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Optical Parametric Amplifiers (OPA) have been of wide interest for the past decades

due to their potential for low noise amplification and generation of squeezed light. How-

ever, the existing OPAs for fiber applications are based on Kerr effect and require from

few centimeters to kilometers of fiber for significant gain.

In this thesis, I review the principles of phase sensitive amplification and derive the

expression for gain of a lossless Kerr medium based nonlinear Mach-Zehnder Interferom-

eter (NMZI OPA) using a classical physics model . Using quantum optics, I calculate the

noise of a lossless Kerr medium based OPA and show that the noise figure can be close to

zero.

Since in real life a Kerr medium is lossy, using quantum electrodynamics, I derive

equations for the evolution of a wave propagating in a lossy Kerr medium such as an op-

tical fiber. I integrate these equations in order to obtain the parametric gain, the noise and

the noise figure. I demonstrate that the noise figure has a simple expression as a function

of loss coefficient and length of the Kerr medium and that the previously published results



by a another research group are incorrect. I also develop a simple expression for the noise

figure for high gain parametric amplifiers with distributed loss or gain.

In order to enable construction of compact parametric amplifiers I consider using

different nonlinear media, in particular a Saturable Absorber (SA) and a Semiconductor

Optical Amplifier (SOA). Using published results on the noise from SOA I conclude that

that such device would be prohibitively noisy. Therefore, Iperform a detailed analysis of

noise properties of a SA based parametric amplifier. Using a quantum mechanical model

of an atomic 3 level system and the Heisenberg’s equations, Ianalyze the evolution in time

of a single mode coherent optical wave interacting with a saturable absorber. I solve the

simultaneous differential equations and find the expression for the noise figure of the SA

based NMZI OPA. The results show that noise figure is still undesirably high. The source

of the noise is identified. A new approach for low noise parametric amplifier operating

with short pulses is proposed.
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†
outδÊout
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G.3 Calculating〈ŷ(T )ŷ(T )〉 . . . . . . . . . . . . . . . . . . . . . . . . . . 168

Bibliography 172

vii



List of Tables

5.1 Different fiber that could be used in a Kerr based NMZI based OPA and
their optimum length and their maximum gain. . . . . . . . . . . . . .. 75

viii



List of Figures

1.1 Balanced Homodyne Receiver . . . . . . . . . . . . . . . . . . . . . . . 5

1.2 Beam Splitter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3 Schematic Diagram Linear Mach-Zehnder Interferometer: MZI in linear
regime, with proper phase adjustment does not mix the signaland the pump. 9

1.4 Nonlinear Interferometer. It is important to note thatΦ is complex . . . . 11

1.5 Example of Attenuator: Beam coupler. Additional noise from a reservoir
channel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.6 Schematic of an ideal receiver . . . . . . . . . . . . . . . . . . . . . .. 23

1.7 Noise Figure in dB as a function of attenuation . . . . . . . . .. . . . . 26

1.8 Noise Figure in dB as a function of gain (equation (1.67)). . . . . . . . . 27

1.9 Schematic of NMZI OPA. Appropriate operators as detailed in the text
are shown. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.1 Plots of gain as a function of input phase difference for 1km of Kerr
medium withγ = 10 and pump power of 1 W . . . . . . . . . . . . . . . 40

2.2 Schematic of a Sagnac . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.1 Representation of the electric-field properties of the coherent before and
after parametric amplification . . . . . . . . . . . . . . . . . . . . . . . .46

4.1 Plots of NF vs loss for a Lossy Kerr medium based NMZI-OPA .. . . . 68

4.2 Plots of NFNPS vs Length for a Lossy Kerr medium based NMZI-OPA as
a comparison to Imajuku’set al. figure 6 [8] . . . . . . . . . . . . . . . . 70

4.3 Plots of NFNPS vs Loss for a Lossy Kerr medium based NMZI-OPA as a
comparison to Imajuku’set al. . . . . . . . . . . . . . . . . . . . . . . . 71

4.4 Plots of NFNPS vs Gain for Kerr Medium with gain based NMZI-OPA . . 72

5.1 Plot of gain versus length for a HNLF (γ = 15.8)/km/W,β = −0.7dB/km
) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

ix



6.1 Minimum and maximum parametric gain vsp/Psat for a SA based NMZI
OPA withαH = 25, β0L = 4. . . . . . . . . . . . . . . . . . . . . . . . 85

6.2 Minimum and maximum parametric gain vs.p/Psat for a SOA based
NMZI OPA with αH = 5, β0L = −4. . . . . . . . . . . . . . . . . . . . 86

6.3 Parametric gain in dB vsΩ in 1/τ for a SA based NMZI OPA with
p/Psat = 25, αH = 5andβ0L = 4. . . . . . . . . . . . . . . . . . . . . . 90

7.1 Single Mode Quantum Mechanical Model . . . . . . . . . . . . . . . .. 92

7.2 3 Level System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

8.1 Illustration of spectrum of̂Fβ(t) relative to the spectrum of̂B(t). F̃β(Ω)

is the he Fourier Transform of̂Fβ(t) andB̃(Ω) is the Fourier transform
of B̂(t). The spectrum of̂Fβ(t) looks flat relative to the spectrum of̂B(t) 111

8.2 Noise Figure as a function of n(0) forαH = 5, β0 = 2 andnsat = 1 . . . . 117

8.3 Parametric gain (blue) and noise figure (red) as a function of n(0) for
αH = 25, β0 = 2 andnsat = 1 . . . . . . . . . . . . . . . . . . . . . . . 118

9.1 Parametric gain (blue) and noise figure (red) as a function of n(0) for
αH = 25, β0 = 2 andnsat = 1 . . . . . . . . . . . . . . . . . . . . . . . 121

x



List of Abbreviations

α alpha
β beta

NF Noise Figure
SA Saturable Absorber
SOA Semiconductor Optical Amplifier
MZI Mach-Zehnder Interferometer
NMZI Nonlinear Mach-Zehnder Interferometer
OSNR Optical Signal to Noise Ratio
SNR (Electrical) Signal to Noise Ratio
OPA Optical Parametric Amplifier
PNF Photon Number Squared
FAS Field Amplitude Squared
QFS Quadrature Field Squared

xi



Chapter 1

Introduction

1.1 Overview

Optical communication plays an important role in the information age we are in.

One fiber optic link allows us to reliably send data over thousands of kilometers at very

high bandwidth (hundreds of Gb/s). At this time, no other medium can do better. As we

are pushing the fiber optic bit rate closer to its channel capacity, it is important to keep

the noise generated by the fiber optic devices and the medium low. One of the devices

that produces the most noise is the optical amplifier [1]. In chapter one, after a brief

introduction to quantum mechanics, I give two established definitions of the Signal to

Noise Ratio (SNR), a measure of the quality of a signal, and show why those definitions

are not best suited for our problem. I introduce a new definition of the SNR which will

be more appropriate. I show that any phase insensitive optical amplifier, such as the

commonly used EDFA, degrades Signal to Noise Ratio (SNR) by at least 3 dB. This is

particularly important at the optical receiver when the input signals are very weak. There

exists a class of amplifier, which is phase sensitive, that does not degrade SNR. The

goal of this thesis is to provide a correct quantum mechanical analysis of phase sensitive

amplifiers, which include lossy elements. Phase sensitive amplifiers operate on a principle

very similar to balanced homodyne detector, which will alsobe briefly discussed in the

introduction.

1



In chapter 2, I discuss in detail a well known phase sensitiveamplifier: The lossless

Kerr medium based Nonlinear Mach-Zehnder Interferometer Optical Parametric Ampli-

fier (NMZI-OPA). There are numerous publications which demonstrate the feasibility and

applications of this device, which uses nonlinear fiber as the Kerr medium [4, 5, 6, 7, 8,

15, 16]. Phase sensitive gain of this device is calculated using a simple classical model.

In chapter 3, I use a quantum mechanical model to calculate the noise properties of

a lossless NMZI OPA and I show that it does not degrade SNR. A possible definition of

the Noise Figure (NF) of an amplifier is the ratio of its input to its output SNR. With this

definition, the noise figure is zero (0) dB for this ideal NMZI OPA. Unfortunately, there

is always loss in a real Kerr medium, which results in a highernoise figure.

This problem was analyzed in detail by Imajukuet al. [8]. However, I found that some

of their results are incorrect. In order to bracket the noisefigure for a lossy NMZI OPA, I

consider the effect of lumped loss in front of the Kerr mediumand after the Kerr Medium.

The true answer for parametric amplifier with distributed loss must fall within those limits.

These results, unlike other results which will be discussedlater, agree with the calcula-

tions of Imajukuet al.. In general, calculation of noise for this type of device is tedious[8].

Therefore, I derived a general simple expression for noise figure for an OPA in the limit

of large parametric gain, which drastically reduces the complexity of the calculations.

In chapter 4, I calculate the noise figure of a NMZI-OPA with uniformly distributed

loss in the medium. This problem was also addressed by Imajuku et al. However, they

made some wrong assumptions and performed unexplainable mathematical steps, which

produced results which I believe to be incorrect. My approach gives a simple and elegant

expression for noise figure. I also derive the noise figure fora NMZI-OPA with distributed

2



laser gain instead of loss. I show that even small amount of gain produces 3dB increase

in noise figure. In chapter 5, I discuss the implication of thequantum mechanical and the

classical noises in the NMZI-OPA. I also find the optimum length of an optic fiber used

as a Kerr medium based on its nonlinear property and its loss coefficient.

In order to be able to build a compact OPA, another nonlinear medium besides

optical fiber is required. There has been extensive researchin optical signal processing,

which utilized nonlinear optical properties of semiconductors amplifiers and saturable

absorbers (TOAD, wavelength converter, fast optical switch, fast pulse generator ....[9,

10, 11, 12, 13]) . These media are very attractive because of the nonlinearities are very

high and the devices are compact. In chapter 6, I use a classical model to show that

phase sensitive amplification can be achieved with semiconductor optical amplifiers and

saturable absorbers. Recently, there has been some interest in this class of devices [17].

Based on the result in chapter 4, I conclude that an OPA based on SOAs will produce

unacceptable noise figure. The calculation of noise figure for an OPA with saturable

absorber is non-trivial. Chapter 6 and 7 are dedicated to this problem. In chapter 7, I use

full quantum mechanical model to derive basic differentialequations for light interaction

with saturable absorber. In chapter 8, I solve these equations and evaluate the noise figure

for this type of parametric amplifier based on saturable absorber.

In chapter 9, I discuss practical implication of results obtained in the previous chap-

ter.

3



1.2 The Balanced Homodyne Receiver

The balanced homodyne receiver model has some common characteristics with an

optical parametric amplifier. They both have gain sensitiveamplification. Therefore, the

analysis of an balanced homodyne receiver can give some insight into phase sensitive

amplification. Homodyne receivers use interference of a weak signal with a strong local

oscillator of the same frequency and with proper phase to produce gain in the receiver

[14]. They are the best available receiver for coherent optical signals [3]. However, the

local oscillator introduces its own noise, which can be comparable to or greater than the

incoming signal [48]. The balanced homodyne receiver overcomes the problem of part

of the local oscillator noise, namely its Relative Intensity Noise (RIN), but not its phase

noise as we will see in equation (1.8). It works as follows. The message signal and

the local oscillator are split in two and mixed using semi-transparent mirror, as shown in

figure 1.1. The two signals must have perfect spatial mode overlap, must have the same

polarization state and must have the same carrier frequency. The two optical signal are

then detected, turned into an electrical signal and subtracted. These operations produce a

larger electrical signal than direct detection and cancel RIN from the oscillator. In order

to explain the operations of a balance homodyne detector andlater the NMZI OPA, the

analysis of the optical beam splitter is looked at.

1.2.1 The Lossless Optical Beam Splitter

The optical beam splitter is shown in figure 1.2. It has two inputs, waves with

complex amplitude (E1 andE2), and two outputs (E3 andE4) as shown in the figure.

4



Figure 1.1: Balanced Homodyne Receiver

There is a linear relationship between the input fields and the output fields which are

summarized by equation 1.1 and 1.2

E3 = r31E1 + t32E2 (1.1)

and

E4 = t41E1 + r42E2 (1.2)

whererx and tx are respectively complex reflection and transmission coefficient. The

above relations can be written in matrix format:








E3

E4









=









r31 t32

t41 r42

















E1

E2









. (1.3)
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Figure 1.2: Beam Splitter

In order to satisfy conservation of energy and the phase requirement, we can choose a

convention where for a 50/50 splitter the matrix is [53]

1√
2









i 1

1 i









. (1.4)

It is important to note that this solution is not unique. For example, the following matrix

could have been chosen

1√
2









−i 1

1 −i









. (1.5)

6



1.2.2 Classical Analysis of the Balanced Homodyne Detector

If ELO andEs are respectively the complex amplitudes of the electric field of the

local oscillator and the signal, at the detectors the amplitude of the electric fields are

E1 =
1√
2

(iELO + Es) (1.6)

and

E2 =
1√
2

(ELO + iEs) (1.7)

The currents of the two detectors are subtracted, the net output current is

I = q
η

~ω0

(

|E1|2 − |E2|2
)

= iq
η

~ω0
(ELOE

∗
s − E∗

LOEs)

= 2q
η

~ω0
|ELO||Es| sin (φ+ δφ) ,

(1.8)

whereη is the quantum efficiency,q is the electric charge,φ is the average phase of the

complex numberE∗
LOEs, δφ is the phase fluctuation of the complex numberE∗

LOEs and

ω0 it the optical frequency. We can see that the currents due to the local oscillator cancel,

and therefore, their amplitude fluctuations, their RIN, do not appear in the current output.

We can also see that there is a power gain compared to direct detection of the signal,

which is

G ≡ |I|2
|q η

~ω0
Es|2

= 4|ELO|2 sin2 (φ+ δφ) .

(1.9)

The gain is phase sensitive; it is dependent upon the relative phase between the local

oscillator and the signal. However, it is also dependent on phase noise, which leads to

RIN noise in the output. I will calculate the noise of the detected signal later in this

chapter.
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1.3 The Linear MZI

The Mach Zehnder Interferometer (MZI) is a commonly used component in many

optical devices [18, 19, 20, 21]. It is often used as a building block of more complex opti-

cal devices and functionalities such as optical filters, wavelength demultiplexers, channel

interleavers, intensity modulators, switches and opticalgates [23]. A schematic diagram

of typical MZI based on guided waves in shown on figure 1.3. It consist of two 50:50

optical couplers, which are analogous to beam splitters discussed in the previous section.

The two outputs of the first coupler become inputs to the second one. It is assumed that

the two outputs of the first coupler travel through similar medium, with same length be-

fore arriving at the second coupler. It is straightforward to perform classical calculations

of the transmission of signal through this interferometer [24]. The input of one arm of the

first coupler is a signal described by its complex electric field amplitudeEs. The input to

the second arm isEp, which is the field of the local oscillator, which I will also call the

pump field.

After the first beam coupler, I have

Eout12 =
1√
2

(Ep + iEs) (1.10)

at the output of the first arm and

Eout22 =
1√
2

(Es + iEp) (1.11)

at the output of the second.

The signals go directly to the second coupler with equal delays and amplitude. I
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Figure 1.3: Schematic Diagram Linear Mach-Zehnder Interferometer: MZI
in linear regime, with proper phase adjustment does not mix the signal and
the pump.

obtain at the output of one the arm of the MZI

Eout1 =
1√
2

(Eout22 + iEout12)

=
1√
2

(

1√
2

(Es + iEp) + i
1√
2

(Ep + iEs)

)

=
1

2
Es −

1

2
Es +

i

2
Ep +

i

2
Ep.

= iEp

(1.12)
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Similarly, at the output of the second arm

Eout2 =
1√
2

(Eout12 + iEout22)

=
1√
2

(

1√
2

(Ep + iEs) + i
1√
2

(Es + iEp)

)

=
1

2
Ep −

1

2
Ep +

i

2
Es +

i

2
Es

= iEs

(1.13)

Therefore, it can be seen from the balanced MZI that the two signals’ amplitude and their

phase difference are preserved.

1.4 The Nonlinear MZI Optical Parametric Amplifier

In a NMZI, a nonlinear medium is placed between the two optical couplers as shown

in figure 1.4. It is assumed that the nonlinear media have similar properties and the same

length. In general, because of interference between the signal and the pump, similar to

the balanced homodyne detector, the total intensity is different in the upper and lower

arm. In a nonlinear medium, this results in different attenuations, gains and/or phase

shift of propagating waves. Unbalancing of MZI redirects some pump power into the

signal output port, resulting in effective amplification ofthe signal. This is a conventional

implementation of the OPA [25].

In this thesis, I will first consider a nonlinear optical Kerreffect medium, which

produces a phase shift as the function of power intensity in the medium. I will also con-

sider a saturable absorber (SA) as a nonlinear medium in which there is a phase shift and

amplitude variation of the field as a function of the intensity. The average properties at the

output can be calculated either classically or using a quantum mechanical model. How-
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Figure 1.4: Nonlinear Interferometer. It is important to note thatΦ is complex

ever, noise properties must be calculated correctly using quantum mechanics. Calculating

the noise properties is the main objective of this thesis.

1.5 Brief Introduction to Quantum Mechanics

In quantum mechanics, for any system, there is a state vector|v〉, containing every-

thing there is to know about that system at a given instant [26]. Any physical quantity

is described by an operator̂O, which is Hermitian if the physical quantity is observ-

able. The average value (the expected value) of the physicalquantity can be calculated
〈

v
∣

∣

∣
Ô

∣

∣

∣
v
〉

= O for the system represented by|v〉. If the physical quantity is observable

thenO is real. We are interested in time evolution of physical quantities. There are two
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approaches for calculation of time evolution of physical quantities. In the Schrödinger

picture, the time evolution of a state vector is given by the Schrödinger s equation [56]

i~
d|v(t)〉

dt
= Ĥ|v(t)〉 (1.14)

whereĤ is the Hamiltonian of the system, which is the energy operator. The average of

a physical quantity is

O(t) =
〈

v(t)
∣

∣

∣
Ô

∣

∣

∣
v(t)

〉

. (1.15)

and Ô can be considered constant as a function of time. In Heisenberg picture, state

vectors remain constant in time and the operators evolve according to the Heisenberg

equation [27]

dÔ(t)

dt
=

1

i~

[

Ô(t), Ĥ
]

. (1.16)

The average of a physical quantity is

O(t) =
〈

v
∣

∣

∣
Ô(t)

∣

∣

∣
v
〉

. (1.17)

There is also the interaction picture, which is a combination of the Schrödinger and the

Heisenberg picture. In this thesis, I exclusively work in Heisenberg picture because the

equations for operators are analogous to classical system [28] and I avoid complications

associated with entangled states present in the Schrödinger picture and hidden in the

Heisenberg picture[29].

The variance of a physical quantity can be also be calculated. It is

(∆O)2 =
〈

v
∣

∣

∣
Ô2
∣

∣

∣
v
〉

−
(〈

v
∣

∣

∣
Ô

∣

∣

∣
v
〉)2

. (1.18)

Using the definition of the variance above, the uncertainty involved in the simultaneous

12



measurement of two observable can be calculate using the Heisenberg uncertainty princi-

ple, which states [30]

∆A∆B ≥ 1

4

∣

∣

∣

〈[

Â, B̂
]〉∣

∣

∣
, (1.19)

where
[

Â, B̂
]

is the commutator of̂A andB̂ and is defined
[

Â, B̂
]

= ÂB̂− B̂Â. In the

following sections (1.5.1-1.5.4) are some examples of operator and states I will be using.

