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Nomenclature 

A Rotor disk area, m
2
 

ctip Tip chord length, m 

Df Fuselage drag, N 

dm/dt Mass flow rate through actuator disk, kg/s 

dy Blade length element, m 

dV/dt Magnitude of aircraft acceleration, m/s
2 

f 1) Equivalent flat plate area, m
2
 (section 2.3) 

2) Focal length, m (section 4.1.1) 

g Acceleration due to gravity, 9.81 m/s
2
 

H Rotor drag, N 

Ib Blade mass moment of inertia, kg*m
2
 

k Shutter overexposure factor 

L Lift per unit length of blade, N/m 

m 1) Mass per unit length of blade, kg/m (section 2.1) 

2) Inflow mass, kg (section 2.2) 

QSource Integrated irradiance of the light source, W/m
2
 

QSun Integrated irradiance of the sun, W/m
2
 

qSource Irradiance of the light source as a function of wavelength, W/m
2
-nm 

qSun Irradiance of the sun as a function of wavelength, W/m
2
-nm 

R Rotor radius, m 

T Rotor thrust, N 



 xi 

tc Time that the camera shutter remains open, s 

V Voltage, volts 

V∞ Free-stream velocity, m/s 

V∞  Non-dimensional free-stream velocity, V∞ / vh 

vh Hover induced velocity, m/s 

vi Induced velocity, m/s 

iv  Non-dimensional induced velocity, vi / vh 

W Helicopter weight, N 

w Slipstream velocity, m/s 

  

αTPP Longitudinal angle of the tip-path-plane with respect to the free-stream 

velocity, deg or rad 

α0 Angle of the free-stream velocity in the longitudinal plane with respect to 

the fuselage reference axis, deg or rad 

α1 Longitudinal angle of the tip-path-plane with respect to the fuselage 

reference axis, deg or rad 

αA Longitudinal flapping angle of the aft blade with respect to the fuselage 

reference axis, deg or rad 

αF Longitudinal flapping angle of the forward blade with respect to the 

fuselage reference axis, deg or rad 

β Flap angle relative to the hub plane, deg or rad 

β0 Coning flap angle relative to the hub plane, deg or rad 

β1c 1
st
 harmonic longitudinal flap amplitude relative to the hub plane, deg or 



 xii 

rad 

β1s 1
st
 harmonic lateral flap amplitude relative to the hub plane, deg or rad 

βnc n
th

 harmonic longitudinal flap amplitude relative to the hub plane, deg or 

rad 

βns n
th

 harmonic lateral flap amplitude relative to the hub plane, deg or rad 

γ Flight path angle, deg or rad 

λ Wavelength, nm 

λ  Non-dimensional inflow, sin
i

v V α∞−  

ρ Density of air, kg/m
3
 

ρc Spectral response of the camera as a function of wavelength, 0 < ρc < 1 

ρf Spectral response of the filter as a function of wavelength, 0 < ρf < 1 

ψ Azimuth angle, deg or rad 

Ω Rotor angular velocity, deg/s or rad/s 

  

(˙) Time derivative, d/dt 

(˙˙) Double time derivative, d
2
/dt

2
 

(*) Azimuth derivative, d/dψ 

(**) Double azimuth derivative, d
2
/dψ

2 
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Chapter 1: Introduction 

This section will address the fundamental acoustic problem of blade-vortex interaction 

and setup the roadmap for the development of a tip-path-plane imaging system. Also 

described are previous blade-tracking systems and their limitations in predicting the 

inflow state of the main rotor. 

1.1 Blade-Vortex Interaction Acoustic Problem  

Four of the primary acoustic sources of main rotor noise include thickness, loading, high-

speed impulsive (HSI), and blade-vortex interaction (BVI) noise
1
 (see Figure 1.1). 

Thickness noise, the result of a finite thickness rotor blade displacing air, causes unsteady 

pressure waves to radiate to the far field near the plane of the rotor. Loading noise, the 

fluid reaction to the lifting blade, causes pressure waves to radiate primarily out of the 

plane of the rotor. High speed impulsive noise arises when the blade tips travel at high 

mach numbers and experience local transonic aerodynamic effects in the plane of the 

rotor. The last primary form of rotor noise, blade-vortex interaction, is the impulsive 

noise resulting from rapid pressure fluctuations as the blade passes near or through 

previously shed rotor vortices. This source acts primarily out of the plane of the rotor. 
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Figure 1.1: Four primary acoustic sources of a main rotor. 

The intensity of BVI noise is dictated by the rotor’s inflow
2
. In steady-state flight, the 

local inflow of the rotor influences the rotor wake position with respect to the blades (see 

Figure 1.2). This, in turn, determines the character and strength of the rotor noise that is 

emitted from the helicopter. When the rotor inflow is low and the blades pass close to 

previously shed tip vortices, large amounts of noise are emitted.  When the magnitude of 

the rotor inflow is large, the blades pass farther away from the shed vortices and the 

radiated noise is much less. This is the fundamental principle on which the Quasi-Static 

Acoustic Mapping (Q-SAM)
3
 approach is based. Implementation of Q-SAM has been 

made through theoretical modeling
3,4

 and through measurement
5,6

. More recently, the 

theoretical and experimental implementation approaches are being integrated – creating 

the Rotorcraft Noise Model Q-SAM (RNM-QS) approach, which can also handle 

accelerating and decelerating flight in the longitudinal plane. It should be noted here that 

while inflow control can be used to mitigate the intensity of BVI noise, it cannot 

necessarily be used to change the intensity of the other aforementioned rotor acoustic 

sources. 
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Figure 1.2: Relationship of inflow to BVI radiation in normal flight (top), shallow descent (middle), 

and steep descent (bottom). 

As will be shown in Chapter 2, the inflow of the rotor is dependent on the longitudinal 

free-stream velocity and the longitudinal angle of the tip-path-plane – that is, the plane 

traced by the blade tips each revolution – with respect to the free-stream velocity. The 

longitudinal tip-path-plane angle can be visualized as a combination of two components: 

the longitudinal flapping of the rotor blades with respect to the hub plane and the angle of 

the hub with respect to the free-stream velocity. Here the hub plane refers to a plane 

orthogonal to the rotation of the rotor mast. 

 

The first component, the flapping angle of the blades, is a combination of a steady-state 

coning angle caused by aerodynamic and centrifugal loads on the blade and an additional 

longitudinal flapping due to asymmetric loads on the rotor blades during forward flight 

(see Figure 1.3). The flapping angle is also composed of lateral and higher harmonic 
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flapping components. However, the lateral flapping component has no impact on the 

longitudinal position of the tip-path-plane and though the higher harmonic components 

do create some wobbling of the plane, they are negligible for a first order analysis
7
. 

 

Figure 1.3: Longitudinal tilt for pure coning, β0, (top) and with the longitudinal flapping component, 

β1c, (bottom). 

