (ε=10%)

FB (ε=10%)

IAA (ε=20%)

FB (ε=20%)

Figure 3.4: IAA and Flat Bid revenues as percentages of the CPLEX upper bound
for ε = {0%, 10%, 20%} and budget set to 5%.

time of day, and 3 device feature items. For each instance, we generated the functions

for number of clicks ψfi (b) and cost-per-click CPCf
i (b) for each keyword and feature

combination. In addition, we varied the RPCf
i value by generating it based on

the combination of ν = {1, 1.25, 1.5, 1.75, 2, 2.5, 3, 4, 6, 10} and ε = {0%, 10%, 20%}

parameters. Since we assign every keyword to a different campaign, we set ρ = 0,

i.e., do not introduce any random noise at the keyword level. To isolate the effect of

ν and ε, we use the same ψfi (b) and CPCf
i (b) for keyword i and combination f for

varying RPCf
i . Therefore, each ψfi (b) and CPCf

i (b) is used with 10×3 = 30 different

RPCf
i values. There are effectively 5 × 30 = 150 instances. We set the budget to

{5%, 10%, 15%, 20%} of the maximum amount possible to spend. Henceforth, we

will refer to the percentage as the budget amount, e.g., B = 10% implies the budget

is set to 10% of the maximum amount possible to spend.

In Charts 3.4-3.7, we report the revenue obtained from the IAA solution (i.e.,

109

● ●
●

●
●

●

●

●

●

●

75

80

85

90

95

100

1 2 3 4 5 6 7 8 9 10

ν

%
 o

f C
P

LE
X

 U
B

●

IAA (ε=0%)

FB (ε=0%)

IAA (ε=10%)

FB (ε=10%)

IAA (ε=20%)

FB (ε=20%)

Figure 3.5: IAA and Flat Bid revenues as percentages of the CPLEX upper bound
for ε = {0%, 10%, 20%} and budget set to 10%.

IAA revenue) and revenue obtained from the Flat Bid solution (i.e., Flat Bid rev-

enue) as a percentage of the upper bound obtained via CPLEX (i.e., CPLEX UB)

where the percentages are averaged over 5 instances for each ν-ε combination. For

example, for B = 10%, ν = 3, and ε = 10%, the IAA revenue is 99.8% of the CPLEX

UB whereas the Flat Bid revenue is 93.8% of the CPLEX UB. In other words, the

revenue lift7 is 6.4%. In Charts 3.4-3.7, we observe that the IAA provides near

optimal solutions regardless of ν, ε, or budget, which demonstrates approximating

the subproblems by discretizing the domains of base bids and bid adjustments does

not jeopardize the solution quality. We also observe that as ν increases, the revenue

lift increases as well, which implies the increased variation in the revenue-per-click

across features is captured by bid adjustments in the IAA. The Flat Bid solution,

7We use “revenue lift” as a measure of revenue benefit obtained from bid adjustments against
an environment without bid adjustments, i.e. Flat Bid. The revenue lift is defined as the IAA
Revenue minus the Flat Bid revenue divided by the Flat Bid Revenue.

110

● ●
●

●
●

●

●

●

●

●

75

80

85

90

95

100

1 2 3 4 5 6 7 8 9 10

ν

%
 o

f C
P

LE
X

 U
B

●

IAA (ε=0%)

FB (ε=0%)

IAA (ε=10%)

FB (ε=10%)

IAA (ε=20%)

FB (ε=20%)

Figure 3.6: IAA and Flat Bid revenues as percentages of the CPLEX upper bound
for ε = {0%, 10%, 20%} and budget set to 15%.

on the other hand, does not use bid adjustments and the increased revenue-per-click

variation causes the relative revenue of the Flat Bid solution to deteriorate. Even

with random noise added on the feature combination level, the IAA still finds ad-

justments that yield a near optimal solution. The random noise parameter ε seems

to cause significant differences in the revenue lift. However, the effect of ε is not

consistent. This is due to the size of the MIP instances leading to small samples of

RPCf
i values. The computational experiments with larger instances demonstrate ε

having negligible effect on the amount of revenue lift.

In Figure 3.8, we observe using bid adjustments provide slightly less revenue

lift as budget increases for larger ν. For ν ≤ 4, the revenue lift under different

budget amounts are virtually the same. However, when ν = 10, the revenue lift is

approximately 9% less when B = 20% compared to B = 5%. As budget increases,

we expect the Flat Bid revenue getting closer and closer to the upper bound. At

111

● ●
●

●
●

●

●

●

●
●

75

80

85

90

95

100

1 2 3 4 5 6 7 8 9 10

ν

%
 o

f C
P

LE
X

 U
B

●

IAA (ε=0%)

FB (ε=0%)

IAA (ε=10%)

FB (ε=10%)

IAA (ε=20%)

FB (ε=20%)

Figure 3.7: IAA and Flat Bid revenues as percentages of the CPLEX upper bound
for ε = {0%, 10%, 20%} and budget set to 20%.

100% budget, the Flat Bid solution will be the optimal solution since it is optimal

to bid the threshold bid for every combination of every keyword. In general, we

observe the IAA finds near optimal solutions regardless of the level of revenue-per-

click variation, random noise, and budget amount. We also observe the revenue lift

from bid adjustments increases as the revenue-per-click variation increases and the

budget decreases.

The MIP instances we generated represent the largest BAPOA instances for

which CPLEX can provide high quality upper bounds after one hour of computa-

tions. In contrast, the average running time of the IAA is only 0.02 seconds per

instance for MIP instances.

112

● ●
●

●
●

●

●

●

●

●

75

80

85

90

95

100

1 2 3 4 5 6 7 8 9 10

ν

%
 o

f C
P

LE
X

 U
B

●

IAA(B=5%)

 FB(B=5%)

IAA(B=10%)

 FB(B=10%)

IAA(B=15%)

 FB(B=15%)

IAA(B=20%)

 FB(B=20%)

Figure 3.8: IAA and Flat Bid revenues as percentages of the CPLEX upper bound
for B = {5%, 10%, 15%, 20%}. The results are averaged over ε = {0%, 10%, 20%}.

3.5.3 Online Advertising Instances

The MIP instances demonstrate the quality of the IAA solution compared

to the Flat Bid solution and the upper bound obtained from CPLEX. To test the

efficiency and quality of the IAA in industry settings, we experiment on instances

with a large number of keywords and feature items. We first focus on instances

(as in the MIP instances) where every keyword is assigned to a different campaign

(there are the same number of campaigns as keywords) as we will later show this

approach allows for an effective way of constructing campaigns and ad groups based

on the values of the bid adjustments for different features. We present results for

1,000, 5,000, 10,000, and 25,000 keyword instances. For each keyword set, the data

generation setting is identical to Section 3.5.2 (five sets of instances, same ranges

for ν and ε resulting in 150 instances, ρ = 0 since every keyword is assigned to a

113

different campaign). However unless otherwise stated, each instance has 30 location

(corresponding to most populous cities in the US), 24 time of day (for each hour

interval of the day), and 3 device feature items. In Table 3.3, we report the Flat

Bid revenue as a percentage of IAA revenue where the budget is set to 10%. The

percentages are averaged over 5 instances for each ν-ε combination. As in the MIP

instances, we observe significant increase in revenue lift (note that when Flat Bid

revenue decreases as a percentage of the IAA revenue, the revenue lift increases) as

ν increases. As we stated in Section 3.5.2, we observe ε having virtually no effect

on the revenue lift. In addition, the increase in the number of keywords also have

no effect on revenue lift.

To further investigate the effect of budget on the revenue lift observed in the

MIP instances, we experimented with 1000 keyword instances for B = {5%, 10%,

15%, 20%}. In Figure 3.9, we report the Flat Bid revenue as a percentage of the

IAA revenue where the results are averaged over ε = {0%, 10%, 20%}. The findings

are consistent with those of the MIP instances, as budget decreases and ν increases,

the revenue lift from bid adjustments increases.

The advertisers might be tempted to reduce the number of feature items in

an attempt to simplify their problem of determining bid adjustments. For instance,

an advertiser might group tablets and mobile devices together, in essence treating

them as one feature item and determining one adjustment value per campaign (or

ad group if adjustments can be made at the ad group level) that would apply to all

feature combinations containing tablets or mobile devices in that campaign (or ad

group). However, if there is revenue variation across tablets and mobile devices that

114

ε ν 1000 5000 10000 25000 Average

0%

1 99.94% 99.94% 99.94% 99.94% 99.94%
1.25 99.60% 99.59% 99.59% 99.59% 99.59%
1.5 98.79% 98.78% 98.78% 98.77% 98.78%
1.75 97.80% 97.76% 97.75% 97.76% 97.77%

2 96.66% 96.65% 96.64% 96.64% 96.65%
2.5 94.41% 94.34% 94.35% 94.36% 94.37%
3 92.24% 92.16% 92.20% 92.16% 92.19%
4 88.83% 88.58% 88.52% 88.55% 88.62%
6 84.06% 84.01% 84.08% 83.97% 84.03%
10 80.10% 80.04% 80.11% 80.10% 80.09%

10%

1 99.94% 99.95% 99.94% 99.94% 99.94%
1.25 99.60% 99.59% 99.59% 99.59% 99.59%
1.5 98.77% 98.77% 98.77% 98.77% 98.77%
1.75 97.75% 97.75% 97.75% 97.75% 97.75%

2 96.64% 96.62% 96.65% 96.64% 96.64%
2.5 94.40% 94.36% 94.33% 94.35% 94.36%
3 92.16% 92.09% 92.16% 92.16% 92.14%
4 88.50% 88.47% 88.54% 88.52% 88.50%
6 83.93% 84.05% 84.00% 84.00% 83.99%
10 80.33% 80.04% 80.11% 80.10% 80.14%

20%

1 99.94% 99.94% 99.94% 99.94% 99.94%
1.25 99.58% 99.58% 99.58% 99.58% 99.58%
1.5 98.77% 98.76% 98.76% 98.76% 98.76%
1.75 97.73% 97.74% 97.74% 97.74% 97.74%

2 96.64% 96.64% 96.62% 96.63% 96.64%
2.5 94.39% 94.33% 94.34% 94.33% 94.35%
3 92.16% 92.13% 92.17% 92.15% 92.15%
4 88.43% 88.50% 88.48% 88.53% 88.48%
6 84.21% 83.87% 84.00% 84.00% 84.02%
10 80.24% 80.06% 80.19% 80.19% 80.17%

Table 3.3: The Flat Bid revenue as a percentage of the IAA revenue for K =
{1000, 5000, 10000, 25000}. The budget is fixed to 10%

cannot be captured by the same bid adjustment value, then grouping them together

has a significant effect on the revenue lift. We demonstrate this behavior on 1,000

keyword instances where the number of feature items for the time of day (TOD)

feature is set to {3, 6, 12, 24} while the number of location and device feature items

are left at 30 and 3 respectively. Note that we do not alter the original data where

the instances were generated with 24 hours in a day. We merely reduce the number

of bid adjustments the IAA can determine by grouping the hours such that there

115

● ●
●

●
●

●

●

●

●

●

75

80

85

90

95

100

1 2 3 4 5 6 7 8 9 10

ν

%
 o

f I
A

A

● B=5% B=10% B=15% B=20%

Figure 3.9: The Flat Bid revenue as a percentage of the IAA revenue for 1000
keywords and {5%, 10%, 15%, 20%} budget. The results are averaged over ε =
{0%, 10%, 20%}.

are {8, 4, 2, 1} hours in each grouping. In Chart 3.10, we report the Flat Bid revenue

as a percentage of the IAA revenue where the percentages are averaged over ε =

{0%, 10%, 20%}. We observe the revenue lift from bid adjustments decreases with

the number of feature items for the time of day feature. Recall, due to the procedure

we used to generate the data, there is revenue variation (increases with ν) across

hours within a grouping. However, since only one bid adjustment is determined

per grouping, the revenue variation cannot be fully captured for every hour in the

grouping. In addition, the more hours we pack within a grouping, the less effective

the sole bid adjustment is at capturing the variation. The decline of revenue lift

gets even worse as ν increases, when there are 3 vs 24 time of day feature items,

the revenue lift difference gets as high as 5.5%. Therefore, unless the feature items

do not have revenue variations that can be captured by the same bid adjustment

116

● ●
●

●
●

●

●

●

●

●

75

80

85

90

95

100

1 2 3 4 5 6 7 8 9 10

ν

%
 o

f I
A

A

●3 TOD 6 TOD 12 TOD 24 TOD

Figure 3.10: The Flat Bid revenue as a percentage of the IAA revenue for 1000
keywords and {3, 6, 12, 24} number of times of day. The results are averaged over
ε = {0%, 10%, 20%}.

value, they should not be grouped together.

In Charts 3.11 and 3.12, the running time of the IAA per 1000 keywords is

reported in seconds for the data set generated for Table 3.3. In Chart 3.11, we

report the running time vs the number keywords for ε = {0%, 10%, 20%} values.

We observe that the running time of the IAA shows near linear growth as we increase

the number of keywords. In addition, ε has virtually no effect on the running time

of the algorithm. A near linear running time is of high practical importance since

it shows the IAA can scale up to handle very large portfolios. In Chart 3.12, we

report the running time vs ν for ε = {0%, 10%, 20%} where the results are averaged

over 1,000, 5,000, 1,000, and 25,000 keyword sets. We once again observe ε does

not effect the running time of the IAA. However, for ν ≥ 3, the running time

increases. Recall that the IAA algorithm executes the while loop until the revenue

117

● ● ●

●

42

43

44

45

46

47

0 5000 10000 15000 20000 25000

|K|

IA
A

 R
T

 p
er

 1
00

0
K

ey
w

or
ds

 (
s)

● ε=0% ε=10% ε=20%

Figure 3.11: The running time of the IAA per 1000 keywords vs |K|

converges. When ν < 3, the IAA takes (most of the time) 2 iterations to converge.

In contrast, when ν ≥ 3, the algorithm takes (most of the time) 3 iterations to

converge. Therefore, the overall running time of the IAA increases with ν. When

ν is large, the bid adjustments are further away from 1 (i.e., the initial value of bid

adjustments) when the algorithm terminates, which requires more fine tuning and

results in more iterations.

In Chart 3.13, we report the running time of the IAA per while loop iteration

(since the number of iterations vary with ν, we report the running time per itera-

tion) per 1 million feature combinations for the set of 1000 keyword instances. For

example, if an instance has 1,000 keywords, 30 location, 24 time of day, and 3 device

feature items, then there are 1, 000× 30× 24× 3 = 2, 160, 000, feature combinations

in the instance. In Chart 3.14, we report the total running time of the subproblems

(the running time of the MCKP) in the IAA per while loop iteration per 1 million

feature items for the set of 1000 keyword instances. For example, if an instance has

118

● ● ● ● ● ●

● ● ● ●

40

45

50

55

1 2 3 4 5 6 7 8 9 10

ν

IA
A

 R
T

 p
er

 1
00

0
K

ey
w

or
ds

 (
s)

● ε=0% ε=10% ε=20%

Figure 3.12: The running time of the IAA per 1000 keywords vs ν

1,000 keywords, 30 location, 24 time of day, and 3 device feature items, then there

are 1, 000× (30 + 24 + 3) = 57, 000 feature items in the instance. In both charts, the

running times are averaged over ε and ν values. In Chart 3.13, we observe the overall

running time of the IAA is slightly sublinear in the number of combinations in the

instance. The main reason for this behavior is when there are more feature combina-

tions, the computational overhead is distributed over more combinations (recall that

we report the running time per 1 million feature combinations). However, in Chart

3.14, we observe the running time of the subproblems in the IAA is proportional

to the number of feature items in the instance. The MCKP corresponding to the

base bid subproblem has one class for every keyword. The MCKP corresponding to

the feature adjustment subproblem has one class for every campaign (or ad group)

and feature item. For instance, suppose location adjustments can be made at the

campaign level, if there are 1,000 campaigns and 30 location feature items, then

the number of classes in the feature adjustment subproblem for location feature is

119

●

●

● ●

7

8

9

10

11

500 1000 1500 2000

Number of Feature Combinations

IA
A

 R
T

 p
er

 1
M

 fe

at
ur

e
co

m
bi

na
tio

ns
 (

s)

Figure 3.13: The running time of the IAA per 1M feature combinations vs the
number of feature combinations.

30×1, 000 = 30, 000. Since the column generation procedure shows near linear time

performance in computational experiments (discussed in Chapter 2), the running

time of the subproblems is proportional to the number of feature items.

