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Gyroscopes, or gyros, are vital sensors in spacecraft onboard attitude control

systems. Gyro measurements are corrupted, though, due to errors in alignment and

scale factor, biases, and noise. This work proposes a class of adaptive nonlinear

observers for calibration of spacecraft gyros. Observers for each of the calibration

parameters are separately developed, then combined. Lyapunov stability analysis is

used to demonstrate the stability and convergence properties of each design. First,

an observer to estimate gyro bias is developed, both with and without added noise

effects. The observer is shown to be exponentially stable without any additional

conditions. Next a scale factor observer is developed, followed by an alignment



observer. The scale factor and alignment observers are both shown to be Lyapunov

stable. Additionally, if the angular velocity meets a persistency of excitation (PE)

condition, the scale factor and alignment observers are exponentially stable. Finally,

the three observers are combined, and the combination is shown to be stable, with

exponential stability if the angular velocity is persistently exciting. The specific PE

condition for each observer is given in detail.

Next, the adaptive observers are combined with a class of nonlinear control al-

gorithms designed to asymptotically track a general time-varying reference attitude.

This algorithm requires feedback from rate sensors, such as gyros. The miscalibration

discussed above will seriously degrade the performance of these controllers. While

the adaptive observers can eliminate this miscalibration, it is not immediately clear

that the observers can be safely combined with the controller in this case. There is, in

general, no ”separation principle” for nonlinear systems, as there is for linear systems.

However, Lyapunov analysis of the coupled controller-observer dynamics shows that

the closed-loop system will be stable for the class of observers proposed. With only

gyro bias miscalibration, the closed-loop system is in fact asymptotically stable. For

more general combinations of miscalibration, closed-loop stability is ensured with

modest constraints on the observer/controller design parameters. These constraints

are identified in detail. It is also shown that the constraints are not required if the

angular velocity can be a priori guaranteed to be persistently exciting.
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Chapter 1

Introduction

High precision estimation and control algorithms, to achieve unprecedented levels

of pointing accuracy, will be required to support future aerospace missions. New

missions will require increased performance, at a lower cost. The vehicle estimation

and control algorithms must support large and fast angular maneuvers autonomously,

utilizing low cost sensors with looser tolerances than traditional sensors. In order

to provide the required tolerances throughout the expanded flight envelope, precise

knowledge of the spacecraft rotation rate is required. This work focuses on methods

to autonomously improve the rate estimate for aerospace control systems, given

potentially low cost rate sensors such as micro-mechanical system (MEMS) rate

sensors containing large miscalibrations. The emphasis is on spacecraft attitude

control systems, but the algorithms are applicable to other aerospace scenarios.

1.1 Background

Gyroscopes, also known as Inertial Reference Units (IRU) or gyros, are part of the

attitude control system of most three-axis stabilized spacecraft. They measure the
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spacecraft angular rate. There are several types of gyros for spacecraft use. Mechan-

ical gyros are supported by gimbals, which attempt to precess when the spacecraft

rotates. The current applied to null the gimbal is proportional to the spacecraft

rate. Mechanical gyros either provide single axis or two axis rate information. Hemi-

spherical resonator gyros contain a quartz crystal shell which oscillates at a specific

amplitude and frequency. Changes in the spacecraft angular orientation are de-

termined by measuring the force needed to rebalance the standing wave pattern.

Another type of spacecraft gyro is a ring laser gyro. Two light waves, travelling in

opposite directions, combine to produce a standing wave pattern. The angular rate

is determined by detecting changes in the intensity of the light as the spacecraft

rotates. Fiber-optic gyros also contain two beams, travelling in opposite directions

within a fiber. A detector measures the signal power of the combined signals. The

angular rate is related to the change in the signal power. [1] A final example of a

spacecraft gyro is a MEMS gyro. MEMS gyros are silicon structures that are elec-

trostatically forced to oscillate within a plane. The angular rate is determined by

measuring out of plane oscillations. [2]

Unfortunately, the gyro measurements are corrupted by errors in alignment,

scale factor, and bias, as well as random noise [3]. Most of the gyros flown on missions

supported by the NASA Goddard Space Flight Center are very low noise/low bias

gyros [4], [5]. MEMS gyros, however, can have noise and bias levels many orders of

magnitudes higher than the typical NASA mission gyros [2, 6].
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1.1.1 Overview of Gyro Calibration Scenario

The attitude of a vehicle is typically defined as the orientation of a body fixed

coordinate system with respect to an inertial coordinate system. Figure 1.1 depicts

the body coordinate system of a vehicle, rotating at the true angular velocity ω(t)

with respect to an inertial coordinate system. The gyro measures the vehicle angular

velocity. However, due to the corruptions, the measured angular velocity is not the

same as the true angular velocity. The relationship between the measured and true

angular velocity is often given as [3]

ωg(t) = ΓRT

g ω(t) + bg(t) + νg(t) (1.1)

where ωg(t) is the measured angular velocity, Γ is a matrix of scale factors, Rg is

the gyro alignment which is a transformation from the gyro coordinate frame to the

spacecraft body frame, bg(t) is a bias, and νg(t) is a zero mean noise. Gyro calibra-

tion methods are designed to give the best estimates of the scale factors, alignment,

and bias. Several algorithms for estimating the calibration components, as well as

the noise characteristics, are available. Most algorithms rely on linear techniques,

assuming the calibration parameters are small, and the algorithms are not coupled

directly with the spacecraft control. An overview of many of the linear estimation

techniques is presented next, followed by an overview of the limited number of exist-

ing nonlinear methods. A few definitions are necessary, however, before introducing

the existing methods.

The attitude of a spacecraft can be represented by a quaternion, consisting of

3
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Figure 1.1: Coordinate Frames

a rotation angle and unit rotation vector e, known as the Euler axis, and a rotation

φ about this axis so that [7]

q =




e sin(φ
2
)

cos(φ
2
)


 =




ε

η


 (1.2)

where q is the quaternion, partitioned into a vector part, ε, and a scalar part, η.

Typically, in spacecraft attitude applications, the quaternion represents the rotation

from an inertial coordinate system to the spacecraft body coordinate system, as

depicted in figure 1.1. Note that ||q|| = 1 by definition. The rotation matrix for a

specific attitude can be computed from the quaternion components as [7]

R(q) = (η2 − εTε)I + 2εεT − 2ηS(ε) (1.3)

where I is a 3x3 identity matrix and S(ε) is a matrix representation of the vector

4



cross product operation.

S(ε) =




0 −εz εy

εz 0 −εx

−εy εx 0




The rotation matrix is orthogonal such that RTR = I. Note also that R(q)ε = ε.

A relative rotation between coordinate frames is computed as [8]

q̃ =




ε̃

η̃


 = q1 ⊗ q−1

2 =




η2I − S(ε2) −ε2

εT
2 η2







ε1

η1


 (1.4)

Where q̃ represents the rotation from the frame defined by q2 to the frame defined

by q1. Note that ||ε̃|| = 0, η̃ = ±1 indicates that the frame 2 is aligned with frame

1. Note that the vector part of q̃ is

ε̃ = ẽ sin(
φ̃

2
)

ε̃ points along the eigenaxis of the relative rotation, and the length of ε̃ varies directly

with the size of the eigenaxis rotation, φ̃.

With known calibrations, the angular velocity can be recovered from the mea-

sured angular velocity given in equation 1.1 as

ω(t) = Cωg(t)− b(t)− ν(t) (1.5)

where C = (ΓRT
g )−1 = RgΓI and ΓI = Γ−1. The bias, b(t), is the effective bias in

the body frame, and similarly, ν(t) is a zero mean noise in the body frame.
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1.1.2 Linear Gyro Calibration Methods

The most commonly used algorithm for spacecraft gyro calibration at the NASA

Goddard Space Flight Center is the Davenport gyroscope calibration algorithm, pre-

sented by Davenport and Welter in [9]. From equation 1.5, the angular velocity is

written without the noise as

ω(t) = Cωg(t)− b (1.6)

where C and a constant bias, b, are unknown. Estimates of C and b, given as Ĉ

and b̂, respectively, are made based on pre-launch calibration and mounting of the

gyros on the spacecraft. Ĉ and b̂ are assumed to be close to the true C and b. An

estimate of the angular velocity is given as

ω̂(t) = Ĉωg(t)− b̂ (1.7)

Subtracting equation 1.7 from 1.6 results in the following

ω̃(t) = ω(t)− ω̂(t) = −Mω̂(t) + d

where M = I− CĈ and d = (I−M)b̂− b. Given the above assumptions, M and d

are small.

The calibration procedure consists of several controlled angular maneuvers of

the spacecraft about each of the body axes. For a given controlled maneuver from

an initial attitude represented as q(t0) to a final attitude represented as q(tf ), an

error, based on equation 2.6 in Section 2.1, is computed as

e = v(q(tf )⊗ q̂(tf , ω̂))− 1

2

∫ tf

t0

ω̃(τ)dτ

6



where v(qf ⊗ q̂(tf , ω̂)) represents the vector part of the quaternion product, as com-

puted using equation 1.4. The estimated final attitude, represented as q̂(tf , ω̂)),

is computed by propagating the initial quaternion, q(t0), to tf using the estimated

angular velocity, ω̂. The initial and final quaternions, q(t0) and q(tf ), are computed

by an accurate sensor, such as a star sensor. A least squares estimation approach is

used to find M and d which minimizes ‖e‖2 over all the controlled maneuvers. The

estimation is performed in batch mode by ground support personnel. A variation

on this algorithm is presented in [10]. Adjustments are made to reduce the required

volume of data, and to extend the algorithm to study individual gyro scale factor

adjustments.

Another approach used in estimating the gyro calibration parameters is an ex-

tended Kalman filter (EKF). In contrast to a linear Kalman filter, an EKF estimates

error terms in the desired states due to a nonlinear relationship, either in the state

equation or in the measurement equation, or both. Typically the error terms are

derived by expanding the nonlinear equation in a Taylor series [11]. Alternatively a

perturbation method can be applied, as in [12]. The EKF algorithm is designed to

estimate small corrections to nominal state estimates. In the case of gyro calibration,

the calibration parameters are assumed to contain small errors. The transformation

matrix, Rg, is considered to represent small rotations of each of the gyro axes away

7



from the corresponding body axes. The matrix is usually written as [13]

Rg = I +




0 mxy mxz

myx 0 myz

mzx mzy 0




= I + M

where mij is the projection of the i-gyro axis on the j-body axis. The three gyro axes

are described by unit vectors, closely aligned to the three corresponding spacecraft

body axes. Therefore, mij is assumed to be a small misalignment angle. Similarly,

the scale factor matrix Γ is written as

Γ = I +




kx 0 0

0 ky 0

0 0 kz




= I + K

where ki are assumed to be small scale factor errors. The measured angular velocity

is then given as

ωg(t) = (I + K)(I + M)Tω(t) + b = ω(t) + ∆ω(t) (1.8)

where ∆ω(t) contains the calibration errors terms, including the bias. The product

of KMT is assumed to be small and is not included. ∆ω(t) is then written as

∆ω(t) = Ωx (1.9)

Ω is a 3x12 matrix containing the angular velocity and x is a 12x1 vector containing

the terms mij, ki, and b. Equation 1.9 is typically augmented with the attitude into

an EKF algorithm.
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An early work by Farrenkopf and Iwens [14] documents the initial development

of an onboard EKF algorithm to estimate the spacecraft attitude and only the gyro

biases from equation 1.9. Murrell [15] documents the development of a similar on-

board filtering algorithm to estimate the attitude and gyro biases. Additional works

by Farrenkopf [16] and Markley and Reynolds [5] look at the accuracy of a single axis

Kalman filter, estimating a single axis attitude angle and gyro bias. In later works,

such as in [17], the state is expanded to include the gyro misalignment and scale fac-

tor errors from equation 1.9, along with other sensor calibration states. In estimating

the misalignment and scale factor errors, observability is achieved by maneuvering

the spacecraft about the spacecraft body axes.

Bar-Itzhack in [13] presents a pseudolinear Kalman filter that estimates the

spacecraft attitude and gyro calibration parameters. In this approach, nonlinear

equations are written as linear equations, dependent on state estimates. Equation 1.9

is included as the gyro error model in this approach. The typical gyro configuration

consists of three gyros (or more to provide redundancy) mounted along the spacecraft

body axes. In [18], a gyro quadruplet is calibrated. The gyro configuration considered

contains more than three (prime) gyros, not aligned along the spacecraft body axes.

In [19], several gyro calibration algorithms are presented and compared, includ-

ing the Davenport algorithm above. The ’Delta-Bias’ algorithm, like the Davenport

algorithm, estimates corrections to C and b given in equation 1.6. An adjusted rate

is computed for a given time interval using estimates of C and b as in equation 1.7.
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The difference between the measured rate and adjusted, or estimated, rate is assumed

to be equal to a bias calculated independently during the given time interval. The

angular velocity difference is cast as a linear function of the small differences between

Ĉ and C and between b̂ and b. A least squares approach is used to estimate the

corrections by minimizing the error between the calculated bias and the linearized

angular velocity difference. Since the algorithm does not directly utilize an attitude

comparison, it is not considered to be as accurate as the other linear calibration

methods. It also requires at least four periods during which the rates are different,

linearly independent, and constant.

The next algorithm presented in [19] is a ‘Filter-Smoother’ algorithm, based

on the EKF discussed above, but with an additional smoother step run backwards.

The gyro errors are determined by a weighted average of the forward and backward

estimates. The final algorithm is the ‘BiCal’ algorithm, an extension of a batch-least

squares attitude determination algorithm. The basic batch-least squares algorithm

minimizes a loss function, composed of sensor residuals, in order to estimate the

attitude. The residuals are computed as the difference between a measured vector

observation and an estimate of the same vector. Typically the measured vectors

are line of sight vectors to the sun, stars, or the earth, or a measurement of the

earth’s magnetic field vector, all in body coordinates. The estimated observation

vector is computed with an attitude estimate and the corresponding computed vector

direction in inertial coordinates from an almanac or model. Since the observations
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occur at different times, the attitude in the loss function must be the attitude at the

time of the observation. In order to estimate a single attitude, an epoch attitude is

propagated to each observation time using an approach such as that of equation 2.6

in Section 2.1. The angular velocity is expressed as a linear function of small errors

in C and b. The small errors are included in the states to be estimated through the

minimization of the loss function.

Finally, several authors address the statistical characteristics of gyros and the

noise sources. In [20], the noise characteristics of the rate-integrating gyros onboard

the Cosmic Background Explorer (COBE) are evaluated. The noise sources are

estimated using the single-axis Farrenkopf model above and also presented in [21].

In [4], Sedlak, et al. study the performance of rate sensing gyros onboard the Upper

Atmosphere Research Satellite, the Extreme Ultraviolet Explorer, and the Rossi X-

Ray Timing Explorer. The gyro noise characteristics are estimated by studying

the Kalman filter covariance matrix evolution over time. The gyro bias trends are

evaluated using a batch least-squares, differential correction attitude determination

algorithm. The application of the Allan variance method in characterizing gyro error

sources is presented in [22]. In [23], an alternative, online algorithm for estimating

gyro noise parameters is presented. Finally, Reynolds [24] presents an optimal and

sub-optimal method for estimating gyro noise parameters. The approach is based on

maximum likelihood estimation and produces both noise estimates and uncertainties

in the estimates.
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1.1.3 Nonlinear Gyro Calibration Methods

The linear gyro calibration methods are designed to estimate small corrections to

nominal, pre-launch estimates of the alignment, scale factor, and bias. A nonlinear

approach could potentially estimate gyro alignment, scale factor, and biases of ar-

bitrary size. A few approaches exist which utilize nonlinear estimation techniques,

however there are shortcomings in all of the approaches. All the published methods

tend to follow a similar Lyapunov development to determine stability in the estima-

tion, most are driven by a measurable attitude error. Alonso, et al. in [25] develop

a nonlinear estimator for relative attitude and rate estimation with an application

to formation flying. Salcudean in [26] develops a nonlinear estimator for angular

rate estimation. Both estimators are driven by a computed attitude error. However,

in order to estimate the rate, both estimators require knowledge or estimation of

spacecraft torques. The stability of the estimator developed by Salcudean requires

an assumption that the system eventually behaves as a linear time invariant system.

In [27], Vik, et al. develop an angular velocity estimator, in addition to a po-

sition and velocity estimator, for use in a Global Positioning System (GPS)/Inertial

Navigation System (INS). The angular velocity estimator is actually a nonlinear es-

timator for gyro calibration, similar to that designed in this thesis. The estimator

is designed to estimate corrections to the gyro measurements, particularly misalign-

ment and scale factor corrections, along with gyro biases. The misalignment and

scale factor errors are assumed to be small, as given in equation 1.9. All the error
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terms are modelled as exponentially decaying, first-order equations. The Lyapunov

analysis proves that the estimator, given the above assumptions, is exponentially

stable. A closed-loop analysis of the estimator, coupled with a feedback control law,

is not presented.

Nonlinear estimators for gyro bias estimation are also examined by Boskovic, et

al. in [28] and [29]. In [28], the bias is assumed to be constant, which differs from the

exponentially decaying model of [27]. However, the bias is assumed to lie in a small,

bounded set. Second order terms are neglected in the estimator development and in

the Lyapunov proof of stability. The estimator is coupled with a controller, designed

to drive the spacecraft rates to zero, and the spacecraft body coordinates to the

inertial coordinates. With the second order terms neglected, the closed loop system

is stable for the single scenario presented. In [29], the gyro bias estimator is designed

for use in attitude tracking. Here the bias estimator is driven by a computed attitude

error, as in [25], [26], and [27]. However, the attitude error is computed as a vector

difference, rather than a rotational error, without consideration to the normality

constraint of the attitude. The Lyapunov proof of stability is limited. An adaptive

tracking controller is coupled to the estimator. Closed-loop stability is based on an

assumption of the faster speed of the estimator as compared to the controller. A

brief observation of the angular velocity tracking is provided, without proof.
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1.2 Dissertation Outline

As the previous discussion indicates, combined estimator-controller designs for the

attitude control of rigid flight vehicles are a subject of active research [27, 28, 29].

Successful design of such architectures is complicated by the fact that there is, in

general, no separation principle for nonlinear systems. In contrast to linear systems,

‘certainty equivalence’ substitution of the states from an exponentially converging

estimator into a nominally stabilizing, state feedback control law does not necessarily

guarantee stable closed-loop operation for the coupled systems [30, 31]. In this work,

one version of this problem is considered, in particular, the task of forcing the attitude

of a rigid vehicle to asymptotically track a (time-varying) reference attitude using

feedback from rate sensors with persistent nonzero errors. The analysis is presented

in the following order.

The second chapter introduces the terminology used throughout the document.

A high level overview of Lyapunov stability concepts is included. Finally, an introduc-

tion of the nonlinear control law is presented. This control law is used in combination

with each of the gyro estimators in the closed loop stability analysis.

The third chapter presents the development of a nonlinear estimator for the

case of constant gyro bias, combined with the nonlinear control scheme for attitude

control of a spacecraft discussed in Chapter 2. In order to estimate the bias, an

angular velocity estimator is utilized, similar in development to [26, 27], using the

estimated bias state in a certainty equivalence fashion with the nonlinear control
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law proposed by Egeland and Godhaven in [32]. The analysis demonstrates that

the resulting system provides stable closed-loop operation with asymptotic tracking.

The analysis is extended to consider the effects of uniformly bounded gyro noise on

the stability analysis.

The fourth chapter presents a nonlinear estimator for estimating constant scale

factors. The gyro bias estimator is extended to estimate the scale factors. The

estimator is stable, and if the angular velocity is bounded, the attitude error is

asymptotically stable. Additionally, if each axis of the angular velocity meets a

persistency of excitation condition, the scale factor estimator is exponentially stable.

Combining the scale factor estimator with the nonlinear control scheme results in

stable tracking if an a priori bound is known for the scale factors. If the angular

velocity meets the persistency of excitation condition, the closed loop system is

asymptotically stable.

The fifth chapter presents a nonlinear estimator for the case of alignment er-

rors. The estimator for the constant gyro bias is extended to estimate, instead, a

constant alignment error. The algorithm does not require an assumption that the

alignment errors are small. The analysis demonstrates that the estimator is stable,

and the alignment estimates converge exponentially to the true alignment, under

the necessary persistency of excitation conditions. Here the persistency of excita-

tion condition confirms that the angular velocity must change directions in order to

estimate the alignment. Finally, the estimator is combined with the controller of
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[32]. The closed-loop system is nominally stable if an a priori bound is known on the

alignment error. Asymptotic stability is achieved if the angular velocity meets the

persistency of excitation condition.

The sixth chapter presents combinations of the three estimators. In each case,

the estimator stability is addressed. The estimator is coupled to the nonlinear control

algorithm and the stability is examined.

The seventh chapter presents a comparison between the nonlinear gyro cali-

bration estimators and a linearized calibration algorithm. The three nonlinear gyro

calibration estimators (and a combination of all three) are compared to the ’implicit’

pseudo-linear algorithm developed by Bar-Itzhack and Harman [13].

The eighth chapter contains a summary of the research and concluding remarks.

Areas of future research are outlined.
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Chapter 2

Mathematical Overview

2.1 Terminology

This work presents nonlinear estimation algorithms designed to estimate gyro align-

ment, scale factor, and bias. Figure 2.1 shows a high level block diagram of the

estimation scheme. The true satellite attitude and rate are again represented by the

quaternion, q and ω(t), respectively. Sensors provide measurements of the attitude

and rate. The attitude measurement is assumed to be perfect. The rate measure-

ment, ωg(t), however is corrupted by the calibration errors. The rate measurement

is used to propagate an estimate of the attitude, q̂, along with estimates of the

calibration parameters, denoted generically as â in figure 2.1. The true attitude is

compared to the estimated attitude, and the rotational error between the two, q̃, is

used to correct the calibration estimates. The attitude and estimated angular veloc-

ity, ω̂, computed with the estimated calibration components, are then available as

input to a feedback control scheme.

Definitions of the attitude and rate are given in Chapter 1. Several additional
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Figure 2.1: Estimation Approach

definitions are necessary in the development of the estimation and control algorithms.

First, several definitions of vector and matrix norms are given, followed by additional

equations pertaining to the attitude, rate, and calibration parameter definitions.

In this work all matrix norms are assumed to be the matrix induced two norm

unless otherwise explicitly stated. For a general matrix X, the induced two-norm is

computed as [33]

‖X‖ = ‖X‖2 = (λmax(X
TX))

1
2

All vector norms are assumed to be the Euclidean norm. For a general vector,

x = [x1, x2 . . . xn]T , the two-norm is [33]

‖x‖ = ‖x‖2 = (
n∑

i=1

|xi|2) 1
2
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The sign function is defined as

sign(a) =





1 a > 0

0 a = 0

−1 a < 0

(2.1)

The norm of the rotation matrix is

‖R‖ = 1

The determinant of the rotation matrix is [7]

|R| = 1

The rotation matrix is non-singular. The norm of the outer product of ε is

‖εεT‖ = [λmax((εεT )TεεT )]
1
2 = ‖ε‖2

The matrix R(q)−I is used frequently in the development of the alignment estimator,

and is given as

R(q)− I = −2εTεI + 2εεT − 2ηS(ε) (2.2)

and the norm of R(q)− I is

‖R(q)− I‖ = λmax[4((εTε)I− εεT )]
1
2 = 2‖ε‖

The kinematic equation for the quaternion is given as

q̇(t) =




ε̇(t)

η̇(t)


 =

1

2
Q(q(t))ω(t) (2.3)
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where ω(t) is the spacecraft angular velocity in body coordinates and

Q(q(t)) =




η(t)I + S(ε(t))

−ε(t)T


 =




Q1(q(t))

−ε(t)T


 (2.4)

where, by inspection, Q1(q(t)) = η(t)I + S(ε(t)). The kinematic equation for an

attitude matrix is [34]

Ṙ(q(t)) = −S(ω(t))R(q(t)) (2.5)

Note that for small ε and small ω(t), the kinematic equation becomes




ε̇(t)

η̇(t)


 =




1
2
ω(t)

0


 (2.6)

The Davenport calibration algorithm presented in chapter 1 is based on equation

2.6.

The angular velocity, ω(t), is again

ω(t) = RgΓIωg(t)− b(t)− ν(t)

This work considers only the case of three, orthogonal gyros. Therefore, Rg = R(qg)

is an orthogonal gyro alignment matrix, written as a function of the quaternion, qg.

If Γ, qg, and b(t) are known, an unbiased estimate of ω(t) is

ω̂(t) = Cωg(t)− b(t)

This work considers the case where Γ, qg, and b(t) are unknown and of arbitrary

size.
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In this work, the gyro alignment and scale factors are assumed to be constant.

In other words,

q̇g(t) = 0 (2.7)

γ̇i(t) = 0 (2.8)

The bias is initially assumed to be constant, then a ’random walk’ is considered.

ḃ(t) = 0 (2.9)

and

ḃ(t) = νb(t) (2.10)

If b̂(t), q̂g(t), and Γ̂I(t) are estimates of the bias, alignment quaternion, and

inverted scale factor matrix, respectively, an estimate of the angular velocity is given

as

ω̂(t) = R(q̂g(t))Γ̂I(t)ωg(t)− b̂(t) (2.11)

For the case of bias error only (assuming the alignment and scale factor matrices are

known), 2.11 becomes

ω̂(t) = R(qg)ΓIωg(t)− b̂(t) (2.12)

The equation is rewritten accordingly for an alignment estimate with the bias and

scale factor known, as

ω̂(t) = R(q̂g(t))ΓIωg(t)− b(t) (2.13)

where R(q̂g(t)) represents the rotation from gyro coordinates to an estimated body

frame. Finally, for an estimate of the inverted scale factor matrix 2.11, with the
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alignment and bias known, becomes

ω̂(t) = R(qg)Γ̂I(t)ωg(t)− b(t) (2.14)

or similarly for any other combination of terms.

The error terms for each of the calibration parameters are defined as

b̃(t) = b− b̂(t) (2.15)

q̃g(t) = qg ⊗ q̂g(t)
−1 (2.16)

γ̃I(t) = γI − γ̂I(t) (2.17)

where γ̃I(t) is a scale factor error vector defined as the difference between the inverted

true scale factors and the estimates, written in vector form.

2.2 Lyapunov Stability

All the stability proofs in the following chapters, both for the estimators and con-

trollers, rely on Lyapunov stability arguments. The following theorems, corollaries,

and lemmas detail conditions for both asymptotic and exponential convergence of

nonautonomous systems.

Theorem 2.1 Let x be an equilibrium point for ẋ(t) = f(t, x), and D ⊂ Rn be a

domain containing x = 0. Let V : [0,∞] × D → R be a continuously differentiable

function such that

W1(x) ≤ V (t, x) ≤ W2(x)
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∂V

∂t
+

∂V

∂x
f(t, x) ≤ −W3(x)

∀t ≥ 0, ∀x ∈ D where W1(x), W2(x), and W3(x) are continuous positive definite

functions on D. Then, x = 0 is uniformly asymptotically stable. [30]

Corollary 2.1 Suppose that all the assumptions of Theorem 2.1 are satisfied with

W1(x) ≥ k1‖x‖c, W2(x) ≥ k2‖x‖c, W2(x) ≥ k3‖x‖c

for some positive constants k1, k2, k3, and c. Then, x = 0 is exponentially stable.

Moreover, if the assumptions hold globally, then x = 0 is globally exponentially stable.

[30]

Lemma 2.1 Consider the function φ(t). If φ(t) is uniformly continuous and

limt→∞
∫∞

0
φ(τ)dτ exists and is finite, then limt→∞ φ(t) = 0. (Barbalat) [31]

Corollary 2.2 Consider the function φ(t). If φ(t), φ̇(t) ∈ L∞, and φ(t) ∈ Lp for

some p ∈ [1,∞), then limt→∞ φ(t) = 0. [31]

Lemma 2.2 If a scalar function V (x, t) satisfies the following conditions

V (x, t) is lower bounded

V̇ (x, t) is negative semi-definite

V̇ (x, t) is uniformly continuous in time

then V̇ (x, t) → 0 as t →∞. [35]
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Lemma 2.3 Consider the differential inequality

v̇ ≤ −[c− β1(r0, t)]v + β2(r0, t) + ρ (2.18)

where v(0) = v0 ≥ 0, c > 0, and r0 ≥ 0 are constants, and β1 and β2 are class KL

functions. Then there exists a class KL function βv and a class K function γv such

that

v(t) ≤ βv(v0 + r0, t) + γv(ρ) (2.19)

for all t ≥ 0. Moreover, if βi = αi(r)e
−σit, i = 1, 2, where αi ∈ K and σi > 0, then

there exists αv ∈ K and σv > 0 such that βv(r, t) = αv(r)e
−σvt. [31]

In addition to the above theorems and lemmas, Young’s inequality is used

throughout the stability proofs. It is given in general form as [31]

xy ≤ κx2 +
1

4κ
y2 (2.20)

where κ > 0. Young’s inequality allows a product of variables to be separated into

an inequality of the sum of the square of the variables. This inequality is used in the

stability proofs to develop bounds on x, for example, given a known upper bound on

y.

Finally, the Lp norms are used in the stability proofs of the following chapters

as well as in Corollary 2.2 above. For a function x(t), the Lp norms, p ∈ [1,∞) are

defined as [31]

‖x(t)‖p =





(∫∞
0
|x(t)|pdt

) 1
p p ∈ [1,∞)

supt≥0|x(t)| p = ∞
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A signal x(t) ∈ Lp means the corresponding Lp norm for x(t) is bounded

‖x(t)‖p < ∞

2.3 A Nonlinear Attitude Controller

The attitude dynamics for a rigid spacecraft are given as

Hω̇(t)− S(Hω(t))ω(t) = u(t) (2.21)

H is a constant, symmetric inertia matrix and u(t) is the applied external torque,

for example, from attached rocket thrusters. The goal of the control law is to force

the actual, measured attitude q(t) to asymptotically track a (generally) time-varying

desired attitude qd(t) and angular velocity ωd(t), related for consistency by equation

2.3 as

q̇d(t) =
1

2
Q(qd(t))ωd(t) (2.22)

It is assumed that ωd(t) is bounded and differentiable with ω̇d(t) also bounded.

