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ABSTRACT

Monotonicity of throughput is established in some non-Markovian queueing networks by
means of path-wise comparisons. In a series of -/GI/s/N queues with loss at the first node -

it is proved that increasing the waiting room and/or the number of servers increases the

throughput. For a closed network of -/GI/s queues it is shown that the throughput increases

as the total number of jobs increases. The technique used for these results does not apply
to blocking systems with finite buffers and feedback. Using a stronger coupling argument we
prove throughput monotonicity as a function of buffer size for a series of two -/M/1/N queues

with loss and feedback from the second to the first node.
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1. Introduction

This paper is concerned with some classes of non-Markovian networks. The aim is to
establish the monotonicity of throughput in these networks as a function of some of their
parameters. The proofs involve pathwise arguments.

In Section 2 we consider a loss system consisting of M :/GI/s/N queues in series. The
queues are initially empty. The blocking between nodes is of the manufacturing type and the
arrival process is arbitrary. It is shown that the number of customers accepted in the system
in any time interval [0,¢], ¢ 2 0, is a stochasticaly increasing function of the buffer sizes and
the number of servers, and that manufacturing-type blocking performs stochastically better
than communication-type blocking.

In Section 3 we consider a closed network of -:/GI/s queues. It is shown that the number
of jobs processed by any node in the network in any time interval [0,¢] is a stochastically
increasing function of the total number of customers in the network. The idea of the proof
is in van Dijk et al [3]. Monotonicity with respect to the number of servers can be argued
similarly. This extends results of Shantikumar and Yao [4] and van der Wal [6] who consider
closed networks with exponential servers.

The technique of the previous sections does not apply to finite-buffer networks with feed-
back. In Section 4 we consider a simple system consisting of two initially empty «/M/1/N
queues in tandem with communication blocking between the nodes and feedback from the
second to the first node. Again, the arrival process is arbitrary. It is shown that the number
of accepted customers in the system in any time interval [0,¢] is a stochastically monotone
function of the buffer sizes of the nodes. The coupling construction employed here depends
crucially on the fact that the service times are exponentially distributed. Monotonicity of
throughput as discussed in Sections 2 and 4 is important for establishing properties of the
Erlang fixed point approximation of these systems.

In this paper the throughput of a queueing node at time ¢ > 0 is defined to be the number
of jobs processed by the node by time ¢. In standard usage it is defined to be the time average
of this quantity.

2. A series of -/GI/s/N queues
2.1 Throughput as a function of buffer size and the number of servers

Consider M queues {-/(GI);/s;/Ni}}, in series. That is, node f has s; servers with i.i.d.
service times distributed according to (GI); and waiting room of size N;. An arriving job that
finds the first node full is lost. A job that completes service in node ¢ proceeds to node s+1
unless the latter is full. In this case it has to wait until there is an empty space in node s + 1
while node ¢ is blocked, i.e., while its server is idle. This discipline is called ‘manufacturing
blocking.’ Let the arrival times in the first node be an arbitrary deterministic sequence (ax)§2,
and assume that the system starts empty.

Notation

Fors=1,....,M, 7 > 1, we define the following quantities.
SJ':: service requirement of the sth job through the sth node,

C;:: time when the jth job completes service in node s but does not necessarily join node 1 +1,
T;: time of arrival of the jth job to be served in node 1.
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The mazimum of z and y is denoted by zVy, (z)* =z V0 and z Ay is the minimum
of z and y. By convention, zAyVz=(zAy)VzandzVy+z=(zVy)+2 By A, z;
we denote the sth smallest element in a set {zx}. Lastly, 1{-} is the indicator of an event.

Recursive relationships

We now establish recursive relationships for the times defined above. To this end note
that in the 1th node a server becomes available for the nth job to arrive in that node only

after time T,';'ﬂ'._u, i.e., only after n — s; + 1 jobs have left node s. Similarly, note that the
same job is blocked by node 1 + 1 at most until time T,‘;_'j,',+1 +1°
For 7 > 1and 1 = 1,..., M, one verifies the following recursions. They are generalizations

of the ones given in Wolff [7] for a single -/ - /s node.
s 13 L+1 i
C;=T}VTii, +5; (2.1)

+1 _ (5) Adtsi—1 i+2
Tt = OIALF civTiid, (2.2).
By convention, TJ‘-M""" =T = Tij = 0 and note that TJM’H = CJM. Also, the minimum and
the minimum over an empty set are taken to be zero.

We will make use of these relationships in establishing the main result in this section. By
A; denote the number of customers accepted in the system by time £ > 0. Let A, denote the
same quantity for the same system but with buffer sizes increased to Ny > Ny,..., Nar > Ny
and with the number of servers at each node increased to 3, > 8;,...,8rr 2> 80s.