The total running time of the subproblems constitutes roughly 1% of the total

running time of the IAA. The remainder of the time, the algorithm sets up the

data for subproblems by performing look-ups for the expected cost and revenue for

each discrete base bid and adjustment level. Suppose the data for the base bid

subproblem is being set up, then for every base bid level βij, we need to calculate

the resulting effective bid bfij for keyword i and feature combination f . Based on

the effective bid, we evaluate cfi (b
f
ij) and rfi (bfij) and set c(βij) =

∑
f∈F c

f
i (b

f
ij) and

r(βij) =
∑

f∈F r
f
i (bfij). In other words, setting up the data for a subproblem involves

calculating the resulting effective bid for every keyword and feature combination and

evaluating the cost and revenue functions. Therefore, the set up time is linear in the

120

● ● ● ●

1.0

1.5

2.0

2.5

3.0

40 45 50 55

Number of Feature Items

 IA
A

 s
ub

pr
ob

le
m

 R
T

 p

er
 1

M
 fe

at
ur

e
ite

m
s

(s
)

Figure 3.14: The total running time of the subproblems in IAA per 1M feature items
vs the number of feature items.

number of look-ups performed, i.e., the number of keywords and feature combina-

tions. Since there are many more feature combinations than there are feature items

(e.g., 2160 feature combinations for 57 feature items), the set up time constitutes

99% of the running time of the IAA. Fortunately, the set up process is highly par-

allelizable. By parallelizing the set up process, it would be possible to speed up the

IAA significantly, which would allow us to tackle problems with massive number of

keywords and feature items.

3.5.4 Creating Advertising Campaigns

When we model the BAPOA, we make the implicit assumption that the ad-

vertiser has already created campaigns and ad groups, and determined the ad group

and campaign of each keyword. We now show that the BAPOA model can help

in creating campaigns and ad groups, and assigning keywords to campaigns and ad

121

groups. Recall that the adjustments are determined for campaigns and ad groups

whereas the base bids are determined for each keyword. To maximize revenue, we

would place each keyword in a campaign by itself with only one ad group (as is

the case in Sections 3.5.2 and 3.5.3), which allows us to effectively adjust bids at

the keyword level. However, the advertising platforms (both Google and Bing) im-

pose limitations on the number of campaigns and ad groups that can be created.

Therefore, we aim to create campaigns and ad groups such that the total expected

revenue is as close as possible to the ideal case where adjustments are determined

at the keyword level. To that end, we suggest the following procedure.

Step 1: place each keyword in a campaign by itself with one ad group and execute

the IAA

Step 2: cluster keywords based on the bid adjustments (that can be made at the

campaign level) provided by the IAA in Step 1

Step 3: create campaigns based on the clusters determined in Step 2

Step 4: cluster keywords in each campaign based on the bid adjustments (that can

be made at the ad group level) provided by the IAA in Step 1

Step 5: create ad groups in each campaign based on the clusters determined in Step

4 and execute the IAA

In Step 1, we relax the limitation on the number of campaigns and ad groups and

solve the BAPOA where each keyword is in its own campaign. The adjustments

obtained in this step represent the best case scenario for each keyword. In Step 2,

122

we form clusters of keywords such that keywords with similar adjustments (only by

using features where adjustments can be made at the campaign level) are in the same

cluster. In Step 3, we use the clusters formed in Step 2 to create the campaigns. In

Step 4, for each campaign, we form clusters of keywords such that keywords with

similar adjustments (only by using features where adjustments can be made at the

ad group level) are in the same cluster. In Step 5, we create the campaigns and ad

groups based on clusters determined in Steps 2 and 4 and solve the BAPOA. At the

termination of the procedure, the advertiser will have determined campaign and ad

group assignments, base bids for each keyword as well as the bid adjustments for

each campaign and ad group. For example, suppose location and time adjustments

can be made at the campaign level whereas device adjustments can be made at the

ad group level. Then we ignore device adjustments while forming clusters in Step 2

and ignore location and time adjustments while forming clusters in Step 4.

In Google Adwords, the advertiser is allowed to create at most 10,000 cam-

paigns per account and at most 20,000 ad groups per campaign. If the number of

keywords is less than 10,000, then it is advantageous to cluster each keyword to

a separate campaign with one ad group. However, if there are more than 10,000

keywords, then after clustering keywords to campaigns (in Step 2) based on adjust-

ments that can be made at the campaign level, it is optimal (in terms of maximizing

revenue) to cluster each keyword to a separate ad group in the campaign as long as

the number of keywords clustered to that campaign does not exceed 20,000. From

a practical standpoint, it is highly unlikely that a campaign will contain more than

20,000 keywords after Step 2 of the procedure. We experiment on 5 sets of in-

123

stances with 10,000 keywords randomly assigned to 100 campaigns. Each instance

has 30 location, 24 time of day, and 3 device feature items as in Section 3.5.3 and

we assume adjustments can only be made at the campaign level for all three fea-

tures. When keywords are assigned to the same campaign, it means they share the

same random variation ϕ`h (we drop subscript g from ϕ`hg since adjustments can be

made at the campaign level for all features) whereas the random noise ω`i is added

at the keyword level. To demonstrate the effect of ν parameter (which is used in

ϕ`h) in conjunction with ρ parameter (which is used in ω`i), we experiment with

ν = {1, 1.25, 1.5, 1.75, 2, 2.5, 3, 4, 6, 10}, ρ = {0%, 20%, 40%}. In addition we also

experiment with ε = {0%, 10%, 20%}. We set the budget percentage parameter to

B = 10%.

There are several unsupervised learning algorithms that can be used to cluster

keywords. We have used an off-the-shelf implementation of “agglomerative cluster-

ing” provided in Python’s scikit-learn library. Agglomerative clustering is a type

of hierarchical clustering algorithm where each item starts in its own cluster and

clusters are merged to create larger clusters until a desired number of clusters is

reached. After experimenting with different distance metrics and linkage criteria,

we have chosen Euclidean distance metric and Ward linkage criteria as it provided

the best performance. In Charts 3.15 - 3.17, we provide the expected revenue ob-

tained from the IAA-Agglo and IAA-Omni as a percentage of the expected revenue

from IAA-Individual where the percentages are averaged over 5 instances for each

ν-ρ-ε combination. IAA-Individual refers to the solution of the IAA where each

keyword is placed in a campaign by itself with one ad group, i.e., solution obtained

124

● ● ● ● ● ● ● ● ● ●

98.0

98.5

99.0

99.5

100.0

1 2 3 4 5 6 7 8 9 10

ν

%
 o

f I
A

A
 −

 In
di

vi
du

al

● IAA−Agglo(ρ=0%)

IAA−Omni(ρ=0%)

IAA−Agglo(ρ=20%)

IAA−Omni(ρ=20%)

IAA−Agglo(ρ=40%)

IAA−Omni(ρ=40%)

Figure 3.15: The IAA-Agglo and IAA-Omni revenue as a percentage of the IAA-
Individual revenue for ε = 0%

in Step 1 of the procedure. IAA-Agglo refers to the solution of the IAA executed

after Step 3 where campaigns are created using the agglomerative clustering in Step

2 of the procedure. Since adjustments for all three features can be made at the

campaign level, we skip Steps 4 and 5 of the procedure and execute the IAA after

Step 3. IAA-Omni refers to the solution of the IAA where the actual campaign

assignments from data generation are used. In other words, IAA-Omni executes

IAA for an “omniscient” advertiser who has perfect information of the underlying

campaign assignments of the data.

First, we observe creating campaigns with agglomerative clustering provides a

solution very close to campaigns created by an omniscient advertiser. This implies

agglomerative clustering can, for the most part, capture the underlying campaign

structure in the data. We also observe the effect of ε to be negligible on the relative

revenue of IAA-Agglo and IAA-Omni for varying ρ and ν. It is clear that as we

125

● ● ● ● ● ● ● ● ● ●

98.0

98.5

99.0

99.5

100.0

1 2 3 4 5 6 7 8 9 10

ν

%
 o

f I
A

A
 −

 In
di

vi
du

al

● IAA−Agglo(ρ=0%)

IAA−Omni(ρ=0%)

IAA−Agglo(ρ=20%)

IAA−Omni(ρ=20%)

IAA−Agglo(ρ=40%)

IAA−Omni(ρ=40%)

Figure 3.16: The IAA-Agglo and IAA-Omni revenue as a percentage of the IAA-
Individual revenue for ε = 10%

increase ρ, expected revenues of IAA-Agglo and IAA-Omni deteriorate relative to

IAA-Individual. Even though keywords in the same campaign have the same ϕ`h,

the random noise added on the keyword level (increases with ρ) causes the expected

revenue to decline. Intuitively, keywords in the same campaign are indistinguishable

(in terms of revenue-cost trade-off) across features for small ρ. Therefore bid adjust-

ments determined at the campaign level tends to work well for all keywords in the

campaign. Note that any other difference at the keyword level can be captured by

base bids as long as keywords in the same campaign are similar across features. In

this case, bid adjustments determined at the campaign level work almost as well as

adjustments determined at the keyword level. However, as we increase ρ, keywords

become more and more distinguishable across features due to the random noise

added via ω`i . In other words, adjustments determined at the campaign level do not

work well for every keyword in the campaign since different keywords have different

126

● ● ● ● ● ● ● ● ● ●

98.0

98.5

99.0

99.5

100.0

1 2 3 4 5 6 7 8 9 10

ν

%
 o

f I
A

A
 −

 In
di

vi
du

al

● IAA−Agglo(ρ=0%)

IAA−Omni(ρ=0%)

IAA−Agglo(ρ=20%)

IAA−Omni(ρ=20%)

IAA−Agglo(ρ=40%)

IAA−Omni(ρ=40%)

Figure 3.17: The IAA-Agglo and IAA-Omni revenue as a percentage of the IAA-
Individual revenue for ε = 20%

revenue-cost trade-offs across features. In this case, setting adjustments at the key-

word level create significant revenue increase because adjustments can capture the

revenue-cost trade-off across features separately for each keyword. It is important to

note that even when ρ = 40%, which results in significant random noise, the revenue

loss compared to IAA-Individual is only around 1%. For large ν, the revenue loss

is even smaller since the random variation (ϕ`h) dominates the random noise (ω`i).

While the IAA-Individual revenue is not attainable in practice due to limitations

on the number of campaigns, the IAA-Agglo revenue is only slightly less than the

IAA-Individual revenue and still almost as good as an omniscient advertiser can

have.

The running time of this procedure depends on the clustering algorithm used.

The running time of IAA-Agglo is nearly the same as IAA-Individual. Even though

there are fewer adjustment variables in IAA-Agglo resulting in smaller subproblems,

127

the number of look-ups performed are the same. If the look-ups are parallelized as

suggested in Section 3.5.3, then IAA-Agglo would run faster than the IAA-Individual

due to smaller subproblems. We demonstrate the effectiveness of agglomerative clus-

tering in terms of solution quality. However, agglomerative clustering may not scale

well for very large problems with large number of clusters. In this case, k-means

maybe a better suited option. k-means is one of the most popular clustering algo-

rithms in existence. Unlike agglomerative clustering, k-means clustering can scale

up to handle very large instances. We did experiment with an off-the-shelf imple-

mentation of k-means clustering provided in Python’s scikit-learn library. In our

experiments, the expected revenue of the IAA executed based on k-means clustered

campaigns is at most 0.24% less than the expected revenue of IAA-Agglo. Therefore,

when agglomerative clustering is too computationally expensive, k-means clustering

provides a viable alternative.

128

Chapter 4: The Capacitated Mobile Facility Location Problem

In this chapter, we study the capacitated mobile facility location problem

(CMFLP). The CMFLP is defined on a network where clients and facilities are

initially located at vertices on the network. Associated with each client is a demand

and each facility has a specified capacity available to service demand. A destination

vertex must be determined for each facility and each client should be assigned to one

of the facilities so that the total demand of the clients assigned to a facility respects

the capacity. The objective is to minimize the total weighted distance traveled by

the facilities and the clients.

Formally, the CMFLP is set on a graph G(V,E) where V denotes the set

of vertices and E denotes the set of edges. A non-negative distance dij is defined

for each edge (i, j) ∈ E. We interchangeably use cost and distance henceforth to

indicate dij. The initial locations of the clients are represented by the subset C ⊆ V .

Each client i ∈ C has demand qi and a positive weight ui. There are different types

of facilities with differing capacities. Each facility is of a type from the set T and the

subset F =
⋃
t∈T Ft ⊆ V of vertices denotes the initial locations of the facilities (so

Ft denotes the set of initial locations of facilities of type t). Each facility j ∈ Ft has

capacity Qt and a positive weight wj for relocation. All facilities are assumed to be

129

equipped with the same capabilities and therefore a client can get service from any

one of them as long as the capacity limitations are satisfied. In a feasible solution

to the CMFLP, each facility j ∈ F moves to a destination vertex v(j) ∈ V and

each client i ∈ C moves to a destination vertex v(i) ∈ V with the condition that

v(i) = v(j) for some j. We assume a facility cannot share a destination vertex with

another facility and a client can only be served by a single facility, i.e. demand

cannot be split. Total demand assigned to a type t facility cannot exceed Qt, for all

t ∈ T . Clients or facilities may stay put (i.e., have their destination equal to their

origin). Clients and facilities are also permitted to start at the same vertex. The

objective is to minimize the total weighted distance traveled by the facilities and

the clients, that is,
∑

j∈F wjdj,v(j) +
∑

i∈C uidi,v(i).

By including the capacity restrictions, the CMFLP extends the mobile facil-

ity location problem (MFLP) introduced previously by Demaine et al. [2009] to a

practical setting. The CMFLP finds applications in logistics planning of community

outreach programs delivered via mobile facilities such as library outreach programs

in rural areas, mobile daycare delivered to farm children, and mobile schools that

provide basic education to street children, as well as temporary schools servicing

refugee camps. The deployment of mobile healthcare facilities (e.g. cancer screen-

ing units, blood banks, eye clinics, vaccination booths in case of a disease outbreak)

that serve beneficiaries residing in either urban districts or rural regions is another

important application area of the CMFLP. In these applications, districts (popula-

tion centers) that have patients residing in them are represented by client vertices

in the CMFLP. Mobile medical facilities currently located at some of the districts

130

are represented by facility vertices. The demand of a district shows the number of

patients and their demands (i.e., visits to the medical facility) in the district and

the capacity of a facility is the total number of patient visits it can handle within

a time frame. Weights may be assigned to facilities and client locations according

to priority, patient criticality, number of patient visits, etc. The objective of the

problem is to move the mobile facilities so that every patient is served and the total

weighted distance traveled by the facilities and the patients is minimized. After de-

mand is served in an area or demand patterns have significantly changed, facilities

may be relocated to a new area. The facility destinations in the previous network

will be the originating facility vertices in the current network. Then, the problem

can be solved with new clients and their respective demands.

The importance of mobile facilities is noted both in the medical and the op-

erations research communities. Geoffroy et al. [2014] discuss the benefits of mobile

healthcare facilities as a complementary service to fixed clinics by expanding access

to healthcare for hard-to-reach areas. It is well-known that ease of geographical

access to a healthcare facility has a major impact on the likelihood of participation

in preventive healthcare services [see Weiss et al., 1971]. Bingham et al. [2003] in-

vestigated factors affecting the utilization of preventive services for cervical cancer

and found the screening rates to be much lower in areas where services are distant

or difficult to access. They reported greater transportation cost and distance as the

main reasons for low participation rates. These examples motivate the use of the

weighted distance objective in the CMFLP.

Studies addressing location decisions for healthcare facilities focus mainly on

131

fixed clinics and hospitals, and typically aim to maximize coverage of demand lo-

cations. For example, Verter and Lapierre [2002] model the preventive healthcare

facility location problem as an extension of the Maximal Coverage Location Problem

(MCLP). Doerner et al. [2007] study a tour planning problem for a single mobile

healthcare facility with criteria concerned with the number of stops and tour length,

and the distance to the nearest tour stop. Ha et al. [2013] discuss applications of

the multi-vehicle covering tour problem related to deployment of mobile healthcare

teams and mobile library teams and the distribution of relief items after a disaster.

The problem involves choosing the stops of the vehicles from a set of potential lo-

cations so that every person can reach one of these stops within an acceptable time

limit. The CMFLP differs from these studies significantly as it addresses capacity

limitations of the facilities while minimizing the total distances traveled by both the

facilities and the clients.