The attitude tracking error is computed with equation 1.4 as

q̃c(t) =




ε̃c(t)

η̃c(t)


 = q(t)⊗ q−1

d (t) (2.23)

Comparing actual and desired rates in a common frame, the rate tracking error is

ω̃c(t) = ω(t)−R(q̃c(t))ωd(t) (2.24)

where R(q̃c(t)) transforms the angular velocity from the desired body frame to the

actual body frame. With these definitions, the tracking error kinematically obeys
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the differential equation [8]

˙̃qc(t) =
1

2
Q(q̃c(t))ω̃c(t) (2.25)

The nonlinear tracking control strategy proposed by Egeland and Godhavn in

[32] employs the control law

u(t) = −KDs(t) + Hαr(t)− S(Hω(t))ωr(t) (2.26)

KD is any symmetric, positive definite matrix and s(t) is an error defined as

s(t) = ω̃c(t) + λε̃c(t) = ω(t)− ωr(t) (2.27)

where λ is any positive constant. The reference angular velocity ωr(t) is computed

as

ωr(t) = R(q̃c(t))ωd(t)− λε̃c(t) (2.28)

and

αr(t) = ω̇r(t) = R(q̃c(t))ω̇d(t)− S(ω̃c(t))R(q̃c(t))ωd(t)− λQ1(q̃c(t))ω̃c(t) (2.29)

The stability of the closed loop system is analyzed with the Lyapunov function

Vc(t) =
1

2
s(t)THs(t)

The derivative of Vc(t) is

V̇c(t) = s(t)THṡ(t)
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Computing the derivative of s(t) in equation 2.27, and substituting it in V̇c(t), along

with equations 2.26, 2.29, and 2.21, results in

V̇c(t) = s(t)TS(Hω(t))ω(t)− s(t)TKDs(t) + s(t)THαr(t)− s(t)TS(Hω(t))ωr(t)

− s(t)THαr(t)

Since s(t) = ω(t)− ωr(t), rearranging the terms gives

V̇c(t) = −s(t)TKDs(t)

Therefore by Corollary 2.1, s(t) goes to zero exponentially fast.

The attitude error, ε̃c(t), is bounded by definition. The angular velocity error

is also bounded, since s(t) = ω̃c(t) + λε̃c(t) and both s(t) and ε̃c(t) are bounded.

The squared norm of s(t) is

‖s(t)‖2 = ‖ω̃c(t)‖2 + 2λω(t)T ε̃c(t) + λ2‖ε̃c(t)‖2 (2.30)

Integrating equation 2.30

∫ T

0

‖s(τ)‖2dt =

∫ T

0

‖ω̃c(τ)‖2dτ

+ λ2

∫ T

0

‖ε̃c(τ)‖2dτ + 2λ

∫ T

0

ω̃c(τ)T ε̃c(τ)dτ

(2.31)

But, ω̃c(t)
T ε̃c(t) = −2 ˙̃ηc(t), so the last term in equation 2.31 becomes 4λ[η̃c(0) −

η̃c(T )], which is bounded for all T by β < ∞. Equation 2.31 is rewritten as

∫ T

0

‖s(τ)‖2dt− β =

∫ T

0

‖ω̃c(τ)‖τ 2dτ

+ λ2

∫ T

0

‖ε̃c(τ)‖2dτ

(2.32)
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Since s(t) → 0 exponentially fast, s(t) ∈ L2. Therefore the terms on the right side

of equation 2.32 must also be in L2.

ω̃c(t) ∈ L2, ε̃c(t) ∈ L2

Since s(t) is bounded, ω̃c(t) and ε̃c(t) are also bounded,

ω̃c(t), ε̃c(t) ∈ L2 ∩ L∞

Since ˙̃εc(t) = 1
2
[η̃c(t)I+S(ε̃c(t))]ω̃c(t) and ω̃c(t) is bounded, ˙̃εc(t) is therefore bounded

˙̃εc(t) ∈ L∞

By Lemma 2.1, since ε̃c(t) ∈ L2 ∩L∞ and ˙̃εc(t) ∈ L∞, ‖ε̃c(t)‖ → 0 as t →∞. Since

ω(t), ωd(t), ω̇(t), and ω̇d(t) are all bounded, a similar argument establishes that

‖ω̃c(t)‖ → 0 as t →∞. Asymptotically perfect tracking is obtained with the above

control scheme, given noise free measurements of the states ω(t) and q(t).

In this work, ω(t) is not known precisely. Rather, an estimate of ω(t) is

provided, for example, by equations 2.11 through 2.14. Figure 2.2 shows the addition

of the nonlinear feedback controller to figure 2.1. The true angular velocity, ω(t),

is not available for feedback into the control algorithm, only ω̂(t) is available. This

work considers the stability of a certainty equivalence substitution of ω̂(t) into the

control law of equation 2.26. With ω̂(t) replacing ω(t), the error metric s(t) becomes

ŝ(t) = ω̂(t)− ωr(t)

The difference between s(t) and ŝ(t) is given as

s̃(t) = s(t)− ŝ(t) = ω(t)− ω̂(t)
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In the case of a gyro bias, s̃(t) becomes

s̃(t) = (R(qg)ΓIωg(t)− b)− (R(qg)ΓIωg(t)− b̂(t)) = −b̃(t)

In the case of a scale factor error, s̃(t) becomes

s̃(t) = (R(qg)ΓIωg(t)− b)− (R(qg)Γ̂I(t)ωg(t)− b) = R(qg)Γ̃I(t)ωg(t)

where Γ̃I(t) = diag{γ̃I(t)}. Finally, given an alignment error, s̃(t) becomes

s̃(t) = (R(qg)ΓIωg(t)− b)− (R(q̂g(t))ΓIωg(t)− b) = (R(q̃g(t))− I)R(q̂g(t))ΓIωg(t)

where R(q̃g(t)) = R(qg)R(q̂g(t))
T . Each of the miscalibrations are first considered

individually and then in combinations.

In a nonlinear system there are no guaranteed closed loop stability properties

when a stable nonlinear estimator is combined with a stable nonlinear controller, as

there are in a linear system. [31] For example, given the following system

ẋ = u + θx2

where θ is unknown. Choose the control law as u = −x − θ̂x2. θ̂ comes from an

estimator designed such that θ̂ is exponentially converging to θ.

θ̃(t) = θ̃(0)e−kt

The closed loop equation is therefore

ẋ = −x + θ̃(0)x2e−kt (2.33)

30



The explicit solution of equation 2.33 is

x(t) =
2x(0)

x(0)θ̃(0)e−t + [2− x(0)θ̃(0)]et

If θ̃(0)x(0) > 2, x(t) = ∞ in a finite time t < ∞. The finite escape time is

tesc =
1

2
ln

x(0)θ̃(0)

x(0)θ̃(0)− 2

Figure 2.3(a) shows the convergence of θ̃ to zero, and figure 2.3(b) shows x(t) escaping

to infinity. Recall from equation 2.21 that quadratic nonlinearities are present in the
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Figure 2.3: Coupled Estimator/Controller Errors With Gyro Bias

rigid body attitude dynamics. The above example illustrates the need to include a

closed loop stability analysis when nonlinear estimators and controllers are coupled.
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Chapter 3

Gyro Bias Calibration

3.1 Nonlinear Estimator for Constant Gyro Bias

The first estimator presented is the gyro bias estimator. Following the estimator

proposed in [27], a state estimator for the attitude and bias is defined as

˙̂q(t) =
1

2
Q(q̂(t))R(q̃o(t))

T [ω̂(t) + kε̃o(t)sign(η̃o(t))] (3.1)

˙̂
b = −α

2
ε̃o(t)sign(η̃o(t)) (3.2)

where ω̂(t) is given in 2.12 and is repeated here as

ω̂(t) = ωg(t)− b̂(t) (3.3)

Unlike [27], the bias here is considered to be persistent (constant). The scale factor

and alignment are assumed known and incorporated into the gyro measurement.

The gain k is chosen as a positive constants (note also that 3.2 is scaled by 1 sec−2).

Similarly, the learning rate, α, is also a positive constant. Essentially, q̂(t) is a

prediction of the attitude at time t, propagated with the kinematic equation using

the measured angular velocity and the current bias estimate. The attitude error
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is the relative orientation between the predicted attitude provided by equation 3.1

and the true attitude provided by the measured attitude, q(t). The attitude error is

computed using equation 1.4 as

q̃o(t) =




ε̃o(t)

η̃o(t)


 = q(t)⊗ q̂(t)−1 (3.4)

The term R(q̃o(t))
T in equation 3.1 transforms the angular velocity terms from the

body frame to the estimator frame.

The kinematic equation for the attitude error quaternion has the same form as

the quaternion kinematic equation in equation 2.3. The angular velocity associated

with the attitude error quaternion is the difference between the angular velocity of the

body coordinates and the angular velocity of the estimator coordinates (resolved in

body coordinates) [36]. Therefore, with equation 2.3, the definition given in equation

2.4, equation 3.1, and noting that R(q̃o(t))ε̃o(t) = ε̃o(t) (since ε̃o(t) points along the

eigenaxis of the rotation), the kinematic equation for q̃o(t) is given as

˙̃qo(t) =
1

2




Q1(q̃o(t))

−ε̃o(t)
T


 (−b̃(t)− kε̃o(t)sign(η̃o(t)) (3.5)

The derivative of b̃(t) is determined by differentiating equation 2.15, and substituting

equations 3.2 and 2.9.

˙̃
b(t) =

α

2
ε̃o(t)sign(η̃o(t)) (3.6)

Note that the equilibrium states for 3.5 and 3.6 are

[
q̃o(t)

T b̃(t)T

]
=

[
0 0 0 ±1 0 0 0

]
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Theorem 3.1 For any measured angular velocity, ωg(t), the equilibrium states of

the system 3.5 and 3.6 are exponentially stable. In particular, b̂(t) → b exponentially

fast from any initial conditions q̂(t0) and b̂(t0).

Proof : Choose a Lyapunov function as

Vo(t) =
1

2α
b̃(t)T b̃(t) +

1

2





(η̃o(t)− 1)2 + ε̃o(t)
T ε̃o(t) η̃o(t) ≥ 0

(η̃o(t) + 1)2 + ε̃o(t)
T ε̃o(t) η̃o(t) < 0

Vo(t) is continuous. The derivative of Vo(t) is

V̇o(t) =
1

α
b̃(t)T ˙̃b(t) +





(η̃o(t)− 1) ˙̃ηo(t) + ε̃o(t)
T ˙̃εo(t) η̃o(t) ≥ 0

(η̃o(t) + 1) ˙̃ηo(t) + ε̃o(t)
T ˙̃εo(t) η̃o(t) < 0

(3.7)

Noting that ε̃o(t)
T ˙̃εo(t) + η̃o(t) ˙̃ηo(t) = 0 (including the left and right derivatives of

η̃o(t) = 0), for all t, equation 3.7 is

V̇o(t) = −k

2
ε̃o(t)

T ε̃o(t)

This establishes that b̃(t), ε̃o(t), and η̃o(t) are globally, uniformly bounded. Moreover,

Vo(t) is a continuous, twice differentiable function with

V̈o(t) =
k

4
ε̃o(t)

TQ1(q̃o(t))[b̃(t) + kε̃o(t)sign(η̃o(t))]

which is bounded. Lemma 2.1 then shows that ‖ε̃o(t)‖ → 0 as t →∞.

Since all signals in the estimator are bounded, the system 3.5 and 3.6 can be

further analyzed, in the given format, as a linear time-varying system [30] ẋ(t) =
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A(t)x(t) where

x(t) =




ε̃o(t)

b̃(t)




A(t) =



−k

2
sign(η̃o(t))Q1(q̃o(t)) −1

2
Q1(q̃o(t))

α
2
sign(η̃o(t))I 0




where, by virtue of the above Lyapunov analysis, all terms in the matrix A(t) are

known to be bounded for all t ≥ t0. Rewriting V̇o(t) as V̇o(t) = −x(t)TCTCx(t) ≤ 0,

where C =

[ √
k
2
I 0

]
, Theorem 4.5 and the discussion on pp.626-628 in [30] shows

that the equilibrium point x(t) = 0 of this equivalent system is exponentially stable

if the pair (A(t), C) is uniformly completely observable (UCO). Since observability

properties are unchanged under output feedback [30], (A(t), C) are UCO if the pair

(A(t)−K(t)C,C) is uniformly observable for any piecewise, continuous and bounded

matrix K(t). Choose K(t) as

K(t) =



−

√
k
2
sign(η̃o(t))Q1(q̃o(t))

√
α
2k

sign(η̃o(t))I




K(t) is piecewise continuous based on the following properties. Note from the above

Lyapunov analysis that ‖ε̃o(t)‖ → 0. Since ‖q̃o(t)‖2 = 1 = ‖ε̃o(t)‖2 + |η̃o(t)|2 for any

time, t, there exists a time, T > 0, such that ‖η̃o(t)‖ > 0 for all t > T . Since η̃o(t)

therefore cannot pass through zero for t > T , sign(η̃o(t)) is constant for all t > T

and, hence, K(t) is a piecewise continuous function of time.
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The state transition matrix for the pair (A(t)−K(t)C, C) is

Φ(τ, t) =




I Σ(τ, t)

0 I


 (3.8)

where Σ(τ, t) = −1
2

∫ τ

t
Q1(q̃o(σ))dσ, with Q1(q(t))defined in equation 2.4. The ob-

servability Grammian is then [33]

W (t, t+T ) =

∫ t+T

t

Φ(τ, t)TCTCΦ(τ, t)dτ =

∫ t+T

t




k
2
I k

2
Σ(τ, t)

k
2
Σ(τ, t)T k

2
Σ(τ, t)TΣ(τ, t)


 dτ

(3.9)

The system is UCO if there exists a T > 0 and positive constants α1 < ∞, α2 > 0

such that, for all t ≥ t0 ,α1I ≥ W (t, t + T ) ≥ α2I. Using Lemma 13.4 of [30], this

property is assured if Q1(q̃o(t)) and d
dt

Q1(q̃o(t)) are bounded, and there exist positive

constants T2, β1, and a finite constant β2 such that, for all t ≥ t0,

β2I ≥
∫ t+T2

t

Q1(q̃o(τ))TQ1(q̃o(τ))dτ ≥ β1I (3.10)

Q1(q̃o(t)) is bounded, since all the signals in the estimator are bounded, hence the

upper bound in 3.10 is satisfied. Substituting the equality Q1(q̃o(t))
TQ1(q̃o(t)) =

I− ε̃o(t)ε̃o(t)
T into equation 3.10 results in

∞ > β2I ≥
∫ t+T2

t

(I− ε̃o(t)ε̃o(t)
T )dτ ≥ β1I > 0 (3.11)

Recall that it has been shown that ‖ε̃o(t)‖ → 0 asymptotically. Thus, for any δ > 0,

there exists a T1(δ) > t0 such that ‖ε̃o(t)‖ < δ for all t ≥ t0 + T1. Taking any δ < 1,
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Quaternion Value Bias Value

q(t0) [0, 0, 1, 0]T b(t) [0.5,−0.5, 0.5]T deg
sec

q̂(t0) [0, 0, 0, 1]T b̂(t0) [0, 0, 0]T deg
sec

Table 3.1: Bias Estimator Simulation Initial Conditions

any T2 > T1, and any z in R3

∞ > (T2 − T1)‖z‖2 > zT
[ ∫ t+T2

t

(I− ε̃o(τ)ε̃o(τ)T )dτ
]
z > (1− δ2)(T2 − T1)‖z‖2 > 0

(3.12)

Finally, d
dt

Q1(q̃o(t)) = ˙̃εo(t)+ ˙̃ηo(t) is bounded, since all the terms in 3.5 are bounded.

This demonstrates the required UCO property. The PE condition is satisfied for any

ωg(t), and therefore ε̃o(t) and b̃(t) approach zero exponentially fast. ¤

3.2 Estimator Simulation Results

The gyro bias estimator is tested with a Matlab simulation. Table 3.1 lists the initial

conditions for the estimator, as well as the true gyro bias. The gains are chosen as

k = 1 and α = 1. First, the angular velocity is ω(t) = [3, −4, 5] deg/sec. Figures

3.1(a) and 3.1(b) show that both the attitude prediction error, ‖ε̃o(t)‖, and the bias

estimation error, ‖b̃(t)‖, converge to zero exponentially fast. Figures 3.2(a) and

3.2(b) show the attitude predictions errors and bias estimation errors with α = 0.5.

The transients are smaller, but the convergence time is slightly longer. Next the

37



0 20 40 60 80 100 120
0

20

40

60

80

100

120

140

160

180

|
a
t
t
i
t
u
d
e
 
e
r
r
o
r
|
 
(
d
e
g
)

time (sec)

(a) Attitude Prediction Error

0 20 40 60 80 100 120
0

5

10

15

20

25

30

35

40

45

|
b
i
a
s
 
e
r
r
o
r
|
 
(
d
e
g
/
s
e
c
)

time (sec)

(b) Gyro Bias Estimation Error

Figure 3.1: Gyro Bias Estimator Errors, ω(t) = [3, −4, 5] deg/sec
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Figure 3.2: Gyro Bias Estimator Errors with α Reduced, ω(t) = [3, −4, 5] deg/sec
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angular velocity is ω(t) = [0, 0, 0], with α = 1. Figures 3.3(a) and 3.3(b) show that,

again, both the attitude prediction error and the bias estimation error converge to

zero. Finally, the simulation is repeated with a large gyro bias of b = [30,−30, 30]T
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Figure 3.3: Gyro Bias Estimation Errors, ω(t) = [0, 0, 0]

deg/sec and a large angular velocity of ω(t) = [30,−40, 50]T deg/sec, with α = 1.

Figure 3.2 shows again that the bias estimation errors converge to zero exponentially

fast.

3.3 Closed Loop Stability

The nonlinear tracking control strategy proposed in [32] and summarized in section

2.3 cannot be implemented because exact measurements of the angular velocity ω(t)

are not available. Instead, a certainty equivalence approach is proposed using the

estimates ω̂(t) from equation 3.3 (noise is not considered at this point) generated by

39



0 20 40 60 80 100 120
0

10

20

30

40

50

60

70

|
b
i
a
s
 
e
r
r
o
r
|
 
(
d
e
g
/
s
e
c
)

time (sec)

Figure 3.4: Gyro Bias Estimation Errors, ω(t) = [30, −40, 50] deg/sec

the estimator equations 3.1, 3.2, resulting in

u(t) = −KDŝ(t) + Hα̂r(t)− S(Hω̂(t))ωr(t) (3.13)

where, again ŝ(t) = ω̂(t)− ωr(t), ˆ̃ωc(t) = ω̂(t)−R(q̃c(t))ωd(t), and

α̂r(t) = R(q̃c(t))ω̇d(t)− S(ˆ̃ωc(t))R(q̃c(t))ωd(t)− λQ1(q̃c(t))ˆ̃ωc(t)

Substitution of equation 3.13 into equation 2.21, the attitude dynamics, results in

Hω̇(t)− S(Hω(t))ω(t) = −KDŝ(t) + Hα̂r(t)− S(Hω̂(t))ωr(t) (3.14)

Since s(t) = ω(t)− ωr(t), Hω̇(t) can be written as

Hω̇(t) = Hṡ(t) + Hαr(t)

where αr(t) = d
dt

ωr(t) is given in equation 2.29. Inserting the expression for Hω̇(t)

into 3.14 gives

Hṡ(t)− S(Hω(t))ω(t) = −KDŝ(t) + Hα̂r(t)− S(Hω̂(t))ωr(t)−Hαr(t) (3.15)
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Recall that s̃(t) is defined as

s̃(t) = s(t)− ŝ(t) = ω(t)− ω̂(t)

Substituting ω̂(t) = ω(t)− s̃(t) into the skew term on the right side of equation 3.15,

and adding KDs(t) to both sides results in

Hṡ(t)− S(Hω(t))ω(t) + KDs(t) = KDs(t)−KDŝ(t)

+ Hα̂r(t)− S(Hω(t)−Hs̃(t))ωr(t)−Hαr(t)

(3.16)

Expanding the skew term on the right side, and collecting terms, equation 3.16

becomes

Hṡ(t)− S(Hω(t))(ω(t)− ωr(t)) + KDs(t) =KDs̃(t)−H(αr(t)− α̂r(t))

+ S(Hs̃(t))ωr(t)

(3.17)

But

ω̃c(t)− ˆ̃ωc(t) = (ω(t)−R(q̃c(t))ωd(t))− (ω̂(t)−R(q̃c(t))ωd(t)) = ω(t)− ω̂(t) = s̃(t)

and

αr(t)− α̂r(t) = S(R(q̃c(t))ωd(t))(ω̃c(t)− ˆ̃ωc(t))− λQ1(q̃c(t))(ω̃c(t)− ˆ̃ωc(t))

= S(R(q̃c(t))ωd(t))s̃(t)− λQ1(q̃c(t))s̃(t)

(3.18)

So, the closed loop dynamics of equation 3.17 become

Hṡ(t)− S(Hω(t))s(t) + KDs(t) = ∆(q̃c(t),ωd(t))s̃(t) (3.19)
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where

∆(q̃c(t), ωd(t)) = −S(ωr(t))H −HS(R(q̃c(t))ωd(t)) + λHQ1(q̃c(t)) + KD

The definition of ωr(t), the assumption that ωd(t) is bounded, and the constraint

‖q̃c(t)‖ = 1 ensure that ∆(q̃c(t),ωd(t)) is a bounded matrix over any solution of the

coupled dynamics 3.1, 3.2, 2.21, and 3.13.

For gyro bias errors, the error term s̃(t) can again be written as

s̃(t) = ω(t)− ω̂(t) = −b̃(t)

and the closed loop dynamics become

Hṡ(t)− S(Hω(t))s(t) + KDs(t) = −∆(q̃c(t),ωd(t))b̃(t) (3.20)

Theorem 3.2 The control law 3.13 results in global stability and asymptotically per-

fect tracking, ‖ε̃c(t)‖ → 0, ‖ω̃c(t)‖ → 0.

Proof : Using the Lyapunov function from section 2.3 Vc(t) = 1
2
s(t)THs(t), the

derivative of Vc(t) is

V̇c(t) = −s(t)TKDs(t)− s(t)T∆(q̃c(t), ωd(t), KD)b̃(t) (3.21)

Applying Young’s inequality, 3.21 satisfies

V̇c(t) ≤ −kD

2
‖s(t)‖2 +

ζ2

2kD

‖b̃(t)‖2 (3.22)

where kD is the smallest eigenvalue of KD, and

ζ = sup
t≥t0

sup
‖q̃c(t)‖=1

‖∆(q̃c(t), ωd(t))‖ < ∞
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since all the terms in ∆(q̃c(t), ωd(t)) are bounded, as noted above. Since the estima-

tor dynamics 3.1 and 3.2 ensure that ‖b̃(t)‖ is uniformly bounded, the variable s(t)

is also uniformly bounded. This also implies that ṡ(t) is uniformly bounded, since

all the terms in the closed-loop dynamics 3.20 are bounded. Moreover, s(t) ∈ L2

since for any t ≥ t0

∫ t

t0

‖s(τ)‖2dτ ≤ 2

kD

[Vc(t)− Vc(t0)] +
ζ2

k2
D

∫ t

t0

‖b̃(τ)‖2dτ

and
∫ t

t0
‖b̃(τ)‖2dτ is finite for all t ≥ t0 since ‖b̃(t)‖ converges exponentially to zero.

Thus, by Lemma 2.1, s(t) ∈ L∞ ∩ L2, ṡ(t) ∈ L∞, implies s(t) → 0.

This establishes convergence of s(t) to zero; now, the convergence of the actual

attitude error ε̃c(t) is examined. Since ‖ε̃c(t)‖ is bounded by definition, s(t) =

ω̃c(t) + λε̃c(t) ∈ L∞ implies that ω̃c(t) ∈ L∞. This in turn demonstrates that

˙̃εc(t) ∈ L∞, since ˙̃εc(t) = 1
2
Q1(q̃c(t))ω̃c(t) and both terms on the right are bounded.

Finally, ε̃c(t) is also in L2 since for any t ≥ t0

∫ t

t0

‖ε̃c(τ)‖2dτ =
1

λ2

∫ t

t0

‖s(τ)‖2dτ − 2

λ

∫ t

t0

ω̃c(τ)T ε̃c(τ)dτ −
∫ t

t0

‖ω̃c(τ)‖2

∫ t

t0

‖ε̃c(τ)‖2dτ ≤ 1

λ2

∫ t

t0

‖s(τ)‖2dτ − 2

λ

∫ t

t0

ω̃c(τ)T ε̃c(τ)dτ

But, from equation 2.25, ω̃c(t)
T ε̃c(t) = −2 ˙̃ηc(t) resulting in

∫ t

t0

‖ε̃c(τ)‖2dτ ≤ 1

λ2

∫ t

t0

‖s(τ)‖2dτ +
4

λ
[η̃c(t)− η̃c(t0)]

which is finite since s(t) ∈ L2. Hence, ε̃c(t) ∈ L∞ ∩ L2, ˙̃εc(t) ∈ L∞ and Lemma

2.1 again implies that limt→∞‖ε̃c(t)‖ = 0. An equivalent argument establishes that

limt→∞‖ω̃c(t)‖ = 0. ¤
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Quaternion Value Bias Value Rate Value

q(t0) [0, 0, 1, 0]T b(t) [0.5,−0.5, 0.5]T deg
sec

ω(t0) [0, 0, 0]T deg
sec

q̂(t0) [0, 0, 0, 1]T b̂(t0) [0, 0, 0]T deg
sec

ωd(t0) [0, 0.063, 0]T deg
sec

qd(t0) [0, 0, 0, 1]T

Table 3.2: Bias Estimator Simulation Initial Conditions

3.4 Closed Loop Simulation Results

The bias estimator and controller design is tested with a Matlab simulation. The in-

ertia matrix is a diagonal matrix with principal moments of inertia chosen arbitrarily

as [90, 100, 70] kg m2. The size of the principal moments of inertia is comparable to

that of a small satellite. Table 3.2 lists the initial conditions for the estimator and

controller, as well as the true gyro bias and true initial angular velocity. The gains

are chosen as k = 1, KD = kDI, kD = 6, and λ = 3. The desired trajectory is to track

a 0.063 deg/sec rotation about the y-axis, a typical 1 rev/orbit rate for a low earth

orbit satellite. Figure 3.5(a) shows that ‖b̃(t)‖ converges exponentially to zero. Fig-

ure 3.5(b) shows the tracking error, ‖ε̃c(t)‖, converges asymptotically to zero. Figure

3.5(c) similarly shows that the rate tracking errors converge to zero. Without cor-

recting for the bias, the tracking error has a steady state error of approximately 30

degrees, as shown in Figure 3.5(d).
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Figure 3.5: Coupled Estimator/Controller Errors With Gyro Bias
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3.5 Gyro Noise

The addition of noise to the gyro model is now considered. The gyro reading and

bias are given as

ωg(t) = ω(t) + b(t) + ν(t) (3.23)

ḃ(t) = νb(t) (3.24)

where ν(t) and νb(t) are zero mean, uniformly bounded, ergodic noise processes with

finite variances of σ2I3 and σ2
bI3, respectively. The bias is now a ’random walk’, and

the gyro measurement also has additive noise in addition to the bias. The estimator

error equations are now




˙̃qo(t)

˙̃
b(t)


 =




1
2
Q(q̃o(t))(−b̃(t)− kε̃o(t)sign(η̃o(t))− ν(t))

1
2
ε̃o(t)sign(η̃o(t)) + νb(t)


 (3.25)

Equation 3.25 is divided into the nominal system of 3.5 and 3.6, without the noise,

plus the perturbation

ẋ(t) = f(t, x(t)) + D(t)

where, as above,

x(t) =




ε̃o(t)

b̃(t)




and

D(t) =



−1

2
Q1(q̃o(t))ν(t)

νb(t)



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As demonstrated above, the nominal system, ẋ(t) = f(t, x(t)), is exponentially

stable. According to the Converse Lyapunov Theorem [30], a Lyapunov function

and positive constants c1, c2, c3, and c4 exist for the nominal system and satisfy the

following

c1‖x(t)‖ ≤ Vp(t) ≤ c2‖x(t)‖

V̇p(t) ≤ −c3‖x(t)‖2

‖∂Vp(t)

∂x
‖ ≤ c4‖x(t)‖

The nominal system is known, by Theorem 3.1, to be exponentially stable.

Using Vp(t) as the Lyapunov function candidate for the perturbed system, the

derivative of Vp(t) along trajectories of the perturbed Lyapunov function satisfy [30]

V̇p(t) ≤ −c3‖x(t)‖2 + ‖∂Vp(t)

∂x
(t)‖‖D(t)‖

which becomes

V̇p(t) ≤ −c3‖x(t)‖2 + c4‖x(t)‖‖D(t)‖ (3.26)

Since D(t) is uniformly bounded, the system is globally stable. The state x(t)

converges exponentially to a ball determined by the bound on D(t), and then remains

within that ball. [30]

Applying Young’s inequality to equation 3.26 results in

V̇p(t) ≤ −c3

2
‖x(t)‖2 +

c2
4

2c3

‖D(t)‖2 ≤ −c3

2
‖x(t)‖2 +

c2
4

2c3

(
1

4
‖ν(t)‖2 + ‖νb(t)‖2) (3.27)

since ‖Q1(q̃o(t))‖ = 1. The time average of 3.27 is computed as

1

T

∫ T

0

‖x2(τ)‖dτ ≤ c2
4

c2
3

1

T

∫ T

0

(
1

4
‖ν(τ)‖2 + ‖νb(τ)‖2)dτ +

2

c3T
[Vp(0)− Vp(T )] (3.28)
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Taking the limit of 3.28 as T →∞

lim sup
T→∞

1

T

∫ T

0

‖x(τ)‖2dτ ≤ lim
T→∞

c2
4

c2
3

1

T

∫ T

t

(
1

4
‖ν(τ)‖2 + ‖νb(τ)‖)dτ

The noise processes are ergodic, and therefore the ensemble average is equivalent to

the time average [37]. The root mean square (RMS) bound (scaled accordingly for

correct units) is given as

‖b̃(t)‖RMS ≤ ‖x(t)‖RMS ≤ c

√
1

4
σ2 + σ2

b

where the constants are combined into a single constant, c =
√

3c4
c3

.