Theorem 2.1 : The following relationship holds. (Recall that X >,, Y if P(X > 1) >

P(Y > z)forz€R.)
Ay <4t Ayt 2 0. (2.3)

Proof : The proof consists in constructing a queueing process in a system with buffer
sizes {N;} and the same arrival sequence (ax)§2,, where (2.3) is satisfied almost surely. Vari-

ables 3—}, E; and T; denote the corresponding quantities for the larger system. Since service
times are independent of the past of the arrival and the service processes we can require that

S;: = E}, for + = 1,..,M and 57 > 1, almost surely, without altering the distributions of
{(})i2,}},, and {(-‘-S—:)?;l}ﬁl
We now show by induction on 7 that,fors =1,...,M and 7 =1,2,...,

C;> 6;-, and (2.4)
T; > Tj-, a.s. (2.5)

This is clear for y = 1 and assume it is true for j = 2,...,n. We will prove that it remains true
fory=n+1.

Relationships (2.1) and (2.2) are non-increasing for increasing {N;}M, and {5;},. Also,
again by (2.1) and (2.2), note that in order to establish (2.4) and (2.5) for j = n+1 it suffices
to show that T}, > -T-:H_l. Suppose on the contrary that T}, ; < T:‘_H and let T}, = ax
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for some k. This implies that in node 1, at time ax, there are N, jobs in the larger system
while there are strictly less than N} jobs in the smaller one. Therefore,

2
T: Ni+1 = < T: n—-N+1 Sap < Tn-Tv‘.-q-u
which contradicts the induction hypothesis. This proves inequalities (2.4) and (2.5) and in-
equality (2.3) follows from that T} > Tl j 2 1. Also, from the fact that TM > TM j=1,
it follows that the departure process stochastlcally increases wnth increasing {N; }‘__1 and/or

{st}.-x O

Remark 2.1 : In the theorem above and in Theorem 4.1 the arrival times are arbitrary
and deterministic. This implies that the results remain true for an arbitrary random sequence
of arrival times as long as the future service requirements are independent of the past of the
arrival process.

2.2 Manufacturing vs. communication blocking

In this subsection we consider the same series of {-/(GI);/1/N; }‘__1 queues but with
communication-type blocking. This means that if a job completes service at node ¢ and finds
node £+ 1 full, then it has to repeat service in the former node. Starting the system empty, we
prove that the throughput of this system is a lower bound on the throughput of the system with
manufacturing-type blocking. This fact is useful because communication blocking is usually
easier to analyze (see, e.g., Section 4 and Mitra and Tsoucas [3]). The issue was raised in
Altiok and Stidham [1].

Variables A, 5';:, C:'; and ’f‘j are defined in the same way as variables A;, S}, C}, and T}
above. In addition, let pj- be the smallest integer such that

J
ZS;:. 2 (T'-N. C-';:)+a n2l,i=1.,M-1, (2-6)

i.e., the addltlonal number of times job 7 will have to be served at node s before it can join
node t+1(p y=0if T"*'2 S C‘) The variables ( J',)z are picked independently from the

distribution (GI )i The recursions satisfied are

Cia=CiVTi+8n, (2.7)
Pie1
T;I: J+1 + Z SJ+1 D t= 1,'":M1 J 2L (2.8)

I=1

Theorem 2.2 : One has -
A 24 Ay, £ 20,
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Proof : The argument is essentxally the same as the one in the proof of Theorem 2.1. By
requiring that S‘ = S‘ for all ¢+ and j, one proves inductively that

C;<CjandT;<T},j>1,i=1,.,M.
The induction hypothesis propagates because, from (2.8), and (2.6),

Hi+41 s s+2 ~1 + ri42
T'hHh2 C; i+t (T} GoNi+1 — Cip) T = C VT I N1

while
t+1 _ t+2
G =CuaVTiiy .+

O

Remark 2.2 : One can show the same result for a series of - /GI/s/N queues. We have
restricted attention to single-server nodes in order to keep the notation simple.

3. A closed network of -/GI/s queues

Consider a closed network N consisting of a collection of M nodes {-/(GI):/s;},. Rout-
ing between nodes is Bernoulli. Let K be the total number of jobs in the network. Service
commences at t = 0 and the initial queue lengths are (n})M,. We will compare this network
with one which consists of the same nodes and routmg but w1th more jobs. The initial queue
lengths in this network are assumed to be 7 7 > nd,...,7) > nM. We denote this network by

N. Finally, let P} (respectwely P,) be the number of jobs completed in node 1 by time ¢t > 0
in network N (respectxvely N).

Theorem 3.1 : The following relationship holds.

