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Simulation models are commonly used to provide analysis and prediction of

the behavior of complex stochastic systems. Simulation optimization integrates op-

timization techniques into simulation analysis to capture response surface, to choose

optimal decision variables and to perform sensitivity analysis. Objective functions

usually cannot be computed in closed form and are computationally expensive to

evaluate. Many methods are proposed by researchers for problems with continuous

and discrete variables, respectively. The dissertation is comprised of both optimiza-

tion methods and a real-world application. In particular, our goal is to develop new

methods based on direct gradient estimates and variational Bayesian techniques.

The first part of the thesis considers the setting where additional direct gra-

dient information is available and introduces different approaches for enhancing

regression models and stochastic kriging with this additional gradient information,

respectively. For regression models, we propose Direct Gradient Augmented Regres-

sion (DiGAR) models to incorporate direct gradient estimators. We characterize



the variance of the estimated parameters in DiGAR and compare them analyti-

cally with the standard regression model for some special settings. For stochastic

kriging, we propose Gradient Extrapolated Stochastic Kriging (GESK) to incorpo-

rate direct gradient estimates by extrapolating additional responses. We show that

GESK reduces mean squared error (MSE) compared to stochastic kriging under

certain conditions on step sizes. We also propose maximizing penalized likelihood

and minimizing integrated mean squared error to determine the step sizes.

The second part of the thesis focuses on the problem of learning unknown cor-

relation structures in ranking and selection (R&S) problems. We proposes a com-

putationally tractable Bayesian statistical model for learning unknown correlation

structures in fully sequential simulation selection. We derive a Bayesian procedure

that allocates simulations based on the value of information, thus anticipating fu-

ture changes to our beliefs about the correlations. The proposed approach is able

to simultaneously learn unknown mean performance values and unknown correla-

tions, whereas existing approaches in the literature assume independence or known

correlations to learn unknown mean performance values only.

Finally we consider an application in business-to-business (B2B) pricing. We

propose an approximate Bayesian statistical model for predicting the win/loss prob-

ability for a given price and an approach for recommending target prices based on

the approximate Bayesian model.
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Chapter 1: Introduction

1.1 Simulation Optimization

We consider optimization problems where the objective is to minimize an ex-

pected value that cannot be computed in closed form. Instead, the expectation must

be estimated via simulation. Therefore, deterministic optimization algorithms are

not applicable and simulation optimization algorithms are needed.

The general formulation of the simulation optimization problem is as follows:

min
θ∈Θ

J(θ) = min
θ∈Θ

E [L(θ, ω)] , (1.1)

where θ ∈ Θ is a p-dimensional vector of the decision variables and Θ is the feasible

region. It assumes that little knowledge (linearity or convexity) of the objective

function J(θ) is known, and moreover J(θ) is the expectation of another quantity

L(θ, ω), so it cannot be obtained directly. L(θ, ω) is the performance measure of

interest and ω represents a simulation replication, which comprises the uncertainty

of the system. The optimal decision variable is defined as

θ∗ = arg min
θ∈Θ

J(θ). (1.2)

Optimization problems are generally classified into continuous and discrete

problems depending on the types of values the decision variables θ can take. An
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alternative classification involves the size of the feasible region: finite versus infinite

for discrete problems, bounded versus unbounded for continuous problems. Exten-

sive review on the topic of simulation optimization can be found in [1–5]. Three

different approaches are briefly discussed since they are closely related to the new

methods proposed in the thesis.

Stochastic approximation is a stochastic optimization technique analogous to

gradient methods in deterministic optimization problems. Stochastic approximation

uses the following recursion to update the solution:

xk+1 = xk + ak∇f̃(xk),

where ∇f̃(xk) is the gradient estimate and ak is the step size. Two classical meth-

ods, Robbins-Monro (RM) and Kiefer-Wolfowitz (KW), estimate the true gradient

∇f(xn) using direct gradient estimates and finite difference gradient estimates, re-

spectively. In the stochastic simulation context, direct gradient estimation methods

include perturbation analysis (PA) [6–8] and likelihood ratio/score function methods

(LR/SF) [9, 10]; see [11] for more details.

Metamodels, also known as Response Surface Methodology (RSM), provide

a functional relationship between the performance measurements and parameters

of interest. Metamodel-based methods decouple optimization from simulation, as

metamodels approximate stochastic responses through an algebraic function and

deterministic optimization procedures are applied to the metamodel. Polynomial

models are one of the commonly used metamodels since they usually have compact

forms and are easy to construct and evaluate. However, due to their lack of flexibility,
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kriging, splines, neural networks and radial basis functions are more adequate to

capture global characteristics of a response surface.

Both stochastic approximation and metamodeling are generally designed for

solving stochastic optimization problems with continuous variables. Statistical rank-

ing and selection (R&S) addresses stochastic optimization problem with discrete

variables. Three R&S procedures are indifference-zone (IZ) methods, value of infor-

mation procedures and optimal computing budget allocation (OCBA). IZ methods

guarantee asymptotic lower bounds for the probability of correct selection (PCS), as

long as the true underlying performance values are sufficiently far apart. Bayesian

models for R&S consider the tradeoff between estimates of the performance values

and uncertainty about those estimates, using the concept of “value of information.”

OCBA is designed with the flexibility to adapt to both frequentist and Bayesian

models.

1.2 Direct Gradient Enhanced Metamodels

A metamodel is commonly used in simulation optimization to provide an aux-

iliary functional relationship between the input and output of a simulation model.

Conducting simulations to collect experimental data is necessary to build metamod-

els, where the simulated data collected are usually performance measurements for

parameters of interest. However, direct derivative information may also be avail-

able in stochastic simulation settings, where the output responses include not only

the performance measurement, but also values of the gradient of performance mea-

3



surement with respect to the parameters. Perturbation analysis (PA) [6–8] and

likelihood ratio/score function methods (LR/SF) [9, 10] are techniques that aim at

estimating the gradient the performance measure. Applications of direct gradient

estimates have been studied extensively, including queueing, inventory and finance

applications [12,13].

In general, there are two types of metamodeling strategies: iterated local meta-

models and global metamodels. An overview of local and global metamodel-based

optimization is given in [14] and [15].

Iterated local metamodels, also known as sequential response surface method-

ology, rely on low-order polynomial regression. A first-order polynomial is usually

used to fit local response surface in a small region to determine the search direction.

Following a line search, new regions for the parameters of interest are exploited re-

peatedly until the region of most interest is determined. At the final step, a quadratic

approximation is chosen and deterministic optimization methods are applied to lo-

cate the optimum. Regression techniques and experiment design are critical in this

procedure; see [16] for details.

In global metamodels, high-order polynomial regression or nonlinear regression

techniques based on existing knowledge about the response surface are appropriate;

see [17] for an example. To capture global characteristics of a response surface, more

flexibility in the models is required. Therefore, kriging, splines, neural networks and

radial basis functions are more appropriate for fitting global metamodels. Among

all these, kriging has received a lot of attention in the stochastic simulation com-

munity over the past decade [18–20]. Recently, [21] proposed stochastic kriging as

4



an extension of kriging, which explicitly takes the uncertainties in simulation noise

into consideration. Stochastic kriging is considered to be flexible and promising in

fitting global response surfaces, especially in stochastic simulation settings.

In the stochastic simulation setting, direct derivative information may be

available, i.e., the simulation output may include not only the performance mea-

surements, but also estimates of the gradients of performance measurement with re-

spect to the parameters. Techniques for estimating gradients, including perturbation

analysis (PA) and likelihood ratio/score function methods (LR/SF), are discussed

in [7], [10] and [13]; see also references therein.

The availability of additional gradient information suggests the potential for

improving the quality of metamodels. Combining gradient information has been

investigated for building metamodels under deterministic computer simulation set-

tings; see [22] and [23] for approaches to approximate response surface with artificial

neutral networks and kriging. In stochastic simulation settings, researchers have also

made attempts to incorporate gradient estimates into metamodeling approaches. [24]

proposed a gradient surface method (GSM) that uses the gradient estimates only

to iteratively fit lower-order polynomial models. [25] introduced stochastic kriging

with gradient estimators (SKG) to exploit gradient estimates in stochastic kriging,

showing that the new approach provides better prediction with smaller mean squared

error (MSE). This approach is similar to cokriging proposed in deterministic simula-

tions [26], and requires differentiability of the correlation functions, since derivatives

of random processes or random fields are used to model gradient estimates.
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1.3 Variational Bayesian Inference in Simulation Optimization

Bayesian statistical models can be used to represent the beliefs of a decision-

maker about an uncertain environment. For example, in revenue management, a

seller formulates beliefs about customers’ willingness to pay; in energy, we may have

a belief about the suitability of a candidate location for a new wind farm.

In R&S, Bayesian models consider the tradeoff between estimates of the per-

formance values and uncertainty about those estimates. This is known as the “value

of information” (VIP) approach, going back to [27] and extended in later work. The-

oretical properties of the policy were studied in [28]. VIP-based policies considering

unknown measurement noise were developed in [29] and [30]. See [31] and [5] for

an extensive up-to-date survey of Bayesian learning techniques. [32] compares sev-

eral sequential procedures and concludes that Bayesian procedures are more efficient

when the number of alternatives increases.

In the context of dynamic pricing, Bayesian statistics have been used to model

environmental uncertainty [33, 34], and different pricing strategies have been pro-

posed to optimize the balance between revenue and information. For example, [35]

proposes a one-step look-ahead strategy for problems with logistic revenue curves,

while [36] presents an approach based on multi-armed bandit theory. A recent

stream of work, represented by [37], [38], [39], and [40], has focused on establish-

ing long-run convergence rates for policies that are mostly myopic, with occasional

periods of exploration spaced increasingly further apart. However, in the specific

context of B2B pricing, individual transactions typically have high volume (for ex-
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ample, the seller may be negotiating the price of a year’s supply of raw materials)

and incur high costs (e.g. the time and money spent during negotiations), making

it important to obtain good performance quickly.

Most Bayesian procedures rely on conjugate prior distributions on the un-

known model parameters in order to maintain computational tractability. Conju-

gate priors model the evolution of these beliefs over time as new information is

collected, either from stochastic simulation or field experiments. However, there

are relatively few of these conjugate models, and they simply do not exist in many

problems of interest. Variational Bayesian inference can be used to create com-

putationally tractable, “nearly conjugate” models that optimally approximate the

actual belief distributions and enable the use of anticipatory information collection

and optimization policies.

1.4 Outline of the Thesis

The thesis centers around simulation optimization, including several new meth-

ods based on direct gradient estimates and optimal learning approaches. We now

outline the thesis and summarize the contents of each chapter.

Chapter 2 investigates potential modeling improvements that can be achieved

by exploiting additional gradient information in the regression setting. Using least

squares and maximum likelihood estimation, we propose various Direct Gradient

Augmented Regression (DiGAR) models that incorporate direct gradient estimators,

starting with a one-dimensional independent variable and then extending to multi-

7



dimensional input. For some special settings, we are able to characterize the variance

of the estimated parameters in DiGAR and compare them analytically with the

standard regression model. For a more typical stochastic simulation setting, we

investigate the potential effectiveness of the augmented model by comparing it with

standard regression in fitting a functional relationship for a simple queueing model,

including both a one-dimensional and a four-dimensional example. The preliminary

empirical results are quite encouraging, as they indicate how DiGAR can capture

trends that the standard model would miss. Even in queueing examples where there

is high correlation between the output and the gradient estimators, the basic DiGAR

model that does not explicitly account for these correlations performs significantly

better than the standard regression model.

Chapter 3 introduces an approach for enhancing stochastic kriging in the set-

ting where additional direct gradient information is available, e.g., provided by

techniques such as perturbation analysis or the likelihood ratio method. The new

approach, called Gradient Extrapolated Stochastic Kriging (GESK), incorporates

direct gradient estimates by extrapolating additional responses. For two simpli-

fied settings, we show that GESK reduces mean squared error (MSE) compared to

stochastic kriging under certain conditions on step sizes. Since extrapolation step

sizes are crucial to the performance of the GESK model, we propose two different

approaches to determine the step sizes: maximizing penalized likelihood and min-

imizing integrated mean squared error. Numerical experiments are conducted to

illustrate the performance of the GESK model and to compare it with alternative

approaches.

8



Chapter 4 proposes the first computationally tractable Bayesian statistical

model for learning unknown correlation structures in fully sequential simulation

selection. Correlations represent similarities or differences between various design

alternatives, and can be exploited to extract much more information from each

individual simulation. However, in most applications, the correlation structure is

unknown, thus creating the additional challenge of simultaneously learning unknown

mean performance values and unknown correlations. Based on our new statistical

model, we derive a Bayesian procedure that allocates simulations based on the value

of information, thus anticipating future changes to our beliefs about the correlations.

Our approach outperforms existing methods for known correlation structures in

numerical experiments, including one motivated by the problem of optimal wind

farm placement, where real data are used to calibrate the simulation model.

Chapter 5 proposes an approximate Bayesian statistical model for predicting

the win/loss probability for a given price in business-to-business (B2B) pricing. This

model allows us to learn parameters in logistic regression based on binary (win/loss)

data and can be quickly updated after each new win/loss observation. We also

consider an approach for recommending target prices based on the approximate

Bayesian model, thus integrating uncertainty into decision-making. We test the

statistical model and the target price recommendation strategy with synthetic data,

and observe encouraging empirical results.
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Chapter 2: Direct Gradient Augmented Regression

2.1 Introduction

Because regression analysis arose from physically observed processes, it as-

sumes that the only data points generated are measurements of the value of the

dependent variable for each combination of values for the independent variable.

However, in the stochastic simulation setting that is our primary focus, research

over the previous four decades has led to the availability of direct derivative infor-

mation – meaning not from finite-difference approximations, e.g., for each design

point or value of the independent variable, the output responses generated include

not only a value of the dependent variable, but also a value of the gradient of the

dependent variable with respect to the independent variable(s). Settings where

such direct gradient estimators are available include queueing, inventory, and fi-

nance [6–8,10,12,13].

Clearly, in this enhanced data setting, the availability of gradient information

should lead to an improvement in the estimated functional relationship between the

dependent and independent variables. In this chapter, we investigate such improve-

ments in the regression setting. Specifically, we consider a simple modification of the

standard linear regression model to incorporate the additional measurements. We

10



call the new method Direct Gradient Augmented Regression (DiGAR, pronounced

“digger”). Using the least squares approach and maximum likelihood estimation, we

derive the resulting parameter estimates for the proposed DiGAR models and pro-

vide a theoretical analysis of the improvements that can be achieved over a standard

model. We also conduct some preliminary numerical experiments to empirically in-

vestigate the improvements that can be achieved. In particular, we consider a simple

queueing system for which there are analytical results available, which can be used

to judge the effectiveness of both standard regression and DiGAR using both a linear

and quadratic regression function.

The main motivation for our work is two-fold:

• characterizing a global response surface, a traditional application of regression;

• approximating a local response surface with a view towards local improvements

in carrying out simulation-based optimization.

Broadly speaking, our primary objective is to provide improved means for estimat-

ing functional relationships using direct higher-order information. As a first step, we

consider regression because of its wide application in many fields and because of the

central role it plays in the sequential response surface methodology (RSM) approach

to optimization, which “is a metamodel-based optimization method that builds lin-

ear or quadratic local approximations” to the response function [14]. Polynomial

regression is generally used to fit the response surface, as a series of experiments

is used along the steepest descent direction to obtain additional improvement [41];

see also [16] for a detailed discussion on the relevant statistical techniques. In Fig-
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ure 18.1 of [14], simulation optimization strategies are classified according to the

nature of the controllable variables and the response function. For the case where

the response function is assumed differentiable, there is a dichotomy between direct

gradient methods and metamodel methods, of which RSM is the primary technique.

DiGAR serves as an example of merging these two categories. By integrating direct

gradient estimates into the regression model, the hope is that the fitted curve better

approximates the true model, which should also lead to faster convergence when

used in sequential procedures.

DiGAR provides a paradigm shift, though it is clearly only applicable in a

special setting in which direct gradient estimates are available, which is often the

case in stochastic simulation using techniques such as perturbation analysis (PA)

and the likelihood ratio/score function (LR/SF) method [6, 7]. These procedures

provide estimates in which no resimulation is required, i.e., whenever an estimate of

an output performance measure is obtained, an estimate of the derivative(s) with

respect to parameters of interest are also obtained at that particular setting of the

parameters. This is referred as direct gradient estimates in the thesis, to contrast

with indirect estimates obtained by actually changing the value of the parameters

and running additional simulations; see [13,42] for a recent survey and tutorial with

references.

In the setting where direct gradient estimates are available, another approach

for incorporating gradient estimates into regression models proposed by [24] for

a sequential simulation optimization procedure fits the gradient response surface

directly using the gradient estimates only; the function estimates themselves are
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not used in the procedure. In contrast, our approach uses all sets of measurements

that are available in augmenting existing functional estimation procedures such as

regression. Thus, DiGAR augments standard regression rather than replacing it.

To illustrate the approach in a straightforward way, DiGAR uses least squares

and maximum likelihood estimation (for the normally distributed setting), but other

criteria such as minimum sum of absolute errors (MSAE) and minimization of the

maximum absolute errors (MMAE) could also have been used. Least squares is

among the most popular criterion in regression [43, 44], due to its simplicity, but it

has the drawback of being sensitive to outliers, as is also evident in our numerical

examples reported in Section 2.3. There has been much work in robust regression to

overcome the drawback of least square regression [45], but our preliminary numerical

results on a queueing example indicate that combining the gradient estimations

with the least squares approach can lead to noticeable qualitative correction that

mitigates sensitivity to outliers, i.e., when some of the observed dependent variable

output values exhibit large fluctuations from their means, DiGAR is able to correct

the shape of the fitted curve – the slope for a linear fit and the curvature for a

quadratic fit. Not surprisingly, the observed variance of the parameter estimates in

the DiGAR is also considerably lower than that of the standard regression model.

2.2 Models

In this section, we consider the simplest setting, beginning with a review of the

most basic standard linear regression model before introducing the DiGAR models
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where direct gradient estimators are assumed available.

The following assumptions are used in the section for various theoretical results

and calculations.

Assumption 2.1. E[εi] = 0 ∀i.

Assumption 2.2. E[ε′i] = 0 ∀i.

Assumption 2.3. (i) Cov(εi, εj) = 0, i 6= j, and (ii) Var(εi) = σ2 ∀i with known

σ2.

Assumption 2.4. (i) Cov(ε′i, ε
′
j) = 0 ∀ i 6= j, Cov(εi, ε

′
j) = 0 ∀ i, j, and (ii)

Var(ε′i) = σ2
g ∀ i with known σ2

g .

Assumption 2.5. εi ∼ N(0, σ2), ε′i ∼ N(0, σ2
g) ∀i with known σ2 and σ2

g .

2.2.1 Standard Linear Regression Model

Consider the usual regression setting with independent variable x and de-

pendent variable y, where n > 1 data points (x1, y1), ..., (xn, yn) are given. Both

independent and dependent variables take values from a continuous domain. The

standard linear regression model is the following:

yi = β0 + β1xi + εi, i = 1, 2, · · · , n, (2.1)

where assumptions on the “noise” terms {εi} determine properties of resulting esti-

mators.
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The least-squares approach minimizes the sum of squared residuals given by

n∑
i=1

(yi − β0 − β1xi)
2, leading to the following estimators for β0 and β1:

β̂0 = ȳ − β̂1x̄, (2.2)

β̂1 =

n∑
i=1

(xi − x̄)(yi − ȳ)

n∑
i=1

(xi − x̄)2

=

1
n

n∑
i=1

(xi − x̄)(yi − ȳ)

1
n

n∑
i=1

(xi − x̄)2

, (2.3)

where x̄ and ȳ are the sample means of {xi} and {yi}, respectively. These estimators

are unbiased assuming the noise terms have zero mean.

In the traditional regression model, it is well known that the maximum like-

lihood estimators (MLEs) for normally distributed residuals coincide with the OLS

estimators given by (2.2) and (2.3).

2.2.2 Direct Gradient Augmented Regression

Now consider the enhanced setting where the n data points are (x1, y1, g1), ..., (xn, yn, gn),

with gi representing a direct estimate of the gradient of yi at xi. The basic Direct

Gradient Augmented Regression (DiGAR) model is the following:

yi = β0 + β1xi + εi, (2.4)

gi = β1 + ε′i, (2.5)

where gi, i = 1, 2, · · · , n are the gradient estimates with residuals {ε′i}.

Again using the OLS approach, the function to be minimized is the sum of

the squared deviations in both yi and gi,

L =
n∑
i=1

(yi − β0 − β1xi)
2 +

n∑
i=1

(gi − β1)2. (2.6)
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The resulting estimators that minimize (2.6) are

β̂0 = ȳ − β̂1x̄, β̂1 =

n∑
i=1

xiyi − nx̄ȳ + nḡ

n∑
i=1

x2
i − nx̄2 + n

=

1
n

n∑
i=1

(xi − x̄)(yi − ȳ) + ḡ

1
n

n∑
i=1

(xi − x̄)2 + 1
, (2.7)

where x̄, ȳ and ḡ are the corresponding sample means of xi, yi and gi. Note that

in the basic DiGAR model, the form of β̂0 remains unchanged, whereas β̂1 has the

additional terms ḡ and 1 in the numerator and denominator, respectively, reflecting

the added gradient information.

An alternative approach is to derive estimators using yi and gi separately and

combine them. However, since we would like to combine two sources of data as

opposed to two estimators, we choose to use the objective function in (2.6). Later

in the chapter, we will build the connections between these two approaches.

Under the Assumptions 2.3 - 2.5, the parameter estimators given by (2.7) are

unbiased, since

E[β̂1] =

n∑
i=1

xiE[yi]− nx̄E[ȳ] + nE[ḡ]

n∑
i=1

x2
i − nx̄2 + n

= β1,

E[β̂0] = E[ȳ]− E[β̂1]x̄ = β0,
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and the variances of β̂1 is calculated as follows:

Var(β̂1) =

n∑
i=1

x2
i Var(yi)− n2x̄2 Var(ȳ) + n2 Var(ḡ)(

n∑
i=1

x2
i − nx̄2 + n

)2

=

n∑
i=1

x2
iσ

2 − n2x̄2σ2/n+ n2σ2
g/n(

n∑
i=1

x2
i − nx̄2 + n

)2

=

(
n∑
i=1

x2
i − nx̄2

)
σ2 + nσ2

g(
n∑
i=1

x2
i − nx̄2 + n

)2

The DiGAR estimator β̂1 can also be viewed as a linear combination of the

standard linear regression estimator in (2.3) and another unbiased estimator ḡ with

weights proportional n and
n∑
i=1

(xi − x̄)2, respectively. We are particularly inter-

ested in investigating the variance of the estimators, and a known results suggest

that the optimal weights for combining two unbiased estimators should be inversely

proportional to their variances.

A more general form of the least-squares function to be minimized allows

relative weighting (convex combination) of the two contributions rather than the

equal weighting used in (2.6), i.e.,

L = α
n∑
i=1

(yi − β0 − β1xi)
2 + (1− α)

n∑
i=1

(gi − β1)2, (2.8)

where α ∈ [0, 1]. α = 1 corresponds to standard regression, α = 0.5 corresponds

to the OLS DiGAR model introduced earlier, and α = 0 uses only the gradient
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information. Differentiating with respect to β0 and β1,

∂L

∂β0

= −2α
n∑
i=1

(yi − β0 − β1xi),

∂L

∂β1

= −2α
n∑
i=1

(yi − β0 − β1xi)xi − 2(1− α)
n∑
i=1

(gi − β1).

(2.9)

Setting both equal to 0 and solving yields the following estimators:

β̂0 = ȳ − β̂1x̄, β̂1 =

1
n

n∑
i=1

(xi − x̄)(yi − ȳ) + 1−α
α
ḡ

1
n

n∑
i=1

(xi − x̄)2 + 1−α
α

. (2.10)

If the estimators for the gradients are also unbiased, i.e., E[ε′i] = 0, then the

α−DiGAR estimators are also unbiased.

Remark 2.1. The weight α in (2.8) can be viewed as cost to the sum of squared

errors. We will look into the weighted objective function in (2.8) and try to build

connections between the DiGAR estimators and the estimator obtained by combining

two unbiased estimators. In the following sections, we will show that the optimal

α provides the same estimator as the optimal estimator obtained by combining two

unbiased estimators.

Proposition 2.2. Under Assumptions 2.1 & 2.2, the α−DiGAR estimators given

by (2.10) are unbiased.

2.2.3 Choice of Weights in α-DiGAR

Instead of thinking α as a fixed cost, we consider the weight α can be chosen

in practice. So how should one choose the weight parameter α? One intuitive

choice is to choose the relative weights inversely proportional to the corresponding
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variances, but the variances are unknown and possibly nonhomogeneous across the

independent variable range.

Another option is to minimize the prediction variance. The predicted value at

xi can be written as

ŷi = β̂0 + β̂1xi = ȳ − β̂1(x̄− xi),

so that minimizing the prediction variance is equivalent to minimizing the variance

of β̂1. However, again an analytical expression for this variance is unavailable in

most settings.

In the next section we revisit the question of weight selection in some spe-

cial settings of homogeneous variances where “optimal” weights can be determined

explicitly.

2.2.4 Theoretical Comparisons Between Estimators for Special Cases

Both traditional regression and least-squares DiGAR models can be applied

in a very general setting, but it is difficult to obtain any analytical results without

further assumptions.

For the traditional regression model, if the noise terms have zero mean and in

addition are uncorrelated with common variance, the theoretical variances can also

be computed explicitly.

Proposition 2.3. Under Assumptions 2.1 and 2.3, the variances of the estimators
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(2.2) and (2.3) are given by

Var(β̂0) = σ2

 1

n
+

x̄2

n∑
i=1

(xi − x̄)2

 , (2.11)

Var(β̂1) =
σ2

n∑
i=1

(xi − x̄)2

. (2.12)

Similarly, in the DiGAR model, if all of the residuals are uncorrelated with

common variance, it is not difficult to compute the theoretical variances of the

α-DiGAR estimators.

Proposition 2.4. Under Assumptions 2.1-2.4, the variances of the estimators (2.10)

are given by

Var(β̂0) =
σ2

n

1 +

x̄2

n

n∑
i=1

(xi − x̄)2(
1
n

n∑
i=1

(xi − x̄)2 + 1−α
α

)2

+
σ2
g

n

 x̄2(1−α
α

)2(
1
n

n∑
i=1

(xi − x̄)2 + 1−α
α

)2

 ,(2.13)

Var(β̂1) =
σ2

n


1
n

n∑
i=1

(xi − x̄)2 + (1−α
α

)2 σ
2
g

σ2(
1
n

n∑
i=1

(xi − x̄)2 + 1−α
α

)2

 . (2.14)

Revisiting Weight Selection in α-DiGAR

Under the assumption of homogenous variances for both the output and its

gradient, per Assumptions 2.3(ii) and 2.4(ii), selection of weights proportional to

variance implies

α

1− α
=
σ2
g

σ2
,

which leads to

α =
σ2
g

σ2
g + σ2

. (2.15)
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For the “optimal” choice of weights, which in the previous subsection was said to be

equivalent to minimizing the variance of β̂1, differentiating (2.14) with respect to α

and setting equal to 0 gives the same proportional weights as (2.15).

For the uncorrelated setting, Proposition 2.4 can be used to find necessary

and sufficient conditions for the variance of the slope estimator to be lower for the

α-DiGAR estimators than for the standard slope estimator given by (2.3).

Proposition 2.5. Under Assumptions 2.1-2.4,

σ2
g

σ2
≤ 2α

1− α
+

1

1
n

n∑
i=1

(xi − x̄)2

⇐⇒ Var(β̂DiGAR1 ) ≤ Var(β̂standard1 ),

where βDiGAR1 and βstandard1 denote the α-DiGAR slope estimator given by (2.10)

and the standard slope estimator given by (2.3), respectively.

Proof. Comparing the variances given by (2.12) and (2.14), the inequality holds if

and only if

σ2

n

1
n

n∑
i=1

(xi − x̄)2 + (1−α
α

)2 σ
2
g

σ2(
1
n

n∑
i=1

(xi − x̄)2 + 1−α
α

)2 ≤
σ2

n

1

1
n

n∑
i=1

(xi − x̄)2

⇐⇒
(σg
σ

)2

≤
(

α

1− α

)2


(

1
n

n∑
i=1

(xi − x̄)2 + 1−α
α

)2

1
n

n∑
i=1

(xi − x̄)2

− 1

n

n∑
i=1

(xi − x̄)2


= 2

(
α

1− α

)
+

1

1
n

n∑
i=1

(xi − x̄)2

Intuitively, Proposition 2.5 indicates that if σg is large relative to σ, then it

makes sense to decrease the relative weight for the gradient; also when the simulation
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budget is limited and thus only a relatively small number of design points are possible

and experiment conditions make them close to each other (more likely in sequential

RSM applications), the benefit of DiGAR should be more noticeable. The following

corollary of Proposition 2.5 provides more explicit bounds for the weighting α. Two

special cases include the equal weighting and proportional weighting scenarios, again

in the uncorrelated setting.

Corollary 2.6. Under Assumptions 2.1-2.4, Var(β̂1) for the α-DiGAR OLS slope

estimator given by (2.10) is strictly lower than that for the standard slope estimator

given by (2.3) if

α ≥
σ2
g

σ2
g + 2σ2

,

which includes the following special cases:

(i) α =
σ2
g

σ2
g+σ2 .

(ii) α = 0.5 if σ2
g ≤ 2σ2.

Proof. Main result follows directly from
n∑
i=1

(xi−x̄)2 > 0, with the two cases satisfying

the requisite condition, or directly from Proposition 2.5, noting that (i) α
1−α =

σ2
g

σ2 ,

(ii) α
1−α = 1.

Maximum Likelihood Estimation DiGAR

If we further assume that the residuals are normally distributed and uncorre-

lated (independent) with known variances, we can derive the MLEs for β0 and β1,

which will not coincide with the α-DiGAR estimators in general.
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Note that Assumption 2.5 subsumes Assumptions 2.1 and 2.2, and includes

the known variance condition.