The controller analysis is similarly adjusted to account for the noise. Replacing

ω(t) in the analysis in section 3.3 with equation 3.23 results in the following closed

loop equation, similar to equation 3.20

Hṡ(t)− S(Hω(t))s(t) + KDs(t) = −∆(q̃c(t), ωd(t))(b̃(t) + ν(t)) (3.29)

The derivative of the Lyapunov function in 3.22 becomes

V̇c(t) ≤ −kD

2
‖s(t)‖2 +

ζ2

2kD

(‖b̃(t)‖2 + ‖ν(t)‖2) (3.30)

Thus, from the definition of Vc(t), and recalling from the estimator analysis above

that ‖b̃(t)‖ and ‖ν(t)‖ are bounded, s(t) is also seen to be uniformly bounded. Sim-

ilarly, ṡ(t) is uniformly bounded, since all the terms in 3.29 are bounded. Integrating

3.30

∫ T

0

‖s(τ)‖2dτ ≤ 2

kD

[Vc(0)− Vc(T )] +
ζ2

k2
D

(

∫ T

0

‖b̃(τ)‖2dτ +

∫ T

0

‖ν(τ)‖2dτ)
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Substituting ‖s(t)‖2 = ‖ω̃c(t)‖2 + 2λω̃c(t)
T ε̃c(t) + λ2‖ε̃c(t)‖2

∫ T

0

‖ε̃c(τ)‖2dτ ≤ ζ2

k2
Dλ2

(

∫ T

0

‖b̃(τ)‖2dτ +

∫ T

0

‖ν(τ)‖2dτ) +
2

kDλ2
[Vc(0)− Vc(T )]

+
4

λ
[η̃(T )− η̃(t)]

(3.31)

Computing the time average of 3.31 and taking the limit as T →∞

lim sup
T→∞

1

T

∫ T

0

‖ε̃c(τ)‖2dτ ≤ lim
T→∞

ζ2

k2
Dλ2

1

T
(

∫ T

0

‖b̃(τ)‖2dτ +
1

T

∫ T

0

‖ν(τ)‖2dτ)

lim sup
T→∞

1

T

∫ T

0

‖ε̃c(τ)‖2dτ ≤ ζ2

k2
Dλ2

[‖b̃(t)‖2
RMS + 3σ2]

The RMS limit of the tracking error is then

‖ε̃c(t)‖RMS ≤ ζ

kDλ
[(

c2

4
+ 3)σ2 + c2σ2

b ]
1
2 (3.32)

Note that the constants are finite and depend on the spacecraft system properties

(for example, gains and inertia).

3.6 Estimator and Closed Loop Simulation Results with Noise

The bias estimator and controller simulation is repeated with the added noise terms.

For this example, the standard deviation of the gyro noise is set to 0.004 deg/sec
1
2

and the bias noise standard deviation is also 0.004 deg/sec
3
2 . The gyro noise level is

that given for a MEMS gyro in [2]. The gyro noise to bias noise ratio is higher than

that given for the spacecraft gyros of [5], and represents a gyro with significantly

more drift.
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First, just the estimator is tested. The initial conditions for the estimator are

given in Table 3.1. The gains are k = 1 and α = 1. The true angular velocity

is ω(t) = [5, 3, −4] deg/sec. Figure 3.6(a) shows the true bias (solid line) and

the estimated bias (dashed line). The estimated bias follows the ’random walk’

in the true bias, after convergence, to within a ball determined by the variance of

the noise. Figure 3.6(b) shows the RMS bias error. The simulation is repeated
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Figure 3.6: Gyro Bias Estimation Errors with Added Noise

with the noise standard deviations increased by a factor of ten, σ = 0.04 deg/sec
1
2

and σb = 0.04 deg/sec
3
2 . Figure 3.7(a) shows again that the estimated bias follows

the ’random walk’ in the true bias. Figure 3.7(b) shows the RMS bias estimation

error. Here the RMS error is higher, as expected from the increase in the standard

deviations of the noise terms.

Next the closed loop system is tested with the added noise terms. The initial

conditions for the estimator and controller are given in Table 3.2, the standard devi-
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Figure 3.7: Gyro Bias Estimation Errors with Added Noise, Standard Deviations

Increased

ations of the noise terms again are σ = 0.004 deg/sec
1
2 and the σb = 0.004 deg/sec

3
2 .

The gains and initial conditions are the same as in the simulations without noise.

Figures 3.8(a) and 3.8(b) show the true gyro bias (solid line), and the estimated gyro

bias (dashed line), and the RMS bias error. As with the estimator, the estimated

bias follows the ’random walk’ in the true bias, after convergence, to within a ball

proportional to the standard deviation of the added noise. Figures 3.9(a) and 3.9(b)

show the steady state attitude tracking error and the RMS attitude tracking error,

while figures 3.10(a) and 3.10(b) show the steady state rate tracking error and the

RMS rate tracking error, respectively. Figures 3.11(a) and 3.11(b) show the RMS

attitude tracking error with the controller gain, kD doubled, and similarly with the

standard deviations of the noise reduced by half. As compared to the results in

figure 3.9(b), in both cases the attitude tracking error is reduced as expected based
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on equation 3.32.
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Figure 3.8: Closed Loop Control with Gyro Bias Error and Added Noise
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Figure 3.9: Closed Loop Control Attitude Tracking Errors with Gyro Bias and Added

Noise
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Figure 3.10: Closed Loop Control Rate Tracking Errors with Gyro Bias and Added

Noise
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Figure 3.11: Closed Loop Attitude Tracking Errors with (a) KD Doubled (b) 1
2
σ and

1
2
σb
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Chapter 4

Scale Factor Calibration

4.1 Nonlinear Estimator for Constant Scale

Factor

The scale factor estimator is designed similarly to the gyro bias estimator. The

attitude prediction is given as

˙̂q(t) =
1

2
Q(q̂(t))R(q̃o(t))

T [ω̂(t) + kε̃o(t)sign(η̃o(t))] (4.1)

and the scale factor estimator is

˙̂γIi(t) =
α

2
ωgi(t)ε̃oi(t)sign(η̃o(t)) (4.2)

where ε̃oi(t) are the three components of ε̃o(t) and α > 0. The estimated angular

velocity, ω̂(t), is given in equation 2.14, and is repeated here as

ω̂(t) = Γ̂I(t)ωg(t) (4.3)

The alignment matrix is assumed known and, without loss of generality, is the iden-

tity matrix, R(qg) = I. There is no gyro bias error. The estimated scale factor
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components, γ̂Ii(t) with i = x, y, z, are estimates of the inverse of the true scale fac-

tor components. The components γ̂Ii(t) form the main diagonal of the matrix Γ̂I(t)

in equation 4.3. Note that the estimated scale factors, γ̂Ii(t), are never inverted in

the estimator (or in the controller to follow), so dividing by zero is not a possibility.

The derivatives of the attitude error, q̃o(t) = q(t)⊗ q̂(t)−1, and the scale factor

error components are

˙̃qo(t) =
1

2




Q1(q̃o(t))

−ε̃o(t)
T


 (ΓIωg(t)− Γ̂I(t)ωg(t)− kε̃o(t)sign(η̃o(t)) (4.4)

˙̃γIi(t) = −α

2
ωg(t)ε̃oi(t)sign(η̃o(t)) (4.5)

where again, i = x, y, z. ΓI is a diagonal matrix, containing the inverse of each of

the true scale factors, defined as γIi, on the main diagonal. Obviously, a zero scale

factor would be unacceptable, but unlikely since it would eliminate the use of the

gyro data. The scale factor errors are defined as γ̃Ii(t) = γIi− γ̂Ii(t), with Γ̃I(t) given

as

Γ̃I(t) =




γ̃Ix(t) 0 0

0 γ̃Iy(t) 0

0 0 γ̃Iz(t)




The difference in angular velocity terms in equation 4.4 is written as

ΓIωg(t)− Γ̂I(t)ωg(t) = Γ̃I(t)ωg(t) = Ωg(t)γ̃I(t)

where Ωg(t) = diag{ωg(t)} is a diagonal matrix with the components of ωg(t) on the

main diagonal and γ̃I(t) is a vector containing the components γ̃Ii(t). Equation 4.4
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is rewritten as

˙̃qo(t) =
1

2




Q1(q̃o(t))

−ε̃o(t)
T


 (Ωg(t)γ̃I(t)− kε̃o(t)sign(η̃o(t)) (4.6)

From equation 4.5, the scale factor error components are written in vector form as

˙̃γI = −α

2
Ωg(t)ε̃o(t)sign(η̃o(t))

Note that the equilibrium states for 4.5 and 4.6 are

[
q̃o(t)

T γ̃I(t)
T

]
=

[
0 0 0 ±1 0 0 0

]

Theorem 4.1 The equilibrium states of the system 4.5 and 4.6 are globally stable.

In particular, if the angular velocity, ωg(t), is bounded, ε̃o(t) → 0 asymptotically.

Proof : The proof follows that of the gyro bias estimator. Choose a Lyapunov

function as

Vo(t) =
1

2α

∑
i

ωgi(t)6=0

γ̃Ii(t)
2 +

1

2





(η̃o(t)− 1)2 + ε̃o(t)
T ε̃o(t) η̃o(t) ≥ 0

(η̃o(t) + 1)2 + ε̃o(t)
T ε̃o(t) η̃o(t) < 0

(4.7)

Vo(t) is continuous. Noting that ε̃o(t)
T ˙̃εo(t) + η̃o(t) ˙̃ηo(t) = 0, as with the gyro bias

analysis, the derivative of Vo(t) (including the left and right derivatives of η̃o(t) = 0)

yields, for all t

V̇o(t) =
1

α

∑
i

ωgi(t)6=0

γ̃Ii(t) ˙̃γIi(t) +





− ˙̃ηo(t) η̃o(t) ≥ 0

˙̃ηo(t) η̃o(t) < 0

(4.8)
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Substituting equation 4.5 and ˙̃ηo(t) from equation 4.6 into equation 4.8 results in

V̇o(t) = −k

2
ε̃o(t)

T ε̃o(t)

This establishes that ε̃o(t), η̃o(t), and γ̃Ii(t) (those with the corresponding component

of ωg(t) nonzero), are globally, uniformly bounded. No conclusions yet can be made

about the individual components of γ̃Ii(t). This will be analyzed in Theorem 4.2

below.

Vo(t) is a continuous, twice differentiable function with

V̈o(t) =
k

2
ε̃o(t)

TQ1(q̃o(t))[−Ωg(t)γ̃I(t) + kε̃o(t)sign(η̃o(t))]

where Q1(q̃o(t)) is defined in equation 2.4. V̈o(t) is bounded, given that ωg(t) is

bounded. Lemma 2.1 then shows that ‖ε̃o(t)‖ → 0 as t →∞. ¤

Theorem 4.2 For any bounded, angular velocity, ωg(t), that is persistently exciting,

the equilibrium states of the system 4.5 and 4.6 are exponentially stable. In particular,

γ̂(t) → γ exponentially fast from any initial conditions q̂(t0) and γ̂(t0).

Proof : If ωg(t) is bounded, all the signals in equations 4.5 and 4.6 are bounded.

The system is, as in the gyro bias case, analyzed as a linear time varying system,

ẋ(t) = A(t)x(t). If all the components of ωg(t) are nonzero, A(t) is given as

A(t) =



−k

2
sign(η̃o(t))Q1(q̃o(t))

1
2
Q1(q̃o(t))Ωg(t)

−α
2
sign(η̃o(t))Ωg(t) 0



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The development proceeds like that for the gyro bias in Section 3.1, under the

assumption that ωg(t) is at least bounded. Rewriting V̇o(t) as

V̇o(t) = −x(t)TCTCx(t) ≤ 0

where C =

[ √
k
2
I 0

]
, Theorem 4.5 and the discussion on pp.626-628 in [30] shows

that the equilibrium point x(t) = 0 of the equivalent system is exponentially stable

if the pair (A(t), C) is uniformly completely observable (UCO). Since observability

properties are unchanged under output feedback [30], this will be true if the pair

(A(t)−K(t)C,C) is uniformly observable for any piecewise, continuous and bounded

matrix K(t). Choose K(t) as

K(t) =



−

√
k
2
sign(η̃o(t))Q1(q̃o(t))

−√
α
2k

sign(η̃o(t))Ωg(t)




Note from the above Lyapunov analysis that ‖ε̃o(t)‖ → 0. Since ‖q̃o(t)‖2 = 1 =

‖ε̃o(t)‖2 + |η̃o(t)|2 for any time, t, there exists a time, T > 0, such that ‖η̃o(t)‖ > 0

for all t > T . Since η̃o(t) can therefore not pass through zero for t > T , sign(η̃o(t))

is constant for all t > T and, hence, K(t) is a piecewise continuous function of time.

Again, the state transition matrix for the pair (A(t)−K(t)C, C) is

Φ(τ, t) =




I Σ(τ, t)

0 I


 (4.9)

where Σ(τ, t) = 1
2

∫ τ

t
Q1(q̃o(σ))Ωg(σ)dσ. Repeating equation 3.9, the observability
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Grammian is [33]

W (t, t+T ) =

∫ t+T

t

Φ(τ, t)TCTCΦ(τ, t)dτ =

∫ t+T

t




k
2
I k

2
Σ(τ, t)

k
2
Σ(τ, t)T k

2
Σ(τ, t)TΣ(τ, t)


 dτ

(4.10)

The system is UCO if there exists a T > 0 and positive constants α1 > 0, α2 > 0

such that, for all t ≥ t0 ,α1I ≥ W (t, t + T ) ≥ α2I. Using Lemma 13.4 of [30], this

property is assured if ωg(t), ω̇g(t), Q1(q̃o(t)) and d
dt

Q1(q̃o(t)) are bounded, and there

exist positive constants T2, β1, and a bounded β2 < ∞ such that, for all t ≥ t0,

∞ > β2I ≥
∫ t+T2

t

Ωg(τ)Q1(q̃o(τ))T (τ)Q1(q̃o(τ))Ωg(τ)dτ ≥ β1I > 0 (4.11)

Substituting Q1(q̃o(t))
TQ1(q̃o(t)) = I− ε̃o(t)ε̃o(t)

T into equation 4.11 results in

∞ > β2I ≥
∫ t+T2

t

Ωg(τ)[I− ε̃o(τ)ε̃o(τ)T ]Ωg(τ)dτ ≥ β1I > 0 (4.12)

ε̃o(t) is bounded by definition. d
dt

ε̃o(t) is also bounded, since the above Lyapunov

analysis shows that all the terms in equation 4.6 are bounded, given that ωg(t) is

bounded. With ω̇g(t) bounded, the upper bound in equation 4.12 is satisfied.

To examine the lower bound, again recall that ‖ε̃o(t)‖ → 0 asymptotically.

Thus, for any δ > 0, there exists a T1(δ) > t0 such that ‖ε̃o(t)‖ < δ for all t ≥ t0 +T1.

Taking any δ < 1 and T2 > T1

I > I− ε̃o(t)ε̃o(t)
T > (1− δ2)I > 0
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Therefore, for any z ∈ R3

zT [

∫ t+T2

t

Ωg(τ)2dτ ]z > zT [

∫ t+T2

t

Ωg(τ)[I− ε̃o(τ)ε̃o(τ)T ]Ωg(τ)]zdτ

> (1− δ2)zT [

∫ t+T2

t

Ω2
gdτ ]z

(4.13)

If the following is true
∫ t+T2

t

Ωg(τ)2dτ = Psf (4.14)

where Psf is a bounded, positive definite matrix, then equation 4.13 becomes

∞ > zTPsfz > (1− δ2)zTPsfz > 0 (4.15)

Equation 4.14 is the persistency of excitation condition for the scale factor estimator.

If each component of ωg(t) is persistently exciting, the system is UCO, and both ε̃o(t)

and γ̃I(t) converge to zero exponentially fast.

There are two scenarios to consider in evaluating equation 4.14. The first

considers angular velocities that are well behaved and bounded. For example, if the

non-zero components of ωg(t) are constant, equation 4.11 is satisfied and the system

is UCO. If, for example, the components of ωg(t) are sinusoidal, equation 4.11 is

satisfied and the system is UCO.

The second scenario considers ωg(t) that violate equation 4.14. If any compo-

nent of ωg(t) belongs to a class of functions such that [38]

ωgi(t) =





f(t) t ∈ [ti, t
′
i]

0 t ∈ [t′i, ti+1]

(4.16)
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where Ti ≡ |ti+1 − ti|, T ′
i ≡ |ti+1 − t′i|, {ti}, and {t′i} are all monotonic unbounded

sequences of time and f(t) is any piecewise-continuous bounded function. If Ti →∞

and T ′
i/Ti → 1 as t → ∞, then ωg(t) is not PE for any finite T > 0. The time

intervals for which ωgi(t) = 0 get increasingly larger, therefore, any time T2 will

eventually cover an interval where the components of ωg(t) are zero for the entire

interval. If ωg(t) decreases exponentially, the system is not UCO. If ωgi(t) = e−αt,

equation 4.14 becomes

∫ t+T2

t

Ωg(τ)2dτ =

∫ t+T2

t

e−2αtIdτ =
1

2α
e−2αt[1− e−2αT2 ]I (4.17)

Equation 4.17 is not positive definite for all t ≥ t0. ¤

Remark : For situations requiring positive scale factor estimates, a standard

projection method such as that described in Chapter 4 of [39] ensures that the

estimates remain positive (and smaller than a specified bound, if needed), while

retaining all the estimator properties given above.

If the estimates, γ̂Ii(t), are constrained to be less than some known upper

bound, γiI,max, such that

γiI,max − γ̂Ii(t) > 0

and if the estimates are constrained to be positive, γ̂Ii(t) > 0, equation 4.2 is imple-

62



Attitude Value Scale Factor Value

q̂(t0) [0, 0, 0, 1]T γ̂(t) [1, 1, 1]T

q(t0) [0, 1, 0, 0]T γ1 [3,−5, 4]T

γ2 [ π
180

,− π
180

, π
180

]T

Table 4.1: Scale Factor Estimator Simulation Initial Conditions

mented as

˙̂γIi(t) =





0 γ̂Ii(t) > γiI,max and α
2
ωgi(t)ε̃oi(t)sign(η̃o(t)) > 0

0 γ̂Ii(t) < 0 and α
2
ωgi(t)ε̃oi(t)sign(η̃o(t)) < 0

α
2
ωgi(t)ε̃oi(t)sign(η̃o(t)) otherwise

4.2 Estimator Simulation Results

The scale factor estimator is tested for a variety of scenarios. Table 4.1 lists the

initial conditions for the estimator, as well as two true scale factors. The first scale

factor is arbitrary, while the second represents the possibility of scaling the angular

velocity with the incorrect units. Recall that the estimator solves for the inverse scale

factor components. All the test cases presented, except the last, use γ1 of Table 4.1.

The gain is chosen as k = 0.5, α = 1.

In the first case, the angular velocity is the same as in the gyro bias estima-

tor tests with ωg(t)
T = [3,−4, 5] deg/sec. Figure 4.2 shows that the scale factor
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estimation errors, γI − γ̂I(t), converge to zero. Next, the x and y angular velocity
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Figure 4.1: Scale Factor Estimation Errors with Constant Angular Velocity

components are as in the first case, but the z component is zero, ωg(t) = [3,−4, 0]

deg/sec. Figure 4.2 shows that the scale factor estimation errors for the x and y

axes converge to zero, but the scale factor estimation error for the z axis is con-

stant. In the third case, the angular velocity components decrease exponentially,

ωg(t) = [3,−4, 5]e−0.05t deg/sec. Figure 4.2 shows that the scale factor estimation

errors do not converge to zero, but rather to constants. Finally, the estimator is

tested with γ2 from Table 4.1. Again, this case represents an extreme case of an

incorrect scaling for units. If the angular velocity is output from the gyros in units of

rad/sec, but the angular velocity, ω(t), is needed in deg/sec, the inverse scale factor

components must be γIi = 180
π

(recall equation 1.5). Figure 4.2 shows that the scale

factor estimation errors converge to zero. Here the gain is chosen as k = 5, α = 5.
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Figure 4.2: Scale Factor Estimation Errors with ωz = 0
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Figure 4.3: Scale Factor Estimation Errors with Exponential Angular Velocity
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The angular velocity components are as above ωg(t)
T = [3, −4, 5] deg/sec.
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Figure 4.4: Scale Factor Estimation Errors with Large Inverse Scale Factor

4.3 Closed Loop Stability

The closed loop analysis initially proceeds like the gyro bias closed loop analysis.

The control is repeated here as

u(t) = −KDŝ(t) + Hα̂r(t)− S(Hω̂(t))ωr(t) (4.18)

The closed loop analysis for the gyro bias, up to equation 3.19, is independent of

the specific gyro error. The closed loop equation, given in equation 3.19, is repeated

here

Hṡ(t)− S(Hω(t))s(t) + KDs(t) = ∆(q̃c(t),ωd(t))s̃(t) (4.19)
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where

∆(q̃c(t), ωd(t)) = −S(ωr(t))H −HS(R(q̃c(t))ωd(t)) + λHQ1(q̃c(t)) + KD

= ∆′(q̃c(t),ωd(t)) + KD

and the error term s̃(t), from section 2.3, is

s̃(t) = Γ̃I(t)ωg(t) = Ωgγ̃I(t)

The closed loop equation can then be written as

Hṡ(t)− S(Hω(t))s(t) + KDs(t) = ∆(q̃c(t),ωd(t))Ωgγ̃I(t) (4.20)

The alignment R(qg) is assumed to be the identity matrix. Note that the definition of

ωr(t), the assumption that ωd(t) is bounded, and the constraint ‖q̃c(t)‖ = 1 ensure

that ∆′(q̃c(t),ωd(t)) is a bounded matrix over any solution of the coupled dynamics,

equations 4.1, 4.2, 2.21, and 4.18.

Theorem 4.3 If the scale factors are known to be positive, with a known upper and

lower bound on each component (or alternatively, an upper and lower bound on the

inverse of each component), with projection implemented in the estimator such that

γ̂I(t) is positive and bounded, and if

kD >
ζ ′γI,max(γI,max + γ̂I,max) + 2

γI,maxγ̂I,max

> 0

where γI,max = ‖ΓI‖, γ̂I,max = ‖Γ̂I(t)‖max, and

ζ ′ = sup
t≥t0

sup
‖q̃c(t)‖=1

‖∆′(q̃c(t),ωd(t))‖ < ∞
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the control law 4.18 results in a stable closed loop system, with ‖ε̃c(t)‖ and ‖ω̃c(t)‖

uniformly, ultimately bounded.

Proof : Given the Lyapunov function Vc(t) = 1
2
s(t)THs(t), the derivative of

Vc(t), using equation 4.19, is

V̇c(t) = −s(t)TKDs(t) + s(t)T∆(q̃c(t),ωd(t))(s(t)− ŝ(t)) (4.21)

or, substituting ∆(q̃c(t),ωd(t)) = ∆′(q̃c(t),ωd(t)) + KD, V̇c(t) becomes

V̇c(t) = −s(t)TKDs(t) + s(t)T (∆′(q̃c(t),ωd(t)) + KD)(s(t)− ŝ(t)) (4.22)

Rewrite s(t) as

s(t) = ω(t)− ωr(t) = ΓIωg(t)− ωr(t)

and rewrite ŝ(t) as

ŝ(t) = ω̂(t)− ωr(t) = Γ̂I(t)ωg(t)− ωr(t)

Write equation 4.22 as

V̇c(t) = s(t)T∆′(q̃c(t),ωd(t))(s(t)− ŝ(t))− s(t)KDŝ(t) (4.23)

68



Substitute the expressions for s(t) and ŝ(t) into equation 4.23, with KD = kdI,

resulting in

V̇c(t) = (ωg(t)
TΓI − ωr(t)

T )∆′(q̃c(t),ωd(t))(ΓI − Γ̂I(t))ωg(t)

− kD(ωg(t)
TΓI − ωr(t)

T )(Γ̂I(t)ωg(t)− ωr(t))

= ωg(t)
TΓI∆

′(q̃c(t),ωd(t))(ΓI − Γ̂I(t))ωg(t)

− ωr(t)
T∆′(q̃c(t), ωd(t))(ΓI − Γ̂I(t))ωg(t)

− kDωg(t)
TΓI Γ̂I(t)ωg(t)− kDωr(t)

T Γ̂I(t)ωg(t)

− kDωg(t)
TΓIωr(t)− kDωr(t)

Tωr(t)

Rearranging the terms gives

V̇c(t) = −kDωg(t)
TΓI Γ̂I(t)ωg(t)− kDωr(t)

Tωr(t)

+ ωg(t)
TΓI∆

′(q̃c(t),ωd(t))(ΓI − Γ̂I(t))ωg(t)

− ωr(t)
T∆′(q̃c(t),ωd(t))(ΓI − Γ̂I(t))ωg(t)

− kDωr(t)
T (ΓI + Γ̂I(t))ωg(t)

(4.24)

The scale factors are assumed to be positive, with each component γIi > ε, where ε

is a known lower bound on the inverse of each component. With projection in the

scale factor estimator, the scale factor estimates are also positive with γ̂Ii(t) > ε.

Let γ̂I,max = ‖Γ̂I(t)‖max, γI,max = ‖ΓI‖, and

ζ ′ = sup
t≥t0

sup
‖q̃c(t)‖=1

‖∆′(q̃c(t),ωd(t))‖ < ∞
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V̇c(t) is then bounded as

V̇c(t) ≤− kDγI,maxγ̂I,max‖ωg(t)‖2 − kD‖ωr(t)‖2 + kD(γI,max + γ̂I,max)‖ωg(t)‖‖ωr(t)‖

+ ζ ′(γI,max + γ̂I,max)‖ωg(t)‖2 + ζ ′(γI,max + γ̂I,max)‖ωg(t)‖‖ωr(t)‖

(4.25)

Applying Young’s inequality to the terms containing products of ‖ωg(t)‖ and ‖ωr(t)‖

equation 4.25 becomes

V̇c(t) ≤− (kDγI,maxγ̂I,max − ζ ′γI,max(γI,max + γ̂I,max)− 2)‖ωg(t)‖2

− (kD − 1

4
(ζ ′2 + k2

D)(γI,max + γ̂I,max)
2)‖ωr(t)‖2

(4.26)

Recall that all the components of the last term are bounded. For the system to be

stable, V̇c(t) ≤ 0. If

kD >
ζ ′γI,max(γI,max + γ̂I,max) + 2

γI,maxγ̂I,max

> 0 (4.27)

the first term in equation 4.26 is negative. An a priori upper and lower bound

is assumed for γI,max and ζ ′ is bounded by definition. The components of γ̂I(t)

are bounded through projection in the estimator, γ̂I(t) > 0 and ‖γ̂I(t)‖ < γI,max.

Therefore, a bounded kD exists which satisfies 4.27. If ‖ωg(t)‖ is sufficiently large,

V̇c(t) < 0 and the closed loop system is uniformly ultimately bounded. Alternatively,

recall that s(t) = ω(t)−ωr(t) = ΓIωg(t)−ωr(t), and ωr(t) = R(q̃c(t))ωd(t)−λε̃c(t)

is bounded by definition. If s(t) increases without bound, ωg(t) increases without

bound. But, eventually ωg(t) will be large enough such that V̇c(t) < 0 which implies

that s(t), and ωg(t), must remain bounded. If s(t) is uniformly ultimately bounded,
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ω̃c(t) and ε̃c(t) must also be uniformly ultimately bounded since

s(t) = ω̃c(t) + λε̃c(t)

ε̃c(t) is bounded by definition, therefore ω̃c(t) is bounded. ¤

Theorem 4.4 If each component of the angular velocity, ωg(t), is persistently excit-

ing, regardless of the magnitude of kD, such that kD > 0, the control law 4.18 results

in a stable closed loop system, with asymptotically perfect tracking, ‖ε̃c(t)‖ → 0,

‖ω̃c(t)‖ → 0.

Proof : The convergence of s(t) to zero depends on the exponential conver-

gence of the scale factor errors, which in turn depends on the angular velocity ωg(t)

generated by the applied control. Rewriting the error term

s(t)− ŝ(t) = ω(t)− ω̂(t) = Γ̃I(t)ωg(t) = Γ̃I(t)Γω(t) = Γ̃I(t)Γ(s(t) + ωr(t))

Substituting this into equation 4.22 results in

V̇c(t) =− s(t)TKDs(t) + s(t)T (∆′(q̃c(t),ωd(t)) + KD)Γ̃I(t)Γs(t)

+ s(t)T (∆′(q̃c(t),ωd(t)) + KD)Γ̃I(t)Γωr(t)

(4.28)

Equation 4.28 is bounded as

V̇c(t) ≤ −kD‖s(t)‖2 + (kD + ζ ′)[γI,max‖Γ̃I(t)‖‖s(t)‖2 + γI,max‖ωr(t)‖‖s(t)‖‖Γ̃I(t)‖]

(4.29)

Applying Young’s inequality to the last term in equation 4.29

V̇c(t) ≤ −(
kD

2
− (kD + ζ ′)γI,max‖Γ̃I(t)‖)‖s(t)‖2 +

(kD + ζ ′)2‖ωr(t)‖2γ2
I,max

2kD

‖Γ̃I(t)‖2

(4.30)
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If the angular velocity, ωg(t), in addition to being bounded, satisfies equation 4.14,

the system is UCO and the scale factor errors converge to zero exponentially fast. In

this case, Lemma 2.3 applies. Since Γ̃I(t) converges to zero exponentially fast, Vc(t)

converges to zero exponentially fast, which means s(t) converges to zero exponentially

fast. With the convergence of s(t) → 0, the proof of convergence of the actual

attitude and rate errors follows exactly as in the gyro bias analysis of section 3.3.