1.5.1 Single Mode Field Operators

I will closely follow the formalism of Loudon [31]. Since thethesis is mainly

dealing with electric field propagation, it is important to look at the quantum mechani-

cal operator that describes it. Consider an electromagnetic field that has excited a single

travelling-wave mode along thez direction with wavevectork . The electric field is ex-

pressed as follows

Ẽ = −∂Ã
∂t
, (1.20)

whereÃ is the vector potential. In the Heisenberg picture, the scalar electric field operator

for a given linear polarization is written

Ê(χ) = Ê+(χ) + Ê−(χ)

=

√

~ω

2ǫ0V

[

Âe−iχ + Â†eiχ
]

,

(1.21)

where the positive and negative frequency of the field operator correspond respectively to

the two terms of the right hand side andV is the volume of the cavity in which the electric

field is contained.̂A is the destruction or the annihilation operator andÂ† is the raising

operator. They are the coefficient of the amplitude of the vector potential.χ is defined as
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follows

χ = ωt− kz − π

2
. (1.22)

It is convenient to remove the square root factor from equation (1.21). Therefore, by

convention the electric field is measured in units of2
√

~ω
2ǫ0V

. The operator reduces to

Ê(χ) =
1

2
Âe−iχ +

1

2
Â†eiχ

= X̂ cos(χ) + Ŷ sin(χ),

(1.23)

whereX̂ andŶ are quadrature operators and are defined as follows

X̂ =
Â + Â†

2
(1.24)

and

Ŷ =
Â− Â†

2i
. (1.25)

1.5.2 Number State

The photon number states or Fock state are the eigenstates ofthe quantum theory

of light. They form a complete set for the states of a single mode. They are denoted|n〉

wheren is the number of photon. The action of the destruction operator on the number

state is as follows

Â|n〉 = n|n− 1〉 (1.26)

and the of the creation operator is

Â†|n〉 = (n+ 1)|n+ 1〉. (1.27)

14



From this and using equation (1.23) I can calculate the average value of the electric field

in a number state|n〉, which is

〈

n
∣

∣

∣
Ê(χ)

∣

∣

∣
n
〉

= 0. (1.28)

We can also calculate the variance of the electric field for that number state which is

(∆E(χ))2 =

〈

n

∣

∣

∣

∣

(

Ê(χ)
)2
∣

∣

∣

∣

n

〉

−
(〈

n
∣

∣

∣
Ê(χ)

∣

∣

∣
n
〉)2

=

〈

n

∣

∣

∣

∣

(

Ê(χ)
)2
∣

∣

∣

∣

n

〉

=
1

2

(

n +
1

2

)

.

(1.29)

Therefore, for a vacuum state|0〉 the variance of the electric field is1
4
. This is also referred

to as the vacuum fluctuations.

1.5.3 Number Operator

The number operator is the observable that counts the numberof photons. It will

be very useful in this thesis as measurements of amplified signals will be needed. It is

defined as follows

n̂ ≡ Â†Â. (1.30)

One way to look at this operator is that it counts the photons by removing and replacing

them. It acts as follows on a number state

n̂|n〉 = n|n〉. (1.31)

It is important to note that for a number state, while the number of photon can be accu-

rately calculated, its phase is undefined. This is consistent with an uncertainty principle,
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which states that∆n∆φ = 1
2

[32]. Conversely, if there is a state for which the phase is

well defined, the pure number would be undefined. Because its phase is undefined, the

number state cannot be used as a quantum mechanical model forcoherent light.

1.5.4 Coherent States

The coherent state or Glauber state, typically denoted|α〉 is defined as the following

superposition of number states

|α〉 = e−
1
2
|α|2

∞
∑

n=0

αn√
n!
|n〉. (1.32)

whereα is any complex number. It can be observed from the above equation that the

coherent state has a Poissonian number distribution. In other words, the probability of

detectingn photons while measuring a coherent state is Poisson distributed and its distri-

bution is

p(n) = e−|α|2 |α|n
n!

. (1.33)

The action of the destruction operator on a coherent state isas follows

Â|α〉 = α|α〉. (1.34)

Therefore|α〉 is an eigenstate of the destruction operator andα its eigenvalue. Although,

|α〉 is not an eigenstate of the creation operator, the creation operator does satisfy the

left-eigenvalue relation conjugate to equation (1.34)

〈α|Â† = 〈α|α∗. (1.35)

We can calculate the average number of photon in a coherent state

〈

α
∣

∣

∣
Â†Â

∣

∣

∣
α
〉

= |α|2. (1.36)
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The fluctuation in photon number for a coherent state can alsobe calculated

(∆n)2 =
〈

α
∣

∣n̂2
∣

∣α
〉

− (〈α |n̂|α〉)2

= |α|4 + |α|2 − |α|4

= n

(1.37)

The variance of a coherent state is equal to its average number of photons. The coherent

state is very often used to model a single mode laser. While itis not the only model used

for single mode laser, it is the one for whichδnδφ is minimum, making a model of choice

in this thesis as I will be looking for the minimum noise figurein different OPAs.

1.6 Quantum Noise Added During Amplification and Attenuation

In this section, I go over the process of attenuation and amplification and look at the

noises added and some of their properties. These noises willplay a very important role

when OPA will be analyzed.

1.6.1 Quantum Noise Added During Attenuation

I will first look at the quantum noise added during attenuation. Consider a signal

represented at the input by a coherent state|α〉 (see figure 1.5). Consider also the electric

field represented by the lowering operatorÂ. The operator̂A satisfies the following

commutator relation [59]:
[

Â, Â†
]

= 1. (1.38)

Following the formalism of Haus [57], the operatorÂ evolves toB̂ at the output of the

attenuator. IfL is the fraction of power transmitted through the attenuator, one would
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Figure 1.5: Example of Attenuator: Beam coupler. Additional noise from a
reservoir channel

expect

B̂ =
√
LÂ. (1.39)

However, the evolution of the electric field inside the attenuator is described by the

Heisenberg equation. The Heisenberg equation preserves the commutator relation. There-

fore, B̂ must obey the same commutator relation asÂ. Therefore, equation (1.39) is in-

correct. What is physically happening is that energy is dissipated. By the

fluctuation-dissipation theorem [44], this results in an addition of noise. Therefore, a

Langevin noise operator̂NL must be added to the expression ofB̂. A specific example of

an attenuator is a beam splitter (see figure 1.5), where the field from the second input con-

tributes to the output. The second input of the beam splitteris represented by a vacuum
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state|0〉 and its field operator is represented byÂ1. Therefore, at the output, one would

get

B̂ = tÂ + rÂ1, (1.40)

wheret is the transmission coefficient andr the reflection coefficient of the beam splitter.

I chooset =
√
L. Therefore,r = i

√
1 − L. I calculate the commutator of̂B, which is

[

B̂, B̂†
]

= L
[

Â, Â†
]

+ (1 − L)
[

Â1, Â
†
1

]

= 1. (1.41)

B̂ obey the same commutator relation asÂ, which is what is expected. It can also be

noted that the termi
(√

1 − L
)

Â1 is an additional noise term proportional to a lowering

operator. In general, this noise term is needed to preserve the commutation relation of the

evolving field operator. Thus, in general, for the output of an attenuator, it is

B̂ =
√
LÂ + N̂L, (1.42)

whereN̂L is proportional to some annihilation operator[57] operating on the vacuum state

|0〉. Let us find the commutation relation of̂NL by computing

[

B̂, B̂†
]

= L
[

Â, Â†
]

+
[

N̂L, N̂
†
L

]

= L+
[

N̂L, N̂
†
L

]

= 1. (1.43)

Therefore,
[

N̂L, N̂
†
L

]

= 1 − L.

In order to characterize the output, let us compute the output number of photons

and the photon number fluctuations The number of photons after attenuation is:

〈nb〉 =
〈

B̂†B̂
〉

= L
〈

α
∣

∣

∣
Â†Â

∣

∣

∣
α
〉

+
√
L
〈

α
∣

∣

∣
Â†
∣

∣

∣
α
〉〈

0
∣

∣

∣
N̂L

∣

∣

∣
0
〉

+
√
L
〈

α
∣

∣

∣
Â

∣

∣

∣
α
〉〈

0
∣

∣

∣
N̂

†
L

∣

∣

∣
0
〉

+
〈

0
∣

∣

∣
N̂

†
LN̂L

∣

∣

∣
0
〉

.

(1.44)
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The terms
〈

0
∣

∣

∣
N̂L

∣

∣

∣
0
〉

and
〈

0
∣

∣

∣
N̂

†
L

∣

∣

∣
0
〉

are zero. The term
〈

0
∣

∣

∣
N̂

†
LN̂L

∣

∣

∣
0
〉

is zero since

N̂L is a lowering operator. Therefore,

〈nb〉 = L|α|2

= L〈na〉
(1.45)

as expected, where〈na〉 =
〈

α
∣

∣

∣
Â†Â

∣

∣

∣
α
〉

. Now, 〈n2
b〉 is calculated

〈n2
b〉 =

〈

B̂†B̂B̂†B̂
〉

. (1.46)

The operators need to be arranged in normal order, which means having all the lowering

operator on the right of the terms and all the raising operator on the left, as I will show. For

this, the commutator relation̂BB̂† = 1 + B̂†B̂ is used. The expression of〈n2
b〉 becomes

〈n2
b〉 =

〈

B̂†
(

B̂†B̂ + 1
)

B̂
〉

=
〈

B̂†B̂†B̂B̂
〉

+
〈

B̂†B̂
〉

(1.47)

Now, the operators are in normal order. They can easily be evaluated by noting that̂NL

operates on the state|0〉 and therefore does not make any contribution. Therefore,

〈n2
b〉 = L2

〈

Â†Â†ÂÂ
〉

+ L
〈

Â†Â
〉

= L2|α|4 + L|α|2.
(1.48)

Therefore,

(∆n)2 = L〈na〉. (1.49)

The output variance is equal to the output average number of photons. This is due to the

fact that the output signal is a coherent state. The added noiseN̂L guaranties that the

output field satisfy the Heisenberg uncertainty principle.
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1.6.2 Noise in Phase Insensitive Amplification

Closely following Haus [58], an input coherent state|α〉 is assumed, whose electric

field I will represent by a lowering operator̂A. It goes through a phase insensitive am-

plifier with field gain
√
G. I will denote the output̂B. Just as in the previous section, in

order to have
[

B̂, B̂†
]

= 1, an extra noise term̂NG needs to be added:

B̂ =
√
GÂ + N̂G. (1.50)

This noise termN̂G satisfies
[

N̂G, N̂
†
G

]

= 1 − G. SinceG > 1,
[

N̂G, N̂
†
G

]

is negative.

Therefore,N̂G is proportional to a raising operator. Physically, this noise comes from

the Heisenberg uncertainty principle. Phase insensitive amplification can be seen as a

simultaneous measurement and amplification of the inphase and quadrature phase com-

ponent, which are two noncommutative observables. Therefore, an associated uncertainty

is added. The output number of photons is

〈nb〉 =
〈

B̂†B̂
〉

=
〈

GÂ†Â +
√
G
(

Â†N̂G + ÂN̂
†
G

)

+ N̂
†
GN̂G

〉

(1.51)

sinceN̂†
GN̂G = N̂GN̂

†
G +G− 1, the expression becomes

〈nb〉 = G〈na〉 +G− 1 (1.52)

where〈na〉 =
〈

α
∣

∣

∣
Â†Â

∣

∣

∣
α
〉

andG− 1 is extra noise added by the amplifier. Now, let us

calculate〈n2
b〉

〈n2
b〉 =

〈

B̂†B̂B̂†B̂
〉

=
〈(

B̂B̂† − 1
)(

B̂B̂† − 1
)〉

=
〈

B̂B̂B̂†B̂† − 3B̂B̂† + 1
〉

.

(1.53)
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With 〈n2
b〉 expressed in anti normal ordering, the argument can be made that the noise

operatorN̂G does not make any contribution. Therefore,

〈n2
b〉 =

〈

G2ÂÂÂ†Â† − 3GÂÂ† + 1
〉

. (1.54)

I can now express the relation in normal ordering to evaluateit, which is

〈n2
b〉 =

〈

G2
(

Â†Â + 1
)(

Â†Â + 1
)

+
(

G2 − 3G
)

(

Â†Â + 1
)

+ 1
〉

=
〈

G2
(

Â†Â†ÂÂ + 3Â†Â + 1
)

+
(

G2 − 3G
)

(

Â†Â + 1
)

+ 1
〉

= G2〈na〉2 + 4G2〈na〉 − 3G〈na〉 + 2G2 − 3G− 1

(1.55)

In this fashion, I can compute the variance

∆n2
b = 〈n2

b〉 − 〈nb〉2

= G〈na〉 + 2G(G− 1)〈na〉 +G(G− 1).

(1.56)

It can be verified that the output signal variance is not equalto the output average number

of photons. Therefore, the output signal is not a coherent state.

1.7 Definition of Signal to Noise Ratio and Noise Figure

In this thesis, I will use the Signal to Noise Ratio (SNR) as a measure of quality of

an optical signal. There are more than one way to define SNR. Ingeneral, for an electrical

signal the definition used is [45]

SNR=
Average Power of Electrical Signal
Average Power of Electric Noise

. (1.57)

My problems will involve the characterization of optical signals. This can be done

by characterizing the signal and the noise of an ideal receiver illuminated by an optical
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Figure 1.6: Schematic of an ideal receiver

signal (see figure 1.6). In an ideal receiver, for each photonreceived, the detector emits

one electron in a circuit. To characterize the electric current generated by the receiver, I

consider a repeated experiment where the statistical average number of photons received

〈n〉 is defined as the signal. The generated current flows for a timeT equal to the duration

of the optical signal in a circuit with a resistanceR, whereR is large enough not to allow

any oscillation in the circuit. The average current in this circuit is

〈i〉 =
q〈n〉
T

. (1.58)

Therefore, the average electric signal power is

PS =
q2〈n〉2
τ 2R

. (1.59)
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The average total electric power is

PTot =
〈i2〉
R

=
q2〈n2〉
τ 2R

. (1.60)

I can define the noise power as

PN = PTot − PS =
q2〈n2〉
T 2R

− q2〈n〉2
τ 2R

=
q2

T 2R

(

〈n2〉 − 〈n〉2
)

, (1.61)

which is proportional to the variance of the number of photons. Therefore, the SNR of

the detected optical signal is

SNRPNF =
PS
PN

=
〈n〉2

〈n2〉 − 〈n〉2 =
〈n〉2

(∆n)2 . (1.62)

This definition of SNR is called the photon number fluctuations SNR [41]. This SNR is

in principle measurable in an experiment and can be readily calculated for some common

types of signals. For example, for a coherent state|α〉 with 〈n〉 = |α|2 and(∆n)2 = |α|2

it is

SNRPNF =
|α|4
|α|2 = |α|2. (1.63)

When an optical signal goes through a device, its SNR changes. To compare the noise

performance of different devices, a quantity called Noise Figure (NF) is introduced. There

are more than one definition of NF based on which SNR is used. Ingeneral, the noise

figure is [43]

NF = −10 log

[

SNRout

SNRin

]

. (1.64)

where SNRin is the Signal to Noise Ratio of the signal before the device and SNRout is

the Signal to Noise Ratio of the signal after the device.
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1.7.1 Definition of the Photon Number Fluctuation Noise Figure

I can use the definition in equation (1.64) to calculate the Photon-Number-Fluctuation

NF (NFPNF) of an attenuator with field loss
√
L. It has been seen in section 1.6.1 that for

an input coherent state|α〉, the output average number of photons isL|α|2 and the photon

number fluctuations isL|α|2. Therefore, the output SNR is

SNRPNF = L〈na〉 (1.65)

Since the input SNRPNF = |α|2, the noise figure based on the photon number fluctuation

defition is

NFPNF = − 10 log

[

SNRout

SNRin

]

= − 10 log(L)

(1.66)

(see figure 1.7). Let us now calculate the noise figure for a phase insensitive amplifier

with field gain
√
G. It has been seen in section 1.6.2 that for an input coherent state|α〉,

the output average number of photons isG|α|2+G−1 and the photon number fluctuations

isG|α|2 + 2G(G− 1)|α|2 +G(G− 1). Therefore, the output SNR is

SNRPNF =
G2|α|4

G|α|2 + 2G(G− 1)|α|2 +G(G− 1)
. (1.67)

Since the input SNRPNF = |α|2, the noise figure is

NFPNF = − 10 log

[

G2|α|2
G|α|2 + 2G(G− 1)|α|2 +G(G− 1)

]

, (1.68)

which is plotted in figure 1.8. With higher amplification, there is a higher deterioration

of the SNR with the NFPNF converging to 3 dB. It can also be seen that the NFPNF for

phase insensitive amplifiers is signal dependent for weak signal, which can be a problem.
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Figure 1.7: Noise Figure in dB as a function of attenuation

In section 5, I will show that this signal dependence of the NFPNF is also true for NFPNF

of Kerr based NMZI OPA.

However, if a large signal is assumed (n≫ 1
2
), then the NFPNF for phase insensitive

amplifiers becomes

NFPNF ≈ − 10 log

[

G2|α|2
G|α|2 + 2G(G− 1)|α|2

]

= − 10 log

[

G2

G+ 2G(G− 1)

]

.

(1.69)

The noise figure is no longer signal dependent. I will show in section 3.4, assuming a

large signal, that the NFPNF is signal independent.
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For large values of G,

G|α|2 + 2G(G− 1)|α|2 +G(G− 1) ≈ 2G2|α|2 (1.70)

Therefore,

SNRPNF ≈ G2〈na〉2
2G2〈na〉

=
〈na〉
2
.

(1.71)

By equation (1.68) NFPNF = 10 log(2) ≈ 3 dB. That 3 dB is the minimum in conse-

quence of the uncertainty principle. A simultaneous measurement of two noncommuting

variables must double the Heisenberg uncertainty [41]. Forother reasons, a practical

amplifier will have a larger noise figure.

Figure 1.8: Noise Figure in dB as a function of gain (equation(1.67))
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1.7.2 Definition of the Field Amplitude Squared Noise Figure

Haus proposed another definition of SNR called the field amplitude squared SNR

whose noise figure is not signal dependent. It is defined as follows

SNRFAS =
〈E〉2

(∆E)2 . (1.72)

For a coherent state,

SNRFAS =
|α|2

1
2

= 2|α|2 = 2〈n〉. (1.73)

For an attenuator with field loss
√
L with an input coherent state|α〉, it was said in

section 1.6.1 that the output is also a coherent state with average number of photonL〈n〉.

Therefore, its output SNR is

SNRFAS =
|α|2

1
2

= 2|α|2 = 2L〈n〉. (1.74)

Therefore, its noise figure is

NFFAS = − 10 log(L) = NFPNF. (1.75)

1.7.3 NFFAS of an Phase Insensitive Amplifier

Let us calculate the field amplitude squared noise figure of the phase insensitive

amplifier with field gain
√
G and with a coherent state|α〉 as an input. Using equation

(1.50), I calculate the variance of the output field, which is

∆B̂2 = ∆X̂2 + ∆Ŷ2

= G− 1

2
.

(1.76)
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Since the average number of photons at the output isG|α2|, the output SNR is

SNRFASout =
G|α|2
G− 1

2

. (1.77)

Since the input SNRFASin
= 2|α|2, the noise figure is

NFFAS = 10 log

[

2G

G− 1
2

]

. (1.78)

It can be seen that this noise figure in independent of the signal without any assumption

on the value of the signal. Also, for large values ofG the field amplitude squared noise

figure goes to 3 dB, which is roughly equal to the photon numberfluctuations noise figure.

However, this definition also has its problems. The electricfield is not a measurable

quantity. Therefore, for the calculations of noise figure, the signal to noise ratio has to

be estimated. Moreover, this definition of the SNR assumes that the inphase component

of the noise and the quadrature phase component of the noise are have the same power,

which makes it unsuitable for phase sensitive optical parametric amplifiers as I will show.