Pt <.t Pt’ t>0 '—1 ,JV.‘. (3.1)

Proof : Quantities S; and T;, t=1,..,M, 7 > 1 are defined as in.the proof of Theo-
rem 2.1. In addition we introduce

time remaining at time ¢ until the yth accepted customer leaves node i. (by convention,

f»: = oo if fewer than n customers have been processed by time ¢, R‘ = 0 if the nth
customer has departed by time t, and the paths of R}, , are taken to be rxght continuous),
Bi: time when a server in node { commences service on the jth job, i.e.,

t .
n,t*

B =inf{t>0| Ri, < Si}, (3.2)

rS.: the nth routing decision of node i, i.e., r\, = 7 means that the nth job through node s will
be routed to node 7 upon completion.
Variables .—S'-:, -Ti, _R_i’,, Fi, ¥ denote the corresponding quantities for network N.
As in the proof of Theorem 2.1, we will construct processes in networks N and N such
that (3.1) holds almost surely. Since (S}), and (r},)n are i.i.d. sequences we can require that
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S = 3':‘ and r}, = 7, as. for all ¢ and n. Arguing by induction on ¢ we show that, for
i=4L.,M,t>0andn>1, ‘
R 2T, (33

Note that T% = inf{t > 0 | R}, < oo} and that for t > T3, Rj, ; decreases at unit rate
until it reaches 0 for all  and n (see Figure 1). Thus inequalities (3.3) need only be established
for t € {T}}. We rewrite the set {T}}in as {t;}{2, with £; < t;4+;. From the choice of initial
conditions it is clear that in this construction one has

R., >F.

n,t; — n

=10 M, n 21

Suppose (3.3) is true up to time ¢; for all n and i. We show that it remains true up to time
ti+ 1. Let ¢;4y = T, for some ¢ and n. It suffices to check that

T: > T:, and (3.4)
Rf.,T; 2> F;.,T; 1i=1.M, n2>1 (3.5)

To establish (3.4) suppose the contrary, i.e., that T§ < T.,. By the induction hypothesis
we only need to consider the kth job in node 5 where

T =Bj+S]andfort> TS, v} =i.

This implies that Bi < -B_‘: and hence R;'t < ﬁ:.t for some p < l. This contradicts the
induction hypothesis and shows (3.4).

For (3.5), note that because of the shape of tht the induction hypothesis implies that

-R‘;.', < R}, forl <n. (3.6)

Furthermore, note that we can write

B, =Tivinf {t| Y I{R, > 0} < &} (3.7)
I<n
and . . .
R, .= (B,+S,-t)". (3.8)
Inequalities (3.6) and relation (3.7) imply that _B-:‘ < B} and from (3.8) for t = T} we
conclude (3.5). O

Remark 8.1 : Monotonicity of throughput with respect to the number of servers in a
node can be established similarly.

4. Networks with finite buffers and feedback

In this section we consider the limitations of the coupling approach used so far. In the
network of Section 2.1 take M = 2 and add Bernoulli feedback from the second to the first
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node with parameter p. The blocking of the fed-back jobs is also of the manufacturing type.
We add an extra buffer space in the first node and consider the effect on the throughput.
The construction of the previous sections can be shown to fail here, i.e., for some time ¢ there
are sample paths of positive probability for which the smaller system accepts strictly more
customers ( see Tsoucas [6]).

In what follows we establish the monotonicity property after simplifying the above system
in two ways. The service time distributions are restricted to be exponential and the blocking

is of the communication type. As before, let (agx)§2, be an arbitrary deterministic sequence
of arrivals, let x;, g2 be the service rates and let p be the feedback probability from node 2

to node 1. Denote by (X}, X?) the number of jobs in nodes 1 and 2 at time ¢, and by A, the
number of jobs accepted in the system by time ¢.

Next, consider the same system but with the buffer size in the first node increased to
N; + 1. We can couple the two systems so as to have the same virtual service processes. The
virtual service process in node 1 is a Poisson process with rate u;. A point in this process is
a service completion time if node 1 is non-empty. The virtual service process in node 2 is a
Poisson process with rate uz. A service completion occurs at each point of the process if node
2 is non-empty. The job completed gets fed back to node 1 with probability p and leaves the
system otherwise. Its points carry additional routing information as to whether a job is to

be fed back upon completion or not. Let (7(_:, 7:), A; denote the corresponding quantities

for this system. Finally, assume that (X3, X3) = (—X—;, 73) = (0,0) and note that, in this
construction, subsequent transition times are the same for both systems. Denote these times

by {Ta}n 2 1.
Define Y; = X — X; and set AY; = Y; — Y;_. The next two lemmas concern the process
{Y1,}. Their proofs are straightforward (see Figure 2).

Lemma 4.1 : The transitions satisfy properties
(2) Y1, € {(1,-1)}U {(n1,n2) | 71 20, nz > 0}
(b) AYT, = (-1,0) only if Y3 _ > 1, andAYr, = (1,0) only if Y7 _ =0.

In what follows we restrict attention to times T}, such that Yo, & {(0,0), (1,-1)}. We
denote this set again by {Th}n.

Lemma 4.2 : Given that Y; € {(0,0), (1,-1)},

Y +Y2i= Y (1{AYn, = (1,0)) - {AYy, = (0,-1)} - {AYr, = (~1,00}) +1 > L.
Ta St

Finally, we can compare the throughput in the two systems.
Theorem 4.1 : One has A; ~ A, >0, t > 0.

Proof : Note that

A - A2 Y ({AYn = (1,00} - 1{AYr, =(-1,0)}).
T. <t

Then the result follows from Lemmas 4.1 (b) and 4.2. 0
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