The end result of which is limt→∞‖ε̃c(t)‖ = 0 and limt→∞‖ω̃c(t)‖ = 0. ¤

4.4 Closed Loop Simulation Results

The gyro scale factor estimator and controller are tested similarly to the bias estima-

tor and controller. The inertia matrix is the same, a diagonal matrix with principal

moments of inertia of [90, 100, 70]T kg m2. Table 4.2 lists the initial conditions for the

estimator and controller, as well as the true scale factor. The gains are chosen as

k = 1, KD = kDI3 (where I3 indicates a 3x3 identity matrix), kD = 20, and λ = 0.1.

Here the initial angular velocity is ω(0)T = [0, 0, 0], and the desired angular velocity

is constant, ωd(t)
T = [3, 3, 3] deg/sec. Figure 4.5(a) shows that the scale factor er-

rors converge to zero. Figures 4.5(b) and 4.5(c) show that both the attitude tracking

error and the rate tracking error converge to zero. Note that the y axis scale factor

is negative. The y gyro measurement is in the opposite direction from the true y

angular rate. The tracking errors converge to zero in this scenario, a simulation of

a gyro wired backwards. Figure 4.5(d) shows the tracking attitude error when the
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Attitude Value Alignment Value

q(t0) [0, 1, 0, 0]T γ [3,−5, 4]T

q̂(t0) [0, 0, 0, 1]T γ̂(t0) [1, 1, 1]T

qd(t0) [0, 0, 0, 1]T

Table 4.2: Scale Factor Estimator/Controller Simulation Initial Conditions

rate is not corrected with the scale factor estimate. The attitude tracking error does

not converge to zero.
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(b) Attitude Tracking Error
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ing for Scale Factor

Figure 4.5: Coupled Estimator/Controller Errors with Scale Factor Errors
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Chapter 5

Gyro Alignment Calibration

5.1 Nonlinear Estimator for Gyro Alignment

The estimator for the gyro alignment is presented next. Here, the kinematic equa-

tions for the attitude estimator quaternion and the alignment estimator quaternion

are given as

˙̂q(t) =
1

2
Q(q̂(t))R(q̃o(t))

T [ω̂(t) + k(t)ε̃o(t)sign(η̃o(t)) + k1(t)sign(ε̃o(t))sign(η̃o(t))]

(5.1)

where

sign(ε̃o(t)) =




sign(ε̃o1(t))

sign(ε̃o2(t))

sign(ε̃o3(t))




˙̂qg(t) =
1

2
Q(q̂g(t))[(I−R(q̃o(t)))R(q̂g(t))ωg(t)] (5.2)

where ω̂(t) is as given in equation 2.13, and is repeated here as

ω̂(t) = R(q̂g(t))ωg(t)
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The scale factors (assumed known) are incorporated into ωg(t), and there is no bias

error. The gains, k(t) and k1(t), are positive. The quaternion, q̂g(t), is the estimated

gyro alignment quaternion, transforming from gyro coordinates to an estimated body

frame. Again, q̂(t) is a prediction of the attitude at time, t, propagated by the

kinematic equation using the measured angular velocity and the current alignment

estimate. The attitude error is as given in equation 3.4 and the alignment error

is given in equation 2.16. The term R(q̃o(t))
T in equation 5.1 resolves the angular

velocity terms in the estimator frame. The kinematic equation for the attitude error

quaternion is

˙̃qo(t) =
1

2




Q1(q̃o(t))

−ε̃o(t)
T


 (R(qg)ωg(t)−R(q̂g(t))ωg(t)− k(t)ε̃o(t)sign(η̃o(t))

− k1(t)sign(ε̃o(t))sign(η̃o(t)))

(5.3)

Since the true alignment is constant, the angular velocity associated with the kine-

matic equation for the true alignment quaternion is zero. The kinematic equation

for the alignment error quaternion is therefore

˙̃qg(t) =
1

2




Q1(q̃g(t))

−ε̃g(t)
T


 [(R(q̃o(t))− I)R(q̂g(t))ωg(t)] (5.4)
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Since R(qg) = R(q̃g(t))R(q̂g(t)), where R(q̃g(t)) represents the rotation from the

estimated body frame to the actual body frame, 5.3 becomes

˙̃qo(t) =
1

2




Q1(q̃o(t))

−ε̃o(t)
T


 [(R(q̃g(t))− I)R(q̂g(t))ωg(t)− k(t)ε̃o(t)sign(η̃o(t))

− k1(t)sign(ε̃o(t))sign(η̃o(t))]

(5.5)

Note that the equilibrium state for each of the error quaternions, q̃o(t) and q̃g(t), is

the identity quaternion, [0 0 0 ± 1].

Theorem 5.1 If k(t) ≥ 4‖ωg(t)‖ + k′ and k1(t) ≥ 4‖ωg(t)‖ + k′1, where k′ > 0

and k′1 > 0, the equilibrium states for the system 5.4 and 5.5 are globally stable. In

particular, if the angular velocity, ωg(t), is bounded, ε̃o(t) → 0 asymptotically.

Proof : Choose a Lyapunov function as

Vo(t) =
1

2





(η̃o(t)− 1)2 + ε̃o(t)
T ε̃o(t) η̃o(t) ≥ 0

(η̃o(t) + 1)2 + ε̃o(t)
T ε̃o(t) η̃o(t) < 0

+
1

2





(η̃g(t)− 1)2 + ε̃g(t)
T ε̃g(t) η̃g(t) ≥ 0

(η̃g(t) + 1)2 + ε̃g(t)
T ε̃g(t) η̃g(t) < 0

(5.6)

The derivative of Vo(t) is (again, as with the gyro bias estimator, including the left

and right derivatives of the sign terms, and using ε̃o(t)
T ˙̃εo(t) + η̃o(t) ˙̃ηo(t) = 0)

V̇o(t) =





− ˙̃ηo(t) η̃o(t) ≥ 0

˙̃ηo(t) η̃o(t) < 0

+





− ˙̃ηg(t) η̃g(t) ≥ 0

˙̃ηg(t) η̃g(t) < 0
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Substituting for ˙̃ηo(t) and ˙̃ηg(t) from equations 5.4 and 5.5

V̇o(t) =− k(t)

2
ε̃o(t)

T ε̃o(t) +
1

2
ε̃o(t)

T [(R(q̃g(t))− I)R(q̂g(t))ωg(t)sign(η̃o(t))

− k1(t)sign(ε̃o(t))] +
1

2
ε̃g(t)

T (R(q̃o(t))− I)R(q̂g(t))ωg(t)sign(η̃g(t))

(5.7)

Substituting equation 2.2 for R(q̃o(t))− I into equation 5.7, V̇o(t) becomes

V̇o(t) =− ε̃o(t)
T ε̃o(t)(

k(t)

2
− ε̃g(t)

TR(q̂g(t))ωg(t)sign(η̃g(t)))− k1(t)

2
‖ε̃o(t)‖1

+ ε̃g(t)
T (ε̃o(t)ε̃o(t)

T − η̃o(t)S(ε̃o(t)))R(q̂g(t))ωg(t)sign(η̃g(t))

+
1

2
ε̃o(t)

T (R(q̃g(t))− I)R(q̂g(t))ωg(t)sign(η̃o(t))

(5.8)

where ‖ε̃o(t)‖1 is the one-norm of ε̃o(t). V̇o(t) is bounded as

V̇o(t) =− ‖ε̃o(t)‖2(
k

2
− ‖ε̃g(t)‖‖R(q̂g(t))‖‖ωg(t)‖)− k1(t)

2
‖ε̃o(t)‖1

‖ε̃g(t)‖(‖ε̃o(t)‖2 + |η̃o(t)|‖ε̃o(t)‖‖R(q̂g(t))‖‖ωg(t)‖)

+ ‖ε̃o(t)‖‖R(qg)− I‖‖R(q̂g(t))‖‖ωg(t)‖

(5.9)

Applying the norms of 2.1, |η̃o(t)| ≤ 1, ‖ε̃g(t)‖ ≤ 1, ‖R(q̃g(t)) − I‖ = 2‖ε̃g(t)‖ ≤ 2,

‖R(q̂g(t))‖ = 1, and utilizing ‖ε̃o(t)‖ ≤ ‖ε̃o(t)‖1 ≤
√

3‖ε̃o(t)‖ [30], equation 5.9 can

be written as

V̇o(t) ≤ −‖ε̃o(t)‖2(
k(t)

2
− 2‖ωg(t)‖)− ‖ε̃o(t)‖(k1(t)

2
− 2‖ωg(t)‖)

if k(t) ≥ 4‖ωg(t)‖+ k′ and k1 ≥ 4‖ωg(t)‖+ k′1, where k′ > 0 and k′1 > 0 then

V̇o(t) ≤ −k′‖ε̃o(t)‖2 − k′1‖ε̃o(t)‖ ≤ −k′‖ε̃o(t)‖2 (5.10)

With the added constraint that ωg(t) is bounded, Vo(t) is a continuous, twice differ-

entiable function. Lemma 2.1 then shows that ‖ε̃o(t)‖ → 0 as t →∞. ¤
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Theorem 5.2 For any bounded, angular velocity, ωg(t), that is persistently exciting,

the equilibrium states of the system 5.4 and 5.5 are exponentially stable. In particular,

q̂g(t) → qg exponentially fast from any initial conditions q̂g(t0) and q̂(t0).

Proof : The system given by equations 5.4 and 5.5 is stable. If ωg(t) is bounded,

all the signals are bounded. As with the gyro bias estimator analysis, the system is

cast as a linear time-varying system ẋ(t) = A(t)x(t) where

x(t) =




ε̃o(t)

ε̃g(t)




In this case, developing A(t) is more involved. First, the kinematic equation for ε̃o(t)

is repeated here as

˙̃εo(t) =
1

2
Q1(q̃o(t))[(R(q̃g(t))− I)R(q̂g(t))ωg(t)− kε̃o(t)sign(η̃o(t))

− k1sign(ε̃o(t))sign(η̃o(t))]

(5.11)

Substituting for R(q̃g(t))− I from equation 2.2 and rearranging terms, equation 5.11

becomes

˙̃εo(t) =− 1

2
Q1(q̃o(t))sign(η̃o(t))[kε̃o(t) + k1sign(ε̃o(t))]

−Q1(q̃o(t))[(R(q̂g(t))ωg(t))ε̃g(t)
T − (ε̃g(t)

TR(q̂g(t))ωg(t))I

− η̃g(t)S(R(q̂g(t))ωg(t))]ε̃g(t)

(5.12)

Rewrite sign(ε̃o(t)) as

sign(ε̃o(t)) =




1
|ε̃o1(t)| 0 0

0 1
|ε̃o2(t)| 0

0 0 1
|ε̃o3(t)|




ε̃o(t) = E(ε̃o(t))ε̃o(t) (5.13)
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Note that if any component of ε̃o(t) is zero, the corresponding component in equation

5.13 is identically zero, given the definition of the sign function in equation 2.1. There

is no possibility of dividing by zero. Equation 5.13 is used for the demonstration of

the proof only. Equation 5.13 is substituted into equation 5.12 resulting in

˙̃εo(t) =− 1

2
Q1(q̃o(t))sign(η̃o(t))[k + k1E(ε̃o(t))]ε̃o(t)

−Q1(q̃o(t))[(R(q̂g(t))ωg(t))ε̃g(t)
T − (ε̃g(t)

TR(q̂g(t))ωg(t))I

− η̃g(t)S(R(q̂g(t))ωg(t))]ε̃g(t)

(5.14)

The kinematic equation for ε̃g(t) is

˙̃εg(t) =
1

2
Q1(q̃g(t))(R(q̃o(t))− I)R(q̂g(t))ωg(t) (5.15)

Again, substituting for R(q̃o(t))−I from equation 2.2 and rearranging terms, equation

5.15 becomes

˙̃εg(t) =−Q1(q̃g(t))[(R(q̂g(t))ωg(t))ε̃o(t)
T − (ε̃o(t)

TR(q̂g(t))ωg(t))I

− η̃o(t)S(R(q̂g(t))ωg(t))]ε̃o(t)

(5.16)

From equations 5.14 and 5.16, the matrix A(t) is written as

A(t) =




A11(t) A12(t)

A21(t) 0




where

A11(t) = −1

2
Q1(q̃o(t))sign(η̃o(t))[k + k1E(ε̃o(t))]

A12(t) =−Q1(q̃o(t))[(R(q̂g(t))ωg(t))ε̃g(t)
T

− (ε̃g(t)
TR(q̂g(t))ωg(t))I− η̃g(t)S(R(q̂g(t))ωg(t))]
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A21(t) =−Q1(q̃g(t))[(R(q̂g(t))ωg(t))ε̃o(t)
T

− (ε̃o(t)
TR(q̂g(t))ωg(t))I− η̃o(t)S(R(q̂g(t))ωg(t))]

Following the proof for the gyro bias estimator, V̇o(t) is rewritten as V̇o(t) ≤

−x(t)TCTCx(t) ≤ 0, where C = [
√

k′ 0]. Again, theorem 4.5 and the discussion

on pp.626-628 in [30] shows that the equilibrium point x(t) = 0 of this equivalent

system is exponentially stable if the pair (A(t), C) is uniformly completely observable

(UCO). Since observability properties are unchanged under output feedback [30], this

will be true if the pair (A(t)−K(t)C, C) is uniformly observable for any piecewise,

continuous and bounded matrix K(t). K(t) is chosen as

K(t) =




1√
k′

A11(t)

1√
k′

A21(t)




With ωg(t) bounded, applying the same arguments as with the gyro bias estimator,

K(t) is a piecewise continuous function of time.

The state transition matrix for the pair (A(t)−K(t)C, C) is given in 3.8 where

here

Σ(τ, t) =

∫ τ

t

A12(σ)dσ

The observability Grammian is

W (t, t + T ) =

∫ t+T

t

Φ(τ, t)TCTCΦ(τ, t)dτ

=

∫ t+T

t




k′I k′Σ(τ, t)

k′Σ(τ, t)T k′Σ(τ, t)TΣ(τ, t)


 dτ

(5.17)
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The system is UCO if there exists a T > 0 and positive constants α1 > 0, α2 > 0

such that, for all t ≥ t0 ,α1I ≥ W (t, t + T ) ≥ α2I. Proceeding similarly to 3.10 for

the gyro bias estimator proof, this is assured if A12(t) and d
dt

A12(t) are bounded, and

there exist positive constants T2, β1, and β2 such that, for all t ≥ t0

β2I ≥
∫ t+T2

t

A12(τ)TA12(τ)dτ ≥ β1I (5.18)

Rewrite A12(t) as A12(t) = −Q1(q̃o(t))B(t), where

B(t) = (R(q̂g(t))ωg(t))ε̃g(t)
T − (ε̃g(t)

TR(q̂g(t))ωg(t))I− η̃g(t)S(R(q̂g(t))ωg(t))

The integral 5.18 becomes

β2I ≥
∫ t+T2

t

B(τ)TQ1(q̃o(τ))TQ1(q̃o(τ))B(τ)dτ ≥ β1I (5.19)

Q1(q̃o(t)) is bounded by definition, since it contains elements of the quaternion,

q̃o(t).
d
dt

Q1(q̃o(t)) is also bounded, since the above Lyapunov analysis shows that

all the terms in equation 5.5 are bounded, given that ωg(t) is bounded. With ω̇g(t)

bounded, the upper bound in equation 5.19 is satisfied.

To examine the lower bound, as with the gyro bias estimator, again recall that

‖ε̃o(t)‖ → 0 asymptotically. Thus, for any δ > 0, there exists a T1(δ) > t0 such

that ‖ε̃o(t)‖ < δ for all t ≥ t0 + T1. Taking any δ < 1 and T2 > T1 and using
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Q1(q̃o(t))
TQ1(q̃o(t)) = I− ε̃o(t)ε̃o(t)

T , for any z ∈ R3

zT
[ ∫ t+T2

t

B(τ)TQ1(q̃o(τ))TQ1(q̃o(τ))B(τ)dτ
]
z

= zT
[ ∫ t+T2

t

B(τ)(I− ε̃o(t)ε̃o(t)
T )B(τ)dτ

]
z

≥ zT
[ ∫ t+T2

t

B(τ)(I− δ2I)B(τ)dτ
]
z

≥ (1− δ2)zT
[ ∫ t+T2

t

B(τ)TB(τ)dτ
]
z

(5.20)

If the following is true, for all t ≥ t0 + T1

zT
[ ∫ t+T2

t

B(τ)TB(τ)dτ
]
z > 0 (5.21)

then equation 5.18 is satisfied and the system is UCO.

Rewrite B(t) as

B(t) = S(ε̃g(t))S(R(q̂g(t))ωg(t))− η̃g(t)S(R(q̂g(t))ωg(t))

= (S(ε̃g(t))− η̃g(t)I)S(R(q̂g(t))ωg(t))

(5.22)

Because of the skew symmetric matrices, B(t) is singular. Using B(t) from equation

5.22, B(t)TB(t) is

B(t)TB(t) = S(R(q̂g(t))ωg(t))(S(ε̃g(t)) + η̃g(t)I)(S(ε̃g(t))− η̃g(t)I)S(R(q̂g(t))ωg(t))

= S(R(q̂g(t))ωg(t))(S(ε̃g(t))S(ε̃g(t))− η̃g(t)
2I)S(R(q̂g(t))ωg(t))

= S(R(q̂g(t))ωg(t))(ε̃g(t)ε̃g(t)
T − I)S(R(q̂g(t))ωg(t))

= R(q̂g(t))S(ωg(t))
T (I− ε̃gR(t)ε̃gR(t)T )S(ωg(t))R(q̂g(t))

T

(5.23)

where ε̃gR(t) = R(q̂g(t))
T ε̃g(t), note that ‖ε̃gR(t)‖ = ‖ε̃g(t)‖.
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Substituting equation 5.23 into equation 5.21 gives

zT
[ ∫ t+T2

t

R(q̂g(τ))S(ωg(t))
T (I− ε̃gR(t)ε̃gR(t)T )S(ωg(t))R(q̂g(τ))Tdτ

]
z (5.24)

Let y = R(q̂g(t))
Tz. The transformation matrix R(q̂g(t)) is nonsingular, so equation

5.24 can be evaluated equivalently as

yT
[ ∫ t+T2

t

S(ωg(t))
T (I− ε̃gR(t)ε̃gR(t)T )S(ωg(t))dτ

]
y (5.25)

for any y ∈ R3. Next, the matrix in the middle of equation 5.25, [I− ε̃gR(t)ε̃gR(t)T ]

is evaluated.

If a component of ‖ε̃g(t)‖ = 1, a component of ε̃gR(t) could equal 1. In that

case equation 5.25 will not be positive definite for any ωg(t). However, if ‖ε̃g(t)‖ = 1

at t0, it cannot remain there. This is shown with the following lemma.

Lemma 5.1 If q̂(t0) is initialized such that q̂(t0) = q(t0), ‖ε̃g(t)‖ < 1 for all t ≥ t0.

Proof : The derivative of the Lyapunov function, again, satisfies

V̇o(t) ≤ −k′‖ε̃o(t)‖2

V̇o(t) is integrated as

Vo(t) ≤ Vo(t0)− k′
∫ t

t0

ε̃o(τ)T ε̃o(τ)dτ (5.26)

The Lyapunov function is therefore decreasing with time, Vo(t) < Vo(t0). At t0, the

portion of Vo(t0) due to q̃o(t0) is a minimum if ‖ε̃o(t0)‖ = 0. Since q̃o(t0) is known,
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‖ε̃o(t0)‖ can be set such that ‖ε̃o(t0)‖ = 0. Substituting for Vo(t) and Vo(t0) from

equation 5.6 gives

1

2





(η̃o(t)− 1)2 + ε̃o(t)
T ε̃o(t) η̃o(t) ≥ 0

(η̃o(t) + 1)2 + ε̃o(t)
T ε̃o(t) η̃o(t) < 0

+
1

2





(η̃g(t)− 1)2 + ε̃g(t)
T ε̃g(t) η̃g(t) ≥ 0

(η̃g(t) + 1)2 + ε̃g(t)
T ε̃g(t) η̃g(t) < 0

<
1

2





(η̃g(t0)− 1)2 + ε̃g(t0)
T ε̃g(t0) η̃g(t0) ≥ 0

(η̃g(t0) + 1)2 + ε̃g(t0)
T ε̃g(t0) η̃g(t0) < 0

+
1

2





(η̃o(t0)− 1)2 + ε̃o(t0)
T ε̃o(t0) η̃o(t0) ≥ 0

(η̃o(t0) + 1)2 + ε̃o(t0)
T ε̃o(t0) η̃o(t0) < 0

(5.27)

Substituting ε̃o(t0) = 0 (which means η̃o(t0) = ±1) equation 5.27 becomes

1

2





(η̃o(t)− 1)2 + ε̃o(t)
T ε̃o(t) η̃o(t) ≥ 0

(η̃o(t) + 1)2 + ε̃o(t)
T ε̃o(t) η̃o(t) < 0

+
1

2





(η̃g(t)− 1)2 + ε̃g(t)
T ε̃g(t) η̃g(t) ≥ 0

(η̃g(t) + 1)2 + ε̃g(t)
T ε̃g(t) η̃g(t) < 0

<
1

2





(η̃g(t0)− 1)2 + ε̃g(t0)
T ε̃g(t0) η̃g(t0) ≥ 0

(η̃g(t0) + 1)2 + ε̃g(t0)
T ε̃g(t0) η̃g(t0) < 0
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Expanding the quaternion terms results in

1 +





−η̃g(t) η̃g(t) ≥ 0

η̃g(t) η̃g(t) < 0

+ 1 +





−η̃o(t) η̃o(t) ≥ 0

η̃o(t) η̃o(t) < 0

< 1 +





−η̃g(t0) η̃g(t0) ≥ 0

η̃g(t0) η̃g(t0) < 0

Rearranging the terms again, gives

|η̃g(t)| > |η̃g(t0)|+ 1− |η̃o(t)|

Since |η̃o(t)| ≤ 1 and |η̃g(t)| ≤ 1, the following is true

1 ≥ |η̃g(t)| > |η̃g(t0)|

Since |η̃g(t)| is greater than |η̃g(t0)|, equivalently

‖ε̃g(t)‖ < ‖ε̃g(t0)‖ (5.28)

If ‖ε̃g(t0)‖ = 1, ‖ε̃g(t)‖ < 1. ¤

Equation 5.25 can now be evaluated with ‖ε̃g(t)‖ < 1. The norm of ε̃gR(t) is

again ‖ε̃gR(t)‖ = ‖ε̃g(t)‖. Choose δg < 1, and let ‖ε̃gR(t)‖ = δg < 1. Therefore,

I− ε̃gR(t)ε̃gR(t)T ≥ (1− δ2
g)I (5.29)

Substitute equation 5.29 into equation 5.25. Now, if the following is true

(1− δg)
2yT

[ ∫ t+T2

t

S(ωg(τ))TS(ωg(τ))dτ
]
y > 0 (5.30)

or equivalently, if the following matrix is positive definite

∫ t+T2

t

S(ωg(τ))TS(ωg(τ))dτ > 0 (5.31)
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equation 5.21 is satisfied.

The skew symmetric matrix S(ωg(t)) is singular for any time, t. The matrix

S(ωg(t))S(ωg(t)) is therefore singular for any time, t. In order to satisfy the PE

condition, the angular velocity must change directions sufficiently over the time in-

terval T2, such that the integral 5.31 is positive definite. An example of an angular

velocity that satisfies the PE condition is

ωg(t)
T = [sin ϑt 1 0]

and T2 = 2π
ϑ

. Substituting ωg(t) into equation 5.25, and evaluating the integral

results in

∫ t+T2

t

S(ωg(τ))TS(ωg(τ))dτ =
π

ϑ




2 0 0

0 1 0

0 0 3




which is positive definite. Equation 5.21 is satisfied, the system is persistently excit-

ing, and the alignment errors converge to zero exponentially fast.

If the angular velocity is constant, the PE condition will not be satisfied. Eval-

uating equation 5.31 with ωg(t)
T = [a, b, c], for example, gives

∫ t+T2

t

S(ωg(τ))TS(ωg(τ))dτ

=




0 −c b

c 0 −a

−b a 0







0 −c b

c 0 −a

−b a 0




(T2 − T1)
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Attitude Value Alignment Value

q(t0) [0, 1, 0, 0]T qg [0, 0, 1, 0]T

q̂(t0) [0, 0, 0, 1]T q̂g(t) [0, 0, 0, 1]T

Table 5.1: Alignment Estimation Simulation Initial Conditions

which is singular (the determinants of the skew symmetric matrices are zero), and

therefore not positive definite. The system is not PE for a constant angular velocity.

¤

5.2 Estimation Simulation Results

The gyro alignment estimator is tested similarly to the bias estimator. Table 5.1 lists

the initial quaternions for the estimator, as well as the true alignment. In the first

case, the angular velocity is constant, with ω(t)T = [3, − 4, 5] deg/sec. The gains

are chosen as k′ = 1, k′1 = 0.01. Figure 5.2 shows that the alignment estimation

errors converge to a constant, since a constant angular velocity does not meet the

PE condition. Next, the angular velocity is time varying. The angular velocity is

chosen as ω(t)T = [sin ϑt, 1, 0] deg/sec, where ϑ = 5 deg/sec. The gains are chosen

as k′ = 0.001 and k′1 = 0.1. Figure 5.2 shows that the alignment estimation errors

converge to zero.
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Figure 5.1: Alignment Estimation with Constant Angular Velocity
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Figure 5.2: Alignment Estimation with PE Angular Velocity
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5.3 Closed Loop Stability

As in Section 3.3, a certainty equivalence approach is proposed in utilizing the non-

linear tracking algorithm in [32]. Here the estimates ω̂(t) of 2.13, generated by the

estimator equations 5.1 and 5.2 are used to generate the control. Again, the control

is given as

u(t) = −KDŝ(t) + Hα̂r(t)− S(Hω̂(t))ωr(t) (5.32)

The closed loop analysis from Section 3.3, up to equation 3.20, is independent of

the specific gyro error. As with the scale factor, the closed loop equation, given in

equation 3.20, is repeated here

Hṡ(t)− S(Hω(t))s(t) + KDs(t) = ∆(q̃c(t),ωd(t))s̃(t) (5.33)

where

∆(q̃c(t), ωd(t)) = −S(ωr(t))H −HS(R(q̃c(t))ωd(t)) + λHQ1(q̃c(t)) + KD

= ∆′(q̃c(t),ωd(t)) + KD

and the error term s̃(t) is

s̃(t) = s(t)− ŝ(t) = ω(t)− ω̂(t)

Note that the definition of ωr(t), the assumption the ωd(t) is bounded, and the

constraint ‖q̃c(t)‖ = 1 ensure that ∆′(q̃c(t),ωd(t)) is a bounded matrix over any

solution of the coupled dynamics 5.1, 5.2, 2.21, and 5.32.
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Theorem 5.3 If the gyro alignment rotation angle is less than 90 degrees and

kD > 2ζ ′ + 2

where ζ ′ = supt≥t0 sup‖q̃c(t)‖=1‖∆′(q̃c(t),ωr(t))‖ < ∞, the control law 5.32 results in

a stable closed loop system, with ‖ε̃c(t)‖ and ‖ω̃c(t)‖ uniformly, ultimately bounded.

Proof : Using the Lyapunov function Vc(t) = 1
2
s(t)THs(t), the derivative of Vc(t) is

V̇c(t) = −s(t)TKDs(t) + s(t)T∆(q̃c(t), ωd(t))s̃(t) (5.34)

or substituting for ∆(q̃c(t),ωd(t))

V̇c(t) = −s(t)TKDs(t) + s(t)T (∆′(q̃c(t),ωd(t)) + KD)s̃(t) (5.35)

V̇c(t) is rewritten in terms of ωg(t) and ωr(t). Rewrite s(t) as

s(t) = ω(t)− ωr(t) = R(qg)ωg(t)− ωr(t) = R(q̃g(t))R(q̂g(t))ωg(t)− ωr(t)

and rewrite ŝ(t) as

ŝ(t) = ω̂(t)− ωr(t) = R(q̂g(t))ωg(t)− ωr(t)

Expanding 5.35 gives

V̇c(t) = s(t)T∆′(q̃c(t),ωd(t))(s(t)− ŝ(t))− sTKDŝ(t) (5.36)

Substitute the expressions for s(t) and ŝ(t) into equation 5.36, letting KD = kDI,

resulting in

V̇c(t) =(ωg(t)
TR(q̂g(t))

TR(q̃g(t))
T

− ωr(t)
T∆′(q̃c(t),ωd(t))(R(q̃g(t))− I)R(q̂g(t))ωg(t)

− kD(ωg(t)
TR(q̂g(t))

TR(q̃g(t))
T − ωr(t)

T )(R(q̂g(t))ωg(t)− ωr(t))

(5.37)
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Expanding the terms in equation 5.37 gives

V̇c(t) =− kD(R(q̂g(t))ωg(t))
TR(q̃g(t))

T (R(q̂g(t))ωg(t)) + kDωr(t)
TR(q̂g(t))ωg(t)

+ kDωg(t)
TR(q̂g(t))

TR(q̃g(t))
Tωr(t)− kDωr(t)

Tωr(t)

ωg(t)
TR(q̂g(t))

TR(q̃g(t))
T∆′(q̃c(t), ωd(t))(R(q̃g(t))− I)R(q̂g(t))ωg(t)

− ωr(t)
T∆′(q̃c(t),ωd(t))(R(q̃g(t))− I)R(q̂g(t))ωg(t)

(5.38)

The first term in equation 5.38 is negative if R(q̃g(t)) is positive definite. Recall that

R(q̃g(t)) = (η̃g(t)
2 − ε̃g(t)

T ε̃g(t))I + 2ε̃g(t)ε̃g(t)
T − 2η̃g(t)S(ε̃g(t))

= (1− 2ε̃g(t)
T ε̃g(t))I + 2ε̃g(t)ε̃g(t)

T − 2η̃g(t)S(ε̃g(t))

If

1− 2‖ε̃g(t)‖2 > 0

or ‖ε̃g(t)‖2 < 1
2
, R(q̃g(t)) (and equivalently R(q̃g(t))

T ) is positive definite.