1.7.4 Definition of the Quadrature Field Squared Noise Figure

A new definition of SNR and its associated noise figure that is more suitable to

OPAs is introduced. It is the quadrature field squared SNR andis defined as follows

SNRQFS =
〈n〉

〈

∆X̂2
〉 . (1.79)

If this definition is applied to a coherent state|α〉, its signal to noise ratio is

SNRQFS = 4|α|2. (1.80)
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For an attenuator with field loss
√
L with an input coherent state|α〉, the output SNR is

SNRQFSout = 4L|α|2. (1.81)

Since SNRQFSin
= 4|α|2, the attenuator quadrature field squared noise figure is

NFQFS = − 10 log(L) = NFPNF = NFFAS. (1.82)

To calculate the quadrature phase squared noise figure for a phase insensitive amplifier

with field gain
√
G, I first calculate the quadrature phase noise, which is

〈

δX̂
2
〉

=
G− 1

2

2
. (1.83)

Since the average number of photons at the output isG|α2|, the output SNR is

SNRQFSout =
2G|α|2
G− 1

2

. (1.84)

Since the input SNRQFSin
= 4|α|2, the noise figure is

NFQFS = − 10 log

[

2G

G− 1
2

]

= NFFAS. (1.85)

For large values of G, it can be verified that NFQFS for the phase insensitive amplifier

goes to 3 dB, which is roughly equal to the NFPNS. The added advantage of the NFQFS

over the NFFAS is that it is in principle measurable.

1.7.5 Definition of the Quality Factor

Another measure of a signal quality is called Quality Factoror Q. It is to similar

SNR and is very applicable to On-Off Keying (OOK). It is defined as follows [42]

Q =
〈n1〉 − 〈n0〉
∆n1 + ∆n0

, (1.86)
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where〈n1〉 and〈n0〉 are respectively the average number of photons when bit one (1) is

sent and bit zero (0) is sent, and∆n1 and∆n0 are respectively the standard deviation of

the signal when bit on (1) and bit zero (0) is sent. The Q factorof an Pulse-Amplitude-

Modulated (PAM) OOK coherent state signal can be calculated. α = 0 is chosen for the

bit zero (0) andα 6= 0 is chosen for the bit one (1). Since for a coherent state|α〉 the

variance∆n = |α|2, ∆n1 = |α|2 and∆n0 = 0. Therefore,

Q = |α| =
√

〈n〉. (1.87)

The Q factor is very convenient for calculating the Bit ErrorRate (BER) [42], which is.

BER =
1

2
erfc

(

Q√
2

)

. (1.88)

In this thesis, I will be analyzing the output signal of OPA and using the different

noise figures defined above.

1.8 Balanced Homodyne Detection of a Coherent State

Because of similarities to Phase-Sensitive-Amplified detection, I will first analyzed

the Balanced Homodyne Detector (BHD), which is more widely known. For this, I as-

sume that all dark and thermal noise is negligible in comparison to the photon noise.

Balanced Homodyne Detectors can be readily described in Quantum Mechanics using

the Heisenberg picture [2]. I denotêALO, Âs, B̂1 andB̂2 respectively, the operators of

the complex amplitude of the electric field of the local oscillator, the incoming signal, and

the signal incident on the photodetectors after an ideal splitter.

B̂1 =
1√
2

(

ÂLO + iÂs

)

, (1.89)
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B̂2 =
1√
2

(

Âs − iÂLO

)

. (1.90)

The difference between the charges collected by the two detectors is

δq̂ = q
(

B̂
†
1B̂1 − B̂

†
2B̂2

)

= − iq
(

Â
†
LOÂs − Â†

sÂLO

)

.

(1.91)

I assume that the frequency of the local oscillator is the same as the incoming signal

frequency. Using the coherent states|αLO〉 and|αs〉 respectively as the wave vectors of

the local oscillator signal and the incoming signal, I have

〈δq̂〉 = −
〈

αs

∣

∣

∣

〈

αLO

∣

∣

∣
iq
(

Â
†
LOÂs − Â†

sÂLO

)∣

∣

∣
αLO

〉∣

∣

∣
αs

〉

= 2q|αLOαs| sin(φ),

(1.92)

whereφ is the phase ofα∗
LOαs Under optimum phase,

〈δq̂〉 = 2q|αLOαs|. (1.93)

The mean square fluctuation is

∆(δq̂)2 =
〈

(δq̂)2
〉

− 〈δq̂〉2

= q2
(

|αLO|2 + |αs|2
)

= q2 (〈nLO〉 + 〈ns〉) ,

(1.94)

where

〈nLO〉 =
〈

Â
†
LOÂLO

〉

(1.95)

and

〈ns〉 =
〈

Â†
sÂs

〉

. (1.96)

For large relative values of the local oscillator signal,〈ns〉 can be neglected

∆q̂2 = q2〈nLO〉. (1.97)
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Therefore,

SNRPNS = 4〈ns〉, (1.98)

which is equal to twice field amplitude squared SNR of the optical signal and four times

its photon number square SNR. However, the SNR is not the whole story when it comes

to determining sensitivity of a receiver in digital communications. Let us calculate its

quality factor. To calculate Q for this receiver,αs = 0 is chosen for the bit zero (0) and

αs 6= 0 is chosen for the bit one (1). It is

Q =
2q|αLOαs|

√

q2〈nLO〉 +
√

q2〈nLO〉
=
√

〈ns〉. (1.99)

The quality factor of a ideal detector and a balanced homodyne detector are the same.

1.9 Nonlinear Mach-Zehnder Interferometer OPA Noise

In this section, I derive the expression for the noise at the output of a NMZI OPA

without input signal using quantum mechanics, and I comparethe results with the one

from classical analysis. Assuming that a field operatorÂ can be expanded as a perturba-

tion which is small around the average value, the field can be represented as

Â = A+ δÂ (1.100)

whereA ≡
〈

Â
〉

. This is known as Quazi Linearization. This assumes thatA ≫ δÂ

.Also, the fluctuations can be broken up into a inphase and a quadrature phase as follows

Â = A +
(

δX̂ + iδŶ
)

. (1.101)

33



Figure 1.9: Schematic of NMZI OPA. Appropriate operators asdetailed in
the text are shown.

Now, let us consider a NMZI OPA as shown in figure 1.9, with an input pump field

denoted with the operator̂Ap and a signal field denoted with the operatorÂs. In the

following chapters, I will show how the evolution of the fieldoperator is calculated in a

nonlinear medium. Below is the computation of the NMZI output noise assuming that

field operators at the output of the two nonlinear medium are known.

I denote respectivelŷA1 andÂ2 the field operators at the inputs to the output cou-

pler. Under normal conditions, the signal comes out in one arm and the pump in the other.

On the signal arm, I have

Âout =
1√
2

(

Â1 + iÂ2

)

=
1√
2

(

A1 + iA2 +
[

δX̂1 + iδŶ1

]

+ i
[

δX̂2 + iδŶ2

] )

.

(1.102)
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Assuming that the input signal power is zero, the average field at the input of the nonlin-

ear medium a the upper arm of the NMZI isAp√
2
, while the one at the lower arm of the

nonlinear medium isiAp√
2
. Since the power of the field going through the two nonlinear

medium are the same, their amplitude and phase response willbe the same. Therefore, at

the outputiA1 = A2, so that equation (1.102) becomes

Âout =
1√
2

[(

δX̂1 − δŶ2

)

+ i
(

δŶ1 + δX̂2

)]

. (1.103)

The noise in the upper arm of the NMZI OPA described byδX̂1 andδŶ1 is uncorrelated

to the noise in the lower arm described byδX̂2 andδŶ2)(see appendix A.4). Therefore,

the Amplified Spontaneous Emission (ASE) is

ASE =
〈

Â
†
outÂout

〉

=
1

2

[

〈

δX̂
2

1

〉

+
〈

δŶ
2

1

〉

+ i
〈[

δX̂1, δŶ1

]〉

+
〈

δX̂
2

1

〉

+
〈

δŶ
2

2

〉

+ i
〈[

δX̂2, δŶ2

]〉

]

.

(1.104)

Since the noise at the output of the nonlinear medium have thesame statistics

ASE =
[〈

δX̂
2

1

〉

+
〈

δŶ
2

1

〉

+ i
〈[

δX̂, δŶ
]〉]

. (1.105)

It is well known thatδX̂ andδŶ do not commute. Using equations (1.24) and (1.25) I

can calculate their commutator, which is[55]

[

δX̂, δŶ
]

=
i

2
, (1.106)

and obtain

ASE =
[〈

δŶ
2

1

〉

+
〈

δX̂
2

1

〉]

− 1

2
. (1.107)
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Chapter 2

Classical Treatment of the Kerr Medium Based NMZI

2.1 Kerr Effect

Discovered in 1875 by John Kerr, the DC Kerr effect or the quadratic electro-optic

effect (QEO effect)is a change in the refractive index of a material in response to the

power of an electric field. The optical Kerr effect or the AC Kerr effect is the case in

which the change is due to light. The relationship for Optical Kerr effect is described as

follows [52, 33]. Let us assume an electric vector fieldE = Es cos(ωt). For a nonlinear

material, in general the electric polarization fieldP will depend on the electric fieldE

such that

Pi = ǫ0

3
∑

j=1

χ
(1)
ij Ej + ǫ0

3
∑

j=1

3
∑

k=1

χ
(2)
ijkEjEk + ǫ0

3
∑

j=1

3
∑

k=1

3
∑

l=1

χ
(3)
ijklEjEkEl

+ · · · +HOT,

(2.1)

whereǫ0 is the vacuum permittivity andχ(n) is the n-th order component of the electric

susceptibility of the medium, and wherei = 1, 2, 3. It is assumed that 1 representsx,

2 y and 3z. For materials exhibiting a non-negligible Kerr effect, the third,χ(3) term is

significant, with the even-order terms typically cancelling due to inversion symmetry of

the nonlinear medium (a change in sign inE means a changing sign inP). From that, the

following equation can be obtained [33]:

P ≈ ǫ0

(

χ(1) +
3

4
χ(3)|Es|2

)

Es cos(ωt). (2.2)
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This equation looks like the polarization equation for linear material

P = ǫ0χEs cos(ωt). (2.3)

The difference is that in (2.2), the linear susceptibility has an extra nonlinear term:

χ = χLin + χNL

= χ(1) +
3

4
χ(3)|Es|2.

(2.4)

Since the index of refractionn = (1 + χ)
1
2 , we definen0 = (1 + χLin)

1
2 . The Kerr

medium’s index of refraction can be written

n = (1 + χLin + χNL)
1
2

= (1 + χLin)
1
2 (1 +

1

1 + χLin
χNL)

1
2

= n0

(

1 +
1

n2
0

χNL

)
1
2

≈ n0

(

1 +
1

2n2
0

χNL

)

= n0

(

1 +
3

4n2
0

χ(3)|Es|2
)

= n0 + n2I.

(2.5)

There are many phenomena such as four wave mixing, polarization rotation and

cross phase modulation built into the nonlinear indexn2. However, the principal phe-

nomenon is a phase shift due to the retardation of propagation in proportion to the inten-

sity, called self phase modulation. The Kerr medium of choice for many applications is

Highly Nonlinear Fiber (HNLF)[4].
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2.2 Nonlinear MZI with Kerr Media

I will assume a noiseless pump and a negligeable thermal noise. Let us consider an

experimental setup as in figure 1.4. At one input, a strong pump signal is assumed repre-

sented by the complex phasorEp, which I will pick to be real without loss of generality.

At the second input of the NMZI, a weak signalEs is assumed. After the first coupler,

the expression of the two outputs are

Ēout11 =
1√
2

(Ep + iEs) (2.6)

and

Ēout21 =
1√
2

(Es + iEp) . (2.7)

As discussed earlier, when those two signals go through the Kerr media in both arms of

the NMZI, they self phase modulate and pick up a phase shift. It is assumed that the Kerr

media in both arms have the same length. The expression of theelectric field at the output

of the two Kerr media can be expressed as follows

Ēout12 =
eiΦ1

√
2

(Ep + iEs) (2.8)

and

Ēout22 =
eiΦ2

√
2

(Es + iEp) . (2.9)

the phase of shifts are calculated as follows [52].

Φ1 =
2π

λ
n2L

(

(Es − iEp) (E∗
s + iEp)

2

)

+
2π

λ
n0L

≈ π

λ
n2L

(

E2
p + iEp (Es − E∗

s )
)

+
2π

λ
n0L

(2.10)
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and

Φ2 =
2π

λ
n2L

(

(Ep − iEs) (iE∗
s + Ep)

2

)

+
2π

λ
n0L

≈ π

λ
n2L

(

E2
p − iEp (Es − E∗

s )
)

+
2π

λ
n0L.

(2.11)

The approximations are valid becauseEs is weak compared toEp.

I can also writeΦ1 = Φ10 + Φ11 andΦ2 = Φ10 − Φ11, where the common phase is

Φ10 =
π

λ
n2LE

2
p +

2π

λ
n0L, (2.12)

and the phase difference is,

Φ11 = −2
π

λ
n2LEpℑ(Es), (2.13)

whereℑ(·) means imaginary part. After the two signals propagate through the second

coupler, I get at one of the outputs of the NMZI

Eout =
Ep
2

(

eiΦ2 − eiΦ1
)

− iEs
2

(

eiΦ2 + eiΦ1
)

. (2.14)

I can rewriteeiΦ1 ≈ eiΦ10(1 + iΦ11) andeiΦ2 ≈ eiΦ10(1 − iΦ11) sinceΦ11 is small. This

allows a further reduction of the electric field output equation to.

Eout = − iEpe
iΦ10Φ11 − ieiΦ10

= − ieiΦ10(EpΦ11 + Es)

= − ieiΦ10 (iΦ10 (Es − E∗
s ) + Es) .

(2.15)

If I rewrite Es = |Es|eiφ, then

Eout = −ieiΦ10 |Es|
(

2Φ10 sin(φ) + eiφ
)

. (2.16)

Therefore, the gain of the NMZI is

G =

∣

∣

∣

∣

Eout

Es

∣

∣

∣

∣

2

=

∣

∣

∣

∣

2π

λ
n2LE

2
p sin(φ) + eiφ

∣

∣

∣

∣

2

,

(2.17)
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which is a phase sensitive gain.

A common constant used to describe the characteristics of a Kerr medium isγ in

units of W−1km−1 [34] which is defined as follows:

γ =
2πn2

λAeff
, (2.18)

whereAeff is the effective area. In this caseAeff = 1 For 1 km of nonlinear fiber with

γ = 10 and a pump signal of 1 W and a signal of 1 mW, a phase sensitive gain is shown

in figure 2.1

Figure 2.1: Plots of gain as a function of input phase difference for 1 km of
Kerr medium withγ = 10 and pump power of 1 W
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2.3 Frequency Response of a NMZI

Even for linear MZI, unbalancing the interferometer by making one arm shorter

than the other can introduce bandwidth limitations. For example, let us consider a MZI

with the same parameters as the one in section 2.2 but withoutnonlinear effects and with

one arm longer by∆L. It can be shown following the same procedure as the one in that

section that the output field is

Eout = iei
2π
λ
n0(L+∆L

2 )
[

Ep sin
(π

λ
n0∆L

)

− Es cos
(π

λ
n0∆L

)]

. (2.19)

Looking only at the field signal output, I assume that its maximum is reached at frequency

ω0. Therefore,

cos
(ω0

2c
n0∆L

)

= 1. (2.20)

The minimum is reached at frequencyω = ω0 + ∆ω, where

∆ω =
πc

n0∆L
. (2.21)

∆ω is the estimated bandwidth. For∆L = 1mm, the bandwidth is about 100 Ghz. To

avoid this bandwidth limitation, an interferometer calledSagnac is used in practice (see

figure 2.2). The Sagnac is a MZI folded on itself so that one armis used instead of two.

It guaranties that the interferometer is always balanced, while its behavior is similar to

a regular MZI. Therefore, for an easier analysis, the MZI is used. But in practice, the

Sagnac is used.
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Figure 2.2: Schematic of a Sagnac

2.3.1 Phase Insensitive Gain

Here I am considering a case where the signal and the pump havea different carrier

frequency and there is no dispersion in the Kerr medium. IfΩ is the difference between

their carrier frequencies, thenEs = As(t)e
i[Ωt+φ] is the input signal andEp = Ap is the

pump. Based on equation (2.15), the total output electric field of the NMZI is:

ET
out = ieiω0tAse

iΦ10
(

Φ10(2 sin(Ωt+ φ)) + ei[Ωt+φ]
)

= ieiω0tAse
iΦ10

(

Φ10(4i
(

e(Ωt+φ) − e−i(Ωt+φ)
)

) + ei[Ωt+φ]
)

.

(2.22)
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Note that the output electric field includes the idler signalAs(t)e
−i[(Ω)t+φ], which is not

part of the input signal. To look at the amplification of the signal, we keep only the terms

that includes the input signal and obtain:

ES
out = ieiω0tAse

iΦ10
(

−iΦ10e
i(Ωt+φ) + ei[Ωt+φ]

)

. (2.23)

From this I get an expression for the gain, which is:

G =
|ES

out|2
|Es|2

= |−iΦ10 + 1|2

= Φ2
10 + 1,

(2.24)

with Φ10 = π
λ
n2L|Ap|2. It can be seen that a phase insensitive amplification is obtained

and that it is independent of frequency detuningΩ. In the real world, the bandwidth is

determined by the finite response time ofχ(3), which can be almost instantaneous.

2.3.2 Phase Sensitive Gain

Consider the signal and the pump to be at the same carrier frequency. However, the

signal is amplitude modulated. Therefore, I can writeEs = As(t)e
iφ andEp = Ap where

As(t) real. Then, based on equation (2.15), the electric field output of the NMZI is:

Eout = iAs(t)e
iΦ10eiω0t

(

Φ10(2 sin(φ)) + eiφ
)

. (2.25)

I can then get an expression for the gain, which is:

G =
|Eout|2
|Es|2

=
[

4Φ2
10 sin2(φ) + 2Φ10 sin(2φ) + 1

]

,

(2.26)
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whereΦ10 = π
λ
n2L|Ap|2. It can be seen that the gain is sensitive to phase but is bandwidth

independent.

In conclusion, we can say that the Kerr medium is an importantamplifier with large

gain and wide bandwidth.
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Chapter 3

Quantum Mechanical Analysis of the Lossless Kerr Medium Based NMZI

3.1 Calculation of Average Quantities Using QM

Using notation from section 1.6.2 I can write the output fieldoperator̂B in terms of

the input field operator̂A by replacing in equation (2.15). Further, by replacingEs with

Â,E∗
s with Â†, andEout with B̂. I obtain:

B̂ = − ieiΦ10

(

iΦ10

(

Â − Â†
)

+ Â
)

= µÂ + νÂ†
(3.1)

whereµ ≡ −ieiΦ10 (iΦ10 + 1) andν ≡ −eiΦ10Φ10. As a cross check, using equation

(3.1), I compute the commutator of̂B and obtain

[

B̂, B̂†
]

=
(

|µ|2 − |ν|2
)

= 1. (3.2)

This time, unlike in section 1.6.2, the commutator has been preserved by the device with-

out the need of the addition of an extra noise term operator inthe expression of̂B. This

is interesting because there is gain. To explain what happens physically consider a phasor

representing the electric field of a coherent state as shown in figure 3.1 and a disk rep-

resenting uncertainties in amplitude and phase of the electric field. After amplification,

the inphase component of the noise with the gain gets amplified while the out of phase

component of the noise gets attenuated, in a such way that theproduct of photon number

and phase uncertainties is kept∆n∆φ = 1
2
. This noise is called squeezed noise.
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Figure 3.1: Representation of the electric-field properties of the coherent be-
fore and after parametric amplification

For an input signal modeled by a coherent state|α〉, I can compute the number of

photons at the output:

〈

α
∣

∣

∣
B̂†B̂

∣

∣

∣
α
〉

=
〈

α
∣

∣

∣

(

µ∗Â† + ν∗Â
)(

µÂ + νÂ†
)∣

∣

∣
α
〉

= |µ|2|α|2 + 2ℜ
(

ν∗µα2
)

+ |ν|2
(

|α|2 + 1
)

,

(3.3)

whereℜ(·) means real part. From the above equation, it can be seen that(|µ|2+|ν|2)|α|2+

2ℜ (ν∗µα2) is the amplified input signal andν2 is the ASE. The maximum signal output

happens whenℜ (ν∗µα2) is maximum, which happens when all the termν∗µα2 is real.
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Therefore, the maximum signal output relative to signal input phase occurs when

ℜ
(

ν∗µα2
)

= |µ||ν||α|2. (3.4)

The output is then

〈

α
∣

∣

∣
B̂†B̂

∣

∣

∣
α
〉

max
= |µ|2|α|2 + 2|µ||ν||α|2 + |ν|2

(

|α|2 + 1
)

= (|µ| + |ν|)2 |α|2 + |ν|2

= G|α|2 + |ν|2,

(3.5)

where

G = (|µ| + |ν|)2 (3.6)

and is the parametric gain. Some useful equations involvingthe parametric gain are:

|ν|2 =
G+G−1 − 2

4
(3.7)

and

|µ|2 =
G+G−1 + 2

4
. (3.8)

Using these equation, the maximum signal output relative tosignal input phase, which

occurs whenα is real can be obtained. It is

〈nb〉max = (|µ| + |ν|)2 |α|2 +
G+G−1 − 2

4

= G〈na〉 +
G+G−1 − 2

4

≈ G〈na〉 +
G

4
,

(3.9)

where〈nb〉 ≡
〈

α
∣

∣

∣
B̂†B̂

∣

∣

∣
α
〉

and〈na〉 ≡ |α|2. SinceG is assumed to be large, in the order

of 20 dB, the following approximation can be made

〈nb〉max ≈ G〈na〉 +
G

4
. (3.10)
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Similarly, the minimum output, which occurs whenα is purely imaginary, is:

〈nb〉min = (|µ| − |ν|)2 |α|2 +
G+G−1 − 2

4

=
〈na〉
G

+
G+G−1 + 2

4

≈ 〈na〉
G

+
G

4
.