The second component, the angle of the hub plane with respect to the free-stream 

velocity, is a combination of the fuselage attitude with respect to the free-stream velocity 

and the rotor mast angle. Naturally, this description requires the center of gravity and trim 

tabs of the individual rotor blades be adjusted so that all blades are at the same effective 

position for a given azimuth angle in space. 
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1.2 Current Blade Tracking Systems 

Current image-based blade tracking techniques generally fall into three categories: 

electro-optical tracking, strobe light tracking, and radar tracking
8
. Electro-optical systems 

are based on the contrast of the blades with respect to the background. Early systems, 

such as ground based tracking system developed by Chicago Aerial in the 1960s and the 

in-flight tracking system developed by Stewart Hughes in the 1980s, operated by 

monitoring changing lighting conditions as the blades passed over an optics assembly that 

focused light onto individual photo transistors
9
. Modern electro-optical concepts, 

developed by Helitune and Dynamic Solutions Systems, incorporate digital imaging 

techniques with line-scan cameras. Strobe light tracking systems, such as the 135M11 

Strobex strobe, illuminate rotor tip targets with a strobe light triggered by each blade 

passing
10

. Generally these strobe-based systems require a trained observer to monitor 

blade alignment. Radar systems, such as the Micropower Impulse Radar (MIR), 

developed by the Lawrence Livermore National Laboratory for the V-22, provide digital 

images of a portion of the rotor blade
11

. Though radar systems are extremely accurate, 

they are also quite complicated and very expensive. 

 

However, these systems, while an excellent starting point for a developing a tip-path-

plane tracking system, have two fundamental limitations that prevents their use for BVI 

noise prediction and mitigation strategies. First, with the exception of the MIR system, 

they are only capable of providing the tip-path-plane angle at a single azimuth angle and 

cannot provide the longitudinal component of interest. Second, these systems are 

developed for blade tracking and balancing purposes to mitigate aeroelastic and 
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mechanical vibrations. These systems cannot be used to monitor the inflow state of the 

rotor since they do not reference the free-stream velocity. Therefore, these systems must 

be modified in order to obtain the desired information for BVI mitigation purposes. 

 

Alternative means of tracking the rotor blade in the past include fitting teetering rotor 

systems with potentiometers and installing strain gages within the blades to measure 

deflection. However, these systems typically require alterations to the rotor blades and 

the installation of a slip ring. 

 

This paper describes the design and evaluation of a system that is capable of tracking the 

plane of the rotor without requiring major alterations to the blade – so that when blades 

are changed or when the system is moved to a different helicopter, no major 

modifications are required.  The system also must work in all types of lighting – 

including the out-of-doors, where sunrise and sunset present major obstacles to a robust 

design. An optics-based design for such a tracking system will be discussed in Chapters 3 

and 4. 
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Chapter 2: Theory 

This section will discuss the properties that govern the main rotor inflow. First, a general 

overview of blade flapping for a single rigid rotor will be addressed. Then, momentum 

theory will be used to derive the general inflow equation. The inflow equation will then 

be examined to identify the important variables. Lastly, a stead-state longitudinal force 

balance will be used to relate the longitudinal tip-path-plane angle to the drag-to-weight 

ratio, flight path angle, and acceleration of the aircraft. 

2.1 Blade Flapping Equation Overview 

Consider a rigid blade with a uniformly distributed mass rotating about an axis subject to 

aerodynamic loads. As shown in Figure 2.1, the mass element, mdy, is subject to three 

loads that create a bending moment about the flapping hinge. These loads include an 

aerodynamic, centrifugal, and inertial force. 

 

Figure 2.1: Flapping forces acting on a blade element. 

If there is no hinge offset, the summation of the moments about the flap hinge for an 

articulated blade with small flapping angles yields: 

 2 2 2

0 0 0
0

R R R

Centrifugal Inertial Aerodynamic

my dy my dy Lydyβ βΩ + − =∫ ∫ ∫��

������� ����� �����
 (2.1) 
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Where R is the blade radius, m is the blade mass per unit length, β is the flap angle, Ω is 

the angular velocity, and L is the lift per unit span of the rotor. 

Recall that the mass moment of inertia is: 

 2

0

R

bI my dy= ∫  (2.2) 

Collecting terms from the summation of mass moments yields: 

 2

0

R

b bI I Lydyβ β+ Ω = ∫��  (2.3) 

Recall that the azimuth angle, ψ, is the product of the constant rotational angular velocity 

and time. Therefore: 

 
*d d d d

dt d dt d

β β ψ β
β β

ψ ψ
= = = Ω = Ω�  (2.4) 

And 

 ( )
2 **

2 2

2

d d d d d

dt d dt d d

ψ β β
β β β

ψ ψ ψ

 
= = Ω = Ω = Ω 

 
�� �  (2.5) 

Therefore the time derivative equation can be rewritten in terms of the azimuth 

derivatives: 

 
**

2 0

1 R

b

Lydy
I

β β+ =
Ω ∫  (2.6) 

For forward flight, the general solution to the flapping equation can be represented as an 

infinite Fourier series of the form: 

 ( ) ( )0

1

cos sinnc ns

n

n nβ ψ β β ψ β ψ
∞

=

= + +∑  (2.7) 

As mentioned previously, β0 represents the constant coning angle of the blade relative to 

the hub plane and βnc and βns represent the amplitude of the higher harmonic longitudinal 
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and lateral flapping components respectively. In the following momentum theory 

analysis, only the coning and first-harmonic components will be considered. 

2.2 Derivation of the General Inflow Equation 

To calculate inflow, it is necessary to derive the induced velocity. This can be done using 

momentum theory assuming the rotor to be an actuator disk with uniform inflow. 

Consider a helicopter in forward flight, represented in Figure 2.2. 

 

Figure 2.2: Momentum theory model for forward flight. 

The mass flow rate influenced by the actuator disk, dm/dt, is a function of the fluid 

density, ρ, actuator disk area, A, and resultant velocity at the disk, U. 

 
dm

AU
dt

ρ=  (2.8) 
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Here, the Glauert flow model is employed to represent the resultant velocity as a function 

of the free stream velocity, V∞, the tip-path-plane angle, αTPP, and the induced velocity in 

the plane of the rotor, vi: 

 ( ) ( )
2 2

cos sin
TPP i TPP

U V v Vα α∞ ∞= + −  (2.9) 

Applying the conservation of momentum yields thrust, T, in terms of the mass flow rate 

and the slipstream velocity, w: 

 ( ) ( )sin sin
TPP TPP

dm dm dm
T w V V w

dt dt dt
α α∞ ∞= − − − =  (2.10) 

Applying conservation of energy yields the rotor power, P: 

 

( ) ( ) ( )
2 21 1

sin sin sin
2 2

sin
2

i TPP TPP TPP

TPP

dm dm
P T v V w V V

dt dt

dm w
w V

dt

α α α

α

∞ ∞ ∞

∞

= − = − − −

 
= − 

 

 (2.11) 

Combining the two conservation equations simplifies to 

 2
i

v w=  (2.12) 

Therefore, 

 ( ) ( )
2 2

2 2 cos sin
i i TPP i TPP

dm
T w AUv Av V v V

dt
ρ ρ α α∞ ∞= = = + −  (2.13) 

Recall for hovering flight: 

 
2

h

T
v

Aρ
=  (2.14) 

Therefore, the equation for induced velocity becomes 

 

( ) ( )