The terms in equation 5.38 are bounded as

V̇c(t) ≤− kD‖ωg(t)‖2 + 2kD‖ωg(t)‖‖ωr(t)‖ − kD‖ωr(t)‖2

+ 2ζ ′‖ωg(t)‖2 + 2ζ ′‖ωg(t)‖‖ωr(t)‖
(5.39)

where ‖R(q̂g(t))‖ = 1 and

ζ ′ = sup
t≥t0

sup
‖q̃c(t)‖=1

‖∆′(q̃c(t),ωr(t))‖ < ∞

Applying Young’s inequality to the terms with the product of ‖ωg(t)‖ and ‖ωr(t)‖,

V̇c(t) becomes

V̇c(t) ≤ −(kD − 2ζ ′ − 2)‖ωg(t)‖2 − (kD − 1

2
k2

D −
1

2
ζ ′2)‖ωr(t)‖2 (5.40)

92



If

kD > 2ζ ′ + 2 (5.41)

and ωg(t) is sufficiently large, V̇c(t) < 0. If s(t) increases without bound, ωg(t)

increases without bounded. But eventually ωg(t) will be large enough such that

V̇c(t) < 0 which implies that s(t), and ωg(t), must remain bounded.

Again, in order to satisfy equation 5.41,

1− 2‖ε̃g(t)‖2 > 0

or ‖ε̃g(t)‖2 < 1
2
. Recalling the definition of the quaternion, this requires

|φ|q̃g(t) < 90 degrees

where φq̃g(t) is the rotation angle in the alignment error quaternion q̃g(t). Lemma

5.1 shows that ‖ε̃g(t)‖ < ‖ε̃g(t0)‖. If ‖ε̃g(t0)‖2 < 1
2
, ‖ε̃g(t)‖2 < 1

2
. From equation

1.4, if q̂g(t0)
T = [0 0 0 1], q̃g(t0) = qg. The rotation angle of q̃g(t) at t0 equals

the rotation angle of qg, which must, therefore, be known a priori to be less than

90 degrees. With kD as given in equation 5.41 and |φ|q̃g(t) < 90 degrees, the closed

loop system is uniformly ultimately bounded. This implies that ω̃c(t) and ε̃c(t) are

uniformly, ultimately bounded. ¤

Theorem 5.4 If the angular velocity ωg(t) is persistently exciting, regardless of the

magnitude of kD, such that kD > 0, the control law 5.32 results in global stability and

asymptotically perfect tracking, ‖ε̃c(t)‖ → 0, ‖ω̃c(t)‖ → 0.
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Proof : The convergence of s(t) to zero depends on the exponential conver-

gence of the alignment errors, which in turn depends on the angular velocity ωg(t)

generated by the applied control. Rewriting the error term

s(t)− ŝ(t) = ω(t)− ω̂(t) = (I−R(q̃g(t)))ω(t) = (I−R(q̃g(t)))(s(t) + ωr(t))

Substituting this into equation 5.35 results in

V̇c(t) =− s(t)TKDs(t) + s(t)T (∆′(q̃c(t),ωd(t)) + KD)(I−R(q̃g(t)))s(t)

+ s(t)T (∆′(q̃c(t),ωd(t)) + KD)(I−R(q̃g(t)))ωr(t)

(5.42)

Equation 5.42 is bounded as

V̇c(t) ≤ −kD‖s(t)‖2 + 2(kD + ζ ′)‖ε̃g(t)‖‖s(t)‖2 + 2(kD + ζ ′)‖ωr(t)‖‖s(t)‖‖ε̃g(t)‖

(5.43)

Applying Young’s inequality to the last term in equation 5.43

V̇c(t) ≤ −(
kD

2
− 2(kD + ζ ′)‖ε̃g(t)‖)‖s(t)‖2 +

(kD + ζ ′)2‖ωr(t)‖2

2kD

‖ε̃g(t)‖2 (5.44)

If the angular velocity, ωg(t) satisfies equation 5.21, the system is UCO and the

alignment errors, ε̃g(t), converge to zero exponentially fast. In this case, Lemma 2.3

applies and Vc(t) converges to zero exponentially fast, which means s(t) converges to

zero exponentially fast. With the convergence of s(t) → 0, the proof of convergence

of the actual attitude and rate errors follows exactly as in the gyro bias analysis of

section 3.3. The end result of which is limt→∞‖ε̃c(t)‖ = 0 and limt→∞‖ω̃c(t)‖ = 0.

¤
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Attitude Value Alignment Value

q(t0) [0, 1, 0, 0]T qg [0.24, 0.24, 0.24, 0.91]

q̂(t0) [0, 0, 0, 1]T q̂g(t) [0, 0, 0, 1]

qd(t0) [0, 0, 0, 1]T

Table 5.2: Alignment Estimator and Controller Simulation Initial Conditions

5.4 Closed Loop Simulation Results

The gyro alignment estimator and controller are tested similarly to the bias estimator

and controller. The inertia matrix is the same, a diagonal matrix with principal

moments of inertia of [90, 100, 70]T kg m2. Table 5.2 lists the initial conditions for the

estimator and controller, as well as the true gyro alignment. The gains are chosen

as k′ = 0.001, k′1 = 0.1, KD = kDI3 (where I3 indicates a 3x3 identity matrix),

kD = 20, and λ = 3. The initial angular velocity is ω(0)T = [0, 0, 0]. The gyro

coordinate frame is rotated by 45 degrees. In the first case, the desired angular

velocity is constant, ωd(t)
T = [3, −4, 5] deg/sec. Figure 5.3(a) shows that the

alignment errors converge to a constant. Figure 5.3(b) shows the attitude tracking

error and figure 5.3(c) shows the rate tracking error. Both converge nearly to zero,

despite the error in the alignment. The analysis shows that the tracking errors are

at least upper bounded. In this case, the actual errors are very close to zero. Next,

the desired angular velocity changes direction, similarly to that used above to test
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Figure 5.3: Closed Loop Alignment Estimator/Controller with Constant ωd(t)
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just the estimator, ωd(t)
T = 5[sin ϑt, 1, 0] deg/sec, with ϑ = 5 deg/sec. Here, all the

errors converge to zero. Figure 5.4(a) shows that the alignment errors converge to

zero. Figures 5.4(b) and 5.4(c) show that attitude and rate tracking errors converge

to zero. Figure 5.4(d) shows the attitude tracking error when the gyro rate is not

corrected with the estimated alignment.
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Figure 5.4: Closed Loop Alignment Estimator/Controller with PE ωd(t)

97



Chapter 6

Combined Parameter Estimation

Different combinations of the estimators developed in the previous chapters are an-

alyzed next. The stability of the combined estimators is discussed, along with an

analysis of the resulting closed loop systems. First the scale factor and gyro bias

are combined. Then the alignment and gyro bias are combined. Finally, all three

calibration components are combined.

6.1 Scale Factor and Gyro Bias Estimator

The scale factor estimator and the gyro bias estimator equations are

˙̂
b = −αb

2
ε̃o(t)sign(η̃o(t)) (6.1)

˙̂γIi(t) =
αγ

2
ωgi(t)ε̃oi(t)sign(η̃o(t)) (6.2)

where, again, ε̃oi(t) are the three elements of ε̃o(t), αb > 0, and αγ > 0. The attitude

estimator given in equation 3.1 is repeated here

˙̂q(t) =
1

2
Q(q̂(t))R(q̃o(t))

T [ω̂(t) + kε̃o(t)sign(()η̃o(t))] (6.3)
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The estimated angular velocity, ω̂(t), is now

ω̂(t) = Γ̂I(t)ωg(t)− b̂(t) (6.4)

Recall from equation 1.5 that the effective gyro bias in the body frame is defined

as b(t) = R(qg)ΓIbg(t), where bg(t) is the true gyro bias in the gyro frame. The

alignment matrix is assumed known, and, without loss of generality, is taken as the

identity matrix, R(qg) = I. As in Section 4.1, the estimated scale factor components,

γ̂Ii(t) with i = x, y, z, are estimates of the inverse of the true scale factor components

and the components γ̂Ii(t) form the main diagonal of the matrix Γ̂I(t) in equation

6.4.

The derivatives of the attitude error, q̃o(t), scale factor error components, and

gyro bias error are

˙̃qo(t) =
1

2




Q1(q̃o(t))

−ε̃o(t)
T


 (ΓIωg(t)− b(t)− Γ̂I(t)ωg(t) + b̂(t)− kε̃o(t)sign(η̃o(t))

=
1

2




Q1(q̃o(t))

−ε̃o(t)
T


 (Ωg(t)γ̃I(t)− b̃(t)− kε̃o(t)sign(η̃o(t)))

(6.5)

˙̃b(t) =
αb

2
ε̃o(t)sign(η̃o(t)) (6.6)

˙̃γIi(t) = −αγ

2
ωgi(t)ε̃oi(t)sign(η̃o(t)) (6.7)

where again, as in Section 4.1, Ωg(t) is a diagonal matrix with the components of

ωg(t) on the main diagonal, the scale factor errors are γ̃Ii(t) = γIi− γ̂Ii(t), and γ̃I(t)
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is a vector containing the components γ̃Ii(t). Note that the equilibrium states for

6.5, 6.6, and 6.7 are

[
q̃o(t)

T b̃(t)T γ̃I(t)
T

]
=

[
0 0 0 ±1 0 0 0 0 0 0

]

Theorem 6.1 The equilibrium states of the system 6.5, 6.6, and 6.7 are globally

stable. If the angular velocity, ωg(t), is bounded, ε̃o(t) → 0 asymptotically.

Proof : The proof follows that of the gyro bias estimator. Choose a Lyapunov

function as

Vo(t) =
1

2αb

b̃(t)T b̃(t) +
1

2αγ

∑
i

ωgi(t) 6=0

γ̃Ii(t)
2 +

1

2





(η̃o(t)− 1)2 + ε̃o(t)
T ε̃o(t) η̃o(t) ≥ 0

(η̃o(t) + 1)2 + ε̃o(t)
T ε̃o(t) η̃o(t) < 0

(6.8)

Vo(t) is continuous. Noting that ε̃o(t)
T ˙̃εo(t)+η̃o(t) ˙̃ηo(t) = 0, as with the gyro bias and

scale factor analysis, the derivative of Vo(t) (including the left and right derivatives

of η̃o(t) = 0) yields, for all t

V̇o(t) =
1

αb

b̃(t) ˙̃b(t) +
1

αγ

∑
i

ωgi(t)6=0

γ̃Ii(t) ˙̃γIi(t) +





− ˙̃ηo(t) η̃o(t) ≥ 0

˙̃ηo(t) η̃o(t) < 0

(6.9)

Substituting equations 6.6 and 6.7 and ˙̃ηo(t) from equation 6.5 into equation 6.9

results in

V̇o(t) = −k

2
ε̃o(t)

T ε̃o(t)

This establishes that ε̃o(t), η̃o(t), b̃(t), and γ̃Ii(t) are globally, uniformly bounded.
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Vo(t) is a continuous, twice differentiable function with

V̈o(t) =
k

2
ε̃o(t)

TQ1(q̃o(t))[b̃(t)− Ωg(t)γ̃I(t) + kε̃o(t)sign(η̃o(t))]

where Q1(q̃o(t)) is defined in equation 2.4. V̈o(t) is bounded, given that ωg(t) is

bounded. Lemma 2.1 then shows that ‖ε̃o(t)‖ → 0 as t →∞. ¤

Theorem 6.2 For any bounded, angular velocity, ωg(t), that is persistently exciting,

the equilibrium states of the system 6.5, 6.6, and 6.7 are exponentially stable. In

particular, b̂(t) → b(t) and γ̂(t) → γ exponentially fast from any initial conditions

q̂(t0), b̂(t0), and γ̂(t0).

Proof : If ωg(t) is bounded, all the signals in equations 6.5, 6.6, and 6.7 are

bounded. The system is, as in the gyro bias and scale factor case, analyzed as a

linear time varying system, ẋ(t) = A(t)x(t), where x(t)T = [ε̃o(t), γ̃I(t), b̃(t)]. A(t)

is given as

A(t) =




−k
2
sign(η̃o(t))Q1(q̃o(t))

1
2
Q1(q̃o(t))Ωg(t) −1

2
Q1(q̃o(t))

−αγ

2
sign(η̃o(t))Ωg(t) 0 0

αb

2
sign(η̃o(t))I 0 0




The development proceeds like that for the gyro bias and scale factor in Sections

3.1 and 4.1, under the assumption that ωg(t) is at least bounded. Again V̇o(t) is
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written as V̇o(t) = −x(t)TCTCx(t) ≤ 0, where C =

[ √
k
2
I 0 0

]
. Choose K(t) as

K(t) =




−
√

k
2
sign(η̃o(t))Q1(q̃o(t))

−
√

αγ

2k
sign(η̃o(t))Ωg(t)

√
αb

2k
sign(η̃o(t))I




As with the gyro bias and scale factor observers, K(t) is a piecewise continuous

function of time. The matrix A(t)−K(t)C is then

A(t)−K(t)C =




0 1
2
Q1(q̃o(t))Ωg(t) −1

2
Q1(q̃o(t))

0 0 0

0 0 0




Here, the state transition matrix for the pair (A(t)−K(t)C,C) is

Φ(τ, t) =




I Σ(τ, t)

0 I6


 (6.10)

where I6 is a 6x6 identity matrix, and

Σ(τ, t) =

[
1
2

∫ τ

t
Q1(q̃o(σ))Ωg(σ)dσ −1

2

∫ τ

t
Q1(q̃o(σ))dσ

]

The observability Grammian is given in equation 3.9, and is repeated here as

W (t, t+T ) =

∫ t+T

t

Φ(τ, t)TCTCΦ(τ, t)dτ =

∫ t+T

t




k
2
I k

2
Σ(τ, t)

k
2
Σ(τ, t)T k

2
Σ(τ, t)TΣ(τ, t)


 dτ

(6.11)

The system is UCO if there exists a T > 0 and positive constants α1 > 0, α2 > 0

such that, for all t ≥ t0 ,α1I ≥ W (t, t + T ) ≥ α2I. Using Lemma 13.4 of [30], this
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property is assured if ωg(t), ω̇g(t), Q1(q̃o(t)) and d
dt

Q1(q̃o(t)) are bounded, and there

exist positive constants T2, β1, β2 such that, for all t ≥ t0,

β2I ≥

∫ t+T2

t




Ωg(τ)Q1(q̃o(τ))T (τ)Q1(q̃o(τ))Ωg(τ) Ωg(τ)Q1(q̃o(τ))TQ1(q̃o(τ))

Q1(q̃o(τ))T (τ)Q1(q̃o(τ))Ωg(τ) Q1(q̃o(τ))TQ1(q̃o(τ))


 dτ

≥ β1I

(6.12)

Q1(q̃o(t)) is bounded by definition, since it contains elements of the quaternion,

q̃o(t).
d
dt

Q1(q̃o(t)) is also bounded, since the above Lyapunov analysis shows that

all the terms in equation 6.5 are bounded, given that ωg(t) is bounded. With ω̇g(t)

bounded, the upper bound in equation 6.12 is satisfied.

To examine the lower bound, first substitute Q1(q̃o(t))
TQ1(q̃o(t)) = I−ε̃o(t)ε̃o(t)

T

into equation 6.12

∫ t+T2

t




Ωg(τ)(I− ε̃o(τ)ε̃o(τ)T )Ωg(τ) Ωg(τ)(I− ε̃o(τ)ε̃o(τ)T )

(I− ε̃o(τ)ε̃o(τ)T )Ωg(τ) I− ε̃o(τ)ε̃o(τ)T


 dτ

≥ β1I

(6.13)

Recall that ‖ε̃o(t)‖ → 0 asymptotically. Thus, for any δ > 0, there exists a T1(δ) >

t0 such that ‖ε̃o(t)‖ < δ for all t ≥ t0 + T1. Taking any δ < 1 and T2 > T1,
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I− ε̃o(t)ε̃o(t)
T > (1− δ2)I, the matrix inside the integral in equation 6.13 becomes




Ωg(τ)[I− ε̃o(τ)ε̃o(τ)T ]Ωg(τ) Ωg(τ)(I− ε̃o(τ)ε̃o(τ)T )

(I− ε̃o(τ)ε̃o(τ)T )Ωg(τ) (I− ε̃o(τ)ε̃o(τ)T )




> (1− δ2)




Ωg(τ)2 Ωg(τ)

Ωg(τ) I




(6.14)

The system is UCO if the following is true, for any z ∈ R6,

(1− δ2)zT [

∫ t+T2

t




Ωg(τ)2 Ωg(τ)

Ωg(τ) I


 dτ ]z ≥ 0 (6.15)

Since (1− δ2) > 0, the following must then be true

zT
[ ∫ t+T2

t




Ωg(τ)2 Ωg(τ)

Ωg(τ) I


 dτ

]
z (6.16)

Equation 6.16 establishes a persistency of excitation condition. If equation 6.16 is

satisfied, the system is UCO, and ε̃o(t), b̃(t), and γ̃I(t) converge to zero exponentially

fast.

Equation 6.16 will not be satisfied if the angular velocity is zero or constant. If

the angular velocity is constant, for example ωg(t) = [a, b, c], the matrix in equation
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6.16 becomes 


a2 0 0 a 0 0

0 b2 0 0 b 0

0 0 c2 0 0 c

a 0 0 1 0 0

0 b 0 0 1 0

0 0 c 0 0 1




(6.17)

The determinant of the matrix in equation 6.17 is zero, the matrix is not positive

definite. The PE condition is not satisfied with a constant angular velocity. The

angular velocity must therefore change with time in such a way as to satisfy the PE

condition of equation 6.16. An example of an angular velocity that does satisfy the

PE condition is ωg(t)
T = sin ϑt[1, 1, 1]. In this case, the matrix in equation 6.16

becomes

∫ t+T2

t




(sin ϑτ)2I sin ϑτ I

sin ϑτI I


 dτ (6.18)

Evaluating the integral in equation 6.18




( τ
2
− 1

4ϑ
sin 2ϑτ)I − 1

ϑ
cos ϑτ I

− 1
ϑ

cos ϑτ I τ I




t,t+T2

(6.19)

Let T2 = 2π
ϑ

, equation 6.19 is then

zT




π
ϑ
I 0

0 2π
ϑ

I



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Attitude Value Bias Value Scale Factor Value

q(t0) [0, 0, 1, 0]T b(t) [0.5,−0.5, 0.5]T deg
sec

γ [3,−5, 4]T

q̂(t0) [0, 0, 0, 1]T b̂(t) [0,0,0] γ̂(t) [1, 1, 1]T

Table 6.1: Scale Factor and Bias Estimator Simulation Initial Conditions

which is positive definite. The system is UCO and ε̃o(t), b̃(t), and γ̃I(t) converge to

zero exponentially fast. ¤

Remark : For situations requiring positive scale factor estimates, or scale factor

estimates confined to a specified region, a standard projection method such as that

described in Chapter 4 of [39] ensures that the estimates remain positive or within

a specified bound, while retaining all the estimator properties given above. See the

discussion in Section 4.1.

6.2 Estimator Simulation Results

The combined bias and scale factor estimator is tested for three scenarios. Table

6.1 lists the initial conditions for the estimator, as well as the true scale factor. The

gains are chosen as k = 5 and ϑ = 1.

In the first case, the angular velocity is constant, ωg(t)
T = [3,−4, 5] deg/sec.

Figures 6.1(a) and 6.1(b) show that the bias and scale factor estimation errors do not

converge to zero. In the second case, the angular velocity components are sinusoidal,

as in equation 6.18, with ϑ = 5 deg/sec. Figures 6.2(a) and 6.2(b) show that the
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Figure 6.1: Bias and Scale Factor Estimation Errors with Constant Angular Velocity

bias and scale factor estimation errors also converge to zero.
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Figure 6.2: Bias and Scale Factor Estimation Errors with Sinusoidal Angular Velocity

Finally, as with the scale factor estimator, the combined scale factor and bias

estimator is tested with the scale factors

γ = [
π

180
,− π

180
,

π

180
]T
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and the bias as given above. Figures 6.3(a) and 6.3(b) show that the bias estimation

errors and the scale factor estimation errors converge to zero. Again, this represents

an extreme case of scaling the angular velocity with incorrect units.
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Figure 6.3: Bias and Scale Factor Estimator Errors with Large Inverse Scale Factor

6.3 Closed Loop Stability

The closed loop analysis initially proceeds like that in Section 3.3. The control is

repeated here as

u(t) = −KDŝ(t) + Hα̂r(t)− S(Hω̂(t))ωr(t) (6.20)

The closed loop analysis for the gyro bias, up to equation 3.19, is independent of

the specific gyro error. The closed loop equation, given in equation 3.19, is repeated

here

Hṡ(t)− S(Hω(t))s(t) + KDs(t) = ∆(q̃c(t),ωd(t))s̃(t) (6.21)
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where again

∆(q̃c(t),ωd(t)) = ∆′(q̃c(t), ωd(t)) + KD

Note that the definition of ωr(t), the assumption that ωd(t) is bounded, and the

constraint ‖q̃c(t)‖ = 1 ensure that ∆′(q̃c(t),ωd(t)) is a bounded matrix over any

solution of the coupled dynamics, equations 6.1, 6.2, 6.3, 2.21, and 6.20.

Theorem 6.3 If the scale factors are known to be positive, with a known upper and

lower bound on each component, with projection implemented in the estimator such

that γ̂I(t) has a known upper and lower bound, and if

kD >
ζ ′(γI,max + γ̂I,max) + 7

γI,maxγ̂I,max

> 0

where γI,max = ‖ΓI‖, γ̂I,max = ‖Γ̂I(t)‖max, and

ζ ′ = sup
t≥t0

sup
‖q̃c(t)‖=1

‖∆′(q̃c(t),ωd(t))‖ < ∞

the control law 6.20 results in a stable closed loop system, with ‖ε̃c(t)‖ and ‖ω̃c(t)‖

uniformly, ultimately bounded.

Proof : The Lyapunov proof proceeds identically to that for the scale factor in

4.3, except for the addition of the bias terms. V̇c(t) is rewritten in terms of ωg(t)

and ωr(t). Rewrite s(t) as

s(t) = ω(t)− ωr(t) = ΓIωg(t)− b− ωr(t)

and rewrite ŝ(t) as

ŝ(t) = ω̂(t)− ωr(t) = Γ̂I(t)ωg(t)− b̂(t)− ωr(t)
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V̇c(t) from equation 4.22 is expanded as

V̇c(t) = s(t)T∆′(q̃c(t),ωd(t))(s(t)− ŝ(t))− sTKDŝ(t) (6.22)

Substituting the expressions for s(t) and ŝ(t) into equation 6.22, along with KD =

kDI, results in (the arguments of ∆′(q̃c(t),ωd(t)) and the argument of time are omit-

ted for clarity)

V̇c(t) = (ωT

g ΓI − bT − ωT

r )∆′((ΓI − Γ̂I)ωg(t)− (b− b̂))

− kD(ωT

g ΓI − bT − ωT

r )(Γ̂Iωg − b̂− ωr)

V̇c(t) = ωT

g ΓI∆
′(ΓI − Γ̂I)ωg − ωT

g ΓI∆
′(b− b̂)− bT∆′(ΓI − Γ̂I)ωg

+ bT∆′(b− b̂)− ωT

r ∆′(ΓI − Γ̂I)ωg + ωT

r ∆′(b− b̂)

− kDωT

g ΓI Γ̂Iωg + kDωT

g ΓI b̂ + kDωT

g ΓIωr

+ kDbT Γ̂Iωg − kDbT b̂− kDbTωr + kDωT

r Γ̂Iωg(t)

− kDωT

r b̂− kDωT

r ωr

The above expression is bounded as (again, without the time argument)

V̇c(t) ≤− kDγI,maxγ̂I,max‖ωg‖2 − kD‖ωr‖2 + ζ ′γI,max(γI,max + γ̂I,max)‖ωg‖2

+ ζ ′γI,max‖ωg‖(‖b‖+ ‖b̂‖) + ζ ′(γI,max + γ̂I,max)‖ωg‖‖b‖

+ ζ ′(γI,max + γ̂I,max)‖ωg‖‖ωr‖+ kDγI,max‖ωg‖‖b̂‖

+ kDγI,max‖ωg‖‖ωr‖+ kDγ̂I,max‖ωg‖‖b‖+ kDγ̂I,max‖ωg‖‖ωr‖

+ f1(‖b‖, ‖b̂‖, ‖ωr‖, kD, ζ ′)

(6.23)
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Applying Young’s inequality to equation 6.23 results in

V̇c(t) ≤− (kDγI,maxγ̂I,max − ζ ′γI,max(γI,max + γ̂I,max)− 7)‖ωg(t)‖2

− (kD − 1

4
(k2

D + ζ ′2)(γI,max + γ̂I,max)
2)‖ωr(t)‖2

+ f2(‖b‖, ‖b̂‖, ‖ωr‖,γI,max, γ̂I,max, kD, ζ ′)

(6.24)

where f1 and f2 are both positive, bounded functions. For the system to be stable,

V̇c(t) ≤ 0. If the scale factor factors and the scale factor estimates are both positive

and upper and lower bounded, and if

kD >
ζ ′(γI,max + γ̂I,max) + 7

γI,maxγ̂I,max

> 0 (6.25)

the first term in equation 6.24 is negative. From the estimator analysis, γI,max,

γ̂I,max, b, and b̂(t) are all bounded, and ζ ′ is bounded by definition. A known upper

and lower bound on γI,max is assumed a priori. Projection in the estimator ensures

an upper and lower bound for γ̂I,max.

The above analysis establishes that a bounded kD exists which satisfies 6.25.

If ‖ωg(t)‖ is sufficiently large, V̇c(t) < 0 and the closed loop system is uniformly

ultimately bounded. Alternatively, recall that s(t) = ω(t) − ωr(t) = ΓIωg(t) −

b − ωr(t). If s(t) increases without bound, ωg(t) increases without bound. But,

eventually ωg(t) will be large enough such that V̇c(t) < 0 which implies that s(t),

and ωg(t), must remain bounded. If s(t) is uniformly ultimately bounded, ω̃c(t) and

ε̃c(t) must also be uniformly ultimately bounded since

s(t) = ω̃c(t) + λε̃c(t)
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ε̃c(t) is bounded by definition, therefore ω̃c(t) is bounded. ¤

Theorem 6.4 If the angular velocity, ωg(t), is persistently exciting, regardless of

the specific magnitude of kD > 0, the control law 6.20 results in a stable closed loop

system, with asymptotically perfect tracking, ‖ε̃c(t)‖ → 0, ‖ω̃c(t)‖ → 0.

Proof : The convergence of s(t) to zero depends on the exponential convergence

of the scale factor and bias errors, which in turn depends on the angular velocity

ωg(t) generated by the applied control. Rewriting the error term

s(t)− ŝ(t) = ω(t)− ω̂(t) = Γ̃I(t)ωg(t)− b̃(t) (6.26)

From equation 1.1, ωg(t) can be written as

ωg(t) = Γ(ω(t) + b)

Substituting ω(t) = s(t) + ωr(t) into the expression for ωg(t), equation 6.26 is then

s(t)− ŝ(t) = Γ̃I(t)Γ(s(t) + ωr(t) + b)− b̃(t)

Substituting this into equation 4.22 results in

V̇c(t) =− s(t)TKDs(t) + s(t)T (∆′(q̃c(t), ωd(t)) + KD)Γ̃I(t)Γs(t)

+ s(t)T (∆′(q̃c(t),ωd(t)) + KD)Γ̃I(t)Γωr(t)

+ s(t)T (∆′(q̃c(t),ωd(t)) + KD)Γ̃I(t)Γb + s(t)T (∆′(q̃c(t),ωd(t)) + KD)b̃(t)

(6.27)
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Equation 6.27 is bounded as

V̇c(t) ≤− kD‖s(t)‖2 + (kD + ζ ′)‖Γ̃I(t)‖γI,max‖s(t)‖2

+ (kD + ζ ′)γI,max‖ωr(t)‖‖s(t)‖‖Γ̃I(t)‖

+ (kD + ζ ′)γI,max‖b‖‖s(t)‖‖Γ̃I(t)‖+ (kD + ζ ′)‖s(t)‖‖b̃(t)‖

(6.28)

Applying Young’s inequality to the last three terms in equation 6.28

V̇c(t) ≤− (
kD

2
− (kD + ζ ′)γI,max‖Γ̃I(t)‖)‖s(t)‖2

+
3(kD + ζ ′)2γ2

I,max

2kD

(‖ωr(t)‖2 + ‖b‖2)‖Γ̃I(t)‖2 +
3(kD + ζ ′)2

2kD

‖b̃(t)‖2

(6.29)

If the angular velocity, ωg(t), in addition to being bounded, satisfies equation 6.16,

the system is UCO and the scale factor and bias errors converge to zero exponen-

tially fast. In this case, Lemma 2.3 applies. Since ‖Γ̃I(t)‖ and ‖b̃(t)‖ converge

to zero exponentially fast, Vc(t) converges to zero exponentially fast, which means

s(t) converges to zero exponentially fast. With the convergence of s(t) → 0, the

proof of convergence of the actual attitude and rate errors follows exactly as in the

gyro bias analysis of section 3.3. The end result of which is limt→∞‖ε̃c(t)‖ = 0 and

limt→∞‖ω̃c(t)‖ = 0. ¤

6.4 Closed Loop Simulation Results

The combined gyro scale factor/bias estimator and controller are tested similarly to

the bias estimator and controller. The inertia matrix is the same, a diagonal matrix

with principal moments of inertia of [90, 100, 70]T kg m2. Table 6.2 lists the initial

conditions for the estimator and controller, as well as the true scale factor. The gains
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Attitude Value Scale Factor Value Bias Value

q(t0) [0, 1, 0, 0]T γ [3,−5, 4]T b [0.5,−0.5, 0.5]T deg
sec

q̂(t0) [0, 0, 0, 1]T γ̂(t) [1, 1, 1]T b̂(t) [0, 0, 0]T

qd(t0) [0, 0, 0, 1]T

Table 6.2: Scale Factor and Bias Estimator/Controller Simulation Initial Conditions

are chosen as k = 5, KD = kDI3 (where I3 indicates a 3x3 identity matrix), αb = 1,

αγ = 1, kD = 10, and λ = 3. Here the initial angular velocity is ω(0)T = [0, 0, 0], and

the desired angular velocity is sinusoidal, ωd(t)
T = [sin ϑt, sin ϑt, sin ϑt] where ϑ = 5

deg/sec.