(3.11)

3.2 Quantum Mechanical Noise With Loss in Linear Elements

To compute the noise, I calculate the variance of power signal ∆n. In order to do

so, I compute
〈

B̂†B̂B̂†B̂
〉

using (3.1).

〈

B̂†B̂B̂†B̂
〉

= |µ|4
(

|α|2(1 + |α|2)
)

+ 2ℜ
(

µ|µ|2ν∗α2(2 + |α|2)
)

+ 2ℜ
(

µ|µ|2ν∗α2|α|2
)

+ |µ|2|ν|2
(

4|α|4 + 8|α|2 + 2
)

+ 2ℜ
(

µ2ν∗2α4
)

+ 2ℜ
(

ν∗µ|ν|2α2
(

4 + 2|α|2
))

+ |ν|4
(

1 + 3|α|2 + |α|4
)

.

(3.12)

I then find〈n〉2 using (3.3) , which is

〈n〉2 = |µ|4|α|4 + 2ℜ
(

ν∗2µ2α4
)

+ |ν|4
(

1 + 2|α|2 + |α|4
)

+ 4ℜ
(

|µ|2|α|2ν∗µα2
)

+ 4ℜ
(

ν∗µα2|ν|2
(

|α|2 + 1
))

+ 2|µ|2|α|2|ν|2
(

|α|2 + 1
)

+ 2|µ|2|ν|2|α|4.

(3.13)

The variance is:

(∆n)2 =
(

|µ|4 + |ν|4
)

|α|2 + 4ℜ
(

µ|µ|2ν∗α2
)

+ 4ℜ
(

ν∗µ|ν|2α2
)

+ |µ|2|ν|2
(

6|α|2 + 2
)

.

(3.14)

when the relative phase between the signal and the pump is adjusted to give maximum

gain, I use (3.4)

(∆n)2 =
(

|µ|4 + |ν|4
)

|α|2 + 4
(

µ|2 + |ν|2
)

|µ||ν||α|2 + |µ|2|ν|2
(

6|α|2 + 2
)

. (3.15)
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Substituting equation (3.7) and (3.8) in the above equationand using the approximation

|µ|2 ≈ |ν|2, I get the variance for the maximum output to be

(∆n)2 ≈ G2

(

〈na〉 +
1

8

)

. (3.16)

This implies that the output photon number squared SNR is

SNRPNSout =
G2〈na〉2

G2
(

〈na〉 + 1
8

) (3.17)

Since SNRPNSin
= 〈na〉, the photon number squared NF is

NFPNS = 10 log

[

〈na〉
(

〈na〉 + 1
8

)

]

. (3.18)

Even for high parametric gain, the photon number squared NF of this OPA is signal

dependent for weak signal. For large signal (〈na〉 ≫ 1
8
), the photon number squared NF

approaches 0 dB. Also, I have

(∆E)2 =
G+G−1

4
. (3.19)

Therefore, the output field amplitude squared SNR is

SNRFASout =
4G〈na〉
G+G−1

. (3.20)

Since SNRFASin
= 2〈na〉, the field amplitude squared NF is

NFFAS = −10 log

[

2G

G+G−1

]

. (3.21)

For large parametric gain, NFFAS approaches -3 dB, which shows that NFFAS is not ap-

propriate for this OPA. The quadrature field noise variance is

〈

∆X̂2
〉

=
G+G−1 − 1

4
. (3.22)
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Therefore, the output quadrature field squared SNR is

SNRFASout =
4G〈na〉

G+G−1 − 1
. (3.23)

Since SNRQFSin
= 4〈na〉, the field amplitude squared NF is

NFQFS = −10 log

[

G

G+G−1 − 1

]

. (3.24)

For a large parametric gainG, NFQFS converges to 0 dB.

3.3 Quantum Mechanical Noise of NMZI with Lumped Loss

Real couplers are usually the largest practical loss and contribute heavily to total

noise. To get an estimate of their impact in the NMZI OPA’s noise figure, I will consider

a lumped loss before the Kerr medium and one after.

3.3.1 Quantum Mechanical Noise of Kerr Based NMZI with all the loss

at the Input

If there is a loss that is placed before each Kerr Medium, it isequivalent to placing

the losses at the inputs of the NMZI’s. I have shown that for anattenuator with lossL

in section (1.6.1) NFQFS = NFFAS = NFPNS = −10 log(L). The lossless parametric

amplifier has a noise figure of NFQFS = NFPNS = 0 dB and NFFAS = −3 dB for large

parametric gain. Therefore, for a NMZI OPA with lumped loss placed before the Kerr

medium, the noise figures are

NFPNS = NFQFS = −10 log(L) (3.25)
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and

NFFAS = −10 log(L) − 3 (3.26)

Let us now look for noise figures expressions with the lumped loss after the Kerr medium.

3.3.2 Quantum Mechanical Noise of Lossy Kerr Based NMZI withall

the loss at the Output

If the losses are placed after the Kerr Medium, it is equivalent to placing them after

the NMZI’s. The output field operator of the OPA is as given by equation (3.1). The

output after the loss is

Ĉ =
√
LB̂ + N̂, (3.27)

whereN̂ is Langevin noise operator proportional to the annihilation operator and that
[

N̂†, N̂
]

= 1 − L. In order to characterize this output signal, I need to calculate its

average and its variance. The average signal output is

〈

Ĉ†Ĉ
〉

= L
[

|µ|2|α|2 + 2ℜ
(

ν∗µα2
)

+ |ν|2
(

|α|2 + 1
)]

(3.28)

To calculate its variance, I first calculate
〈

Ĉ†ĈĈ†Ĉ
〉

〈

Ĉ†ĈĈ†Ĉ
〉

= L2
{

|µ|4
(

|α|2(1 + |α|2)
)

+ 2ℜ
(

µ|µ|2ν∗α2(2 + |α|2)
)

+ 2ℜ
(

µ|µ|2ν∗α2|α|2
)

+ |µ|2|ν|2
(

4|α|4 + 8|α|2 + 2
)

+ 2ℜ
(

µ2ν∗2α4
)

+ 2ℜ
(

ν∗µ|ν|2α2
(

4 + 2|α|2
))

+ |ν|4
(

1 + 3|α|2 + |α|4
)

}

+ L
[

6ℜ
(

ν∗µα2
)

+ |µ|2
(

1 + 3|α|2
)

+ |ν|2
(

2 + 3|α|2
)

+ L
]

.

(3.29)
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I then find〈n〉2 =
〈

Ĉ†Ĉ
〉2

using (3.28) , which is

〈n〉2 = L2
{

|µ|4|α|4 + 2ℜ
(

ν∗2µ2α4
)

+ |ν|4
(

1 + 2|α|2 + |α|4
)

+ 4ℜ
(

|µ|2|α|2ν∗µα2
)

+ 4ℜ
(

ν∗µα2|ν|2
(

|α|2 + 1
))

+ 2|µ|2|α|2|ν|2
(

|α|2 + 1
)

+ 2|µ|2|ν|2|α|4
}

+ L
[

2|µ|2|α|2

+ 4ℜ
(

ν∗µα2
)

+ 2|ν|2
(

|α|2 + 1
)

+ L
]

.

(3.30)

Therefore, the variance is

(∆n)2 = L2
{

(

|µ|4 + |ν|4
)

|α|2 + 4ℜ
(

µ|µ|2ν∗α2
)

+ 4ℜ
(

ν∗µ|ν|2α2
)

+ |µ|2|ν|2
(

6|α|2 + 2
)

}

+ L
[

2ℜ
(

ν∗µα2
)

+ |µ|2
(

1 + |α|2
)

+ |ν|2|α|2
]

.

(3.31)

When the relative phase between the signal and the pump is adjusted to give maximum

gain, I use equation (3.4) to get

(∆n)2 = L2
{

(

|µ|4 + |ν|4
)

|α|2 + 4
(

µ|2 + |ν|2
)

|µ||ν||α|2 + |µ|2|ν|2
(

6|α|2 + 2
)

}

+ L
[

2|ν||µ||α|2 + |µ|2
(

1 + |α|2
)

+ |ν|2|α|2
]

.

(3.32)

For high parametric gain, using equations (3.7) and (3.8), the approximation|µ|2 ≈ |ν|2

can be made. Substituting equation (3.7) and (3.8) in the above equation and using the

approximation that|µ|2 ≈ |ν|2, I get the variance for the maximum output to be

(∆n)2 ≈ L2G2

(

〈na〉 +
1

8

)

+ LG

(

〈na〉 +
1

4

)

. (3.33)

For high parametric gainG much larger than the lossL, I have

(∆n)2 ≈ L2G2

(

〈na〉 +
1

8

)

. (3.34)
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With the output signal beingGL〈na〉, the output photon number squared SNR is

SNRPNSout =
G2L2〈na〉2

L2G2
(

〈na〉 + 1
8

)

≈ 〈na〉 +
1

8
.

(3.35)

Since SNRPNSin
= 〈na〉,

NFPNS = − 10 log

[ 〈na〉
〈na〉 + 1

8

]

. (3.36)

For large signals〈na〉 ≫ 1
8
, NFPNS is roughly 0 dB.

To calculate the field amplitude squared NF, I compute(∆E)2, which is

(∆E)2 = L
G +G−1 − 2

4
+

1

2
. (3.37)

From this, it is then easy to show, using equations (1.64) and(1.72) , that

NFFAS = − 10 log

[

2GL

LG + LG−1 − 2L+ 2

]

. (3.38)

For a large parametric gainG, NFFAS converges to 0 dB.

To calculate the quadrature field squared NF, I compute
(

∆X̂
)2

, which is

(

∆X̂
)2

= L
G +G−1 − 2

4
+

1

4
. (3.39)

It is then easy to show that

NFQFS = − 10 log

[

2GL

LG + LG−1 − 2L+ 1

]

. (3.40)

For a large parametric gainG, NFQFS converges to 0 dB.

Let us find an expression that will reduce the amount of necessary calculations for

the NF.
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3.4 Simple Expression of Noise Figure for High Gain Parametric

Amplifier

In this section, I derive an expression for the noise for a general high gain parametric

amplifier, which will simplify the necessary calculations in the following chapters. For

important applications, the amplifier gain will be at least 10 dB. Unlike in the section 1.9,

I assume that there is an input signal that is much greater than the noise. I calculate the

output photon number variance of the OPA. I denoteÂout, the field operator at the output

of the parametric amplifier. Assuming that perturbation is valid, i.e.
〈

Âout

〉

≫ δÂout, I

can write

Âout =
〈

Âout

〉

+ δÂout, (3.41)

where
〈

Âout

〉

is the amplified signal field andδÂout is the noise field operator. From this

equation above, I find the variance of photon number, which is(see appendix B.1)

∆
(

Â
†
outÂout

)2

=
∣

∣

∣

〈

Âout

〉∣

∣

∣

2 〈

δÂ†
outδÂout

〉

+
〈

Âout

〉2 〈

δÂ†
outδÂ

†
out

〉

+
∣

∣

∣

〈

Âout

〉∣

∣

∣

2 〈

δÂoutδÂ
†
out

〉

+
〈

Âout

〉∗2 〈
δÂoutδÂout

〉

+
〈

δÂ†
outδÂoutδÂ

†
outδÂout

〉

−
〈

δÂ†
outδÂout

〉2

.

(3.42)

I assume that the signal power is much greater than the power of the noise. Therefore, I

only keep the beat terms between noise and signal since theseare the source of the noise

in the electrical domain. Therefore, I have

∆
(

Â
†
outÂout

)2

≈
∣

∣

∣

〈

Âout

〉∣

∣

∣

2 〈

δÂ†
outδÂout

〉

+
〈

Âout

〉2 〈

δÂ†
outδÂ

†
out

〉

+
∣

∣

∣

〈

Âout

〉∣

∣

∣

2 〈

δÂoutδÂ
†
out

〉

+
〈

Âout

〉∗2 〈
δÂoutδÂout

〉

=
∣

∣

∣

〈

Âout

〉

δÂ†
out +

〈

Âout

〉∗
δÂout

∣

∣

∣

2

.

(3.43)
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The average number of photon at the output is
∣

∣

∣

〈

Âout

〉∣

∣

∣

2

. At the input, I denote the

average input number of photon|αin|2. I denote byGp, the parametric gain of the OPA.

Therefore,
〈

Âout

〉

=
√

Gp|αin|eiφ, (3.44)

where|φ| is some phase.

∆
(

Â
†
outÂout

)2

= Gp|αin|2
∣

∣

∣
δÂ†

oute
iφ + δÂoute

−iφ
∣

∣

∣

2
(3.45)

I defineδX̂ andδŶ, such that

δX̂ ≡ δÂ†
oute

iφ + δÂoute
−iφ

2
(3.46)

and

δŶ ≡ δÂ†
oute

iφ − δÂoute
−iφ

2i
. (3.47)

This is equivalent to the following expression

δÂout =
(

δX̂ + iδŶ
)

eiφ. (3.48)

Substituting this expression and equation (3.44) into equation (3.43), I get

∆
(

Â
†
outÂout

)2

≈ 4Gp|αin|2
〈

δX̂
2
〉

. (3.49)

In equation (1.107), we saw that

ASE =
[〈

δŶ
2
〉

+
〈

δX̂
2
〉]

− 1

2
. (3.50)

Under the condition that
〈

δX̂
2
〉

≫
〈

δŶ
2
〉

ASE =
〈

δX̂
2
〉

. (3.51)
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This condition is expected since the component of the noise that is in phase with the signal

is expected to be considerably amplified compared to the component of the noise in the

quadrature phase. Therefore,

∆
(

Â
†
outÂout

)2

= 4G|αin|2ASE. (3.52)

I can compute using equation (1.62) the output photon numbersquared SNR, using equa-

tion (3.44) for the signal and (3.52) for the noise. I get

SNRPNSout =
G|αin|2
4ASE

. (3.53)

For a coherent state input, the input SNR is|αin|2. Therefore, the photon number squared

noise figure is

NFPNS = − 10 log

[

G

4ASE

]

. (3.54)

It is important to note that this result is only valid for large parametric gain (greater than

10dB) and for large signal power (greater than 10 photons).

To compute the quadrature field squared noise figure, I assumean input coherent

state|αin〉 for an OPA. The output quadrature phase squared SNR is

SNRQASout ≈
G|αin|2
〈

δX̂
2
〉 . (3.55)

For large gain, assuming the out of phase component of the noise is negligible relative to

the inphase component, the SNR becomes

SNRQASout ≈
G|αin|2
ASE

. (3.56)
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The input quadrature field squared SNR of an coherent state|αin〉 is 4|αin|2, the field

amplitude squared noise figure is

NFQFS = − 10 log

[

G

4ASE

]

. (3.57)

This means that for large signals and large parametric gain,

NFQFS = NFPNS. (3.58)

Now, I compute NFFAS. I first calculate the field amplitude squared output SNR for

an OPA with input coherent state|αin〉, which is

SNRFASout =
G|αin|2
(∆E)2

=
G|αin|2

〈

δX̂
2
〉

+
〈

δŶ
2
〉

=
G|αin|2

ASE+ 1
2

.

(3.59)

For large gain, I have

SNRFASout ≈
G|αin|2
ASE

. (3.60)

Since the input field amplitude squared SNR of an coherent state |αin〉 is 2|αin|2, the field

amplitude squared noise figure is

NFFAS = − 10 log

[

G

2ASE

]

, (3.61)

which shows that for large signal and large parametric gain,

NFFAS = NFPNSout − 3 = NFQFS − 3. (3.62)
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This result shows one more time that the NFFAS is inappropriate for OPAs. Therefore,

I will stop using it. The expression for NFQFS and NFNPS will be used to significantly

reduce the necessary calculations in the following chapters of this thesis.

58



Chapter 4

Quantum Mechanical Noise of a NMZI with Lossy Kerr Media

4.1 Overview

In the previous chapter, we have looked at the NMZI noise in which loss is either

at the input or at the output of the Kerr medium . In this chapter, we look at another case

in which the loss is uniformly distributed throughout the Kerr medium. In section 3.3,

I have shown that the signal is least degraded when all the loss is located after the Kerr

medium, in which case NFQFS ≈ NFPNS ≈ 0. I have also shown that the degradation is

the strongest when all the loss is placed before the Kerr medium, in which case NFQFS ≈

NFPNS ≈ −10 log(L). Therefore, I can expect the noise figure for the distributedloss

in the Kerr medium to be bracketed by the previous two extremecases, which is to be

between−10 log(L) and 0 dB.

While, this problem has been considered before by Imajukuet al. [8], their deriva-

tion seems to have errors. In this chapter I show a proper method for solving the problem.

In order to solve this problem, I derive the differential equation involving the quantum

operators in the lossy Kerr Medium. I then use first order perturbation theory to linearize

and solve the differential equation.
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4.2 Noise Figure of a Lossy Kerr Based NMZI OPA

4.2.1 Differential Equation of Field Operator in Lossy KerrMedium

For this analysis, I chose a small segment on the Kerr medium.I can choose a

model for that segment from a variety of possibilities. For example, it can be a lossless

propagation followed by loss, or loss followed by lossless propagation, or half of loss

followed by lossless propagation and then followed by half of loss. These different models

for the small segments adds to the same Kerr medium. Therefore, they are all expected to

yield the same results. I chose the model in which there is lossless propagation followed

by loss because I expect the calculations to be simpler. It isimportant to note that the

results in the previous chapter in which it was said that lossin front of a lossless Kerr

medium yield different results from loss after the Kerr medium, assumes a high gain. For

infinitesimal length, the gain produced by the Kerr medium isinfinitesimal. Therefore,

those results do not apply.

During the lossless propagation, the field goes through selfphase modulation which

can be described by the following equation [54]

dÂ(z)

dz
= iγÂ†(z)Â(z)Â(z). (4.1)

SinceÂ†(z)Â(z) is invariant of motion within the lossless Kerr medium afterpropagation

dz, I have

Â′(z) = exp
(

iγÂ†(z)Â(z)dz
)

Â(z)

≈
(

1 + iγÂ†(z)Â(z)dz
)

Â(z).

(4.2)
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Then the signal goes through loss. The signal field operator is expressed as follows:

Â(z + dz) = Â′(z)e−βdz + d̂f

= Â(z) +
(

iγÂ†(z)Â(z) − β
)

Â(z)dz + d̂f ,

(4.3)

where d̂f is Langevinian noise such that

[

d̂f , d̂f †
]

= 1 −
(

e−βdz
)2

≈ 2βdz.