Proposition 2.7. Under Assumptions 2.3, 2.4, and 2.5, the MLEs for the DiGAR

model specified by (2.4) and (2.5) are given by

β̃0 = ȳ − β̃1x̄, β̃1 =

1
n

n∑
i=1

(xi − x̄)(yi − ȳ) + σ2

σ2
g
ḡ

1
n

n∑
i=1

(xi − x̄)2 + σ2

σ2
g

. (2.16)

Proof. Under Assumptions 2.3 and 2.4, yi and gi are independent due to the resid-

uals being uncorrelated. Under Assumption 2.5, both σ2 and σ2
g are known. The

likelihood function is given by

L(β0, β1) = (2π)−n(σσg)
−n exp

{
− 1

2σ2

n∑
i=1

(yi − β0 − β1xi)
2 − 1

2σ2
g

n∑
i=1

(gi − β1)2

}
.

Differentiating the log-likelihood function with respect to the parameters,

∂ log(L)

∂β1

=
1

σ2

n∑
i=1

(yi − β0 − β1xi)xi +
1

σ2
g

n∑
i=1

(gi − β1),

∂ log(L)

∂β0

=
1

σ2

n∑
i=1

(yi − β0 − β1xi),

which after setting equal to 0, and some algebra, leads to (2.16).

Remark 2.8. In the actual implementation, σ2 and σ2
g are usually unknown. The

MLE’s of β0, β1, σ2 and σ2
g are the solutions of a nonlinear system of equations

and are not available in closed form. They would need to be solved using Newton-

Raphson or some other iterative numerical methods. Approximate MLE’s for β0 and

β1 can be obtained by replacing σ2 and σ2
g by the unbiased and consistent estimators

given as follows:
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σ̂2 =
1

n− 2

n∑
i=1

(yi − ŷi)2, σ̂2
g =

1

n− 1

n∑
i=1

(gi − ḡ)2,

where ŷi = β̂0 + β̂1xi with the estimators β̂0 and β̂1 provided in (2.7).

Proposition 2.9. Under Assumptions 2.3, 2.4, and 2.5, the variance of the MLE

for β1 given in (2.16) is

Var(β̃1) =
σ2/n

1
n

n∑
i=1

(xi − x̄)2 + σ2

σ2
g

. (2.17)

As expected, as σg →∞, where the additional gradient estimators provide no

additional useful information, the MLE DiGAR slope estimator variance given by

(2.17) approaches the traditional slope estimator variance given by (2.12), whereas

as σg → 0, Var(β̃1)→ 0 for MLE DiGAR.

Comparing the variances given by (2.17) and (2.12), we have the following

result.

Proposition 2.10. Under Assumptions 2.3, 2.4 and 2.5, and σ/σg > 0, Var(β̃1) for

MLE DiGAR given in (2.16) is strictly lower than that for the standard estimator

given by (2.3).

Thus, in the uncorrelated common variance setting, the MLE DiGAR slope

estimator is guaranteed to have lower variance than the standard regression model

slope estimator. However, it should also be noted that the MLEs given by (2.16)

contain the variances σ2 and σ2
g , which are unknown in practice and thus need to

be estimated from the data, whereas either of the two sets of DiGAR least-squares

estimators given by (2.7) or (2.10) do not contain these terms. However, choosing
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the “optimal” weights in the α−DiGAR estimator (2.10) as specified by (2.15) leads

to the same requirement, since α depends on both σ and σg. Furthermore, this choice

actually leads back to the MLEs, as summarized in the following.

Proposition 2.11. The α-DiGAR estimators given by (2.10) using the weight α

given by (2.15) coincide with the DiGAR MLEs given by (2.16).

Remark 2.12. It is mentioned earlier in the chapter that combing the two unbiased

estimators, namely β̂1 in (2.3) and ḡ, is an alternative approach. The optimal

weighted estimator obtained in this fashion is

1
n∑
i=1

(xi−x̄)2

σ2 + n
σ2
g


n∑
i=1

(xi − x̄)2

σ2

n∑
i=1

(xi − x̄)(yi − ȳ)

n∑
i=1

(xi − x̄)2

+
n

σ2
g

ḡ

 .

Simplifying this leads to the same estimator α-DiGAR estimators given by (2.10)

using the weight α given by (2.15) and the DiGAR MLEs given by (2.16). This

suggests that when we combing two sources of data using the loss function in (2.8),

we are able to obtain the same estimator as combining two unbiased estimators,

namely β̂1 in (2.3) and ḡ.

2.2.5 Multi-dimensional Linear Models

Now we consider the d-dimensional multiple regression linear model setting.

For standard regression,

yi = β0 +
d∑
j=1

βjxij + εi, i = 1, 2, · · · , n. (2.18)
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The least-squares approach minimizes the sum of squared residuals given by
n∑
i=1

(yi−

β0 −
∑d

j=1 βjxij)
2, leading to the following estimators for β0 and βj:

β̂0 = ȳ −
d∑
j=1

β̂jx̄j, (2.19)

β̂j =

n∑
i=1

(xij − x̄j)(yi − ȳ)−
∑

k 6=j β̂k
n∑
i=1

(xik − x̄k)(xij − x̄j)
n∑
i=1

(xij − x̄j)2

, (2.20)

where x̄j is the sample mean of {xij}.

The analogous multi-dimensional DiGAR model is given by

yi = β0 +
d∑
j=1

βjxij + εi, (2.21)

gij = βj + ε′ij, (2.22)

where gij, j = 1, 2, · · · , k, i = 1, 2, · · · , n are the gradient estimates with residuals

{ε′ij}. The corresponding least-squares function to be minimized given by

α0

n∑
i=1

(yi − β0 −
d∑
j=1

βjxij)
2 +

d∑
j=1

αj

n∑
i=1

(gij − βj)2,

where
∑d

i=0 αi = 1, αi ≥ 0. Taking the partial derivatives and setting equal to zero

yields again (2.19) and

β̂j =

n∑
i=1

(xij − x̄j)(yi − ȳ)−
∑

k 6=j βk
n∑
i=1

(xik − x̄k)(xij − x̄j) + n
αj
α0
ḡj

n∑
i=1

(xij − x̄j)2 + n
αj
α0

, j > 0,

(2.23)

which reduces to the previous expression with α0 = α, α1 = 1 − α, when there is

just a single input. We will also refer to these as the α-DiGAR estimators.
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2.2.6 DiGAR Model for Gradient Estimates Correlated with Perfor-

mance Outputs

The least-squares estimators for the basic α-DiGAR model, as given by (2.10)

and (2.23), were derived without consideration of the correlation structure, although

explicit computation of the theoretical variance as given by Proposition 2.4 required

further assumptions. Here we consider the generalized least squares (GLS) setting

where the outputs yi and gradient estimates gi are correlated as follows:

y = Xβ + ε, (2.24)

where for the univariate case

y =



y1

g1

...

yn

gn


, X =



1 x1

0 1

...
...

1 xn

0 1


, β =

β0

β1

 , (2.25)

and ε would contain the noise terms for the corresponding output and gradient

estimates. The OLS estimator is given by

β̂ = (X′X)−1X′y, (2.26)

which matches (2.23) in the uncorrelated case with equal weights (αi = 1/n).

The weighted least-squares (WLS) solution is given by

β̂W = (X′WX)−1X′Wy, (2.27)
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where W is a diagonal matrix such that diag(W) = [α1, α2, . . . , α2n].

Now we explicitly consider the setting where the covariance matrix of ε is

given by V, which is non-diagonal due to the correlations between yi and gi. This

can also include the case of common random numbers, which would induce corre-

lations within the {yi} and {gi}. Again assume the residuals have zero mean, i.e.,

E[ε] = 0 (Assumptions 2.1 and 2.2), so E[y] = Xβ. In the general correlated,

non-homogeneous setting of (2.24)/(2.25), (2.26) is not the best (i.e., variance min-

imizing) linear unbiased estimator (BLUE) for β, but the Gauss-Markov Theorem

for the uncorrelated homogeneous variance setting can be used to prove that the

BLUE for the general setting is given by the following GLS estimator:

β̂G = (X′V−1X)−1X′V−1y, (2.28)

and the covariance matrix for β̂G is Cov(β̂G) = (X′V−1X)−1.

Proposition 2.13. Under Assumptions 2.1 and 2.2, the BLUE for the model given

by (2.24) and (2.25) is the GLS estimator given by (2.28). Furthermore, if the

residuals are assumed to be normally distributed, the MLE of β is the same as the

GLS estimator.

Proof. The proof uses the Gauss-Markov Theorem.

Theorem 2.14 (Gauss-Markov Theorem). For the regression model (2.24) with

E[ε] = 0 and Cov(ε) = σ2I, the OLS estimators have minimum variance among all

linear unbiased estimators.

Since V is positive definite, there exists an 2n×2n nonsingular matrix P such
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that V = PP′. Multiplying y = xβ + ε by P−1, we obtain

P−1y = P−1Xβ + P−1ε,

where E[P−1ε] = P−1E[ε] = 0 and

Cov(P−1ε) = P−1 Cov(ε(P−1)′ = P−1σ2V(P−1)′ = σ2P−1PP′(P′)−1 = σ2I.

Therefore, the assumptions in the Gauss-Markov Theorem are satisfied, and the

least-squares estimator

β̂ =
[
(P−1X)′(P−1X)

]−1
(P−1X)′P−1y,

is the best linear unbiased estimator (BLUE). The estimator β̂ can be written as

β̂ =
[
(P−1X)′(P−1X)

]−1
(P−1X)′P−1y

= [X′(P′)−1P−1X]−1X′(P′)−1P−1y

= [X′(PP′)−1X]−1X′(PP′)−1y

= (X′V−1X)−1X′V−1y.

We now analyze the variance of the slope portion of the GLS estimator by

considering a very special case.

Assumption 2.6. V is a positive definite matrix such that yi is correlated with gj

only when i = j, with correlation ρ.

Proposition 2.15. Under Assumptions 2.1, 2.2, 2.3 (ii), 2.4 (ii), and 2.6, for the

model given by (2.24)/(2.25), the variance of β̂1 in (2.28) is given by

Var(β̂1) =
σ2/n

1
1−ρ2

1
n

n∑
i=1

(xi − x̄)2 + σ2

σ2
g

, (2.29)
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which vanishes if either σ or σg goes to zero.

Proof. The lower right element of the covariance matrix (X′V−1X)−1 gives Var(β̂1),

so writing the covariance matrix of the residuals as

V =



σ2 ρσσg

ρσσg σ2
g

. . .

. . . . . . . . .

. . . σ2 ρσσg

ρσσg σ2
g


,

If the residuals are normally distributed, i.e., ε ∼ N (0,V), then y ∼ N (Xβ,V),

and the likelihood function is

L(β) =
1

(2π)n|V|1/2
exp

{
−(y −Xβ)′(V)−1(y −Xβ)/2

}
,

so the log-likelihood function is

lnL(β) = −n ln(2π)− 1

2
ln(|V|)− 1

2
(y −Xβ)′V−1(y −Xβ).

Differentiating with respect to β,

∂ lnL

∂β
= −

(
X′VXβ −X′V−1y

)
,

setting equal to zero and solving for β gives the estimator

β̂ = (X′V−1y)−1X′V−1y,

which is the same as the best linear unbiased estimator (BLUE).
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In the special correlated setting of Proposition 2.15, it is interesting to note

that the variance of the GLS DiGAR slope estimator will go to zero if either of

the variances of the underlying noises vanish, whereas for the basic OLS DiGAR

estimator, both variances need to be zero in the uncorrelated setting (see Proposition

2.4). Also, by comparing (2.29) with the variance of the standard slope estimator

given by (2.12), the following is easily established.

Proposition 2.16. Under Assumptions 2.1, 2.2, 2.3 (ii), 2.4 (ii), and 2.6, for the

model given by (2.24)/(2.25), if 0 < σ2 <∞ and 0 < σ2
g <∞, then for −1 < ρ < 1,

the DiGAR slope estimator given by (2.28) has lower variance than the standard

slope estimator.

Note that the DiGAR estimators given by (2.28) for the uncorrelated case will

differ from the DiGAR estimators derived earlier using OLS. Generally, ρ is unknown

and must be estimated based on the data. As noted in [16], estimating the corre-

lation matrix changes the linear estimator (2.28) into a nonlinear estimator. Thus,

although the theoretical analysis indicates potential for variance reduction from

estimating the correlation, the extra computational budget spent on estimating ρ

(and the resulting nonlinearities) must be traded off with any potential performance

gains, an issue that is also investigated empirically in the numerical examples in the

next section.
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2.3 Numerical Examples

Queueing systems are one of the main application areas for stochastic simu-

lation, and the earliest application of direct gradient estimation in simulation was

queueing; thus, we chose a simple queueing model as the setting on which to empir-

ically investigate the performance of the DiGAR estimators, comparing them with

standard regression in a setting where direct gradient estimates are available but

where one or more of the assumptions of the theoretical results are generally not sat-

isfied. In particular, although the least-squares α-DiGAR models are applicable in

the general correlated setting, it is difficult to compute the theoretical variances ex-

plicitly for such queueing settings, so simulation experiments are used to empirically

compare their performance with standard regression.

Perhaps the simplest queueing system is the first-come, first-served (FCFS),

single-server queue considered here. Specifically, we consider the mean total time

in system for a customer (queue or delay time plus service time) as a function of

the parameters of the (common) service time or interarrival time distribution of

customers. Two settings are considered: a univariate setting (single input) and

a multivariate setting. In both settings, four outputs, i.e., four different y’s, are

considered. In queueing theory, the interest is frequently steady-state performance,

but since the focus here is on improving regression models rather than on queueing

theory, per se, we consider the 2nd, 3rd, 4th, and 5th customers, for which we

can easily obtain analytical results that can be used to compare the quality of

the standard linear regression and DiGAR models without having to worry about
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whether the simulation has reached steady state. Letting Tk denote the system time

of the kth customer, the outputs of interest are

y(k) = E[Tk], k = 2, 3, 4, 5.

The gradient estimators for all of the examples are provided in the Electronic Com-

panion Section A.2. The system time performance and its gradient estimate are

clearly highly correlated, and the variance of both the performance and its gradient

are not homogeneous across the range of independent values considered (although

since the queue will be far from the heavy traffic intensity regime, the violation

may not be particularly severe). As a result, Assumptions 2.3 and 2.4 are violated

and the conclusions of Propositions 2.3 through 2.10 cannot be applied, although

Proposition 2.2 holds, as the gradient estimators are unbiased. However, it should

be noted that the α-DiGAR estimators are not derived under Assumptions 2.3 and

2.4, which are only sufficient conditions to establish the theoretical results.

2.3.1 Example: M/M/1 Queue

The univariate example takes the arrival process to be Poisson with fixed rate

and service times to be i.i.d. exponentially distributed, i.e., an M/M/1 queue,

where the independent variable x is the mean service time. It is straightforward

to compute the true theoretical dependence of the expected system time y on the

mean service time x (cf. [46]), which can then be used to judge the quality of the

fitted curves obtained by the various regression models.

For all experiments in the univariate setting of the M/M/1 queue, the arrival
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rate is fixed at 0.2, and the number of design points is n = 10, where output y

(mean system time) is obtained at the following values of the independent variable

x (mean service time):

x1 = 3.6, x2 = 3.7, x3 = 3.8, x4 = 3.9, x5 = 4.0, x6 = 4.1, x7 = 4.2, x8 = 4.3, x9 = 4.4, x10 = 4.5.

At each of these independent variable values, 10 independent simulation replications

(runs) were generated to obtain the system times (and gradients for DiGAR) of the

customers; nine additional macroreplications were carried out only for the purposes

of estimating the slope variances as described below. The relatively small number

of replications highlights the challenges that the standard regression approach faces,

since it leads to output estimates with relatively high variances.

Two metrics were used to evaluate the quality of fit for each data set:

(i) the sample mean-squared error from the true model over the independent

variable range of interest defined by

L2 =

xmax∫
xmin

(ŷ(x)− y(x))2dx,

where ŷ(x) and y(x) denotes the fitted and true models, respectively; and

(ii) the theoretical (from the uncorrelated model) variance of the slope estimator

denoted by V̂ar(β̂1) and estimated using (2.12) and (2.14) for the standard and

DiGAR models, respectively, with the pooled (over all input values) sample

variance estimators s2 and s2
g used in place of the respective output variances.

For the M/M/1 queue example, xmin = 3.6 and xmax = 4.5. To provide

a reference for the fitted linear models, a “true” linear model was also computed
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based on fitting a linear model that minimizes the L2 error from the true M/M/1

queue model given in Electronic Companion Section A.1 (since the true function y(x)

is not linear). The V̂ar(β̂1) metric estimated is based on a formula that assumes

conditions not satisfied in these queueing examples. It is calculated to see if the

relative behavior resembles the actual variances of the slope estimators, estimated

using N = 10 macroreplications via

s2(β̂1) =
1

N − 1

N∑
j=1

(β̂ji −
¯̂
βi)

2, where
¯̂
β1 =

1

N

N∑
j=1

β̂j1.

The first set of experiments performed used the sample mean for the output

variable yi (and gi for DiGAR) at each of the 10 values of the independent vari-

able xi to carry out the fitting using standard regression and the various DIGAR

models: OLS DiGAR with parameters given by (2.7) – denoted simply by DiGAR

throughout; α-DiGAR models with parameters given by (2.10); MLE DiGAR with

parameters given by (2.16) – denoted by DiGARn throughout; and the correlated

DIGAR models with parameters given by (2.28) – denoted by DiGAR* and Di-

GAR** for the cases where the correlation matrix is estimated by using the given

number of replications (initially 10) and 100,000 (off-line) replications, respectively.

The results are given in Table 2.1, which provide the values of the estimated

parameters, along with the calculation of the various metrics. Overall, the DiGAR

models all outperform the standard model on all metrics, especially for the variance

of the slope estimators, with a superiority of one to two orders of magnitude. The

numbers in the last two columns are also encouraging, in that they indicate that the

estimated theoretical variances for all of the estimators are in the same ballpark as
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the sample variances, and more importantly the ratio of improvement is reasonably

consistent, so that this metric appears to provide a pretty accurate estimate of

relative performance between the various models. The performance of the DiGAR

models is also fairly insensitive to the choice of the weight parameter, with the OLS

DiGAR model performing adequately, although the “optimal” choice of weights

(approximately 0.072, 0.087, 0.101, 0.114 for y(2), y(3), y(4), y(5), respectively) does

show improvement and is usually the best performance overall, indistinguishable

from DIGAR**, to be discussed shortly.

A clearer visual comparison is provided by the graphs in Figure 2.1, which plot

the simulation data, true model, and three fitted models, where the circles are the

data points (sample mean of 10 simulated values); the solid line is the true model;

the dashed line is the fitted model from standard regression; the line with dots is

the fitted OLS DiGAR model; and the dotted line is correlated DiGAR model. The

graphs indicate that both the standard and DiGAR models fit the data reasonably

well for y(2) and y(3), but there are dramatic differences for y(4), and y(5), in which

the DiGAR models correctly capture the orientation of the curve, whereas the slope

of the standard linear regression model has the incorrect sign. For all four cases,

the normal estimators are indistinguishable from the basic OLS DiGAR model in

the graphs, and hence were omitted.

Surprisingly, the correlated model clearly performs worse than the OLS model,

which suggests that the misspecification caused by estimating the correlation based

on 10 points outweighs the potential gains of a better model. The purpose of Di-

GAR** – which used 100,000 separate replications to estimate the covariance matrix
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Table 2.1: Parameter estimates and performance metrics for M/M/1 queue

(boxed entries indicate incorrect sign of slope)
i y(i) model β̂1 β̂0 L2 V̂ar(β̂1) s2(β̂1)

2

standard 1.68 -1.66 0.48 3.75 5.68

DiGAR 1.56 -1.19 0.48 0.057 0.047

DiGAR (α = 0.25) 1.58 -1.26 0.48 0.046 0.029

DiGAR (α = 0.75) 1.56 -1.17 0.48 0.173 0.217

DiGAR (α ∝ 1/σ2) 1.55 -1.14 0.45 0.045 0.030

DiGARn 1.55 -1.14 0.48 0.057 0.029

DiGAR* 1.15 -0.11 1.62 1.99 0.036

DiGAR** 1.53 -1.10 0.52 0.046 0.030

“true” linear 1.69 -1.00 4E-6

3

standard 0.68 4.04 0.27 8.82 7.17

DiGAR 2.04 -1.50 0.11 0.134 0.066

DiGAR (α = 0.25) 1.86 -0.77 0.12 0.092 0.032

DiGAR (α = 0.75) 2.12 -1.80 0.11 0.369 0.300

DiGARn 2.14 -1.91 0.11 0.123 0.029

DiGAR (α ∝ 1/σ2) 2.14 -1.81 0.051 0.090 0.029

DiGAR* 1.53 -0.55 2.00 4.35 0.098

DiGAR** 2.14 -1.85 0.088 0.091 0.028

“true” linear 2.30 -2.18 2E-5

4

standard -2.97 20.2 2.06 3.10 5.35

DiGAR 2.33 -1.26 0.019 0.237 0.074

DiGAR (α = 0.25) 1.63 1.58 0.093 0.046 0.041

DiGAR (α = 0.75) 2.61 -2.41 0.006 0.177 0.265

DiGAR (α ∝ 1/σ2) 2.71 -2.53 0.10 0.046 0.035

DiGARn 2.70 -2.77 0.004 0.081 0.038

DiGAR* 1.98 -1.56 2.52 0.122 0.110

DiGAR** 2.73 -2.78 0.027 0.046 0.036

“true” linear 2.85 -3.43 7E-5

5

standard -1.76 15.2 2.29 1.30 9.18

DiGAR 2.89 -3.63 0.71 0.191 0.114

DiGAR (α = 0.25) 2.27 -1.14 0.77 0.053 0.068

DiGAR (α = 0.75) 3.14 -4.64 0.70 0.094 0.419

DiGAR (α ∝ 1/σ2) 3.22 -4.73 0.35 0.054 0.064

DiGARn 3.19 -4.88 0.70 0.094 0.072

DiGAR* 2.45 -2.98 3.66 0.228 0.096

DiGAR** 3.24 -4.98 0.55 0.055 0.064

“true” linear 3.37 -4.70 2E-4
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Figure 2.1: M/M/1 queue: true model, simulation data and several fitted models,

where each data point is the sample mean of 10 independent replications.
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to serve as a proxy for the true covariance matrix – was to investigate the conjecture

that the error is in fact due to the poor estimation of the correlation matrix. Tables

2.1 indicate that DiGAR** does in fact outperform OLS DiGAR, though the differ-

ence is not substantial. Interestingly, as noted earlier, the performance of DIGAR**

is nearly identical to that of α-DiGAR with the optimal choice of α. However, it

is clear that at least for this example, it is preferable to use OLS DiGAR rather

than DiGAR* if only a small number of replications are available to estimate the

covariance matrix, which is typically the situation in most of the simulation settings.

Since the variances are much smaller in the DiGAR models, it would seem

that a reasonable fit could be obtained using DiGAR with fewer replications at

each design point. Thus, a followup experiment used only a single output point to

measure yi (and gi for DiGAR) at each design point. Since there were 10 simulation

runs, this experiment can be performed 10 independent times each. As expected,

the variance of the slope estimator is substantially lower for DiGAR, and the ratios

of the estimated variances range from 11 to 111, with an overall mean over 60, which

represents a substantial improvement.

We also have an example showing the incorrect slope sign estimated from the

standard regression model happens frequently if only a small number are conducted

at each design point, specifically considering the fitted models for just y(2) in each

of the 10 individual runs of data set 1. In half (5 out of 10) of the sample, the

standard model gives the incorrect sign for the slope. The better match in the

slope of the curves is critical in simulation-based optimization procedures such as

sequential RSM. Similar results not reported here were also observed for y(3), y(4),
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Figure 2.2: M/M/1 queue: using correlation matrix estimated based on 100,000

“offline” simulation replications.

and y(5).

2.3.2 Regression using a Quadratic Function

Sequential RSM generally employs a quadratic function to fit the data when

the algorithm approaches the optimal value, i.e, the linear fit has slope close to

0. Using the same single-server queue as in Example 1, we consider the following

objective function (used previously in many simulation optimization settings, e.g.,

[47, 48]):

y(k)(x) = E[Tk] + c/x, k = 2, 3, 4, 5, (2.30)
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where c is a given constant. The additional term c/x in (2.30), which can be viewed

as a cost on server speed, makes the function convex with a unique minimizer x∗

that can be found analytically for comparison purposes.

The standard regression model using a quadratic function (in x) is given by

yi = β0+β1xi+β2x
2
i+εi, and the DiGAR model is given by adding gi = β1+2β2xi+ε

′
i.

The resulting explicit parameter estimators for the OLS DiGAR model are provided

below.

Consider the loss function

L =
1

2

n∑
i=1

(yi − β2x
2
i − β1xi − β0)2 +

1

2

n∑
i=1

(gi − 2β2xi − β1)2

Differentiating with respect to β0, β1, β2,

∂L

∂β0

= −
n∑
i=1

(yi − β2x
2
i − β1xi − β0)

∂L

∂β1

= −
n∑
i=1

(yi − β2x
2
i − β1xi − β0)xi −

n∑
i=1

(gi − 2β2xi − β1)

∂L

∂β2

= −
n∑
i=1

(yi − β2x
2
i − β1xi − β0)x2

i −
n∑
i=1

(gi − 2β2xi − β1)2xi

(2.31)

Setting them equal to 0 and solving yields the following estimators, β = Ay, where

β ≡ [β0, β1, β2]T , y =

[
n∑
i=1

x2
i yi + 2

n∑
i=1

xigi,

n∑
i=1

xiyi +
n∑
i=1

gi,

n∑
i=1

yi

]T
,

and

A =
1

abc− af 2 − be2 − cd2 + 2def


bc− f 2 ef − cd df − be

ef − cd ac− e2 de− af

df − be de− af ab− d2

 ,

with a =
n∑
i=1

x4
i+4

n∑
i=1

x2
i , b =

n∑
i=1

x2
i , c = n, d =

n∑
i=1

x3
i+2

n∑
i=1

xi, e =
n∑
i=1

x2
i , f =

n∑
i=1

xi.
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Figure 2.3: M/M/1 queue quadratic fit (c ≈ 27, 10 replications).
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Again using 10 replications per design point, the true and fitted models for c ≈

27 (actual value of c was chosen to make x∗ = 4 for y(2)), are plotted in Figure 2.3,

including the correlated model indicated by DiGAR*, where the correlation matrix is

also estimated using the small number of data points. The differences between both

DiGAR models and standard regression are substantial, as the convexity/concavity

curvature is often incorrect in the standard regression fitted model, e.g., for y(4)

and y(5) in several cases. Once again the OLS DiGAR model outperforms the

correlated version, again indicating the inadequacy of 10 replications for estimating

the correlation matrix.

Two additional cases, c = 1 (where x∗ lies to the left of the interval) and

c = 100 (where x∗ lies to the right of the interval), showing the fit of each of the

models over a much wider range outside the set of design points, where the incorrect

curvature of standard regression for several cases is more evident. Visually, it is clear

that DiGAR fits the curve much better than standard regression in all three cases.

We also investigated the performance gains when more replications are car-

ried out at each design point: 100, 1000, and 10000. indicate that the differences

between both DiGAR models and standard regression can be substantial, even up

to 1000 replications at each design point, where the standard model still has the

incorrect curvature. Furthermore, even with 100 replications at each design point,

the DiGAR* models still appear to be inferior to the OLS DiGAR models. Only

when 1000 or 10000 replications are used at each design point do the DiGAR* mod-

els show better performance than the OLS DiGAR model, but the superiority is

relatively slight (and not visually obvious in the figures), again indicating that the
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Table 2.2: M/M/1 queue quadratic function optimal value x∗ obtained as a function

of # replications (c ≈ 27),

where boxed entries indicate a maximum rather than a minimum

10 reps 100 reps

true standard DiGAR DiGAR* standard DiGAR DiGAR*

y(2) 4.0 4.8 4.0 4.2 4.0 4.1 4.1

y(3) 3.5 9.9 3.7 3.9 4.0 3.1 3.5

y(4) 3.4 4.4 3.3 3.3 4.0 1.8 3.1

y(5) 3.1 9.8 3.4 3.6 4.1 1.0 2.8

1000 reps 10000 reps

true standard DiGAR DiGAR* standard DiGAR DiGAR*

y(2) 4.0 3.9 4.0 4.0 4.3 4.0 4.0

y(3) 3.5 4.2 3.4 3.4 0.3 3.4 3.4

y(4) 3.4 4.4 2.9 3.1 -25.2 3.0 3.0

y(5) 3.1 4.4 2.5 2.8 -6.4 2.6 2.7

OLS DiGAR model may be sufficiently robust for applications such as sequential

RSM.

Finally, Table 2.2 provides the estimates of x∗ implied by the fitted functions

as a function of the number of replications, where it is evident that the quadratic

fit provided by standard regression is problematic for optimization purposes even

with 10000 replications at each point; with less than 10000 replications per point,

the curvature is always in the incorrect direction for the c ≈ 27 case.
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2.3.3 Multi-dimensional Example: U/U/1 Queue

Now we consider a multi-dimensional case using the same single-server queue-

ing example. Specifically, we take both the interarrival times and service times to

be i.i.d. following uniform distributions, i.e., a U/U/1 queue with respective dis-

tribution parameterizations U(θ1 − δ1, θ1 + δ1) and U(θ2 − δ2, θ2 + δ2), so that the

input variable is the four-dimensional vector x = (θ1, θ2, δ1, δ2). The output func-

tions considered are the same four as in the previous example, i.e., the mean system

time of the 2nd, 3rd, 4th, and 5th customers. Again using the Lindley equation,

the true theoretical dependence of the expected system time on the input distribu-

tional parameters can be calculated analytically and are included in the Electronic

Companion Section A.1.