Our Contributions: In this chapter, we develop exact and heuristic algorithms

to solve the CMFLP. We first compare two Integer Linear Programming (IP) for-

mulations for the CMFLP. The first formulation, which we call the layered graph

formulation, extends the one given in Halper et al. [2015] for the MFLP to account

for the capacity constraints. The second formulation is a set partitioning formula-

tion where each variable corresponds to a type of facility to be moved to a vertex

in order to serve a feasible set of clients (i.e. the total demand of the clients cannot

exceed the capacity). We prove that the LP relaxation of the set partitioning formu-

lation provides a lower bound to the CMFLP that is greater than or equal to the LP

relaxation bound from the layered graph formulation (and can be strictly better).

132

Next, we provide a branch-and-price algorithm for the set partitioning formulation

where a column generation procedure is used on the set partitioning formulation to

obtain lower bounds. Furthermore, we present two heuristic approaches for the CM-

FLP. The first is an LP rounding heuristic that is also used to obtain good quality

upper bounds within the branch-and-price algorithm. The second is a local search

heuristic called 1-OptSwapBI that is adapted from one of the local search heuristics

described in Halper et al. [2015].

To show the efficacy of the branch-and-price algorithm and the underlying col-

umn generation procedure, we conducted computational tests on instances adapted

from Halper et al. [2015] (where each vertex hosts a client). We found out the ratio

of the number of clients to the number of facilities plays an important role on the

performance of both the branch-and-price algorithm and the heuristics. We solved

the layered graph formulation using CPLEX as a benchmark. We observe that in

general the problem is harder to solve when the the average number of clients per

facility is relatively small (i.e., the ratio of |C| to |F | is small)—all tested algorithms

struggle for these types of instances. However, in these instances the branch-and-

price algorithm outperforms the CPLEX benchmark. Furthermore, the local search

heuristic complements the branch-and-price algorithm by obtaining good solutions

quickly when the average number of clients per facility is larger.

The rest of the chapter is organized as follows. Section 4.1 discusses related

work in the literature. Section 4.2 describes two integer programming formulations.

Section 4.3 describes the column generation procedure and the branch-and-price al-

gorithm. Section 4.4 discusses heuristics, and Section 4.5 presents our computational

133

results.

4.1 Related Work

To the best of our knowledge the CMFLP has not been considered in the

literature, its uncapacitated version, the MFLP was introduced by Demaine et al.

[2009] as one of a class of movement problems. The majority of the previous work

on the MFLP deals with the approximability of the problem and mainly consists of

deriving theoretical bounds [e.g., Friggstad and Salavatipour, 2011, Armon et al.,

2012, Anari et al., 2016]. Halper et al. [2015] introduced an IP formulation for the

MFLP and developed various local search heuristics based on a decomposition of the

problem. Ahmadian et al. [2013] showed that the local search heuristic n-OptSwap

introduced by Halper et al. [2015] is a 3 + O
(√

log logn
logn

)
-approximation algorithm

for the MFLP.

The CMFLP concerns heterogenous facilities. When all facilities have identi-

cal capacities, the special case of CMFLP with homogeneous facilities is obtained.

The CMFLP with homogeneous facilities generalizes the well-studied capacitated

p-median with single sourcing problem (CPMSP), in which facilities are not relo-

cated from their initial locations, but their locations are to be determined. We can

easily see that by setting the cost of moving each facility to zero in the CMFLP with

homogeneous facilities, the CPMSP is obtained. A recent paper by Stefanello et al.

[2015] provides a nice discussion of earlier work on this problem. They also develop

a matheuristic that solves large-scale CPMSP instances (with up to 4500 nodes and

134

1000 facilities) and obtain small optimality gaps within an hour of computation time.

Their heuristic approach mainly relies on eliminating variables iteratively from the

mathematical model.

In the single source capacitated facility location problem (SCFLP), an opening

cost is associated with each facility instead of specifying the number of facilities.

Guastaroba and Speranza [2014], Yang et al. [2012], Cortinhal and Captivo [2003],

Chen and Ting [2008], Holmberg et al. [1999], and Ahuja et al. [2004], among others,

propose solution methods for this problem. Guastaroba and Speranza [2014] develop

a kernel search algorithm and achieve near optimal solutions for large scale instances

(with up to 1500 nodes and 300 potential facility locations, as well as 1000 nodes and

1000 potential facility locations). Klose [1999] and Tragantalerngsak et al. [2000]

study an extension of the SCFLP by considering two echelons of facilities. Each

second-echelon facility can be supplied by only one first-echelon facility, and each

customer is serviced by only one second-echelon facility. While only the locations

of the second-echelon facilities are selected in Klose [1999], the locations of first-

echelon facilities are also selected in Tragantalerngsak et al. [2000]. Similarly, two

sets of facilities (intermediate and upper level) are located in Addis et al. [2012]

and Addis et al. [2013], but the capacity of intermediate level facilities should also

be determined by installing devices that provide different capacities at different

costs. All upper level facilities have the same given capacity. The objective includes

the cost of assigning clients to intermediate level facilities, and of intermediate level

facilities to upper level facilities, in addition to the cost of locating facilities. To solve

the two-level problem, Addis et al. [2012] propose a branch-and-price algorithm.

135

In dynamic facility location problems, facilities are relocated over a time hori-

zon consisting of multiple periods [see Arabani and Farahani, 2012, Nickel and Sal-

danha da Gama, 2015, for overviews of studies on such problems]. Most of the

existing multi-period location problems associate a fixed cost for opening and clos-

ing facilities or resizing the capacities that depends on the location of the facility.

For instance, Torres-Soto and Uster [2011] develop exact solution methods for capac-

itated multi-period relocation problems with fixed relocation costs, where demand

of a customer can be serviced by multiple facilities partially. On the other hand,

Melo et al. [2006] include a unit variable cost of moving capacity from an existing

facility to a new facility, in addition to the fixed opening and closing costs. In their

model, relocation decisions are constrained by budget limitations, and the objective

includes production/supply costs, transportation costs between facilities, inventory

holding costs, and fixed facility operating costs. To the best of our knowledge, none

of the existing dynamic facility location models consider a fixed cost of relocating a

facility that depends on the initial and destination locations, as in the CMFLP.

Column generation and branch-and-price approaches have been widely used in

the literature to solve the CPMSP and the SCFLP. Lorena and Senne [2004] imple-

ment a column generation approach to solve the LP relaxation of the set covering

formulation of the CPMSP. The new columns are generated by solving a 0-1 knap-

sack problem for pricing and a Lagrangean/surrogate relaxation identified from the

dual of the master problem to accelerate convergence. The relaxation also provides

lower bounds. Ceselli and Righini [2005] describe a branch-and-price algorithm that

uses column generation for the CPMSP. At each iteration of column generation, the

136

current values of the dual variables are used as Lagrangian multipliers to compute

a lower bound as in Lorena and Senne [2004]. The authors experiment with two

branching strategies and computational experiments suggest that the performance

of the branch-and-price algorithm is closely related to ratio of the number of clients

(|C|) to the number of facilities |F |. Klose and Görtz [2007] describe a column gen-

eration and branch-and-price algorithm for the SCFLP. The method is based on a

Lagrangean relaxation of the demand constraints and a stabilized column generation

method for solving the corresponding master problem to optimality.

4.2 Integer Programming Formulations

We present two IP formulations for the CMFLP. The first one is the capac-

itated version of the formulation in Halper et al. [2015], which we refer to as the

layered graph formulation. We describe a decomposition based on this formulation

which leads to a local search algorithm. The second formulation is a set partitioning

formulation for which we describe a branch-and-price algorithm where the variables

in the layered graph formulation are used for branching and the LP relaxation is

solved via a column generation procedure.

4.2.1 Layered Graph Formulation

An instance of the CMFLP can be represented in a graph with three layers.

After making copies of the client vertices C and the facility vertices F , the copies

of the facility vertices make up the first layer. The vertex set V makes up the

137

12

11

8

4 9

7

5

10

6

3

21

13

14

16

15
4 5 6 7 8 9 10 11 12

1 2 3

1 2 3 13 14 15 16

4 5 6 7 8 9 10 11 12

Figure 4.1: The original graph representation (left) and the layered graph repre-
sentation (right) of a solution to an instance of the CMFLP. Triangles denote the
facility vertices, circles denote the client vertices and squares denote the remaining
vertices.

second layer and the copies of the client vertices make up the last layer. Figure 4.1

shows an example of the transformation from the original graph to the layered graph

representation. The layered graph representation aids visualizing the formulation

and the decomposition technique described next.

We define a binary variable xiv for each i ∈ C and v ∈ V , and a binary variable

yjv for each j ∈ F and v ∈ V . Let xiv = 1, if the destination of client i is vertex

v; and xiv = 0, otherwise. Similarly, let yjv = 1, if the destination of facility j is

vertex v; and yjv = 0, otherwise. For each vertex v ∈ V and each type t ∈ T , we

define a binary variable ztv such that ztv = 1, if vertex v is the destination of some

facility of type t; and ztv = 0, otherwise. The CMFLP is formulated as follows:

(IP1) Minimize
∑
i∈C

∑
v∈V

uidivxiv +
∑
j∈F

∑
v∈V

wjdjvyjv (4.1)

subject to
∑
v∈V

xiv = 1 i ∈ C (4.2)

∑
v∈V

yjv = 1 j ∈ F (4.3)

∑
j∈Ft

yjv = ztv v ∈ V, t ∈ T (4.4)

138

∑
t∈T

ztv ≤ 1 v ∈ V (4.5)

xiv ≤
∑
t∈T

ztv i ∈ C, v ∈ V (4.6)

∑
i∈C

qixiv ≤
∑
t∈T

Qtztv v ∈ V (4.7)

ztv, yjv, xiv,∈ {0, 1}. i ∈ C, j ∈ F, v ∈ V, t ∈ T

(4.8)

In IP1, the objective function (4.1) calculates the total weighted distance trav-

eled by the facilities and clients. Constraints (4.2) and (4.3) ensure that each client

and facility has a destination vertex. If ztv = 1, constraints (4.4) and (4.5) specify

that vertex v is the destination of a facility of type t and cannot host more than

one facility. In the case that ztv = 0, no facility of type t may have vertex v as

its destination. Constraint (4.6) states that client i may travel to location v only

if there is a facility moving to v. By constraint (4.7), total demand for a facility

cannot exceed its capacity. Constraint (4.8) defines the binary variables. Leaving ztv

variables binary, yjv variables can be relaxed in the interval [0, 1] since constraints

(4.3) and (4.4) correspond to the totally unimodular assignment constraints.

This formulation lends itself to a decomposition when the ztv variables are

fixed. Suppose we are given destination vertices for each type t ∈ T such that the

values of ztv variables are fixed to 1 for all v ∈ Zt, and ztv is fixed to 0 for the

remaining vertices. Let Z =
⋃
t∈T Zt ⊂ V . Then, the problem decomposes into a

total of |T |+ 1 disjoint subproblems of assigning each facility in Ft to a vertex in Zt

for every t ∈ T (the |T | facility assignment problems), and assigning each client to

139

a vertex in Z (the client assignment problem).

In the facility assignment problems, the objective is to find a minimum cost

bipartite matching between the initial facility locations in Ft and the destination

locations in Zt. For each type t ∈ T , if ztv = 0, then constraints (4.4) imply yjv = 0

for all j ∈ Ft and v ∈ V \Zt. Then for ztv = 1, constraints (4.4) can be rewritten as∑
j∈Ft yjv = 1 and v ∈ Zt. Given a subset Zt ⊂ V , the facility assignment problem

(FA(Zt, t)) can be formulated as,

FA(Zt, t) = Minimize
∑
j∈Ft

∑
v∈Zt

wjdjvyjv

subject to
∑
v∈Zt

yjv = 1 j ∈ Ft

∑
j∈Ft

yjv = 1 v ∈ Zt

yjv ≥ 0 j ∈ Ft, v ∈ Zt.

which models the least cost bipartite matching problem. Since the constraint matrix

is totally unimodular, the integrality of yjv is relaxed. The facility assignment

problem can be solved in polynomial time via the Hungarian Algorithm [see Kuhn,

1955].

In the client assignment problem, the objective is to assign each client to one of

the facility destination locations in Z such that if ztv = 1, then the facility assigned

to location v has a total demand less thanQt and the total weighted distance traveled

by the clients is minimized. For v ∈ V \ Z, we have
∑

t∈T ztv = 0 and constraints

(4.6) imply that xiv = 0 for i ∈ C since a client cannot be located at a destination

140

without a facility. Therefore, constraints (4.6) can be rewritten as xiv ≤ 1 for

i ∈ C, v ∈ Z. However, these constraints are redundant. Given a subset Z ⊂ V ,

the client assignment problem (CA(Z)) is the well-studied Generalized Assignment

Problem (GAP) [see Cattrysse and Van Wassenhove, 1992] and can be formulated

as,

CA(Z) = Minimize
∑
i∈C

∑
v∈Z

uidivxiv

Subject to
∑
v∈Z

xiv = 1 i ∈ C

∑
i∈C

qixiv ≤ Qt t ∈ T, v ∈ Zt

xiv ∈ {0, 1} i ∈ C, v ∈ Z,

A similar decomposition technique was described in Halper et al. [2015] for

the MFLP, which has identical facilities without capacity restrictions by design, i.e.,

|T | = 1 and Qt =∞. The decomposition in Halper et al. [2015] is extended here to

the CMFLP, such that the facility assignment problem is solved separately for each

type t ∈ T . In the client assignment problem described for the MFLP, each client is

assigned to its closest facility while in the CMFLP, the client assignment problem

is the GAP which is NP-Hard.

141

4.2.2 Set Partitioning Formulation

Let Stv denote the set of all feasible client assignments to the facility of type

t to be located in v. A client assignment Stv is feasible if
∑

i∈Stv qi ≤ Qt. Let aiStv

be a binary coefficient taking the value 1 if client i appears in assignment Stv, and

0, otherwise. For an assignment Stv ∈ Stv, dStv denotes the weighted travel cost of

clients in Stv. That is, dStv =
∑

i∈Stv uidiv. Furthermore, for all Stv ∈ Stv, let πStv be

a binary variable indicating if customers in Stv are assigned to the facility of type t

that will be located at v. Let yjv be a binary variable indicating if the facility j is

moved to v. The set partitioning formulation is as follows.

(IP2) Minimize
∑
t∈T

∑
v∈V

∑
Stv∈Stv

dStvπStv +
∑
j∈F

∑
v∈V

djvyjv (4.9)

subject to
∑
v∈V

∑
Stv∈Stv

πStv = |Ft| t ∈ T (4.10)

∑
t∈T

∑
v∈V

∑
Stv∈Stv

aiStvπStv = 1 i ∈ C (4.11)

∑
t∈T

∑
Stv∈Stv

πStv ≤ 1 v ∈ V (4.12)

∑
v∈V

yjv = 1 j ∈ F (4.13)

∑
j∈Ft

yjv =
∑

Stv∈Stv

πStv v ∈ V, t ∈ T (4.14)

πStv ∈ {0, 1} v ∈ V, t ∈ T,

Stv ∈ Stv (4.15)

yjv ∈ {0, 1} j ∈ F, v ∈ V (4.16)

142

The objective function calculates the weighted distance traveled by facilities

and clients. Constraints (4.10) assert that the total number of facilities moved for

each type is equal to the total number of facilities of that type. Constraints (4.11)

ensure that a client only appears in exactly one assignment. By constraints (4.12), at

most one facility can be assigned to the same location. Similar to IP1, by setting πStv

binary, the yjv variables can be relaxed in the interval [0, 1] since constraints (4.13)

and (4.14) correspond to the assignment constraints that are totally unimodular.

Lemma 4.2.1 The optimal objective value of the LP relaxation of IP2 (namely,

LP2) is greater than or equal to the optimal objective value of the LP relaxation of

IP1 (namely, LP1).

Proof We first show that any feasible solution to LP2 can be transformed to a

feasible solution of LP1 of equal cost. Let π and y be a feasible solution to LP2.

Let

ztv =
∑

Stv∈Stv

πStv t ∈ T, v ∈ V, (4.17)

xiv =
∑
t∈T

∑
Stv∈Stv

aiStvπStv i ∈ C, v ∈ V (4.18)

and yjv indicates if the facility j is moved to location v in both formulations. After

the transformation, constraints (4.2), (4.3), (4.4) and (4.5) are identical to con-

straints (4.11), (4.13), (4.14) and (4.12), respectively. From the transformation of

143

xiv, we get

xiv =
∑
t∈T

∑
Stv∈Stv

aiStvπStv ,

≤
∑
t∈T

∑
Stv∈Stv

πStv ,

=
∑
t∈T

ztv,

since aiStv is a 0-1 coefficient, which implies that constraints (4.6) hold.