(4.4)

Therefore, I have

dÂ(z)

dz
=
(

iγÂ†(z)Â(z) − β
)

Â(z) + N̂

,

(4.5)

where

[

N̂(z), N̂†(z′)
]

= 2βδ(z − z′), (4.6)

whereδ(·) is a Dirac delta function.

4.2.2 Using First Order Perturbation Theory

To solve equation (4.5), I introduceδÂ(z) such that

δÂ(z) ≡ Â(z) −
〈

Â(z)
〉

. (4.7)

I substitute this in the differential equation and separatefluctuating terms from steady

state terms, keep the linear terms and throw away the higher order terms, I get:

d
dz

(〈

Â(z)
〉

+ δÂ(z)
)

=

[

iγ

(

∣

∣

∣

〈

Â(z)
〉∣

∣

∣

2

+
〈

Â(z)
〉

δÂ†(z) +
〈

Â(z)
〉∗
δÂ(z)

)

− β

]

(〈

Â(z)
〉

+ δÂ(z)
)

+ N̂.

(4.8)
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Therefore

dδÂ(z)

dz
=

[

iγ

(

∣

∣

∣

〈

Â(z)
〉∣

∣

∣

2

δÂ(z) +
〈

Â(z)
〉2

δÂ†(z) +
∣

∣

∣

〈

Â(z)
〉∣

∣

∣

2

δÂ(z)

)

− βδÂ(z)

]

+ N̂.

(4.9)

For the average value equation, I get:

d
〈

Â(z)
〉

dz
=

(

iγ
∣

∣

∣

〈

Â(z)
〉∣

∣

∣

2

− β

)

〈

Â(z)
〉

. (4.10)

4.2.3 Solving the Differential Equation for the Average Value

To solve (4.10), I take an integral on both side of the equation as follows

∫ x

0

d
〈

Â(z)
〉

〈

Â(z)
〉 =

∫ x

0

(

iγ
∣

∣

∣

〈

Â(z)
〉∣

∣

∣

2

− β

)

dz. (4.11)

Since input state is|α〉,
〈

Â(0)
〉

≡ α. Since this is a propagation of a field through a

lossy medium with loss coefficientβ,I have

〈

Â(z)
〉

= αe−βz. (4.12)

I substitute this result in the equation then evaluate the integral to get an expression for
〈

Â(z)
〉

(see appendix A.1)

〈

Â(z)
〉

= αe−βz exp

(

iγ

2β
|α|2

(

1 − e−2βz
)

)

. (4.13)

4.2.4 Solving the Differential Equation for the Fluctuating Terms

Finding a solution for equation (4.9) is a bit more involved.I start by simplifying the

equation with a series of substitution. I begin with the following for short hand notation:

φ(z) ≡ γ

2β
|α|2

(

1 − e−2βz
)

+ θin. (4.14)
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These equation are then substituted in equation (4.9)

dδÂ(z)

dz
=
(

i2γ|α|2e−2βz − β
)

δÂ(z)

+
(

iγ|α|2e−2βze2iφ(z)
)

δÂ†(z) + N̂.

(4.15)

I make a series of change of variable starting withδÂ(z) ≡ δB̂eiφ(z), which gives

dδB̂(z)

dz
=
(

iγ|α|2e−2βz − β
)

δB̂(z) + iγ|α|2e−2βzδB̂†(z) + N̂e−iφ(z). (4.16)

Then, substitutingδB̂(z) = δĈ(z)e−βz in equation (4.16) gives

dδĈ(z)

dz
= iγ|α|2e−2βz

(

δĈ(z) + δĈ†(z)
)

+ N̂e−iφ(z)eβz. (4.17)

Then, I introduce the variables

δX̂ ≡ δĈ(z) + δĈ†(z)

2
(4.18)

and

δŶ ≡ δĈ(z) − δĈ†(z)

2i
. (4.19)

δX̂ andδŶ are Hermitian and

δĈ(z) = δX̂ + iδŶ (4.20)

Therefore, if I substitute this relation in equation (4.17), I get

d
dz

(

δX̂ + iδŶ
)

= iγ|α|2e−2βz
(

δĈ(z) + δĈ†(z)
)

+ N̂e−iφ(z)eβz. (4.21)

The Hermitian conjugate of the equation is

d
dz

(

δX̂ − iδŶ
)

= − iγ|α|2e−2βz
(

δĈ(z) + δĈ†(z)
)

+ N̂†eiφ(z)eβz. (4.22)
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Summing equations (4.21) and (4.22), I get

d
dz
δX̂ =

eβz

2

(

N̂†eiφ(z) + N̂e−iφ(z)
)

. (4.23)

Subtracting equations (4.21) and (4.22), I get

d
dz
δŶ = 2γ|α|2e−2βzδX̂ +

eβz

2i

(

N̂e−iφ(z) − N̂†eiφ(z)
)

. (4.24)

From equation (4.23), I get

δX̂(L) = δX̂(0) +

∫ L

0

eβz

2

(

N̂†eiφ(z) + N̂e−iφ(z)
)

dz. (4.25)

From equation (4.24), I get

δŶ(L) =

∫ L

0

[

2γ|α|2e−2βzδX̂(z) +
eβz

2i

(

N̂e−iφ(z) − N̂†eiφ(z)
)

]

dz

= δŶ(0) +
γ

β
|α|2

(

1 − e−2βL
)

δX̂(0)

+

∫ L

0

2γ|α|2e−2βz

∫ z

0

eβx

2

(

N̂†eiφ(x) + N̂e−iφ(x)
)

dxdz

+

∫ L

0

eβz

2i

(

N̂e−iφ(z) − N̂†eiφ(z)
)

dz,

(4.26)

wherex is a dummy variable and not a physical dimension. Therefore,

〈

δX̂
2
(L)
〉

=
〈

δX̂
2
(0)
〉

+
1

4

〈
∫ L

0

∫ L

0

eβ(z+z′)
(

N̂†eiφ(z) + N̂e−iφ(z)
)(

N̂†eiφ(z′) + N̂e−iφ(z′)
)

dzdz′
〉

=
〈

δX̂
2
(0)
〉

+
1

4

∫ L

0

∫ L

0

eβ(z+z′)
〈

N̂(z)N̂†(z′)
〉

dzdz′

=
〈

δX̂
2
(0)
〉

+
e2βL − 1

4

=
e2βL

4
,

(4.27)
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where I used
〈

δX̂
2
(0)
〉

= 1
4

since our input signal is a coherent state. I will use|α|2 =

|αp|2
2

, where|αp|2 is the pump power (only half of the pump power goes into each Kerr

medium). Therefore,

〈

δŶ
2
(L)
〉

=
〈

δŶ
2
(0)
〉

+
γ2

4β2
|αp|4

(

1 − e−2βL
)2
〈

δX̂
2
(0)
〉

+
1

4

〈
∫ L

0

∫ L

0

eβ(z+z′)
(

N̂†eiφ(z) − N̂e−iφ(z)
)(

N̂e−iφ(z′) − N̂†eiφ(z′)
)

dzdz′
〉

+
γ2

4
|αp|4

∫ L

0

∫ L

0

∫ z

0

∫ z′

0

eβ(x−2z+y−2z′)+i(φ(x)−φ(y))
〈

N̂N̂†
〉

dxdydz′dz

=
e2βL

4
+

γ2

16β2
|αp|4

(

1 − e−2βL
)2

+
1

8

γ2

β
|αp|4

(

1 − e−2βL
)

(

L− 1 − e−2βL

2β

)

=
e2βL

4
+

1

2

γ2

4β
|αp|4

(

1 − e−2βL
)

L

(4.28)

It is conventional to define

Leff ≡ 1 − e−2βL

2β
. (4.29)

Therefore,

〈

δŶ
2
(L)
〉

=
e2βL

4
+
γ2

4
|αp|4LeffL. (4.30)

Substituting back the changes of variables, it is easy to show that

δÂ(L) =
(

δX̂(L) + iδŶ(L)
)

eiφ(L)−βL. (4.31)

I defineδX̂B ≡ δX̂e
1
2
(iφ(L)−βL) andδŶB ≡ δŶe

1
2
(iφ(L)−βL). Therefore,

〈

δX̂
2

B(L)
〉

=
1

4
(4.32)

and

〈

δŶ
2

B(L)
〉

=
1

4
+
γ2

4
|αp|4LeffLe

−2βL (4.33)
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Using equation (1.107), I get the output ASE of the parametric amplifier, which is

ASE =
〈

δX̂
2

B(L)
〉

+
〈

δŶ
2

B(L)
〉

− 1

2

=
γ2

4
|αp|4LeffLe

−2βL

(4.34)

The large gain expression of the parametric amplifier is derived in appendix A.3 and is

G = γ2e−2βL|αp|4L2
eff . (4.35)

The observation of equation (A.24) shows that the field gain phase isieiφ(L) relative to that

of the input field, while that of the noise iseiφ(L) (see equation (4.31)). Therefore, at the

output, the noise field isπ
2

out of phase relative to our phase frame of reference. Therefore,

the in phase component of noise with the output signal isδŶB and the quadrature phase

component isδX̂B.
〈

δŶ
2

B(L)
〉

is much greater than
〈

δX̂
2

B(L)
〉

. Therefore, I can use

equation (3.54) to get the noise figure since it requires thatthe in phase component of the

noise be much larger than its quadrature phase. I calculate the noise figure and get

NFQFS = NFPNS = −10 log

[

1 − e−2βL

2βL

]

. (4.36)

See figure 4.1. This expression was obtained with the approximate expression (3.54) valid

only for high gain and large signal. In Appendix B, I derive the photon number squared

noise figure of a lossy Kerr Medium based NMZI assuming only that the parametric gain

is high. In other words, the input signal can be weak, the expression of the noise figure is

as follows

“ NFPNS = − 10 log





α2
s

L
Leff

α2
s + 1

8

(

L2

L2
eff

− L
Leff

+ 1
)



 . (4.37)

The noise figure shows that Haus [41] is right since it is dependent on the input signal,

which is a problem for this choice of definition of the noise figure.
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If I assume that the input signal is large, I can ignore in the noise figure expression

any term not containing the input signal power. I get

NFPNS ≈ − 10 log

[

α2
s

L
Leff

α2
s

]

. (4.38)

Therefore,

NFPNS = −10 log

[

1 − e−2βL

2βL

]

, (4.39)

which is in aggreement with equation (4.36).

This result is different from the result given by Imajukuet al. [8], which is

NFPNS = −10 log

[

1 +
2

(2βL)2

(

e2βL − 1 − 2βL− 1

2
(2βL)2

)]

(4.40)

4.3 Detailed Comparison with Imajuku’s Calculations

In this section, I want to show the steps in Imajukuet al.’s calculations that led to

the differences in our results. Imajukuet al. [8] write that the output field operator of the

NMZI OPA is

Â(L) = Â0(L)e−βL +
√

1 − e−2βLΓ̂s(L), (4.41)

where

Â0(L) = ei(ψ+θ′)





√

1 +

(

γ|αout|2L
2

)2

Â(0)e−iθ
′

+
γ|αout|2L

2
Â†(0)eiθ

′



 , (4.42)

|αout|2 = |α|21 − e−2βL

2βL
, (4.43)

|α|2 is the averaged photon number of the input pump,

θ′ = φb +
π
2
− φ0

2
, (4.44)
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Figure 4.1: Plots of NF vs loss for a Lossy Kerr medium based NMZI-OPA

φ0 = arctan

(

γ|αout|2L
2

)

, (4.45)

ψ = φ0 +
γ|αout|2L

2
, (4.46)

φb is the pump field phase at the output of the NMZI,

Γ̂s(L) = ei(ψ+θ′)

√

2βe−2βL

1 − e−2βL

(

e−iφ0

∫ L

0

eβzĉ0(z)dz

+
γ|αout|2

2

∫ L

0

∫ z

0

[

ie−iφ0eβzĉ0(z
′) + eβzĉ†0(z

′)
]

dz′dz

)

,

(4.47)

ĉ0(z) = e−iθ
′−i γ|αout|

2z

2 ĉ(z), (4.48)

ĉ(z) =
ĉm,1(z) + ĉm,2(z)√

2
, (4.49)
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ĉm,1(z) and ĉm,2(z) are the vacuum operator in each nonlinear medium of the NMZI.

They obey the following commutation relation

[

ĉm,i(z) + ĉ
†
m,i(z

′)
]

= δ(z − z′), (4.50)

wherei = 1, 2. At this point, this result is similar to the one I obtained inequation (A.8).

Without any explanation, they use the following mathematical identity (possibly it is an

approximation)
∫ z

0

ĉ0(z
′)dz′ = (L− z)ĉ0(z) (4.51)

Consequently, in equation (53) of their publication, they write

Γ̂s(L) = ei(ψ+θ′)

√

2βe−2βL

1 − e−2βL

(

e−iφ0

∫ L

0

eβzĉ0(z)dz

+
γ|αout|2

2

∫ L

0

(L− z)
[

ie−iφ0eβzĉ0(z) + eβzĉ†0(z)
]

dz

)

.

(4.52)

From then on, our results diverge. See figure 4.2 and 4.3

4.4 Quantum Mechanical Noise of a NMZI with Gain in the Kerr Medium

It has been shown that the loss in the nonlinear medium of NMZIOPA deteriorates

its noise figure. This gives me an idea on what to expect if the nonlinear medium is a

saturable absorber. However, it does not give much insight of what to expect in the case

where the nonlinear medium is an SOA. For this, I am going to consider a NMZI OPA

with gain in the Kerr medium instead of loss.

With a process similar to the previous section (see appendixC), I get the noise

figure of a NMZI with gain in the Kerr medium instead of loss. IfI choose

Leff ≡ e2g0L − 1

2g0

, (4.53)
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Figure 4.2: Plots of NFNPS vs Length for a Lossy Kerr medium based NMZI-
OPA as a comparison to Imajuku’set al. figure 6 [8]

then I have

〈

δÊ†
outδÊout

〉

≈ γ2e2g0Lα4
pL

2
eff

[

1

2
− Lg0

2 (e2g0L − 1)

]

. (4.54)

Under those condition, the expression of the parametric gain is

G ≈ γ2eg0Lα4
pL

2
eff . (4.55)

I use the noise figure formula I derived earlier

NFNPS ≈ − 10 log

[

G

4ASE

]

= 10 log

[

2 − L

Leff

]

.

(4.56)
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Figure 4.3: Plots of NFNPS vs Loss for a Lossy Kerr medium based NMZI-
OPA as a comparison to Imajuku’set al.

It can be seen that the noise figure goes very quickly to 3 dB( See figure 4.4).
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Figure 4.4: Plots of NFNPS vs Gain for Kerr Medium with gain based NMZI-OPA
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Chapter 5

Discussions of the Results from the Lossy Kerr Based NMZI OPA

In the previous chapters, I have looked the affects of the loss in Kerr based NMZI

OPA on its noise figure. In order to calculate its noise, I calculated quantum mechanically

the fluctuations of the field after the nonlinear medium. Fromthat result, I calculated the

output ASE of the OPA. From those results interesting thingscan be noticed.

First, in classical physics, when a noisy signal goes through a lossy medium, both

the signal and the noise decay the same way. Therefore, the SNR does not degrade. We

have seen that in section 4 that in quantum mechanics this is not true. It was seen that

the in phase component of the noise remaining constant (see equation (4.32)) while the

quadrature phase component grew (see equation (4.33)). Quantum mechanics guaranteed

that the noise did not go below the minimum threshold imposedby the Heisenberg un-

certainty principle. Since the signal decays, the SNR degrades. Furthermore, it was seen

that the inphase component of the noise, while remaining constant, made the quadrature

phase component grow (see equation (4.26)). This difference between classical physics

and quantum mechanics justifies the use of quantum mechanicsin that section. Moreover,

The ASE at the output is the amplified vacuum fluctuations. Letus get a typical value of

the ASE for a gain of 30 dB. From equation (4.34) and (4.35), I have

ASE =
G

4

(

2βL

1 − e−2βL

)

. (5.1)

It can be seen in the absence of gain, there is no ASE. Let us choose2βL = ln(2) (this
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choice will be justified later in this chapter). Then the expression of the ASE becomes

ASE =
G

2
ln(2). (5.2)

Therefore, for a 30 dB gain, the ASE is about 347 photons. Notethat in the absence of

loss, it is 250 photons. It is also important to note that classical OPA has classical noise,

for example from pump fluctuation (RIN and phase noise) and thermal noise. However, in

the absence of photon quantization there is no quantum noisedue to the uncertainty of〈n〉

and no vacuum input giving rise to ASE. In actuality, for boththe classical and quantum

OPA, the pump noise is the dominant noise. Loss in classical OPA does however lead to

noise. Thermal heat causes the index of refraction to have fluctuations, introducing phase

noise, and the thermal Rayleigh scattering causes RIN. These are thoroughly classical

noises.

Second, in section 1.6.2, I calculated an expression for theASE of a NMZI OPA

using quantum mechanics. From equation (1.107), the expression of the ASE is

ASE =
[〈

δŶ
2

1

〉

+
〈

δX̂
2

1

〉]

− 1

2
. (5.3)

This expression tells us that if the output from the nonlinear medium are coherent beams,

for which
〈

δŶ
2

1

〉

=
〈

δX̂
2

1

〉

= 1
4

there will be no ASE. We have also seen that the out-

put of a NMZI OPA amplifying a coherent state always containsASE. Therefore, in the

absence of ASE, there is no gain. ASE as derived here is in number of photons. Typi-

cally for high gain parametric amplification, ASE is in the order of 10 to a 100 photons.

Therefore, the−1
2

in the expression of the ASE is not important and can be neglected.

The expression becomes the same as the one given by classicalphysics. Therefore, in

that scenario quantum mechanics is not needed.
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Table 5.1: Different fiber that could be used in a Kerr based NMZI based OPA and their

optimum length and their maximum gain.

Fiber Type γ (/km/W) β (dB) Opt. Length (km) Max. Gain (dB)

SF 2.2 −0.1 15 20.2

HNL Fiber 15.8 −0.35 4.3 31.9

BOBF 460 −1.9 · 103 0.8 · 10−3 23.8

LSF 640 −1.3 · 103 1.2 · 10−3 28.4

Now, for practical devices Kerr based NMZI OPA, let us calculate the best perfor-

mance we can expect if different types of lossy fiber were usedas Kerr medium. In table

5.1, I show the loss coefficient and the nonlinear coefficientof Standard Fiber (SF)[8],

Highly Nonlinear Fiber (HNLF)[8], Bismuth-Oxide Based Fiber (BOBF) [39], Lead Sil-

icate Fiber (LSF) [40]. Let us calculate their optimum gain.The expression of the para-

metric gain from (4.35) is

G = γ2|αp|4e−2βL

(

1 − e−2βL

2β

)

. (5.4)

The parametric gain is length dependent (See figure 5.1) . Itsmaximum as a function of

L is reached when

Lopt =
ln(2)

2β
. (5.5)

The above expression justifies the earlier choice of2βL = ln(2). The maximum gain is

Gmax =
γ2

8β
|αp|4 (5.6)
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Figure 5.1: Plot of gain versus length for a HNLF (γ = 15.8)/km/W,β = −0.7dB/km )

At maximum gain, the noise figure is

NFQFS = NFPNS = −10 log

[

1

2 ln(2)

]

≈ 1.4186. (5.7)

To illustrate this, I compare the maximum gain for OPAs basedon the fibers in table 5.1

for an input pump of 2 Watt. It shows that HNLF fiber would yieldthe highest gain.