The standard regression model is yi = β0 + β1θ1 + β2θ2 + β3δ1 + β4δ2 + εi, and

the DiGAR model adds gji = βj + εji , where gji , j = 1, 2, 3, 4 represents the deriva-

tive of yi with respect to θ1, θ2, δ1, δ2, respectively. We simulated a two-level cen-

tered full-factorial design (thus, 17 design points), with center point (θ1, θ2, δ1, δ2) =

(10, 8, 8, 7), corresponding to U(2, 18) and U(1, 15) interarrival and service time dis-

tributions, respectively, with a spacing of ±0.1 (for all four dimensions) for the

design points. The metrics used are analogous to the ones used previously: L2 error

and mean squared error (MSE), where the latter also takes into account the bias,

i.e., MSE = Var(β̂i) + (β̂i − β∗i )
2, where β∗i is the true value obtained using the

analytical formula, and the sample mean and sample variance are calculated for

each β̂ji , i = 1, 2, 3, 4, j = 1, 2, · · · , N, based on N macroreplications with an equal
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number of replications at each design point:

¯̂
βi =

1

N

N∑
j=1

β̂ji , s2
i = Var(β̂i) =

1

N − 1

N∑
j=1

(β̂ji −
¯̂
βi)

2.

For simplicity, only two DiGAR models are used: the basic one where no

weights need to be determined, i.e., (2.23) with αj = α0 ∀j; and α∗-DiGAR, for

which the “optimal” (proportional to variance) weights are estimated offline using

10,000 replications. As before, the output at each design point is based on the

mean of 10 replications, and the number of macroreplications is also N = 10. The

results shown in Table 2.3 indicate that both DiGAR estimators have smaller MSE

than the slope estimators from standard linear regression models by about two

orders of magnitude, where α∗-DiGAR models reduce MSEs as well as variances

further compared to the basic DiGAR models. In terms of L2 errors, both DiGAR

models are substantially better than standard linear regression model, but here the

improvement achieved by using optimal weights is small. Note that as in the 1-D

M/M/1 queue example, there are cases where standard linear regression model gives

the incorrect sign for an estimated slope.

To visualize the results in terms of the slopes, boxplots for estimators β̂i, i =

1, 2, 3, 4, for the 2nd, 3rd, 4th and 5th customers are shown in Figure 2.4. Each box-

plot is labelled as “parameter:model”. For instance, “θ1:Linear Reg” represents

the boxplot for β̂1 estimators using the standard linear regression model. The true

gradient values calculated from the analytical formulas are indicated in the boxplots

by stars. The boxplots further illustrate that the variances of the estimators ob-

tained from standard linear regression are significantly larger than variances of the
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estimators using the DiGAR models, differing by about two orders of magnitude.

The differences between DiGAR and α∗-DiGAR models are not clear from the box-

plots, but the sample standard deviations suggest that α∗-DiGAR models are able

to reduce variances of the estimators by choosing optimal weights.

DiGAR and α∗-DiGAR models also provide better estimators in terms of ab-

solute errors. The median values are indicated by red segments in all boxplots.

Visually, the median values from the DiGAR models are indistinguishable from the

true gradient values indicated by red stars, while median values from standard linear

regression models are far away from the true gradient values in most cases. Com-

pared to standard linear regression model, the sample means
¯̂
βi from DiGAR and

α∗-DiGAR models are also much closer to the true gradient values.

The effect of increasing the number of replications at each design point is

shown in Table 2.4, which provides experiment results for all slope estimators for

y(2). As expected, all of the models show improvement, but the relative advantages

of the DiGAR models – well over two orders of magnitude improvement in MSE

and between one to two orders of magnitude improvement in L2 – is retained.

2.3.4 Multi-dimensional Example: Sphere Function

Lastly, we consider a more stylized example to test the robustness of DiGAR

models when the gradient estimates have much larger variances and for different

levels of correlations between the response and gradient estimates. We consider the

sphere function defined by f(x) =
∑n

i=1(xi)
2, with partial derivative ∂f(x)/∂xi =
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Table 2.3: Parameter estimates and performance metrics for U/U/1 queue (10 repli-

cations per design point),

based on 10 macroreplications (boxed entries indicate incorrect sign of slope)

Linear Regression DiGAR α∗-DiGAR

y(2)

true value value MSE value MSE value MSE

β̂1 -0.375 -2.498 26.1 -0.397 0.0024 -0.378 0.0009

β̂2 1.375 -1.031 26.2 1.355 0.0030 1.377 0.0009

β̂3 0.171 4.486 25.9 0.215 0.0036 0.175 0.0008

β̂4 0.146 0.835 19.9 0.155 0.0038 0.149 0.0021

L2 8.31 0.141 0.139

y(3)

β̂1 -0.720 -2.140 22.7 -0.742 0.0048 -0.729 0.0068

β̂2 1.720 -1.292 22.5 1.701 0.0078 1.728 0.0069

β̂3 0.279 3.052 18.3 0.337 0.0060 0.312 0.0032

β̂4 0.255 -0.164 18.7 0.233 0.0036 0.237 0.0014

L2 6.95 0.088 0.086

y(4)

β̂1 -1.065 -3.243 22.0 -1.029 0.0169 -1.009 0.0141

β̂2 2.065 0.538 31.2 1.995 0.0203 2.008 0.0142

β̂3 0.362 5.199 50.1 0.430 0.0108 0.386 0.0029

β̂4 0.360 -0.319 26.7 0.305 0.0114 0.311 0.0069

L2 11.0 0.220 0.216

y(5)

β̂1 -1.427 -1.544 13.1 -1.309 0.0367 -1.307 0.0327

β̂2 2.427 1.111 20.4 2.296 0.0396 2.306 0.0328

β̂3 0.431 3.542 45.0 0.483 0.0059 0.455 0.0024

β̂4 0.467 1.469 39.4 0.413 0.0099 0.403 0.0064

L2 10.0 0.174 0.171
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Figure 2.4: U/U/1 queue box plots of four estimated slopes for y(k) based on 10

macroreplications
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Table 2.4: Parameter estimates and performance metrics for U/U/1 queue y(2) w.r.t.

# replications/design point

Linear Regression DiGAR α∗-DiGAR

# reps true value value MSE value MSE value MSE

1

β̂1 -0.375 -3.168 155 -0.397 0.025 -0.371 0.009

β̂2 1.375 -9.977 270 1.265 0.035 1.370 0.009

β̂3 0.171 6.012 141 0.236 0.019 0.182 0.007

β̂4 0.146 -6.365 67.2 0.057 0.036 0.116 0.026

L2 54.0 1.227 1.213

10

β̂1 -0.375 -2.498 26.1 -0.397 0.0024 -0.378 0.0009

β̂2 1.375 -1.031 26.2 1.355 0.0030 1.377 0.0009

β̂3 0.171 4.486 25.9 0.215 0.0036 0.175 0.0008

β̂4 0.146 0.835 19.9 0.155 0.0038 0.149 0.0021

L2 8.31 0.141 0.139

100

β̂1 -1.065 -0.914 3.08 -1.004 0.00434 -1.005 0.00422

β̂2 2.065 2.074 2.39 2.006 0.00482 2.005 0.00424

β̂3 0.362 0.996 4.84 0.379 0.00084 0.373 0.00026

β̂4 0.360 -0.484 1.61 0.309 0.00278 0.316 0.00227

L2 1.03 0.036 0.037

1000

β̂1 -0.375 -0.338 0.230 -0.377 0.00005 -0.378 0.00003

β̂2 1.375 1.673 0.162 1.380 0.00005 1.378 0.00003

β̂3 0.171 0.294 0.105 0.174 0.00002 0.173 0.00001

β̂4 0.146 0.181 0.124 0.146 0.00002 0.145 0.00001

L2 0.0525 0.0009 0.0008
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2xi. We used n = 4 in our numerical experiments, so the standard and DiGAR

models are the same as in the previous example. To control the variances and

correlations, the noises εi and (ε1i , ε
2
i , . . . , ε

4
i ) form a random vector in R5 following

a multivariate normal distribution with mean 0 and covariance matrix Σ. Four

different levels of correlations are considered: the independent case (ρ = 0), and

relatively low, medium, and high levels ρ = 0.2, 0.5, 0.8. The noise variances were set

at 10, 20, 30, 40, 50 for εi, ε
1
i , ε

2
i , ε

3
i , ε

4
i , respectively. A two-level centered full factorial

design with center point (x1, x2, x3, x4) = (1.0,−0.6, 0.8,−0.5) was considered. Two

sets of experiments were performed at two different grid sizes for the two-level design,

namely 0.5 and 0.05, which correspond to cases where design points are spread out

or fairly close. The mean at each design point was based on 10 replications, and

1000 macroreplications were used to estimate the MSE, with the results summarized

in Tables 2.5 and 2.6, where DiGAR refers to the OLS DiGAR and α∗-DiGAR uses

“optimal” (proportional to variance) weights.

In Table 2.5, results across different levels of correlations are consistent. The

α∗-DiGAR model is the best among three models. Since the variances increase from

ε1i to ε4i , this leads to increases in MSE from β̂1 to β̂4 in both DiGAR models, but

both DiGAR models still outperform the standard linear regression models and the

α∗-DiGAR model reduces the MSE further from the OLS DiGAR model.

The results in Table 2.6 show higher MSEs, due to the more tightly spaced

design points, which leads to larger variance in the estimators. For the standard

model, the MSEs are about 100 times higher, whereas the DiGAR models are only

two to three times higher, i.e., the relative advantage of the DiGAR models in-
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creases significantly in this setting, consistent with Proposition 2.5 and the remarks

following it.

As expected, increasing the variances of gradient estimators leads to inflation of

MSE in the DiGAR models; however, the relative advantage of the DiGAR models

is retained. The effects of changing the level of correlation does not affect the

performances of both DiGAR models under these two experiment designs as shown

in Table 2.5 and 2.6. We also conducted experiments at three different levels of

negative correlations. In this case, the MSE increases noticeably for all models with

increasing magnitude of the level of correlation, but the relative performance of the

models is similar to those for positive correlation, with the advantage of the DiGAR

models even greater for the larger magnitudes.

2.4 Conclusion

In this chapter we proposed an augmented regression method that exploits the

availability of direct gradient estimators in certain simulation settings. In some basic

settings, we analytically characterized the improvement obtained over the standard

model by calculating the variance of the estimated parameters and showing under

which conditions guaranteed performance improvement can be expected. A simple

queue was then used to numerically investigate the improvements, and the numer-

ical results indicated great promise for the approach, with the general observation

that the DiGARs models are qualitatively able to capture trends that the standard

model might miss, e.g., there were several cases where the standard model gave the
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incorrect sign of the slope or was oriented in the opposite direction for the quadratic

fit. Not surprisingly, the DiGAR slope estimators had much smaller variance than

the standard estimator in all of the experiments conducted, retaining the relative

advantage even in the higher-dimensional numerical examples. Although only a

small portion of results are provided here, these observations hold for many other

experiments for this simple queueing model.

Of particular note is the observation that in the queueing example where the

gradient estimators are highly correlated with the dependent output data, the α-

DiGAR models clearly outperform the standard regression models and for all prac-

tical purposes do as well as the correlated DiGAR models, and significantly better

when the number of simulation replications at each design point is relatively small.

Since the basic DiGAR estimators are quite easy to implement, this has practical

implications for immediate use in those settings in which gradient estimators are

available. Thus, we recommend using an α-DiGAR estimator in settings where the

number of replications is relatively low and the gradient estimate is reasonably ac-

curate, which is generally the case if IPA is applicable. However, more investigation

into the effects of misspecification of the correlation structure is warranted before

more conclusive statements can be made for the DiGAR* GLS estimators, and the

effects are likely to be highly dependent on the application setting. Furthermore,

using design of experiments, e.g., along the lines of [49], in choosing the design points

could possibly ameliorate the misspecification problem.
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Table 2.5: Parameter estimates and performance metrics for the sphere function for

two-level centered full factorial design around (1,−0.6, 0.8,−0.5); 10 replication per

design point, gridsize 0.5, 1000 macroreplications.

Linear Regression DiGAR α∗-DiGAR

correlation true value value MSE value MSE value MSE

zero

ρ = 0

β̂1 2.0 2.001 0.249 2.007 0.093 2.006 0.088

β̂2 -1.2 -1.238 0.259 -1.206 0.124 -1.215 0.109

β̂3 1.6 1.589 0.265 1.615 0.174 1.605 0.127

β̂4 -1.0 -1.016 0.265 -0.976 0.202 -0.993 0.136

low

ρ =

0.2

β̂1 2.0 2.009 0.241 1.999 0.091 2.000 0.083

β̂2 -1.2 -1.235 0.250 -1.200 0.132 -1.209 0.106

β̂3 1.6 1.571 0.239 1.602 0.159 1.591 0.113

β̂4 -1.0 -1.013 0.258 -1.002 0.207 -1.007 0.140

medium

ρ =

0.5

β̂1 2.0 2.002 0.252 2.019 0.084 2.017 0.076

β̂2 -1.2 -1.203 0.266 -1.192 0.127 -1.195 0.108

β̂3 1.6 1.597 0.252 1.605 0.165 1.602 0.125

β̂4 -1.0 -1.002 0.265 -1.000 0.202 -1.001 0.137

high

ρ =

0.8

β̂1 2.0 2.016 0.246 1.980 0.093 1.985 0.087

β̂2 -1.2 -1.191 0.249 -1.220 0.123 -1.212 0.104

β̂3 1.6 1.612 0.230 1.584 0.163 1.594 0.120

β̂4 -1.0 -1.017 0.262 -1.033 0.200 -1.026 0.128
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Table 2.6: Parameter estimates and performance metrics for the sphere function for

two-level centered full factorial design around (1,−0.6, 0.8,−0.5); 10 replication per

design point, gridsize 0.05, 1000 macroreplications.

Linear Regression DiGAR α∗-DiGAR

correlation true value value MSE value MSE value MSE

zero

ρ = 0

β̂1 2.0 2.070 23.660 2.007 0.116 2.007 0.115

β̂2 -1.2 -1.395 24.683 -1.194 0.169 -1.195 0.169

β̂3 1.6 1.584 24.645 1.607 0.248 1.607 0.247

β̂4 -1.0 -1.099 24.780 -1.002 0.301 -1.003 0.300

low

ρ =

0.2

β̂1 2.0 2.087 24.469 1.991 0.124 1.992 0.124

β̂2 -1.2 -1.481 26.743 -1.201 0.182 -1.202 0.182

β̂3 1.6 1.503 25.016 1.608 0.228 1.608 0.226

β̂4 -1.0 -0.919 26.534 -0.991 0.311 -0.990 0.310

medium

ρ =

0.5

β̂1 2.0 2.003 25.409 1.980 0.124 1.980 0.125

β̂2 -1.2 -1.206 25.095 -1.232 0.177 -1.232 0.177

β̂3 1.6 1.672 26.327 1.590 0.222 1.590 0.221

β̂4 -1.0 -1.144 24.180 -1.011 0.290 -1.012 0.288

large

ρ =

0.8

β̂1 2.0 1.839 24.427 1.979 0.116 1.979 0.116

β̂2 -1.2 -1.367 25.998 -1.221 0.171 -1.222 0.170

β̂3 1.6 1.494 25.830 1.563 0.229 1.563 0.227

β̂4 -1.0 -1.052 24.366 -1.042 0.281 -1.043 0.278
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Chapter 3: Gradient Extrapolated Stochastic Kriging

3.1 Introduction

Consider the same stochastic simulation setting as in Chapter 2, where direct

gradient information are available. DiGAR model proposed in Chapter 2 incor-

porate gradient estimates into regression models by building a separate model for

the gradient estimates. Aside from regression, kriging has also been studied exten-

sively in the deterministic simulation community (see, for example, [23] and [50]).

Stochastic kriging was introduced by [21] as an extension of kriging in the stochas-

tic simulation setting. Stochastic kriging provides flexible metamodels of simulation

output performance measurements while taking simulation noise into consideration.

[25] introduced stochastic kriging with gradient estimators (SKG) to exploit

gradient estimates in stochastic kriging, showing that the new approach provides

better prediction with smaller mean squared error (MSE). This approach is similar

to cokriging proposed in deterministic simulations [26], and requires differentiability

of the correlation functions, since derivatives of random processes or random fields

are used to model gradient estimates.

We take a different approach to incorporate gradient estimates into stochastic

kriging and investigate the potential improvements. A new approach called Gradient

56



Extrapolated Stochastic Kriging (GESK) is proposed, which extrapolates additional

responses in the neighborhood of each design point using the original responses and

gradient estimates. These additional responses, which might be biased, lead to

better predictions than stochastic kriging if step sizes for extrapolations are chosen

carefully. The main idea is to further explore the response surface with simulation

responses and gradient estimates, so that a metamodel with better overall accuracy

can be constructed. This suggests that GESK models are superior when there are

limited number of design points or a response surface contains multiple extreme

values.

To investigate the performance of GESK, we analyze the possible reduction

in MSE of the GESK model over the standard stochastic kriging model, under two

simplified and tractable settings. Conditions that guarantee reduction in MSE are

provided as well. We also conduct numerical experiments to illustrate the effective-

ness of the GESK model. Numerical results show that GESK performs comparably

well or outperforms competing approaches such as stochastic kriging and SKG.

Moreover, in certain cases, GESK captures fluctuations of the response surface that

are usually missed by the other two approaches.

An important part of implementing the GESK model is the choice of step

size. Large step sizes usually lead to large approximation errors and deteriorate

prediction accuracy; small step sizes gain little information from extrapolations

and might lead to numerical stability issues. We formalize two different strategies,

penalized maximum likelihood estimation (PMLE) and minimizing integrated mean

squared error (IMSE), to determine optimal step sizes. A cross validation method is
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presented to determine the regularization parameters required by each of the PMLE

and IMSE approaches. We discuss pros and cons for each approach and compare

them empirically with numerical examples.

In this section, we review stochastic kriging introduced in [21] and stochastic

kriging with gradient estimators (SKG) introduced in [25], and then present the

GESK approach.

3.1.1 Stochastic Kriging

Stochastic kriging was introduced in [21], focusing on modeling unknown

response surfaces in stochastic simulation settings. Given an experiment design

{(xi, ni)}, i = 1, 2, · · · , k, ni simulation replications are run at each design point

xi. Let Yj(xi) be the simulation output from replication j at design point xi,

j = 1, . . . , ni, and xi = (xi1, xi2, . . . , xid)
ᵀ ∈ Rd. Stochastic kriging models the

output as

Yj(xi) = f(xi)
ᵀβ + M(xi) + εj(xi), (3.1)

where f(xi) ∈ Rp is a vector with known functions of xi, β ∈ Rp is a vector with

unknown parameters to be estimated. Components in f(xi) can be viewed as basis

functions and a polynomial basis is usually adopted in the literature. The term

f(xi)
ᵀβ represents the trend of the overall response surface. It is assumed that M

is a realization of a zero-mean stationary random process (or random field) of the

second order. This assumption is inherited from the deterministic kriging literature,

where the stochastic nature of M is imposed on the problem so that statistical
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inference can be applied. For this reason, M is sometimes referred to as extrinsic

uncertainty. This is contrasted with the term εj(xi), which is the simulation noise

for replication j taken at xi. The uncertainty in εj(xi) comes from the nature of

stochastic simulation, and it is sometimes referred to as intrinsic uncertainty.

Given the simulation responses {Yj(xi)}nij=1, i = 1, 2, . . . , k, the sample mean

of response output and simulation noise values at xi are denoted by

Ȳ(xi) =
1

ni

ni∑
j=1

Yj(xi), ε̄(xi) =
1

ni

ni∑
j=1

εj(xi). (3.2)

The averaged responses Ȳ(xi) at xi is modeled as

Ȳ(xi) = f(xi)
ᵀβ + M(xi) + ε̄(xi).

Suppose that we would like to predict the response Y(x0) at any point x0. Let

Ȳ =
(
Ȳ(x1), Ȳ(x2), . . . , Ȳ(xk)

)ᵀ
. Let ΣM be the k× k covariance matrix implied by

the random field M and Σε be the k×k covariance matrix implied by the simulation

noise across all design points {x1,x2, · · · ,xk}. Let ΣM(x0, ·) be the k × 1 vector

(Cov(M(x0),M(x1)), . . . ,Cov(M(x0),M(xk)))
ᵀ, which represents spatial covariances

between a prediction point x0 and all design points. Also, define the k × p design

matrix F as F = (f(x1), f(x2), . . . , f(xk))
ᵀ. Suppose that ΣM, Σε and β are known.

Then the MSE-optimal predictor at x0 is of the form

Ŷ(x0) = f(x0)ᵀβ + ΣM(x0, ·)ᵀ[ΣM + Σε]
−1(Ȳ − Fβ), (3.3)

with corresponding MSE

MSE
(
Ŷ(x0)

)
= ΣM(x0,x0)−ΣM(x0, ·)ᵀ [ΣM + Σε]

−1 ΣM(x0, ·), (3.4)
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where ΣM(x0,x0) is the spatial variance of the random field at x0. To build a

stochastic kriging metamodel in practice requires imposing some structure on the

spatial covariance matrix ΣM(·, ·). It is usually assumed that the spatial covariance

between M(xi) and M(xj) is

ΣM(xi,xj) = Cov [M(xi),M(xj)] = τ 2RM(xi,xj; θ), (3.5)

where τ 2 is the spatial variance of the random field and RM is a correlation function

with parameter θ. The assumption that M is second-order stationary allows us

to write RM(xi,xj; θ) = RM(|xi − xj|; θ), i.e., the correlation depends only on

the distance between xi and xj. Common candidates for the correlation function

include the triangular correlation function, the Gaussian correlation function and

the Matérn correlation function, etc. See [51] for a detailed discussion on effects of

using different correlation functions in stochastic kriging.

3.1.2 Stochastic Kriging With Gradient Estimators

We review the framework of stochastic kriging with gradient estimators (SKG)

introduced by [25]. SKG builds stochastic kriging models for gradient estimators

upon the stochastic kriging model for simulation responses. These two types of

models are estimated together and applied to approximate response surfaces.

Suppose that we observe not only the simulation responses Yj(xi), but also

unbiased gradient estimates Gj(xi) ∈ Rd for the jth simulation replication at design

point xi. Given an experimental design {(xi, ni)}ki=1, let the gradient estimate from

replication j at design point xi be Gj(xi) =
(
G1
j (xi), . . . ,Gdj (xi)

)ᵀ
. In the SKG
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framework, each response Yj(xi) is modeled the same as in stochastic kriging and

each gradient estimator Grj (xi), r = 1, . . . , d, is modeled as

Grj (xi) =

(
∂f(xi)

∂xir

)ᵀ

β +
∂M(xi)

∂xir
+ δrj (xi). (3.6)

This is valid under the following conditions:

• The function f(xi) is differentiable with respect to xi.

• The second-order mixed derivative of the correlation function RM in (3.5)

exists and is continuous.

Let Ḡr(xi) and δ̄r(xi), r = 1, . . . , d, be the sample average of the gradient

estimates and simulation noise, respectively, associated with xi:

Ḡr(xi) =
1

ni

ni∑
j=1

Grj (xi), δ̄r(xi) =
1

ni

ni∑
j=1

δrj (xi).

The SKG framework models the averaged simulation responses and gradient esti-

mates as follows:

Ȳ(xi) = f(xi)
ᵀβ + M(xi) + ε̄(xi),

Ḡr(xi) =

(
∂f(xi)

∂xir

)ᵀ

β +
∂M(xi)

∂xir
+ δ̄r(xi).

To satisfy the conditions required for (3.6) to hold, a common choice for the cor-

relation function is the Gaussian correlation function. Let ΣM+ be the variance-

covariance matrix including spatial covariances induced by M, spatial covariances

induced by derivatives of M and those between M and its partial derivatives. Let

ΣM+(x0, ·) be the vector analogous to ΣM(x0, ·) in stochastic kriging. We assume

replications across design points are independent. In addition, simulation noise εj
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and δj are assumed to be independent from M. The covariance matrix Σε+ induced

by simulation noise can be estimated by the sample covariances in practice.

Let Ȳ+ be the vector containing sample averages of response estimates and

gradient estimates at all design points:

Ȳ+ =
(
Ȳ(x1), . . . , Ȳ(xk), Ḡ1(x1), . . . , Ḡ1(xk), . . . , Ḡd(x1), . . . , Ḡd(xk)

)ᵀ
.

The design matrix F in Section 2.1 now becomes F+, which can be written as

F+ =

(
f(x1), . . . , f(xk),

(
∂f(x1)

∂x11

)
, . . . ,

(
∂f(xk)

∂xk1

)
, . . . ,

(
∂f(x1)

∂x1k

)
, . . . ,

(
∂f(xk)

∂xkk

))ᵀ

.

When β is known, the SKG predictor and the corresponding MSE can be obtained

by substituting Ȳ+,F+,ΣM+ ,ΣM+(x0, ·) and Σε+ for Ȳ ,F,ΣM,ΣM(x0, ·) and Σε

in (3.3) and (3.4), respectively. Under some simplified settings, [25] shows that

SKG can reduce MSE by incorporating gradient estimates. Numerical experiments

also demonstrate the advantage of SKG in improving prediction performance over

stochastic kriging.

3.2 Gradient Extrapolated Stochastic Kriging

We propose a different approach for incorporating the gradient estimates called

Gradient Extrapolated Stochastic Kriging (GESK). Again, let Gj(xi) ∈ Rd be the

gradient estimator at xi from replication j. Instead of modeling gradient esti-

mates Gj(xi) as partial derivatives of the response surface, the gradient estimates

are simply viewed as noisy measurements of the true gradient G(xi) ∈ Rd, i.e.,

Gj(xi) = G(xi) + δj(xi), where {δj(xi)}nij=1 represent the zero-mean independent
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identically distributed noise across different replications at the design point xi. De-

note the sample mean of gradient estimates at xi by

Ḡ(xi) =
1

ni

ni∑
j=1

Gj(xi).

Notice that the response estimate Yj(xi) and the gradient estimate Gj(xi) within

the same replication j are generally correlated.

To incorporate gradient estimates into stochastic kriging, we extrapolate in

the neighborhood of the original design points xi, i = 1, 2, · · · , k. Specifically, linear

extrapolation is used to obtain additional responses as follows:

x+
i = xi + ∆xi, Yj(x+

i ) = Yj(xi) + Gj(xi)ᵀ∆xi, (3.7)

where ∆xi = (∆xi1,∆xi2, . . . ,∆xid)
ᵀ, and the step size ∆xi needs to be small rela-

tive to the spacing of xi. For simplicity, we assume that only one additional point

is added in the neighborhood of xi and that the same step size is used for all design

points, i.e., ∆xi = ∆x, i = 1, 2, . . . , k. Extensions include using more sophisti-

cated extrapolation techniques and extrapolating multiple additional responses in

the neighborhood of xi.

Let Ȳ(x+
i ) be the sample average of these extrapolated response outputs, which

is defined similarly as Ȳ(xi) in (3.2). For ease of notation, let Ȳi = Ȳ(xi) and

Ȳ+
i = Ȳ(x+

i ). Let Ȳ+ be the 2k × 1 vector containing both the original responses

and the additional responses:

Ȳ+ =
(
Ȳ1, Ȳ2, · · · , Ȳk, Ȳ+

1 , Ȳ+
2 , · · · , Ȳ+

k

)ᵀ
.
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Similarly, x+ is defined as

x+ = (x1,x2, · · · ,xk,x+
1 ,x

+
2 , · · · ,x+

k )ᵀ.

The sample average of the additional responses Ȳ+
i are modeled similarly to the

original responses Ȳi, i.e.,

Ȳ+
i = Ȳ(x+

i ) = f(x+
i )ᵀβ + M(x+

i ) + ε̄(x+
i ).

It is worth mentioning that this approach of incorporating gradient information is

not restricted to stochastic kriging, but it is a general approach that can be applied

to other metamodel approaches. The following assumptions are made:

Assumption 3.1. 1. Simulations across design points are conducted indepen-

dently, i.e., the use of common random numbers (CRN) is not considered.

2. For any design point xi, the noise εj(xi) are independent across replications.

3. The random field M is independent of all noise εj(xi) and εj(x
+
i ), for each

design point xi and replication j.

4. The simulation noise ε̄(xl) is independent of ε̄(x+
h ) for h 6= l.

[52] finds that using CRN in stochastic kriging inflates mean squared errors

generally. Assuming independence across replications and independence between

M and simulation noise is inherited from the stochastic kriging literature. The

last assumption says that the original simulation response is correlated with its

corresponding extrapolated response, but not other extrapolated responses.
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Let Σ+
M be the 2k×2k variance-covariance matrix implied by the extrinsic spa-

tial correlation model with 2k design points, including extrapolated design points:

Σ+
M =



Cov[M(x1),M(x1)] · · · Cov[M(x1),M(xk)] Cov[M(x1),M(x+
1 )] · · · Cov[M(x1),M(x+

k )]

...
...

...
...

...
...

Cov[M(xk),M(x1)] · · · Cov[M(xk),M(xk)] Cov[M(xk),M(x+
1 )] · · · Cov[M(xk),M(x+

k )]

Cov[M(x+
1 ),M(x1)] · · · Cov[M(x+

1 ),M(xk)] Cov[M(x+
1 ),M(x+

1 )] · · · Cov[M(x+
1 ),M(x+

k )]

...
...

...
...

...
...

Cov[M(x+
k ),M(x1)] · · · Cov[M(x+

k ),M(xk)] Cov[M(x+
k ),M(x+

1 )] · · · Cov[M(x+
k ),M(x+

k )]



,

where each entry in Σ+
M can be computed by (3.5) with a given correlation function

RM and spatial variance τ 2.

Let ε̄+ ∈ R2k be the augmented vector of mean simulation noise:

ε̄+ =
(
ε̄(x1), . . . , ε̄(xk), ε̄(x

+
1 ), . . . ε̄(x+

k )
)ᵀ
.

Under Assumption 3.1, let Σ+
ε be the 2k × 2k variance-covariance matrix induced

by ε̄+, which can be expressed as

Σ+
ε =



Var[ε̄(x1)] 0 . . . 0 Cov[ε̄(x1), ε̄(x+
1 )] 0 . . . 0

0 Var[ε̄(x2)] . . . 0 0
. . . . . . 0

...
...