By definition, all feasible assignments Stv ∈ Stv satisfy
∑

i∈Stv qi ≤ Qt for all

t ∈ t, v ∈ V , which can also be stated as
∑

i∈C qiaiStv ≤ Qt. By summing up each

side for t ∈ T and Stv ∈ Stv and multiplying each side by πStv , a nonnegative term,

we get

∑
i∈C

∑
t∈T

∑
Stv∈Stv

qiaiStvπStv ≤
∑
t∈T

Qt

∑
Stv∈Stv

πStv .

After replacing the corresponding terms with xiv and ztv, we have

∑
i∈C

qixiv ≤
∑
t∈T

Qtztv,

which is the set of constraints (4.7). Note that the lower and upper bound con-

straints for the variables are satisfied by the transformation. The second terms in

the objective functions of both LP1 and LP2 are identical. Therefore, we focus on

the first terms. In LP2, after replacing dStv with
∑

i∈Stv uidiv in the first term, we

144

get

∑
t∈T

∑
v∈V

∑
Stv∈Stv

dStvπStv =
∑
t∈T

∑
v∈V

∑
Stv∈Stv

∑
i∈Stv

uidivπStv ,

=
∑
t∈T

∑
v∈V

∑
Stv∈Stv

∑
i∈C

uidivaiStvπStv ,

=
∑
i∈C

∑
v∈V

uidivxiv,

which is the first term in the objective function of LP1. Therefore, a feasible solution

to LP2 can be transformed into a feasible solution to LP1 of equal cost.

Now we provide an example where the objective value of the optimal solution of

LP1 is strictly less than the objective value of the optimal solution of LP2. Consider

the example in Figure 4.2 with 3 nodes, 2 identical facilities, and 3 clients. Facilities

1 and 2 with a capacity of 5 are initially located at nodes 1 and 2, respectively.

Clients 1, 2, and 3 with a demand of 1, 3, and 4 are at nodes 1, 2, and 3 respectively.

Distances are given as d11 = d22 = d33 = 0, d12 = d21 = d23 = d32 = 1 and

d13 = d31 = 2. Let wj = 1 for all facilities and ui = 1 for all clients. The optimal

solution to LP1 is: y11 = y22 = 1, x11 = x22 = 1 and x31 = x32 = 0.5 with objective

value 1.5. The optimal solution to LP2 gives us πS11 , πS22 = 1 , where S11 = {1, 3},

S22 = {2}. This indicates that facilities stay put and clients 1 and 3 are assigned to

facility 1 and client 2 is assigned to facility 2, which is in fact the optimal solution

to IP1. In this example, the lower bound obtained from LP1 is 1.5 and the lower

bound obtained from LP2 is 2. The optimality gap of LP1 is 33%, whereas the

optimality gap of LP2 is 0%.

145

2

1

3

q1=1

q2=3 q3=4

1

1

2

Q=5

Q=5

Figure 4.2: IP1, IP2 and LP2 have objective
value of 2 (facilities and clients located at 1
and 2 stay put and client 3 is assigned to
facility 1). However, LP1 has an objective
value of 1.5, with a solution that splits the
demand of client 3 between facilities 1 and
2.

1 2
q1=1 q2=31
Q=2 Q=2

Figure 4.3: While LP2 is infeasi-
ble, LP1 is feasible with an objec-
tive value of 1/3.

There is a more serious problem with the linear relaxation of IP1. It may be

feasible when IP1 is infeasible. Consider the example in Figure 4.3 with 2 identical

facilities and 2 clients. The distance between the two nodes is 1 and both facilities

and clients have weight 1. Facilities 1 and 2 both have capacity 2, while client

1 has demand 1 and client 2 has demand 3. Clearly, this problem is infeasible.

However, when we solve LP1, we obtain a feasible solution y11 = y22 = 1, x11 = 1,

x21 = 1/3, x22 = 2/3 with objective value 1/3, in which client 1 is assigned to facility

1 and client 2 is partially assigned to both facilities. Both facilities remain at their

locations and the capacity constraints are satisfied. In contrast, LP2 is infeasible.

4.3 Column Generation and Branch-and-Price Procedure

In this section we describe a column generation procedure to solve LP2. We

then apply a branch-and-price algorithm to IP2 (solving the linear relaxation us-

ing the column generation procedure), in which the variables of formulation (IP1)

146

are used for branching. We provide three branching alternatives and discuss the

management of the columns.

4.3.1 Column Generation Procedure for LP2

Even though LP2 provides better bounds compared to LP1, there are expo-

nentially many combinations of clients that can make up the set Stv. Instead of

solving LP2 with all Stv for all t ∈ T, v ∈ V , we describe a column generation pro-

cedure that generates columns after we solve the restricted master problem (RMP),

i.e., LP2 without the complete set of πStv columns. Let us consider the dual of LP2.

(LP2D) Maximize
∑
t∈T

|Ft|αt +
∑
i∈C

βi +
∑
v∈V

γv +
∑
j∈F

δj (4.19)

subject to αt +
∑
i∈C

aiStvβi + γv − ωtv ≤ dStv t ∈ T, v ∈ V,

Stv ∈ Stv (4.20)

δj +
∑
t∈T

ωtv ≤ wjdjv j ∈ F, v ∈ V (4.21)

γv ≤ 0 v ∈ V (4.22)

For primal optimality, we need dual feasibility. Note that constraints (4.21) are

always satisfied since all of the yjv variables are in the RPM. However, for each

t ∈ T, v ∈ V , we need to make sure there is no assignment Stv such that αt +∑
i∈C aiStvβi + γv − ωtv > dStv . To find such assignments, we solve the following

147

pricing problem, which is a 0-1 Knapsack Problem.

(KP(t, v)) Maximize
∑
i∈C

(βi − uidiv)ξi (4.23)

subject to
∑
i∈C

qiξi ≤ Rtv (4.24)

ξi ∈ {0, 1} i ∈ C (4.25)

When the pricing problem is solved at some node of the branch-and-price tree, the

capacity of a facility may already be partially allocated. Therefore, we denote the

remaining capacity of a type t facility at v by Rtv. At the root node of the tree

Rtv = Qt. In order to ensure a given solution is primal optimal (dual feasible), we

have to solve KP(t, v) for all types t and vertices v (that are not fixed to zero by

branching). Let Stv = {i | ξi = 1}. We check whether constraint (4.20) is satisfied.

If the constraint is satisfied for all types t and vertices v, then we conclude that

the solution is optimal. Otherwise, we add the column of πStv for every Stv that

violates (4.20) and resolve the RMP. The general outline of the Column Generation

Procedure is as follows.

Column Generation Procedure

Step 1: Generate an initial set of feasible columns for the RMP.

Step 2: Solve the RMP with the existing columns and calculate the values of the

optimal dual variables.

Step 3: By solving the pricing problems KP(t, v), find columns such that (4.20) is

148

violated. If such columns exist, add them to the RMP and go to Step 2.

Otherwise, terminate with the optimal solution.

4.3.2 Branching Scheme

The knapsack problems we solve for pricing depends on both the branching

scheme we employ and the node of the branch-and-price tree. Branching on the

variables of IP2 (i.e. πStv) is not a viable option for the following reason. Consider

branching on the variable πStv , where Stv is a feasible client assignment. For the

branch where πStv = 0, only the specific assignment Stv is forbidden. Therefore, any

other assignment in Stv must still be considered. In order to do that, each client

in Stv must be excluded from KP(t, v) one by one. As the number of forbidden

assignments increases, the number of knapsack problems to be solved also increases

drastically. However, branching on the variables ztv and xiv does not have this

problem and provides a much cleaner column generation process. We describe three

branching strategies that use ztv and xiv variables after transforming them as in

(4.17) and (4.18).

4.3.2.1 Binary Branching

In binary branching, we fix ztv and xiv variables to 1 in one branch, and to 0

in the other branch. We first start by branching on the ztv variables since it is not

possible to branch on xiv without having branched on ztv = 1 at one of the parent

nodes for some t. Consider the branch where ztv = 1, then some facility of type

149

t will move to v. Since no other type of facility t′ can move to v, we set zt′v = 0

for all t′ ∈ T \ {t}. In addition, the constraint corresponding to v from the set

of constraints (4.12) has to be set as an equality. That is, for v, the constraint is

modified to
∑

t∈T
∑

Stv∈Stv πStv = 1 in the restricted master problem (RMP) of LP2.

For the branch where ztv = 0, vertex v is discarded for type t as a candidate for a

facility destination and KP(t, v) is not solved.

For the branch where xiv = 1, client i is assigned to vertex v. Then all xiv′ for

v′ ∈ V \ {v} can be set to zero. For all types t ∈ T , we adjust the residual capacity

to Rtv− qi while solving KP(t, v) and exclude client i from KP(t, v). For the branch

where xiv = 0, client i is simply excluded from KP(t, v) for all t ∈ T .

Among all fractional ztv, we branch on the most fractional one (i.e. closest to

0.5). If there does not exist a fractional ztv, then among all i and v pairs, we branch

on the most fractional xiv given that ztv is fixed to 1.

4.3.2.2 Partition Branching

Partition branching is similar to the branching strategies proposed for the

generalized assignment problem by Savelsbergh [1997] and for the CPMSP by Ceselli

and Righini [2005]. Given a client i ∈ C, we divide the set of vertices V into two

sets V + and V 0 such that V + = {v | xiv > 0, v ∈ V } and V 0 = {v | xiv = 0, v ∈ V }.

Then we further partition V + and V 0 into two sets such that V + = V +
1 ∪ V +

2 and

V 0 = V 0
1 ∪ V 0

2 . We set V1 = V +
1 ∪ V 0

1 and V2 = V +
2 ∪ V 0

2 . A balanced partition

can be achieved by sorting the vertices in V + in non-increasing order of xiv and

150

assigning them alternately to V +
1 and V +

2 . We assign the vertices in V 0 to V 0
1 and

V 0
2 in a similar fashion. We branch on the client i∗ that satisfies i∗ = arg max{|V +|},

breaking ties arbitrarily. Finally, we set xi∗v = 0 for all v ∈ V1 in one branch and

xi∗v = 0 for all v ∈ V2 in the other branch. In the column generation procedure,

setting xi∗v = 0 translates into removing client i∗ from KP(t, v) for all t.

4.3.2.3 Hybrid Branching

Ceselli and Righini [2005] reported that partition branching performs better

than the binary branching for the CPMSP, which is a special case of the CMFLP

where |T | = 1 and wj = 0 for all j ∈ F . After preliminary computational experi-

ments performed on instances for the CMFLP with T = {1, 2}, we have observed

that using partition branching by itself is inferior to the binary branching in terms of

average computational time and nodes explored. This may attest to the differences

between the two problems. In hybrid branching, we use binary branching on ztv

variables. When there is no fractional ztv, we employ partition branching for the

xiv variables. Though not necessary, branching on ztv variables before the partition

branching improves the computational time according to our tests.

4.3.3 Columns Management

Columns management is an integral part of any column generation procedure

as it significantly affects the computational effort required to complete the proce-

dure. There are three pillars to managing columns to which every column generation

151

procedure needs to attend. First, the initial set of columns to start the procedure.

Second, the addition of new columns through the pricing problem or other ap-

proaches. Third, the management of the existing columns. In the literature, there

are various schools of thought on columns management. As it is prohibitive to ex-

amine all possible approaches proposed in previous studies, we experimented on a

few of the better practices in the literature with adjustments of our own.

4.3.3.1 Setting initial columns

At the root node of the branch-and-price tree, we generate an initial set of

columns for the RMP by a greedy algorithm targeted towards obtaining feasible so-

lutions in short time. We let the facilities stay in their original locations. Therefore,

the algorithm only assigns clients to the facilities. Let Rj be the remaining capacity

of facility j ∈ F . Initially Rj = Qt, if j ∈ Ft. Also, initially let F ′ = F and C ′ = C.

The initial column generation algorithm is outlined as follows.

Initial Column Generation Algorithm

For each j ∈ F ′, go through the following steps while C ′ 6= ∅ and F ′ 6= ∅.

Step 1: Let i∗ = arg mini∈C′|qi≤Rj{
uidij
qi
}.

Step 2: If i∗ = ∅, then set F ′ = F ′ \ {j}; otherwise, assign i∗ to facility j and set

Rj = Rj − qi and C ′ = C ′ \ {i∗}.

When the algorithm terminates, either C ′ = ∅ or F ′ = ∅. If C ′ = ∅, it means

that all clients are assigned and we have a feasible solution. If F ′ = ∅, it means there

152

are clients left unassigned and there is no facility with enough remaining capacity

to accommodate them. In this case, we run the following assigned-unassigned client

exchange procedure.

Assigned-Unassigned Client Exchange Procedure

Step 1: For an unassigned client i ∈ C ′, assign i to its closest facility j ∈ F such

that qi ≤ Rj. If no such facility exists, then let F ′ = F and go to Step 2.

Step 2: If F ′ = ∅, then terminate. Otherwise, consider the facility j ∈ F ′ that is

closest to i; find a client i′ assigned to facility j such that i′ satisfies the

following criteria:

• qi > qi′

• Rj − qi + qi′ ≥ 0

• if more than one client satisfy the above criteria, pick the client with

the larger ui′di′j.

Step 3: If i′ does not exist, set F ′ = F ′ \ {j} and go to Step 2. Otherwise, exchange

i with i′, i.e., assign i to j and i′ to C ′ and go to Step 1.

Note that even after running this procedure, we may still not have a feasible solution.

In that case, we add a separate dummy variable for each constraint with a very large

objective function coefficient to have a starting feasible solution.

In addition to a starting feasible solution, we generate more columns by cre-

ating a feasible assignment Stv for each type t ∈ T and vertex v ∈ V according to

153

the following procedure.

Generation of Additional Columns

Step 1: For each v, sort the list of clients with respect to uidiv in non-decreasing

order. Let d̄v =
∑

i∈C uidiv/|C| be the average weighted distance of clients

to v.

Step 2: For each type t, let Rtv = Qt be the remaining capacity.

• For each client i on the sorted list: Let r ∼ U [0, 1]. If r ≤ e−uidiv/d̄v ,

and qi ≤ Rtv, then add client i to the assignment and set Rtv = Rtv−qi.

Otherwise, process the next client.

We run the additional column generation procedure m times resulting in m

feasible assignments for each type t and vertex v. Note that instead of totally

random assignments, we use this procedure so that clients that are closer to a given

vertex v have a higher chance of being in the feasible assignment Stv. After the

preliminary computational experiments, we set m = 5, as it caused the largest

decrease in the average computational time. Compared to m = 0, that is, the case

where no additional columns are added to the initial feasible solution, setting m = 5

decreases the computational time required to solve the root node two to three-fold

in most of the instances.

The child node inherits all the active columns from the parent node. How-

ever, we ensure the columns corresponding to infeasible assignments based on the

branching decision have sufficiently large objective function coefficients. That way,

154

these columns will be replaced by other columns that would yield a lower objective

value. To ensure the child node has a starting feasible RMP, we add a separate

dummy column for each constraint with a very large objective function coefficient.

If column generation procedure terminates with columns corresponding to infeasible

assignments and/or dummy columns in the optimal basis, we can conclude that the

node is infeasible and proceed to prune the node.

4.3.3.2 Adding columns through pricing

While solving the exact KP(t, v) in every RMP iteration is possible, finding

columns that violate (4.20) does not necessarily mean that we have to solve the

pricing problem exactly. Rather, we only have to solve the exact KP(t, v) for all

types t and vertices v to ensure that a given solution is optimal. Therefore, we prefer

to use a greedy 2-approximation algorithm for the sake of computational time. The

clients are sorted in non-increasing order of (βi−uidiv)/qi and the knapsack is filled

until no capacity is left. We check the set of constraints (4.20) for violations. We only

solve the exact KP(t, v) when the greedy algorithm fails to find violating columns.

If the exact solution also fails to find violating columns, then we terminate with an

optimal solution. However, if violating columns have been found after solving the

exact KP(t, v), then we add those to the RMP and switch to applying the greedy

algorithm until it fails again.

155

4.3.3.3 Managing active columns

Even though there are exponentially many πStv variables, only |T | + |C| +

|V |+ |T | · |V | can be in the basis, hence a vast majority of them will be non-basic.

The size of the problem grows every time we add a column, but the number of

basic columns stay exactly the same. Clearly, the growth in the number of columns

reflects badly on the computational time. To remedy this, we introduce a procedure

that removes columns from the RMP. If a variable is non-basic for κ consecutive

iterations, we remove that variable from the RMP. This procedure ensures that the

size of the RMP stays in O(κ(|T | + |C| + |V | + |T | · |V |)). Note that a removed

column may be added again due to possible regeneration. This may increase the

number of iterations and the total number of columns added to the RMP but the

gain in computational time is well-justified based on the preliminary computational

experiments.