2

2 2
cos sin

h
i

TPP i TPP

v
v

V v Vα α∞ ∞

=
+ −

 (2.15) 

Expanding the above expression generates the following quartic function 
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 4 4 2 2 32 sin
h i i i TPP

v v v V v V α∞ ∞= + −  (2.16) 

Introducing the non-dimensional parameters i
i

h

v
v

v
=  and 

h

V
V

v

∞
∞ =  yields 

 4 2 2 31 2 sini i i TPPv v V v V α∞∞+ − =  (2.17) 

or 

 
2

3

1
2 sini TPP

i i

V
v V

v v
α∞

∞+ − =  (2.18) 

Consider the Taylor series expansion of the inflow equation non-dimensionalized with 

respect to the hover induced velocity 

 
0

0

sin . .
TPP

TPP

i
i TPP i TPP TPP

TPP

v
v V v V H O T

α

α

λ α α α
α

∞ ∞=

=

∂
= − ≈ + − +

∂
 (2.19) 

The induced velocity at a zero tip-path-plane angle is found from the non-dimensional 

inflow expression: 

 4 4 2 2

0
1 0

TPP
i i iv v v V

α ∞=
= + − =  (2.20) 

Therefore 

 

2 4

0

4

2TPP
i

V V
v

α

∞ ∞

=

− + +
=  (2.21) 

The differential term in the Taylor series expansion is found by differentiating the non-

dimensional induced velocity function with respect to the tip-path-plane angle. 

 ( )
2

2 4

3
1 2 cosi TPP TPP

i i

V
dv V d

v v
α α∞

∞

 
− + = 

 
 (2.22) 

Which simplifies to: 

 
4

4 2 2

2 cos

3

i i TPP

TPP i i

dv v V

d v v V

α

α

∞

∞

=
− +

 (2.23) 
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Evaluating the differential equation at a zero tip-path-plane angle yields 

 
( )

( ) ( )

4

0

4 2
2

0
0 0

2

3

TPP

TPP
TPP TPP

i
i

TPP
i i

v Vdv

d v v V

α

α
α α

α

∞
=

=
∞= =

=
− +

 (2.24) 

Therefore, the inflow model from the Taylor series expansion becomes 

 

2 4

4 2 4

24

2
4 4

TPPVV V

V V V

α
λ

∞∞ ∞

∞ ∞ ∞

− + +
= −

− + +

 (2.25) 

If the product of the differential term and the tip-path-plane angle is small, 

 

2 4 4

2
TPP

V V
Vλ α∞ ∞

∞

− + +
≈ −  (2.26) 

Thus, the inflow for this model is related only to the free stream velocity and the tip-path-

plane angle. 

2.3 Longitudinal Force Balance 

Next consider an estimation of the longitudinal tip-path-plane angle by referring to the 

longitudinal force balance diagram of the helicopter in a steady state condition: 
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Figure 2.3: Longitudinal force balance diagram for steady state flight. 

Taking the sum of the forces along the wind axis: 

 ( )sin cos sinV TPP TPP f

W dV
F T H D W

g dt
α α γ∞ = = − − − + −∑

��
 (2.27) 

Assuming small angles, and solving for the tip-path-plane angle yields 

 
1f

TPP

D H W W dV

T T T g dt
α γ

+ 
= − + + 

 
 (2.28) 

Where the fuselage drag, Df, is a function of the fluid density, equivalent flat plate area f, 

and free stream velocity: 

 21

2
fD fVρ ∞=  (2.29) 

Assuming that thrust is equal to weight and that fuselage drag is much larger than the 

rotor drag, the theoretical tip-path-plane angle becomes: 

 
1f

TPP

D dV

W g dt
α γ

 
≈ − + + 

 
 (2.30) 
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It should be noted that the theory defines the helicopter’s tip-path-plane angle to be 

referenced to the undisturbed free-stream velocity of the helicopter. The next section will 

investigate two different approaches of measuring the tip-path-plane with respect to the 

free-stream velocity 
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Chapter 3: Measurement Technique 

Measurement of the tip-path-plane with respect to the free-stream velocity is measured 

using a combination of two instruments: a wind vane or some other device that measures 

the angle of the free-stream velocity with respect to a fixed reference axis on the fuselage 

of the helicopter, α0, and a camera system that measures the angle of the tip-path-plane 

with respect to the same reference axis, α1. From geometry, the sum of the direct tip-path-

plane measurement with respect to the helicopter fuselage line, α0, and the angle of attack 

of the helicopter fuselage with respect to the free-stream velocity of the aircraft, α1, 

yields the longitudinal tip-path-plane angle of the helicopter with respect to the free-

stream velocity of the helicopter, αTPP - the measurement that is directly related to BVI 

noise (αTPP = α0 + α1). This strategy is depicted in Figure 3.1. 

 

Figure 3.1: Measurement contributions for the longitudinal tip-path-plane angle. 



 16 

In practice, there are really two ways of measuring the angle of attack of the helicopter 

reference line. The first is by employing a long measurement boom as shown in Figure 

3.1. The second is to use an inertial measurement system to obtain the expected angle of 

attack based on the aircraft attitude and flight path. 

3.1 Direct Measurement of αααα0 

The measurement of the free-stream velocity with respect to the reference axis is made 

using a swivel-head air data boom (Space Age Control model 100510). This data boom, 

shown in Figure 3.2, features sensors for recording total air pressure, static air pressure, 

angle of attack, and angle of slip. 

 

Figure 3.2: Diagram of Space Age Control 100510 Air Data Boom. 

3.2 Indirect Measurement of αααα0 

An alternate method for measuring the angle of attack relative to the fuselage reference 

axis is to use an inertial measurement system. In this instance, the angle of attack relative 

to the fuselage can be found by referencing the inertial flight path angle of the helicopter 

and the attitude of the fuselage (see Figure 3.3). This approach has the advantage of not 

being susceptible to induced effects from the rotor, but requires the use of an inertial 

measurement system. 
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Figure 3.3: Alternate method of measuring fuselage angle of attack using an inertial system. 

3.3 Measurement of αααα1 

The measurement of the tip-path-plane with respect to the reference axis can be found by 

using basic geometry (see Figure 3.4). 

 

Figure 3.4: Main rotor blade flap geometry. 

The tip-path-plane with respect to the reference axis, α1, is calculated from the angles of 

the individual blades, αF and αA, with respect to the reference axis using basic 

trigonometric identities: 

 1

sin sin sin sin
arctan arctan

cos cos cos cos

F A F A

F A F A

R R

R R

α α α α
α

α α α α

− −
= =

+ +
 (3.1) 

Recall the sum-to-product trigonometric identities: 
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Thus 
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Which simplifies to: 

 1
2

F Aα α
α

−
=  (3.5) 

The final tip-path-plane angle, α, is then the sum of the two components, α0 and α1. 