. . .
...

...
...

. . .
...

0 0 . . . Var[ε̄(xk)] 0 0 . . . Cov[ε̄(xk), ε̄(x+
k )]

Cov[ε̄(x+
1 ), ε̄(x1)] 0 . . . 0 Var[ε̄(x+

1 )] 0 . . . 0

0
. . . . . . 0 0 Var[ε̄(x+

1 )] . . . 0

...
...

. . .
...

...
...

. . .
...

0 0 . . . Cov[ε̄(x+
k ), ε̄(xk)] 0 0 . . . Var[ε̄(x+

k )]



.

Let x0 be a prediction point and Σ+
M(x0, ·) be a 2k × 1 vector

Σ+
M(x0, ·) =

(
Cov[M(x0),M(x1)], . . . ,Cov[M(x0),M(x+

k )]
)ᵀ
,
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which represents spatial covariances between x0 and design points, including those

extrapolated design points. The augmented design matrix F+ can be expressed as

F+ =
(
f(x1), . . . , f(xk), f(x+

1 ), . . . , f(x+
k )
)ᵀ
.

When β, Σ+
M and Σ+

ε are known, the MSE-optimal predictor from the GESK model

and its corresponding MSE can be constructed by substituting Ȳ+, F+, Σ+
M(x0, ·),

Σ+
M and Σ+

ε for Ȳ , F, ΣM(x0, ·), ΣM and Σε in (3.3) and (3.4), respectively.

In practice, β, Σ+
M and Σ+

ε are unknown and need to be estimated. The

augmented matrix Σ+
M is characterized by the spatial variance τ 2 and correla-

tion function with parameters θ. We assume that the simulation noise vectors

ε+
j =

(
εj(x1), . . . , εj(xk), εj(x

+
1 ), . . . εj(x

+
k )
)ᵀ

are multivariate normally distributed

with mean zero and covariance matrix Σ+
ε . Given the assumption, we first esti-

mate Σ+
ε . Our approach to estimate Var[ε̄(xi)], Var[ε̄(x+

i )] and Cov[ε̄(xi), ε̄(x
+
i )],

i = 1, 2, . . . , k will be described in the following. Estimation of Var[ε̄(xi)] is

V̂ar[ε̄(xi)] =
1

ni

[
1

ni − 1

ni∑
j=1

(
Yj(xi)− Ȳ(xi)

)2

]
.

Estimation for Var[ε̄(x+
i )] can be done in a similar fashion by replacing Yj(xi) by

Yj(x+
i ). The covariance Cov[ε̄(xi), ε̄(x

+
i )] is estimated by the sample covariance as

Ĉov[ε̄(xi), ε̄(x
+
i )] =

1

ni

[
1

ni − 1

ni∑
j=1

(
Yj(xi)− Ȳ(xi)

) (
Yj(x+

i )− Ȳ(x+
i )
)]
.

This provides us an estimate Σ̂+
ε for Σ+

ε . Combining this with normality assump-

tions, we can estimate the set of parameters (β, τ 2,θ) together using maximum

likelihood estimators (MLEs) as described in [21].
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Key to implementing the GESK model is the choice of step sizes for the ex-

trapolated points, which depends on analyzing the potential improvements in per-

formance from the GESK model as well as the approximation errors introduced

by extrapolation. A good GESK model should take this bias-variance type tradeoff

into consideration. We consider two tractable models: a two-point problem and a k-

point problem with known model parameters. Under these two settings, we analyze

the potential improvement in MSE by the GESK model over the stochastic kriging

model, and provide conditions under which such improvement can be guaranteed.

In addition, we also analyze the effects of step sizes on MSE following the

discussions of the two-point problem and the k-point problem in Sections 3.2.1 and

3.2.2. Understanding the effects of step sizes will provide insights for determining

step sizes, which will be discussed later in detail in Section 3.3. In the following

discussion, we continue to assume that the same step size is used for extrapola-

tion at each design point and only one additional response is extrapolated in the

neighborhood of each original design point.

The step size ∆x determines the MSE of the GESK predictor through several

factors: the biases ζi in the extrapolated responses; the correlation ρi between the

simulation noise of original responses and extrapolated responses; and the variances

σ2
i+

of the simulation noise in extrapolated responses. Since linear extrapolation

is employed in the GESK model, the bias ζi in the extrapolated response Ȳ+
i is

bounded by K||∆x||2 for some K > 0. This suggests that the upper bound of biases

can be controlled by choosing different step sizes. The correlation ρi depends on

both the step size and the covariance between the simulation noise of the responses
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and those of the gradient estimators. A larger step size or smaller covariance leads to

smaller correlation factor ρi, whereas σ2
i+

changes as the step size changes, but also

depends on the sign of the correlation ρi. Effects of these factors will be discussed

in detail in the following using the two-point problem and k-point problem as in

Sections 3.2.1 and 3.2.2.

3.2.1 A Two-Point Problem with Single Extrapolated Point

Consider a one-dimensional problem (d = 1) of two design points x1 and x2

with numbers of replications n1 and n2, respectively. Without loss of generality, let

x1 < x2 and the prediction point be x0 ∈ [x1, x2]. The simulation outputs include

responses {Yj(xi)}nij=1 for i = 1, 2 at both design points and gradient estimators

{Gj(x1)}n1
j=1 at x1 only. A constant trend is used to represent the overall surface

mean, i.e., f(xi)
ᵀβ = β0. All parameters (β0, τ

2, θ) are assumed to be known.

Let the spatial variance τ 2 > 0 and ril be the correlation between M(xi) and

M(xl), i, l = 0, 1, . . . , k. The correlation ril can be calculated from the correla-

tion function RM(xi, xl; θ), but no specific correlation function is specified in this

discussion. Let the variance of the simulation noise at xi from replication j be

Var[εj(xi)] = σ2
i .

Let Ȳ = (Ȳ1, Ȳ2)ᵀ be the vector containing the sample means of responses at

x1 and x2. The stochastic kriging predictor at x0 is given as

Ŷ(x0) = β0 +τ 2
(r1(τ 2 +

σ2
2

n2
)− r2τ

2r12)(Ȳ1 − β0) + (r2(τ 2 +
σ2
1

n1
)− r1τ

2r12)(Ȳ2 − β0)

(τ 2 +
σ2
1

n1
)(τ 2 +

σ2
2

n2
)− τ 4r2

12

,

(3.8)
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with corresponding MSE

MSE
(
Ŷ(x0)

)
= τ 2

(
1− τ 2

(r2
01 + r2

02)τ 2 +
r201σ

2
2

n2
+

r202σ
2
1

n1
− 2r01r02r12τ

2

(τ 2 +
σ2
1

n1
)(τ 2 +

σ2
2

n2
)− τ 4r2

12

)
. (3.9)

With a pre-specified step size ∆x, a new design point x+
1 = x1 + ∆x in the interval

[x1, x2] is added and GESK extrapolates its response as Yj(x+
1 ) = Yj(x1)+∆xGj(x1).

This additional response output is modeled as Yj(x+
1 ) = β0 + M(x+

1 ) + εj(x
+
1 ). To

address approximation error introduced by extrapolation, we assume that εj(x
+
1 ) is

normally distributed with mean ζi = ζ(xi) and variance σ2
1+

; thus, the extrapolated

responses Yj(x+
1 ) at x+

1 are biased unless ζi = 0.

Let Ȳ+
1 be the sample mean of responses at x+

1 and the vector Ȳ+ = (Ȳ1, Ȳ2, Ȳ+
1 )ᵀ.

Let ρ1 be the correlation between ε̄(x1) and ε̄(x+
1 ) and ri1+ be the correlation between

M(xi) and M(x+
1 ) for i = 0, 1, 2. The variance-covariance matrix Σ+ = Σ+

M + Σ+
ε

takes the form

Σ+ = τ 2


1 r12 r11+

r12 1 r21+

r11+ r21+ 1

+


σ2
1

n1
0 ρ1

σ1σ1+
n1

0
σ2
2

n2
0

ρ1
σ1σ1+
n1

0
σ2
1+

n1

 =

Σ b

bᵀ c

 ,

where Σ is the 2 × 2 covariance matrix of the vector (Ȳ1, Ȳ2)ᵀ, b is a 2 × 1 vec-

tor and c = τ 2 + σ2
1+/n1. The vector containing covariances between M(x0) and(

M(x1),M(x2),M(x+
1 )
)ᵀ

is

Σ+
M(x0, ·) = τ 2


r01

r02

r01+

 =

ΣM(x0, ·)

τ 2r01+

 .
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The new predictor at x0 from the GESK model is

Ŷ+(x0) = Ŷ(x0) +
1

v

[
bᵀΣ−1(Ȳ − β012)− (Ȳ+

1 − β0)
] [

ΣM(x0, ·)ᵀΣ−1b− τ 2r01+

]
,

(3.10)

where Ŷ(x0) is defined in (3.8) and v = c− bᵀΣ−1b.

The following theorem provides an expression for MSE(Ŷ+(x0)) and conditions

under which the GESK predictor in (3.10) has smaller MSE than that in (3.8).

Theorem 3.1. The MSE of the predictor in (3.10) can be expressed as

MSE
(
Ŷ+(x0)

)
= MSE

(
Ŷ(x0)

)
+

(
ζ2

1

v2
− 1

v

)[
ΣM(x0, ·)ᵀΣ−1b− τ 2r01+

]2
, (3.11)

and the GESK predictor has a smaller MSE if ζ2
1 < v.

Proof. The MSE of GESK predictor MSE
(
Ŷ+(x0)

)
follows from straightforward

calculation and details are provided in the Appendix. Both Σ+ and Σ are variance-

covariance matrices, and

det
(
Σ+
)

= det (Σ) det
(
c− bᵀΣ−1b

)
= v det (Σ) ,

and it follows that v > 0 since both det(Σ+) and det(Σ) are positive. Since v > 0,

the condition ζ2
1 < v is well defined. Under this condition, the GESK predictor has

a smaller MSE than the stochastic kriging predictor.

Theorem 3.1 provided the change in MSE at a prediction point x0:

∆MSE =

(
ζ2

1

v2
− 1

v

)[
ΣM(x0, ·)ᵀΣ−1b− τ 2r01+

]2
.

We summarize our findings in this setting as follows:
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1. The bias ζ1 must satisfy ζ2
1 < v as shown in Theorem 3.1 to guarantee reduction

in MSE. Since ζ1 is proportional to (∆x)2, intuitively the step size should be

relatively small.

2. The greater the correlation ρ1, the greater the reduction in MSE. The param-

eter ρ1 also depends on the correlation between εj(x1) and δj(x1), namely, the

simulation noise of output responses and gradient estimators. The parameter

ρ1 increases as the correlation between εj(x1) and δj(x1) increases.

3. The parameter σ2
1+

represents the noise in an extrapolated response Yj(x+
1 ).

The reduction in MSE is greater if σ2
1+

is smaller.

All conditions seem to prefer using smaller step sizes. However, other diffi-

culties arise if the step sizes are too small: first, because the quantity v becomes

smaller as ∆x becomes smaller, the condition ζ2
1 < v may not hold; second, as ∆x

approaches zero, the correlation ρ1 approaches 1 and this may make the matrix Σ+

ill-conditioned, which leads to numerical issues.

3.2.2 A k -Point Problem

In this section, we consider a tractable problem with k design points, where

xi ∈ Rd, under the following assumptions:

1. Along with the response outputs Yj(xi), gradient estimators Gj(xi) are also

collected from simulations at design points {xi}ki=1.

2. Only one additional response is extrapolated in the neighborhood of each
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design point.

3. The trend f(xi)
ᵀβ = β0 and all parameters (β0, τ

2,θ) are known.

Within the region of interest, an additional response Y+
j (xi) is extrapolated using

each pair of observations (Yj(xi),Gj(xi)). All extrapolated design points should be

in the interior of the design region; therefore, extrapolations from design points at

the boundary should be done cautiously. Let Ȳ+ be the 2k × 1 vector that consists

of sample means of all response outputs

Ȳ+ = (Ȳ1, Ȳ2, . . . , Ȳk, Ȳ+
1 , Ȳ+

2 , . . . , Ȳ+
k )ᵀ,

where Ȳi = Ȳ(xi) and Ȳ+
i = Ȳ(x+

i ). The sample mean of original responses at

xi are modeled as in Section 3.2. The sample mean of extrapolated responses are

modeled similarly, i.e., Ȳ(x+
i ) = β0 + M(x+

i ) + ε̄(x+
i ).

Let ρi denote the correlation between ε̄(xi) and ε̄(x+
i ). The spatial correlations

between original design points and extrapolated design points are denoted as ril =

Corr[M(xi),M(xl)], ril+ = Corr[M(xi),M(x+
l )] and ri+l+ = Corr[M(x+

i ),M(x+
l )] for

i, l = 1, 2, . . . , k. The 2k × 2k variance-covariance matrix Σ+ = Σ+
M + Σ+

ε can be

expressed in a block form

Σ+ =

Σ B

Bᵀ C

 , (3.12)
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where

Σ =



τ 2 + σ2
1/n1 r12 · · · r1k

r12 τ 2 + σ2
2/n2 · · · r2k

...
...

. . .
...

r1k r2k · · · τ 2 + σ2
k/nk


,

B =



τ 2r11+ + ρ1
σ1σ1+
n1

τ 2r12+ · · · τ 2r1k+

τ 2r12+ τ 2r22+ + ρ2
σ2σ2+
n2

· · · τ 2r2k+

...
...

. . .
...

τ 2r1k+ τ 2r2k+ · · · τ 2rkk+ + ρk
σkσk+
nk


,

C =



τ 2 + σ2
1+
/n1 τ 2r1+2+ · · · τ 2r1+k+

τ 2r1+2+ τ 2 + σ2
2+
/n2 · · · τ 2r2+k+

...
...

. . .
...

τ 2r1+k+ τ 2r2+k+ · · · τ 2 + σ2
k+
/nk


.

Given a prediction point x0, let Σ+
M(x0, ·) be a 2k × 1 vector that consists of the

spatial covariances between x0 and all design points,

Σ+
M(x0, ·) =

(
ΣM(x0,x1), . . . ,ΣM(x0,xk),ΣM(x0,x

+
1 ), . . . ,ΣM(x0,x

+
k )
)ᵀ

=
(
Σᵀ

M(x0, ·) Σᵀ
M+(x0, ·)

)ᵀ
,

where the both ΣM+(x0, ·) and ΣM+(x0, ·) are k × 1 vectors.

As in the analysis of the two-point problem, an important issue to address

is the approximation error introduced by extrapolation. Let the noise terms ε(x+
i )
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at x+
i follow normal distributions with means ζi = ζ(xi), which implies that the

additional response outputs Yj(x+
i ) are biased if ζi 6= 0. We will analyze the effects

of incorporating them in the following. Let the vector ζ ∈ R2k be

ζ = (0, 0, . . . , 0, ζ1, ζ2, . . . , ζk)
ᵀ = (0ᵀ

k ζᵀk)ᵀ ,

which represents the expectation of the 2k × 1 noise vector ε̄+.

Let Ŷ+(x0) be the GESK predictor at x0. The MSE of the GESK predictor

for this k-point problem is

MSE
(
Ŷ+(x0)

)
= Σ+

M(x0,x0)−Σ+
M(x0, ·)ᵀ

[
Σ+

M + Σ+
ε

]−1
Σ+

M(x0, ·)

+
(
Σ+

M(x0, ·)ᵀ
[
Σ+

M + Σ+
ε

]−1
ζ
)2

= MSE
(
Ŷ2k(x0)

)
+
(
Σ+

M(x0, ·)ᵀ
[
Σ+

M + Σ+
ε

]−1
ζ
)2

.

(3.13)

The first term MSE
(
Ŷ2k(x0)

)
is the MSE of prediction that one would obtain if

unbiased responses are collected at 2k design points, namely, running simulations

at x+
i to collect response estimates rather than extrapolating additional response

estimates. The second term is the inflation of MSE caused by approximation errors

ζ in the additional extrapolated responses.

Let Ŷ(x0) be the stochastic kriging predictor with k design points. Our interest

is to compare the MSE of the GESK predictor Ŷ+(x0) with that of Ŷ(x0). To achieve

this, we begin by looking into the MSE of Ŷ2k(x0).

Using the Woodbury matrix identity and block inverse formula in linear alge-

bra, the MSE of Ŷ2k(x0) can be expressed as

MSE
(
Ŷ2k(x0)

)
= Σ+

M(x0,x0)−Σ+
M(x0, ·)ᵀ

(
Σ+
)−1

Σ+
M(x0, ·)

= MSE
(
Ŷ(x0)

)
− ωᵀVω,

(3.14)
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where ω = BᵀΣ−1ΣM(x0, ·)−ΣM+(x0, ·) and V = (C−BᵀΣ−1B)
−1

.

Lemma 3.2. The matrix V = (C−BᵀΣ−1B)
−1

is positive definite.

Proof. Consider the 2k × 2k covariance matrix Σ+,

Σ+ =

Σ B

Bᵀ C

 .
First it is easy to see that Σ+ is positive definite, so

[
u v

]Σ B

Bᵀ C


u

v

 > 0,

for any k × 1 vector u,v ∈ Rk. This leads to

uᵀΣu + 2vᵀBᵀu + vᵀCv > 0.

For a fixed vector v, consider f(u) = uᵀΣu + 2vᵀBᵀu + vᵀCv as a function of u.

The first-order condition shows that the minimum of f(u) is

min
u
f(u) = vᵀ(C−BᵀΣ−1B)v,

which has to be positive for any v ∈ Rk. Therefore the matrix C − BᵀΣ−1B is

positive definite and its inverse V = (C−BᵀΣ−1B)−1 is also positive definite.

Since the matrix V is positive definite, it follows immediately that

MSE
(
Ŷ2k(x0)

)
= MSE

(
Ŷ(x0)

)
− ωᵀVω ≤ MSE

(
Ŷ(x0)

)
,

where equality only holds if and only if ω = 0. Thus, not surprisingly, the MSE is

reduced if the k additional response outputs are unbiased.
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Next we investigate the effect of the extrapolated bias on the overall MSE.

Combining (3.13) and (3.14) gives

MSE
(
Ŷ+(x0)

)
= MSE

(
Ŷ2k(x0)

)
+
(
Σ+

M(x0, ·)ᵀ
[
Σ+

M + Σ+
ε

]−1
ζ
)2

= MSE
(
Ŷ(x0)

)
− ωᵀVω +

(
Σ+

M(x0, ·)ᵀ
[
Σ+

M + Σ+
ε

]−1
ζ
)2

= MSE
(
Ŷ(x0)

)
− ωᵀVω +

((
Σᵀ

M+(x0, ·)V −Σᵀ
M(x0, ·)Σ−1BV

)
ζk
)2

= MSE
(
Ŷ(x0)

)
− ωᵀVω + (ωᵀVζk)

2

= MSE
(
Ŷ(x0)

)
+ ωᵀVζkω

ᵀVζk − ωᵀVω

= MSE
(
Ŷ(x0)

)
+ ωᵀVζkζ

ᵀ
kVω − ω

ᵀVω

= MSE
(
Ŷ(x0)

)
+ ωᵀ (Vζkζ

ᵀ
kV −V)ω.

(3.15)

The next theorem provides a sufficient condition under which MSE
(
Ŷ+(x0)

)
is

smaller than MSE
(
Ŷ(x0)

)
.

Theorem 3.3. Let λi(A) denote the ith largest eigenvalue of matrix A, i = 1, 2, . . . , k.

The symmetric matrix W = Vζkζ
ᵀ
kV −V is negative definite if

ζᵀkζk ≤
λk(V)

[λ1(V)]2
. (3.16)

Proof. Using Weyl’s inequality in matrix theory and Corollary 11 in [53], the largest

eigenvalue λ1(W) of W satisfies

λ1(W) = λ1 (Vζkζ
ᵀ
kV −V)

≤ λ1 (Vζkζ
ᵀ
kV) + λ1(−V)

= λ1 (Vζkζ
ᵀ
kV)− λk(V)

≤ [λ1(V)]2 λ1(ζkζ
ᵀ
k)− λk(V).
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The k × k matrix ζkζ
ᵀ
k is known as a dyad, which has one positive eigenvalue ζᵀkζk

and k−1 zero eigenvalues provided that ζk 6= 0. It follows that the largest eigenvalue

of ζkζ
ᵀ
k is λ1(ζkζ

ᵀ
k) = ζᵀkζk. Applying condition (3.16), we have λ1(W) < 0, namely,

the largest eigenvalue of W is negative, so all eigenvalues of W are negative, and

therefore the matrix W is negative definite.

When the matrix W is negative definite, the quantity ωᵀWω is always neg-

ative unless ω = 0, so the GESK model reduces MSE for the k-point problem if

(3.16) holds.

Remark 3.4. The condition in (3.16) is well defined, as the matrix V is shown

to be positive definite in Lemma 3.2. Theorem 3.3 shows that when the biases are

relatively small, the reduction in MSE from including the additional extrapolated

points still exceeds the inflation in MSE introduced from the bias of the extrapolated

points.

In addition to assumptions in Section 3.2.2, we also assume that the k design

points are widely spread such that the spatial correlation between design points

is approximately 0. A similar assumption is used in [25] to isolate the impacts of

incorporating gradient estimators from spatial covariances. This implies that the

matrix Σ in (3.12) is a diagonal matrix. As the step size ∆x is usually small, we

assume the same property holds for B and C in (3.12) also. The change in MSE of

the GESK predictor is

∆MSE = ωᵀ (Vζkζ
ᵀ
kV −V)ω,
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where ω = BᵀΣ−1ΣM(x0, ·) − ΣM+(x0, ·) and V = (C−BᵀΣ−1B)
−1

. The effects

of ∆x, ρi and σ2
i+

are summarized as follows:

1. Theorem 3.3 suggests that the quantity ζᵀkζk needs to be small enough to

guarantee that GESK can reduce MSE. This condition requires the step size

∆xj in each dimension to be small.

2. Regarding the correlation ρi, the preferable sign of the correlation actually

depends on the location of the prediction point x0. A condition between ∆x

and xi−x0 determines the preferable sign of ρi. A specific analytical form for

the condition depends on the type of correlation function, larger |ρi| is better

in each favorable case.

3. If the correlation ρi ≈ 0, smaller σ2
i+

is preferable, since it suggests that there

is less noise in the extrapolated responses. The same conclusion holds when

the correlation ρi is positive. However, if the correlation ρi < 0, smaller σ2
i+

is not necessarily better, as there exists an optimal σ2
i+

that reduces MSE the

most.

Analyzing the effects of step size on MSE in a general setting is more difficult,

especially in multidimensional problems. For example, step size used in a multidi-

mensional problem may be different along different directions. Choosing good step

sizes is crucial for building the GESK models. In the next section, we propose two

different approaches to determine the optimal step size.
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3.3 Implementations of GESK

In this section, we focus on two important questions in the implementation of

the GESK model: choosing step sizes and choosing gradient estimators. We pro-

vide two different techniques for determining steps sizes and discuss their pros and

cons. We also make recommendations between the infinitesimal perturbation anal-

ysis (IPA) and the likelihood ratio/score function (LR/SF) techniques for gradient

estimation.

As discussed in the previous section, central to building a GESK model is

the determination of appropriate step sizes. A good choice of step size is crucial

to the performance of the GESK model. Different step sizes, even with the same

data set, may lead to dramatical performance differences of GESK models. The

linear extrapolation used in GESK is only appropriate in a small neighborhood of

the design points, so the step size cannot be too large. If the step size is too small,

the additional points obtained from linear extrapolations provide little information

and it may cause numerical stability issues.

Two natural choices for determining step sizes are maximum likelihood esti-

mation (MLE) and minimizing integrated mean squared error (IMSE). However,

the MLE approach is not suitable for determining step sizes in this context. The

MLE approach leads to step sizes as small as possible, which results in numerical

stability issues when building the GESK model. One unique characteristic of the

GESK model is that biases are introduced during extrapolations. Although the

biases are unknown, they should be taken into consideration during parameter esti-
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mations. To accomplish this, penalty terms are introduced in MLE and IMSE. We

formalize two approaches for determining step sizes: penalized maximum likelihood

estimation and minimizing integrated mean squared error.

3.3.1 Penalized Maximum Likelihood Estimation

One natural choice for determining the step size ∆x is to treat it as a new

parameter in addition to the other parameters (β, τ 2,θ). Under Assumption 1 in

[21], we can write down the likelihood function. However, as mentioned earlier, naive

MLE is not suitable for choosing step sizes in this case. Assuming the correlation

function in (3.5) is used, we propose a penalized maximum likelihood method where

the penalized likelihood function takes the following general form:

Q(β, τ 2,θ,∆x) = − ln
[
(2π)k

]
− 1

2
ln
[∣∣Σ+

M + Σ+
ε

∣∣]
− 1

2
(Ȳ+ − F+β)ᵀ

[
Σ+

M + Σ+
ε

]−1
(Ȳ+ − F+β)− pλ(∆x),

where pλ(·) is a given nonnegative penalty function with a regularization param-

eter λ. Common choices of penalty functions include L1 penalty, L2 penalty and

smoothly clipped absolute deviation (SCAD).

The proposed penalty function is

pλ(∆x) = λ||∆x||−2,

where ∆x = (∆x1,∆x2, . . . ,∆xd) and ||∆x||−2 :=
d∑
i=1

(∆xi)
−2. Therefore the pro-
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posed penalized likelihood function is

Q(β, τ 2,θ,∆x) = − ln
[
(2π)k

]
− 1

2
ln
[∣∣Σ+

M + Σ+
ε

∣∣]
− 1

2
(Ȳ+ − F+β)ᵀ

[
Σ+

M + Σ+
ε

]−1
(Ȳ+ − F+β)− λ||∆x||−2. (3.17)

Penalized maximum likelihood estimation (PMLE) has been used to do vari-

able selection [54] and overcome flat likelihood function issues [55] for kriging. One

key difference is that previous PMLE approaches try to improve the quality of esti-

mates for (β, τ 2,θ), while we propose to use PMLE for choosing step sizes.

3.3.2 Minimizing Integrated MSE

Another view is to connect the problem of finding step sizes with design of

experiments (DOE). Choosing step sizes is similar to adding new design points in

DOE. In deterministic and stochastic kriging literature, many criteria have been

proposed to find the “best” experiment design, most of which are based on MSE.

Using integrated mean squared error (IMSE) as the objective function, the problem

can be formulated as

Minimize
∆x

IMSE =

∫
x0∈Ω

MSE+
(
Ŷ(x0; ∆x)

)
dx0, (3.18)

where Ω is the region of interest.

Lower IMSE suggests smaller deviation associated with the approximation

over the region of interest. In practice, a penalty term involving step sizes is added
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to MSE+,

MSE+(Ŷ(x0; ∆x)) = Σ+
M(x0,x0)−Σ+

M(x0, ·)ᵀ[Σ+
M + Σ+

ε ]−1Σ+
M(x0, ·) + λ||∆x||2,

(3.19)

where the Euclidean norm of ∆x is used. Adding a penalty term that is proportional

to ||∆x||2 in MSE+ follows the discussion earlier.

The PMLE approach estimates all the parameters (β, τ 2,θ) with ∆x simulta-

neously. However, the IMSE approach requires τ 2 and θ to be known in advance.

In practice, a two-stage strategy is proposed to address this issue:

1. In Stage 1, use the original dataset
{
xi, Ȳ(xi)

}k
i=1

to obtain MLEs for (β̂, τ̂ 2, θ̂).

2. Calculate MSE+
(
Ŷ(x0; ∆x)

)
in (3.18) with the estimated (β̂, τ̂ 2, θ̂) and a

predetermined penalty constant λ.

3. In Stage 2, minimize the IMSE in (3.19) to find the optimal step size.

In our implementation, we use the optimization routine fmincon in Matlab.

3.3.3 Choosing Regularization Parameter

The question of selecting the regularization parameter λ in both approaches

remains to be answered. We propose to use cross validation (CV), which is widely

used in statistics and machine learning community, to choose the regularization

parameters. Cross validation allows us to assess the performance with different

regularization parameters without running additional simulations. When a J-fold

cross validation is applied for a given regularization parameter λ, a corresponding
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score CV(λ) can be calculated. Given the design points {xi}ki=1 with the averaged

simulation output {Ȳ(xi), Ḡ(xi)}ki=1, the CV score is calculated as follows:

1. Split the dataset D = {xi, Ȳ(xi), Ḡ(xi)}ki=1 into J subsets D1,D2, . . . ,DJ . All

the design points located on the boundary are handled separately so that

extrapolated design points are still in the space of interest.

2. For j = 1, 2, . . . , J , choose all the design points in Dj as prediction points and

build a GESK model using D\Dj. Predict the response Ŷ(x) for every x ∈ Dj.

3. Compute the CV score for a given parameter λ as a sum of squared errors

between the prediction Ŷ(xi) and the averaged output Ȳ(xi) on Dj,

CV(λ) =
J∑
j=1

∑
(xi,Ȳi)∈Dj

(
Ȳi − Ŷ(xi)

)2

.

To start the cross validation, we need to choose a set of regularization parameters

Λ = {λ1, λ2, . . . , λL}. We compute the CV score for each λl ∈ Λ and choose the

best regularization parameter λ∗ as

λ∗ = arg min
λl∈Λ

CV(λl).

Regarding the set of parameters Λ, if Λ contains a sufficiently large number

of points and computational time is not an issue, cross validation will choose the

best regularization parameter for building a GESK model. In practice, one way

to choose the candidate parameter linearly on a logarithmic scale, for example.

10−1, 100, . . . , 103. This is essentially an optimization problem. When the size of

the set Λ is small, an exhaustive search algorithm can find λ∗ easily. If the size of
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Λ get large, randomized search algorithm can be applied as well. In our numerical

experiments, CV score is computed for each parameter in Λ to find λ∗.

The performance of the two proposed approaches, PMLE and IMSE, will be

investigated via numerical examples in Section 3.4 using different test problems. We

summarize their main features and differences as follows:

• Both methods need a regularization parameter to be calibrated, as unknown

biases are taken into consideration in both methods. We propose using cross

validation methods to determine regularization parameters.