4.4 Heuristics

We describe two heuristics for the CMFLP. The first is an LP rounding heuris-

tic which is employed at all the nodes of the branch-and-price tree. The second is a

local search heuristic.

4.4.1 LP Rounding Heuristic

By rounding the optimal fractional solution at any node of the branch-and-

price tree, it is possible to quickly find good quality feasible solutions to the CMFLP

156

and generate primal bounds. After calculating the values of ztv and xiv variables

from the optimal fractional solution to the corresponding LP2 as in (4.17) and (4.18),

we run the following heuristic to obtain a feasible solution to the CMFLP.

Step 1: Sort the ztv variables in non-increasing order. Then for each t, select the

first |Ft| vertices to a set named Zt.

Step 2: Solve the facility assignment problems (FA(Zt, t)) which sets the destination

vertices for the facilities.

Step 3: For the client assignment problem, we run the following subroutine.

• Create a list of clients and their preferred vertices. Pair any client i in

the list with the vertex v such that xiv is closest to 1.

• Sort the list in non-increasing order of xiv. Starting from the top of

the list, assign each client to the facility that has its preferred vertex as

the destination. Adjust its remaining capacity. If there is not enough

remaining capacity, then go to the next client in the list.

• At the end of the list, if there are some clients left unassigned because

there was not enough remaining capacity, assign them to the nearest

facility with enough remaining capacity.

Step 4: Finally, run the following improvement heuristic.

• Evaluate all possible client shifts, i.e., removing the client from its

current facility and assigning it to a different facility. Implement the

157

shift that would best improve the total cost. If no such shift is found,

go to the next step.

• Evaluate all possible client swaps, i.e., exchanging clients that are as-

signed to different facilities. Implement the swap that would best im-

prove the total cost. If there is no improving swap, then the heuristic

is terminated.

The LP rounding heuristic is run every time a feasible LP solution is obtained

in the branch-and-price tree. Note that the LP rounding heuristic is not guaranteed

to terminate with an integer feasible solution. In fact, determining whether or not

an instance to the CMFLP has a feasible solution is NP-Complete.

4.4.2 Local Search Heuristic

In Halper et al. [2015], the authors describe several heuristics for the MFLP

based on the decomposition of the MFLP to facility and client assignment problems

for a given set of facility destination vertices. Even though the facility and client

assignment problems are different for the CMFLP, the general framework of the local

search heuristics still applies. Here, instead of having a single facility assignment

problem, we have |T | facility assignment problems and instead of a polynomially

solvable client assignment problem, we have the NP-Hard generalized assignment

problem.

In n-OptSwapBI (where BI stands for best improvement), we are given a set

of facility destination vertices Z ⊂ V . For each type t, a subset of kt facility destina-

158

tions in Zt are replaced by a subset of kt destinations in V \Zt. Every possible com-

bination of replacements across all types are considered such that 1 ≤
∑

t∈T kt ≤ n.

For each replacement, the corresponding facility assignment problems are solved op-

timally by the Hungarian Algorithm. For the facility assignment problem FA(Zt, t),

the Hungarian algorithm requires O(|Zt|3) from scratch. However, Halper et al.

[2015] describe a procedure to update the facility assignments in O(kt|Zt|2), given

the previous optimal assignments. We also employ this update procedure in our

computations.

To solve the client assignment problem, we use the same greedy algorithm we

have used to generate feasible solutions in the column generation procedure out-

lined in Section 4.3.3.1, albeit with one caveat. Instead of choosing i∗ according to

i∗ = arg mini∈C′|qi≤Rj{
uidij
qi
} in Step 1, we use i∗ = arg mini∈C|,qi≤Rj{uidij} in order

to target solution quality rather than feasibility. In the case that the algorithm

terminates with unassigned clients, we run the same assigned-unassigned client ex-

change procedure.

In Halper et al. [2015], the computational results indicate that setting n > 1

is not viable computationally, even for the MFLP where there is a single facility as-

signment problem and the client assignment problem is solvable in polynomial time.

Hence, we focus on the case where n = 1. That is, we consider replacing each facility

destination in Zt with every other destination in V \Zt for each type t by solving both

facility and client assignment problems, and select the replacement that yields the

most decrease in the objective value. Note that the neighborhood of 1-OptSwapBI

for the CMFLP is populated by
∑

t∈T |Zt|(|V | − |Zt|) possible replacements.

159

4.5 Computational Results

In order to assess the solution quality and computational efficiency of the

branch-and-price algorithm and the underlying column generation procedure, we

coded the branch-and-price algorithm to solve IP2 as described in Section 4.3.2.

We used the hybrid branching scheme in the results reported since it performed the

best during the preliminary computational experiments. We evaluate the nodes in

the branch-and-price tree according to breadth-first search. We used CPLEX to

solve IP1 as a benchmark to the branch-and-price algorithm. In this section we first

provide results on the root node LP relaxations for IP1 and IP2, namely, LP1 and

LP2 to compare the strength of the formulations. We also compare the solutions

obtained from the LP rounding heuristic based on LP2, namely LP2RH, and the

local search heuristic LSH with those obtained from the branch-and-price algorithm.

We provide results regarding both the case with homogeneous facilities and the case

with two types of facilities with respect to their capacity values.

4.5.1 Test Instances

The computational experiments are performed on 45 instances titled p-med

(40 of them are adapted from Halper et al. [2015]). Originally, p-med instances

were generated for the p-median problem and adapted to the MFLP by Halper

et al. [2015]. We further adapted the instances to the CMFLP and generated more

instances for structural consistency. The computational studies performed on these

instances provide insights into the relationships between the solution quality and

160

the computational efficiency of the proposed algorithms, as well as the structural

properties of the instances.

The first 30 instances (p-med1 through p-med30) are grouped in fives with

respect to the number of nodes and clients (for p-med instances, we have |C| = |V |).

The first group of five instances (p-med1 through p-med5) have 100 nodes with

increasing number of facilities, the second group of five have 200 nodes, and so

on. However, the last 10 instances (p-med31 through p-med40) are not structured

in groups of five. Rather, instances p-med31 through p-med34 have 700 nodes,

instances p-med35 through p-med37 have 800 nodes, and instances p-med38 through

p-med40 have 900 nodes. For consistency, we generated one 700 node instance

(named p-med34-1 using the shortest path distances, client and facility weights

and client demands of instance p-med34 only generating more facility locations to

conform to the structure observed in the first 30 instances. In a similar fashion, two

instances each were generated for 800 and 900 node instances (named p-med37-1

and p-med37-2, and p-med40-1 and p-med40-2).

The instances are adapted to the CMFLP by generating the demand qi for all

i ∈ C. We draw qi randomly from a Gamma distribution with α = 5 and β = 2. If

qi exceeds 0.8·E[qi]·|C|
|F | , we set it to 0.8·E[qi]·|C|

|F | so that the demand can be served by a

single facility with some slack. We experimented with homogeneous facilities where

|T | = 1 and heterogeneous facilities where |T | = 2. For homogeneous facilities, the

capacity Q is set to
∑
i∈C qi

0.9·|F | .

When we have two type of facilities, the facilities are alternately assigned to

F1 and F2, and their capacities Q1 and Q2 are set to
0.65

∑
i∈C qi

0.9·|F1| and
0.35

∑
i∈C qi

0.9·|F2| . We

161

provide some slack to the total capacity by scaling so that the problem is feasible

with very high probability. In fact, we have not encountered an infeasible instance.

We observed a relationship between the ratio of the number of nodes (clients)

to the number of facilities, |V |/|F |, and the quality of solutions obtained from both

IP formulations, their LP relaxations, and the heuristics, just like Ceselli and Righini

[2005] did for the capacitated p-median problem. For this reason, we grouped the

test instances with respect to |V |/|F |, as |V |/|F | ≤ 10 and |V |/|F | > 10. The ratio

|V |/|F | represents the expected average number of clients assigned per facility.

4.5.2 Computational Settings

CPLEX MIP solver is used to solve IP1 and LP1. We also solved IP1 after dis-

abling the default CPLEX cuts, which we denote as IP1*, to assess the performance

of IP1 in a plain branch-and-bound framework. LP2 is solved using the column

generation procedure described in Section 4.3, where the exact KP is solved by a

dynamic program that runs in O(|Ft|Qt) and the master LP is solved using CPLEX.

IP2 is solved using the branch-and-price algorithm proposed in Section 4.3.2. Within

the algorithm, LP2 is used to obtain lower bounds and the LP rounding heuristic is

used to obtain upper bounds. Recall that we remove columns staying nonbasic for

κ iterations. After preliminary analysis, we concluded that setting κ to d0.15 · |V |e

and d0.1 · |V |e provides the most average decrease in run time for |V | ≤ 500 and

|V | > 500, respectively. We have implemented the branch-and-price algorithm using

C++ where the RMP is solved with CPLEX. We used CPLEX version 12.5 coded

162

in C++ in all computational experiments and ran the instances on a computer with

Intel Core i7-2600 CPU @ 3.40 GHz and 16 GB of RAM running 64-bit Windows

7.

Due to excessive computational times for large instances, we limited our runs

to three hours (10800 seconds). If an instance of IP1 or IP2 was terminated at three

hours, we report the objective value of the best integer solution found, namely the

best upper bound, and the best lower bound found. The performance of the branch

and price algorithm and the underlying column generation procedure is inferior

in instances where |V |/|F | > 10. Among these instances, in almost half of the

instances with |T | = 1 and for almost all instances with |T | = 2, the column

generation procedure had to be terminated due to the time limit before finding the

root node LP optimal solution. On the other hand, IP1 has found the optimal (or

near optimal) solutions with relative ease for these instances. We therefore omit the

tables with full results for instances where |V |/|F | > 10 and refer only to average

results.

4.5.3 Homogeneous Facilities Case

We present the results in three tables. Tables 4.1, 4.2, and 4.3 contain the

results for |V |/|F | ≤ 10. In all tables, if a value cannot be calculated due to the

time limit, we denote the corresponding cell with ‘-’. The running times exceeding

three hours are also denoted with ‘-’.

163

4.5.3.1 Comparison of the LP Relaxations

Table 4.1 summarizes the computational results for LP1 and LP2 with respect

to the best IP lower and upper bounds. The first column specifies the names of

the instances. Generically, let X(L) denote the best lower bound obtained from

model X after 3 hours of computation, where X can be either IP1, IP1* or IP2.

Similarly, X(U) denotes the best feasible integer solution obtained from model X

after 3 hours of computation. In the first group of columns, we report the best

lower bound (BL) from either IP1(L), IP1*(L), or IP2(L) and the best upper bound

(BU) from either IP1(U), IP1*(U), IP2(U) for each instance, along with the source

of the bound. If the same bounds are found by IP1, IP*, and IP2, we specify the

source as ‘ALL’. Note that if IP1, IP1* or IP2 terminated with the optimal solution,

then BU=BL. For example, in Table 4.1, the source of the best known upper bound

for the p-med15 instance is IP1(U). That is, the integer feasible solution with the

lowest objective function value for p-med15 is obtained from IP1. On the other

hand, the source of the best known lower bound for p-med15 is IP2(L), meaning

that it is found while solving IP2 by the branch-and-price algorithm. In the second

group of columns labeled Gap (%), we provide the percentage gaps between various

formulations. For all reported gaps denoted as X-Y , the gaps are calculated as

(X − Y)/X. The column labeled BU-BL provides the gap between the best upper

bound and the best lower bound, i.e. the best known optimality gap. The columns

labeled BU-LP1 and BU-LP2 denote the gap between the best upper bound and

the lower bounds obtained by solving LP1 and LP2, respectively. Similarly, the

164

columns labeled BL-LP1 and BL-LP2 denote the gap between the best lower bound

and lower bounds of LP1 and LP2. The group of columns labeled ‘Running time

(s)’ provides the CPU times in seconds. Finally, the size of the instances are given

in the last group of columns.

In Table 4.1, where |V |/|F | ≤ 10, we observe that as |V | gets larger, espe-

cially for |V | ≥ 600, IP2 starts to overtake IP1 at finding the best upper bound.

Furthermore, the best lower bound is found by IP2 when |V | ≥ 300. LP2 provides

significantly smaller gaps than LP1 on the average with 1.80% vs. 5.62% compared

to the best upper bound. In addition, we observe that the quality of LP2 compared

to LP1 gets progressively better as |V |/|F | gets smaller. Compared to the upper

bound, LP2 has an average gap of 0.80% vs. 1.27% of LP1 for |V |/|F | = 10. The

gaps become 2.09% vs. 4.92% for |V |/|F | = 5 and 2.62% vs. 11.17% for |V |/|F | = 3.

We attribute this difference to the packing constraints (4.7) in LP1 which lead to

more fractional variables as |F | gets larger. These computational results confirm

the theoretical finding that IP2 is a stronger formulation than IP1. In general, as

expected, LP1 runs faster than LP2 with an average of 128.2 vs. 519.7 seconds.

As a result, we observe an apparent trade-off between obtaining smaller gaps and

having longer run times.

The significant difference between the quality of LP2 and LP1 bounds is

nowhere to be found when |V |/|F | > 10, as the average gap between LP2 and

the best upper bound is 0.54%, whereas the gap of LP1 is 0.56% for instances where

LP2 terminated within the time limit, and 0.63% overall. However, the quality of

the best upper bound is also poorer for |V |/|F | ≤ 10, where the average BU-BL

165

gap is 1.43% as opposed to a 0.05% average gap for |V |/|F | > 10. Therefore, it

does not necessarily mean that LP2 performs poorly for |V |/|F | ≤ 10. In fact, the

quality of LP2 seems to be somewhat robust with |V |/|F |. On the other hand, the

running time of LP2 increases rapidly as |V |/|F | gets larger. We believe the reason

for the increase is the number of variables in LP2 being tied to the number of fea-

sible assignments. Recall that for an assignment Stv to be feasible, we need to have∑
i∈Stv qi ≤ Qt. For larger |V |/|F |, Qt is also large but the demand is drawn from

the same distribution. That leads to more feasible combinations of clients, which

in turn leads to more variables for LP2. Even with all the improvements to the

column generation procedure, there are eight (out of seventeen) instances for which

LP2 could not be solved in three hours. In summary, we can conclude that in terms

of running time and the quality of the lower bound, LP2 and LP1 complement each

other with increasing |V |/|F |.

4.5.3.2 Comparison of the Lower Bounds

In Table 4.2, where |V |/|F | ≤ 10, the computational results for IP1(L),

IP1*(L), and IP2(L) and the running times of IP1, IP1*, and IP2 are presented.

The columns labeled BL-IP1(L), BL-IP1*(L) and BL-IP2(L) report the gap between

the best lower bound and IP1(L), IP1*(L) and IP2(L). On average, IP2(L) is better

than IP1(L) with an average value of 0.04% compared to 0.47%, which is somewhat

expected given the quality of LP2 vs. LP1 when |V |/|F | ≤ 10. In fact, CPLEX

does a pretty good job closing the initial gap of LP1, which is 4.27% on average with

166

respect to the best lower bound. On the other hand, deprived of its state-of-the-art

cuts, we observe that the poor quality of LP1 hinders the ability of IP1* at closing

the gap, which is 3.53% on average but gets as large as 9.71%. In terms of running

time, IP1, IP1* and IP2 all hit the three hour limit when |V | ≥ 300 (except p-med13

for IP1) with IP1 faring slightly better.

When |V |/|F | > 10, IP1(L) performs better than IP2(L), providing the best

lower bound in all instances. IP2(L) has an average gap 0.31% compared to the best

lower bound. Even IP1*(L) performs as well as IP1(L), which is somewhat expected

since CPLEX cuts will be more useful when the packing problem is harder. We do

not have the complete results for IP2 (because of the three hour time limit) for this

subset of instances but the averages from the available results suggest that IP2 is

much more robust with respect to |V |/|F |. However, the long running times of IP2

suggests IP1 should be the formulation of choice for |V |/|F | > 10, especially given

that the running time of IP1 decreases significantly as |V |/|F | gets larger.

4.5.3.3 Comparison of the Upper Bounds

In Table 4.3, where |V |/|F | ≤ 10, the computational results for IP1(U),

IP1*(U), IP2(U), the LP rounding heuristic from LP2 (LP2RH), and the local search

heuristic (LSH) are presented. The columns labeled IP1(U)-BL, IP1*(U)-BL and

IP2(U)-BL report the gap between IP1(U), IP1*(U) and IP2(U), and the best lower

bound, i.e., the optimality gap. In the column LP2RH-BL, the gap between the

best integer feasible solution found by LP2RH and the best lower bound is given. In

167

the next column labeled LSH-BL, we provide the gap between the feasible solution

found by LSH and the best lower bound.