Figures 6.4(a) and 6.4(b) show that the scale factor and bias errors converge to

zero. Figures 6.4(c) and 6.4(d) show that both the tracking attitude error and the

tracking angular velocity error converge to zero.
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Figure 6.4: Coupled Estimator/Controller Errors with Scale Factor and Bias Errors
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6.5 Alignment and Gyro Bias Estimator

The estimators for the gyro alignment and gyro bias are combined next. Here,

the kinematic equations for the predicted attitude quaternion and the estimated

alignment quaternion are given as

˙̂q(t) =
1

2
Q(q̂(t))R(q̃o(t))

T [ω̂(t) + k(t)ε̃o(t)sign(η̃o(t)) + k1(t)sign(ε̃o(t))sign(η̃o(t))]

(6.30)

˙̂qg(t) =
1

2
Q(q̂g(t))[(I −R(q̃o(t)))R(q̂g(t))ωg(t)] (6.31)

where ω̂(t) is now

ω̂(t) = R(q̂g(t))ωg(t)− b̂(t)

The gyro bias estimator is, again

˙̂
b = −αb

2
ε̃o(t)sign(η̃o(t)) (6.32)

The scale factors (assumed known) are incorporated into ωg(t). The gains, k(t),

k1(t), and αb, are positive. The quaternion, q̂g(t), is the estimated gyro alignment

quaternion, transforming from gyro coordinates to an estimated body frame. Again,

q̂(t) is a prediction of the attitude at time, t, propagated by the kinematic equa-

tion using the measured angular velocity and the current alignment and gyro bias

estimates. The attitude error is as given in equation 3.4 and the alignment error is

given in equation 2.16. The term R(q̃o(t))
T in equation 6.30 resolves the angular

velocity terms in the estimator frame. The kinematic equation for the attitude error
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quaternion, recalling equations 5.3 and 5.5 from Section 5.1, is

˙̃qo(t) =
1

2




Q1(q̃o(t))

−ε̃o(t)
T


 (R(qg)ωg(t)− b(t)−R(q̂g(t))ωg(t) + b̂(t)

− k(t)ε̃o(t)sign(η̃o(t))− k1(t)sign(ε̃o(t))sign(η̃o(t)))

=
1

2




Q1(q̃o(t))

−ε̃o(t)
T


 (R(q̃g(t))− I)R(q̂g(t))ωg(t)− b̃(t)

− k(t)ε̃o(t)sign(η̃o(t))− k1(t)sign(ε̃o(t))sign(η̃o(t)))

(6.33)

The kinematic equation for the alignment error quaternion is given in equation 5.4,

repeated here as

˙̃qg(t) =
1

2




Q1(q̃g(t))

−ε̃g(t)
T


 [(R(q̃o(t))− I)R(q̂g(t))ωg(t)] (6.34)

Finally, the derivative of the gyro bias error is

˙̃b(t) =
αb

2
ε̃o(t)sign(η̃o(t)) (6.35)

Note that the equilibrium state for each of the error quaternions, q̃o(t) and q̃g(t),

is the identity quaternion, [0 0 0 ± 1]. The equilibrium state for the gyro bias is

b̃(t)T = [0 0 0].

Theorem 6.5 If k(t) ≥ ‖ωg(t)‖ + k′ and k1(t) ≥ 4‖ωg(t)‖ + k′1, where k′ > 0 and

k′1 > 0, the equilibrium states for the system 6.33, 6.34, and 6.35 are globally stable.

In particular, if the angular velocity, ωg(t), is bounded, ε̃o(t) → 0 asymptotically.
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Proof : Chose a Lyapunov function as

Vo(t) =
1

2αb

b̃(t)T b̃(t)+
1

2





(η̃o(t)− 1)2 + ε̃o(t)
T ε̃o(t) η̃o(t) ≥ 0

(η̃o(t) + 1)2 + ε̃o(t)
T ε̃o(t) η̃o(t) < 0

+
1

2





(η̃g(t)− 1)2 + ε̃g(t)
T ε̃g(t) η̃g(t) ≥ 0

(η̃g(t) + 1)2 + ε̃g(t)
T ε̃g(t) η̃g(t) < 0

(6.36)

The derivative of Vo(t) is (again, including the left and right derivatives of the sign

terms, and using ε̃o(t)
T ˙̃εo(t) + η̃o(t) ˙̃ηo(t) = 0)

V̇o(t) =
1

αb

b̃(t)T ˙̃
b(t) +





− ˙̃ηo(t) η̃o(t) ≥ 0

˙̃ηo(t) η̃o(t) < 0

+





− ˙̃ηg(t) η̃g(t) ≥ 0

˙̃ηg(t) η̃g(t) < 0

Substituting for ˙̃ηo(t), ˙̃ηg(t), and ˙̃
b(t) from equations 6.33, 6.34 and 6.35

V̇o(t) =− k(t)

2
ε̃o(t)

T ε̃o(t) +
1

2
ε̃o(t)

T [(R(q̃g(t))− I)R(q̂g(t))ωg(t)sign(η̃o(t))

− k1(t)sign(ε̃o(t))] +
1

2
ε̃g(t)

T (R(q̃o(t))− I)R(q̂g(t))ωg(t)sign(η̃g(t))

(6.37)

Equation 6.37 is the same as equation 5.7, since the bias terms cancel. The derivative

is then bounded in the same manner, resulting in equation 5.1, repeated here

V̇o(t) ≤ −k′‖ε̃o(t)‖2 − k′1‖ε̃o(t)‖ ≤ −k′‖ε̃o(t)‖2 (6.38)

where k(t) = 4‖ωg(t)‖+ k′ and k1 = 4‖ωg(t)‖+ k′1, where k′ > 0 and k′1 > 0. With

the added constraint that ωg(t) is bounded, Vo(t) is a continuous, twice differentiable

function. Lemma 2.1 then shows that ‖ε̃o(t)‖ → 0 as t →∞. ¤
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Theorem 6.6 For any bounded, angular velocity, ωg(t), that is persistently exciting,

the equilibrium states of the system 6.33, 6.34, and 6.35 are exponentially stable. In

particular, q̂g(t) → qg and b̂(t) → b(t) exponentially fast from any initial conditions

q̂g(t0), b̂(t0), and q̂(t0).

Proof : The system given by equations 6.33, 6.34, and 6.35 is stable. If ωg(t) is

bounded, all the signals are bounded. As with the gyro bias estimator analysis, the

system is cast as a linear time-varying system ẋ(t) = A(t)x(t) where

x(t) =




ε̃o(t)

ε̃g(t)

b̃(t)




Developing A(t) is the same as in the alignment estimator, with added terms for the

bias error. Here A(t) is

A(t) =




A11(t) A12(t) −1
2
Q1(q̃o(t))

A21(t) 0 0

αb

2
sign(η̃o(t))I 0 0




where again

A11(t) = −1

2
Q1(q̃o(t))sign(η̃o(t))[k + k1E(ε̃o(t))]

A12(t) =−Q1(q̃o(t))[(R(q̂g(t))ωg(t))ε̃g(t)
T

− (ε̃g(t)
TR(q̂g(t))ωg(t))I− η̃g(t)S(R(q̂g(t))ωg(t))]

A21(t) =−Q1(q̃g(t))[(R(q̂g(t))ωg(t))ε̃o(t)
T

− (ε̃o(t)
TR(q̂g(t))ωg(t))I− η̃o(t)S(R(q̂g(t))ωg(t))]
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where E(ε̃o(t)) is defined in equation 5.13. See section 5.1 for definitions of the other

terms above.

Following the proof for the gyro bias and alignment estimators, V̇o(t) is rewrit-

ten as V̇o(t) ≤ −x(t)TCTCx(t) ≤ 0, where C = [
√

k′I 0 0]. Here K(t) is chosen

as

K(t) =




1√
k′

A11(t)

1√
k′

A21(t)

αb

2
√

k′
sign(η̃o(t))I




With ωg(t) bounded, applying the same arguments as with the gyro bias and align-

ment estimators, K(t) is a piecewise continuous function of time.

The state transition matrix for the pair (A(t)−K(t)C, C) is

Φ(τ, t) =




I Σ(τ, t)

0 I6


 (6.39)

where I6 is a 6x6 identity matrix and

Σ(τ, t) =

[ ∫ τ

t
A12(σ)dσ −1

2

∫ τ

t
Q1(q̃o(σ))dσ

]

The observability Grammian is

W (t, t + T ) =

∫ t+T

t

Φ(τ, t)TCTCΦ(τ, t)dτ

=

∫ t+T

t




k′I k′Σ(τ, t)

k′Σ(τ, t)T k′Σ(τ, t)TΣ(τ, t)


 dτ

(6.40)

The system is UCO if there exists a T > 0 and positive constants α1 > 0, α2 > 0

such that, for all t ≥ t0 ,α1I ≥ W (t, t + T ) ≥ α2I. Proceeding similarly to 3.10 for
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the gyro bias estimator proof, this is assured if Q1(q̃o(t)),
d
dt

Q1(q̃o(t)), A12(t) and

d
dt

A12(t) are bounded, and there exist positive constants T2, β1, and β2 such that, for

all t ≥ t0

β2I ≥
∫ t+T2

t




A12(τ)TA12(τ) −1
2
A12(τ)TQ1(q̃o(τ))

−1
2
Q1(q̃o(τ))TA12(τ) 1

4
Q1(q̃o(τ))TQ1(q̃o(τ))


 dτ

> β1I

(6.41)

As with the alignment analysis, rewrite A12(t) as A12(t) = −Q1(q̃o(t))B(t), where

again

B(t) = (R(q̂g(t))ωg(t))ε̃g(t)
T − (ε̃g(t)

TR(q̂g(t))ωg(t))I− η̃g(t)S(R(q̂g(t))ωg(t))

or as in equation 5.22, B(t) is

B(t) = S(ε̃g(t))S(R(q̂g(t))ωg(t))− η̃g(t)S(R(q̂g(t))ωg(t))

= (S(ε̃g(t))− η̃g(t)I)S(R(q̂g(t))ωg(t))

(6.42)

The integral 6.41 becomes

β2I ≥

∫ t+T2

t




B(τ)TQ1(q̃o(τ))TQ1(q̃o(τ))B(τ) −1
2
B(τ)TQ1(q̃o(τ))TQ1(q̃o(τ))

−1
2
Q1(q̃o(τ))TQ1(q̃o(τ))B(τ) 1

4
Q1(q̃o(τ))TQ1(q̃o(τ))


 dτ

> β1I

(6.43)

Q1(q̃o(t)) is bounded by definition, since it contains elements of the quaternion,

q̃o(t).
d
dt

Q1(q̃o(t)) is also bounded, since the above Lyapunov analysis shows that all
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the terms in equation 6.33 are bounded, given that ωg(t) is bounded. With ω̇g(t)

bounded, the upper bound in equation 6.43 is satisfied.

To examine the lower bound, substitute Q1(q̃o(t))
TQ1(q̃o(t)) = I− ε̃o(t)ε̃o(t)

T

into equation 6.43

∫ t+T2

t




B(τ)T [I− ε̃o(τ)ε̃o(τ)T ]B(τ) −1
2
B(τ)T [I− ε̃o(τ)ε̃o(τ)T ]

−1
2
[I− ε̃o(τ)ε̃o(τ)T ]B(τ) 1

4
[I− ε̃o(τ)ε̃o(τ)T ]


 dτ

> β1I

(6.44)

Since ‖ε̃o(t)‖ → 0 asymptotically, for any δ > 0, there exists a T1(δ) > t0 such that

‖ε̃o(t)‖ < δ for all t ≥ t0 + T1. Taking any δ < 1 and T2 > T1, I − ε̃o(t)ε̃o(t)
T >

(1− δ2)I. The matrix inside equation 6.44 can then be written as




B(τ)T [I− ε̃o(τ)ε̃o(τ)T ]B(τ) −1
2
B(τ)T [I− ε̃o(τ)ε̃o(τ)T ]

−1
2
[I− ε̃o(τ)ε̃o(τ)T ]B(τ) 1

4
[I− ε̃o(τ)ε̃o(τ)T ]




> (1− δ2)




B(τ)TB(τ) −1
2
B(τ)T

−1
2
B(τ) 1

4




(6.45)

Since 1− δ2 > 0, the system is UCO if, for any z ∈ R6, the following is true

zT
[ ∫ t+T2

t




B(τ)TB(τ) −1
2
B(τ)T

−1
2
B(τ) 1

4
I


 dτ

]
z > 0 (6.46)

If equation 6.46 is positive, then equation 6.41 is satisfied and the system is UCO.

This establishes the persistency of excitation condition for the combined alignment

and gyro bias estimators.
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The analysis of equation 6.46 proceeds as in the alignment estimator analysis

in section 5.1. B(t) is singular for any given time. In order for the term B(t)TB(t) to

be positive definite, the angular velocity must change directions. Repeating equation

5.23, B(t)TB(t) is

B(t)TB(t) = R(q̂g(t))S(ωg(t))
T (I− ε̃gR(t)ε̃gR(t)T )S(ωg(t))R(q̂g(t))

T

= R(q̂g(t))[S(ωg(t))
TS(ωg(t))− S(ε̃gR(t))ωg(t)ωg(t)

TS(ε̃gR(t))]R(q̂g(t))
T

(6.47)

where ε̃gR(t) = R(q̂g(t))
T ε̃g(t).

A constant angular velocity will not satisfy the PE condition given by equation

6.46. As shown in Section 5.1, the matrix B(t)TB(t) is singular at any time, t. If

the angular velocity is constant, B(t)TB(t) integrated over any time interval T2 will

not be positive definite. If the integration of B(t)TB(t) is not positive definite, the

matrix in equation 6.46 will not be positive definite.

An example of an angular velocity that will satisfy the PE condition is ωg(t) =

[sin ϑt, cos ϑt, 0]T . The upper left submatrix in equation 6.46 is evaluated with this

ωg(t) first.
∫ t+T2

t

B(τ)TB(τ)dτ

Substituting equation 6.47 into the integral gives

∫ t+T2

t

R(q̂g(τ))[S(ωg(τ))TS(ωg(τ))− S(ε̃gR(t))ωg(τ)ωg(τ)TS(ε̃gR(t))]R(q̂g(τ))Tdτ
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If, for any z ∈ R3

z[

∫ t+T2

t

R(q̂g(τ))[S(ωg(τ))TS(ωg(τ))

− S(ε̃gR(t))ωg(τ)ωg(τ)TS(ε̃gR(t))]R(q̂g(τ))Tdτ ]z > 0

(6.48)

the upper left matrix in equation 6.46 is positive definite. Since R(q̂g(t)) is nonsin-

gular, let y = R(q̂g(t))
Tz where y ∈ R3. Equation 6.48 is then

yT
[ ∫ t+T2

t

(S(ωg(τ))TS(ωg(τ))− S(ε̃gR(t))ωg(τ)ωg(τ)TS(ε̃gR(t)))dτ
]
y (6.49)

Since ε̃o(t) → 0 asymptotically, the derivative of ε̃g(t), which is proportional to ε̃o(t)

through R(q̃o(t)), will be approaching zero, as will the derivative of R(q̂g(t)), through

q̂g(t), (see equations 6.34 and 6.33). The integration in equation 6.49 is performed

with ε̃g(t) and R(q̂g(t)) (nearly) constant (recall that ε̃gR(t) = R(q̂g(t))
T ε̃g(t)). With

ωg(t) given above and T2 = 2π
ϑ

, equation 6.49 becomes

π

ϑ
yT




2− ε̃2
gR,2 − ε̃2

gR,3 ε̃gR,1ε̃gR,2 ε̃gR,1ε̃gR,3

ε̃gR,1ε̃gR,2 2− ε̃2
gR,1 − ε̃2

gR,3 ε̃gR,2ε̃gR,3

ε̃gR,1ε̃gR,3 ε̃gR,2ε̃gR,3 2− ε̃2
gR,1 − ε̃2

gR,2




y

=
π

ϑ
yT




1 + η̃2
gR + ε̃2

gR,1 ε̃gR,1ε̃gR,2 ε̃gR,1ε̃gR,3

ε̃gR,1ε̃gR,2 1 + η̃2
gR + ε̃2

gR,2 ε̃gR,2ε̃gR,3

ε̃gR,1ε̃gR,3 ε̃gR,2ε̃gR,3 1 + η̃2
gR + ε̃2

gR,3




y > 0

(6.50)

If ‖ε̃g(t)‖ = ‖ε̃gR(t)‖ = 1 for all t ≥ t0, the PE condition above would not be

satisfied, since I− ε̃g(t)ε̃g(t)
T in equation 6.47 would be singular for all t. However,

‖ε̃g(t)‖ = 1 is equivalent to an alignment rotational error of 180 degrees. For the

124



estimate of the alignment to remain 180 degrees away from the actual alignment

requires that the fourth element of q̃g(t), η̃g = cos( φ̃
2
), remain at zero for all t ≥ t0. If

η̃g of q̃g(t) does not change from zero, then ‖ε̃g(t)‖ remains at ‖ε̃g(t)‖ = 1. For this to

be true, the derivative of η̃g in equation 6.34 must be zero. If the attitude prediction

error ε̃o(t) is not zero, R(q̃o(t)) − I in equation 6.34 will not be zero. For ˙̃ηg = 0,

the angular velocity term in equation 6.34 must remain perpendicular to ε̃g for all

time. But, the angular velocity ωg(t) is changing direction continuously, ε̃o(t) is also

changing continuously (converging to zero). Until ε̃o(t) converges identically to zero,

(R(q̃o(t))− I)R(q̂g(t))ωg(t) will not be zero and shouldn’t remain perpendicular to

ε̃g(t) for all t > t0 since it changes direction. As long as ‖ε̃g(t)‖ 6= 1, the PE condition

is satisfied and the errors converge to zero exponentially fast.

The lower left submatrix (which is equivalent to the upper right submatrix) is

now evaluated with ωg(t) and T2 = 2π
ϑ

, and letting R(q̂g(t)) and ε̃g(t) be treated as

(nearly) constant,

∫ t+T2

t

B(τ)dτ =

∫ t+T2

t

(S(ε̃g(t))− η̃g(t)I)R(q̂g(τ))S(ωg(τ))R(q̂g(τ))Tdτ = 0 (6.51)

Finally, the lower right submatrix becomes

∫ t+T2

t

1

4
Idτ =

π

2ϑ
I

Since the diagonal matrices in equation 6.46 are positive definite, and the off diagonal

matrices are zero, the matrix in equation 6.46 is positive definite. The system is UCO

and the alignment and bias errors converge to zero exponentially fast. ¤
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Remark : For situations requiring a bounded alignment angle estimate, a stan-

dard projection method such as that described in Chapter 4 of [39] ensures that the

estimated angle remains within a specified bound, while retaining all the estimator

properties given above.

The angle φ̂g is computed from the quaternion components, as given in equation

1.2. Depending on the desired range, φ̂g can either be computed as φ̂g = 2 cos−1(η̂g),

or

φ̂g = 2 tan−1 ε̂gi

êgiη̂g

where ε̂gi is a component of ε̂g and êgi is the corresponding component of the unit

rotation vector. If the size of the estimated angle, φ̂g, is constrained to be less than

some known upper bound, φg,max, such that

|φg,max| − |φ̂g| ≥ 0

equation 6.31 is implemented as

˙̂ηg(t) =





0 |φ̂|g ≥ φg,max and ˙̂ηg(t) < 0

−1
2
ε̃g(t)

T (I −R(q̃o(t)))R(q̂g(t))ωg(t) otherwise

6.6 Estimator Simulation Results

The combined gyro alignment and bias estimator is tested similarly to the bias esti-

mator. Table 6.3 lists the initial quaternions and gyro bias for the estimator, as well

as the true alignment and gyro bias. In the first case, the angular velocity is con-
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Attitude Value Alignment Value Bias Value

q(t0) [0, 0, 1, 0]T qg [0, 0, 1, 0]T b(t) [0.5,−0.5, 0.5]T deg
sec

q̂(t0) [0, 0, 0, 1]T q̂g(t) [0, 0, 0, 1]T b̂(t) [0, 0, 0]T

Table 6.3: Alignment and Gyro Bias Estimator Simulation Initial Conditions

stant, with ωg(t)
T = [3,−4, 5] deg/sec. The gains are chosen as k′ = 0.1, k′1 = 0.1,

and αb = 1. Figures 6.5(a) and 6.5(b) show that the alignment and bias estimation

errors converge to constants, since a constant angular velocity does not meet the

PE condition required for equation 6.46. Next, the angular velocity is time varying.
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Figure 6.5: Alignment and Gyro Bias Estimation with Constant Angular Velocity

The angular velocity is chosen as ωg(t)
T = [sin ϑt, cos ϑt, 0] deg/sec, where ϑ = 5

deg/sec. Figures 6.6(a) and 6.6(b) show that the alignment estimation errors and

the bias estimation errors converge to zero.
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Figure 6.6: Alignment and Gyro Bias Estimator with PE Angular Velocity

6.7 Closed Loop Stability

As in Section 3.3, a certainty equivalence approach is proposed in utilizing the non-

linear tracking algorithm in [32]. Here the estimates ω̂(t) of 2.13, generated by the

estimator equations 6.30, 6.31, and 6.32 are used to generate the control. Again, the

control is given as

u(t) = −KDŝ(t) + Hα̂r(t)− S(Hω̂(t))ωr(t) (6.52)

The closed loop analysis for the gyro bias, up to equation 3.20, is independent of

the specific gyro error. The closed loop equation, given in equation 3.20, is repeated

here

Hṡ(t)− S(Hω(t))s(t) + KDs(t) = ∆(q̃c(t),ωd(t))s̃(t) (6.53)

where

∆(q̃c(t),ωd(t)) = ∆′(q̃c(t), ωd(t)) + KD
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and the error term s̃(t) is again

s̃(t) = s(t)− ŝ(t) = ω(t)− ω̂(t)

Note that the definition of ωr(t), the assumption that ωd(t) is bounded, and the

constraint ‖q̃c(t)‖ = 1 ensure that ∆′(q̃c(t),ωd(t)) is a bounded matrix over any

solution of the coupled dynamics 6.30, 6.31, 6.32, 2.21, and 6.52.

Theorem 6.7 If the gyro alignment rotation angle is between ±45 degrees, with

projection implemented in the observer such that |φ̂|g ≤ 45 degrees, and

kD > 2ζ ′ + 6

where ζ ′ = supt≥t0 sup‖q̃c(t)‖=1‖∆′(q̃c(t),ωr(t))‖ < ∞, the control law 6.52 results in

a stable closed loop system, with ‖ε̃c(t)‖ and ‖ω̃c(t)‖ uniformly, ultimately bounded.

Proof : Using the Lyapunov function Vc(t) = 1
2
s(t)THs(t), the derivative of

Vc(t) is

V̇c(t) = −s(t)TKDs(t) + s(t)T∆(q̃c(t), ωd(t))s̃(t) (6.54)

or substituting for ∆(q̃c(t),ωd(t))

V̇c(t) = −s(t)TKDs(t) + s(t)T (∆′(q̃c(t),ωd(t)) + KD)s̃(t) (6.55)

V̇c(t) is rewritten in terms of ωg(t) and ωr(t). Rewrite s(t) as

s(t) = ω(t)− ωr(t) = R(q̃g(t))R(q̂g(t))ωg(t)− b− ωr(t)
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and rewrite ŝ(t) as

ŝ(t) = ω̂(t)− ωr(t) = R(q̂g(t))ωg(t)− b̂(t)− ωr(t)

From equation 6.55, V̇c(t) is written as

V̇c(t) = s(t)T∆′(q̃c(t), ωd(t))(s(t)− ŝ(t))− s(t)TKDŝ(t) (6.56)

Substitute the expressions for s(t) and ŝ(t) into equation 6.56, letting KD = kDI,

resulting in (the arguments are omitted for clarity)

V̇c(t) = (ωT

g R(q̂g)
TR(q̃g)

T − bT − ωT

r )∆′((R(q̃g)− I)R(q̂g)ωg − (b− b̂))

− kD(ωT

g R(q̂g)
TR(q̃g)

T − bT − ωT

r )(R(q̂g)ωg − b̂− ωr)

V̇c(t) = −kDωT

g R(q̂g)
TR(q̃g)

TR(q̂g)ωg + kDωT

g R(q̂g)
TR(q̃g)

TR(q̂g)b̂

+ kDωT

g R(q̂g)
TR(q̃g)

Tωr + kDbTR(q̂g)ωg(t)− kDbT b̂

− kDbTωr + kDωT

r R(q̂g)ωg − kDωT

r b̂− kDωT

r ωr

ωT

g R(q̂g)
TR(q̃g)

T∆′(R(q̃g)− I)R(q̂g)ωg − ωT

g R(q̂g)
TR(q̃g)

T∆′(b− b̂)

− bT∆′(R(q̃g)− I)R(q̂g)ωg + bT∆′(b− b̂)

− ωT

r ∆′(R(q̃g)− I)R(q̂g)ωg + ωT

r ∆′(b− b̂)

(6.57)

If R(q̃g(t)) is positive definite, the above terms are bounded as

V̇c(t) ≤ −kD‖ωg‖2 − kD‖ωr‖2 + 2ζ ′‖ωg‖2

+ ζ ′‖ωg‖(‖b‖+ ‖b̂‖) + 2ζ ′‖ωg‖‖b‖+ 2ζ ′‖ωg‖‖ωr‖

+ kD‖ωg‖‖b̂‖+ 2kD‖ωg‖‖ωr‖+ kD‖ωg(t)‖‖b‖

+ f1(‖b‖, ‖b̂‖, ‖ωr‖, ζ ′, kD)
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where f1 is a positive, bounded function. Applying Young’s inequality gives

V̇c(t) ≤− (kD − 2ζ ′ − 6)‖ωg(t)‖2

− (kD − 1

2
(k2

D + ζ ′2))‖ωr(t)‖2

+
1

4
(3ζ ′2 + k2

D)‖b‖2 +
1

4
(ζ ′2 + k2

D)‖b̂(t)‖2

+ f2(‖b‖, ‖b̂(t)‖‖ωr(t)‖, ζ ′, kD)

(6.58)

where f2 is a positive, bounded function. Again, the first term in equation 6.57 is

negative if R(q̃g(t)) is positive definite, or |φ̃|g < 90 degrees. In order to assure

this, the alignment angle must known to be within ±45 degrees, and the estimated

alignment angle must be bounded, through projection, to be within ±45 degrees.

This ensures that the alignment error angle is within ±90 degrees. If

kD > 2ζ ′ + 6 (6.59)

and ωg(t) is sufficiently large, V̇c(t) < 0. If s(t) increases without bound, ωg(t)

increases without bound. But eventually ωg(t) will be large enough such that V̇c(t) <

0 which implies that s(t), and ωg(t), must remain bounded. ¤

Theorem 6.8 If the angular velocity ωg(t) is persistently exciting, regardless of the

specific magnitude of kD > 0, the control law 6.52 results in global stability and

asymptotically perfect tracking, ‖ε̃c(t)‖ → 0, ‖ω̃c(t)‖ → 0, .