• PMLE uses a penalty function to overcome small step size issues in using

naive MLE. The PMLE approach takes biases into consideration, but does not

guarantee good performance in MSE or IMSE. However, in high-dimensional

problems, maximizing a penalized likelihood is usually computationally faster

than integrating MSE.

• IMSE minimizes the IMSE over the design region, but, in high-dimensional

problems, numerical integrations become computationally expensive, requiring

Monte Carlo methods with long computation time.

3.3.4 Choosing Gradient Estimators

In this chapter, we only consider direct gradient estimators. Specifically, we

focus on the infinitesimal perturbation analysis (IPA) and likelihood ratio/score

function (LR/SF) methods. Under mild conditions, both techniques are able to

provide unbiased gradient estimators, but we would like to know which technique is
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preferable in building a GESK model, provided that both methods are applicable.

Observations made in [56] and [25] suggest the following: (i) at a given point,

correlations between the responses and the corresponding gradient estimates are

higher when IPA is applied, (ii) IPA gradient estimators usually have smaller vari-

ances than LR/SF estimators, (iii) IPA gradient estimators have better performance

when applied in stochastic kriging with gradient estimators (SKG).

Discussions in Sections 3.2.1 and 3.2.2 suggests that the GESK model prefers

gradient estimators that are highly correlated with response estimates and have

smaller variances. Therefore, under most settings, IPA gradient estimators are

preferable to build a GESK model. IPA gradient estimators are employed in the

M/M/1 example conducted in Section 3.4.

3.4 NUMERICAL EXAMPLES

In this section, several numerical experiments are conducted to illustrate the

proposed GESK model. Our goal in this section is three-fold: To demonstrate the

effects of different step sizes on the performance of the GESK model; to empiri-

cally compare the effectiveness of the PMLE and IMSE approaches in determining

step sizes; to examine the performance of the GESK model in different settings and

compare it with stochastic kriging [21] and stochastic kriging with gradient estima-

tors (SKG) [25]. Implementation of SKG and GESK are built upon software for

stochastic kriging downloaded from http://www.stochastickriging.net.

Across all experiments, we assume little information is known about the re-
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sponse surface and choose constant trends for all models, i.e., f(x)ᵀβ = β0. A

Gaussian correlation function RM(x,x′) = exp{−θ‖x − x′‖2} is used for all the

experiments, since it satisfies the conditions required by SKG.

We implemented both PMLE and IMSE approaches discussed in Section ??

to determine step sizes, together with the cross validation method to choose regu-

larization parameters. The corresponding GESK models are named GESK-PMLE and

GESK-IMSE. The measure of performance we chose is the Empirical IMSE (EIMSE),

as used in [57] and other kriging literature:

EIMSE =
1

N

N∑
i=1

(
Ŷ(xi)− Y(xi)

)2

, (3.20)

where N is the number of predictions, Ŷ(xi) is the predicted response at xi and

Y(xi) is the true value at xi.

3.4.1 Experiment on Step Sizes in GESK

We investigate the effects of using different step sizes in the GESK models

using an M/M/1 queue example [58]. The M/M/1 queue has arrival rate 1 and

service rate x ∈ [1.1, 2]. We are interested in the steady-state expected waiting time

y(x), which has an analytical solution y(x) = 1/(x(x− 1)). In our simulation, each

sample path was initialized in steady state and simulated for 5000 customers. The

outputs collected were the average waiting time and its derivative with respect to

the service rate x.

Six different experiment designs, (6, 50), (6, 200), (6, 1000), (8, 200), (10, 200),

(20, 200), were used in the experiment, where the first element in each pair gives the
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Design GESK-1 GESK-2 GESK-3 GESK-PMLE GESK-IMSE

(6, 50) 0.085 (0.0036) 0.167 (0.0035) 0.618 (0.0149) 0.042 (0.0020) 0.027 (0.0017)

(6, 200) 0.094 (0.0023) 0.181 (0.0019) 0.731 (0.0064) 0.034 (0.0011) 0.024 (0.0010)

(6, 1000) 0.092 (0.0011) 0.180 (0.0010) 0.747 (0.0037) 0.038 (0.0006) 0.021 (0.0004)

(8, 200) 0.006 (0.0004) 0.016 (0.0006) 0.194 (0.0023) 0.005 (0.0003) 0.002 (0.0002)

(10, 200) 0.006 (0.0005) 0.007 (0.0011) 0.017 (0.0012) 0.007 (0.0007) 0.004 (0.0003)

(20, 200) 0.002 (0.0008) 0.006 (0.0003) 0.048 (0.0020) 0.003 (0.0003) 0.001 (0.0001)

Table 3.1: Averaged EIMSE from 100 macroreplications for GESK models under

six designs (# of design points, # of reps) to predict expected waiting time in the

M/M/1 queue example. Three fixed step sizes with those determined by PMLE and

IMSE are compared. Standard errors are shown in parenthesis.

number of design points and the second element represents the number of replica-

tions at each design point.

With equally spaced design points, three predetermined step sizes were chosen

for each design, which correspond to 1/10, 1/5 and 1/2 of the length of the subin-

terval. GESK models built with these step sizes are labelled as GESK-1, GESK-2 and

GESK-3, respectively. We ran the experiments for 100 macroreplications. Within

each macroreplication, we chose N = 1000 to estimate the EIMSE in (3.20). Table

3.1 shows the sample mean and standard errors of EIMSE, and Figure 3.1 contains

boxplots for the EIMSE.

Our findings are summarized as follows:

• Predetermined step sizes vs. Optimal step sizes. Performances of
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Figure 3.1: Boxplots of EIMSE from 100 macroreplications for the GESK models

under six designs (# of design points, # of reps) to predict expected steady-state

waiting time in the M/M/1 queue example.
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the two optimal step sizes are better than those of predetermined step sizes,

especially when the number of design points is small. This is expected, as

the choice of step sizes should adapt to the experiment design and simulation

output.

• PMLE vs. IMSE. The performance of IMSE is better than that of PMLE

under most experiment designs, in terms of having smaller averaged EIMSE,

smaller variances of EIMSE and smaller number of outliers. Figure 3.2 shows

boxplots for step sizes determined by PMLE and IMSE under all six designs.

• Effect of number of design points. When the number of design points is

small, for example k = 6, improvements in EIMSE are more significant. How-

ever, when there are already enough design points, improvements are hardly

noticeable. In addition, for both PMLE and IMSE, the relative step size (ra-

tio to the size of the subinterval) generally increases as the number of design

points increases.

• Effect of number of replications. As the number of replications increases,

the variances of EIMSE become smaller as shown in Table 3.1 and Figure 3.1.

However, changes in the averaged IMSE are not significant. Variances of the

chosen step sizes seem to decrease as well, as shown in Figure 3.2.
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Figure 3.2: Boxplots for step sizes determined by PMLE and IMSE based on 100

macroreplications under six designs (# of design points, # of reps) to predict the

expected steady-state waiting time in the M/M/1 queue example.
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3.4.2 Comparisons among SK, SKG and GESK

In this section, we will compare the performances of three different meta-

models: stochastic kriging, stochastic kriging with gradient estimators (SKG) and

gradient extrapolated stochastic kriging (GESK) in three different experiments. The

theoretical analysis of GESK in Section ?? assumes that all parameters are known,

whereas the comparison here is empirical when all parameters must be estimated.

3.4.2.1 A stochastic simulation example

We used the same M/M/1 queue example as in Section 3.4.1. Six different ex-

periment designs were adopted as well. We ran the experiments for 100 macrorepli-

cations. Within each macroreplication, we chose N = 1000 to estimate the EIMSE

in (3.20). Results are shown in Table 3.2 and Figure 3.3. These 100 macroreplica-

tions used the same random numbers as those used in Section 3.4.1, so numbers for

the two GESK models in Table 3.3 and corresponding boxplots in Figure 3.4 are

the same as those in Section 3.4.1.

Our findings are summarized as follows:

• SK vs. SKG vs. GESK. Not surprisingly, SKG and GESK perform

better than SK, as incorporating gradient estimators provides more informa-

tion about the response surface. GESK-IMSE and SKG perform better than

GESK-PMLE in most cases, since objective adopted by PMLE is not directly

related to MSE. Both GESK models perform comparably well or better than

the SKG model. It is not easy to distinguish GESK-IMSE and SKG, since
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Design SK SKG GESK-PMLE GESK-IMSE

(6, 50) 0.313 (0.0134) 0.031 (0.0036) 0.042 (0.0020) 0.027 (0.0017)

(6, 200) 0.324 (0.0062) 0.016 (0.0007) 0.034 (0.0011) 0.024 (0.0010)

(6, 1000) 0.328 (0.0027) 0.016 (0.0003) 0.038 (0.0006) 0.021 (0.0004)

(8, 200) 0.054 (0.0019) 0.002 (0.0003) 0.005 (0.0003) 0.002 (0.0002)

(10, 200) 0.009 (0.0004) 0.004 (0.0014) 0.007 (0.0007) 0.004 (0.0003)

(20, 200) 0.004 (0.0002) 0.004 (0.0004) 0.003 (0.0003) 0.001 (0.0001)

Table 3.2: Averaged EIMSE from 100 macroreplications for SK, SKG and GESK

with six different designs on estimating the expected steady-state waiting time in

an M/M/1 queue problem. The design (6, 50) means 6 design points with 50 repli-

cations at each design point. Standard errors are shown in parentheses.

92



their performances are really close.

• Number of design points. Incorporating gradient estimators improves per-

formance considerably when the design points are sparse. For example, both

SKG and GESK have more significant improvement over stochastic kriging

when k = 6. As the number of design points increases, performance of most

models improves.

• Number of replications. As the number of replications increases with a

fixed number of design points, the variance of EIMSE decreases for all three

methods, as shown in Figures 3.3(a). However, the averaged EIMSE does not

improve significantly.

3.4.2.2 A stylized example with added noise

We consider a one-dimensional example from [23], where the true response

surface is Y(x) = exp(−1.4x) cos(7πx/2) with x ∈ [−2, 0]. The presence of mul-

tiple local extreme values on the response surface makes building a good meta-

model difficult. The simulation response output at x from replication j is Yj(x) =

exp(−1.4x) cos(7πx/2) + εj(x), with εj(x) ∼ N (0, 1). Direct gradient estimates are

assumed of the form Gj(x) = Y′(x) + δj(x) as the gradient estimate at x from sim-

ulation replication j, with δj(x) ∼ N (0, 25). We let δj(x) have a larger variance in

order to empirically investigate the performances of SKG and GESK when gradient

estimates are noisier.

We ran the experiments for 100 macroreplication. Within each macroreplica-
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Design SK SKG GESK-PMLE GESK-IMSE

(6, 50) 39.616 (0.0374) 2.044 (0.0106) 1.909 (0.0181) 1.828 (0.0111)

(6, 200) 39.586 (0.0192) 2.023 (0.0049) 1.830 (0.0091) 1.757 (0.0050)

(6, 1000) 39.581 (0.0084) 7.652 (0.8823) 1.829 (0.0033) 1.758 (0.0023)

(8, 200) 2.793 (0.0039) 0.069 (0.0009) 0.063 (0.0026) 0.068 (0.0025)

(10, 200) 0.949 (0.0026) 1.243 (0.4204) 0.178 (0.0008) 0.012 (0.0007)

(20, 200) 0.008 (0.0002) 0.001 (0.0001) 0.046 (0.0004) 0.004 (0.0004)

Table 3.3: Averaged EIMSE from 100 macroreplications for SK, SKG and GESK

with five different designs on y(x) = exp(−1.4x) cos(7πx/2)+ε. Standard errors are

shown in parentheses.

tion, we chose N = 1000 to estimate the EIMSE in (3.20). Six different experiment

designs, (6, 50), (6, 200), (6, 1000), (8, 200), (10, 200) and (20, 200) were adopted,

with results shown in Table 3.3 and Figure 3.4. Notice that ln(EIMSE) values are

shown in Figure 3.4, as EIMSE results from the three models differ substantially.

• SK vs. SKG vs. GESK. As shown in Figure 3.4, both the SKG and the

GESK models are better than SK when there is a limited number of design

points. The GESK models perform better than SKG when k = 6. The expla-

nation is that the response surface has several fluctuation and extrapolation

allows GESK models to explore and approximate the response surface better

than the others. SKG performs better when there are enough design point, for

example, k = 20. SKG experiences numerical issues under designs (6, 1000)

and (10, 200).
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• Number of replications. When the number of replications increases, the

variance of EIMSE decreases in general, as shown in Table 3.3 and Fig-

ure 3.4(a), except for SKG in design (6, 1000). However, the averaged EIMSE

does not change much as the number of replications increases, similar to the

M/M/1 queue example.

• Number of design points. We fixed the number of replications at 200

and increases the number of design points up to 20. Boxplots are shown in

Figures 3.4(b). EIMSE results for all models improve as the number of design

points increases, with the exception of SKG and GESK-PMLE with design

(10, 200).

• Step sizes. Step sizes determined by the PMLE and IMSE approaches are

shown in Figure 3.5. The plots suggest relationships between experiment de-

signs and step sizes: (i) relative step size (ratio to the size of the subinterval)

increases generally when the number of design points increases, (ii) the vari-

ability of step sizes decreases as the number of replications increases.

• Remark. Performance of SKG with design (10, 200) shown in Table 3.3 and

Figure 3.4(b) doesn’t seem to match each other. The reason is that several

outliers outside of the range shown in Figure 3.4(b) are omitted.
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3.4.2.3 A multidimensional example

Lastly, we consider a stylized multidimensional example to test the perfor-

mance of GESK models, especially when gradient estimates have much larger vari-

ances. We consider the sphere function defined by Y(x) =
2∑
i=1

x2
i +

4∑
i=3

10x2
i . We

chose the experimental design space as [−1, 1]4. The simulated response at x =

(x1, x2, x3, x4) from replication j is Yj(x) = Y(x) + εj(x) with the noise εj(x) ∼

N (0, 1). The gradient estimate with respect to xr at x from replication j is given by

Grj (x) = ∂Y(x)
∂xr

+ δrj (x) with δrj (x) ∼ N (0, 25). The added noise terms are mutually

independent.

We chose two different experiment designs: (20, 500) and (40, 500), which cor-

respond to 20-point and 40-point Latin-hypercube designs with 500 independent

replications at each design point, respectively. We collected simulation responses

Yj(x) and gradient estimates Grj (x) for r = 1, 2, 3, 4, j = 1, 2, . . . , 500 to build

metamodels.

We ran the experiments for 100 macroreplications. Within each replication, we

chose N = 1000 to estimate the EIMSE in (3.20). Figure 3.6 contains boxplots for

the EIMSE calculated from the 100 macroreplications. Our findings are summarized

as follows:

• SKG and both GESK models perform better than SK. As the number of

design points increases, the performances of all models improve. Under design

(20500), GESK-IMSE seems to be the best; under design (40, 500), SKG is

preferred due to its low average and low variance in EIMSE.
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• Between the two GESK models, PMLE scales better than IMSE for high-

dimensional problems. The IMSE approach requires multidimensional integra-

tions to determine step sizes, which is expensive and depends on the accuracy

of integration approximation in high-dimensional problems.

• Step sizes determined by PMLE are generally much larger than those deter-

mined by IMSE. Along each dimension, step sizes determined by PMLE and

IMSE have similar behavior. If the step size chosen by PMLE is relatively

smaller on one dimension, so is the step size chosen by IMSE. Step sizes cho-

sen for a dimension with higher gradient values are not necessarily smaller

than others.

3.5 CONCLUSIONS AND FUTURE RESEARCH

In this paper we investigated gradient extrapolated stochastic kriging (GESK),

which exploits the availability of direct gradient estimates in stochastic simulation

settings. The performance of the GESK models was analyzed theoretically and nu-

merically, with a focus on analyzing the approximation errors introduced by extrap-

olation. Since step sizes are crucial to GESK models, two methods for determining

step sizes were proposed and tested in numerical examples, which indicated substan-

tial gains in performance over SK in all of the experiments. Between the proposed

PMLE and IMSE approaches for determining step sizes, IMSE demonstrated better

performance in numerical experiments, but it becomes computationally expensive

for high-dimensional problems. The numerical experiments showed comparable per-
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formance for GESK and SKG, except when the number of design points is very

small, where GESK shows some advantage.

From our analysis and numerical experiments, we offer the following overall

conclusions:

• GESK can be especially effective when the number of design points is relatively

small, e.g., in the setting where simulation is expensive.

• GESK offers additional flexibility in choosing the correlation function; in par-

ticular, differentiability is not a constraint.

• For high-dimensional problems, GESK using the PMLE is recommended, since

its computation does not increase with dimension, whereas the computational

burden increases exponentially for IMSE minimization and at least quadrati-

cally for SKG.

Our work points to several other directions for future research. The first direction

is to focus on the extrapolation strategy in GESK. For this paper, we use linear

extrapolation with the same step size and assume that only one additional point

is extrapolated from each design point. More sophisticated techniques could use

the local response surface information and adaptively determine the extrapolation

strategy. This is especially important in higher-dimensional problems with multiple

extreme values.

Another direction is to further investigate a comparison of the SKG and GESK

models. Improvements from incorporating gradient estimates can be expected from

both models. However, it would be valuable to be able to characterize when one
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model is likely to be more effective. A theoretical analysis of various properties

comparing the two models can lead to useful guidelines for practitioners.
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Figure 3.3: Boxplots of EIMSE from 100 macroreplications for SK, SKG and GESK

with six different designs on estimating the expected steady-state waiting time in

an M/M/1 queue problem, corresponding to results in Table 3.2.
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Figure 3.4: Boxplots of EIMSE from 100 macroreplications for SK, SKG and GESK

with five different designs on y(x) = exp(−1.4x) cos(7πx/2) + ε, corresponding to

results in Table 3.3.
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Figure 3.5: Boxplots for step sizes determined by PMLE and IMSE based on100

macroreplication in the stylized example with added noise.
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Figure 3.6: Boxplots of EIMSE from 100 macroreplications for SK and GESK with

two different Latin-hypercube designs on a four-dimensional function with added

noise.
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Chapter 4: Simulation Selection with Unknown Correlation Struc-

ture

4.1 Introduction

Consider a decision-maker who must identify the best among a finite set of

design alternatives with unknown performance values. Stochastic simulation is

used to estimate the performance of an alternative. More simulation experiments

will produce better estimates; however, these experiments are expensive and time-

consuming, limiting the simulation budget. We must use this budget efficiently to

maximize the quality of the final selection decision.

In many applications, the simulation budget is comparable to, or smaller than,

the number of design alternatives. However, there may be correlations between the

underlying mean performance values. Correlations can potentially allow us to handle

much larger problems: a single piece of information about one alternative can now

be used to learn about other alternatives with “similar” values. However, these

similarities can be difficult to quantify or guess heuristically. Consider the following

examples:

1. Wind farm placement. Given a set of candidate locations for a new wind farm
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installation, we wish to select the one with the highest average power output.

However, power output depends on volatile wind speeds and other physical

factors like pressure gradient, frictional forces, wind currents, and topographi-

cal features. These factors are difficult to quantify, but simulation can be used

to estimate the net result [59]. Physical and topographical similarities induce

complex correlations between locations.

2. Logistics management. In a vehicle routing problem with service choice [60],

customers can request privilege for early delivery through bidding. The service

provider will accept a set of requests if the total bid price exceeds the additional

cost incurred by deviating from the optimal route. The number of acceptable

sets of requests grows combinatorially. To solve this problem, we have to use

the routing cost computed for one set of requests to infer the costs of other

sets that contain one or more of the same customers.

3. Call center control. A call center administrator assigns agents in shifts to

minimize average call waiting time. The administrator is uncertain about

employee efficiency [61], making it difficult to determine the best assignment.

Simulation can be used to test performances from different assignments. The

performance of two different assignments will be correlated if the assignments

involve the same agents.

Simulation selection procedures consist of a statistical model of the decision-

maker’s estimates of the performance values, and an optimization algorithm for

choosing an alternative to simulate based on the current statistical estimates. In
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the classical literature on ranking and selection (R&S), estimates are constructed

using frequentist statistics, and decisions are made using the indifference-zone (IZ)

approach pioneered by [62]; see also [63] for an overview of classical results. IZ

methods guarantee asymptotic lower bounds for the probability of correct selec-

tion (PCS), as long as the true underlying performance values are sufficiently far

apart. The best-performing IZ methods include those by [64,65] and [66]. Numerous

reviews and surveys are available, including [67], [68], [69] and [70].

Bayesian models for R&S consider the tradeoff between our estimates of the

performance values and our uncertainty about those estimates. This is known as

the “value of information” approach, going back to [27] and extended in later work.

See [31] or [5] for an overview of value of information procedures (VIP). The optimal

computing budget allocation (OCBA) methodology (see e.g. [71–73]), designed to

maximize a Bayesian version of PCS, can also be included in the Bayesian category.

Both frequentist [66] and Bayesian [29,30] methods are able to handle problems

where the simulation output has unknown variance. However, most work on R&S

typically makes independence assumptions on the estimates of performance values:

under this assumption, a single experiment only provides information about a single

alternative, making it difficult to handle large problems with a small simulation

budget. Correlations have largely been studied in the context of common random

numbers inside simulators; see [74] and [75] for IZ methods in this setting. [76]

considers this problem from the perspective of OCBA.

The present chapter, however, uses the term “correlation” in a broader sense.

In the Bayesian setting, correlations can be used inside a distribution of belief as
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a measure of the inherent similarities or differences between alternatives (e.g., the

geographical similarities between two wind farm locations). As we show in this

chapter, correlated beliefs can significantly improve the performances of simulation

selection, even when the simulation output is completely independent. Recently,

[77] studied Bayesian R&S with correlated beliefs ( [78] extends this analysis to

include correlated simulation output), but under the restrictive assumption that the

correlation structure was correctly specified by the decision-maker. By contrast,

we develop a model where the correlation structure is unknown, and has to be

learned together with the performance values. Our model has the ability to correct

inaccurate prior beliefs as new information arrives. If the simulation output is

correlated, we can also learn that correlation structures provided that some prior

information about it is available. To our knowledge, [79] is the only work on Bayesian

R&S to consider unknown correlation structures.

Bayesian R&S procedures rely on conjugate prior distributions on the unknown

model parameters in order to maintain computational tractability. The Wishart

distribution is a well-known conjugate prior for an unknown covariance matrix, as-

suming that we can simultaneously observe the performance of every alternative.

See e.g. [80] or [81] for applications of the Wishart distribution in simulation meta-

modeling and input uncertainty. However, in fully sequential R&S, we only sam-

ple from one alternative at a time. There is no standard conjugate prior for this

problem, although the statistics community has made several attempts to create

one; see [82], [83] or [84] for examples. Unfortunately, these models either present

computational difficulties in an R&S setting or cannot extract information about
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multiple alternatives from a single scalar observation. [79] resolves this problem by

imposing restrictions on the sampling procedure: the simulation budget is allocated

equally among a certain subset of alternatives.

We propose a different approach, where we have the flexibility to simulate

any one alternative at any time. Although our prior is not exactly conjugate, we

create an optimal approximation of conjugacy by minimizing the Kullback-Leibler

divergence between the true posterior and the normal-Wishart distribution, lead-

ing to a computationally efficient learning model. The approximate model enables

us to derive a new VIP that generalizes previous procedures on R&S with known

correlations. We establish intuitive analogies between the new model and classical

statistical results on unknown sampling variance. We also show that, all else be-

ing equal, information has greater value when the correlation structure is unknown,

making it important to consider this uncertainty when allocating the next simulation

experiment.

4.2 Learning Unknown Correlation Structures

Let {1, 2, · · · , K} be a set of alternatives. Let Ŷ be a multivariate normal

random vector in RK with mean µ = (µ1, · · · , µK) and covariance matrix Σ. Our

goal is to discover the alternative x with the largest underlying mean µx. Assuming

that Σ is invertible, we define R = Σ−1 to be the precision matrix of Ŷ. For ease

of computation and presentation, we will work with the precision matrix instead of

the covariance matrix throughout this chapter.
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The vector Ŷ describes the behavior of K alternatives, all observed concur-

rently. We suppose that both µ and R are unknown. Let ŷx represents the simula-

tion output of the behavior of the xth alternative. The sampling distribution of ŷx

given µ and R is univariate normal with the following probability density function

p(ŷx|µ,R) ∝ 1

|e′xR−1ex|
1
2

exp

{
−(ŷx − µx)2

2e′xR
−1ex

}
, (4.1)

where ex = (0, . . . , 1, . . . , 0) is a K × 1 vector, with 1 at the xth component, and 0

at others. The prime denotes transpose.

We allow the precision matrix R to be non-diagonal, implying correlations

between components of Ŷ. As the rest of this section will show, when µ and

R are both unknown, a set of beliefs about R will induce correlations between

our beliefs about different components of µ, implying similarities and differences

between alternatives. We can expect that a single observation ŷx should also provide

some information about other alternatives that are correlated with x. However, the

nature of this information is not clear as the correlation structure is unknown.

4.2.1 Learning from complete observations

Taking the Bayesian viewpoint, we view the unknown mean vector µ and

the precision matrix R as a random vector and a random matrix, respectively. In

accordance with the Bayesian approach, we assume that our prior knowledge about

these unknown quantities is reflected by a prior distribution, which we write as

µ|R ∼ NK(θ0, q0R), R ∼ WK(b0,B0).
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The precision matrix R is assumed to follow a Wishart distribution parametrized

by a scalar b0 and a K × K matrix B0. The conditional distribution of µ given

R is multivariate normal with mean vector θ0 and precision matrix q0R, where θ0

is a K vector and q0 is a scalar. The probability density function of the Wishart

distribution, see e.g. [85], is given as

p(R) =
1

Z(b0,B0)
|R|

b0−K−1
2 exp

{
−1

2
tr(B0R)

}
,

with a normalizing constant

Z(b0,B0) = π
K(K−1)

4

∣∣∣∣B0

2

∣∣∣∣− b
0

2
K∏
i=1

Γ

(
b0 + 1− i

2

)
.

Therefore the joint prior distribution of µ and R is

p0(µ,R) =
1

Z(b0,B0)
|R|

b0−K−1
2 exp

{
−1

2
tr(B0R)

}(
q0

2π

)K
2

|R|
1
2 exp

{
−q

0

2
(µ− θ0)′R(µ− θ0)

}
.

The Wishart distribution has the property that E(R) = b0(B0)−1, whence

E(Σ) = B0

b0−K+1
. The matrix B0 can be viewed as a generalized “sum of squares”.

If the prior parameters are constructed from historical data (known as a “first-stage

sample” in [79]), the diagonal entries of B0 will be the sums of squared deviations

of the first-stage observations from their means. The scalar b0 is analogous to the

size of the first-stage sample, so that B0

b0−K+1
is precisely the empirical covariance

matrix constructed from the first-stage data. The parameter q0 is also analogous to

a sample size; if first-stage sampling is used, R−1

q0
will be the covariance matrix of

the sample mean µ.

If our distribution of belief at stage n is normal-Wishart, and our next ob-

servation is the entire vector Ŷn+1 ∼ NK(µ,R), standard results from Bayesian
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analysis [86] tell us that the posterior density

pn+1(µ,R|Ŷn+1) =
p(Ŷn+1|µ,R)pn(µ,R)∫∫
p(Ŷn+1|µ,R)pn(µ,R)dµdR

is another normal-Wishart distribution with parameters

qn+1 = qn + 1, (4.2)

bn+1 = bn + 1, (4.3)

θn+1 =
qnθn + 1

qn + 1
, (4.4)

Bn+1 = Bn +
qn

qn + 1
(θn − Ŷn+1)(θn − Ŷn+1)′. (4.5)

This is known as the conjugacy property of the normal-Wishart distribution. Con-

jugacy allows us to represent a distribution of belief with a finite, small number of

parameters, which can be easily updated after each new observation. It is conve-

nient to denote these parameters by the notational shorthand Sn = (qn, bn,θn,Bn),

representing the state of our beliefs at time n.

If we are able to observe the entire vector Ŷn+1 (also known as a “complete

observation”), the decision-maker’s objective can be easily formulated as follows. Let

(Ω,F ,P) be an appropriate probability space, and define a filtration Fn, where Fn is

the σ-algebra generated by the first n observations Y1, ...,Yn. Then, θn = E(µ|Fn)

intuitively represents our time-n beliefs about µ. We wish to find

E(max
x

E(µx|FN)), (4.6)

where N is the simulation budget. The maximum inside the outer expectation

in (4.6) represents the decision-maker’s implementation decision: at time N , we
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will select the alternative that appears to be the best. If complete observations

are available, (4.6) is simply a statistical estimation problem with no elements of

simulation optimization. However, we will now move to a setting where only a single

component of Ŷn+1 can be observed at a time, giving rise to the problem of choosing

the right component.

4.2.2 Learning model for scalar observations

As is common in fully sequential ranking and selection, we now suppose

that at stage n we sample from alternative x only, with an observation ŷn+1
x ∼

N (µx, (e
′
xR
−1ex)

−1
). The distribution of ŷn+1

x is simply the marginal distribution

of the xth component of Ŷn+1. Using Bayes’ rule, the joint posterior distribution of

µ and R, given the observation ŷn+1
x , can be written as

pn+1(µ,R|ŷn+1
x ) ∝ 1

Z(bn,Bn)
|R|

bn−K−1
2 exp

{
−1

2
tr(BnR)

}(
qn

2π

)K
2

|R|
1
2

· exp

{
−q

n

2
(µ− θn)′R(µ− θn)

}
1

(2πR−1)
1
2
xx

exp

{
−(ŷn+1

x − µx)2

2(R−1)xx

}
.

(4.7)

After decomposing the posterior distribution in (4.7) into the conditional posterior

distribution of µ given R and the marginal posterior distribution of R, we ob-

serve that the conditional distribution of µ given R is multivariate normal, but the

marginal distribution of R is no longer a Wishart distribution.