We observe that on average, IP2 performs better than IP1 in finding a good

feasible solution. IP1 gives an average gap of 4.02% while IP2 yields 1.60% gap

on the average with respect to the best lower bound. When we discard instance

p-med40-2 for which IP1 terminated with a very poor quality upper bound, IP2

still performs better compared to the lower bound with gaps 1.54% vs. 1.68%.

Especially when |V | ≥ 600, excluding instance p-med40-2, the average IP1(U)-BL

gap is 3.12% vs. 2.56% of IP2(U)-BL, which signals that the relative quality of IP2

solutions get better in larger instances.

The LP rounding heuristic performs fairly well, given the hardness of this

subset of instances and the poor quality of the local search heuristic. On average,

the gap is 4.63%, which means by just solving LP2 at the root node and using

the LP rounding heuristic, we get an integer solution which is on average at most

4.63% away from the optimal. However, the quality of the local search heuristic is

extremely poor for |V |/|F | ≤ 10 with an average gap of 10.38%. This is somewhat

expected since the greedy procedure for the GAP tends to work better when the

number of items assigned to a single bin gets larger. The running time of the LP

rounding heuristic nearly equals the running time of LP2 since the steps after LP2

solution take negligible time. Therefore, we see that the LP rounding heuristic is

quite fast for |V |/|F | ≤ 10 and gets even faster as |V |/|F | gets smaller. In contrast,

the local search heuristic runs quite slowly since the neighborhood size is larger for

|V |/|F | ≤ 10. For |V |/|F | ≤ 10, we observe that the speed of LP2 does not translate

168

into IP2 since the number of nodes explored also increases for |V |/|F | ≤ 10. We

see two reasons for the increased number of nodes. First one is simply the increased

number of variables as |F | gets larger. The second reason is more subtle. After

fixing a ztv variable, we naturally expect the lower bound obtained at that node to

increase. However, as |F | increases, the marginal increase in the lower bound caused

by fixing a single facility decreases. This in turn makes the algorithm explore more

nodes as we observe in the column labeled ‘Nodes Explored’, which provides the

total number of nodes explored by the branch-and-price algorithm that solves IP2.

The running times of the local search heuristic are consistent with the local

search neighborhood size and are much smaller for small |F |. In general, the per-

formance of the local search heuristic gets better as |V |/|F | gets larger. Especially

when |V |/|F | > 10, the solution quality is much better with an average gap of

1.15% compared to the best lower bound. Local search heuristic enjoys the same

benefits LP1 does; the packing problem is easier and the problem behaves more

like MFLP. Note that for the same local search heuristic (1-OptSwapBI) applied

to MFLP, where the client assignment problem is solved optimally in polynomial

time, Halper et al. [2015] observes the gap between the local search solution and

the optimal solution to be less than 0.20% on average. As a result, we can claim

that LP2RH and LSH complement each other in terms of both solution quality and

running times, which makes it a viable option to use LSH for large |V |/|F | and

LP2RH for small |V |/|F |.

169

Table 4.1: Comparison of the quality of LP1 and LP2 when |V |/|F | ≤ 10 and |T | = 1.
Objective Value Gap (%) Runtime (s)

Instance BL Source BU Source BU-BL BU-LP1 BU-LP2 BL-LP1 BL-LP2 LP1 LP2 |V | |V |/|F |
pmed2 5275.27 ALL 5275.27 ALL 0.00% 1.47% 0.60% 1.47% 0.60% 0.42 0.98 100 10
pmed3 6023.05 ALL 6023.05 ALL 0.00% 0.61% 0.27% 0.61% 0.27% 0.24 0.89 100 10
pmed4 5374.39 ALL 5374.39 ALL 0.00% 4.19% 0.78% 4.19% 0.78% 0.26 0.45 100 5
pmed5 3320.49 ALL 3320.49 ALL 0.00% 9.86% 2.22% 9.86% 2.22% 0.30 0.34 100 3
pmed8 6658.71 ALL 6658.71 ALL 0.00% 1.31% 0.70% 1.31% 0.70% 1.94 16.66 200 10
pmed9 5046.37 IP1(L) 5061.78 IP1(U) 0.30% 4.31% 1.21% 4.02% 0.90% 2.81 4.17 200 5
pmed10 3128.94 IP1(L) 3128.94 IP1(U) 0.00% 8.56% 0.92% 8.56% 0.92% 1.62 2.90 200 3
pmed13 5690.55 IP1(L) 5690.55 IP1(U) 0.00% 0.73% 0.32% 0.73% 0.32% 7.75 45.52 300 10
pmed14 4427.26 IP2(L) 4465.27 IP1*(U) 0.85% 4.15% 1.16% 3.32% 0.31% 7.77 10.76 300 5
pmed15 3416.81 IP2(L) 3459.56 IP1(U) 1.24% 9.65% 1.47% 8.52% 0.24% 5.50 9.92 300 3
pmed18 6010.19 IP2(L) 6038.28 IP1(U) 0.47% 1.04% 0.70% 0.58% 0.23% 19.95 93.34 400 10
pmed19 4674.05 IP2(L) 4749.88 IP1*(U) 1.60% 4.80% 2.03% 3.25% 0.44% 14.99 36.60 400 5
pmed20 3928.93 IP2(L) 3966.80 IP1(U) 0.95% 10.25% 1.13% 9.39% 0.18% 14.81 23.65 400 3
pmed23 6996.73 IP2(L) 7023.91 IP2(U) 0.39% 1.04% 0.59% 0.66% 0.20% 62.15 252.86 500 10
pmed24 5320.38 IP2(L) 5397.27 IP1(U) 1.42% 4.25% 1.62% 2.87% 0.20% 34.57 124.43 500 5
pmed25 3852.84 IP2(L) 3972.88 IP1*(U) 3.02% 12.11% 3.19% 9.38% 0.17% 27.83 85.02 500 3
pmed28 6367.63 IP2(L) 6390.13 IP1(U) 0.35% 0.90% 0.43% 0.55% 0.08% 101.12 386.88 600 10
pmed29 5286.17 IP2(L) 5405.70 IP2(U) 2.21% 5.34% 2.35% 3.20% 0.14% 64.94 193.69 600 5
pmed30 4031.32 IP2(L) 4187.17 IP2(U) 3.72% 13.41% 4.04% 10.06% 0.33% 40.11 91.39 600 3
pmed33 6981.21 IP2(L) 7007.81 IP1(U) 0.38% 0.87% 0.51% 0.49% 0.13% 227.11 793.56 700 10
pmed34 5075.42 IP2(L) 5254.71 IP2(U) 3.41% 6.07% 3.55% 2.75% 0.14% 163.35 222.80 700 5
pmed34-1 4079.74 IP2(L) 4241.66 IP2(U) 3.82% 12.10% 3.93% 8.61% 0.12% 59.85 129.40 700 3
pmed37 6536.65 IP2(L) 6646.71 IP1(U) 1.66% 2.21% 1.81% 0.57% 0.16% 384.68 1055.25 800 10
pmed37-1 5081.89 IP2(L) 5218.90 IP2(U) 2.63% 5.49% 2.71% 2.94% 0.09% 279.35 592.47 800 5
pmed37-2 4190.18 IP2(L) 4337.52 IP1(U) 3.40% 12.44% 3.48% 9.36% 0.08% 111.42 6332.21 800 3
pmed40 7397.00 IP2(L) 7543.70 IP1(U) 1.94% 2.53% 2.09% 0.60% 0.15% 1127.80 2115.01 900 10
pmed40-1 5790.58 IP2(L) 5984.67 IP2(U) 3.24% 5.64% 3.37% 2.47% 0.13% 478.20 1164.40 900 5
pmed40-2 4642.74 IP2(L) 4790.29 IP2(U) 3.08% 12.12% 3.19% 9.33% 0.11% 220.26 246.65 900 3

Min 0.00% 0.61% 0.27% 0.49% 0.08% 0.24 0.34
Max 3.82% 13.41% 4.04% 10.06% 2.22% 1127.80 6332.21
Avg 1.43% 5.62% 1.80% 4.27% 0.37% 123.61 501.15

170

Table 4.2: Comparison of the quality of lower bounds obtained from IP1, IP1* and IP2 when |V |/|F | ≤ 10 and |T | = 1.
Gap (%) Runtime (s)

Instance BL-IP1(L) BL-IP1*(L) BL-IP2(L) IP1 IP1* IP2 |V | |V |/|F |
pmed2 0.00% 0.00% 0.00% 9.45 34.45 13.26 100 10
pmed3 0.00% 0.00% 0.00% 1.05 1.15 10.13 100 10
pmed4 0.00% 0.00% 0.00% 32.67 973.69 41.24 100 5
pmed5 0.00% 4.01% 0.00% 112.29 - 3868.58 100 3
pmed8 0.00% 0.47% 0.00% 1227.54 - 7949.99 200 10
pmed9 0.00% 2.92% 0.32% - - - 200 5
pmed10 0.00% 6.52% 0.62% 1591.44 - - 200 3
pmed13 0.00% 0.32% 0.06% 1048.31 - - 300 10
pmed14 0.39% 2.69% 0.00% - - - 300 5
pmed15 0.44% 7.88% 0.00% - - - 300 3
pmed18 0.07% 0.24% 0.00% - - - 400 10
pmed19 0.84% 2.93% 0.00% - - - 400 5
pmed20 0.42% 8.86% 0.00% - - - 400 3
pmed23 0.29% 0.57% 0.00% - - - 500 10
pmed24 0.66% 2.55% 0.00% - - - 500 5
pmed25 0.43% 8.88% 0.00% - - - 500 3
pmed28 0.15% 0.47% 0.00% - - - 600 10
pmed29 0.71% 3.13% 0.00% - - - 600 5
pmed30 0.79% 9.71% 0.00% - - - 600 3
pmed33 0.25% 0.45% 0.00% - - - 700 10
pmed34 0.89% 2.69% 0.00% - - - 700 5
pmed34-1 1.47% 8.47% 0.00% - - - 700 3
pmed37 0.36% 0.53% 0.00% - - - 800 10
pmed37-1 1.00% 2.93% 0.00% - - - 800 5
pmed37-2 1.28% 9.31% 0.00% - - - 800 3
pmed40 0.36% 0.57% 0.00% - - - 900 10
pmed40-1 1.00% 2.46% 0.00% - - - 900 5
pmed40-2 1.40% 9.20% 0.00% - - - 900 3

Min 0.00% 0.00% 0.00% 1.05 1.15 10.13
Max 1.47% 9.71% 0.62% - - -
Avg 0.47% 3.53% 0.04% 8273.57 9822.32 9297.10

171

Table 4.3: Comparison of the quality of upper bounds obtained from IP1, IP1*, IP2, LP2RH, and LSH when |V |/|F | ≤ 10 and
|T | = 1.

Gap (%) Runtime (s) Nodes
Instance IP1(U)-BL IP1*(U)-BL IP2(U)-BL LP2RH-BL LSH-BL LSH Explored |V | |V |/|F |

pmed2 0.00% 0.00% 0.00% 0.90% 3.54% 0.32 33 100 10
pmed3 0.00% 0.00% 0.00% 0.24% 3.10% 0.29 7 100 10
pmed4 0.00% 0.00% 0.00% 3.80% 6.39% 1.48 366 100 5
pmed5 0.00% 0.00% 0.00% 7.10% 12.84% 4.43 49973 100 3
pmed8 0.00% 0.06% 0.00% 2.57% 5.32% 6.48 944 200 10
pmed9 0.30% 0.59% 0.30% 2.15% 10.41% 34.77 31539 200 5
pmed10 0.00% 0.40% 0.68% 6.04% 13.78% 68.33 38760 200 3
pmed13 0.00% 0.00% 0.01% 0.70% 2.80% 40.73 1125 300 10
pmed14 0.95% 0.85% 1.11% 4.92% 8.20% 191.19 14590 300 5
pmed15 1.24% 1.58% 1.93% 10.04% 16.68% 401.13 12410 300 3
pmed18 0.47% 0.51% 0.69% 4.50% 3.33% 188.12 2489 400 10
pmed19 2.06% 1.60% 1.80% 4.90% 9.61% 863.69 6742 400 5
pmed20 0.95% 1.93% 1.79% 7.28% 12.97% 2100.53 6317 400 3
pmed23 0.44% 0.64% 0.39% 2.55% 4.19% 559.10 1521 500 10
pmed24 1.42% 1.61% 1.79% 6.00% 8.45% 3126.61 4128 500 5
pmed25 3.13% 3.02% 3.06% 6.70% 15.73% 5201.88 3552 500 3
pmed28 0.35% 0.39% 0.51% 3.92% 5.89% 1184.15 1311 600 10
pmed29 2.87% 3.26% 2.21% 4.14% 8.77% 4679.60 3785 600 5
pmed30 5.83% 5.80% 3.72% 5.86% 16.23% - 3003 600 3
pmed33 0.38% 0.48% 0.58% 3.83% 4.10% 2384.93 907 700 10
pmed34 3.99% 4.72% 3.41% 5.47% 8.73% - 2855 700 5
pmed34-1 5.03% 5.62% 3.82% 5.62% 20.20% - 2062 700 3
pmed37 1.66% 1.92% 1.72% 3.13% 5.06% 3905.30 620 800 10
pmed37-1 3.21% 4.39% 2.63% 4.01% 12.98% - 1931 800 5
pmed37-2 3.40% 9.39% 4.18% 6.80% 22.16% - 586 800 3
pmed40 1.94% 2.59% 2.12% 5.64% 4.32% 7157.25 519 900 10
pmed40-1 5.61% 5.08% 3.24% 5.47% 18.71% - 1060 900 5
pmed40-2 67.21% 9.57% 3.08% 5.47% 26.04% - 876 900 3

Min 0.00% 0.00% 0.00% 0.24% 2.80% 0.29 7
Max 67.21% 9.57% 4.18% 10.04% 26.04% - 49973
Avg 4.02% 2.36% 1.60% 4.63% 10.38% 3846.47 6928.96

172

4.5.4 Heterogeneous Facilities Case

We present the results in three tables (Tables 4.4 through 4.6) with the same

layout and format used for homogeneous facilities. We have not implemented the

Local Search heuristic for the heterogeneous facilities since it is significantly outper-

formed by every other method when |V |/|F | ≤ 10. Furthermore, its neighborhood

structure and size makes its performance highly predictable in terms of time and

quality.

In Table 4.4, the BU-BL gap values show that the presence of heterogeneous

facilities increases the difficulty of the problem as expected. For homogeneous fa-

cilities, the average BU-BL gap is 0.05% when |V |/|F | > 10. For heterogeneous

facilities (where |T | = 2), the gap slightly increases to 0.09%, perhaps not indicative

of a harder problem. However, when |V |/|F | ≤ 10, the average BU-BL gaps are

observed to be 1.43% and 2.86%, respectively for homogeneous and heterogeneous

facilities. In general, the insights we gain from homogeneous facilities are still valid

and more pronounced in heterogeneous facilities. When |V |/|F | > 10, LP2 termi-

nated under three hours in only two out of seventeen instances, as opposed to nine

when |T | = 1. On the other hand, the quality and the running time of LP2 seems

to be affected less from the added dimension when |V |/|F | ≤ 10.

In homogeneous facilities, we observe that IP2 starts to produce better upper

bounds compared to IP1 when |V | ≥ 600. Not only the trend holds up even stronger

for heterogeneous facilities, but the quality of the upper bounds obtained from IP1

rapidly declines after |V | ≥ 700. After disabling default CPLEX cuts, IP1* failed

173

to find a feasible solution in three hours for six out of nine instances for |V | ≥

700. The quality of the LP rounding heuristic slightly declines for heterogeneous

facilities. However, compared to IP1, the LP rounding heuristic provides good

quality solutions in reasonable time. Especially for |V | ≥ 700 and |V |/|F | ≤ 10, the

LP rounding heuristic generally outperforms IP1. Similarly, the lower bound IP1(L)

obtained from IP1 after three hours is worse than the lower bound obtained from

LP2 for the same instances. Therefore, interestingly after solving the root node, the

branch-and-price algorithm has better lower and upper bounds than IP1 has at its

termination after three hours.