Proof : The convergence of s(t) to zero depends on the exponential convergence

of the bias and alignment errors, which in turn depends on the angular velocity ωg(t)
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generated by the applied control. Rewriting the error term

s(t)− ŝ(t) = ω(t)− ω̂(t) = (R(q̃g(t))− I)R(q̂g(t))ωg(t)− b̃(t) (6.60)

From equation 1.1, ωg(t) is written as

ωg(t) = R(qg)
T (ω(t) + b)

Substituting the expression ω(t) = s(t)+ωr(t) into the expression for ωg(t), equation

6.60 becomes

s(t)− ŝ(t) = (R(q̃g(t))− I)R(q̂g(t))R(qg)
T (s(t) + ωr(t) + b)− b̃(t)

Substituting R(qg) = R(q̃g(t))R(q̂g(t))

s(t)− ŝ(t) = (I−R(q̃g(t))
T )(s(t) + ωr(t) + b)− b̃(t)

Substituting this into equation 6.55 results in

V̇c(t) =− s(t)TKDs(t) + s(t)T (∆′(q̃c(t),ωd(t)) + KD)(I−R(q̃g(t))
T )s(t)

+ s(t)T (∆′(q̃c(t),ωd(t)) + KD)(I−R(q̃g(t))
T )ωr(t)

+ s(t)T (∆′(q̃c(t),ωd(t)) + KD)(I−R(q̃g(t))
T )b

− s(t)T (∆′(q̃c(t),ωd(t)) + KD)b̃(t)

(6.61)

Equation 6.61 is bounded as

V̇c(t) ≤− kD‖s(t)‖2 + 2(kD + ζ ′)‖ε̃g(t)‖‖s(t)‖2

+ 2(kD + ζ ′)(‖ωr(t)‖‖s(t)‖‖ε̃g(t)‖+ ‖b‖‖s(t)‖‖ε̃g(t)‖)

+ (kD + ζ ′)‖s(t)‖‖b̃(t)‖

(6.62)
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Applying Young’s inequality to the last three terms in equation 6.62

V̇c(t) ≤− (
kD

2
− 2(kD + ζ ′)‖ε̃g(t)‖)‖s(t)‖2

+ 6
(kD + ζ ′)2

kD

(‖ωr(t)‖2 + ‖b‖2)‖ε̃g(t)‖2

+
3(kD + ζ ′)2

2kD

‖b̃(t)‖2

(6.63)

If the angular velocity, ωg(t), in addition to being bounded, satisfies equation 6.46,

the system is UCO and the alignment errors, ε̃g(t), and the bias errors, b̃(t), converge

to zero exponentially fast. In this case, Lemma 2.3 applies. Since ‖ε̃g(t)‖ → 0 and

‖b̃(t)‖ → 0 exponentially fast, Vc(t) converges to zero exponentially fast. Therefore

s(t) converges to zero exponentially fast. With the convergence of s(t) → 0, the

proof of convergence of the actual attitude and rate errors follows exactly as in the

gyro bias analysis of section 3.3. The end result of which is limt→∞‖ε̃c(t)‖ = 0 and

limt→∞‖ω̃c(t)‖ = 0. ¤

6.8 Closed Loop Simulation Results

The gyro alignment and bias estimator and controller are tested similarly to the

bias estimator and controller. The inertia matrix is the same, a diagonal matrix

with principal moments of inertia of [90, 100, 70]T kg m2. Table 6.4 lists the initial

conditions for the estimator and controller, as well as the true gyro alignment and

bias. The gains are chosen as k′ = 5, k′1 = 0.1, KD = kDI3 (where I3 indicates a

3x3 identity matrix), αb = 1, kD = 20, and λ = 3. The initial angular velocity is

ω(0)T = [0, 0, 0]. The gyro coordinate frame is rotated by 45 degrees from the body

133



Attitude Value Component Value Bias Value

q(t0) [0, 1, 0, 0]T qg [0, 0, 0.38, 0.92] b [0.5,−0.5, 0.5]T deg
sec

q̂(t0) [0, 0, 0, 1]T q̂g(t) [0, 0, 0, 1]T b̂(t) [0, 0, 0]T

qd(t0) [0, 0, 0, 1]T

Table 6.4: Alignment and Bias Estimator/ Controller Simulation Initial Conditions

frame, about the z-axis. The desired angular velocity changes direction and is given

as ωd(t)
T = 5[sin ϑt, cos ϑt, 0] deg/sec, with ϑ = 10 deg/sec.

Figures 6.7(a) and 6.7(b) show that the alignment and bias estimation errors

converge to zero. Figures 6.7(c) and 6.7(d) show that the attitude and rate tracking

errors, respectively, converge to zero also.
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0 1000 2000 3000 4000
0

1

2

3

4

5

6

7

8

9

10

|
b
i
a
s
 
e
r
r
o
r
|
 
(
d
e
g
/
s
e
c
)

time (sec)

(b) Bias Estimation Error

0 1000 2000 3000 4000
0

5

10

15

20

25

30

35

40

|
a
l
i
g
n
m
e
n
t
 
e
r
r
o
r
|
 
(
d
e
g
)

time (sec)

(c) Attitude Tracking Error
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Figure 6.7: Coupled Estimator/Controller Errors with Alignment and Bias Errors
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6.9 Alignment, Scale Factor, and Gyro Bias Estimator

Finally, the estimators for the gyro alignment, scale factor and bias are combined.

The kinematic equations for the attitude estimator quaternion and the alignment

estimator quaternion are again given as

˙̂q(t) =
1

2
Q(q̂(t))R(q̃o(t))

T [ω̂(t) + k(t)ε̃o(t)sign(η̃o(t)) + k1(t)sign(ε̃o(t))sign(η̃o(t))]

(6.64)

˙̂qg(t) =
1

2
Q(q̂g(t))[(I −R(q̃o(t)))R(q̂g(t))ωg(t)] (6.65)

where ω̂(t) is now

ω̂(t) = R(q̂g(t))Γ̂I(t)ωg(t)− b̂(t)

The scale factor and gyro bias observers are

˙̂γI(t) =
αγ

2
Ωg(t)R(q̂g(t))

T ε̃o(t)sign(η̃o(t)) (6.66)

˙̂b = −αb

2
ε̃o(t)sign(η̃o(t)) (6.67)

where αγ > 0, αb > 0, and Ωg(t) is a matrix with ωg(t) on the main diagonal and

Γ̂I(t) is a diagonal matrix with the estimated scale factor inverse components on

the main diagonal. The same components make up the vector γ̂I(t). Note that the

scale factor term is written here as a vector, rather than the component terms, due

to the addition of the matrix R(q̂g(t))
T in the scale factor estimator. The gains,

k(t) and k1(t), are positive. The quaternion, q̂g(t), is the estimated gyro alignment

quaternion, transforming from gyro coordinates to an estimated body frame. Again,
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q̂(t) is a prediction of the attitude at time, t, propagated by the kinematic equation

using the measured angular velocity and the current alignment, scale factor, and gyro

bias estimates. The attitude error is as given in equation 3.4 and the alignment error

is given in equation 2.16. The term R(q̃o(t))
T in equation 6.64 resolves the angular

velocity terms in the estimator frame. The kinematic equation for the attitude error

quaternion is

˙̃qo(t) =
1

2




Q1(q̃o(t))

−ε̃o(t)
T


 (R(qg)ΓIωg(t)− b(t)−R(q̂g(t))Γ̂I(t)ωg(t) + b̂(t)

− k(t)ε̃o(t)sign(η̃o(t))− k1(t)sign(ε̃o(t))sign(η̃o(t)))

(6.68)

Rewriting the angular velocity terms, with R(qg) = R(q̃g(t))R(q̂g(t)), and γ̃I(t) =

γI − γ̂I(t) gives

R(qg)ΓIωg(t)−R(q̂g(t))Γ̂I(t)ωg(t) = (R(q̃g(t))− I)R(q̂g(t))Ωg(t)γI

+ R(q̂g(t))Ωg(t)γ̃I(t)

Substituting this into equation 6.68

˙̃qo(t) =
1

2




Q1(q̃o(t))

−ε̃o(t)
T


 (R(q̃g(t))− I)R(q̂g(t))Ωg(t)γI + R(q̂g(t))Ωg(t)γ̃I(t)− b̃(t)

− k(t)ε̃o(t)sign(η̃o(t))− k1(t)sign(ε̃o(t))sign(η̃o(t)))

(6.69)

The kinematic equation for the alignment error quaternion is again

˙̃qg(t) =
1

2




Q1(q̃g(t))

−ε̃g(t)
T


 [(R(q̃o(t))− I)R(q̂g(t))ωg(t)] (6.70)
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Finally, the derivatives of the scale factor error and the gyro bias error are

˙̃γI(t) = −αγ

2
Ωg(t)R(q̂g(t))

T ε̃o(t)sign(η̃o(t)) (6.71)

˙̃b(t) =
αb

2
ε̃o(t)sign(η̃o(t)) (6.72)

Note that the equilibrium state for each of the error quaternions, q̃o(t) and q̃g(t), is

the identity quaternion, [0 0 0 ± 1]. The equilibrium states for the scale factor and

bias are γ̃I(t)
T = [0 0 0] and b̃(t)T = [0 0 0], respectively.

Theorem 6.9 If k(t) ≥ 4‖ωg(t)‖ + k′ and k1(t) ≥ 4‖ωg(t)‖‖γI‖max + k′1, where

k′ > 0 and k′1 > 0, and ‖γI‖max is a known upper bound on the norm of the inverse

scale factor components, the equilibrium states for the system 6.69, 6.70, 6.71 and

6.72 and are globally stable. In particular, if the angular velocity, ωg(t), is bounded,

ε̃o(t) → 0 asymptotically.

Proof : Choose a Lyapunov function as

Vo(t) =
1

2αb

b̃(t)T b̃(t) +
1

2αγ

γ̃I(t)
T γ̃I(t)+

1

2





(η̃o(t)− 1)2 + ε̃o(t)
T ε̃o(t) η̃o(t) ≥ 0

(η̃o(t) + 1)2 + ε̃o(t)
T ε̃o(t) η̃o(t) < 0

+
1

2





(η̃g(t)− 1)2 + ε̃g(t)
T ε̃g(t) η̃g(t) ≥ 0

(η̃g(t) + 1)2 + ε̃g(t)
T ε̃g(t) η̃g(t) < 0

(6.73)
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The derivative of Vo(t) is (again, including the left and right derivatives of the sign

terms, and using ε̃o(t)
T ˙̃εo(t) + η̃o(t) ˙̃ηo(t) = 0)

V̇o(t) =
1

αb

b̃(t)T ˙̃b(t) +
1

αγ

γ̃I(t)
T ˙̃γI(t) +





− ˙̃ηo(t) η̃o(t) ≥ 0

˙̃ηo(t) η̃o(t) < 0

+





− ˙̃ηg(t) η̃g(t) ≥ 0

˙̃ηg(t) η̃g(t) < 0

Substituting for ˙̃ηo(t), ˙̃ηg(t), and ˙̃γI(t), and ˙̃
b(t) from equations 6.69, 6.70, 6.71, and

6.72

V̇o(t) =− k(t)

2
ε̃o(t)

T ε̃o(t) +
1

2
ε̃o(t)

T [(R(q̃g(t))− I)R(q̂g(t))Ωg(t)γIsign(η̃o(t))

− k1(t)sign(ε̃o(t))] +
1

2
ε̃g(t)

T (R(q̃o(t))− I)R(q̂g(t))ωg(t)sign(η̃g(t))

(6.74)

Equation 6.74 is the same as equation 5.7, except for the addition of γI in the second

term, since the terms with b̃(t) and γ̃I(t) cancel. The derivative is bounded in the

same manner, resulting in

V̇o(t) ≤ −‖ε̃o(t)‖2(
k(t)

2
− 2‖ωg(t)‖)− ‖ε̃o(t)‖(k1(t)

2
− 2‖ωg(t)‖‖γI‖)

If k(t) ≥ 4‖ωg(t)‖ + k′ and k1 ≥ 4‖ωg(t)‖‖γI‖max + k′1, where k′ > 0 and k′1 > 0,

and ‖γI‖max is a known upper bound on the norm of the inverse scale factors.

V̇o(t) ≤ −k′‖ε̃o(t)‖2 − k′1‖ε̃o(t)‖ ≤ −k′‖ε̃o(t)‖2 (6.75)

With the added constraint that ωg(t) is bounded, Vo(t) is a continuous, twice differ-

entiable function. Lemma 2.1 then shows that ‖ε̃o(t)‖ → 0 as t →∞. ¤
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Theorem 6.10 For any bounded, angular velocity, ωg(t), that is persistently excit-

ing, the equilibrium states of the system 6.69, 6.70, 6.71 and 6.72 are exponentially

stable. In particular, q̂g(t) → qg, γ̂(t) → γ, and b̂(t) → b(t) exponentially fast from

any initial conditions q̂g(t0), γ̂(t0), b̂(t0), and q̂(t0).

Proof : The system given by equations 6.69, 6.70, 6.71 and 6.72 is stable. If

ωg(t) is bounded, all the signals are bounded. As with the gyro bias estimator

analysis, the system is cast as a linear time-varying system ẋ(t) = A(t)x(t) where

x(t) =




ε̃o(t)

ε̃g(t)

γ̃I(t)

b̃(t)




Developing A(t) is similar to that for the alignment estimator, with added terms for

the scale factor and bias errors. Here A(t) is

A(t) =




A11(t) A′
12(t)

1
2
Q1(q̃o(t))R(q̂g(t))Ωg(t) −1

2
Q1(q̃o(t))

A21(t) 0 0

−αγ

2
Ωg(t)R(q̂g(t))

T sign(η̃o(t)) 0 0 0

αb

2
sign(η̃o(t)) 0 0 0




where

A′
12(t) =−Q1(q̃o(t))[(R(q̂g(t))Ωg(t)γI)ε̃g(t)

T

− (ε̃g(t)
TR(q̂g(t))Ωg(t)γI)I− η̃g(t)S(R(q̂g(t))Ωg(t)γI)]

A11(t) and A21(t) are the same as in section 5.1
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Following the proof for the gyro bias, scale factor, and alignment observers,

V̇o(t) is rewritten as V̇o(t) ≤ −x(t)TCTCx(t) ≤ 0, where C =

[ √
k′I 0 0 0

]
.

Choose K(t) as

K(t) =




1√
k′

A11(t)

1√
k′

A21(t)

− αγ

2
√

k′
Ωg(t)R(q̂g(t))

T sign(η̃o(t))

αb

2
√

k′
sign(η̃o(t))




With ωg(t) bounded, applying the same arguments as with the gyro bias, alignment,

and scale factor observers, K(t) is a piecewise continuous function of time.

The state transition matrix for the pair (A(t)−K(t)C, C) is

Φ(τ, t) =




I Σ(τ, t)

0 I9




where I9 is a 9x9 identity matrix and

Σ(τ, t) =

[ ∫ τ

t
A′

12(σ)dσ 1
2

∫ τ

t
Q1(q̃o(σ))R(q̂g(τ))Ωg(τ)dσ −1

2

∫ τ

t
Q1(q̃o(σ))dσ

]

The observability Grammian is

W (t, t + T ) =

∫ t+T

t

Φ(τ, t)TCTCΦ(τ, t)dτ

=

∫ t+T

t




k′I k′Σ(τ, t)

k′Σ(τ, t)T k′Σ(τ, t)TΣ(τ, t)


 dτ

(6.76)

Proceeding similarly to 3.10 for the gyro bias estimator proof, the system is UCO

if Q1(q̃o(t)),
d
dt

Q1(q̃o(t)), A′
12(t) and d

dt
A′

12(t) are bounded, and there exist positive
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constants T2, β1, and β2 such that, for all t ≥ t0 (time and the argument of Q1(q̃o(t))

are not included for clarity)

β2I ≥

∫ t+T2

t




A′T
12A

′
12

1
2
A′T

12Q1R(q̂g)Ωg −1
2
A′T

12Q1

1
2
ΩgR(q̂g)

TQT
1A′

12
1
4
ΩgR(q̂g)

TQT
1Q1R(q̂g)Ωg −1

4
ΩgR(q̂g)

TQT
1Q1

−1
2
QT

1A′
12 −1

4
QT

1Q1R(q̂g)Ωg
1
4
QT

1Q1




dτ

≥ β1I

(6.77)

Again, rewrite A′
12(t) as A′

12(t) = −Q1(q̃o(t))B(t), where here B(t) is

B(t) = (R(q̂g(t))Ωg(t)γI)ε̃g(t)
T − (ε̃g(t)

TR(q̂g(t))Ωg(t)γI)I

− η̃g(t)S(R(q̂g(t))Ωg(t)γI)

= S(ε̃g(t))S(R(q̂g(t))Ωg(t)γI)− η̃g(t)S(R(q̂g(t))Ωg(t)γI)

= (S(ε̃g(t))− η̃g(t)I)S(R(q̂g(t))ΓIωg(t))

The integral 6.77 becomes

β2I ≥
∫ t+T2

t

M ′(τ)dτ ≥ β1I (6.78)

where

M ′(t) =




BT QT
1 Q1B − 1

2
BT QT

1 Q1R(q̂g)Ωg
1
2
BT QT

1 Q1

− 1
2
ΩgR(q̂g)T QT

1 Q1B 1
4
ΩgR(q̂g)T QT

1 Q1R(q̂g)Ωg − 1
4
ΩgR(q̂g)T QT

1 Q1

1
2
QT

1 Q1B − 1
4
QT

1 Q1R(q̂g)Ωg
1
4
QT

1 Q1



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Q1(q̃o(t)) is bounded by definition, since it contains elements of the quaternion,

q̃o(t).
d
dt

Q1(q̃o(t)) is also bounded, since the above Lyapunov analysis shows that all

the terms in equation 6.69 are bounded, given that ωg(t) is bounded. With ω̇g(t)

bounded, the upper bound in equation 6.78 is satisfied.

Next the lower bound is considered. First, Q1(q̃o(t))
TQ1(q̃o(t)) in M ′(t) is re-

placed with Q1(q̃o(t))
TQ1(q̃o(t)) = I− ε̃o(t)ε̃o(t)

T . Since ‖ε̃o(t)‖ → 0 asymptotically,

for any δ > 0, there exists a T1(δ) > t0 such that ‖ε̃o(t)‖ < δ for all t ≥ t0 +T1. Tak-

ing any δ < 1 and T2 > T1, I−ε̃o(t)ε̃o(t)
T > (1−δ2)I. Therefore M ′(t) > (1−δ2)M(t)

where M(t) is given as (again, time is omitted for clarity)

M(t) =




BTB −1
2
BTR(q̂g)Ωg

1
2
BT

−1
2
ΩgR(q̂g)

TB 1
4
Ω2

g −1
4
ΩgR(q̂g)

T

1
2
B −1

4
R(q̂g)Ωg

1
4
I




(6.79)

If the following is true, for any z ∈ R9,

zT [

∫ t+T2

t

M(τ)dτ ]z ≥ 0 (6.80)

the system is UCO. This establishes the persistency of excitation condition for the

combined alignment, scale factor, and gyro bias estimation.

In order to satisfy equation 6.80, the integral of M(t) over the interval T2 must

be positive definite. Let

P =




P11 −1
2
P12

1
2
P13

−1
2
P T

12
1
4
P22 −1

4
P23

1
2
P T

13 −1
4
P T

23
1
4
P33



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where

P =

∫ t+T2

t

M(τ)dτ (6.81)

In both Sections 5.1 and 6.5, a constant angular velocity did not satisfy the PE

conditions when the alignment is estimated. A constant angular velocity did not

satisfy the PE conditions in Section 6.1 when the scale factor and bias are estimated

together. In this case, when all three parameters are estimated, a constant angular

velocity will again not satisfy the PE condition of equation 6.80. Therefore, the PE

condition will be evaluated only with

ωg(t)
T = [cos ϑt, sin ϑt, cos 2ϑt]

and T2 = 2π
ϑ

. First, the matrix P11 is evaluated as

P11 =

∫ t+T2

t

B(τ)TB(τ)dτ

=

∫ t+T2

t

(S(R(q̂g(τ))ΓIωg(τ))(S(ε̃g) + η̃gI)(S(ε̃g)

− η̃gI)S(R(q̂g(τ))ΓIωg(τ)))dτ

=

∫ t+T2

t

S(R(q̂g(τ))ΓIωg(τ))(ε̃gε̃
T

g − I)S(R(q̂g(τ))ΓIωg(τ))dτ

=

∫ t+T2

t

R(q̂g(τ))S(ε̃gR)[ΓIωg(τ)ωg(τ)TΓI ]S(ε̃gR)R(q̂g(τ))T

− [R(q̂g(τ))ΓIωg(τ)ωg(τ)TΓIR(q̂g(τ))T − ωg(τ)TΓ2
Iωg(τ)I]dτ

Recall that ε̃o(t) → 0 asymptotically. As above, at some time T1(δ) > t0, ‖ε̃o(t)‖ <

δ. The derivatives of ε̃gR(t) and R(q̂g(t)) are directly proportional to the attitude

prediction error. As ε̃o(t) → 0, the derivatives of ε̃gR(t) and R(q̂g(t)) will converge to

zero. The integration of P11 and the remaining matrices, is performed for some time
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t > T1, such that the derivatives are close to zero, and therefore the terms ε̃gR(t)

and R(q̂g(t)) are treated as being nearly constant. Recall also that ΓI is constant.

P11 is then

P11 = R(q̂g)S(ε̃gR)ΓI [

∫ t+T2

t

ωg(τ)ωg(τ)Tdτ ]ΓIS(ε̃gR)R(q̂g)
T

−R(q̂g)ΓI [

∫ t+T2

t

ωg(τ)ωg(τ)Tdτ ]ΓIR(q̂g)
T

+ R(q̂g)[

∫ t+T2

t

ωg(τ)TΓ2
Iωg(τ)dτ ]R(q̂g)

Tdτ

=
π

ϑ
R(q̂g(t))[S(ε̃gR)Γ2

IS(ε̃gR)− Γ2
I + ‖γI‖2I]R(q̂g)

T

where S(R(q̂g)
T ε̃g) = R(q̂g)

TS(ε̃g)R(q̂g) [7], and again ε̃gR = R(q̂g)
T ε̃g. The next

matrix to be evaluated is P12.

P12 =

∫ t+T2

t

B(τ)TR(q̂g(τ))Ωg(τ)dτ

=

∫ t+T2

t

S(R(q̂g(τ))ΓIωg(τ))(S(ε̃g) + η̃gI)R(q̂g)Ωg(τ)dτ

=

∫ t+T2

t

R(q̂g(τ))S(ΓIωg(τ))R(q̂g(τ))T (S(ε̃g) + η̃gI)R(q̂g(τ))Ωg(τ)dτ

=

∫ t+T2

t

R(q̂g(τ))(S(ΓIωg(τ))S(ε̃gR)Ωg(τ) + η̃gS(ΓIωg(τ))Ωg(t))dτ

Again, treating R(q̂g(t)) and ε̃gR(t) as (nearly) constant, substituting ωg(t) from

above into P12 results in

P12 =
π

ϑ
R(q̂g)




0 ε̃gR,1 ε̃gR,1

ε̃gR,2 0 ε̃gR,2

ε̃gR,3 ε̃gR,3 0




ΓI
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where ε̃gR,1, ε̃gR,2, and ε̃gR,3 are the components of ε̃gR. Next P13 is evaluated. With

R(q̂g(t)) and ε̃gR(t) (nearly) constant, and ωg(t) above, P13 is

P13 =

∫ t+T2

t

B(τ)Tdτ =
1

2

∫ t+T2

t

S(R(q̂g)ΓIωg(τ))(S(ε̃g) + η̃gI)dτ = 0

Similarly, the remaining matrices are evaluated as

P22 =

∫ t+T2

t

Ωg(τ)2dτ =
π

ϑ
I

P23 =

∫ t+T2

t

Ωg(τ)R(q̂g)dτ = 0

P33 =

∫ t+T2

t

Idτ =
2π

ϑ

P is now given as

P =




P11 −1
2
P12 0

−1
2
P T

12
1
4
P22 0

0 0 1
4
P33




Next, let

P ′ =
π

ϑ




P ′
11 −1

2
P ′

12 0

−1
2
P
′T
12

1
4
I 0

0 0 1
2
I




where the submatrices of P ′ are the same as those of P , with π
ϑ

factored out. Let

PUL =




P ′
11 −1

2
P ′

12

−1
2
P
′T
12

1
4
I




P33 is positive definite, since it is diagonal with positive elements on the diagonal. If

PUL is positive definite, then P is positive definite. Let

D = F (PUL)F T (6.82)
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where

F =




I 2P ′
12

0 I




The matrix D is then

D =




P ′
11 − P ′

12P
′T
12 0

0 1
4
I




The matrix P ′
11 − P ′

12P
′T
12 is computed as

P ′
11 − P ′

12P
′T
12 = R(q̂g)[S(ε̃gR(t))Γ2

IS(ε̃gR(t))

− Γ2
I + ‖γI‖2I

−




0 ε̃gR,1 ε̃gR,1

ε̃gR,2 0 ε̃gR,2

ε̃gR,3 ε̃gR,3 0




Γ2
I




0 ε̃gR,2 ε̃gR,3

ε̃gR,1 0 ε̃gR,3

ε̃gR,1 ε̃gR,2 0




]R(q̂g)
T

= R(q̂g)




d′11 0 0

0 d′22 0

0 0 d′33




R(q̂g)
T

= R(q̂g)D
′
uR(q̂g)

T

where

d′11 = γ2
Iy(1− ε̃2

gR,1 − ε̃2
gR,3) + γ2

Iz(1− ε̃2
gR,1 − ε̃2

gR,2)

d′22 = γ2
Ix(1− ε̃2

gR,2 − ε̃2
gR,3) + γ2

Iz(1− ε̃2
gR,1 − ε̃2

gR,2)

d′33 = γ2
Ix(1− ε̃2

gR,2 − ε̃2
gR,3) + γ2

Iy(1− ε̃2
gR,1 − ε̃2

gR,3)

147



The matrix D′
u is diagonal. The elements on the main diagonal are all positive,

except if a component of ε̃gR is 1. Recall that ε̃gR = R(q̂g)
T ε̃g. If the steady state

error is such that ‖ε̃g‖ = 1, a component of ε̃gR could be 1.

From equation 6.82, D is written as

D = R(q̂g)6D
′R(q̂g)

T

6 =




R(q̂g) 0

0 R(q̂g)







D′
u 0

0 1
4
I







R(q̂g)
T 0

0 R(q̂g)
T




or

D′ = R(q̂g)
T

6F (PUL)F TR(q̂g)6

Let F ′ = R(q̂g)
T
6F . Since both R(q̂g)6 and F are non-singular, F ′ is non-singular,

PUL can be written as

PUL = F ′−1D′F ′−T

For any z ∈ R6, if

zTPULz > 0 (6.83)

PUL is positive definite. Let y = F ′−1z. Equation 6.83 is then written as

zTPULz = yTD′y > 0

Therefore, PUL is positive definite. Since P33 is also positive definite, P is positive

definite. Equation 6.80 is satisfied and the system is UCO, the alignment, scale

factor, and bias errors all converge to zero exponentially fast.

If ‖ε̃g(t)‖ = ‖ε̃gR(t)‖ = 1 for all t ≥ t0, the PE condition above would not be

satisfied. Following the same argument as that at the end of Section 6.5, ‖ε̃g(t)‖ = 1
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is equivalent to an alignment rotational error of 180 degrees. For the estimate of

the alignment to remain 180 degrees away from the actual alignment, the fourth

element of q̃g(t), η̃g = cos( φ̃
2
), must remain at zero for all t ≥ t0. If η̃g of q̃g(t)

does not change from zero, then ‖ε̃g(t)‖ remains at ‖ε̃g(t)‖ = 1. For this to be

true, the derivative of η̃g in equation 6.70 must be zero. If the attitude prediction

error ε̃o(t) is not zero, R(q̃o(t)) − I in equation 6.70 will not be zero. For ˙̃ηg = 0,

the angular velocity term in equation 6.70 must remain perpendicular to ε̃g for all

t > t0. But, the angular velocity ωg(t) is changing direction continuously, ε̃o(t) is

also changing continuously (converging to zero). Until ε̃o(t) converges identically to

zero, (Rto − I)R(q̂g(t))ωg(t) will not be zero and should not remain perpendicular

to ε̃g(t) for all t > t0. As long as ‖ε̃g(t)‖ 6= 1, the PE condition is satisfied and the

errors converge to zero exponentially fast. ¤

6.10 Estimator Simulation Results

The combined gyro bias, scale factor, and alignment parameter estimation is tested

similarly to the bias estimator. Table 6.5 lists the initial quaternions, scale factor

and gyro bias for the estimator, as well as the true alignment, scale factor, and gyro

bias. The angular velocity is ωg(t)
T = [cos ϑt, sin ϑt, cos 2ϑt] rad/sec, where ϑ = 10

deg/sec. The gains are chosen as k′ = 5, k′1 = 0.01, αb = 1, and αγ = 1. Figures

6.8(a), 6.8(b), and 6.8(c) show that the bias, scale factor, and alignment estimation

errors converge to zero.
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Figure 6.8: Combined Estimators with PE Angular Velocity
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Attitude Value Variable Value

q(t0) [0, 1, 0, 0]T qg [0.34, 0.34, 0.34, 0.81]T

q̂(t0) [0, 0, 0, 1]T q̂g(t) [0, 0, 0, 1]T

γ(t0) [3,−5, 4]T γ̂I(t0) [1, 1, 1]T

b(t) [0.5,−0.5, 0.5]T deg
sec

b̂(t) [0, 0, 0]T

Table 6.5: Alignment, Scale Factor, and Gyro Bias Estimator Simulation Initial

Conditions

6.11 Closed Loop Stability

As in Section 3.3, a certainty equivalence approach is proposed in utilizing the non-

linear tracking algorithm in [32]. Here the estimates ω̂(t) of 2.13, generated by the

estimator equations 6.64, 6.65, 6.66 and 6.67 are used to generate the control. Again,

the control is given as

u(t) = −KDŝ(t) + Hα̂r(t)− S(Hω̂(t))ωr(t) (6.84)

The closed loop analysis for the gyro bias, up to equation 3.20, is independent of

the specific gyro error. The closed loop equation, given in equation 3.20, is repeated

here

Hṡ(t)− S(Hω(t))s(t) + KDs(t) = ∆(q̃c(t),ωd(t))s̃(t) (6.85)

where

∆(q̃c(t),ωd(t)) = ∆′(q̃c(t), ωd(t)) + KD
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as with all the previous closed loop analysis, the error term s̃(t) is

s̃(t) = s(t)− ŝ(t) = ω(t)− ω̂(t)

Note that the definition of ωr(t), the assumption the ωd(t) is bounded, and the

constraint ‖q̃c(t)‖ = 1 ensure that ∆′(q̃c(t),ωd(t)) is a bounded matrix over any

solution of the coupled dynamics 6.64, 6.65, 6.66, 6.67, 2.21, and 6.84.

Theorem 6.11 If the gyro alignment rotation angle is less than 45 degrees, if the

scale factors are known to be positive, with a known upper and lower bound on each

component, with projection implemented in the estimators such that γ̂I(t) has a

known upper and lower bound and |φ̂|g < 45 degrees, and if

kD >
ζ ′(γI,max + γ̂I,max) + 8

γI,maxγ̂I,max

> 0

where γI,max = ‖ΓI‖ and γ̂I,max = ‖Γ̂I(t)‖ and

ζ ′ = sup
t≥t0

sup
‖q̃c(t)‖=1

‖∆′(q̃c(t),ωd(t))‖ < ∞

the control law 6.84 results in a stable closed loop system, with ‖ε̃c(t)‖ and ‖ω̃c(t)‖

uniformly, ultimately bounded.