 0 1TPPα α α= +  (3.6) 

Now, the task is to develop a system that can simultaneously capture the flap of the 

blades with respect to the reference axis to determine α1. This was accomplished using 

cameras mounted to the fuselage that optically track the blade tips. The description of this 

system is provided in the next section. 
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Chapter 4: Equipment Setup 

In flight data was recorded using three systems. Each system included a method for time 

synchronization using GPS time. Data recorded by the In-flight Data Recording System 

and the National Instruments Compact Vision System is used to calculate the tip-path-

plane angle relative to the free-stream velocity using the measurement technique 

described in Chapter 3. Data recorded by the Portable Precision Display Guidance 

(PPDG) System is used to verify the tip-path-plane angle using the force balance 

approximation described in Chapter 2. A description of the relevant sensors recorded by 

each system is provided below. 

Table 4.1: Equipment list. 

System Sensor Measurement Error 

Inter-Range 

Instrumentation 

Group (IRIG) 

Decoder 

Time of day. ± 0.05 ms 

Angle of Attack relative to 

reference axis, α0. 

± 0.5° 

In-flight Data 

Recording System 

Space Age Control 

100510 Air Data 

Boom Free-stream velocity. ± 0.5 m/s 

National Instruments 

Compact Vision 

System (CVS) 1450 

Sony XCD-SX910 

Monochrome 

Cameras 

Angle of Tip-Path-Plane 

relative to reference axis, 

α1. 

± 0.1° 

Ashtech Z-Sensor 

GPS receiver 

Time of Day ± 0.05 s 

Velocity ± 0.1 m/s 

Acceleration ± 0.02 m/s
2 

Portable Precision 

Display Guidance 

(PPDG) System Honeywell H-

764GU Embedded 

GPS/INS (EGI) Pitch Attitude ± 0.05° 

 

These three systems are located on an equipment pallet installed in the cabin of a Bell 

206B. This pallet also includes instrumentation for acoustics measurement experiments 

that were being conducted simultaneously with the tip-path-plane measurement. 
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Figure 4.1: Equipment pallet installed inside Bell 206 aircraft. 

With the exception of the tip-path-plane imaging system, all of the sensors and recording 

equipment are commercial off the shelf components. The description of the tip-path-plane 

imaging system is provided below. 

4.1 Longitudinal Tip-Path-Plane Imaging System Hardware 

The longitudinal tip-path-plane imaging system is structured around the National 

Instruments Compact Vision System (CVS) 1450. Each blade revolution, a magnetic 

pick-up sensor (Shimpo model 3030AN) mounted on the main rotor shaft simultaneously 

triggers two Sony XCD-SX910 monochrome cameras – one pointed forward and the 

other pointed aft. A low power laser diode module mounted on each camera projects a 

beam through a concave lens and generates a vertical line in the same direction the 

cameras are pointed. Reflective targets mounted on the blade tips return a portion of this 



 21 

vertical line to the cameras (see Figure 4.2). An interference filter matching the 

wavelength of the laser is installed on the camera to further improve the signal-to-

background ratio. The captured images from both cameras are then passed to the CVS 

computer for image processing and longitudinal tip-path-plane angle calculation. 

 

Figure 4.2: Overview of tip-path-plane imaging system. 

4.1.1 Camera Assembly 

To design the optics for the tip-path-plane tracking system, various light sources and 

optical filters were compared to optimize performance. Mathematical formulas for 

modeling filter transmission and filter performance due to source incidence angles were 

based on the methods presented in the Milles Griot
12

 and CVI Laser
13

 literature. Filter 

data including center wavelength, percent transmission, bandpass, optical density, and 

effective refractive index were provided by vendors including Milles Griot
12

, CVI 

Laser
13

, ThorLabs
14

, Edmund Optics
15

, and Omega Optical
16

. Laser module technical 
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data was provided by ThorLabs
14

, US Lasers
17

, Edmund Optics
15

, and CrystaLaser
18

. 

Solar irradiance was modeled using the ASTM G173 standard for mean solar spectral 

irradiance at 37° latitude
19

. This standard represents the mean terrestrial solar irradiance 

within the continental United States. 

 

Laser wavelength selection was made by considering the spectral response of the camera 

and the spectral makeup of the background light. The spectral response of the Sony 

XCD-SX910 and the ultra-violet light enhanced Sony XCD-SX910UV are shown 

below
20

. Notice that the peak spectral response of both cameras is near 532-nm - a 

common wavelength for solid-state commercial-off-the-shelf laser modules. Also notice 

that both cameras have diminished response in the infrared regions, and, while the XCD-

SX910UV camera has a better response in the ultra-violet region than the XCD-SX910 

model without the ultraviolet enhancement, response is still significantly lower than that 

for visible wavelengths. 
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Figure 4.3: Spectral response of the Sony XCD-SX910 and XCD-SX910UV cameras. 

The second consideration, the spectral makeup of the background, is best understood by 

referencing the mean solar irradiance for the continental United States. As shown in 

Figure 4.4, the wavelengths for the peak spectral response of the cameras coincide near 

the peak irradiance wavelengths for the sun. However, there are “dark” solar regions 

including UV wavelengths below 300-nm and wavelengths in the Visible-Infrared region 

around 760-nm and 950-nm where solar irradiance is quite low. 
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Figure 4.4: Mean solar irradiance for the continental United States. 

Therefore, it is necessary to quantify the theoretical response of various source and 

interference filters by calculating the expected intensity of the source compared to the 

expected intensity of the background as seen by the camera. The source intensity, QSource, 

is found by integrating the product of the source irradiance, qsource(λ), filter response, 

ρf(λ), and camera response, ρc(λ), over all wavelengths. Here ρf(λ) and ρc(λ) range from 

0% to 100% transmission. 

 ( ) ( ) ( )
0

* *Source Source f cQ q dλ ρ λ ρ λ λ
∞

= ∫  (4.1) 

The background intensity, QSun, is found by integrating the product of the solar 

irradiance, qsun(λ), filter response, and camera response over all wavelengths. The 

response functions have the same meaning. 
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 ( ) ( ) ( )
0

* *Sun Sun f cQ q dλ ρ λ ρ λ λ
∞

= ∫  (4.2) 

The ratio of the source-to-sun intensity provides a theoretical metric for how visible the 

laser image would be if the camera were pointed directly at the sun. For example, a ratio 

of 50% would indicate that a pixel illuminated by just the laser would be half as bright as 

a pixel illuminated by the sun. The idea here is to select a source wavelength and an 

appropriate interference filter to make the laser stand out as much as possible when the 

image is acquired. That is, the ratio of source-to-sun intensity should be maximized. 

 

The results of these calculations for several commercial-off-the-shelf laser and filter 

combinations are presented for the XCD-SX910 and XCD-SX910UV cameras in Table 

4.2. The findings of this study suggest that using the green 532-nm laser with a 1.0-nm 

bandwidth is the best candidate. It should also be noted that while the theoretical gains of 

the XCD-SX910UV camera indicate superior performance to the XCD-SX910 camera, 

their expense does not warrant use for visible or near-infrared wavelengths. The purpose 

of considering the ultra-violet camera was to quantify any gains for using a 266-nm 

ultraviolet laser. However, this study indicates that using a wavelength in the “solar 

blind” region yields a theoretical source-to-background ratio below that of the sources 

studied in the visible and near infrared regions. 

Table 4.2: Source to solar irradiance for various optics combinations. 