174

Table 4.4: Comparison of the quality of LP1 and LP2 when |V |/|F | ≤ 10 and |T | = 2.
Objective Value Gap (%) Runtime (s)

Instance BL Source BU Source BU-BL BU-LP1 BU-LP2 BL-LP1 BL-LP2 LP1 LP2 |V | |V |/|F |
pmed2 5064.83 ALL 5064.83 ALL 0.00% 1.25% 0.48% 1.25% 0.48% 0.24 7.47 100 10
pmed3 6162.93 ALL 6162.93 ALL 0.00% 1.99% 0.88% 1.99% 0.88% 0.19 1.98 100 10
pmed4 5172.33 ALL 5172.33 ALL 0.00% 3.16% 1.30% 3.16% 1.30% 0.17 0.73 100 5
pmed5 3302.98 ALL 3302.98 ALL 0.00% 9.10% 1.19% 9.10% 1.19% 0.22 0.53 100 3
pmed8 6484.06 IP1(L) 6484.06 IP1(U) 0.00% 2.18% 0.48% 2.18% 0.48% 2.62 32.15 200 10
pmed9 5043.84 IP2(L) 5115.69 IP1(U) 1.40% 6.02% 1.73% 4.68% 0.33% 2.40 6.24 200 5
pmed10 3199.40 IP1(L) 3240.95 IP1(U) 1.28% 11.36% 1.87% 10.21% 0.60% 2.62 9.92 200 3
pmed13 5673.47 IP1(L) 5673.47 IP1(U) 0.00% 1.09% 0.49% 1.09% 0.49% 10.90 87.39 300 10
pmed14 4372.98 IP2(L) 4414.65 IP1(U) 0.94% 4.40% 1.12% 3.49% 0.18% 6.43 17.36 300 5
pmed15 3364.28 IP2(L) 3447.41 IP1(U) 2.41% 10.63% 2.53% 8.42% 0.13% 6.38 13.31 300 3
pmed18 5997.19 IP2(L) 6038.59 IP1*(U) 0.69% 1.81% 0.80% 1.13% 0.12% 15.51 133.51 400 10
pmed19 4701.85 IP2(L) 4830.43 IP1*(U) 2.66% 6.28% 2.74% 3.72% 0.08% 16.68 34.05 400 5
pmed20 3973.66 IP2(L) 4162.68 IP1(U) 4.54% 14.31% 4.66% 10.23% 0.13% 15.07 30.55 400 3
pmed23 6997.44 IP2(L) 7039.70 IP1*(U) 0.60% 1.50% 0.67% 0.91% 0.07% 58.06 355.03 500 10
pmed24 5247.22 IP2(L) 5406.64 IP2(U) 2.95% 6.08% 3.02% 3.23% 0.07% 46.93 82.17 500 5
pmed25 3780.82 IP2(L) 3944.54 IP1(U) 4.15% 12.79% 4.21% 9.02% 0.06% 29.16 44.69 500 3
pmed28 6352.88 IP2(L) 6429.52 IP1(U) 1.19% 2.21% 1.26% 1.03% 0.07% 107.78 609.07 600 10
pmed29 5184.69 IP2(L) 5332.38 IP2(U) 2.77% 5.61% 2.84% 2.92% 0.07% 79.42 128.86 600 5
pmed30 3931.89 IP2(L) 4213.84 IP2(U) 6.69% 15.90% 6.77% 9.87% 0.08% 43.32 80.81 600 3
pmed33 6970.24 IP2(L) 7064.82 IP1*(U) 1.34% 2.26% 1.39% 0.93% 0.05% 260.57 861.42 700 10
pmed34 5056.57 IP2(L) 5267.82 IP2(U) 4.01% 6.76% 4.06% 2.87% 0.05% 204.86 202.46 700 5
pmed34-1 4079.69 IP2(L) 4358.50 IP2(U) 6.40% 15.31% 6.44% 9.52% 0.05% 129.03 124.13 700 3
pmed37 6507.84 IP2(L) 6655.00 IP2(U) 2.21% 3.14% 2.26% 0.95% 0.05% 500.87 969.15 800 10
pmed37-1 5092.52 IP2(L) 5352.55 IP2(U) 4.86% 8.55% 4.91% 3.89% 0.05% 446.82 341.45 800 5
pmed37-2 4134.17 IP2(L) 4558.39 IP2(U) 9.31% 18.41% 9.36% 10.04% 0.05% 159.37 187.87 800 3
pmed40 7351.84 IP2(L) 7510.01 IP2(U) 2.11% 2.98% 2.15% 0.89% 0.05% 1102.80 2620.10 900 10
pmed40-1 5742.88 IP2(L) 5918.55 IP2(U) 2.97% 6.12% 3.00% 3.25% 0.03% 575.02 524.82 900 5
pmed40-2 4731.60 IP2(L) 5192.53 IP2(U) 8.88% 17.77% 8.91% 9.76% 0.03% 313.58 238.67 900 3

Min 0.00% 1.09% 0.48% 0.89% 0.03% 0.17 0.53
Max 9.31% 18.41% 9.36% 10.23% 1.30% 1102.80 2620.10
Avg 2.66% 7.11% 2.91% 4.63% 0.26% 147.75 276.64

175

Table 4.5: Comparison of the quality of lower bounds obtained from IP1, IP1* and IP2 when |V |/|F | ≤ 10 and |T | = 2.
Gap (%) Runtime (s)

Instance BL-IP1(L) BL-IP1*(L) BL-IP2(L) IP1 IP1* IP2 |V | |V |/|F |
pmed2 0.00% 0.00% 0.00% 5.78 5.48 439.52 100 10
pmed3 0.00% 0.00% 0.00% 17.43 185.24 2113.54 100 10
pmed4 0.00% 0.00% 0.00% 26.18 205.45 277.40 100 5
pmed5 0.00% 0.00% 0.00% 194.19 - 1642.23 100 3
pmed8 0.00% 0.44% 0.31% 2240.12 - - 200 10
pmed9 0.31% 3.19% 0.00% - - - 200 5
pmed10 0.00% 8.54% 0.37% - - - 200 3
pmed13 0.00% 0.38% 0.36% 8570.64 - - 300 10
pmed14 0.60% 2.88% 0.00% - - - 300 5
pmed15 0.75% 7.33% 0.00% - - - 300 3
pmed18 0.40% 0.61% 0.00% - - - 400 10
pmed19 1.28% 3.37% 0.00% - - - 400 5
pmed20 1.54% 9.62% 0.00% - - - 400 3
pmed23 0.48% 0.61% 0.00% - - - 500 10
pmed24 1.33% 3.12% 0.00% - - - 500 5
pmed25 1.66% 8.92% 0.00% - - - 500 3
pmed28 0.58% 0.85% 0.00% - - - 600 10
pmed29 1.24% 2.84% 0.00% - - - 600 5
pmed30 1.51% 9.57% 0.00% - - - 600 3
pmed33 0.63% 0.90% 0.00% - - - 700 10
pmed34 1.41% 2.80% 0.00% - - - 700 5
pmed34-1 2.23% 9.49% 0.00% - - - 700 3
pmed37 0.71% 0.93% 0.00% - - - 800 10
pmed37-1 2.11% 3.85% 0.00% - - - 800 5
pmed37-2 3.06% 10.02% 0.00% - - - 800 3
pmed40 0.81% 0.87% 0.00% - - - 900 10
pmed40-1 1.81% 3.25% 0.00% - - - 900 5
pmed40-2 3.16% 9.75% 0.00% - - - 900 3

Min 0.00% 0.00% 0.00% 5.78 5.48 277.40
Max 3.16% 10.02% 0.37% - - -
Avg 0.99% 3.72% 0.04% 8926.10 9716.26 9417.65

176

Table 4.6: Comparison of the quality of upper bounds obtained from IP1, IP1*, IP2, and LP2RH when |V |/|F | ≤ 10 and
|T | = 2.

Gap (%) Nodes
Instance IP1(U)-BL IP1*(U)-BL IP2(U)-BL LP2RH-BL Explored |V | |V |/|F |

pmed2 0.00% 0.00% 0.00% 1.78% 223 100 10
pmed3 0.00% 0.00% 0.00% 5.37% 2632 100 10
pmed4 0.00% 0.00% 0.00% 3.72% 1745 100 5
pmed5 0.00% 0.00% 0.00% 6.64% 18422 100 3
pmed8 0.00% 0.08% 0.21% 0.89% 932 200 10
pmed9 1.40% 2.23% 2.66% 6.32% 21716 200 5
pmed10 1.28% 1.64% 3.26% 7.89% 29006 200 3
pmed13 0.00% 0.12% 0.28% 1.51% 1032 300 10
pmed14 0.94% 1.88% 1.91% 4.85% 11439 300 5
pmed15 2.41% 2.60% 5.31% 13.47% 14975 300 3
pmed18 0.73% 0.69% 0.86% 2.17% 3221 400 10
pmed19 2.74% 2.66% 3.54% 10.15% 10408 400 5
pmed20 4.54% 7.66% 6.95% 12.05% 9592 400 3
pmed23 0.70% 0.60% 1.12% 3.08% 2484 500 10
pmed24 3.45% 3.05% 2.95% 7.19% 6493 500 5
pmed25 4.15% 5.92% 6.68% 13.09% 5447 500 3
pmed28 1.19% 1.25% 1.25% 5.71% 1334 600 10
pmed29 6.82% 6.58% 2.77% 3.95% 3781 600 5
pmed30 10.81% 18.81% 6.69% 10.71% 3964 600 3
pmed33 1.58% 1.34% 1.61% 1.65% 960 700 10
pmed34 4.98% 7.69% 4.01% 7.06% 3021 700 5
pmed34-1 71.41% - 6.40% 8.48% 2529 700 3
pmed37 2.44% - 2.21% 6.13% 601 800 10
pmed37-1 62.34% - 4.86% 5.51% 1983 800 5
pmed37-2 11.66% - 9.31% 11.31% 1746 800 3
pmed40 52.19% 50.73% 2.11% 5.14% 436 900 10
pmed40-1 60.86% - 2.97% 4.42% 1375 900 5
pmed40-2 70.75% - 8.88% 12.05% 1304 900 3

Min 0.00% 0.00% 0.00% 0.89% 223
Max 71.41% 50.73% 9.31% 13.47% 29006
Avg 13.55% 5.25% 3.17% 6.51% 5814.32

177

Chapter 5: Concluding Remarks

Over the last two decades, the internet and personal mobile devices have be-

come an essential part of daily life. It is now possible to collect and process data at

an unprecedented level of speed and granularity. By performing descriptive and pre-

dictive analytics, practitioners are able to identify problems that, if solved optimally,

will enhance productivity and profitability. Prescriptive analytics embarks upon de-

veloping methods for these problems, which are often too large to be handled by

general purpose solvers thus requiring specialized approaches. In today’s fast paced

operational landscape, it is not enough to solve a problem optimally for a method

to be useful, it needs to be computationally efficient as well. Therefore, in this

dissertation, we develop methods, that balance solution quality with computational

efficiency, for large-scale problems encountered in online advertising and logistics.

We use optimization techniques that are well suited for these problems, e.g., decom-

position and discretization, column generation and branch-and-price, and heuristic

approaches. Each problem in this dissertation presents unique challenges and war-

rants a different approach, thus deserving a separate discussion of methodology,

contributions, and insights, which we now present.

The Online Advertising Portfolio Optimization Problem: In Chap-

178

ter 2, we study the Online Advertising Portfolio Optimization Problem (OAPOP)

faced by an advertiser on various online advertising platforms and exchanges. The

advertiser manages portfolios of targeting items (keywords, cookies, websites, demo-

graphic dimensions, etc.) dispersed over a variety of advertising platforms and for-

mats. The OAPOP combines ad campaigns across these platforms and formats un-

der a consolidated portfolio and operates under a single advertising budget. There-

fore, the number of targeting items in the portfolio may be in the tens of thousands

for small businesses and tens of millions for large enterprises. Furthermore, the

OAPOP is an operational problem and needs to be solved and resolved many times

throughout the day, thus requiring fast solution approaches. By solving the OAPOP,

the advertiser can determine how much to bid on each targeting item to maximize

the return from the advertising budget. Further, the advertiser can understand the

revenue-cost trade-off at different levels of ad spend.

We model the OAPOP as a Multiple Choice Knapsack Problem (MCKP)

where each targeting item has multiple bid levels corresponding to expected cost

and expected revenue estimates. We propose an efficient column generation algo-

rithm where bid levels on the convex hull are generated as needed. We perform

computational experiments on online advertising instances generated based on data

collected from Google Adwords Keyword Planner. We demonstrate the column gen-

eration algorithm significantly outperforms the state-of-the-art linear time algorithm

(proposed by Dyer [1984] and Zemel [1984]) when the advertising budget is less than

20% (the value is typically up to 5% for most portfolios) of the maximum amount

possible to spend on the portfolio. The column generation algorithm scales well for

179

very large problems and in fact is able to solve enterprise scale problems (e.g., with

50 million targeting items and 2.55 billion variables) in a matter of minutes. This

would make the column generation approach an integral part of the toolkit that the

advertisers could use for doing multiple optimal bid cycles through the day as well

as the foundational algorithm for performing what-if analysis for their ad portfo-

lios. We further demonstrate that our column generation algorithm outperforms the

linear time approach for standard problem instances in literature when the budget

constraints are relatively tight.

We could further extend the OAPOP and cast it in the context of an explo-

ration/exploitation framework. For many ad campaigns, the amount of historical

click and revenue data available for each targeting item can be quite sparse. Hence,

the advertiser would like to spend ad budgets while making a trade-off between ex-

pected revenue maximization for the targeting items with sufficient data and getting

more traffic from those that have limited data.

The Bid Optimization Problem in Online Advertising: In 2013, the

landscape of online advertising changed when Google introduced “Enhanced Cam-

paigns”. In Enhanced Campaigns, the advertisers are able to modify their bids

for targeting items (e.g., keywords, cookies, websites, etc.) based on ad query fea-

tures (e.g., location, time, device, audience, etc.) using bid adjustments. The bid

adjustments create opportunities for advertisers to better target desired user char-

acteristics. While our approach proposed in Chapter 2 provides bid determination

and budget allocation for portfolios not operating under enhanced campaigns, the

portfolios subject to bid adjustments require special attention due to their target-

180

ing potential. However, the bid adjustments interact in a multiplicative manner in

the bidding language thus leading to a computationally challenging problem. The

bid adjustments are a recent development in online advertising. Therefore, there

is a practical need for an efficient and effective approach to determine bid adjust-

ments. In Chapter 3, we introduce the Bid Adjustment Problem in Online Adver-

tising (BAPOA) that fully captures the practical setting of bid adjustments. In the

BAPOA, the advertiser determines base bids and bid adjustments for an advertising

portfolio to maximize expected revenue subject to an advertising budget.

The BAPOA can be modeled as a nonlinear mathematical program. However,

the multiplicative nature of bid adjustments makes the problem very hard to solve

optimally. We develop an approach where the mathematical programming formula-

tion is decomposed into two subproblems. One to determine the base bids and one

to determine the bid adjustments. We show that both subproblems can be modeled

as Multiple Choice Knapsack Problems (MCKPs) when the domain of base bids

and bid adjustments are discretized. Furthermore, we show how the solution to the

linear programming relaxation of the MCKP can be used to obtain a feasible solu-

tion to the BAPOA. We iteratively create and solve subproblems, which we call the

Iterative Adjustment Algorithm (IAA), to determine a high quality solution to the

BAPOA. The IAA is a particularly attractive algorithm from a practical standpoint

since the linear programming relaxation of the MCKP can be solved efficiently even

for large problem sizes as we demonstrated in Chapter 2.

To evaluate the quality of the IAA and the benefits of using bid adjustments,

we performed computational experiments on simulated data generated based on

181

sample data on Google Keyword Planner. We show the IAA provides near optimal

solutions by comparing the revenue obtained from the IAA with an upper bound

obtained from a MIP formulation in small instances. Our findings indicate the

revenue benefit of using bid adjustments increases as the revenue-per-click variation

across features increases and as the budget decreases. We observe the performance

of the IAA is robust under varying problem sizes, budget amounts, and revenue-

per-click variations. The running time of the IAA is nearly linear in the number

of targeting items and the number of feature combinations, which indicates the

algorithm can scale to handle very large instances of the BAPOA. In addition,

we provide a procedure (that uses the IAA as a subroutine) where given a set of

targeting items, the advertiser can construct campaigns and ad groups (by clustering

targeting items based on bid adjustments), assign targeting items to these campaigns

and ad groups, and determine base bids and bid adjustments that would maximize

the benefit of using bid adjustments.