Computational difficulties arise from here. Equation (4.7) suggests that the

conjugacy property of the normal-Wishart distribution is lost if we can no longer

observe the entire vector Ŷn+1. Conjugacy of the prior distribution is necessary
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in order to build a computationally tractable learning model and develop efficient

sequential decision procedures that make sampling choices based on a small set of

belief parameters. In what follows, we force conjugacy using the density projection

technique. To be precise, by minimizing the Kullback-Leibler (KL) divergence, we

find the best approximation for the posterior distribution in (4.7) from the normal-

Wishart family. The posterior distribution is then replaced by its normal-Wishart

approximation, and the decision-maker’s beliefs are assumed to be normal-Wishart

after each successive observation.

Let ξ(µ,R) be a distribution from the normal-Wishart family with parameters

(q, b,θ,B) such that

µ|R ∼ NK(θ, qR), R ∼ WK(b,B).

Define DnKL(ξ‖pn+1) to be the Kullback-Leibler (KL) divergence between ξ(µ,R)

and pn+1(µ,R|ŷn+1
x ), which is given by

DnKL(ξ‖pn+1) = Eξ
(

log
ξ(µ,R)

pn+1(µ,R|ŷn+1
x )

)
, (4.8)

where Eξ[·] is the expectation with respect to ξ(µ,R). This quantity, bounded

below by zero, is used to measure the “distance” between the distributions ξ and

pn+1. Lower KL divergence suggests that there is more similarity between the two

distributions. For simplicity of notation, we write DnKL(ξ‖p) instead of DnKL(ξ‖pn+1).

We wish to find

(qn+1, bn+1,θn+1,Bn+1) = arg min(q,b,θ,B)DnKL(ξ‖p), (4.9)

the set of parameters that projects (according to KL divergence) the normal-Wishart
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distribution onto the true posterior in (4.7).

We first give a closed-form expression for (4.8), and then solve (4.9). We briefly

sketch the proof of the solution, but readers are referred to the Appendix for the

complete details.

Proposition 4.1. The KL divergence DnKL(ξ‖p) defined in (4.8) can be expressed

as

DnKL(ξ‖p) =
bn+1 − bn

2

(
− log

∣∣∣∣Bn+1

2

∣∣∣∣+
K∑
i=1

ψ

(
bn+1 − i+ 1

2

))
− bn+1K

2

+
bn+1

2
tr
(
Bn(Bn+1)−1

)
+ log

Z(bn,Bn)

Z(bn+1,Bn+1)
+

1

2
logBn+1

xx

+
1

2

[
K log

qn+1

qn
+K

qn

qn+1
−K + qn(θn − θn+1)′bn+1(Bn+1)−1(θn − θn+1)

]
− 1

2
ψ

(
bn+1 −K + 1

2

)
+

1

2qn+1
+

1

2
(ŷn+1
x − θn+1

x )2 b
n+1 −K + 1

Bn+1
xx

+ C,

where ψ(x) = d ln Γ(x)/dx is the digamma function and C is some constant that

does not depend on the parameters of ξ.

Proof. Proof: First notice that the posterior distribution in (4.7) can be written as

pn+1(µ,R|ŷn+1
x ) =

pn+1(µ|R)pn+1(R)p(ŷn+1
x |µ,R)

p(ŷn+1
x )

.
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Then the KL divergence is given as

DnKL(ξ|p) = Eξ
(

log
ξ(µ,R)

pn+1(µ,R|ŷn+1
x )

)
=

∫∫
ξ(µ,R) log

ξ(R)ξ(µ|R)p(ŷn+1
x )

pn+1(µ|R)pn+1(R)p(ŷn+1
x |µ,R)

dµdR

=

∫∫
ξ(µ,R) log

ξ(R)

pn+1(R)
dµdR (4.10)

+

∫∫
ξ(µ,R) log

ξ(µ|R)

pn+1(µ|R)
dµdR (4.11)

−
∫∫

ξ(µ,R) log p(ŷn+1
x |µ,R)dµdR (4.12)

+

∫∫
ξ(µ,R) log p(ŷn+1

x )dµdR, (4.13)

where (4.10) can be computed as

∫∫
ξ(µ,R) log

ξ(R)

pn+1(R)
dµdR

=

∫
ξ(R) log

ξ(R)

pn+1(R)
dR

=

∫
ξ(R) log

{
Z(bn,Bn)

Z(bn+1,Bn+1)
|R|

bn+1−bn
2 exp

{
−1

2
tr(Bn+1R)− 1

2
tr(BR)

}}
dR

=
bn+1 − bn

2
Eξ (log |R|) + log

Z(bn,Bn)

Z(bn+1,Bn+1)
− 1

2
Eξ
[
tr((Bn+1 + Bn)R)

]
=
bn+1 − bn

2

(
− log

∣∣∣∣Bn+1

2

∣∣∣∣+
K∑
i=1

ψ

(
bn+1 − i+ 1

2

))
+ log

Z(bn,Bn)

Z(bn+1,Bn+1)

+
bn+1

2
tr
(
Bn(Bn+1)−1

)
− bn+1

2
K, (4.14)
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the term in (4.11) can be computed as

∫∫
ξ(µ,R) log

ξ(µ|R)

pn+1(µ|R)
dµdR

=

∫∫
ξ(µ,R) log

{
|qn+1R| 12 exp

{
−1

2
(µ− θn+1)′qn+1R(µ− θn+1)

}
|qnR| 12 exp

{
−1

2
(µ− θn)′qnR(µ− θn)

} }

=

∫∫
ξ(µ,R)

[
K

2
log

qn+1

qn
− 1

2
(µ− θn+1)qn+1R(µ− θn+1) +

1

2
(µ− θ)′qnR(µ− θ)

]
dµdR

=
K

2
log

qn+1

qn
+
K

2

qn

qn+1
− K

2
+
qn

2
(θn+1 − θn)′bn+1(Bn+1)−1(θn+1 − θn), (4.15)

and the term in (4.12) can be computed as

∫∫
ξ(µ,R) log p(ŷn+1|µ,R)dµdR

=

∫∫
ξ(µ,R) log

[
(2πR−1)

− 1
2

xx exp

[
−1

2
(R−1)−1

xx (ŷn+1
x − µx)2

]]
dµdR

=− 1

2
Eξ
(
log(R−1)xx

)
− 1

2
log(2π)− 1

2
(ŷn+1
x − θn+1

x )2E
(
(R−1)−1

xx

)
− 1

2qn+1

=− 1

2

(
logBn+1

xx − log 2− ψ
(
bn+1 −K + 1

2

))
− 1

2
log(2π)− 1

2qn+1
− 1

2
(ŷn+1
x − θn+1

x )2 b
n+1 −K + 1

Bn+1
xx

.

(4.16)

Notice that p(ŷn+1
x ) is the marginal distribution of ŷn+1

x , which is not a function of

µ and R, so (4.13) doesn’t depend on the parameters of ξ. The proof then follows

from equations (4.14), (4.15) and (4.16).

Theorem 4.2. There exists a finite value ∆bn s.t. the solution to (4.9) can be
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expressed as

qn+1 = qn +
1

K
, (4.17)

bn+1 = bn + ∆bn, (4.18)

θn+1 =

(
qnbn+1(Bn+1)−1 +

bn+1 −K + 1

e′xB
n+1ex

exe
′
x

)−1

·
(
qnbn+1(Bn+1)−1θn +

bn+1 −K + 1

e′xB
n+1ex

ŷn+1
x ex

)
, (4.19)

Bn+1 =
bn+1

bn
Bn +

bn+1

bn + 1

(
qn(ŷn+1

x − θnx)2

qnbn+1

bn+1−K+1
+ 1

− Bn
xx

bn

)
Bnexe

′
xB

n

(Bn
xx)

2
. (4.20)

Proof. Proof: Taking derivatives of (4.8) with respect to the parameters and apply-

ing matrix calculus, we obtain

∂DnKL(ξ‖p)
∂qn+1

=
1

2

{
K

qn+1
− qnK

(qn+1)2
− 1

(qn+1)2

}
, (4.21)

∂DnKL(ξ‖p)
∂bn+1

=
1

2

{
(ŷn+1
x − θnx)2

Bn+1
xx

(qn)2bn+1(K − 1)

(qnbn+1 + bn+1 −K + 1)2
+
bnK + 1

bn+1
−K

+
bn+1 − bn

2

K∑
i=1

ψ′
(
bn+1 − i+ 1

2

)
− 1

2
ψ′
(
bn+1 −K + 1

2

)}
,

(4.22)

∂DnKL(ξ‖p)
∂θn+1

= qnbn+1(Bn+1)−1(θn − θn+1) +
bn+1 −K + 1

Bn+1
xx

(exe
′
x) (ŷn+1

x ex − θn+1),

(4.23)

∂DnKL(ξ‖p)
∂Bn+1

= −1

2
qnbn+1

(
Bn+1

)−1
(θn − θn+1)(θn − θn+1)′(Bn+1)−1 +

bn

2
(Bn+1)−1

− bn+1

2
(Bn+1)−1Bn(Bn+1)−1 +

(
1

2Bn+1
xx

− bn+1 −K + 1

2

(ŷn+1
x − θn+1

x )2

(Bn+1
xx )2

)
exe

′
x.

(4.24)

Setting (4.21) - (4.24) to zero and solving, we notice that (4.17) follows immediately

from (4.21). However, (4.22)-(4.24) are more difficult to solve because each equation

depends on multiple parameters. We denote the change in degrees of freedom by
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∆bn ≡ bn+1− bn. Then we can derive (4.19) and (4.20) as functions of ∆bn. Finally,

we compute ∆bn itself (see Remark 4.4 for a discussion).

Setting (4.23) to zero, we obtain(
qnbn+1(Bn+1)−1 +

bn+1 −K + 1

Bn+1
xx

)
θn+1 = qnbn+1(Bn+1)−1θn+

bn+1 −K + 1

Bn+1
xx

exe
′
xŷ

n+1
x ex,

solving for θn+1 and it yields (4.19).

Setting (4.24) to zero and multiplying Bn+1 from left and right, we obtain,

Bn+1 =
bn+1

bn
Bn +

qnbn+1

bn
(θn+1 − θn)(θn+1 − θn)′

− 1

bn

(
1

Bn+1
xx

− (bn+1 −K + 1)(ŷn+1
x − θn+1

x )2

(Bn+1
xx )2

)
Bn+1exe

′
xB

n+1.

Since

(θn+1 − θn)(θn+1 − θn)′ =
(ŷn+1
x − θnx)2

(γn)2

Bn+1exe
′
xB

n+1

(Bn+1
xx )2

,

and

(ŷn+1
x − θn+1

x )2 =
(ŷn+1
x − θnx)2(γn − 1)2

(γn)2
,

where

γn = 1 +
qnbn+1

bn+1 −K + 1
,

it follows that

Bn+1 =
bn+1

bn
Bn +

(
qnbn+1(ŷn+1

x − θnx)2

bnγn
− Bn+1

xx

bn

)
Bn+1exe

′
xB

n+1

(Bn+1
xx )2

=
bn+1

bn
Bn +

bn+1

bn

(
qn(ŷn+1

x − θnx)2

qnbn+1

bn+1−K+1
+ 1

− Bn+1
xx

bn+1

)
Bn+1exe

′
xB

n+1

(Bn+1
xx )2

. (4.25)

The matrix Bn+1 shows up in both sides of (4.25). We will show how to derive

updating equations for all entries in the matrix Bn+1.
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Consider Bn+1
xx , it follows from (4.25) that

bnBn+1
xx = bn+1Bn

xx +
qnbn+1(ŷn+1

x − θnx)2

γn
−Bn+1

xx ,

then

Bn+1
xx =

bn+1

bn + 1
Bn
xx +

1

bn + 1

qnbn+1(ŷn+1
x − θnx)2

γn
.

It follows from symmetry of the matrix Bn that Bn+1
ix = Bn+1

xi .

Consider Bn+1
xi and Bn+1

ix for i 6= x,

bnBn+1
xi = bn+1Bn

xi +

(
qnbn+1(ŷn+1

x − θnx)2

γn
−Bn+1

xx

)
Bn+1
xx Bn+1

xi

(Bn+1
xx )2

,

then it follows that

Bn+1
xi =

bn+1

bn + 1
Bn
xi +

1

bn + 1

qnbn+1(ŷn+1
x − θnx)2

γn
Bn
xi

Bn
xx

. (4.26)

The following result from (4.26)is worth mentioning,

Bn+1
xi

Bn+1
xx

=
Bn
xi

Bn
xx

.

Consider Bn+1
ij for i, j 6= x,

bnBn+1
ij = bn+1Bn

ij +

(
qnbn+1(ŷn+1

x − θnx)2

γn
−Bn+1

xx

)
Bn+1
xi Bn+1

xj

(Bn+1
xx )2,

and it follows that

Bn+1
ij =

bn+1

bn
Bn
ij +

1

bn + 1

(
qnbn+1(ŷn+1

x − θnx)2

γn
− bn+1

bn
Bn
xx

)
Bn
xiB

n
xj

(Bn
xx)

2
.

Using the Sherman-Morrison-Woodbury formula [?, see e.g.]]GoLo96, we can

rewrite (4.19) without using inverse matrices as

θn+1 = θn +
ŷn+1
x − θnx

qnbn+1

bn+1−K+1
Bn
xx +Bn

xx

Bnex. (4.27)
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The most crucial aspect of (4.27) is that a single scalar observation is now

used to update the entire posterior mean vector through the matrix Bn. Similar

behavior occurs in the Kalman filter-like update used by [77] in the case of known

correlation structures. In that setting, the updating equation incorporates both the

variance of the current belief and the known variance of the observations. However,

when the correlation structure is unknown, the matrix Bn is used to estimate both

types of variances.

Equations (4.17)-(4.20) allow us to conveniently represent and update a joint

distribution of belief about µ and R using a finite number of parameters, which can

be compactly encoded in the belief state Sn. We can now connect the mechanism

of approximate Bayesian inference back to a formal objective function. Recall from

Section 4.2.1 that the sampling model is defined on a probability space (Ω,F ,P),

where P is the law of the process Sn. Essentially, our approximate Bayesian learn-

ing model replaces P by an alternate probability measure P̄ under which (µ,R) is

normal-Wishart, given Fn with parameters obtained through KL minimization.

We use the notation EP̄(·) for expectations under the probability measure P̄.

Given a measurement budget of N , the experimenter chooses a measurement pol-

icy, which is a function xπ mapping a belief state Sn to an alternative xπ(Sn) ∈

{1, . . . , K}. Under the probability space (Ω,F , P̄), the policy makes measurement

decisions sequentially. As before, Fn is the σ-algebra generated by all the decisions

made in the first n stages, as well as the observations collected. Let π be a mea-

surement policy. The notation Eπ indicates that the expectation is taken when the

measurement policy π is applied. We also define Π as the set of measurement poli-
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cies. The challenge is to choose a measurement policy π for allocating the simulation

budget one measurement at a time, and our objective can be written as

sup
π∈Π

EπP̄
(

max
x

EπP̄(µx|FN)
)
. (4.28)

As in (4.6), the maximum in (4.28) represents the decision-maker’s imple-

mentation decision to select the alternative that seems to be the best at time N .

However, unlike (4.6), equation (4.28) now contains the optimization problem of

choosing a policy π, i.e., a sequence of measurement decisions.

We close our discussion of the learning model with several remarks on the in-

terpretation of the model parameters. The approximate updating equations (4.17)-

(4.20) are intuitive generalizations of the conjugate update in (4.2)-(4.5). For ex-

ample, in (4.5), the squared error matrix (θn− Ŷn+1)(θn− Ŷn+1)′ is used to update

Bn. In (4.20), the full matrix is not available, so the update uses the scalar squared

error (θnx − ŷn+1
x )2 to update all covariances between x and other alternatives.

Remark 4.3. The parameter qn in the prior distribution is intended to be a reflec-

tion of prior precision relative to the sample size that is tunable by the researcher or

practitioner to reflect their prior confidence. Recall from (4.2) that, when we have

complete observations, this parameter is always increased by 1. By analogy, if we

only collect information about one out of K alternatives, qn is increased by 1/K.

Remark 4.4. Although one might expect bn to behave in the same way as qn, this

is not exactly the case. The parameter bn increases by 1 when we have complete ob-

servations. However, when we sample from only one alternative, the increment ∆bn

actually depends on (qn, bn, ŷn+1
x , θnx , B

n
xx). The quantity ∆bn does not have a closed-
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form expression, but can easily be obtained numerically via a bisection procedure

or Newton’s method on the interval [0, 1]. We have also observed in our numeri-

cal experiments that the optimal values of ∆bn appear to be smaller than 1/K and

approach 1/K asymptotically over time.

Remark 4.5. Note that the computational complexity of the updates (4.17)-(4.20) is

O(K2), identical to that of the conjugate updates for R&S with known correlations;

see equations (2.22) and (2.23) in [5]. The number of iterations of the bisection

method needed to compute ∆bn within a fixed, pre-specified tolerance level does not

depend on K. However, the effort needed for a single iteration of the bisection

method is O(K), since the terms in (4.22) have to be recomputed when different

values of ∆bn are considered.

4.2.3 Predictive distribution of the next observation

Given the prior distribution on the unknown parameters, the distribution of

ŷn+1
x represents the decision-maker’s beliefs about the next observation (assuming

that alternative x will be measured). For this reason, it is known as the predictive

distribution. In Section 4.3, we introduce a policy that uses the predictive distri-

bution to look ahead to the outcome of a simulation decision. In preparation for

this discussion, we now present the predictive distribution for the normal-Wishart

model under the approximate Bayesian learning scheme of Section 4.2.1. That is,

we assume that the decision-maker’s beliefs at time n are represented by a normal-

Wishart distribution whose parameters are contained in the state Sn, and use this
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assumption to characterize ŷn+1
x .

For completeness, we provide the definition of the multivariate t-distribution

[87].

Definition 4.1. A p-dimensional random vector X = (X1, . . . , Xp) is said to have

the p-variate t-distribution with ν degrees of freedom, mean vector µ, and correlation

matrix V if its joint pdf is given by

f(x) =
Γ(ν+p

2
)

(πν)p/2|V|1/2Γ(ν
2
)

[
1 +

1

ν
(x− µ)′V−1(x− µ)

](ν+p)/2

.

The predictive distribution of ŷn+1
x follows from the following two lemmas.

Lemma 4.6. Suppose that (µ,R) follows a normal-Wishart distribution with pa-

rameters (qn, bn,θn,Bn). Then the predictive distribution of a complete observation

Ŷn+1 is a multivariate t-distribution with bn−K+1 degrees of freedom, mean vector

θn and correlation matrix (qn + 1)Bn/qn(bn −K + 1).

Proof. Proof: The predictive distribution of the vector Ŷn+1,

p(Ŷn+1) =

∫∫
p(Ŷn+1,µ,R)dµdR,

and

p(Ŷn+1,µ,R) ∝ |R|
bn−K+1

2 exp

{
−1

2
(Ŷn+1 − µ)′R(Ŷn+1 − µ)

}
· exp

{
−q

n

2
(µ− θn)′R(µ− θn)

}
exp

{
−1

2
tr(BnR)

}
.

It can be verified that

(Ŷn+1 − µ)′R(Ŷn+1 − µ) + qn(µ− θn)′R(µ− θn)

= (qn + 1)(µ− θ̄n)′R(µ− θ̄n) +
qn

qn + 1
(θ − Ŷn+1)′R(θ − Ŷn+1),
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with

θ̄n =
qnθn + Ŷn+1

qn + 1
.

It follows that

p(Ŷn+1,µ,R) ∝ |R|
1
2 exp

{
−q

n + 1

2
(µ− θ̄n)′R(µ− θ̄n)

}
|R|

bn−K
2 exp

{
−1

2
tr(B̄nR)

}
,

where

B̄n = Bn +
qn

qn + 1
(θn − Ŷn+1)(θn − Ŷn+1)′.

Integration with respect to µ and R yields

p(Ŷn+1) ∝
(

1 +
qn

qn + 1
(Ŷn+1 − θn)′(Bn)−1(Ŷn+1 − θn)

)− bn+1
2

.

This shows that Ŷn+1 has a multivariate t-distribution with degrees of freedom

bn −K + 1, mean vector θn and correlation matrix qn+1
qn(bn−K+1)

Bn.

Lemma 4.7. The predictive distribution of ŷn+1
x is

ŷn+1
x ∼ t

(
bn −K + 1, θnx ,

qn(bn −K + 1)

(qn + 1)Bn
xx

)
, (4.29)

which is a univariate Student’s t-distribution with bn − K + 1 degrees of freedom,

mean θnx and variance qn+1
qn(bn−K−1)

Bn
xx.

Proof. Proof: This result follows by combining Lemma 4.6 together with results in

Section 1.10 from [87].

Using the predictive distribution found in (4.29), we can derive another ex-
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pression for the updating equation of θn in (4.27). Define

T n =
ŷn+1
x − θnx(

qn+1
qn(bn−K+1)

Bn
xx

)1/2
,

s̃n(qn, bn,Bn, x) =

(
qn+1

qn(bn−K+1)

)1/2(
qnbn+1

bn+1−K+1
+ 1
)

(Bn
xx)

1/2
Bnex.

Then, (4.27) can be rewritten as

θn+1 = θn + s̃n(qn, bn,Bn, x)T n, (4.30)

where T n has a Student’s t-distribution with bn −K + 1 degrees of freedom, mean

0 and scale parameter 1.

At time n, the vector θn+1 of future beliefs is unknown. However, we see

from (4.30) that our uncertainty about this vector originates from a single scalar

random variable. This is in line with previous work on ranking and selection with

known correlation structures [77], where the scalar random variable is normally

distributed. When the correlations are unknown, we use Student’s t-distribution,

forming a precise analogy to classical frequentist statistics.

4.2.4 Information loss due to approximate Bayesian inference

The KL divergence DnKL(ξ ‖ p) can be thought of as the incremental infor-

mation loss incurred by forcing conjugacy after the (n + 1)st observation, under

the assumption that our beliefs at time n are accurately represented by a normal-

Wishart distribution. This section shows that, under the probability measure P̄,

the incremental information loss converges to zero in probability as n → ∞. That
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is, if conjugacy is maintained up to time n, the error due to a single application

of approximate Bayesian inference at time n + 1 will become vanishingly small for

large enough n.

This result is intended to provide the intuition that, over time, the learning

model with scalar observations bears greater resemblance to a conjugate learning

model. As in Section 4.2.3, we assume that the decision-maker’s beliefs at time n are

represented by the normal-Wishart distribution. We begin by showing in Proposi-

tion 4.8 that the degrees of freedom parameter bn goes to infinity, eventually leading

to the result that the incremental loss from one additional observation vanishes to

zero.

Proposition 4.8. If b0 is sufficiently large, then ∆bn ∈ (0, 1) P̄-a.s. and bn → ∞

as n→∞.

Proof. Proof: Let ∆bn = 1 in (4.22) and from which we have

∂Dn(ξ|p)
∂bn+1

∣∣∣
bn+1=bn+1

≥ 1

2

(
bnK + 1

bn + 1
−K

)
+

1

4

K∑
i=1

ψ′
(
bn − i+ 2

2

)
− 1

4
ψ′
(
bn −K + 2

2

)

= − K − 1

2(bn + 1)
+

1

4

K−1∑
i=1

ψ′
(
bn − i+ 2

2

)

≥ − K − 1

2(bn + 1)
+

1

4

K−1∑
i=1

2

bn − i+ 2

> − K − 1

2(bn + 1)
+

K − 1

2(bn + 1)
= 0.

Let ∆bn = 0 in (4.22), we can show that for any ε > 0, there exists sufficiently large

bn such that the first term is less than ε. We also observe that

1

bn
− 1

2
ψ′
(
bn −K + 1

2

)
<

1

bn
− 1

bn −K + 1
< 0.
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Since (4.22) is a continuous function of ∆bn on [0, 1], we know that ∆bn ∈ (0, 1),

whence bn has a limit by the monotone convergence theorem. In the following, we

will prove that bn goes to infinity by contradiction. Assume that there exists M <∞

such that bn converges to M . This suggests that ∆bn converges to zero. Taking the

limit of (4.22) as n goes to infinity yields,

lim
n→∞

(ŷn+1
x − θnx)2

Bn+1
xx

(qn)2bn+1(K − 1)

(qnbn+1 + bn+1 −K + 1)2
= ψ′

(
M −K + 1

2

)
− 1

M
(4.31)

From Lemma 4.7, the predictive distribution of ŷn+1
x is a Student’s t-distribution

with bn −K + 1 degrees of freedom, mean θnx and variance qn+1
qn(bn−K+1

Bn
xx. It follows

that

(ŷn+1
x − θnx)

(Bn
xx)

1/2
= T n

(
qn + 1

qn(bn −K + 1)

)1/2

. (4.32)

As qn →∞,

lim
n→∞

(qn)2bn+1(K − 1)

(qnbn+1 + bn+1 −K + 1)2
=

1

M
,

whence (4.31) can be rewritten as

lim
n→∞

l(T n) =

[
ψ′
(
M −K + 1

2

)
− 1

M

]
M2, (4.33)

where l(T n) is a function of the random variable T n. Since bn → M , the random

variable T n converges weakly to a Student’s t-distribution with M−K+1 degrees of

freedom. That means that (4.33) cannot hold almost surely. Therefore, we conclude

that the degrees of freedom bn goes to infinity as n→∞.

The fact that the degrees of freedom parameter bn goes to infinity is a key to

the other results in this section. We next show several preliminary results concerning

the updating equation for Bn.
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Proposition 4.9. Let

Mn
x =

(
bn+1

bn + 1

)(
qn(bn+1 −K + 1)

qnbn+1 + bn+1 −K + 1

(ŷn+1
x − θnx)2

(Bn
xx)

2
− 1

bnBn
xx

)
.

Then, Mn
xB

n
xx converges to zero in P̄-probability.

Proof. Proof: First note that

Mn
xB

n
xx =

(
bn+1

bn + 1

)(
qn(bn+1 −K + 1)

qnbn+1 + bn+1 −K + 1

(ŷn+1
x − θnx)2

Bn
xx

− 1

bn

)
,

therefore showing that Mn
xB

n
xx converges to zero in probability is equivalent to show-

ing that (ŷn+1
x − θnx)2/Bn

xx converges to zero in probability. For any ε > 0, using

(4.32) and Chebyshev’s inequality, we know that

P̄
(∣∣∣∣(ŷn+1

x − θnx)

(Bn
xx)

1/2

∣∣∣∣ > ε

)
≤ qn + 1

qn(bn −K + 1)

1

ε2
.

Then we have

lim
n→∞

P̄
(∣∣∣∣(ŷn+1

x − θnx)

(Bn
xx)

1/2

∣∣∣∣ > ε

)
= 0,

as required.

If we view the updating equation (4.13) from the viewpoint of stochastic ap-

proximation, then the quantity Mn
xB

n
xx can be considered as the stepsize. Since the

stepsize converges to zero, this guarantees that the change in the matrix Bn will not

be too large.

We will provide two propositions related to the determinant and the trace of

the matrix Bn. Instead of checking the matrix Bn componentwise, these two results

provide the changes in the determinant and the trace analytically, which are useful

for studying the asymptotic behavior of the matrix Bn.
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Proposition 4.10. The determinant of Bn is updated recursively through

det(Bn+1) = det(Bn)

(
bn+1

bn

)K (
1 +

bn

bn+1
Mn

xB
n
xx

)
. (4.34)

Proof. Proof: First rewrite (4.20) as

Bn+1 = Bn + Bn

(
∆bn

bn
IK +Mn

x exe
′
xB

n

)
It follows from the matrix determinant lemma [88] that

det(Bn+1) = det(Bn) det

(
IK +

∆bn

bn
IK +Mn

x exe
′
xB

n

)
= det(Bn) det

(
bn+1

bn
IK +Mn

x exe
′
xB

n

)
= det(Bn) det

(
bn+1

bn
IK

)(
1 +

bn

bn+1
Mn

x e′xB
nex

)
= det(Bn)

(
bn+1

bn

)K (
1 +

bn

bn+1
Mn

xB
n
xx

)
,

as desired.

Proposition 4.11.

tr
(
Bn(Bn+1)−1

)
=
bnK + 1

bn+1
−q

n

2
(θn+1−θn)′(Bn+1)−1(θn+1−θn)−1

2
(ŷn+1
x −θn+1

x )2 b
n+1 −K + 1

Bn+1
xx

.

Proof. Proof: Multiplying (4.24) by Bn+1 from the left yields

bn

2
IK −

bn+1

2
Bn(Bn+1)−1 − qnbn+1

2
(θn+1 − θ)(θn+1 − θn)′(Bn+1)−1

+

(
1

2Bn+1
xx

− bn+1 −K + 1

2(Bn+1
xx )2

(ŷn+1
x − θn+1

x )2

)
Bn+1exe

′
x = 0

Taking trace on both sides, it gives

bnK

2
− bn+1

2
tr
(
Bn(Bn+1)−1

)
− qnbn+1

2
(θn+1 − θn)′(Bn+1)−1(θn+1 − θn)(

1

2Bn+1
xx

− bn+1 −K + 1

2(Bn+1
xx )2

(ŷn+1
x − θn+1

x )2

)
Bn+1
xx = 0 (4.35)

Solving for tr (Bn(Bn+1)−1) from (4.35) completes the proof.
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The next lemma finds the limit of a sequence of expressions involving the

gamma and digamma functions. The limit will appear repeatedly in the proof of

our main results later.

Lemma 4.12. For any α, β, γ ∈ R,

lim
x→∞

log
Γ(x+ α)

Γ(x+ β)
− (α− β)ψ(x+ γ) = 0. (4.36)

Proof. Proof: Notice that

log
Γ(x+ α)

Γ(x+ β)
− (α− β)ψ(x+ γ) = log

(
Γ(x+ α)

Γ(x+ β)
e−(α−β)ψ(x+γ)

)
,

then to prove (4.36) is equivalent to prove

lim
x→∞

Γ(x+ α)

Γ(x+ β)
e−(α−β)ψ(x+γ) = 1.

From [89], we have the asymptotic expansion

Γ(x+ α)

Γ(x+ β)
= xα−β

[
1 +

(α− β)(α + β − 1)

2x
+O(x−2)

]
. (4.37)

For x > 0, we have [90]

log x− 1

x
< ψ(x) < log x− 1

2x
.