In the next chapter, I consider a different nonlinear medium.
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Chapter 6

Semiclassical Treatment of Optical Parametric Amplifier Based on

Saturable Absorber and Amplifier

In this chapter, I show that a Saturable Absorber (SA) or Semiconductor Optical

Amplifier (SOA) can be used as a non linear medium in the NMZI OPA [65]. The steady

state parametric amplifier gain is calculated from a simple classical model. I assume that

variation of gain or loss is usually accompanied by large phase modulation as generally

described by the Kramers-Kronig relation, which is typicalof semiconductor media. The

calculations are done for saturable absorber. The results are identical for an amplifier

except for the sign of the absorption coefficient.

6.1 Saturable absorber/Amplifier Overview

6.1.1 Loss Characteristics

For a cross sectionσ , the absorption or gain of a travelling wave is [51]

dP (z)

dz
= −σN(z)P (z), (6.1)

whereP (z) is the field amplitude squared,z is the axis of propagation andN(z) is the

number of atoms per unit length. For a SA/SOA, the absorption/ stimulated emission of

a photon changesN . Assuming one atom is removed for each photon and also assuming

that atoms relaxes and return with some time constantτ , the equation of the number of

77



atoms is

dN(z)

dz
= −σN(z)P (z)

~ω
+
N0 −N(z)

τ
, (6.2)

whereN0 is the total number of atoms per unit length. In steady state

N(z) =
N0

1 + P (z)
Psat

, (6.3)

wherePsat = ~ω
στ

. Psat is the saturation power. Substituting the equation above in(6.1), I

get

1

P (z)

dI(z)
dz

= − σN0

1 + P (z)
Psat

, (6.4)

The absorption/gain coefficient isβ(z) = σN(z). Multiplying equation (6.2) byσ I get

dβ(z)

dz
=
β(z)P (z)

τPsat
+
β0 − β(z)

τ
, (6.5)

whereβ0 = σN0. β0 is the loss/gain per unit length in the material. Also,[49]

1

P (z)

dP (z)

dz
=

−β0

1 + P (z)
Psat

. (6.6)

The same equation may represent the behavior of a SOA if the sign ofβ is inverted.β0 is

positive if the device is a SA and is negative if it is an SOA. The solution of this equation

in implicit algebraic form for a lengthL of the device is

ln

(

P (L)

P (0)

)

+

(

P (L) − P (0)

Psat

)

= −β0L. (6.7)

The solution to this equation is

P (L) = Psat ·W
(

P (0)

Psat

e
P (0)
Psat

−β0L

)

, (6.8)

whereW (y) is the Lambert W function defined as the inverse of the function.

y = WeW . (6.9)

78



The loss ratio is then [65]

Γ =
P (L)

P (0)
=
Iout

Iin
(6.10)

I define

β = − ln(Γ). (6.11)

Therefore,

eβ(z) =
Psat

P (0)
·W

(

P (0)

Psat
e

P (0)
Psat

−β0z

)

, (6.12)

6.1.2 Phase Variation

The SA also shifts the phase of the electric field as it propagates through it. This

change in phase depends on the Henry-alpha factor,αH , of the medium which is the ratio

between the real and imaginary parts of a complex loss. Typical values for the Henry-

alpha factor ranges between three and five. For an inputE(0) in an SA, the output electric

field after the SA is [65]

E(L) = E(0)e−
β
2
(iαH+1). (6.13)

Therefore,

θout = −β(z)

2
αH + θin, (6.14)

whereθin is the phase at the input to the medium.

6.2 Parametric Gain of SA based NMZI-OPA

Here I consider an NMZI as shown in figure 1.4 in which the nonlinear medium is

a saturable absorber. At the input of one arm of the NMZI, I have the electric field of the
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pumpEp, which I will chose to be real, and on the other arm, I have the CW input signal

Ese
iθin , whereθin is the relative phase betweenEs andEp. As previously, after the first

beam coupler, I have

Eout11 =
1√
2

(

Ep + iEse
iθin
)

, (6.15)

at the output of the first arm and

Eout11 =
1√
2

(

Ese
iθin + iEp

)

(6.16)

in the other arm. I denote byPa(z) andPb(z) respectively the power in the first SA and

second SA. From equations (6.15), I obtain

P1(0) =
1

2

(

E2
s + E2

p − 2EpEs sin(θin)
)

(6.17)

and from equation (6.16)

P2(0) =
1

2

(

E2
s + E2

p + 2EpEs sin(θin)
)

. (6.18)

Assuming thatEs is weak, then to the first order I have

P1(0) ≈ 1

2

(

E2
p − 2EpEs sin(θin)

)

(6.19)

and

P2(0) ≈ 1

2

(

E2
p + 2EpEs sin(θin)

)

. (6.20)

I will define the total relative loss of each SA using (6.8)

Γ1 ≡
P1(L)

P1(0)

=
Psat

P1(0)
W

(

P1(0)

Psat

e
P1(0)
Psat

−β0L

)

(6.21)
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and

Γ2 ≡
P2(L)

P2(0)

=
Psat

P2(0)
W

(

P2(0)

Psat
e

P2(0)

Psat
−β0L

)

.

(6.22)

I write the exponential lossβ1 ≡ − ln(Γ1) andβ2 ≡ − ln(Γ2). Since at the input of each

SA I had

Eout11(0) =
1√
2

(

Ep + ieiθinEs
)

(6.23)

Eout12(0) =
1√
2

(

eiθinEs + iEp
)

. (6.24)

At the output of each SA I have

Eout11(L) =
e−

1
2
(iαH+1)β1L

√
2

(Ep + iEs) (6.25)

and

Eout12(L) =
e−

1
2
(iαH+1)β2L

√
2

(Es + iEp) . (6.26)

The output fields of the NMZI are

Eout1 =
1

2

[ (

e−
1
2
(iαH+1)β1L − e−

1
2
(iαH+1)β2L

)

Ep

+ ieiθin
(

e−
1
2
(iαH+1)β1L + e−

1
2
(iαH+1)β2L

)

Es

]

(6.27)

and

Eout2 =
1

2

[

i
(

e−
1
2
(iαH+1)β1L + e−

1
2
(iαH+1)β2L

)

Ep

+ eiθin
(

e−
1
2
(iαH+1)β2L − e−

1
2
(iαH+1)β1L

)

Es

]

.

(6.28)

I am only interested in output field one since it is the signal output, which can be rewritten

as

Eout1 =
e−

1
4
(iαH+1)(β1+β2)L

2

[ (

e−
1
4
(iαH+1)(β1−β2)L − e−

1
4
(iαH+1)(β1−β2)L

)

Ep

+ ieiθin
(

e−
1
4
(iαH+1)(β1−β2)L + e−

1
4
(iαH+1)(β1−β2)L

)

Es

]

.

(6.29)
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Next, I simplify the above expression by defining the differential absorptionβ1−β2

and calculating its approximate expression.

6.2.1 Approximate Expression for the Differential Absorption

I substitute (6.19) and (6.20) in (6.21) and (6.22) and I obtain

Γ1 =
Psat

E2
p − 2EpEs sin(θin)

×W

(

(

E2
p − 2EpEs sin(θin

)

Psat
e
(E2

p−2EpEs sin(θin)
Psat

−β0

) (6.30)

and

Γ2 =
Psat

E2
p + 2EpEs sin(θin)

×W

(

(

E2
p + 2EpEs sin(θin

)

Psat

e
(E2

p+2EpEs sin(θin)
Psat

−β0

)

.

(6.31)

For any differentiable functionf(x), to the first order, I have

f(x+ ∆) − f(x− ∆) ≈ 2f ′(x)∆. (6.32)

I choose∆ = 2EpEs sin(θin). Therefore (see appendix D.1),

Γ2 − Γ1 = Γ(∆) − Γ(−∆) ≈ 2∆Γ′(E2
p), (6.33)

where

Γ(x) =
Psat

x
·W

(

x

Psat
e

x
Psat

−β0

)

. (6.34)

It can be shown (see appendix D.2)

Γ′(E2
p) = − Γ(Γ − 1)

Psat + ΓE2
p

. (6.35)
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Therefore,

β2 − β1 ≈= 2EpEs
(Γ − 1)

Psat + Γp
sin(θin), (6.36)

wherep ≡ 1
2
E2
p (see appendix D.3).

6.2.2 Parametric Gain Calculation

Since∆ is small, to the first orderβ2 + β1 ≈ 2β whereβ ≡ ln(Γ(E2
p)). Therefore,

equation (6.29) can be written

Eout1 ≈
e−

β
2
(iαH+1)

2

[(

e−
1
4
(iαH+1)(β1−β2) − e−

1
4
(iαH+1)(β2−β1)

)

Ep

+ ieiθin
(

e−
1
4
(iαH+1)(β1−β2) + e−

1
4
(iαH+1)(β2−β1)

)

Es

]

.

(6.37)

Substituting for the approximation ofβ1 − β2 from equation (6.36) and introducingp ≡

1
2
E2
p , I get

Eout1 ≈ e−
β
2
(iαH+1)

[

ieiθin − (iαH + 1)
(1 − Γ) sin(θin)

Γp+ Psat
p

]

Es. (6.38)

I define

Ein = Ese
iθin . (6.39)

Substituting forEin, I get

Eout1 = e−
β
2
(iαH+1)

[

iEin −
(iαH + 1)

2i

(1 − Γ)

E2
pΓ + Psat

p (Ein − E∗
in)

]

. (6.40)

I defineµ andν such that

Eout1 = µEin + νE∗
in, (6.41)

then I have

µ ≡ e−
β
2
(iαH+1)

[

i+
i

2
(iαH + 1)

(1 − Γ)

Γp+ Psat

p

]

(6.42)
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and

ν ≡ e−
β
2
(iαH+1)

[

i

2
(iαH + 1)

(1 − Γ)

Γp+ Psat
p

]

. (6.43)

Therefore, the parametric gain is

Gpar =
∣

∣µeiθin + νe−iθin
∣

∣

2
. (6.44)

The maximum parametric gain that can be attained by adjusting the relative phase between

the pump and the signal is

Gpar = |µ+ ν|2 . (6.45)

The minimum parametric gain that can be attained by adjusting the relative phase between

the pump and the signal is

Gpar = |µ− ν|2 . (6.46)

See figures 6.1 and 6.2

It can be seen that a phase sensitive amplifier is obtained with a possibility of more

than 10 dB gain difference between the minimum and the maximum depending on the

relative phase.

6.3 Bandwidth of the SA Based NMZI

So far, I have considered a CW signal. In this section, I will look for the bandwidth

and noise of the SA based NMZI. As before, I assume that the arms are normally balanced

so that that the low power bandwidth is very large.

84



Figure 6.1: Minimum and maximum parametric gain vsp/Psat for a SA based
NMZI OPA with αH = 25, β0L = 4.

6.3.1 Response of a SA to a Modulated Signal

To find the response of a SA to a modulated signal, I will assumea weak modulated

signal at the input and a strong CW pump. I will write for our signalEs = As(t)e
iθin

whereAs(t) a real signal and andEp =
√

2Ap for the pump. From equation (6.5), the

expression of the absoption coefficient is

∂β(z)

∂t
=
β0 − β(z)

τ
− β(z)|E(z)|2

Psatτ
(6.47)

with

|E(z)|2 ≈ A2
p(z) − 2Ap(z)As(z, t) sin(θin) (6.48)
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Figure 6.2: Minimum and maximum parametric gain vs.p/Psat for a SOA
based NMZI OPA withαH = 5, β0L = −4.

and τ is the carrier lifetime. To simplify the expressions, I willsetPsat = 1, which

is equivalent to saying that powers are normalized toPsat. I will reintroducePsat at

the end by dividing all the powers byPsat. Using a perturbation technique , I write

β(z) = βs(z) + δβ(z), whereβs(z) is the steady state loss andδβ(z) is the perturbation

in loss.−2Ap(z)As(z, t) sin(θin) is the driving term of the perturbation. I substitute these

relations in equation (6.47) and separate the constant terms from the pertubation terms

and obtain the two equations:

τ
∂δβ(z)

∂t
= 2βs(z)Ap(z)As(z, t) sin(θin) − δβ(z)(1 + A2

p(z)) (6.49)

0 =
β0 − β

τ
−
βA2

p(z)

τ
. (6.50)
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Equation (6.50) gives me the steady state solution, which is

βs(z) =
β0

1 + P (z)
, (6.51)

whereP (z) = A2
p(z). Taking the Fourier transform of equation (6.49), I get

iΩτδβ̃Ω(z) = 2βs(z)Ap(z)Ãs(z,Ω) sin(θin) − δβ̃Ω(z)(1 + A2
p(z)), (6.52)

whereΩ is the signal envelope frequency,δβ̃Ω(z) is the Fourier transform ofδβ(z) and

Ãs(z,Ω) is the Fourier transform ofAs(z, t). I shall here after represent the Fourier

transform of any variable by a over the variable symbol. Solving for δβ̃Ω, I get

δβ̃Ω(z) =
−βs(z)∆Ps(z,Ω)

1 + P (z) + iΩτ
(6.53)

The equation of the power inside each SA is governed by [52]

dPt(z)
dz

= −β(z)Pt(z). (6.54)

Taking the Fourier transform of the equation, I get

dP̃t(z,Ω)

dz
= −β̃Ω(z,Ω)P̃t(z,Ω). (6.55)

Using a perturbation technique , I will writẽPt(z,Ω) = P (z)+ ∆P̃s(z,Ω) whereP (z) is

the constant portion and∆P̃s(z,Ω) is the perturbation of the power. Obviously,

P (z) ≡ A2
p(z) (6.56)

and

∆P̃s(z,Ω) ≡ −2Ap(z)Ãs(z,Ω) sin(θin). (6.57)

I substitute this perturbation equation in equation (6.55)and obtain

dP (z)

dz
+

d∆P̃s(z,Ω)

dz
= −βs(z)P (z) − δg̃Ω(z)P (z) − βs(z)∆P̃s(z,Ω). (6.58)
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I separate this equation into a steady state equation and a perturbation equation. For the

steady state equation, I have

dP (z)

dz
= −βs(z)P (z), (6.59)

whereβs(z) is given by equation (6.51). Therefore,

∫ L

0

(

1

P (z)
+ 1

)

dP (z) = −
∫ L

0

β0 dz. (6.60)

It has been already seen that the solution to this equation is

P (z) = P (0)W
(

P (0)eP (0)−β0z
)

. (6.61)

For the perturbation equation, I have

d∆P̃s(z,Ω)

dz
= −δβ̃Ω(z)P (z) − βs(z)∆P̃s(z,Ω). (6.62)

If I define the total steady state gain asΓs = P (L)
P (0)

, then I can show that the solution of this

equation is (see appendix E.1)

∆Ps(L,Ω) = ∆Ps(0,Ω)Γs

(

1 + P (0) + iΩτ

1 + P (L) + iΩτ

)

. (6.63)

I will define

∆β(Ω) =

∫ L

0

δβ̃Ω(z)dz. (6.64)

Therefore, I can prove that (see appendix E.1)

∆β(Ω) =
−(1 − Γs)

1 + ΓsP (0) + iΩτ
∆Ps(0,Ω). (6.65)

This results is consistent with the previous results since for Ω = 0, I obtain equation

(6.36).
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6.3.2 Overall System Output

In this section, I will follow a procedure identical to the one used in section 6.2.2

(see appendix E.2). I define

Ẽin(Ω) ≡ Ãs(Ω)eiθin . (6.66)

The output field is then

Ẽout = µẼin(Ω) + νẼ∗
in(Ω), (6.67)

where

µ ≡ ie−
βs
2

(iαH+1)

[

1 − 1

2
(iαH + 1)

(Γ − 1)

Γsp+ Psat + iΩτPsat

p

]

(6.68)

and

ν ≡ ie−
βs
2

(iαH+1)

[

1

2
(iαH + 1)

(Γ − 1)

Γp+ Psat + iΩτPsat
p

]

, (6.69)

where P is the power of the input pump on each arm of the NMZI:p = A2
p. Reintroducing

Psat, I see that forΩ = 0, equation (6.68) and (6.69) are equivalent to equation (6.42) and

(6.43). I can now find the parametric gain, which is

G(Ω) =
|Ẽout|2
|Ãs(Ω)|2

= |µ(Ω)eiθin + ν(Ω)|e−iθin |2
(6.70)

See figure 6.3.

To calculate the noise figure, I need to use quantum mechanicsto calculate the noise

generated by this device.
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Figure 6.3: Parametric gain in dB vsΩ in 1/τ for a SA based NMZI OPA
with p/Psat = 25, αH = 5andβ0L = 4.
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Chapter 7

Quantum Mechanical Model for Interaction of Light with a Saturable

Absorber

7.1 Overview

I considered two possible candidates for the new type of phase sensitive amplifier,

based on either SOA or on SA. Based on results from Shtaifet al. [66], I concluded that

the SOA produces too much ASE noise to be useful. Therefore, Idecided to investigate

the noise properties of non linear media based saturable absorbers. The question which

I am trying to answer in the next several chapters is what is the minimum noise in a SA

based NMZI OPA. In this chapter, I will follow closely the formalism of Professor Rana

[61] to derive the equations for time evolution of operatorsdescribing the field and the

medium.

7.2 Quantum Mechanical Model

Figure 7.1 shows schematically a saturable absorber interacting with a single quan-

tized mode of electromagnetic field. I will use Jaynes-Cummings formalism to describe

the electromagnetic field interacting with atoms [46, 62]. Iwill start with the Hamiltonian,

which gives the energy of the atom, the energy of the electricfield and their coupling.

Ĥ = E1N̂1 + E2N̂2 + ~ω0Â
†Â + κÂσ̂+ + κ∗Â†σ̂− +

1

2
, (7.1)
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Figure 7.1: Single Mode Quantum Mechanical Model

whereκ is a complex constant that I will discuss later,E1 andE2 are the energy levels of

the atom̂σ−, σ̂+, N̂1 andN̂2 are atomic state operators. For two atomic energy levels|e1〉

and|e2〉, the operator̂σ+ raises the atomic state from level 1 to level 2, whileσ̂− lowers

it. Therefore,

σ̂+ = |e2〉〈e1|, (7.2)

σ̂− = |e1〉〈e2|, (7.3)

thus

σ̂− = σ̂†
+. (7.4)

Further,

N̂1 = |e1〉〈e1| (7.5)
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and

N̂2 = |e2〉〈e2|. (7.6)

From this, it follows that

N̂1 = σ̂−σ̂+ (7.7)

and

N̂2 = σ̂+σ̂−. (7.8)

The Hamiltonian for the electric field interacting withN atoms becomes

Ĥ =

N
∑

k=1

(

E1N̂1 k + E2N̂2 k + κÂσ̂+ k + κ∗Â†σ̂− k

)

+ ~ω0Â
†Â +

1

2
, (7.9)

whereN̂1 k andN̂2 k, k ∈ {1, 2, .., N} are the raising operator and lowering operator of

thekth atom. I define

N̂1 ≡
N
∑

k=1

N̂1 k, (7.10)

N̂2 ≡
N
∑

k=1

N̂2 k, (7.11)

σ̂− ≡
N
∑

k=1

σ̂− k (7.12)

and

σ̂+ ≡
N
∑

k=1

σ̂+ k. (7.13)

The Heisenberg equation for a general operatorÔ(t) is given by

dÔ(t)

dt
=

1

i~

[

Ô(t), Ĥ
]

. (7.14)

Applying this equation to each of the operators, and using the relations between the oper-

ators, I get

dN̂2(t)

dt
=

1

i~

[

κσ̂+(t)Â(t) − κ∗σ̂−(t)Â†(t)
]

, (7.15)
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dN̂1(t)

dt
= −dN̂2(t)

dt
, (7.16)

dN̂1(t)

dt
= − 1

i~

[

κσ̂+(t)Â(t) − κ∗σ̂−(t)Â†(t)
]

, (7.17)

dÂ(t)

dt
= iω0Â(t) − iκ∗

~
σ̂−, (7.18)

dσ̂+(t)

dt
= iω21σ̂+(t) − iκ∗

~
Â†
[

N̂2(t) − N̂1(t)
]

. (7.19)

where

ω21 ≡
E2 −E1

~
. (7.20)

Any population in level 2 causes spontaneous emission, which is very detrimental.