QSource/QSun λsource 

(nm) 

Bandwidth 

(nm) XCD-SX910 XCD-SX910UV 

532 1 87.37% 104.66% 

532 1.5 85.29% 85.17% 

980 3.7 68.26% 80.79% 

904 3 44.52% 44.79% 

780 3 37.18% 37.39% 
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QSource/QSun λsource 

(nm) 

Bandwidth 

(nm) XCD-SX910 XCD-SX910UV 

532 2 30.89% 37.09% 

650 3 32.83% 32.95% 

635 3 31.81% 31.97% 

532 3 30.05% 30.06% 

904 10 17.28% 17.19% 

266 10 0.81% 15.07% 

980 10 15.04% 15.01% 

850 10 12.94% 12.99% 

808 10 12.55% 12.60% 

780 10 10.92% 10.94% 

660 10 9.46% 9.46% 

650 10 9.33% 9.36% 

640 10 8.92% 8.93% 

532 10 8.46% 8.45% 

 

An exploded view of the final camera assembly is shown in Figure 4.5. Additional 

components not mentioned previously include a circular polarizer to protect the optics 

from debris, a sun shield to shade the optics from reflections off of the fuselage, and a 

CCTV lens for focusing and controlling the amount of light that passes through the 

camera aperture. 

 

Figure 4.5: Exploded view of major components in the camera assembly. 
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The focal length of the concave lens is selected to match the expected range of flapping 

of the blades. If the focal length is too small, the area of the laser projection will be too 

large and the irradiance could be too low for detection. If the focal length is too large, the 

blade may flap outside of the range of the image. 

 

During testing, the observed range of flapping for the Bell 206 fell within the projection 

angle of the concave lens. A histogram of the forward and aft blade positions is provided 

in Figure 4.6 for general flight both on and off steady-state conditions. As illustrated, the 

range of flapping seen by the forward camera is approximately 6.5° and the range of 

flapping seen by the aft camera is approximately 5°. Therefore, to generate the laser 

image, the camera system employed a concave lens with a focal length of 15 mm 

corresponding to an image that spread approximately 7.6° (see Figure 4.7). 

 

Figure 4.6: Statistical distribution of blade flap angles with respect to the reference axis. 
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Figure 4.7: Concave lens optics geometry. 

4.1.2 CVS Interface 

The interface to the CVS-1450 computer is responsible for allocating power to the 

various components, conditioning the output of the one-per-rev sensor, triggering the 

individual cameras, sending synchronization data to the in-flight data recorder, and 

providing a status display for the user.  

 

Figure 4.8: CVS Interface. 
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The first capability of the controller, power allocation, is provided so that the 24 VDC 

supply needed by the CVS-1450 computer and the 3VDC supply needed by the laser 

system can be interrupted at any time. The second capability of the controller, signal 

conditioning, transforms the analog signal from the one-per-rev sensor mounted on the 

main rotor shaft into a digital signal that triggers the embedded pulse generator of the 

CVS-1450 computer. This analog signal is first passed through an amplifier with variable 

gain and then through a bounceless switch. Once received by the CVS-1450, a pulse is 

returned to the controller and is then distributed to the cameras provided the controller is 

set to the recording mode. When the recording mode is selected, a logic signal is sent to 

the in-flight data recorder for post processing time synchronization. When the recording 

mode is deactivated, the logic signal returns to the base state. Lastly, the controller 

receives serial data from the CVS-1450 and passes it to an LCD display. This display 

typically indicates the recording mode, the calculated tip-path-plane angle, and any error 

messages. 



 30 

 

Figure 4.9: CVS interface operation diagram. 

4.1.3 CVS-1450 

The final component of the tip-path-plane imaging system, the CVS-1450, is the central 

processing unit for the system. This system provides a means of communicating with the 

individual cameras, pulse generation, image processing and data storage. All software for 

the CVS-1450 is written in the LabView environment. 
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Figure 4.10: CVS-1450. 

4.2 2006 Tip-Path-Plane Imaging System Software 

The software installed on the CVS computer has two tasks. First, it takes the conditioned 

one-per-rev signal from the CVS controller and triggers the cameras once the blades have 

advanced into the camera field of view. Secondly, it takes the images returned by the 

cameras and attempts to locate the tip targets and calculate the relative angle of the tip-

path-plane with respect to the fuselage. This section addresses each of these two routines. 

4.2.1 Pulse Generation 

The CVS-1450 has five output channels devoted to pulse generation using 

transistor/transistor logic (TTL) that are triggered by the conditioned one-per-rev signal. 

Upon triggering, the CVS-1450 sends a pulse to the cameras through the custom CVS 

interface. The shutters of the cameras remain open as long as the pulse logic remains 

high. Thus, the width of the pulse, tc, is dictated by the angular velocity of the main rotor, 

Ω, rotor radius, R, and blade chord length, ctip. A correction factor, k, is included to 

compensate for lead/lag effects and errors in camera positioning. 
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4.2.2 Blade Tracking Algorithm 

The tip tracking algorithm operates by comparing columns of pixels where the laser is 

known to be located with columns of pixels where the laser is known to be absent. The 

general philosophy of this algorithm is to remove as much of the background from the 

image as possible to isolate the illuminated tip target. This comparative approach also 

easily adapts to varying light conditions and is very inexpensive in terms of resources 

required for computation. 

 

Consider the typical operation depicted in Figure 4.11. Since the camera, laser module, 

and all of the optics are rigidly fixed together, the reflection of the vertically projected 

laser line will always appear in the same column of pixels of the image acquired by the 

camera. This is indicated by the column with the white arrow in Figure 4.11. By the same 

reasoning, the remaining columns of pixel in the image are guaranteed to not contain the 

reflection. Background columns are indicated by the columns with black arrows in Figure 

4.11. If the source column and the background column are reasonably close, they should, 

in theory, contain similar artifacts with the exception of the illuminated tip target. The 

difference of the two should be the isolated tip target.  
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Figure 4.11: Generalized image acquisition scenario. 

In practice, four columns are used for background information – two to the left of the 

laser image and two to the right of the laser image. This is to compensate for stray 

artifacts from ground objects that may only exist in a single column. The mean of the 

grayscale values for each row of these four columns of background data is then 

subtracted from each row of the column that contains the laser image. A typical image is 

presented in Figure 4.12. Note that at the location of the tip target the column containing 

the laser image (Interrogation Line 3) clearly stands out over the background. 
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Figure 4.12: Example of image cross section data. 

Another feature of the algorithm is its ability to adjust the region of interest for 

processing. That is, once the camera has identified the tip target, the algorithm only 

applies the differencing routine to rows of data immediately above and below where the 

target was previously located. This window is reduced only to a limit so that a sudden 

blade movement would not push the target out of the frame. If the target is not located, 

the algorithm executes a searching procedure to attempt to relocate the target. 

 

A series of still images during turning flight is shown in Figure 4.13. The computed 

location of the tip target is indicated by the green circle and the region of interest is 

indicated by the blue box. In the first two frames, the region of interest is already reduced 
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to the limit and the indicator shows that the tip target is identified. As the sun passes 

through the image over the next four frames, the image becomes saturated by light and 

the tip target is lost. During this time, the region of interest expands. In the second-to-last 

image, the sun begins to exit the frame and the tip target is again located. The region of 

interest begins to contract in the final frame. 