Without loss of generality, we assume that α > β. This gives

(x+ γ)−(α−β)e
α−β

2(x+γ) < e−(α−β)ψ(x+γ) < (x+ γ)−(α−β)e
α−β
x+γ .

Therefore, by (4.37), we find that

lim
x→∞

Γ(x+ α)

Γ(x+ β)
e−(α−β)ψ(x+γ) = 1.
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We now state the key theorem. As the number of measurements goes to

infinity, the KL divergence converges to zero in probability. This suggests that the

incremental information loss incurred by forcing conjugacy vanishes.

Theorem 4.13. As n→∞, the KL divergence DnKL(ξn+1 ‖ pn+1) converges to zero

in P̄-probability.

Proof. Proof: The constant C omitted in Proposition (4.1) can be given explicitly

as

C =
1

2
log

qn

qn + 1
− 1

2
logBn

xx + log

(
Γ

(
bn −K + 2

2

))
− log

(
Γ

(
bn −K + 1

2

))
− bn −K + 2

2
log

(
1 +

qn

(qn + 1)Bn
xx

(ŷn+1
x − θx)2

)
,
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whence the KL divergence DnKL(ξn+1 ‖ pn+1) can be expressed as

DnKL(ξn+1 ‖ pn+1) =
bn

2
log

det(Bn+1)

det(Bn)
+
bn+1

2
tr
(
Bn(Bn+1)−1

)
− bn+1

2
K (4.38)

+
qnbn+1

2
(θn+1 − θn)′(Bn+1)−1(θn+1 − θn) +

1

2
(ŷn+1
x − θn+1

x )2 b
n+1 −K + 1

Bn+1
xx

(4.39)

− bn −K + 2

2
log

(
1 +

qn

(qn + 1)Bn
xx

(ŷn+1
x − θnx)2

)
(4.40)

+
bn+1 − bn

2

K∑
i=1

ψ

(
bn+1 − i+ 1

2

)
+

K∑
i=1

log Γ

(
bn − i+ 1

2

)
−

K∑
i=1

log Γ

(
bn+1 − i+ 1

2

)
(4.41)

− 1

2
ψ

(
bn+1 −K + 1

2

)
+ log Γ

(
bn −K + 2

2

)
− log Γ

(
bn −K + 1

2

)
(4.42)

+
1

2
K log

(
qn+1

qn

)
+

1

2
K

qn

qn+1
− 1

2
K +

1

2qn+1
+

1

2
log

qn

qn + 1

(4.43)

+
1

2
logBn+1

xx −
1

2
logBn

xx. (4.44)

Following Propositions 4.10 and 4.11, the terms in (4.38) and (4.39) can be simplified

as

bnK

2
log

bn+1

bn
+
bn

2
log

(
1 +

bn

bn+1
Mn

xB
n
xx

)
+
bnK + 1

2
− bn+1K

2
.

As bn →∞, it is easy to show that

lim
n→∞

bnK

2
log

bn+1

bn
+
bnK

2
− bn+1K

2
= 0.

Also, we can show that

lim
n→∞

bn

2
log

(
1 +

bn

bn+1
Mn

xB
n
xx

)
−b

n −K + 2

2
log

(
1 +

qn

(qn + 1)Bn
xx

(ŷn+1
x − θnx)2

)
= −1

2
.
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This suggests that the sum of (4.38), (4.39) and (4.40) approaches zero as n→∞.

Using Lemma 4.12, we can show that both (4.41) and (4.42) go to zero as n→∞.

It is easy to check that (4.43) approaches zero as n → ∞. It follows from (4.20)

that

Bn+1
xx =

bn+1

bn + 1
Bn
xx +

1

bn + 1

qnbn+1(ŷn+1
x − θnx)2

1 + qnbn+1

bn+1−K+1

.

Therefore,

log
Bn+1
xx

Bn
xx

= log

(
bn+1

bn + 1
+

1

bn + 1

qnbn+1

1 + qnbn+1

bn+1−K+1

(ŷn+1
x − θnx)2

Bn
xx

)
,

which is easily shown to converge to zero. This completes the proof.

4.3 The Value Of Information

Value of information procedures allocate the simulation budget by evaluating

the potential of new observations to improve the current estimate of the best value

(see [31] for a survey). The information potential is defined in terms of the expected

difference in the estimated objective value before and after the next observation

occurs. We do not know exactly how an observation of alternative x will change

our beliefs about the best alternative, but we can compute an expectation over the

predictive distribution in (4.30). In this way, we can “look ahead” to the random

outcome of the next observation, attempting to anticipate the results before we see

them. If we sample from alternative x at time n and collect observation ŷn+1
x , the

value of information is defined as

Vx(Sn) = En
[
max
i
θn+1
i | xn = x

]
−max

i
θni ,
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where En is the conditional expectation taken with respect to the decision-maker’s

distribution of belief at time n, and xn denotes the alternative measured at time n.

Note that the predictive distribution of θn+1 depends on qn, bn and Bn only

through the vector s̃n from (4.30). As a result, the expected value of information

can be rewritten as

V(θn, s̃(Sn, x),m) = En
[
max
i
θni + s̃(Sn, xn)Tm | xn = x

]
−max

i
θni , (4.45)

where V is defined by V(a,b,m) = E[max
i
ai + biTm] −max

i
ai, a and b are K × 1

vectors. The random variable Tm follows a univariate Student’s t-distribution with

degrees of freedom m, mean 0 and variance 1.

Once again, (4.45) assumes that the decision-maker’s beliefs are represented

by a normal-Wishart distribution at each time step. In practice, the normal-Wishart

distribution is an approximation of the true posterior beliefs, updated using (4.17)-

(4.20). By using this approximation to represent our uncertainty, we can solve (4.45)

in closed form, leading to a computationally efficient procedure.

We introduce a fully sequential policy called Projected Learning of Unknown

Correlations with Knowledge Gradients (PLUCK). The PLUCK policy chooses an

alternative by computing

xPLUCK(Sn) = arg max
x

V(θn, s̃(Sn, x),m). (4.46)

We now show how the value of information can be computed exactly under P̄.
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4.3.1 Computation of the Value of Information

To compute the expected value of information, we start by defining a function

h : R 7→ {1, 2, . . . , K} as

h(t) := max(argmax
i

ai + bit).

The function h tells us which alternative is the best among {1, 2, · · · , K} in the

sense of having largest value of ai + bit given Tm = t. The largest index is chosen if

multiple alternatives tie. Instead of calculating V(a,b,m) directly, we notice that

max
i
ai + biTm = ah(Tm) + bh(Tm)Tm,

and rewrite ah(Tm) + bh(Tm)Tm as a telescoping sum,

ah(0)+bh(0)Tm+

h(Tm)−1∑
i=h(0)

(ai+1 − ai) + (bi+1 − bi)Tm

+

 h(0)−1∑
i=h(Tm)

(ai − ai+1) + (bi − bi+1)Tm

 .
Using standard techniques (see Section 5.3 of [5]), we can find a non-decreasing

sequence {ci}Ki=0 such that h(z) = i if and only if z ∈ [ci−1, ci). It follows that

V(a,b,m) can be written as

V(a,b,m) =
K−1∑
i=1

(bi+1 − bi)E[(Tm − |ci|)+].

To continue the computational procedure, we need an analytical form for the tail

expectation of a univariate Student’s t-distribution. Denote the pdf and cdf of a

standard Student’s t-distribution with m degrees of freedom as gm(·) and Gm(·),

respectively. We can easily rewrite E [(Tm − |ci|)+] as

E
[
(Tm − |ci|)+

]
= E(Tm · 1{Tm>|ci|})− |ci|(1−Gm(|ci|)).
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It also can be shown [30] that

E(Tm · 1{Tm>|ci|}) =
m+ c2

i

m− 1
gm(|ci|).

With the analytical form for the tail expectation, the value of information can be

expressed as:

V(a,b,m) =
K−1∑
i=1

(bi+1 − bi)
(
m+ c2

i

m− 1
gm(|ci|)− |ci|(1−Gm(|ci|))

)
. (4.47)

We note that (4.46) has the same computational complexity as the analo-

gous VIP for R&S with known correlation structures [5, 77]. The breakpoints ci

can be computed in O(K logK) time. Repeating this for every alternative yields

O(K2 logK). Just as in the learning model of Section 4.2.1, we can account for

unknown correlations for the same computational cost.

4.3.2 Monotonicity of the Value of Information

The value of information calculated in (4.47) depends on the degrees of free-

dom m of the Student’s t-distribution. Lemma 4.7 shows that in the nth stage,

the predictive distribution of the new observation ŷx follows a univariate Student’s

t-distribution with degrees of freedom m = bn−K+1. The parameter bn is updated

through (4.18) and increases as the PLUCK policy collects information. The rela-

tionship between the value of information and the degrees of freedom is summarized

in the next theorem.

Theorem 4.14. For fixed K×1 vectors a and b, the value of information V(a,b,m)

is a decreasing function in the degrees of freedom parameter m.
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Proof. Proof: Let V(a,b,m) and V(a,b, n) be the values of information for two

different values of the degrees of freedom parameter, with m ≥ n. Since a and b

are fixed, it is sufficient to consider E(Tm − |ci|)+ and E(Tn − |ci|)+.

Let gm(t) and gn(t) be the probability density function of Student’s t distribu-

tions with m and n degrees of freedom, respectively. There exists c∗ > 0 such that

gm(c∗) = gn(c∗) with gm(t) ≤ gn(t) on [c∗,∞) and gm(t) > gn(t) on [0, c∗). We will

consider two cases:

(i) If |ci| ≥ c∗, then gm(t) ≤ gn(t) for t ∈ [|ci|,∞).

E(Tm − |ci|)+ =

∞∫
|ci|

(t− |ci|)φm(t)dt ≤
∞∫
|ci|

(t− |ci|)φn(t)dt = E(Tn − |ci|)+.

(ii) If |ci| < c∗, then gm(t) > gn(t) for t ∈ [0, |ci|).

E(Tm − |ci|)+ − E(Tn − |ci|)+

=

c∗∫
|ci|

(t− |ci|)gm(t)dt+

∞∫
c∗

(t− |ci|)gm(t)dt−
c∗∫
|ci|

(t− |ci|)gn(t)dt−
∞∫
c∗

(t− |ci|)gn(t)dt

=

c∗∫
|ci|

(t− |ci|)gm(t)dt−
c∗∫
|ci|

(t− |ci|)gn(t)dt+

∞∫
c∗

(t− |ci|)gm(t)dt−
∞∫
c∗

(t− |ci|)gn(t)dt

=

c∗∫
|ci|

(t− |ci|)gm(t)dt−
c∗∫
|ci|

(t− |ci|)gn(t)dt+

c∗∫
0

(t− |ci|)gm(t)dt−
c∗∫

0

(t− |ci|)gn(t)dt

=

|ci|∫
0

(t− |ci|)gn(t)dt−
|ci|∫
0

(t− |ci|)gm(t)dt < 0

It follows from (i) and (ii) that for any |ci| > 0,

V(a,b,m) =
K−1∑
i=1

(bi+1− bi)E(Tm− |ci|)+ ≤
K−1∑
i=1

(bi+1− bi)E(Tn− |ci|)+ = V(a,b, n).

Therefore the value of information decreases in the number of degrees of freedom.
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The theorem suggests that the value of information decreases as the degrees

of freedom increase, with all else being equal. In other words, the same information,

under the same estimated means and covariances, is less valuable when we have

already accumulated many other observations.

Theorem 4.14 leads to an interesting comparison with earlier work on R&S

with known correlations. It is a well-known result that Tm converges weakly to

a standard normal random variable as the degrees of freedom m goes to infinity.

Recall that, when the correlation structure is known, we calculate a version of (4.45)

using a standard normal random variable; see (5.16) in [5]. Theorem 4.14 suggests

that, given the same estimated means and conditional covariances, the value of

information is inherently higher when the correlations are unknown. That is, a

single measurement provides more information when we are learning both means

and covariances.

4.4 Numerical Experiments

We present experimental results demonstrating the value added by learning

unknown correlations using PLUCK. Throughout this section, we considered six

policies: the PLUCK policy, the correlated KG (CKG) policy in [77], a sequential

modified version of proportional to variance (PTV) policy, a sequential OCBA policy

designed for opportunity cost in [91], a Greedy policy and the LL policy with linear

loss in [79]. We briefly explain the distinctions between the remaining policies below.

Both PLUCK and CKG are designed to sample sequentially, with CKG assum-
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ing a known covariance structure and using a conjugate Bayesian learning model.

This comparison allows us to see the value added by incorporating unknown corre-

lations into our decision-making. The PTV and greedy policy are also sequential,

and make simulation decisions at time n in the following ways: PTV policy chooses

the alternative with the highest variance; the greedy policy chooses the alternative

arg maxx θ
n
x . For both of these methods, we use our approximate Bayesian learning

model in (4.17)-(4.20) to update our beliefs about the alternatives. This compari-

son allows us to see the value added by using the PLUCK policy to make decisions,

in addition to the value of learning unknown correlations. Lastly, the LL policy

of [79] first screens out a subset of alternatives, then allocates the simulation budget

equally among the rest. This structure allows a conjugate normal-Wishart prior to

be used, with the drawback that the policy often samples alternatives that do not

provide a lot of useful information. The LL policy can also be extended to allow

multiple screening stages; however, this approach works best with large sampling

budgets. In our experiments, we consider problems where the simulation budget is

comparable to the number of alternatives, making it difficult to run LL for more

than two stages.

4.4.1 Wind Farm Placement Example

Our study is based on the wind farm placement problem mentioned in the

introduction. For the purpose of these experiments, we use the wind speed at a

location as a stand-in for power output. In practice, wind speed data are collected
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at each location simultaneously, rather than sequentially. However, this also allows

us to use the data to demonstrate the effectiveness of our policy by comparing its

performance to how well we could have done. Practical applications of sequential

simulation in wind farm placement use complex physics-based models incorporating

factors other than wind speed, thus necessitating the use of sequential simulation.

For our purposes, the public availability of wind-speed data allows us to create a

realistic test setting for the PLUCK algorithm.

We used hourly wind speed data [92] across the United States with latitude

and longitude resolution of 0.125 degrees. The data consist of two components: the

zonal component u (in the west-east direction) and the meridional component v (in

the north-south direction). Assuming for the purpose of this example that all the

wind turbines can be placed in the right direction, we focus on the magnitude of

the wind speed, which is defined as
√
u2 + v2. The objective is to select the location

with the highest wind speed over a set of 64 locations.

We considered data from four regions across the United States: Kansas, Wash-

ington, Iowa and Oklahoma. All regions have had a high percentage of wind power

generation, or a large amount of wind capacity installed, in recent years. For each of

the four regions, we selected 64 different locations sitting on an 8×8 grid (the areas

of these grids range from 3500 to 4500 square miles) within the region as alternatives

for wind farm placement.

We used 1800 days of data to estimate the mean and covariance matrix of

a multivariate normal distribution. These fitted parameters were taken to repre-

sent the “true” underlying sampling distribution. In our experiments, individual
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Policies

Experiment Performance Measure PLUCK CKG Greedy OCBA PTV LL

Kansas
Opportunity Cost 0.0314 0.1270 0.3073 0.2760 0.0537 0.2848

Standard Errors 0.0026 0.0068 0.0045 0.0040 0.0036 0.0047

Washington
Opportunity Cost 0.0640 0.0917 0.2651 0.2021 0.1125 0.1647

Standard Errors 0.0051 0.0050 0.0018 0.0053 0.0060 0.0058

Iowa
Opportunity Cost 0.0512 0.0892 0.1917 0.1526 0.1229 0.1335

Standard Errors 0.0037 0.0040 0.0046 0.0036 0.0034 0.0040

Oklahoma
Opportunity Cost 0.0509 0.0911 0.2413 0.1401 0.1816 0.2031

Standard Errors 0.0040 0.0050 0.0013 0.0017 0.0039 0.0042

Table 4.1: Final opportunity cost and standard errors for the experiments

observations were generated by simulating from normal distributions with the true

parameter values. However, the policies were not allowed to see these true values

when making decisions.

It is critical to collect information efficiently when the decision-maker’s prior

beliefs are inaccurate or misleading. To show that the PLUCK policy is particularly

effective in such a situation, we used a small number of data points to create a prior

for which the location that appeared to be the best was quite different from the true

best location. We discuss this issue further below; for now, we note that each policy

was given a budget of N = 200 measurements to correct this initial error. Table 4.1

gives the final opportunity cost, which is defined as

Cπ = max
x

µx − µ(arg maxx θ
N
x )

after N measurements for each policy π, averaged over 500 sample paths. Lower

opportunity cost suggests that a policy selects an alternative closer to the best. The
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(a) 64 locations from Kansas
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(b) 64 locations from Washington
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(c) 64 locations from Iowa
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(d) 64 locations from Oklahoma

Figure 4.1: Averaged opportunity cost as the number of samples increases, where

the dashed lines are the mean plus or minus two standard errors

PLUCK policy outperforms all other competing policies by a statistically significant

amount based on Table 4.1, while the CKG policy has smaller final opportunity cost

than the other policies in three experiments. The PTV policy performs better than

the sequential OCBA policy and the greedy policy. The LL policy performs poorly

in all four experiments, possibly because the simulation budget is quite small relative

to the number of alternatives.

Figure 4.1 shows how this performance measure changes as the number of sam-
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(a) Expected Improvement
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(b) Maximum Error

Figure 4.2: Value of information and maximum error as the number of samples

increases

ples N varies from 1 to 100. The bands indicate the mean performance measures

plus or minus two standard errors. The LL policy is omitted from these figures

because it allocates simulations in batch rather than sequentially, by dividing them

uniformly across any alternatives that were not screened out. The opportunity cost

for PLUCK tends to decrease over time. For CKG, sometimes there is a degra-

dation in performance at the beginning. We conjecture that this behavior arises

because CKG assumes a known covariance structure. If the prior beliefs about the

correlations are inaccurate, this misdirects the way in which CKG incorporates new

information into the posterior. A small amount of information can thus make CKG

produce even worse performance than what could be obtained with just the prior.

The sequential OCBA policy and the greedy policy tend to work poorly on all cases,

and performance of the PTV policy differs dramatically among cases.

We also considered a different set of experiments in which results were averaged
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across multiple priors constructed from a small sample of wind speed data. Overall,

we found that PLUCK still outperformed the competition, with the caveat that all

policies were more heavily affected by the initial degradation in performance (the

early iterations needed to get a handle on the true correlation structure).

We make two interesting observations from the experimental results. Fig-

ure 4.2(a) shows the logarithm of the value of information as computed by both

PLUCK and CKG (for a particular experiment), while Figure 4.2(b) shows the max-

imum absolute difference between the posterior and true means for various policies.

Figure 4.2(a) shows that the value of information is much higher when we consider

unknown correlations, as suggested by Theorem 4.14. Figure 4.2(b) shows that the
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Figure 4.3: Contour map of different policies after 200 measurements
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Policies

Experiment Performance Measure PLUCK CKG Greedy OCBA PTV LL

Queue (correlated)
Opportunity Cost 0.3181 0.4677 0.6979 1.0521 0.4862 2.1105

Standard Errors 0.0380 0.0423 0.0631 0.0645 0.0451 0.034

Network
Opportunity Cost 0.1938 0.2902 0.3339 0.3439 0.3420 0.2374

Standard Errors 0.0024 0.0063 0.0047 0.0055 0.0066 0.0045

Table 4.2: Final opportunity cost and standard errors for the queue selection and

network selection problems

PLUCK policy does a better overall job of estimating the true values.

Figure 4.3 gives contour maps of the true means, prior means and posterior

means after 100 measurements with four different policies. The sequential OCBA

policy and the greedy policy are omitted due to its poor performance. The num-

ber of times that each alternative is measured is also shown on the contour maps

(zeros are omitted). Red colors indicate higher values. We can see that the true

best alternative is in the upper-left corner, whereas the prior misdirects us toward

bottom-left. After 200 measurements, the PLUCK policy captures the general trend

of the true values, whereas CKG and PTV are still stuck on beliefs that resemble

the prior. Observe that both PLUCK and CKG measure the true best alternative

in the upper-left corner almost equally often. However, the statistical model used

by PLUCK provides more accurate posterior beliefs, leading to a better implemen-

tation decision. The LL policy performs poorly and the identified best is far away

from the true best. Also, its batch structure allocates many samples to alternatives

that do not provide a lot of useful information.
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4.4.2 A Single-Server Queue Selection Problem

In simulation, correlations may arise due to common random numbers. How-

ever, it is important to keep in mind that correlated beliefs reflect inherent similar-

ities or differences between alternatives, even when the actual simulation output is

completely independent. The following example demonstrates that correlated beliefs

can enhance performance even when no correlations are present in the simulation

output.

Consider 20 first-come, first-served M/G/1 queues. The interarrival times

follow an exponential distribution with λ = 0.05 and the service times follow Pareto

distributions with mean service rates 2
3
(0.1 + 0.05(i − 1)), i = 1, 2, ..., 20. Suppose

that the administrator of these queues wishes to reduce costs by closing the worst

server, i.e., the one with the largest expected waiting time. System 1 is the worst,

having the smallest service rate. However, this is unknown to the administrator.

Observe that, due to the structure of the problem, the performance of queues

i and j will exhibit greater similarity if |i − j| is smaller. Thus, even though these

queues function independently, our beliefs about their performance can be corre-

lated. Of course, we do not know the problem structure, but we can use an empirical

covariance matrix computed from a small sample of observations to initialize our

prior distribution, and use PLUCK to improve on this prior. Table 4.2 gives the

final opportunity cost. Figure 4.4(a) shows the performance of PLUCK over time

when the prior matrix parameter B0 is diagonal, while 4.4(b) shows performance

with B0 computed using small-sample empirical covariances. We see that, although
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(b) With correlated belief

Figure 4.4: Comparing averaged opportunity cost in M/G/1 queue selection problem

the queues function independently, PLUCK can leverage correlated beliefs to learn

much more quickly than the other policies.

As before, a small sample of 10 replications was used to create a prior for

the covariance matrix.We then compared PLUCK, CKG, PTV, LL, the sequen-

tial OCBA policy and the greedy policy by running 1000 macroreplications. The

Pollaczek-Khinchin formula can be applied to compute the true expected waiting

time. Figure 4.4(b) shows that PLUCK outperforms the competing policies, espe-

cially in early stages. The PTV policy and CKG policy are indistinguishable most

of the time. The greedy policy and the sequential OCBA policy work poorly in

this experiment. The performance of the CKG policy and PTV policy are behind

the PLUCK policy initially, but they eventually catch up and lag behind PLUCK

slightly. In summary, this experiment suggests that we are learning the similarities-

between alternatives, enabling us to discover the optimal solution more quickly even

when the actual simulation outputs are independent.
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4.4.3 3-Station Jackson Network

Consider a classical 3-station open Jackson network shown in Figure 4.5(a),

where the interarrival times and service times follow exponential distributions. Let

λ be the total external arrival rate to the system, and let µj represent the service

rate at station j. Upon completing service at station i, a job leaves the network

with probability pi0 or is routed to station j with probability pij.

The goal of the administrator is to minimize the average time spent by cus-

tomers in the system subject to a constraint on the overall service rate. Suppose

that all the available agents can achieve an overall service rate of 3 for stations 2 and

3. Consider 10 different assignments where the service rate at station 2 is 1 + 0.1i,

i = 1, 2, · · · , 10. The performance of different assignments will exhibit correlation

due to similarities in the service rates. We chose λ = 0.5 and the routing probability

matrix P = [pij] as

P =



pi1 pi2 pi3 pi0

0 0.7 0.3 0

0.3 0 0 0.7

0.2 0 0 0.8


Again, a small sample of 10 replications was used to created priors for the

mean and covariance matrix. We compared PLUCK, CKG, PTV, LL, the sequential

OCBA policy and the greedy policy, where each policy is given a sampling budget

of 50. The true expected times in the system for different assignments are computed

analytically. The final opportunity costs averaged over 500 sample paths are shown
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in Figure 4.5(b), and Table 4.2 gives the final opportunity cost. The PLUCK policy

again outperforms all the other policies.

(a) A three-station Jackson network
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Figure 4.5: Numerical experiment on a three-station Jackson network

4.5 Conclusion

We have presented the first computationally tractable statistical learning model

for fully sequential ranking and selection with unknown correlation structures. The

model uses approximate Bayesian inference to represent and update our beliefs about

unknown performance means and unknown covariances using the normal-Wishart

distribution. We have also derived a value of information procedure that antici-

pates new information about both the true values and the true correlations when

allocating simulations. Previous work in this area has required known correlation

structures, an assumption that is likely to be violated in many applications. We re-

lax this assumption, but retain the ability to learn about multiple alternatives from

a single observation, for the same computational cost as the known-covariance case.
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We believe that our work offers a useful way to tackle large learning problems with

difficult correlation structures, and opens up new applications for Bayesian optimal

learning.
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Chapter 5: Bayesian Learning on Logistic Demand Curves

5.1 Introduction

The problem of business-to-business (B2B) pricing arises in high-volume com-

mercial transactions between businesses. For example, consider the problem faced

by a supplier of raw materials negotiating a long-term contract with a large manu-

facturing concern. After a period of negotiation, the seller quotes a price, which can

be accepted or rejected. If the pricing offer is rejected, the seller loses a substantial

amount of revenue, but it may not be clear exactly how much lower the offer should

have been. If the offer is accepted, the seller makes a profit, but is left wondering

whether a somewhat higher offer would still have been accepted. The seller’s goal is

to maximize total revenue from a sequence of contracts, in the face of uncertainty

about buyer behavior.

Dynamic pricing in general is subject to uncertainty. Classic models in revenue

management often assume stochastic demand for a product [93, 94], or uncertain

customer valuations of it [95]. Recent work, however, has considered the additional

dimension that the uncertainty may be environmental, that is, the seller does not

even know the distribution from which customer valuations are drawn. In practice,

this distribution must be estimated, and the estimate must be adjusted over time

151



as new transactions are observed. This gives rise to the problem of “learning and

earning,” in which the seller does not always prefer the decision that appears to be

optimal based on the current demand model (referred to as the “myopic” decision),

but rather may engage in more exploratory or experimental behavior. For example,

an online retailer may increase or decrease some prices for a period of time, simply

to observe the effect on sales. Although this behavior may result in lost revenue, it

provides new information that produces a more accurate demand model, enabling

better pricing decisions in the future.

The literature has used Bayesian statistics to model environmental uncer-

tainty [33, 34], and different pricing strategies have been proposed to optimize the

balance between revenue and information. For example, [35] proposes a one-step

look-ahead strategy for problems with logistic revenue curves, while [36] presents an

approach based on multi-armed bandit theory. A recent stream of work, represented

by [37], [38], [39], and [40], has focused on establishing long-run convergence rates

for policies that are mostly myopic, with occasional periods of exploration spaced in-

creasingly further apart. However, in the specific context of B2B pricing, individual

transactions typically have high volume (for example, the seller may be negotiating

the price of a year’s supply of raw materials) and incur high costs (e.g. the time and

money spent during negotiations), making it important to obtain good performance

quickly.

We consider an application where information arrives in the form of binary

win/loss observations, representing customers’ yes/no responses to the seller’s pric-

ing offers (or “bids”). A common demand model in this setting (used e.g. by [35])
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assumes that these binary outcomes follow a logistic distribution, which also allows

us to relate the win probability to a set of regression features representing additional

information about the product or customer type. Although this is a fairly natural

choice of demand model (essentially just an instance of logistic regression), it is

quite challenging to connect to the Bayesian way of representing new information

and using it to update the seller’s beliefs. While, for linear regression, the multi-

variate normal distribution offers an intuitive and easy-to-use conjugate prior [96],

no such model is available for logistic regression, making it difficult to represent a

belief over a continuous space of logistic curves.

We approach this problem with approximate Bayesian inference, using the

technique of density projection to create a multivariate normal posterior distribution

that is “approximately conjugate,” in the sense of minimizing the Kullback-Leibler

divergence from the actual posterior. See e.g. [97] for an application of this technique

to the problem of learning unknown correlation structures in ranking and selection.

In the context of logistic regression, our approach is similar to the variational ap-

proximation by [98], but involves an additional optimization step using infinitesimal

perturbation analysis (see e.g. [11] or [13]) to further improve the quality of the

approximation. Using this statistical technique to efficiently update a multivariate

normal prior on the parameters of the logistic demand curve, we then apply a policy

that optimizes a myopic estimate of the expected revenue curve (see e.g. Ch. 11

of [5]). Our numerical experiments provide evidence in favor of both the approxi-

mate Bayesian learning model and the Bayes-greedy pricing policy. Although our

Bayesian model has numerous applications outside pricing, in this particular context
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it enables the seller to compactly model a set of beliefs about win probabilities for a

wide range of customer and product segments, and then quickly update this belief

in real time.

5.2 Problem Formulation and Learning Model

Section 5.2.1 introduces the demand and revenue curves optimized by a seller

in the B2B pricing problem. In Section 5.2.2, we discuss the challenge of developing

a Bayesian model for learning the parameters of the demand curve. Then, Sections

5.2.3 and 5.2.4 outline our proposed approach for overcoming this challenge.

5.2.1 Problem Formulation

Consider a seller who must quote prices for a sequence of corporate clients.

The (n+ 1)st client will accept a price offer pn ≥ 0 with probability ρ, which may

also depend on additional properties of the client or product. The function ρ is called

the demand curve, and is not known exactly to the seller. However, the seller does

observe the client’s response, modeled as a binary variable Y n+1, where Y n+1 = 1

with probability ρ, representing a sale (or “win”), and Y n+1 = 0 represents a “loss.”