Because, I am trying to consider only saturable absorbers introducing minimum noise into

the parametric amplifier, I will consider only a system in which the upper level is quickly

depopulated by fast transitions to other levels lumped as level 3. As illustrated in figure

7.2 this level then slowly relaxes back to ground state. Thisis typical of what occurs in

many semiconductor absorbers.

Therefore, I am going to add fast relaxation and dephasing toequation (7.19) [50]

dσ̂+(t)

dt
= (iω21 − γ) σ̂+(t) +

iκ∗

~
Â†N̂1(t) + F̂+(t), (7.21)

whereγ is the relaxation and dephasing rate andF̂+(t) is the noise associated with it. I

also add an empirical term for repopulation of level 1 to equation (7.17), which results in

dN̂1(t)

dt
=
N − N̂1(t)

τ
+
i

~

[

κσ̂+(t)Â(t) − κ∗σ̂−(t)Â†(t)
]

+ F̂N(t), (7.22)

whereτ is the rate of relaxation and̂FN(t) is the noise due to relaxation. I will see later

in this chapter whŷF+(t) andF̂N (t) had to be added and I will evaluate their properties.

Now I have a complete system of differential equations. To solve them, I will first find an

expression for̂σ+, which I will later substitute in the differential equationin Â(t).
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Figure 7.2: 3 Level System

From equation (7.21), it can be shown that (see appendix F.1),

σ̂+(t) = σ̂+(0)e(iω21−γ)t +
iκ∗

~
e(iω21−γ)t

∫ t

0

Â†(t′)N̂1(t
′)e−(iω21−γ)t′dt′

+
~

iκ
F̂

†
ab(t)e

iω0t,

(7.23)

where

F̂
†
ab ≡iκ

~
e−iω0t

∫ t

0

F̂+(t′)e−(iω21−γ)(t−t′)dt′. (7.24)

For the semiconductor I am considering,γ is large. As a result, the first term of the above

equation can be neglected and the initial conditions are quickly forgotten by the system.
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Therefore,

σ̂+(t) =
iκ∗

~
e(iω21−γ)t

∫ t

0

Â†(t′)N̂1(t
′)e−(iω21−γ)t′dt′ +

~

iκ
F̂

†
ab(t)e

iω0t. (7.25)

Let Â(t) ≡ B̂(t)e−iω0t. N̂1(t) andB̂(t) are varying much slower than the terme(iω21−γ)t.

Therefore, they can be moved in front of the integral

σ̂+(t) =
iκ∗

~
e(iω21−γ)tB̂†(t)N̂1(t)

∫ t

0

e−(i(ω21−ω0)−γ)t′dt′ +
~

iκ
F̂

†
ab(t)e

iω0t. (7.26)

After evaluating the integral, I have

σ̂+(t) =
κ∗

i~

B̂†(t)N̂1(t)

(i(ω21 − ω0) − γ)

(

eiω0t − e(iω21−γ)t)+
~

iκ
F̂

†
ab(t)e

iω0t. (7.27)

Whenγ is very large, I can again neglecte(iω21−γ)t. I then obtain the expression forσ̂+,

which is

σ̂+(t) =
κ∗

~

Â†(t)N̂1(t)

((ω0 − ω21) − iγ)
+

~

iκ
F̂

†
ab(t)e

iω0t. (7.28)

Now, I will substitute this expression of̂σ+ into the differential equation of̂A(t).

Equation (7.18) is a differential equation forA(t) in terms ofσ̂−

dÂ(t)

dt
= iω0Â(t) − iκ∗

~
σ̂− (7.29)

I can use the expression for̂σ+ from equation (7.28) to get an expression ofσ̂−, since

σ̂+ = σ̂†
−, which can be substituted in the above equation. I get

dÂ(t)

dt
=

|κ|2
~2

Â(t)N̂1(t)

(

− γ

((ω0 − ω21)2 + γ2)
− i

(ω0 − ω21)

((ω0 − ω21)2 + γ2)

)

+ F̂ab(t)e
−iω0t + iω0Â(t),

(7.30)

I define℧ such that

℧ ≡ |κ|2
~2

(

− γ

((ω0 − ω21)2 + γ2)
− i

(ω0 − ω21)

((ω0 − ω21)2 + γ2)

)

(7.31)
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The first term corresponds to absorption of the field with coefficient

℧r ≡ − |κ|2
~2

γ

((ω0 − ω21)2 + γ2)
, (7.32)

and the second corresponds to index of refraction change

℧i ≡
|κ|2
~2

(ω0 − ω21)

((ω0 − ω21)2 + γ2)
. (7.33)

Now, I will calculate the properties of̂Fab(t), required when I solve the differential equa-

tion in Â(t).

In equation (7.21), I added an empirical term for the noise associated with relaxation

and dephasing. This noise lead to the expression forF̂ab(t) in equation (7.24). The noise

term is necessary so that so that
[

Â(t), Â†(t)
]

= 1 for all values oft. Without F̂ab(t), I

would have

dÂ(t)

dt
= − ℧Â(t)N̂1(t) + iω0Â(t). (7.34)

I defineĈ ≡ ℧N̂1(t) + iω0

dÂ(t)

dt
= − ĈÂ(t). (7.35)

I then have

Â(t) = Â(0)e−Ĉt. (7.36)

Therefore

[

Â(t), Â†(t)
]

=
[

Â(0), Â†(0)
]

e−(Ĉ+Ĉ
†)t

= e−(Ĉ+Ĉ†)t,

(7.37)
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which is obviously wrong as the answer should be one (1) . To fixthis, I must add the

following noise term

dÂ(t)

dt
= − ĈÂ(t) + F̂ab(t)e

−iω0t (7.38)

I can assume that
[

F̂ab(t), F̂
†
ab(t

′)
]

= Ĉ0δ(t− t′), since the noise fluctuates much faster

that the other variables(on a time scale1/γ) [63]. The solution of this equation is

Â(t) = Â(0)e−Ĉt +

∫ t

0

e−Ĉ(t−t′)−iω0t
′

F̂ab(t
′)dt′. (7.39)

Computing the commutator of̂A(t), I can show that (see appendix F.1.1)

Ĉ0 = Ĉ + Ĉ†

= 2℧rN̂1(t).

(7.40)

Therefore,

[

F̂ab(t), F̂
†
ab(t

′)
]

= 2℧rN̂1(t)δ(t− t′). (7.41)

In general, starting with equation (7.21), I would obtain

[

F̂ab(t), F̂
†
ab(t

′)
]

= − 2℧r

(

N̂2(t) − N̂1(t)
)

δ(t− t′), (7.42)

and

〈

F̂
†
ab(t)F̂ab(t

′)
〉

= 2℧r

〈

N̂2(t)
〉

δ(t− t′) (7.43)

and [64]

〈

F̂ab(t)F̂
†
ab(t

′)
〉

= 2℧r

〈

N̂1(t)
〉

δ(t− t′). (7.44)
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Because I am neglectinĝN2(t), I can set

〈

F̂
†
ab(t)F̂ab(t

′)
〉

= 0. (7.45)

N̂1(t) cannot be neglected due to its importance. Now, I will derivea differential equation

for n̂(t), the number of photons in the mode operator, which will laterhelp us solve the

system of differential equations. By definition̂n(t) = Â†(t)Â(t). Taking the derivative

of this equation, I get

dn̂(t)

dt
= Â†(t)

dÂ(t)

dt
+

dÂ(t)

dt
Â(t). (7.46)

After substituting equation (7.38) I get

dn̂(t)

dt
= − 2℧rN̂1(t)n̂(t) + Â†(t)F̂ab(t)e

−iω0t + F̂
†
abÂ(t)eiω0t. (7.47)

The term−2℧rN̂1(t)n̂(t) represent absorption. Using equation (7.39), I can compute
〈

Â†(t)F̂ab(t)e
−iω0t

〉

and
〈

F̂
†
ab(t)Â(t)eiω0t

〉

. I can obtain (see appendix F.1.2)

〈

Â†(t)F̂ab(t)e
−iω0t

〉

= 0. (7.48)

Similarly

〈

F̂
†
ab(t)Â(t)e−iω0t

〉

= 0. (7.49)

Using perturbation theory in equation (7.47), it can easilybe shown that

dn(t)

dt
= − 2℧rN1n(t), (7.50)

whereN1 ≡
〈

N̂1(t)
〉

and is assumed to be constant, andn(t) ≡ 〈n̂(t)〉. Solving this

differential equation gives us

ln

[

n(T )

n(0)

]

= − 2℧rN1T. (7.51)

99



Referring back to equation (7.32) for the definition of℧r, we can see thatκ
~

is the Rabi

frequency [37]. It can also be expressed as follows [38]

|κ|2
~2

=
ω0

2ǫ0~V
|~e · ~D12|2

,

(7.52)

whereV is the volume,D12 is the dipole moment. Therefore,

|κ|2
~2

=
ω0

2ǫ~SL
|~e · ~D12|2, (7.53)

whereS is the cross sectional area of the optical beam andL the length of the cavity.

SinceT = L
c
, I get

ln

[

n(T )

n(0)

]

= − ω0

ǫ0c~S
|~e · ~D12|2

γ

((ω0 − ω21)2 + γ2)
N1. (7.54)

Since this expression is the absorption coefficient, I define

β̂(t) ≡ ω0

ǫ0c~S
|~e · ~D12|2

γ

((ω0 − ω21)2 + γ2)
N̂1(t). (7.55)

Returning to the differential equation of̂A(t), I simplify equation (7.30) by substi-

tuting for Â(t) = B̂(t)e−iω0t. I get

dB̂(t)

dt
= − ℧N̂1(t)B̂(t) + F̂ab(t). (7.56)

Equation (7.56) can be rewritten

dB̂(t)

dt
= − ℧r

(

1 + i
℧i

℧r

)

N̂1(t)B̂(t) + F̂ab(t). (7.57)

Then using equation (7.55), I have

dB̂(t)

dt
= − β̂(t)

2T

(

1 + i
℧i

℧r

)

B̂(t) + F̂ab(t). (7.58)
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Let

αH ≡ ℧i

℧r

, (7.59)

the Henry alpha factor. Finally, the equation becomes

dB̂(t)

dt
= − β̂(t)

2T
(1 + iαH) B̂(t) + F̂ab(t). (7.60)

As a check on this equation, I consider the case of unsaturable loss. For unsaturable

lossβ̂(t) = β is constant. After the interaction, I have

B̂out = B̂ine
−β

2
(1+iαH) + F̂loss, (7.61)

whereB̂in ≡ B̂(0) is the input wave, before interaction,B̂out ≡ B̂(T ) is the output wave

and

F̂loss ≡ e−
β
2
(1+iαH )

∫ T

0

F̂ab(t)e
cβ
2L

(1+iαH)tdt. (7.62)

I use equation (7.45) to get

〈

F̂
†
lossF̂loss

〉

= 0. (7.63)

I then use equation (7.44)to get

〈

F̂lossF̂
†
loss

〉

= 1 − e−β , (7.64)

which is consistent with what I said in section 1.6.1 andαH has no effect on the loss

induced noise.

Now, I will obtain a differential equation for̂N1(t). I substitute the expression of

σ̂− andσ̂+ from equation (7.28) in equation (7.22), I get

dN̂1(t)

dt
= − 2℧rn̂(t)N̂1(t) + F̂N (t) +

N − N̂1(t)

τ

− Â†(t)F̂ab(t)e
−iω0t − F̂

†
abÂ(t)eiω0t.

(7.65)
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To solve the differential equation above, I will need to find the properties of̂FN (t). I use

an argument similar to the one I used forF̂ab(t) to justify its addition in equation (7.17)

and to prove that for a single atom (see appendix F.2)

〈

F̂Nj(t)F̂Nj(t
′)
〉

=
1 −

〈

N̂1j(t)
〉

τ
δ(t− t′). (7.66)

For a collection ofN atoms, it is (see appendix F.3)

〈

F̂N (t)F̂N (t′)
〉

=
N −

〈

N̂1(t)
〉

τ
δ(t− t′). (7.67)

I can now simplify equation (7.65) by substitutinĝA(t) = B̂(t)eiω0t. I get

dN̂1(t)

dt
= − 2℧rn̂(t)N̂1(t) + F̂N (t) +

N − N̂1(t)

τ

− B̂†(t)F̂ab(t) − F̂
†
abB̂(t).

(7.68)

I substitute in the above relation equation (7.55) and aftersome algebraic manipulations,

I get

dβ̂(t)

dt
=
β0 − β̂(t)

τ
− 2℧rn̂(t)β̂(t) + F̂L(t), (7.69)

where

β0 ≡ 2
L

c
℧rN (7.70)

and

F̂L(t) ≡ −2
L

c
℧r

(

B̂†(t)F̂ab(t) + F̂
†
abB̂(t)

)

+ 2
L

c
℧rF̂N (t). (7.71)

F̂L(t) is Hermitian. I can compute its properties by computing
〈

F̂L(t)F̂L(t)
〉

. For this, I

first substitute equation (7.55) in equation (7.44) to get

〈

F̂ab(t)F̂
†
ab(t

′)
〉

=
1

T

〈

β̂(t)
〉

δ(t− t′). (7.72)
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I then use this result to get

〈

F̂L(t)F̂L(t
′)
〉

= 2℧rT





β0 + (2τ℧r 〈n̂(t)〉 − 1)
〈

β̂(t)
〉

τ



 δ(t− t′). (7.73)

I multiply equation (7.71) bŷFab(t) and take the average to get

〈

F̂L(t)F̂†
ab(t

′)
〉

= − 2℧r

〈

B̂†(t)
〉〈

β̂(t)
〉

δ(t− t′). (7.74)

I multiply equation (7.71) bŷF†
ab(t) and take the average to get

〈

F̂ab(t)F̂L(t′)
〉

= − 2℧r

〈

B̂(t)
〉〈

β̂(t)
〉

δ(t− t′). (7.75)

In conclusion, I obtained from this chapter the following results

dβ̂(t)

dt
=
β0 − β̂(t)

τ
− 2℧rn̂(t)β̂(t) + F̂L(t), (7.76)

dB̂(t)

dt
= − 1

2T
β̂(t) (1 + iαH) B̂(t) + F̂ab(t), (7.77)

and I can rewrite equation (7.47) as follows

dn̂(t)

dt
= − 1

T
β̂(t)n̂(t) + B̂†(t)F̂ab(t) + F̂

†
abB̂(t). (7.78)
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Chapter 8

Solving Differential Equation of SA

8.1 Overview

In the previous chapter, I derived equation (7.76) and equation (7.77), which are the

simultaneous differential equation describing the interaction between the field operator

and a saturable absorber. In this chapter, I will find a solution to those differential equa-

tion. In these solutions, I assumed that the noise terms are small compared to the average

values of the parameters. Therefore, I will use first order perturbation theory.

8.2 Deriving Simultaneous Differential Equations of the Inphase and Quadra-

ture Phase component of Noise

It is important to note that the average〈·〉 is a statistical average, or ensemble aver-

age and not a time average. I use perturbation theory to solvethe differential equation of

n̂(t) andβ̂(t). For that, I make the following substitution

B̂(t) = δB̂(t) +
〈

B̂(t)
〉

. (8.1)

To simplify notation, I will useB(t) ≡
〈

B̂(t)
〉

. Similarly

β̂(t) = δβ̂(t) +
〈

β̂(t)
〉

. (8.2)
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To simplify notation, I will useβ(t) ≡
〈

β̂(t)
〉

.

n̂(t) = δn̂(t) + 〈n̂(t)〉 . (8.3)

To simplify notation, I will usen(t) ≡ 〈n̂(t)〉. I had

dn̂(t)

dt
= − 1

T
β̂(t)n̂(t) + B̂†(t)F̂ab(t) + F̂

†
ab(t)B̂(t). (8.4)

I substitute equation (8.3) in equation (7.78) and looking at the averaged equation, I get

dn(t)

dt
= − 1

T
β(t)n(t). (8.5)

Substituting equation (8.2) in equation (7.76) gives

dδβ̂(t)

dt
+

dβ(t)

dt
=
β0 − β(t) − δβ̂(t)

τ
+ F̂L(t)

− 2℧r

(

n(t) + δn̂(t)

)

(

δβ̂(t) + β(t)
)

.

(8.6)

Separating the averaged terms to the fluctuating terms, I getthe following equation for

the fluctuating terms

τ
dδβ̂(t)

dt
= − δβ̂(t) + τ F̂L(t) − 2℧rτ

(

δβ̂(t)n(t) + β(t)δn̂(t)

)

(8.7)

and the following equation for the averaged terms

dβ(t)

dt
=
β0 − β(t)

τ
− 2℧rβ(t)n(t). (8.8)

n(t) is the driving term in the above equation. I will assume thatn(t) changes slowly

enough for the atom to follow without oscillation. In other words thatdβ(t)
dt ≈ 0. There-

fore,

β(t) =
β0

1 + 2τ℧rn(t)
. (8.9)
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Substituting this result in equation (8.5), I get

1

n(t)

dn(t)

dt
= − 1

T

β0

1 + 2τ℧rn(t)
. (8.10)

I define

nsat ≡
1

2τ℧r

, (8.11)

and use this definition in equation (8.10) to get

1

n(t)

dn(t)

dt
= −

1
T
β0

1 + n(t)
nsat

. (8.12)

which is a differential equation which agrees with the semiclassical result I had in equa-

tion (6.6), where the differential equation was

1

P (z)

dP (z)

dz
=

−β1

1 + P (z)
Psat

, (8.13)

whereβ1 is the absorption coefficient per unit length. The solution of equation (8.12) is

n(t) = n(0) ·W
(

n(0)

nsat
e

n(0
nsat

− 1
T
β0T

)

(8.14)

n(0) is the input number of photons andn(T ) is the output number of photons, I have

nout = nin ·W
(

nin

nsat
e

nout
nsat

−β0

)

. (8.15)

Again, this agrees with semiclassical results, where the solution to equation (6.6) is

Pout = Pin ·W
(

Pin

Psat
e

Pin
Psat

−β1l

)

. (8.16)

I use (8.11) to get

τ =
1

2℧rnsat
. (8.17)
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Using the above equation, equation (7.76) can be rewritten

dβ̂(t)

dt
=
β0 − β̂(t)

τ
− n̂(t)β̂(t)

nsatτ
+ F̂L(t), (8.18)

equation (8.7) can be written

τ
dδβ̂(t)

dt
= −δβ̂(t) + τ F̂L(t) − 1

nsat

(

δβ̂(t)n(t) + β(t)δn̂(t)

)

, (8.19)

equation (7.73) can be written

〈

F̂L(t)F̂L(t
′)
〉

=
T

nsat





β0 +
(

n(t)
nsat

− 1
)〈

β̂(t)
〉

τ 2



 δ(t− t′), (8.20)

equation (8.9) can be written

β(t) =
β0

1 + n(t)
nsat

, (8.21)

and equation (7.74) and (7.75) can be written consecutively

〈

F̂L(t)F̂†
ab(t

′)
〉

= − 1

τnsat

〈

B̂†(t)
〉〈

β̂(t)
〉

δ(t− t′), (8.22)

and

〈

F̂ab(t)F̂L(t′)
〉

= − 1

τnsat

〈

B̂(t)
〉〈

β̂(t)
〉

δ(t− t′). (8.23)

It can be verified that ifnsat → ∞, I am back to the non saturable case. In that case

equation (8.20) becomes

〈

F̂L(t)F̂L(t
′)
〉

= 0. (8.24)

SinceF̂L(t) is Hermitian, in that casêFL(t) = 0.
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B̂(t) can be written

B̂(t) = B(t) + δX̂(t) + iδŶ(t), (8.25)

whereδX̂(t) andδŶ(t) are the in phase and the quadrature phase component ofδB̂(t)(t).