The introduction of bid adjustments to the bidding language is an exciting

development. However, virtually no research currently exists on the subject despite

its practical importance. Possible extensions to our work include the treatment of

the problem in the context of an exploration/exploitation framework. Exploiting

desired user characteristics would eventually lead to a sparsity of data thus hindering

the ability of the advertiser to recognize shifts in user characteristic preferences. A

healthy balance between exploration and exploitation would benefit the advertiser

in the long run. Another venue of research could be a game theoretic approach

to using bid adjustments where competitors (of the advertiser) use a similar (or

182

the same) tool to determine base bids and bid adjustments. In this environment,

the targeting needs of the competitors might significantly effect the equilibrium

behavior. For instance, every advertiser targeting the same user characteristic would

increase competition (and the cost) and may render targeting ineffective due to an

undesirable revenue-cost trade-off.

The Capacitated Mobile Facility Location Problem: In Chapter 4, we

study the Capacitated Mobile Facility Location Problem (CMFLP). We compare

two formulations for the CMFLP. The first formulation (IP1) is a layered graph

formulation adapted from the MFLP formulation in Halper et al. [2015] to account

for the capacity restrictions. The second formulation (IP2) is a set partitioning

formulation. We show that the LP relaxation of IP2 (LP2) is stronger than the LP

relaxation of IP1 (LP1) and propose an efficient column generation procedure to

solve LP2, which is used within a branch-and-price algorithm to solve IP2. Within

the branch-and-price procedure, we use a greedy 2-approximation algorithm to solve

the pricing problem and only solve it exactly (via dynamic programming) when

the heuristic algorithm fails to find a column to be added to the restricted master

problem of LP2. We also keep track of variables that have been nonbasic for a certain

number of iterations and remove them from the problem to maintain tractability.

We discussed that branching on the variables of IP2 is not a viable option, we

therefore consider branching on the variables of IP1. This strategy makes up for a

much cleaner column generation process. We proposed and tested three branching

strategies and observed the hybrid one to perform better.

We proposed and tested two heuristics for the CMFLP. The first is an LP

183

rounding heuristic that uses the fractional variables from the column generation

procedure. The second one is a local search heuristic called 1-OptSwapBI, originally

proposed for the MFLP, that uses the decomposition of IP1 into client and facility

subproblems. In the MFLP, the client and facility subproblems are solvable in

polynomial time. However, in the CMFLP, the client problem turns out to be the

NP-Hard generalized assignment problem due to the capacity constraints.

The computational results underline the benefits and drawbacks of both for-

mulations, and the heuristics. The increase in the total number of vertices naturally

makes the problem harder to tackle. However, IP1 has more of a trouble handling the

size of the problem than IP2, especially when the average number of clients assigned

to a facility is small. In that case, the packing constraints in IP1 makes the problem

significantly harder, which leads to LP2 dominating LP1 in terms of lower bound

quality. The packing constraints cause difficulty for the local search heuristic as well.

The local search heuristic performs worse as the average number of clients assigned

to a facility decreases. On the other hand, the LP rounding heuristic both runs

faster and provides good quality upper bounds under the same conditions. When

we introduce a second type of facility, IP1 again has a more difficult time handling

the added dimension compared to IP2. This suggests that introducing additional

types of facilities will most likely make IP1 perform even worse. We suggest IP1 as

the go-to formulation when the average number of clients assigned to a facility is

large. However, as this number gets smaller and the number of vertices gets larger,

IP2 becomes the better formulation. It is important to note that the performance

of IP2 can be further improved by fine tuning the parameters and introducing other

184

column generation improvement techniques from the literature.

185

Bibliography

V. Abhishek and K. Hosanagar. Optimal bidding in multi-item multislot sponsored
search auctions. Operations Research, 61(4):855–873, 2013.

B. Addis, G. Carello, and A. Ceselli. Exactly solving a two-level location problem
with modular node capacities. Networks, 59(1):161–180, 2012.

B. Addis, G. Carello, and A. Ceselli. Combining very large scale and {ILP} based
neighborhoods for a two-level location problem. European Journal of Operational
Research, 231(3):535–546, 2013.

G. Aggarwal, A. Goel, and R. Motwani. Truthful auctions for pricing search key-
words. In Proceedings of the 7th ACM Conference on Electronic Commerce, pages
1–7. ACM, 2006.

S. Ahmadian, Z. Friggstad, and C. Swamy. Local-search based approximation algo-
rithms for mobile facility location problems. In Proceedings of the Twenty-Fourth
Annual ACM-SIAM Symposium on Discrete Algorithms, pages 1607–1621, 2013.

R. K. Ahuja, J. B. Orlin, S. Pallottino, M. P. Scaparra, and M. G. Scutellà. A
multi-exchange heuristic for the single-source capacitated facility location prob-
lem. Management Science, 50(6):749–760, 2004.

N. Anari, M. Fazli, M. Ghodsi, and M. Safari. Euclidean movement minimization.
Journal of Combinatorial Optimization, 32(2):354–367, 2016.

A. B. Arabani and R. Z. Farahani. Facility location dynamics: An overview of
classifications and applications. Computers & Industrial Engineering, 62(1):408–
420, 2012.

A. Armon, I. Gamzu, and D. Segev. Mobile facility location: combinatorial filtering
via weighted occupancy. Journal of Combinatorial Optimization, 28(2):358–375,
2012.

M. Bateni, J. Feldman, V. Mirrokni, and S. C.-w. Wong. Multiplicative bidding in
online advertising. In Proceedings of the fifteenth ACM Conference on Economics
and Computation, pages 715–732. ACM, 2014.

186

E. M. L. Beale and J. A. Tomlin. Special facilities in a general mathematical pro-
gramming system for non-convex problems using ordered sets of variables. In
Proceedings of the Fifth International Conference on Operational Research, pages
447–454, 1970.

H. Beales. The value of behavioral targeting. Network Advertising Initiative, 2010.

J. Berg, A. Greenwald, V. Naroditskiy, and E. Sodomka. A knapsack-based approach
to bidding in ad auctions. In Proceedings of the 2010 Conference on ECAI, volume
215, pages 1013–1014. ECAI, 2010.

A. Bingham, A. Bishop, P. Coffey, J. Winkler, J. Bradley, I. Dzuba, and I. Agurto.
Factors affecting utilization of cervical cancer prevention services in low-resource
settings. Salud publica de Mexico, 45:408–416, 2003.

C. Borgs, J. Chayes, N. Immorlica, K. Jain, O. Etesami, and M. Mahdian. Dynamics
of bid optimization in online advertisement auctions. In Proceedings of the 16th
International Conference on World Wide Web, pages 531–540. ACM, 2007.

D. G. Cattrysse and L. N. Van Wassenhove. A survey of algorithms for the gen-
eralized assignment problem. European Journal of Operational Research, 60(3):
260–272, 1992.

A. Ceselli and G. Righini. A branch-and-price algorithm for the capacitated p-
median problem. Networks, 45(3):125–142, 2005.

C.-H. Chen and C.-J. Ting. Combining Lagrangian heuristic and ant colony system
to solve the single source capacitated facility location problem. Transportation
Research Part E: Logistics and Transportation Review, 44(6):1099–1122, 2008.

M. J. Cortinhal and M. E. Captivo. Upper and lower bounds for the single source
capacitated location problem. European Journal of Operational Research, 151(2):
333–351, 2003.

E. Demaine, M. Hajiaghayi, H. Mahini, A. S. Sayedi-Roshkhar, S. Oveisgharan, and
M. Zadimoghaddam. Minimizing movement. ACM Transactions on Algorithms,
5(3):30, 2009.

K. Doerner, A. Focke, and W. J. Gutjahr. Multicriteria tour planning for mobile
healthcare facilities in a developing country. European Journal of Operational
Research, 179(3):1078–1096, 2007.

M. E. Dyer. An O(n) algorithm for the multiple-choice knapsack linear program.
Mathematical Programming, 29(1):57–63, 1984.

B. Edelman, M. Ostrovsky, and M. Schwarz. Internet advertising and the generalized
second price auction: Selling billions of dollars worth of keywords. Technical
report, National Bureau of Economic Research, 2005.

187

A. Farahat and M. C. Bailey. How effective is targeted advertising? In Proceedings
of the 21st international conference on World Wide Web, pages 111–120. ACM,
2012.

J. Feldman, S. Muthukrishnan, M. Pal, and C. Stein. Budget optimization in search-
based advertising auctions. In Proceedings of the 8th ACM Conference on Elec-
tronic Commerce, pages 40–49. ACM, 2007.

J. Feng, H. K. Bhargava, and D. M. Pennock. Implementing sponsored search in web
search engines: Computational evaluation of alternative mechanisms. INFORMS
Journal on Computing, 19(1):137–148, 2007.

Z. Friggstad and M. R. Salavatipour. Minimizing movement in mobile facility loca-
tion problems. ACM Transactions on Algorithms, 7(3):28, 2011.

E. Geoffroy, A. D. Harries, K. Bissell, E. Schell, A. Bvumbwe, K. Tayler-Smith, and
W. Kizito. Bringing care to the community: expanding access to health care in
rural Malawi through mobile health clinics. Public Health Action, 4(4):252–258,
2014.

A. Ghose and S. Yang. An empirical analysis of search engine advertising: Sponsored
search in electronic markets. Management Science, 55(10):1605–1622, 2009.

G. Guastaroba and M. G. Speranza. A heuristic for BILP problems: The single
source capacitated facility location problem. European Journal of Operational
Research, 238(2):438–450, 2014.

M. H. Ha, L.-A. Bostel, N., and L.-M. Rousseau. An exact algorithm and a meta-
heuristic for the multi-vehicle covering tour problem with a constraint on the
number of vertices. European Journal of Operational Research, 226(2):211–220,
2013.

R. Halper, S. Raghavan, and M. Sahin. Local search heuristics for the mobile facility
location problem. Computers & Operations Research, 62:210–223, 2015.

K. Holmberg, M. Rönnqvist, and D. Yuan. An exact algorithm for the capacitated
facility location problems with single sourcing. European Journal of Operational
Research, 113(3):544–559, 1999.

G. Iyer, D. Soberman, and J. M. Villas-Boas. The targeting of advertising. Marketing
Science, 24(3):461–476, 2005.

H. Kellerer, U. Pferschy, and D. Pisinger. Knapsack Problems. Springer, 2004. ISBN
9783540402862.

A. Klose. An LP-based heuristic for two-stage capacitated facility location problems.
The Journal of the Operational Research Society, 50(2):pp. 157–166, 1999.

188

A. Klose and S. Görtz. A branch-and-price algorithm for the capacitated facility
location problem. European Journal of Operational Research, 179(3):1109–1125,
2007.

H. W. Kuhn. The Hungarian method for the assignment problem. Naval Research
Logistics Quarterly, 2:83–97, 1955.

E. Y.-H. Lin. A bibliographical survey on some well-known non-standard knapsack
problems. INFOR, 36(4):274, 1998.

L. A. N. Lorena and E. L. F. Senne. A column generation approach to capacitated
p-median problems. Computers & Operations Research, 31(6):863–876, 2004.

G. S. Lueker. Average-case analysis of off-line and on-line knapsack problems. Jour-
nal of Algorithms, 29(2):277–305, 1998.

M. T. Melo, S. Nickel, and F. Saldanha da Gama. Dynamic multi-commodity
capacitated facility location: a mathematical modeling framework for strategic
supply chain planning. Computers & Operations Research, 33(1):181–208, 2006.

S. Muthukrishnan, M. Pál, and Z. Svitkina. Stochastic models for budget opti-
mization in search-based advertising. In Internet and Network Economics, pages
131–142. Springer, 2007.

S. Nickel and F. Saldanha da Gama. Location Science, chapter Multi-Period Facility
Location, pages 289–310. Springer, 2015.

A. Pani. Models for budget constrained auctions: An application to sponsored search
& other auctions. University of Maryland, College Park, 2010.

D. Pisinger. A minimal algorithm for the multiple-choice knapsack problem. Euro-
pean Journal of Operational Research, 83(2):394–410, 1995.

PwC Report. IAB internet advertising revenue report, april 2016. URL
http://www.iab.com/wp-content/uploads/2016/04/IAB_Internet_

Advertising_Revenue_Report_FY_2015-final.pdf.

PwC Report. IAB internet advertising revenue report, april 2017. URL
https://www.iab.com/wp-content/uploads/2016/04/IAB_Internet_

Advertising_Revenue_Report_FY_2016.pdf.

P. Rusmevichientong and D. P. Williamson. An adaptive algorithm for selecting
profitable keywords for search-based advertising services. In Proceedings of the
7th ACM Conference on Electronic Commerce, EC ’06, pages 260–269. ACM,
2006.

M. Savelsbergh. A branch-and-price algorithm for the generalized assignment prob-
lem. Operations Research, 45(6):831–841, 1997.

189

http://www.iab.com/wp-content/uploads/2016/04/IAB_Internet_Advertising_Revenue_Report_FY_2015-final.pdf
http://www.iab.com/wp-content/uploads/2016/04/IAB_Internet_Advertising_Revenue_Report_FY_2015-final.pdf
https://www.iab.com/wp-content/uploads/2016/04/IAB_Internet_Advertising_Revenue_Report_FY_2016.pdf
https://www.iab.com/wp-content/uploads/2016/04/IAB_Internet_Advertising_Revenue_Report_FY_2016.pdf

P. Sinha and A. A. Zoltners. The multiple-choice knapsack problem. Operations
Research, 27(3):503–515, 1979.

F. Stefanello, O. C. B. de Araújo, and F. M. Müller. Matheuristics for the capaci-
tated p-median problem. International Transactions in Operational Research, 22
(1):149–167, 2015.

J. E. Torres-Soto and H. Uster. Dynamic-demand capacitated facility location prob-
lems with and without relocation. International Journal of Production Research,
49(13):3979–4005, 2011.

S. Tragantalerngsak, J. Holt, and M. Rönnqvist. An exact method for the two-
echelon, single-source, capacitated facility location problem. European Journal of
Operational Research, 123(3):473–489, 2000.

H. R. Varian. Position auctions. International Journal of Industrial Organization,
25(6):1163–1178, 2007.

V. Verter and S. D. Lapierre. Location of preventive health care facilities. Annals
of Operations Research, 110(1-4):123–132, 2002.

J. E. Weiss, M. R. Greenlick, and J. F. Jones. Determinants of medical care utiliza-
tion: The impact of spatial factors. Inquiry, 8(4):50–57, 1971.

J. Yan, N. Liu, G. Wang, W. Zhang, Y. Jiang, and Z. Chen. How much can behav-
ioral targeting help online advertising? In Proceedings of the 18th International
Conference on World Wide Web, pages 261–270. ACM, 2009.

Z. Yang, F. Chu, and H. Chen. A cut-and-solve based algorithm for the single-source
capacitated facility location problem. European Journal of Operational Research,
221(3):521–532, 2012.

E. Zemel. An O(n) algorithm for the linear multiple choice knapsack problem and
related problems. Information Processing Letters, 18(3):123–128, 1984.

Y. Zhou and V. Naroditskiy. Algorithm for stochastic multiple-choice knapsack
problem and application to keywords bidding. In Proceedings of the 17th Inter-
national Conference on World Wide Web, pages 1175–1176. ACM, 2008.

Y. Zhou, D. Chakrabarty, and R. Lukose. Budget constrained bidding in keyword
auctions and online knapsack problems. In Internet and Network Economics,
pages 566–576. Springer, 2008.

190

	List of Tables
	List of Figures
	Introduction
	Large-Scale Advertising Portfolio Optimization in Online Marketing
	Related Work
	Modeling the OAPOP as an MCKP
	Structural Properties of the Solution to the MCKP-LP
	Sorting Algorithm for the MCKP-LP
	Linear Algorithm for the MCKP-LP

	Column Generation Algorithm
	Initial Solution Procedure
	Column Generation Procedure

	Branch-and-price Algorithm
	Computational Results
	Generating Online Advertising Instances
	Results for Online Advertising Instances
	Results for Literature Instances

	Targeted Online Advertising with Bid Adjustments
	Related Work
	The Bid Adjustment Problem in Online Advertising
	Iterative Adjustment Algorithm
	Base Bid Subproblem
	Feature Adjustment Subproblem
	The Multiple Choice Knapsack Problem
	Summary of the Steps in the Iterative Adjustment Algorithm

	Formulating the BAPOA as an MIP
	Computational Results
	Data Generation
	MIP Instances
	Online Advertising Instances
	Creating Advertising Campaigns

	The Capacitated Mobile Facility Location Problem
	Related Work
	Integer Programming Formulations
	Layered Graph Formulation
	Set Partitioning Formulation

	Column Generation and Branch-and-Price Procedure
	Column Generation Procedure for LP2
	Branching Scheme
	Columns Management

	Heuristics
	LP Rounding Heuristic
	Local Search Heuristic

	Computational Results
	Test Instances
	Computational Settings
	Homogeneous Facilities Case
	Heterogeneous Facilities Case

	Concluding Remarks