 

In each frame of Figure 4.13, the number at the top of the image is the mean grayscale 

value of the region of interest. The approximate incidence angle between the camera and 

the sun is indicated at the bottom of each frame. 

 

Figure 4.13: Tracking algorithm during a turning maneuver. 
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4.3 Equipment Installation 

Figure 4.14 shows the general layout of the external equipment used by the longitudinal 

tip-path-plane measurement system. The air data boom is attached to the step on the port 

landing skid and each camera assembly is attached to the fuselage via maintenance hand 

grips near the engine cowling. The tip-targets used on the main rotor blades are the same 

targets used for track and balance systems, but they have been covered with a piece of 

retro-reflective tape. The inertial measurement system used by the PPDG is located inside 

the cabin. 

 

Figure 4.14: Bell 206 with external equipment installed. 
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Chapter 5: Testing Procedure 

In June 2006, the aforementioned tip-path-plane imaging system was demonstrated at the 

NASA Ames Research Center at Moffet Field, California. In June 2007, a similar test 

was conducted at Gilroy, California. The purpose of these tests was to evaluate the 

performance of the system and verify the first-order relationships mentioned earlier. 

5.1 Calibration 

The following section describes the calibration process for the wind-vane on the air data 

boom and the blade tracking system. 

5.1.1 Air Data Boom Calibration 

The first part of the alpha vane indicator calibration is done by using a vane calibration 

fixture supplied by SpaceAge Control on the ground. With the indicator attached to the 

air data boom, the vane is positioned to various angles and the output voltage of the 

sensor read by the in-flight data recorder. The first part of the calibration process 

determines the linear relationship between the output voltage and the vane angle. This 

data is shown in the figure below. 
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Figure 5.1: Alpha vane ground calibration. 

An additional step is required in calibrating the alpha vane sensor to adjust for in-flight 

conditions. Consider the level flight scenario illustrated in Figure 5.2. In the top frame, 

the boom is infinitely far from the helicopter. In this situation, if the boom is pitched to 

some angle, θ, the angle of attack, α, of the vane with respect to the free-stream velocity 

should match the pitch angle. However, since the air data boom is a finite distance from 

the rotor, the induced velocity of the rotor along with other effects result in an angle of 

attack measurement different from the pitch angle. This error will naturally be a function 

of the airspeed of the helicopter. 



 39 

 

Figure 5.2: Ideal (top) and actual (bottom) alpha vane deflections for identical flight conditions. 

To quantify this error, the aircraft was flown in level flight at various velocities. The 

difference between the angle of attack and the pitching attitude of the helicopter was 

found by comparing the output of the alpha vane indicator to the pitch angle recorded by 

the Portable Precision Display Guidance system. The results of this calibration run are 

provided below. In this plot, the abscissa axis represents the angle-of-attack reported by 

the air data boom and the ordinate axis represents the pitching attitude reported by the 

inertial system. 
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Figure 5.3: Alpha vane angle correction. 

Combining the two calibration procedures yields the relationship between the angle of 

attack relative to the reference axis with the induced effects removed, α0, and the voltage 

output from the alpha vane sensor, V: 

 0 9.135 128.278Vα = −  (5.1) 

In the above expression, the angle is reported in degrees. 

5.1.2 Tip-Path-Plane Imaging System Calibration 

To calibrate the imaging system, the blades were manually placed at known angles 

relative to the reference axis and still images were recorded by the CVS computer. The 

tracking algorithm was applied to these stills to identify the vertical pixel address 

corresponding to the blade tip (see Figure 5.4).  These data are used to provide the 
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individual blade flapping angle as a function of the vertical pixel address. A typical 

relationship is shown in Figure 5.5. 

 

Figure 5.4: Sample still images for blade position calibration. Blade location highlighted. 
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Figure 5.5: Typical example of camera calibration. 

5.2 Flight Maneuvers 

Because the governing equations that are used to quantify the tip-path-plane angle 

assume a steady maneuver, NASA’s Pursuit Precision Display Guidance (PPDG) system 

was installed in the Bell 206 aircraft. This guidance system provided a display with 

piloting cues to maintain a given flight condition (see Figure 5.6). These maneuvers 

included level flight, ascents and descents, accelerations and decelerations, and various 

turns. 
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Figure 5.6: PPDG display mounted in cockpit. 

The following maneuvers were used to validate the performance of the tip-path-plane 

imaging system. 

Table 5.1: Flight maneuvers. 

Run 

Number 

V 

(kts) 

Flight Path 

Angle, γγγγ (deg) 

Run 

Number 

V 

(kts) 

Flight Path 

Angle, γγγγ (deg) 

13/78 60 0 14/97 50 0 

13/79 70 0 14/98 50 0 

13/80 50 0 14/100 60 0 

13/81 60 -3 14/101 60 0 

13/82 60 -6 14/102 70 0 

13/83 60 -7.5 14/103 70 0 

13/85 60 -9 14/104 65 0 

13/86 60 -10.5 14/105 65 0 

13/87 60 -9 14/106 55 0 

13/88 60 -12 14/107 55 0 

13/89 60 -13.5 14/108 45 0 

13/90 60 -15 14/109 45 0 

13/91 70 -3 14/110 40 0 

13/92 70 -6 14/111 40 0 
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Run 

Number 

V 

(kts) 

Flight Path 

Angle, γγγγ (deg) 

Run 

Number 

V 

(kts) 

Flight Path 

Angle, γγγγ (deg) 

13/93 70 -9 14/112 75 0 

 14/113 75 0 

5.3 Data Recording Process 

The various phases of a maneuver are shown in Figure 5.7. The maneuver first starts with 

a basic pattern flight. Upon entering the final leg of the pattern, the pilot, under the 

guidance of the PPDG system, enters a level flight condition identified as the “Setup” 

portion of the flight path. Once the steady state condition has been reached, the pilot 

enters the desired maneuver. This can include any combination of velocities, 

accelerations, flight path angles, and turns. During this phase, the PPDG system provides 

the pilot cues necessary to maintain the flight condition of interest. This section of the 

maneuver, labeled “Recording Region” in the figure, is also the region where data is 

collected from the various systems. At the end of the recording region, the data recording 

devices are deactivated and the pilot reenters the basic flight pattern. 
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Figure 5.7: General layout for flight maneuver. The ground track is shown in red. The region of data 

record is highlighted in yellow. 

5.4 Data Synchronization 

Since each of the three primary systems (In-flight Data Recording System, Compact 

Vision System, and Portable Precision Display Guidance) each had their own clocks, 

attention should also be drawn to the process used to synchronize the data. The In-flight 

and PPDG system both included instruments that could record time from global 

positioning systems. Therefore, each data record contained a universal time stamp 

accurate to the sampling rate of the system – 50 µs for the in-flight data recorder and 1 

ms for the PPDG system. 