Proof : Using the Lyapunov function Vc(t) = 1
2
s(t)THs(t), the derivative of

Vc(t) is

V̇c(t) = −s(t)TKDs(t) + s(t)T∆(q̃c(t), ωd(t))s̃(t) (6.86)

or substituting for ∆(q̃c(t),ωd(t))

V̇c(t) = −s(t)TKDs(t) + s(t)T (∆′(q̃c(t),ωd(t)) + KD)s̃(t) (6.87)
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V̇c(t) is now rewritten in terms of ωg(t) and ωr(t). First, V̇c(t) from equation 6.87 is

written as

V̇c(t) = s(t)T∆′(q̃c(t), ωd(t))(s(t)− ŝ(t))− s(t)TKDŝ(t) (6.88)

Rewrite s(t) as

s(t) = ω(t)− ωr(t) = R(q̃g(t))R(q̂g(t))ΓIωg(t)− b− ωr(t)

and rewrite ŝ(t) as

ŝ(t) = ω̂(t)− ωr(t) = R(q̂g(t))Γ̂I(t)ωg(t)− b̂(t)− ωr(t)

Substitute the expressions for s(t) and ŝ(t) into equation 6.88, letting KD = kDI,

resulting in (the arguments of ∆′(q̃c(t),ωd(t)) and the time argument are omitted

for clarity)

V̇c(t) = (ωT

g ΓIR(q̂g)
TR(q̃g)

T − bT − ωT

r )∆′((R(q̃g)R(q̂g)ΓI −R(q̂g)Γ̂I)ωg − (b− b̂))

− kD(ωT

g ΓIR(q̂g)
TR(q̃g)

T − bT − ωT

r )(R(q̂g)Γ̂Iωg − b̂− ωr)

= ωT

g ΓIR(q̂g)
TR(q̃g)

T∆′(R(q̃g)R(q̂g)ΓI −R(q̂g)Γ̂I(t))ωg

− bT∆′(R(q̃g)R(q̂g)ΓI −R(q̂g)Γ̂I(t))ωg − ωT

r ∆′(R(q̃g)R(q̂g)ΓI −R(q̂g)Γ̂I(t))ωg

− ωT

g ΓIR(q̂g)
TR(q̃g)

T∆′(b− b̂)− (bT − ωT

r )∆′(b− b̂)

− kDωT

g ΓIR(q̂g)
TR(q̃g)

TR(q̂g)Γ̂I(t)ωg − kDωT

r ωr + kDωT

g ΓIR(q̂g)
TR(q̃g)

T b̂

+ kDωT

g ΓIR(q̂g)
TR(q̃g)

Tωr + kDbTR(q̂g)Γ̂I(t)ωg + kDωT

r R(q̂g)Γ̂I(t)ωg

− kD(bT (b̂ + ωr) + ωT

r b̂)
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If ΓI and Γ̂I(t) are both positive, and if R(q̃g(t)) is positive definite, meaning the

rotation angle of q̃g(t) is less than 90 degrees, V̇c(t) is bounded as (again, the time

argument is omitted for clarity)

V̇c(t) ≤ −kDγI,maxγ̂I,max‖ωg‖2 − kD‖ωr‖2 + kDγI,max‖ωg‖‖b̂‖

+ kDγI,max‖ωg‖‖ωr‖+ kDγ̂I,max‖ωg‖‖b‖+ kDγ̂I,max‖ωg‖‖ωr‖

+ ζ ′γI,max(γI,max + γ̂I,max)‖ωg‖2 + ζ ′(γI,max + γ̂I,max)‖ωg‖‖b‖

+ ζ ′(γI,max + γ̂I,max)‖ωg‖‖ωr‖+ ζ ′γI,max‖ωg‖(‖b‖+ ‖b̂‖)

+ f1(‖b‖, ‖b̂‖, ‖ωr‖, kD, ζ ′)

Applying Young’s inequality to the products containing ‖ωg(t)‖ results in

V̇c(t) ≤ −(kDγI,maxγ̂I,max − γI,max(γI,max + γ̂I,max)− 8)‖ωg(t)‖2

− (kD − 1

4
(k2

D + ζ ′2)(γI,max + γ̂I,max)
2)‖ωr(t)‖2

+ f2(‖b‖, ‖b̂(t)‖, ‖ωr(t)‖, kD, ζ ′)

where f1(‖b‖, ‖b̂(t)‖, ‖ωr(t)‖, kD, ζ ′) and f2(‖b‖, ‖b̂(t)‖, ‖ωr(t)‖, kD, ζ ′) are both pos-

itive, bounded functions. If

kD >
γI,max(γI,max + γ̂I,max) + 8

γI,maxγ̂I,max

and ωg(t) is sufficiently large, V̇c(t) < 0. If s(t) increases without bound, ωg(t)

increases without bound. Eventually ωg(t) will be large enough such that V̇c(t) < 0,

which implies that ωg(t) and s(t) must remain bounded.

Theorem 6.12 If the angular velocity ωg(t) is persistently exciting, regardless of

the specific magnitude of kD > 0, the control law 6.84 results in global stability and
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asymptotically perfect tracking, ‖ε̃c(t)‖ → 0, ‖ω̃c(t)‖ → 0, if the angular velocity

ωg(t) is persistently exciting.

Proof : The convergence of s(t) to zero depends on the exponential convergence

of the bias, scale factor, and alignment errors, which in turn depends on the angular

velocity ωg(t) generated by the applied control. Rewriting the error term

s(t)− ŝ(t) = (R(q̃g(t))− I)R(q̂g(t))ΓIωg(t) + R(q̂g(t))Γ̃I(t)ωg(t)− b̃(t) (6.89)

From equation 1.1, ωg(t) is written as

ωg(t) = ΓIR(qg)
T (ω(t) + b)

Substituting the expression for ω(t) = s(t) + ωr(t) into the expression for ωg(t),

equation 6.89 becomes

s(t)− ŝ(t) = (R(q̃g(t))− I)R(q̂g(t))Γ
2
IR(qg)

T (s(t) + ωr(t) + b)

+ R(q̂g(t))Γ̃I(t)ΓIR(qg)
T (s(t) + ωr(t) + b)− b̃(t)

Substituting this into equation 6.87 results in

V̇c(t) =− s(t)TKDs(t)

+ s(t)T (∆′(q̃c(t),ωd(t)) + KD)(I−R(q̃g(t)))R(q̂g(t))Γ
2
IR(qg)

Ts(t)

+ s(t)T (∆′(q̃c(t),ωd(t)) + KD)(I−R(q̃g(t)))R(q̂g(t))Γ
2
IR(qg)

T (ωr(t) + b)

+ s(t)T (∆′(q̃c(t),ωd(t)) + KD)R(q̂g(t))Γ̃I(t)ΓIR(qg)
Ts(t)

+ s(t)T (∆′(q̃c(t),ωd(t)) + KD)R(q̂g(t))Γ̃I(t)ΓIR(qg)
T (ωr(t) + b)

− s(t)T (∆′(q̃c(t),ωd(t)) + KD)b̃(t)

(6.90)
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Equation 6.90 is bounded as

V̇c(t) ≤ −kD‖s(t)‖2 + 2(kD + ζ ′)(‖ε̃g(t)‖γ2
I,max + ‖Γ̃I(t)‖γI,max)‖s(t)‖2

+ 2(kD + ζ ′)‖s(t)‖(‖ωr(t)‖+ ‖b‖)‖ε̃g(t)‖)

+ (kD + ζ ′)‖s(t)‖(‖ωr(t)‖+ ‖b‖)‖Γ̃I(t)‖

+ (kD + ζ ′)‖s(t)‖‖b̃(t)‖

(6.91)

Applying Young’s inequality to the last three terms in equation 6.91

V̇c(t) ≤ −(
kD

2
− 2(kD + ζ ′)(‖ε̃g(t)‖γ2

I,max + ‖Γ̃I(t)‖))‖s(t)‖2

+ 3
(kD + ζ ′)2

kD

(‖ωr(t)‖+ ‖b‖)2‖ε̃g(t)‖2

+
3(kD + ζ ′)2

2kD

(‖ωr(t)‖+ ‖b‖)2‖Γ̃I(t)‖2

+
3(kD + ζ ′)2

2kD

‖b̃(t)‖2

(6.92)

If the angular velocity, ωg(t), in addition to being bounded, satisfies equation 6.80,

the system is UCO and the alignment errors, ε̃g(t), scale factor errors, Γ̃I(t), and the

bias errors, b̃(t), converge to zero exponentially fast. In this case, Lemma 2.3 applies.

Since ‖ε̃g(t)‖ → 0, ‖γ̃I(t)‖ → 0, and ‖b̃(t)‖ → 0 exponentially fast, Vc(t) converges

to zero exponentially fast, which means s(t) converges to zero exponentially fast.

With the convergence of s(t) → 0, the proof of convergence of the actual attitude

and rate errors follows exactly as in the gyro bias analysis of section 3.3. The end

result of which is limt→∞‖ε̃c(t)‖ = 0 and limt→∞‖ω̃c(t)‖ = 0. ¤
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Attitude Value Variable Value Variable Value

q(t0) [0, 1, 0, 0]T qg [0, 0, 0.38, 0.92] γ [3, 5, 4]T

q̂(t0) [0, 0, 0, 1]T q̂g(t) [0, 0, 0, 1] γ̂(t) [1, 1, 1]T

qd(t0) [0, 0, 0, 1]T b [0.5,−0.5, 0.5]deg
sec

b̂(t) [0,0,0]

Table 6.6: Alignment, Scale Factor and Bias Estimator/ Controller Simulation Initial

Conditions

6.12 Closed Loop Simulation Results

The gyro alignment, scale factor, and bias estimator and controller are tested simi-

larly to the bias estimator and controller. The inertia matrix is the same, a diagonal

matrix with principal moments of inertia of [90, 100, 70]T kg m2. Table 6.6 lists the

initial conditions for the estimator and controller, as well as the true gyro alignment,

scale factor, and bias. The gains are chosen as k′ = 5, k′1 = 0.1, KD = kDI3 (where

I3 indicates a 3x3 identity matrix), αb = 1, αγ = 1, kD = 20, and λ = 3. The

initial angular velocity is ω(0)T = [0, 0, 0]. The gyro coordinate frame is rotated

by 45 degrees from the body frame, about the z-axis. The desired angular veloc-

ity changes direction and is given as ωd(t)
T = 5[cos ϑt, sin ϑt, sin 2ϑt] deg/sec, with

ϑ = 10 deg/sec.

Figures 6.9(a), 6.9(b) and 6.9(c) show that the alignment, scale factor and
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bias errors, respectively, converge to zero. Figures 6.9(d) and 6.9(e) show that the

attitude and rate tracking errors, respectively, converge to zero also.
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(d) Attitude Tracking Error
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(e) Rate Tracking Error

Figure 6.9: Coupled Estimator/Controller Errors with Alignment, Scale Factor, and

Bias Errors
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Chapter 7

Comparison to a Pseudo-Linear Kalman Filter

The three gyro calibration observers are each compared to a pseudo-linear Kalman

filter designed to estimate gyro calibration parameters. The pseudo-linear Kalman

filter is presented by Bar-Itzhack in [13]. Like the nonlinear observers, the pseudo-

linear approach is based on the quaternion kinematic equation given in equation 2.3,

repeated here

q̇(t) =




ε̇(t)

η̇(t)


 =

1

2
Q(q(t))ω(t)

From Section 1.1.2, equation 1.8 gives the measured angular velocity as

ωg(t) = (I + K)(I + M)Tω(t) + b = ω(t) + ∆ω(t)

where again K is a diagonal matrix of small scale factor errors and M is a matrix

with small alignment errors in the off diagonal terms. Rearranging the terms, and

separating the calibration errors and including noise, gives

ω(t) = ωg(t)−∆ω(t)− vω(t) (7.1)

where ωg(t) is the measured angular velocity, ∆ω(t) is the error in the angular

velocity, and vω(t) is a zero-mean white noise process.

160



As shown in Section 1.1.2, the error term ∆ω(t) is modelled as a sum of error

terms due to errors in each of the three calibration parameters

∆ω(t) = ∆ωm(t) + ∆ωk(t) + ∆ωb (7.2)

The first term, ∆ωm(t), is the error due to an alignment error and is defined as

∆ωm(t) = Ωmm

where Ωm is a matrix composed of the angular velocity, and m is a vector of small

alignment errors

mT = [mxy mxz myx myz mzx mzy]

mij is a misalignment angle, defined as the projection of the i-gyro sensitive axis on

the j body axis. The misalignment angles are assumed to be small. The second term

in equation 7.2 is the error due to a scale factor error, defined as

∆ωk(t) = Ωkk

where again Ωk is a matrix composed of the angular velocity, and k is a vector of

scale factor errors. The third error term is the error due to a gyro bias, written

simply as

∆ωb = I3b

where b is a vector of gyro biases.

The calibration terms are combined as

∆ω(t) = G(ω(t))x (7.3)

161



where

G(ω(t)) = [Ωm Ωk I]

and x is a 12x1 vector containing the alignment error angles, mij, the scale factor

errors, ki, and the bias b.

The kinematic equation for the quaternion can be written as

q̇(t) =
1

2
Q(q)ω(t) =

1

2
Ω(t)q(t)

where here

Ω(t) =




0 ωz −ωy ωx

−ωz 0 ωx ωy

ωy −ωx 0 ωz

−ωx −ωy −ωz 0




Using equations 7.1 and 7.3, Ω(t) is written as

Ω(t) = Ωg(t)−∆Ω− Ωnoise (7.4)

where the terms in equation 7.4 are defined similarly to Ω(t) above with the corre-

sponding components in place of the components of ω(t). Substituting equation 7.4

into the kinematic equation, rearranging the terms, and using equation 7.3 gives

q̇(t) =
1

2
Ωgq − 1

2
QG(ω(t))x− 1

2
Qνω(t) (7.5)

The calibration components, x are modelled as

ẋ = νx (7.6)
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where νx is a zero mean noise.

The pseudo-linear Kalman filter estimates a quaternion, along with the cal-

ibration states. The augmented state equation is formed from equations 7.5 and

7.6 


q̇

ẋ


 =




1
2
Ωg

1
2
QG(ω(t))

0 0







q

x


 +




νq

νx


 (7.7)

where νq = 1
2
Qνω. The estimated quaternion, q̂ is used in forming Q in equation 7.7.

The estimated angular velocity, ω̂ computed using the estimates of the calibration

parameters, is used in forming G in equation 7.7. Using estimates in the dynamics

matrix is why this method is referred to as a ’pseudo-linear’ Kalman filter.

The measurement model in the pseudo-linear Kalman filter is based on a mea-

sured quaternion and is simply

qm = [I 0]




q

x


 (7.8)

Equations 7.7 and 7.8 form the dynamics and measurement equations for the pseudo-

linear Kalman filter, respectively. Note that the pseudo-linear Kalman filter relies on

the kinematic equation, as do the nonlinear estimators presented previously. Both

approaches assume the calibration components are constant, and both utilize an

estimate, or prediction, of the actual attitude. The significant difference occurs in

the treatment of the calibration errors. The pseudo-linear filter development is based

on small calibration errors. Even though the bias is not explicitly assumed to be small

in the development of the pseudo-linear filter, it must be relatively small since it is
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multiplied by the estimate of the attitude and angular velocity in equation 7.7.

First, each of the nonlinear estimators is compared to the pseudo-linear Kalman

filter, set up to estimate one calibration component at a time. For example, the

bias estimator is compared to the pseudo-linear Kalman filter set up to estimate

the quaternion and the gyro bias. The alignment and scale factor errors are not

considered. The estimated angular velocity in both the pseudo-linear Kalman filter

and the gyro bias observer is

ω̂(t) = ωg(t)− b̂(t)

The error between the estimated and true bias from both algorithms is computed as

eb(t) = b− b̂(t)

The two algorithms are compared without added noise.

The scale factor estimator is compared to the pseudo-linear Kalman filter set

up to estimate the quaternion and the scale factor errors. In this case the estimated

angular velocity in the pseudo-linear Kalman filter is

ω̂(t) = ωg(t)− K̂(t)ωg(t) = (I − K̂(t))ωg(t)

where K̂(t) is a matrix with the estimated scale factor errors, k̂, on the main diagonal.

The estimated angular velocity in the scale factor estimator is

ω̂(t) = Γ̂I(t)ωg(t)

The true angular velocity is given as

ω(t) = ΓIωg(t)
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where ΓI is the inverse of the scale factor matrix. In comparing the pseudo-linear

Kalman filter to the scale factor estimator, the errors are computed as

Esf
PL(t) = ΓI − (I − K̂(t))

Esf
NL(t) = ΓI − Γ̂I(t)

where PL is the pseudo-linear result and NL is the nonlinear scale factor estimator

result.

The alignment estimator is compared to the pseudo-linear Kalman filter set

up to estimate the attitude quaternion and the alignment angles. In this case, the

estimated angular velocity in the pseudo-linear Kalman filter is

ω̂(t) = ωg(t)− M̂(t)ωg(t) = (I − M̂(t))ωg(t)

where M̂ is matrix containing the estimated alignment angles, m̂. The estimated

angular velocity in the alignment estimator is

ω̂(t) = R(q̂g(t))ωg(t)

and the true angular velocity is

ω(t) = R(qg)ωg(t)

where R(qg) is the true alignment matrix. In comparing the pseudo-linear Kalman

filter to the alignment estimator, an error matrix is computed as

Em
PL(t) = R(qg)− (I − M̂(t))
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Em
NL(t) = R(qg)−R(q̂g(t))

The nonlinear estimators are then combined, and compared to the pseudo-linear

Kalman filter set up to estimate all three calibration components. The estimated

angular velocity in the pseudo-linear Kalman filter is

ω̂(t) = ωg(t)− M̂(t)ωg(t)− K̂(t)ωg(t)− b̂(t)

The estimated angular velocity in the nonlinear estimator is given in equation 2.11

and is repeated here as

ω̂(t) = R(q̂g(t))Γ̂I(t)ωg(t)− b̂(t)

The error terms for the bias error, scale factor error, and the alignment are as given

above.

7.1 Comparison of Gyro Bias Estimation

The same Matlab simulation used to test the gyro bias estimator is used in the

comparison of the gyro bias estimator and the pseudo-linear Kalman filter. The

initial quaternions and true rate are

q(t0) = q̂(t0) = [0 0 0 1]T , ω(t) = [3, −4, 5]deg/sec

except for the last case. In the last case, the rate is ω(t) = [30, −40, 50] rad/sec.

Table 7.1 compares the norm of the error as a percentage of the norm of the actual

bias for the two algorithms for several tests with different added biases and no added
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Bias (deg/sec) % Error Nonlinear % Error Linear

[0.005,−0.005, 0.005]T 1E − 12 1E − 11

[0.05, −0.05, 0.05]T 1E − 13 1E − 11

[0.5, −0.5, 0.5]T 9E − 15 1E − 11

[2, −2, 2]T 2E − 14 1E − 11

[0.5, −0.5, 0.5]T , ‖ωg(t)‖ = 70 deg/sec 2E − 13 3

Table 7.1: Bias Estimation Comparison

noise. Results are given after 500 seconds. In all the test cases, both algorithms

use the same date and both are run at 20 Hz. Both algorithms produce accurate

bias estimates as long as the rates are relatively small. With a very large angular

velocity, the linear approach does not estimate the bias well. The bias errors from

the nonlinear estimator are smaller in each case.

7.2 Comparison of Scale Factor Estimation

The initial quaternions and true rate in the scale factor comparison are

q(t0) = q̂(t0) = [0 0 0 1]T , ω(t) = [3, −4, 5]deg/sec
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The true scale factor matrix is defined as

Γ =




1 + kx 0 0

0 1 + ky 0

0 0 1 + kz




In each of the cases presented, ki is increased. The norm of the scale factor error for

each algorithm is computed as

ePL
sf =

√∑
(diag(Esf

PL(t)TEsf
PL(t)))

eNL
sf =

√∑
(diag(Esf

NL(t)TEsf
NL(t)))

Table 7.2 compares the error, again as a percentage of the norm of ΓI . The results

are given after 4000 seconds. In the first three cases, the angular velocity is increased

from ‖ωg(t)‖ = 7 deg/sec, to ‖ωg(t)‖ = 7 rad/sec, to ‖ωg(t)‖ = 70 rad/sec in the

third case. In the fourth case, the angular velocity is again ‖ωg(t)‖ = 7 deg/sec and

the scale factor is increased by a factor of two. The final case, represents the extreme

case of using erroneous units. When ki is small and the angular velocity is small,

both algorithms have a small error. However, as the scale factor error increases or

the angular velocity increases, the error in the pseudolinear Kalman filter estimate

increases. In the final case, the pseudolinear Kalman filter cannot estimate the large

scale factor error.
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Scale factor, ki % Error Nonlinear % Error Linear

1E − 04, ‖ωg(t)‖ = 7 deg/sec 2E − 10 2E − 06

1E − 04, ‖ωg(t)‖ = 7 rad/sec 2E − 14 5E − 04

1E − 04, ‖ωg(t)‖ = 70 rad/sec 1E − 13 3

1E − 02, ‖ωg(t)‖ = 7 deg/sec 5E − 13 1E − 2

π
180
− 1, ‖ωg(t)‖ = 7 deg/sec 8E − 09 169

Table 7.2: Scale Factor Estimation Comparison

7.3 Comparison of Misalignment Estimation

The initial quaternions in the alignment comparison are

q(t0) = q̂(t0) = [0 0 0 1]T

The angular velocity is the same as that used to test the alignment estimator

ωg(t)
T = [sin ϑt, 1, 0]

169



where ϑ = 5 deg/sec. The true gyro alignment quaternion is defined using equation

1.2

qg =




1√
3
sin(φ

2
)

1√
3
sin(φ

2
)

1√
3
sin(φ

2
)

cos(φ
2
)




=




ε

η




In each case, the angle φ is increased. The error matrix for each case is normalized

as

ePL
m =

√∑
(diag(Em

PL(t)TEm
PL(t)))

eNL
m =

√∑
(diag(Em

NL(t)TEm
NL(t)))

Table 7.3 gives the results for the nonlinear estimator and the pseudo-linear Kalman

filter, presented as a percentage of norm of the actual alignment. In the second case,

the alignment angle is the same as the first case, but the angular velocity above is

increased to 10‖ωg(t)‖ with ϑ = 5 rad/sec. The pseudo-linear Kalman filter errors

are much worse than the errors from the nonlinear estimator in each case.

7.4 Comparison of Misalignment, Scale Factor, and Bias Es-

timation

Finally, all the calibration components are estimated simultaneously by both algo-

rithms. The initial quaternions in the comparison are

q(t0) = q̂(t0) = [0 0 0 1]T
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Rotation Angle (deg) % Error Nonlinear % Linear

0.006 5E − 07 6E − 03

0.006, ωg(t)*10, ϑ = 5 rad/sec 2E − 07 29

0.6 3E − 09 6E − 3

π 1E − 06 179

Table 7.3: Alignment Estimation Comparison

The angular velocity is the same as that used to test the combined alignment, scale

factor, and bias estimator

ω(t)T = [cos ϑt, sin ϑt, cos 2ϑt]

where ϑ = 10 deg/sec. In each case, the angle φ of the gyro alignment, ki of the

scale factor, and bias is increased, using the values given previously for the individual

calibration component comparisons. Table 7.4 through 7.6 give the results, presented

as percentages, for the nonlinear estimator and the pseudo-linear Kalman filter, after

2000 seconds. In all cases, the errors from the nonlinear estimators converge almost

to zero. The pseudo-linear Kalman filter errors grow quite large as the errors increase.
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Bias (deg/sec) % Error Nonlinear % Error Linear

[0.005,−0.005, 0.005]T 8E − 11 3E − 03

[0.05, −0.05, 0.05]T 8E − 12 3E − 02

[0.5, −0.5, 0.5]T 3E − 12 0.3

[2, −2, 2]T 9E − 14 1.5

Table 7.4: Bias Estimation Comparison

Scale factor, ki % Error Nonlinear % Error Linear

1E − 04 3E − 12 8E − 04

1E − 03 3E − 12 2E − 02

1E − 02 1E − 11 1

2 2E − 12 61

Table 7.5: Scale Factor Estimation Comparison
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Rotation Angle (rad) % Error Nonlinear % Error Linear

0.001 2E − 12 8E − 04

0.01 2E − 12 2E − 02

0.1 1E − 11 2

60 1E − 12 92

Table 7.6: Alignment Estimation Comparison
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Chapter 8

Concluding Remarks

Gyroscopes, or gyros, measure angular rate and are important sensors in most

aerospace attitude control systems. The measured rate, however, is corrupted by

noise and errors in alignment, scale factor, and bias. This work presents new nonlin-

ear estimators designed to autonomously estimate the gyro calibration parameters

all of which are unknown and of arbitrary size. The accuracy of the calibration

estimates depends on ’identifiability’ or persistency of excitation (PE) conditions.

The PE conditions are explicitly computed for each of the calibration parameter

estimates. The certainty equivalence use of the calibration parameter estimates in

a nonlinear feedback control algorithm is proven to be stable. A strong nonlinear

separation principle is proven for closed loop control with gyro bias estimation. A

PE-dependent nonlinear separation principle is proven for closed loop control with

scale factor or alignment estimation, or with arbitrary combinations of calibration

estimates.

The PE condition is derived from an analysis of the uniform complete observ-

ability of the estimator states. The PE condition, in general terms, means that for
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any time, t, there exists a time, T > 0, such that the following matrix is positive

definite
∫ t+T

t

Σ(τ, t)TΣ(τ, t)dτ (8.1)

the observer errors converge to zero exponentially fast. The matrix Σ(τ, t) is defined

for each estimator or estimator combination. Table 8.1 lists the PE condition for

each estimator or combination.
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Ωg(t) is a matrix with the components of the measured angular velocity, ωg(t),

on the main diagonal. The matrix B(t) in the combined alignment and bias PE

condition is defined as

B(t) = (S(ε̃g(t))− η̃g(t))S(R(q̂g(t))ωg(t))

where ε̃g(t) is the vector part of the alignment quaternion error, η̃g(t) is the scalar

part, R(q̂g(t)) is the estimated alignment matrix, and S(·) is a skew symmetric, or

cross product matrix. Finally, the matrix M(t) in the combined alignment, scale

factor, and bias estimators is given as

M(t) =




BT
c Bc −1

2
BT

c R(q̂g)Ωg
1
2
BT

c

−1
2
ΩgR(q̂g)

TBc
1
4
Ω2

g −1
4
ΩgR(q̂g)

T

1
2
Bc −1

4
R(q̂g)Ωg

1
4
I




where here Bc is given as

Bc = (S(ε̃g(t))− η̃g(t)I)S(R(q̂g(t))ΓIωg(t))

and ΓI is a diagonal matrix of the inverse scale factors. Note in table 8.1 that the

PE condition is always met for the gyro bias estimator, for any angular velocity. The

matrix Σ(τ, t)TΣ(τ, t) reduces to a constant matrix. For the scale factor estimator,

the angular velocity must be non-zero and bounded over regular time intervals. The

angular velocity must change direction for complete observability of the alignment,

and similarly with the combined alignment and bias estimator. In the combined scale

factor and bias estimators, the angular velocity must be non-zero and changing in
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magnitude in order to estimator both the scale factor and bias. Finally, in order to

completely observe all the calibration components, the angular velocity must change

direction sufficiently in R3.

The nonlinear gyro estimators are coupled with a nonlinear spacecraft tracking

control algorithm. Given that there is no separation principle for nonlinear systems,

the closed loop system is analyzed with each of the gyro estimators, including the

combined gyro estimators. Given a gyro bias, the closed loop system is asymptoti-

cally stable. With scale factor and alignment errors, or combinations involving scale

factor and alignment errors, the closed loop system is at least bounded, given that

the scale factor and alignment are known a priori to be bounded. However, if the

angular velocity meets the persistency of excitation conditions given in table 8.1,

the closed loop systems are asymptotically stable, regardless of the size of the scale

factor and alignment.

8.1 Future Direction

There is, of course, additional work that can be done with the nonlinear gyro cal-

ibration estimators. Noise must be considered with the analysis of the scale factor

and alignment estimators, as well as the closed loop systems. Also, only orthogonal

alignments are considered here. Given that individual gyros are usually designed to

measure rate along a single axis, and are combined to provide three axes of rate mea-

surements, non-orthogonal alignment errors will exist. The impact of non-orthogonal
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alignment errors needs to be considered. Perhaps, an additional estimator could be

designed to produce an estimate of the non-orthogonal components. Additionally,

consideration should be given to the gain computation in the closed loop systems.

To ensure that the closed loop system is at least bounded, the gain is sized according

to the system parameters and the a priori knowledge of the calibration components.

Perhaps an adaptive gain would ensure the gain is minimized as the closed loop er-

rors are reduced. Finally, the gyro calibration estimators should be augmented into a

general attitude estimation algorithm in which the attitude is estimated with vector

measurements, thus providing a complete attitude estimation system.

8.2 Final Summary

The thesis began with an overview of the current state of the art in terms of lin-

earized and nonlinear methods of gyro calibration for spacecraft applications. The

limitations of the current techniques were highlighted, providing the motivation for

the development of the nonlinear gyro calibration estimators included in this work.

The stability characteristics of the nonlinear estimation and the closed loop con-

trol system were analyzed and presented. The nonlinear gyro calibration estimators

are directly applicable to spacecraft or other aerospace vehicles. The estimators are

capable of estimating errors well outside the normal range of linear calibration al-

gorithms, and during periods of large angular rate. The algorithms are applicable

to future satellite missions, such as formation flying missions, or other missions re-
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quiring high precision and autonomous operations. The algorithms can serve as an

autonomous software calibration check anytime from pre-launch to on orbit opera-

tions. Finally, the algorithms have potential application in other scenarios, such as

in calibrating the MEMS gyros used in automobiles, GPS/navigation systems, or in

high angular velocity environments such as airplanes, robots, or industrial systems.

The hope is that the methods presented here will serve as valuable tools in improving

the performance of an aerospace control system.
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[28] Bošković, J. D., Li, S.-M., and Mehra, R. K., “A Globally Stable Scheme for

Spacecraft Control in the Presence of Sensor Bias,” 2000 IEEE Aerospace Con-

ference, Big Sky, Montana, March 2000.
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