The seller’s expected revenue from the client is

R(pn) = pnρ, pn ≥ 0, (5.1)

where the demand curve ρ usually depends on the price pn. In most applications,

we need to consider the marginal cost c for the product, and work with the expected
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profit

Π(pn) = (pn − c)ρ, pn ≥ c. (5.2)

We assume that Y n follows a logistic distribution, allowing us to write the demand

curve as

ρ(xn) = P(Y n+1 = 1) =
1

1 + e−µᵀxn
, (5.3)

where xn is a vector of features, observed by the seller, providing relevant informa-

tion for the (n+ 1)st pricing decision. In the simplest possible model, the customers

are assumed to be homogeneous, xn = [1, pn]ᵀ, and the parameter vector µ consists

only of an intercept and a slope term. We use this simple model in our examples

throughout this chapter. However, our analysis is readily applicable to the general

case, where xn may also contain information about the product (type or volume)

and the client (region, industry, history with the seller).

In all of these cases, the parameter vector µ is unknown to the seller and must

be inferred using a combination of prior knowledge and incoming win/loss results.

The shape of the demand curve is extremely sensitive to the parameter values,

making it important to obtain accurate estimates of the parameters as quickly as

possible. We now propose a Bayesian framework for learning the demand curve.

5.2.2 Bayesian Model For Dynamic Pricing

We adopt the Bayesian view, and represent our uncertainty about the vector

µ using a multivariate normal prior distribution, that is,

µ ∼ N (θ,Σ). (5.4)
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The multivariate normal distribution offers a compact and powerful way to model

correlations between our beliefs about different components of µ. Because the ob-

servation Y n+1 provides information about an entire vector xn, our beliefs about

different components of this vector should become correlated due to their depen-

dence on the same observations. A second convenience of the multivariate normal

distribution (important for computational purposes) is that the linear combination

µᵀxn follows a univariate normal distribution.

In linear regression, where a continuous response variable is related to a linear

combination of features, the multivariate normal prior possesses the property of

conjugacy. That is, if the residual errors are i.i.d. normal, the posterior distribution

of the regression parameters, conditional on a sequence of observations, will remain

normal [96]. This model makes the learning process highly efficient computationally,

as one only needs to recursively update the mean vector and covariance matrix of

the belief distribution after each observation. Unfortunately, in logistic regression,

there is no known prior distribution that is conjugate with logistic observations. To

see this, we first assume that µ ∼ N (θn,Σn), and write the likelihood function of

Y n+1 as

P (Y n+1) = g(Hn+1(µ)), (5.5)

where g(z) = (1 + e−z)−1 and Hn+1(µ) = (2Y n+1− 1)(µᵀxn). Equation (5.5) allows

us to represent the win/loss probability in a concise form. Applying Bayes’ rule, the

posterior distribution, given the bidding price pn and the observation Y n+1, can be
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written as

p(µ|pn, Y n+1) ∝ g(Hn+1(µ))|Σn|−1/2 exp

{
−1

2
(µ− θn)ᵀ(Σn)−1(µ− θn)

}
, (5.6)

which is clearly non-normal.

We would like to retain the multivariate normal prior due to its power in

modeling correlated beliefs. However, we are now required to use the techniques of

approximate Bayesian inference to develop a multivariate normal posterior that is

“approximately conjugate.” Several such approaches have been proposed, includ-

ing approximation methods based on Laplace approximation [99] and variational

bounds [98]. We take a variational Bayesian approach to approximate the poste-

rior distribution by minimizing the Kullback-Leibler divergence between the true

posterior distribution and a multivariate normal distribution.

5.2.3 Variational Bayesian Approximation

Suppose that, after observing n responses, our beliefs about µ are multivari-

ate normal with parameters (θn,Σn). Let P (µ|pn, Y n,θn,Σn) be the likelihood

function of this distribution. The variational Bayesian approach approximates the

posterior distribution of µ, given Y n+1, with a normal distribution Q(µ|θn+1,Σn+1)

by minimizing the Kullback-Leibler (KL) divergence. The KL divergence between

P (µ|pn, Y n+1,θn,Σn) and Q(µ|θn+1,Σn+1) is defined as

D(Q q P ) := EQ
(

log
Q(µ|θn+1,Σn+1)

P (µ|pn, Y n+1,θn,Σn)

)
, (5.7)

where the expectation is taken with respect to Q. This definition can be partially

simplified, as stated in the following result.
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Proposition 5.1. The KL divergence can be written as

D(Q q P ) = EQ
[
log
(

1 + e−H
n+1(µ)

)]
+ h(θn,Σn,θn+1,Σn+1), (5.8)

with the second component specified as

h(θn,Σn,θn+1,Σn+1) =
1

2

[
tr
(
(Σn)−1Σn+1

)
+ (θn − θn+1)ᵀ(Σn)−1(θn − θn+1)− k − ln

|Σn+1|
|Σn|

+ C

]
,

where C is a constant that does not depend on θn+1 and Σn+1.

To minimize the KL divergence, the first step is to take the gradient of D(Q q

P ) with respect to its parameter θn+1 and Σn+1. Unfortunately, a closed-form

expression for the gradient is not available, because the expectation in equation (5.8)

is intractable. However, if our goal is to minimize an expected value, a connection

to gradient-based stochastic search [100] comes naturally to mind. The work by

[101] uses such an approach, where a likelihood ratio estimate [102] of the gradient

is constructed. However, this approach leads to a noisy simulation optimization

problem, whose dimensionality is quadratic in the number of features, presenting

substantial computational difficulties.

Instead of optimizing with respect to (θn+1,Σn+1), we utilize a dimension

reduction technique and propose the following form for θn+1 and Σn+1:

θn+1 = Σn+1

(
(Σn)−1 θn +

(
Y n+1 − 1

2

)
xn
)

(5.9)

Σn+1 =
(
(Σn)−1 + λxn (xn)ᵀ

)−1
(5.10)
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Applying the Sherman-Morrison formula to (5.9) and (5.10), we obtain

θn+1 = θn +
Y n+1−1/2

λ
− (xn)ᵀθn

1
λ

+ (xn)ᵀΣnxn
Σnxn, (5.11)

Σn+1 = Σn − Σnxn(xn)ᵀΣn

1
λ

+ (xn)ᵀΣnxn
. (5.12)

In this form, there is only one parameter λ to be determined. We minimize the

KL divergence with respect to λ to find the optimal multivariate normal posterior

distribution from the parametrized family in (5.11)-(5.12). Aside from the compu-

tational convenience of reducing the size of the problem, we choose precisely this

form because it resembles the Kalman-filter-like equations used for Bayesian linear

regression; the parameter λ is analogous to the precision of the residuals, while

Y n+1−1/2
λ

stands in for the continuous observation. In this way, our learning model

for logistic regression makes an intuitive connection to the well-understood linear

setting. Moreover, previous work on logistic regression, including [98] and [99], has

derived updating rules with very similar form, based on different approximation

techniques for the posterior likelihood function.

For additional convenience, we apply the transformation v = 1
λ

and find

v∗ = argmin
v
D(Q q P ). (5.13)

The parameter v is analogous to the variance of the residuals in a linear regression

model. Since no such explicit parameter is given in logistic regression, we simply

find the value that produces the most accurate approximation.
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5.2.4 Minimizing the Kullback-Leibler Divergence

We now propose a stochastic approximation method to solve the minimization

problem in (5.13), which requires estimations of the gradient of D(Q q P ) with

respect to the single parameter v. This results in

∇vD(Q q P ) = ∇vEQ
[
log
(

1 + e−H
n+1(µ)

)]
+∇vh(θn,Σn,θn+1,Σn+1). (5.14)

Since we do not have a close-form expression for ∇vEQ
[
log
(

1 + e−H
n+1(µ)

)]
, we

propose to use infinitesimal perturbation analysis (IPA) to obtain noisy samples

of the gradient (see e.g. [100] or [13] for an introduction). First, we transform

the expectation in (5.14) into an integration with respect to a standard univariate

normal distribution, E[f̄(Z)], where Z ∼ N (0, 1) and

f̄ (z) = log
(

1 + exp
{
−(2Y n+1 − 1)

[(
xn(pn(µ))ᵀΣn+1xn(pn)

)1/2
z + (θn+1)ᵀxn(pn)

]})
.

The next result shows that the conditions for IPA [103] hold.

Proposition 5.2. ∇vE
[
f̄ (Z)

]
= E

[
∇vf̄ (Z)

]
.

The IPA estimator itself is given as

E
[
∇vf̄(Z)

]
≈ 1

N

N∑
i=1

∇vf̄(Z(i)),

where Z(i) are independent samples from a standard normal distribution. We denote

the gradient estimator by ∇̂vEQ
[
log
(

1 + e−H
n+1(µ)

)]
and plug it into (5.14) for

∇vEQ
[
log
(

1 + e−H
n+1(µ)

)]
. This produces an estimator of ∇̂vD(Q q P ), and we

can apply the Robbins-Monro stochastic approximation algorithm

vn+1 = vn − an∇̂vD(Q q P ),
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for some suitably chosen stepsize an, to find the optimal v∗ and thus the optimal

λ∗. Then we can apply the updating rules in (5.11) and (5.12) to determine the

approximate posterior distribution after collecting each observation Y n.

5.3 Dynamic Pricing Policy

We have shown a way in which the seller’s beliefs can be updated after observ-

ing customer response to a price. It remains to address how that price can be chosen

in the first place. In this section, we expand upon the notion of a “Bayes-greedy”

pricing policy introduced in Ch. 11 of [5]. Greedy and semi-greedy policies have been

widely studied in the literature on dynamic pricing under environmental uncertainty

(see e.g. [39]), and our policy may also be viewed as part of that realm. However, in

the setting of Bayesian logistic regression, the concept of “greedy” admits important

nuances.

Ideally, the seller would like to choose the price that maximizes the true revenue

curve,

p∗ = arg max
p

p

1 + e−(µᵀx(p))
, (5.15)

where we emphasize that x depends on p since p is typically one component of the

vector of features. A simple “greedy” policy will simply replace µ in (5.15) by the

current posterior mean vector θn. This is typically the approach used in frequentist

models (e.g. in [40]) where an MLE estimator is used in place of θn.

In the Bayesian setting, however, this approach will under-perform, because it

does not use all of the available information. In particular, it does not account for
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the uncertainty in our beliefs, expressed by Σn. The covariance matrix is important

because it specifies a whole family of possible revenue curves, parametrized by µ ∼

N (θn,Σn). Thus, a Bayes-greedy policy will still myopically optimize the expected

single-period revenue, but the expectation will be over the entire space of revenue

curves. That is,

pn = argmax
p

E [R(p)] = argmax
p

E
[

p

1 + e−(µᵀxn(p))

]
, (5.16)

where the expectation is taken with respect to the (approximate) posterior joint

distribution of the parameters.

5.3.1 Computation of the Bayes-Greedy Policy

In order to use the Bayes-greedy policy, we require the ability to compute the

expectation in (5.16). The approximate Bayesian model suggests that the posterior

distribution is multivariate normal, which leads to another convenient dimension

reduction. If µ ∼ N (θn,Σn) after collecting n observations, then

µᵀx ∼ N ((θn)ᵀx,xᵀΣnx)

for arbitrary x. Therefore, let W = µᵀx, noticing that W is actually a function of

p, and rewrite (5.16) as

pn = argmax
p

E
[

p

1 + e−W

]
, (5.17)

where the expectation is now taken with respect to a univariate normal distribution

with appropriately chosen mean and variance.
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The expectation in (5.17) is known as the logistic-normal integral [104], which

plays an important role in statistics. However, this integral is impossible to compute

analytically. It may be computed using Monte Carlo simulation, in particular using

IPA (it can be shown that the relevant conditions hold). However, [105] offers a

tractable approximation

E
[

1

1 + e−W

]
≈ 1

1 + e−
E(W )
γ

,

where

γ =

√
1 +

π

8
Var(W ).

This leads to an approximate Bayes-greedy policy that can be written as

pn = argmax
p

p

1 + e−
(θn)ᵀxn(p)
γn(p)

, (5.18)

where

γn(p) =

√
1 +

π

8
xn (p)ᵀ Σnxn (p).

This approximation gives us a closed-form expression for the expected revenue func-

tion, so that making a pricing decision using (5.18) is computationally easier.

5.3.2 Analysis of the Bayes-Greedy Policy

It can be easily shown that the objective function optimized by the point-

estimate policy,

RPE(p) =
p

1 + e−(θn)ᵀxn(p)
,

is log-concave (but not concave). As a consequence, this function has a single

globally optimal price. We show that the Bayes-greedy objective function in (5.16)
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possesses the same property, whence it follows that the idea of a “Bayes-greedy

price” is well-defined.

Theorem 5.3. The Bayes-greedy objective function

RBG(p) = E[R(p)] = E
[

p

1 + e−(µᵀxn(p))

]

is quasi-concave in p when p > 0.

An important consequence of Theorem 5.3 is that, if we apply IPA to optimize

RBG, we are guaranteed to converge to the optimal price. In general, IPA is only

guaranteed to find a local optimum. However, in this case, we can apply stochastic

approximation to solve the problem directly instead of using the approximation in

(5.18). However, we are still interested in understanding the approximate problem,

since it is easier to solve. One can observe that (5.18) resembles the point-estimate

objective, but with an additional factor γn (p) incorporating our uncertainty about

the regression coefficients. The following proposition summarizes structural proper-

ties of this factor.

Proposition 5.4. The factor γn(p) ≥ 1 is convex in p.

The variance factor can be viewed as the risk we have to take when choose

a price. In most problem instances that we have observed, the factor γn(p) is not

only a convex function, but also an increasing function within the domain of bidding

prices. This suggests that the risk is higher when we take a higher price, but the

possible reward is also higher. Moreover, the probability of success decreases when

we choose a higher price. However, since the factor γn(p) is greater than 1, the
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Bayes-greedy policy tends to explore higher prices than the point-estimate policy,

leading to possible higher profit.

5.4 Numerical Experiments

In this section, we present numerical experiments using the approximate Bayesian

learning model with stochastic approximation proposed in Section 5.2 and the Bayes-

greedy policy proposed in Section 5.3. We compare this with several alternative

approaches, described as follows:

1. The standard frequentist logistic regression approach with the point-estimate

policy. In this approach, logistic regression is reapplied after collecting each

observation to estimate parameters in the demand function. Then, a pricing

decision is made using the point-estimate policy mentioned in Section 5.3.

2. The variational lower bound approach in [98], using the point-estimate policy

to make pricing decisions.

3. The variational lower bound approach in [98], with the proposed Bayes-greedy

policy. This is used to show the advantage of choosing the parameter λ opti-

mally using IPA.

Suppose that we are running a computer company, and one of our standard

desktop computer models has production cost c. When we set a price for selling, we

restrict the prices to be within the range [pl, pu], where the lower bound pl ≥ c. This

means that we never set a price that is lower than the cost, and it is very unlikely
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that we will make a sale if the selling price is above pu. Our objective is to maximize

the profit function as in (5.2). In our experiment, we choose c = 300, pl = 300 and

pu = 500. We consider a finite number of possible bidding prices from 300 to 500 in

increments of 10.

For the purposes of this example, we use a two-parameter model, that is,

µ = (µ1, µ2) and x (p) = [1, p]ᵀ. We begin with a prior mean θ0 = [500,−1]ᵀ. The

corresponding demand and profit curves, based on this prior, are shown as the solid

green lines in Figure 5.1. The figure also shows three different realizations of µ

in which the maximum possible profits are “low,” “medium,” and “high.” Minor

changes in the regression parameters can significantly alter the shape of the profit

curve. From Figure 5.1(a), we see that the prior is essentially telling us that any

customer is highly likely to purchase the computer for prices between $300 and $500.

Considering the upper and lower bounds we have chosen for our price, this type of

prior can be understood as uninformative (since our belief suggests that a customer

will buy the product for almost any price in the range).

The prior covariance matrix we choose for one specific setting is given by

Σ0 =

100 0

0 0.01

 .
Instead of interpreting this as our uncertainty about the parameters in the prior

belief, it may be more meaningful to consider Σ0 as the uncertainty about possible

prices that buyers will pay. Notice that the magnitudes of the two variances are

quite different, again due to the extreme sensitivity of the profit curve to small

changes in the regression parameters, particularly the price sensitivity µ2. If the
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variance of µ2 is too large, this essentially means that µ2 has a high probability

of being positive, which is quite unlikely to occur in practice. Furthermore, in a

practical application of the Bayes-greedy policy, we may have x (p) = [x̃, p]ᵀ, where

x̃ contains product and customer attributes unrelated to the price. For the purpose

of myopically optimizing the price, this model is equivalent to a two-parameter

model where multiple features are embedded into µ1, in which case the variance of

µ1 actually represents the variance of a sum of random variables, and should be

much larger than the variance of µ2.

We compare the performances, including pricing decisions, single-period profit

and cumulative profit, of the approach proposed in this chapter (referred to as “IPA-

Bayes”) and three alternative approaches. The results are reported for the first 20

iterations and averaged over 1000 sample paths, with the true value of µ fixed

according to the three scenarios shown in Figure 5.1. In all numerical experiments,

the Bayes-greedy policy refers to the approximate policy in equation (5.18). We

briefly discuss each of the three scenarios below.

Low-truth scenario. The parameters of the low truth setting are µ1 = 40 and

µ2 = −0.115. With pre-specified values for µ1 and µ2, the optimal bidding price

is 340. As shown in Figure 5.2, all four methods start with the same bidding

price initially and converge after 6 iterations, but the values they converge to are

different. All methods converge to prices below the optimal selling price, but the

prices from IPA-Bayes and the logistic regression method are closer to optimal, and

produce similar profits. IPA-Bayes adjusts more quickly to new information than the
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Figure 5.1: Probability of success and corresponding profit curve as a function of

the price under three different scenarios

(a) Bidding prices (b) Single-period-profit (c) Cumulative profit

Figure 5.2: Plots of bidding prices, single-period profit and cumulative profits over

time under the low-truth scenario

other three methods, without the volatile behavior observed for frequentist logistic

regression. Additionally, IPA-Bayes shows advantages in single-period profit during

the first 5 iterations, resulting in higher cumulative profit.

Medium-truth scenario. The true parameters are µ1 = 32.5 and µ2 = −0.08, and

the optimal bidding price is 380. Figure 5.3 shows that all four methods converge

to a price close to optimal. Both the single-period profit and the cumulative profit

from the IPA-Bayes method dominate those from the other three methods. Note

that, while the frequentist method explores higher prices than IPA-Bayes for some
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(a) Bidding prices (b) Single-period-profit (c) Cumulative profit

Figure 5.3: Plots of bidding prices, single-period profit and cumulative profits over

time under the medium-truth scenario

(a) Bidding prices (b) Single-period-profit (c) Cumulative profit

Figure 5.4: Plots of bidding prices, single-period profit and cumulative profits over

time under the high-truth scenario

time, this behavior is actually too aggressive, and produces lower profits.

High-truth scenario. The parameters of the high-truth setting are µ1 = 55 and

µ2 = −0.125, with the optimal price being $420. As shown in Figure 5.4, both

IPA-Bayes and Bayes-greedy start from a lower bidding price than the other meth-

ods, due to the effect of the uncertainty factor γn (p). However, IPA-Bayes quickly

adjusts and increases the bidding price, eventually getting close to optimal, and

dominating the other methods in terms of single-period profit. After 10 iterations,

frequentist logistic regression catches up and produces similar single-period profit,

at the expense of volatile behavior and smaller profits in the early iterations.
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Discussion. Frequentist logistic regression generally performs well after a few iter-

ations. However, in the sequential setting, we have to refit a new logistic regression

model after every observation, which becomes more time-consuming as the number

of observations increases. The Bayesian learning model, while less accurate (due to

the approximation of conjugacy), provides a quick and efficient way to update pa-

rameters, and generally produces a “smoother” sequence of prices; essentially, the

uncertainty encoded in the covariance matrix smooths the pricing decision, com-

pared to the volatile prices chosen by the frequentist method in the early iterations.

Among the methods using approximate Bayesian inference, IPA-Bayes is consis-

tently the best.

In these examples, some competing policies tend to perform very similarly to

IPA-Bayes after about 10 iterations. However, in the specific context of B2B pricing,

the early iterations are especially important because each individual contract tends

to have much higher value, and the opportunity cost of pricing suboptimally is more

severe. To give some perspective, if the value of every contract is on the order of

hundreds of thousands, or millions, of dollars, the overall planning horizon will be

shorter, and the first 5− 10 iterations will become very significant.

5.5 Conclusion

We have presented an approximate Bayesian approach for learning the pa-

rameters in a logistic regression model, with specific application to learning revenue

curves in B2B pricing problems. We use infinitesimal perturbation analysis and
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stochastic search to improve the quality of the approximation. We also consider

a pricing policy that incorporates uncertainty about the parameters into the esti-

mated expected revenue curve, and chooses a price that optimizes this aggregated

function. The proposed model and pricing policy show encouraging results in our

empirical experiments. Future work will test the proposed approach on real-world

pricing data, where the underlying statistical model can be high-dimensional.
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Chapter 6: Conclusion

In this thesis we have proposed two different metamodeling approaches that

incorporates direct gradient estimates for solving simulation optimization problems

with continuous variables and a knowledge-gradient method that employs variational

Bayesian technique for ranking and selection problems. We have also proposed

an approximate Bayesian statistical model and price recommendation strategy in

business-to-business (B2B) pricing context.

In Chapter 2, we analyzed regression models that explicitly incorporate di-

rect gradient estimators, and derived the corresponding parameter estimators. We

provided preliminary evidence for the potential gains from the DiGAR approach by

comparing with standard regression both theoretically via analytical calculations un-

der settings with more restrictive assumptions, and empirically via simple queueing

examples where the assumptions under which the theoretical results are established

do not hold. More generally, we investigated the idea of augmenting statistical mod-

els when direct gradient estimators are available, motivated by stochastic simulation

settings. We provided an alternative model for the local improvement step in the

sequential RSM approach used in experimental design for optimization.

In Chapter 3, we investigated the idea of incorporating gradient estimates into
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stochastic kriging by extrapolating additional responses using the original responses

and gradient estimates. This approach is not restricted to stochastic kriging, but can

be applied to other metamodeling approaches as well. We analyzed the proposed

GESK model theoretically under simplified settings and showed that it provides

predictions with smaller MSE than stochastic kriging. We also conducted numerical

experiments and illustrated the performance of the GESK model. We presented two

different strategies, namely PMLE and IMSE, to determine extrapolation step sizes

used in GESK. Effectiveness of these two strategies were compared using numerical

examples.

In Chapter 4, we created a new Bayesian model for simultaneously learning

unknown means and unknown correlations in fully sequential R&S. We derived a

new VIP for ranking and selection with unknown correlation structures. The new

procedure intuitively generalizes VIP for R&S with known correlations, with the

additional ability to incorporate the decision-makers uncertainty about the corre-

lation structure into decision-making. We proved that the value of information is

greater when the correlation structure becomes unknown. We also argued that the

incremental information loss from a single application of approximate Bayesian in-

ference eventually vanishes. We provided numerical results to show the value added

by learning unknown correlations. In particular, we studied a version of the wind

farm placement problem using real data.

In Chapter 5, we considered the problem of optimally choosing prices to max-

imize revenue or profit from transactions with heterogeneous customers. We de-

veloped a learning model that maintains a set of beliefs about the effects of the
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significant characteristics, but is able to adjust and improve those beliefs as new

data come in. We also developed an optimization algorithm that recommends a

price to maximize average revenue, based on the estimates provided by the predic-

tive and learning models. The uncertainty measured by the learning model is used

as a factor in the price calculation. For example, if the estimate from the data sug-

gests that we should quote a high price, but there is a large amount of uncertainty

suggesting that the estimate is unreliable, the final recommendation made by the

procedure will tend to be more conservative. We conducted simulations to check

the performance of the optimal prices. The results of the simulations suggest that

the optimal bidding algorithm has the potential to substantially increase cumulative

revenue over time.

Our work has initiated some new ideas and points to several other more general

directions for future research. The proposed DiGAR model introduced in Chapter 2

can be used in the application to simulation-based optimization, , for example,

sequential RSM, which was one of the motivations for choosing regression models for

incorporating direct stochastic gradient estimators. How much gains will be realized

in the optimization efficiency from the improved linear regression model? Although

it is reasonable to expect improvements, since the new method does obtain better

fitted values than simple linear regression, both theoretical work and numerical

experimentation are needed to characterize and quantify the improvements.

The GESK method proposed in Chapter 3 use linear extrapolation with the

same step size and assume that only one additional point is extrapolated from each

design point. More sophisticated techniques could use the local response surface
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information and adaptively determine the extrapolation strategy. This is especially

important in higher-dimensional problems with multiple extreme values. Another

line of research is on the comparison between GESK and SKG. Improvements from

incorporating gradient estimates can be expected from both models. However, the

question is when does one model performs better than the other? To compare these

two models theoretically will provide more insights about this question and lead

to guideline for practitioners as to when to choose each of these two models for

practitioners.
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A.1 Analytical Results for M/M/1 and U/U/1 Queues

For the M/M/1 queue, the true models for an interarrival mean of 0.2 are

given by

y(2)(x) = x+
x2

5 + x
,

y(3)(x) = x+
5x2

(5 + x)2
+
x3(15 + 2x)

(5 + x)3
,

y(4)(x) = x+
25x2

(5 + x)3
+

25x3

(5 + x)4
+

5x3(15 + 2x)

(5 + x)4
+
x4(225 + 50x+ 3x2)

(5 + x)5
,

y(5)(x) = x+
125x2

(5 + x)4
+

250x3

(5 + x)5
+

25x3(15 + 2x)

(5 + x)5
+

5x4(225 + 50x+ 3x2)

(5 + x)6

+
25x4(15 + 2x)

(5 + x)6
+

250x4

(5 + x)6
+
x5(10 + x)(350 + 65x+ 4x2)

(5 + x)7
.
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For the U/U/1 queue, the true models are given by

y(2) =
δ1

4
− θ1

2
+

3θ2

2
+

1

δ1

(
δ2

2

12
+
θ2

1

4
− θ1θ2

2
+
θ2

2

4

)
y(3) =

5δ1

12
− θ1 + 2θ2 +

1

12δ1

(
2δ2

2 + 9θ2
1 − 18θ1θ2 + 9θ2

2

)
− 1

12δ2
1

(θ1 − θ2)(δ2
2 + 2θ2

1 − 4θ1θ2 + 2θ2
2)

y(4) =
107δ1

192
− 25θ1

16
+

41θ2

16
+

1

2880δ1

(750δ2
2 + 4590θ2

1 − 9180θ1θ2 + 4590θ2
2)

− 1

48δ2
1

(θ1 − θ2)(13δ2
2 + 35θ2

1 − 70θ1θ2 + 35θ2
2)

+
1

2880δ3
1

(13δ4
2 + 270δ2

2θ
2
1 − 540δ2

2θ1θ2 + 270δ2
2θ

2
2

+ 405θ4
1 − 1620θ3

1θ2 + 2430θ2
1θ

2
2 − 1620θ1θ

3
2 + 405θ4

2)

y(5) =
221δ1

320
− 107θ1

48
+

155θ2

48
+

1

2880δ1

(1070δ2
2 + 8430θ2

1 − 16860θ1θ2 + 8430θ2
2)

− 1

48δ2
1

(θ1 − θ2)(29δ2
2 + 99θ2

1 − 198θ1θ2 + 99θ2
2)

+
1

2880δ3
1

(49δ4
2 + 1230δ2

2θ
2
1 − 2460δ2

2θ1θ2 + 1230δ2
2θ

2
2

+ 2325θ4
1 − 9300θ3

1θ2 + 13950θ2
1θ

2
2 − 9300θ1θ

3
2 + 2325θ4

2)

− 1

720δ4
1

(θ1 − θ2)(9δ4
2 + 80δ2

2θ
2
1 − 160δ2

2θ1θ2 + 80δ2
2θ

2
2 + 96θ4

1

− 384θ3
1θ2 + 576θ2

1θ
2
2 − 384θ1θ

3
2 + 96θ4

2)

A.2 Gradient Estimation for G/G/1 Queue

Let Ak be the interarrival time between the (k − 1)st and kth customer (by

convention, taking A1 to be the time of the 1st arrival), and let Xk be the service

time of the kth customer. The system time of the kth customer, denoted by Tk,
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satisfies the well-known Lindley equation:

Tk+1 = Xk+1 + (Tk − Ak+1)+, (1)

where a+ = max(a, 0). The infinitesimal perturbation analysis (IPA) estimator is

then obtained by simple differentiation, which for a general parameter θ is given by

( [46]):

dTk+1

dθ
=
dXk+1

dθ
+

(
dTk
dθ
− dAk+1

dθ

)
1{Tk ≥ Ak+1}, k > 1, with

dT1

dθ
=
dX1

dθ
. (2)

For x a parameter of the (common) customer service time distribution, the

unbiased IPA estimator is

dTk+1

dx
=
dXk+1

dx
+
dTk
dx

1{Tk ≥ Ak+1},

where dX/dx can be calculated based on the distribution for the random variable

X. For example, if X is exponentially distributed (with mean x), then dX/dx is

simply given by X/x, and (A.2) becomes

dTk+1

dx
=
Xk+1

x
+
dTk
dx

1{Tk ≥ Ak+1}, k > 1, with
dT1

dx
=
X1

x
,

the latter assuming that the system starts empty. This is what is used for the

M/M/1 queue example.

Similarly, for the U/U/1 example, where the interarrival time and service time

distributions are U(θ1−δ1, θ1 +δ1) U(θ2−δ2, θ2 +δ2), respectively, the four unbiased
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IPA estimators are

∂Tk+1

∂θ1

=

(
∂Tk
∂θ1

− 1

)
1{Tk ≥ Ak+1}, k > 1, with

∂T1

∂θ1

= 0,

∂Tk+1

∂θ2

= 1 +
∂Tk
∂θ2

1{Tk ≥ Ak+1}, k > 1, with
∂T1

∂θ2

= 1,

∂Tk+1

∂δ1

=

(
∂Tk
∂δ1

− Ak+1 − θ1

δ1

)
1{Tk ≥ Ak+1}, k > 1, with

∂T1

∂δ1

= 0,

∂Tk+1

∂δ2

=
Xk+1 − θ2

δ2

+
∂Tk
∂δ2

1{Tk ≥ Ak+1}, k > 1, with
∂T1

∂δ2

=
X1 − θ2

δ2

,
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