 

However, the CVS system did not include a clock. Instead, when the data was logged 

using the CVS system, a logic signal was sent to one of the channels of the in-flight data 

recorder. At the end of the maneuver, the CVS system was switched to a stand-by mode 
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and a second logic signal was sent to the in-flight data recorder. Once the CVS system 

had entered the stand-by state, the recording process for the other two systems was 

terminated. Since the in-flight system recorded the output of the one-per-rev sensor and 

the CVS processed an image each revolution, once the one-per-rev markers on the in-

flight data were matched with the global positioning system time, the tip-path-plane 

imaging system data could also be synchronized. 
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Chapter 6: Results 

The following section describes the results collected from the California flight tests on 

the Bell 206B. 

6.1 Data Reduction Strategy 

As mentioned previously, the first step in the data reduction process was to synchronize 

all of the data records using the onboard global positioning system clocks and the one-

per-rev signal from the magnetic pick-up. However, each instrument suite recorded data 

at different sample rates. For instance, the in-flight data recording system typically 

recorded at 20 kHz, the PPDG at 1 kHz, and the CVS system once per revolution – or 

approximately 6.5 Hz. 

 

To map all of the data to a common time scale, the data was first passed through a 1 Hz 

averaging window to remove all high frequency noise in the data. Though the 

assumptions made in the preceding derivations assume a steady-state flight condition, 

small transients in the flight condition were unavoidable and the averaging window 

removed many of the unsteady effects. Once smoothed, data is linearly interpolated to the 

time scale for the tip-path-plane imaging system. Therefore, the sensor histories recorded 

by the in-flight system (alpha-vane angle of attack and free-stream velocity) are accurate 

to ±50µs and the sensor histories recorded by the PPDG system (inertial velocity, inertial 

acceleration, and pitch angle) are accurate to ±1 ms. 
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6.2 Data 

Once synchronized and mapped to a common time scale, the data could be evaluated. The 

answers to two fundamental questions are answered in this section: 

1. Was the measurement strategy for tracking the tip-path-plane angle defined in 

Chapter 3 effective? 

2. Did the data support the first order principles derived in Chapter 2? 

The angle of the reference axis with respect to the free-stream velocity as measured by 

the alpha vane on the air data boom, α0, and the angle of the tip-path-plane with respect 

to the reference axis as measured by the imaging system, α1, for various flight conditions 

are shown in Figure 6.1. The abscissa axis in this plot is the theoretical tip-path-plane 

angle based on the drag-to-weight ratio, flight path angle, and acceleration and the 

ordinate axis is the measured value for each of the two measurement devices.  

 

Figure 6.1: Measurements of αααα0 and αααα1. 
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Two major observations can be made from Figure 6.1. First, the range of angle deflection 

of the blade relative to the reference axis (~3°) was small compared to the range of the 

free-stream velocity with respect to the same axis (~20°). Second, the standard deviation 

for the angle measured by the camera (0.21°) was also smaller than the standard deviation 

of the wind-vane measured data (1.04°). These variations are likely the result of real-

world flight testing where the attitude of the aircraft cannot be maintained perfectly due 

to turbulence and inevitable pilot adjustments. A typical example of this variation is 

shown in Figure 6.2. Notice that during the maneuver, aircraft pitch fluctuations 

coincided with variations in the respective α0 and α1 measurements even though the 

drag-to-weight ratio, flight path angle, and acceleration were held constant. 

 

Figure 6.2: Variation in instrument measurements for a typical maneuver. 
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The measured tip-path-plane angle with respect to the free stream velocity is plotted 

against the theoretical tip-path-plane angle in Figure 6.3. When a trend line is fit to the 

data, the slope of the trend matches theory, but a 2.5° offset is present. This offset is most 

likely the result of a discrepancy between the reference axis used in the tip-path-plane 

imaging system and the reference axis used by the inertial measurement system and error 

in quantifying the equivalent flat-plate that appears in the drag-to-weight ratio term. 

Overall, the standard deviation of the combined data is 1.06°. 

 

It should be noted that during testing, the helicopter was fitted with a spray-rig that had 

been modified to accommodate microphones for acoustic testing purposes. This rig added 

a substantial amount of drag to the vehicle and had a large influence on the equivalent flat 

plate area. Furthermore, the equivalent flat plate area was assumed constant regardless of 

helicopter attitude. This assumption made accurate drag-to-weight ratio estimates 

difficult to obtain. 
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Figure 6.3: Measured tip-path-plane angle versus theoretical tip-path-plane angle. 

Next, the recorded data was used to verify the first-order principles that were derived in 

Chapter 2 – that the tip-path-plane angle is a function of the drag-to-weight ratio, flight 

path angle, and acceleration: 

 
1f

TPP

D dV

W g dt
α γ

 
≈ − + + 

 
 (2.30) 

Consider the drag-to-weight ratio term. Since the fuselage drag is proportional to the 

square of the velocity, if the flight-path angle and acceleration are fixed, the tip-path-

plane angle should decrease with the square of the free-stream velocity. This trend is 

visible in Figure 6.4 for steady level flight. Again, the scattering is due to variations in 

the flight condition and uncertainties in the equivalent flat plate area. 
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Figure 6.4: Tip-path-plane angle vs. velocity. 

The theoretical relationship between the measured tip-path-plane angle and the velocity is 

also plotted in Figure 6.4. If the flight path angle and acceleration are zero, the theoretical 

coefficient in front of the velocity squared term should be -0.0008 deg/knots
2
. Indeed, the 

magnitude of the coefficient for the trend line matches the theoretical value. However, 

the constant 1.5° offset is the result of the discrepancy between the reference axis used by 

the tip-path-plane imaging system and the inertial measurement system. 

 

Next consider the flight-path angle term. From the fundamental equation, if the velocity 

and acceleration are fixed, the measured tip-path-plane angle should decrease linearly 

with increasing flight-path angles. The relationship for steady level flight at 65 knots is 

provided in Figure 6.5. along with the theoretical tip-path-plane angle. Note that the slope 

of the trend line fit to the data agrees well with theory. The offset is due to the previously 

mentioned measurement errors. 
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Figure 6.5: Tip-path-plane angle vs. flight path angle. 

Lastly, the final term suggests that for a fixed flight path angle and velocity, the tip-path-

plane angle should decrease linearly with increasing acceleration. A level-flight 

deceleration cases with an initial velocity of 60 knots is plotted in Figure 6.4 along with 

the theoretical tip-path-plane angle. Trend lines fit to the data verify the linear 

relationship between the acceleration and the measured tip-path-plane angle but due to 

the difficult nature of marinating a constant acceleration during flight, the slope of the 

trend line does not perfectly match the theoretical curve. Again, the offset is due to the 

error in estimating the equivalent flat plate area and bias between the instrumentation 

reference axes. 
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Figure 6.6: Measured tip-path-plane angle vs. acceleration. 

6.3 Error Analysis 

There were two primary sources of error in this evaluation. The first, measurement error, 

limited the overall accuracy of the imaging system to correctly track the tip-path-plane. 

The second, the pilot’s ability to maintain the flight condition, was essential to ensuring 

the steady state assumption. These two sources of error are further examined below. 

6.3.1 Measurement Error 

Measurement errors for the commercial-off-the-shelf systems were described in Chapter 

4. However, since the system that measured the tip-path-plane relative to the reference 

axis was a custom system, the measurement error is a function of the optics, the tracking 

algorithm, and the calibration technique. 
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Each camera has a resolution of 1280 pixels in the plane parallel to the laser image 

projection. The field of view along this plane is 29.9° based on the camera 

specifications
20

. Therefore, the location of an object in a pixel bin is accurate to within 

0.0239° if addressed in the middle bins (address 640 or 641) reducing to within 0.0224° if 

addressed in one of the extreme bins (address 1 or 1280). 

 

Figure 6.7: Camera measurement error. 

The next source of measurement error deals with a trigonometric approximation used in 

the tracking algorithm. To free computational resources, the algorithm assumes a linear 

correlation between the pixel address and the blade angle relative to the camera. Figure 

6.8 illustrates the error of this approximation as the tip target shifts from the center of the 

image. At the extreme regions, this error could be as much as 0.17°. However, in practice 

the range of the blade motion was quite limited and the error tended to stay within 0.01°. 
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Figure 6.8: Trigonometric approximation error. 

The final source of measurement error resulted from the calibration process. When 

calibrating, the blade position angle was measured using an inclinometer with an 

accuracy of ±0.1°. This constituted the largest source of measurement error. 

 

When all three sources are combined, the blade measurement error was typically within 

±0.133°, or ±0.417” on the Bell 206B helicopter. Much of this error could be removed by 

using alternative calibration procedures. 

6.3.2 Sensitivity to Flight Condition 

As mentioned previously in Section 6.2, the scattering is most likely attributed to 

variations in flight condition. To assess this hypothesis, a section of data was isolated 

where the pilot maintained a nearly perfect condition. The measurements, shown in 
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Figure 6.9, show that if the pilot held velocity, flight path angle, and acceleration 

constant, then the theoretical tip-path-plane angle varied very little. For the same flight 

condition, the measurements made by the camera system and wind vane also varied little 

and the measured tip-path-plane matched the same behavior as the predicted value. 

Notice that the offset mentioned previously between the predicted and measured tip-path-

plane angle is still present. 

 

Figure 6.9: Predicted tip-path-plane angle (top) and measured tip-path-plane angle (bottom) for a 

truly steady state maneuver. 
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Chapter 7: Summary and Conclusions 

This research documents the development of a longitudinal tip-path-plane imaging 

system that can be used for the purpose of monitoring the inflow state of a helicopter in 

flight. 

7.1 Conclusions 

• An optics-based longitudinal tip-path-plane tracking system was successfully 

demonstrated in flight on a Bell 206B helicopter. Such a system can ideally be 

used to monitor the inflow state of the helicopter and predict the intensity of the 

blade-vortex interaction noise. 

o Using commercial-off-the-shelf components, a camera system was 

developed that takes simultaneous images of the rotor blades each 

revolution. Unlike systems used for tracking and balancing, this system 

reports the longitudinal angle of the tip-path-plane relative to a fuselage 

reference axis. Furthermore, this system requires no major alterations to 

the rotor blades – just the addition reflective tip targets similar to those 

used for track and balancing applications. The overall accuracy of the 

tracking system is ±0.13° - largely limited by the instrument used during 

the calibration process. The standard deviation of measurements with this 

system is within 0.21°. 

o A unique differencing algorithm is used to process the images and 

localize the blade tips. Though the optics were selected to maximize the 

intensity of the illuminated tip target over the background ambient light, 
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there are instances when artifacts in the background are brighter than the 

target. To remedy this, a differencing algorithm was developed that 

interrogates regions where the tip target must be illuminated and compares 

the image to regions where the tip target cannot be illuminated. The result 

is a system that can localize the illuminated tip target under a variety of 

ambient light conditions provided that the image has not been saturated by 

sunlight (i.e. when the incidence angle between the camera and the sun is 

typically less than  7°). 

o An air data boom was also integrated to track the longitudinal 

component of the angle of attack between the free-stream velocity and 

the reference axis used by the camera system. Though this component 

proved highly susceptible to variations in flight condition, but when the 

pilot maintained a steady state condition with little variation in airspeed, 

flight path angle, or acceleration, the angle of attack measurement 

similarly remained steady. This variation could be mitigated by using an 

inertial measurement system to obtain the free-stream velocity angle. 

• The Q-SAM theory was validated for longitudinal flight maneuvers. When 

flight path angle and acceleration were held constant, the longitudinal tip-path-

plane angle varied with the square of the airspeed of the helicopter. When 

airspeed and acceleration were held constant, the longitudinal tip-path-plane angle 

varied linearly with the flight path angle. And when the airspeed and flight path 

angle were held constant, the longitudinal tip-path-plane angle varied linearly 
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with the acceleration. These relations were in agreement with the model derived 

by solving the longitudinal force balance along the wind axis. 

7.2 Future Work 

Though the longitudinal tip-path-plane imaging system proved highly successful, many 

areas can be addressed for future improvement. 

• Calibration procedures need to be improved. Though the accuracy of the 

camera measurement is within 0.13°, 0.10° of that is due to the calibration 

technique which employs an inclinometer. To mitigate this, blade position should 

be calibrated using an alternate measurement technique. For instance, the altitude 

of the blade tips could be measured using range finders. 

• Improved measurement of equivalent flat plate area. Errors in the estimation 

of the equivalent flat plate area yield a bias in the drag-to-weight ratio term of the 

theoretical longitudinal tip-path-plane angle. There are two ways to address the 

issue. First, additional techniques such as CFD or wind-tunnel testing could be 

used to obtain better estimates of the equivalent flat plate area based on the 

attitude of the helicopter. Secondly, the derived force balance theory could be 

used in conjunction with the measurements made by the tip-path-plane imaging 

system to back out the equivalent flat plate area for steady state maneuvers in no-

wind conditions. Either would effectively remove the bias between the theoretical 

and the measured longitudinal tip-path-plane angle witnessed in the results 

section. 

• Expansion to track the full tip-path-plane. The current system only monitors 

the longitudinal component of the tip-path-plane and would not provide any 
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insight to the inflow state of the helicopter during lateral maneuvers. However, by 

installing an additional camera, the entire plane of the rotor could be tracked. It 

would also be advantageous to install a four-camera system. That way, even if 

one of the cameras is pointed directly at the sun and is unable to track the blade 

tips, the tip-path-plane could still be tracked from the remaining three cameras via 

a voting process. 

• Correlation of measured data with acoustic measurements. The 2006 flight 

test that evaluated the tip-path-plane imaging system also recorded the acoustic 

signature of the aircraft during the flown maneuvers. Thus, it would be 

advantageous to correlate the measured tip-path-plane angle with the intensity of 

the blade-vortex interaction noise. This is important to validate the relationships 

between the tip-path-plane angle, inflow, and BVI radiation. Additional testing 

should also be performed in smooth, moderate, and rough air to see how the 

radiated noise correlates with inflow in flight conditions that are not ideal. 

• Incorporation into real-time displays and BVI noise indicator. Since the blade 

tracking is performed in real time, it would be advantageous to install a real time 

display that presents the information to the pilot. By calculating the inflow state of 

the helicopter based on the principles of momentum theory, the pilot could be 

warned when they are flying a maneuver known to produce large levels of BVI 

noise. This display could also suggest alternate flight maneuvers to avoid zero-

inflow conditions where BVI is most intense. 
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