B̂(t) can also be written

B̂(t) = B(t)

(

1 +
δX̂(t)

B(t)
+ i

δŶ(t)

B(y)

)

= B(t) (1 + x̂(t) + iŷ(t)) ,

(8.26)

where

x̂(t) ≡ δX̂(t)

B(t)
, (8.27)

and

ŷ(t) ≡ δŶ(t)

B(t)
. (8.28)

Substituting equation (8.26) in equation (7.77) and after some algebraic manipulation (see

appendix G.1) I get the following equations

dŷ(t)

dt
=
B−1(t)F̂ab −B∗−1(t)F̂†

ab

2i
− αH

2T
δβ̂(t), (8.29)

and

∂x̂(t)

dt
= − 1

2T
δβ̂(t) +

B−1(t)F̂ab +B∗−1(t)F̂†
ab

2
. (8.30)

As a check, I assume thatnsat → ∞, which is the case for unsaturable loss. In that

case equations (8.30)and (8.19) can be easily solved and gives

〈x̂(T )x̂(T )〉 = 〈x̂(0)x̂(0)〉 +
eβ0 − 1

4n(0)
. (8.31)

Multiplying the whole equation byn(T ) = n(0)e−β0, I get

〈

δX̂
2
(T )
〉

= e−β0

〈

δX̂
2
(0)
〉

+
1 − e−β0

4
, (8.32)
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which is what is expected.

8.3 Solving the Simultaneous Differential Equations

The solution of (8.19) is

δβ̂(t) =

[
∫ t

0

H1(t
′)

(

F̂L(t
′) − 2n(t′)β(t′)

τnsat
x̂(t′)

)

dt′
]

H−1
1 (t), (8.33)

sinceδβ̂(0) = 0 and where

H1(t) ≡ exp

(
∫ t

0

nsat + n(t′)

τnsat
dt′
)

. (8.34)

It is important to note from equation (8.19) that for time long compared toτ δβ̂(t) can be

considered memoryless and can be determined by event that occur at time very close tot.

Therefore,

H1(t) ≈ exp

((

1 +
n(t)

nsat

)

t

τ

)

. (8.35)

This approximation can be used becauseδβ̂(t) is memoryless. The equation can further

be reduced as follows

δβ̂(t) ≈
[
∫ t

0

H1(t
′)F̂L(t′)dt′ − 2n(t)β(t)

τnsat
x̂(t)

∫ t

0

H1(t
′)dt′

]

H−1
1 (t)

≈
[
∫ t

0

H1(t
′)F̂L(t′)dt′ − 2n(t)β(t)

τnsat

x̂(t)

∫ t

0

e

(

1+ n(t)
nsat

)

t′

τ dt′
]

H−1
1 (t)

≈
[

∫ t

0

H1(t
′)F̂L(t

′)dt′ −
2n(t)
nsat

β(t)

1 + n(t)
nsat

x̂(t)H1(t)

]

H−1
1 (t),

(8.36)

where the lower values of the integral has been ignored, since δβ̂(t) forgets and only

remembers what happened at timet andx̂(t), n(t) andβ(t) are considered slowly varying

and can be taken outside of the integral. The equation gives

δβ̂(t) ≈ H−1
1 (t)

∫ t

0

H1(t
′)F̂L(t

′)dt′ −
2n(t)
nsat

β(t)

1 + n(t)
nsat

x̂(t), (8.37)

109



since everything is slowly varying except forF̂L(t). Substituting this result in equation

(8.30) gives us.

∂x̂(t)

dt
=

1

T

n(t)
nsat

β(t)x̂(t)
n(t)
nsat

+ 1
+ N̂x, (8.38)

where

N̂x ≡
B−1(t)F̂ab +B∗−1(t)F̂†

ab

2
+ F̂β(t), (8.39)

where

F̂β(t) ≡ − 1

2T

∫ t

0

e

(

1+
n(t)
nsat

)

t′−t
τ F̂L(t′)dt′. (8.40)

The solution of equation (8.38) is then

x̂(t) = H−1
2 (t)

[

H2(0)x̂(0) +

∫ t

0

H2(t
′)N̂xdt

′
]

, (8.41)

where

H2(t) = exp

(

1

T

∫ T

t

n(t′)
nsat

β(t′)
n(t′)
nsat

+ 1
dt′
)

=

(

n(t) + nsat

n(T ) + nsat

)

.

(8.42)

I use this result to get the expression of the power of the inphase noise

〈x̂(T )x̂(T )〉 = 〈x̂(0)x̂(0)〉H2(0)2

+

∫ T

0

∫ T

0

H2(t
′)H2(t

′′)
〈

N̂x(t
′)N̂x(t

′′)
〉

dt′dt′′,

(8.43)

where
〈

x̂(0)N̂x(t
′)
〉

= 0 and
〈

N̂x(t
′)x̂(0)

〉

= 0.

It is clear that in order to get an expression for〈x̂(T )x̂(T )〉 I will need an expression

for
〈

F̂β(t)F̂β(t
′)
〉

,
〈

F̂ab(t)F̂β(t
′)
〉

and
〈

F̂β(t)F̂ab(t
′)
〉

. Let us first find an expression

for
〈

F̂β(t)F̂β(t
′)
〉

.
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Figure 8.1: Illustration of spectrum of̂Fβ(t) relative to the spectrum of̂B(t).
F̃β(Ω) is the he Fourier Transform of̂Fβ(t) andB̃(Ω) is the Fourier transform
of B̂(t). The spectrum of̂Fβ(t) looks flat relative to the spectrum of̂B(t)

On the scale at which I look at this problem,F̂β(t) is roughly a delta correlated

noise. This can be understood by observing thatF̂β(t) oscillates much faster than the

signal and can be approximated by a delta correlated function. Yet, another way to look

at it (see figure 8.1) is to see that the spectrum ofF̂β(t) relative to the spectrum of the

signal looks constant, similar to the one of a delta correlated function.

I will compute the integral of
〈

F̂β(t)F̂β(t
′)
〉

and rewrite it as a delta correlated

function (see appendix G.1.1). I can rewrite equation (8.20) as such

〈

F̂L(t)F̂L(t′)
〉

= Kδ(t− t′), (8.44)

111



where

K ≡ T

nsat





β0 +
(

n(t)
nsat

− 1
)〈

β̂(t)
〉

τ 2



 . (8.45)

Equation (8.40) can be rewritten

F̂β(t) =

∫ t

0

G(τ1)F̂L(t− τ1)dτ1, (8.46)

where

G(τ1) =
1

2T
e
−
(

1+
n(t)
nsat

)

τ1
τ . (8.47)

Therefore,

〈

F̂β(t)F̂β(t− τ1)
〉

≈ τK

8T 2

(

1 +
n(t)

nsat

)−1

e
−
(

1+
n(t)
nsat

)

τ1
τ . (8.48)

I now compute the integral

∫ ∞

−∞

〈

F̂β(t)F̂β(t− τ1)
〉

dτ1 ≈
τ 2K

4T 2

(

1 +
n(t)

nsat

)−2

. (8.49)

Therefore,

〈

F̂β(t)F̂β(t
′)
〉

≈ τ 2K

4T 2

(

1 +
n(t)

nsat

)−2

δ(t− t′). (8.50)

I now look for an expression for
〈

F̂ab(t)F̂β(t
′)
〉

. Equation (8.23) can be rewritten

〈

F̂ab(t)F̂L(t′)
〉

= K1δ(t− t′), (8.51)

where

K1 ≡ −B(t)

nsatτ
β(t). (8.52)
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Following a procedure identical to the one in the previous section (see appendix G.1.2), I

get

〈

F̂ab(t)F̂β(t
′)
〉

≈ τK1

T

(

1 +
n(t)

nsat

)−1

δ(t− t′). (8.53)

Similarly

〈

F̂β(t
′)F̂ab(t)

〉

≈ τK1

T

(

1 +
n(t)

nsat

)−1

δ(t− t′). (8.54)

I can now use the expression for
〈

F̂β(t)F̂β(t
′)
〉

,
〈

F̂ab(t)F̂β(t
′)
〉

and
〈

F̂β(t)F̂ab(t
′)
〉

to get an expression for the power of the inphase noise,〈x̂(T )x̂(T )〉. I take equation (8.43)

and use equation (8.39) to substitute the expression ofN̂x(t), with the results in equations

(8.53),(8.54), (8.50) and (7.72), I get (see appendix G.2)

〈x̂(T )x̂(T )〉 =〈x̂2(0)〉H2(0)

+
1

4T

∫ T

0

H2(t′)







β(t′)

n(t′)
+
β0 +

(

n(t′)
nsat

− 1
)

β(t)

nsat

(

n(t′)
nsat

+ 1
)2






dt′

+
1

T

∫ T

0

H2(t′)





β(t′)

nsat

(

n(t′)
nsat

+ 1
)



dt′.

(8.55)

The inphase noise can be broken into four noises: the amplified initial noise, the

relaxation noise, the absorption noise and the beat noise between the the absorption

noise and the relaxation noise. The amplified initial noise is noise due to the amplifi-

cation of the incoming signal’s noise〈x̂2(0)〉. The relaxation noise is the noise due to
〈

F̂β(t)F̂β(t
′)
〉

. The absorption noise is noise due toF̂ab(t)F̂ab(t
′). The beat noise is

noise due to
〈

F̂ab(t)F̂β(t
′)
〉

and
〈

F̂β(t)F̂ab(t
′)
〉

.

The amplified initial amplitude noise is

Initx =H2
2 (0)〈x̂2(0)〉. (8.56)
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Using equation (8.42), I have

Initx =
1

4

(

n(0) + nsat

n(T ) + nsat

)2
1

n(0)
. (8.57)

I compute the first integral of equation (8.55)(see appendixG.2.2), which is noise

due to absorption

Noiseabsx
=

1

4

2nsat ln
(

n(0)
n(T )

)

+
n2

sat

n(T )
− n2

sat

n(0)
+ n(0) − n(T )

(n(T ) + nsat)
2 , (8.58)

which, asnsat → ∞ converges to

Noiseabsx
=

1

4

eβ0 − 1

n(0)
, (8.59)

which is what was expected. I compute the second integral of equation (8.55) (see ap-

pendix G.2.3), which is noise due to relaxation

Noiserelx =
1

2

n(0) − n(T )

(n(T ) + nsat)
2

(8.60)

I compute the third integral of equation (8.55)(see appendix G.2.4), which is the beat

noise between the relaxation noise and the absorption noise

Noisebeatx =
n(0) − n(T ) + nsat ln

(

n(0)
n(T )

)

(n(T ) + nsat)
2 . (8.61)

The power of the amplitude noise is the sum of all the noises and is

〈x̂(T )x̂(T )〉 =
1

4

(

n(0) + nsat

n(T ) + nsat

)2
1

n(0)
+

1

4

6nsat ln
(

n(0)
n(T )

)

+
n2

sat

n(T )
− n2

sat

n(0)

(n(T ) + nsat)
2

+
3

2

(n(0) − n(T ))

(n(T ) + nsat)
2 .

(8.62)
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Now, I calculate the quadrature phase noise〈ŷ2(T )〉 Using equation (8.29) and

equation (8.30), It can be shown that (see appendix (G.3))

〈

ŷ2(T )
〉

=
(1 + α2

H)

4

[

1

n(T )

]

+ α2
H

〈

x̂2(T )
〉

− α2
H

2

1

n(0)

(

n(0) + nsat

n(T ) + nsat

)

− α2
H

2





3 ln
(

n(0)
n(T )

)

+ nsat

n(T )
− nsat

n(0)

n(T ) + nsat





(8.63)

For verification, I setnsat → ∞. Then using equation (8.31), I can verify that

〈

ŷ2(T )
〉

=
1

4

[

1

n(T )

]

, (8.64)

which is what was expected. The incoming signal’s noise is amplified. At the output, it

becomes

Inity =
1

4

[

(1 + α2
H) + α2

H

(

n(0) + nsat

n(T ) + nsat

)2

− 2α2
H

(

n(0) + nsat

n(T ) + nsat

)

]

[

1

n(0)

]

. (8.65)

From equation (8.63), the expression of the absorption noise is

Noiseabsy
=

(1 + α2
H)

4

[

1

n(T )
− 1

n(0)

]

+ α2
HNoiseabsx

− α2
H

2





ln
(

n(0)
n(T )

)

+ nsat

n(T )
− nsat

n(0)

n(T ) + nsat





(8.66)

From equation (8.63), the expression of the relaxation noise is

Noiserely = α2
HNoiserelx . (8.67)

From equation (8.63), the expression of the beat noise is

Noisebeaty = α2
HNoisebeatx − α2

H





ln
(

n(0)
n(T )

)

n(T ) + nsat



 . (8.68)

Now that I have the inphase and quadrature phase noise of the saturable absorber, I

use it to get the noise figure of the NMZI OPA.
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8.4 Noise Figure

From equation (3.54), assuming a large parametric gain and alarge signal, a good

estimate of the noise figure is

NFQFS = NFFAS + 3 = NFPNS ≈ −10 log

[

Gpar

4ASE

]

, (8.69)

with

ASE = n(T )
[〈

ŷ2(T )
〉

+
〈

x̂2(T )
〉]

− 1

2
. (8.70)

It is easy to prove that the parametric gain is

Gpar =
∣

∣µeiθin + νe−iθin
∣

∣

2
. (8.71)

where

µ ≡ e−
β
2
(iαH+1)

[

i+
i

2
(iαH + 1)

(1 − Γ)

Γn(0) + nsat

n(0)

]

(8.72)

and

ν ≡ e−
β
2
(iαH+1)

[

i

2
(iαH + 1)

(1 − Γ)

Γn(0) + nsat
n(0)

]

. (8.73)

I calculated the noise figure for this device for a large rangeof parameters and found

that it is always above 3 dB. I plot the noise figure of a SA basedNMZI OPA with a Henry

alpha factor 5,β0 = 2 andnsat = 1 (see figure 8.2). It can be seen that the noise figure

remains high, more than 8 dB. I plot the gain and the noise figure for a saturable absorber

of αH = 25, β0 = 2 andnsat = 1 on the same graph (see figure 8.3).
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Figure 8.2: Noise Figure as a function of n(0) forαH = 5, β0 = 2 andnsat = 1
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Figure 8.3: Parametric gain (blue) and noise figure (red) as afunction of n(0)
for αH = 25, β0 = 2 andnsat = 1
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Chapter 9

Discussions

In this thesis, I have done the following:

• I went over two definitions of noise figure (NFNPS and NFFAS) and shown that the

NFNPS is signal dependent for weak signals in OPAs. I have also shown that the

NFFAS is inappropriate for OPAs. Therefore, a new definition of thenoise figure

was introduced, namely the quadrature phase noise figure (NFQFS ), which works

very well for OPAs and phase insensitive amplifiers. In otherwords, it is not signal

dependent and is much easier to calculate.

• I have a derived a simple expression to get the noise figure forOPA in high gain

regime and large signal based on their parametric gain and ASE.

• I have derived the proper expression of the noise figure of a lossy Kerr based NMZI

OPA. I have also found the expression for the optimum length for the length of a

fiber used as a Kerr medium based on its nonlinear properties and its loss coefficient.

• I have shown that Kerr based NMZI OPA with gain instead of lossunder high gain

have a minimum 3dB noise figure.

• I have demonstrated the feasibility of a SOA based and SA based NMZI OPA as an

alternative to the Kerr based NMZI OPA. I have

– I have calculated their steady state parametric gain.
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– I have calculated their steady state bandwidth.

– I have used Quantum Mechanics to show that the noise figure ofSA Based

NMZI OPA is very high, in the order of 9 dB.

While at the beginning, the unexpectedly high noise figure ofthe SA based NMZI OPA

came as a little surprise, because the expected noise figure was in the order of 1 dB, after

a closer look at the expression something interesting became apparent. I expected most of

the noise to come from the absorption noiseF̂ab , the noise due to the signal absorption.

However, most of the noise comes from relaxation noiseF̂β(t), due to the relaxation of

the electrons. This noise is well known and was by Yamamotoet al. [67]. The magnitude

of the relaxation noise could be due to an overestimate because of the way that noise was

calculated. Indeed, the noise average value was calculatedin appendix F.2 based on the

assumption that

N̂3N̂3 = N̂3 (9.1)

This is actually only true if the atom is isolated, which is not really the case. While I could

get a better estimate of this noise, it is better to completely cancel that noise or make it

not interfere with the signal. There are two ways this could be achieved.

The first way is to not let the electrons relax back to level one. Instead, the electrons

and their associated holes can be removed by applying a very-low-noise current. A pos-

sible technique to produce very low fluctuations current is discussed by Yamamotoet al.

[67]. Yamamotoet al. explain that if such current is used to pump a laser oscillator, it is

no longer subject to the standard quantum limit. It can then produce amplitude squeezed

states.
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The second way, is to send very short pulses as the signal and the pump, much

shorter that the relaxation timeτ but still much longer than the decoherence time1/γ. In

this fashion, by the time the relaxation occur, the experiment is over.

Assuming these techniques are applied, then the noise due torelaxationF̂β(t) can

be neglected. This significantly improves the noise figure and places it in the order of 1

to 0.5 dB (see figure 9.1). However, the application of these techniques are left to future

research.

Figure 9.1: Parametric gain (blue) and noise figure (red) as afunction of n(0)
for αH = 25, β0 = 2 andnsat = 1
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Appendix A

Detailed Derivation of Noise Field Operator in Lossy Kerr Medium

A.1 Solving the Differential Equation for the Average Terms

To solve (4.10), I take an integral on both side of the equation as follows

∫ x

0

d
〈

Â(z)
〉

〈

Â(z)
〉 =

∫ x

0

(

iγ
∣

∣

∣

〈

Â(z)
〉∣

∣

∣

2

− β

)

dz. (A.1)

To solve it, I define
〈

Â(0)
〉

≡ α. Since this is a propagation of a field through a lossy

medium with loss coefficientβ, I have

〈

Â(z)
〉

= αe−βz. (A.2)

I substitute this result in our equation. I get

∫ x

0

d
〈

Â(z)
〉

〈

Â(z)
〉 =

∫ x

0

(

iγ|α|2e−2βz − β
)

dz. (A.3)

I evaluate the right left hand side of the equation. I get

ln





〈

Â(x)
〉

〈

Â(0)
〉



 =

∫ x

0

(

iγ|α|2e−2βz − β
)

dz. (A.4)

After some more algebraic manipulation, I get

ln





〈

Â(x)
〉

α



 =

(

− iγ

2β
|α|2

(

1 − e−2βx
)

− βx

)

. (A.5)

I setx = z and obtain the following solution of the differential equation
〈

Â(z)
〉

= α exp

(

iγ

2β
|α|2

(

1 − e−2βz
)

− βz

)

= αe−βz exp

(

iγ

2β
|α|2

(

1 − e−2βz
)

)

.

(A.6)
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A.2 Derivation of the Output Noise Field Operator

The definition ofδÂ(L) is

δÂ(L) =
(

δX̂(L) + iδŶ(L)
)

eiφ(L)−βL. (A.7)

Substituting for the values ofδX̂(L) andδŶ(L) from equation (4.25) and (4.26), I get

δÂ(L) = µ(α)δÂ(0)eiθin + ν(α)δÂ†(0)e−iθin + N̂, (A.8)

where

µ(α) ≡ eiφ(L)−βL
(

1 + i
γ

2β
|α|2

(

1 − e−2βL
)

)

, (A.9)

ν(α) ≡ eiφ(L)−βL
(

i
γ

2β
|α|2

(

1 − e−2βL
)

)

(A.10)

and

N̂ ≡ γ|α|2
∫ L

0

∫ z

0

eβ(x−2z)
(

N̂†(x)eiφ(x) + N̂(x)e−iφ(x)
)

dxdz

+

∫ L

0

eβzN̂(z)e−iφ(z)dz.

(A.11)

A.3 Parametric Gain Derivation

I consider Kerr based NMZI with a strong pump in the first inputwith average field

intensityαp. Similarly, at the second input of the NMZI I assume a weak signal with

average field intensityαs. After the first coupler, I have the two outputs

Eout11 =
1√
2

(αp + iαs) (A.12)

at the output of the first arm and

Eout21 =
1√
2

(αs + iαp) . (A.13)
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To get an expression for the output of the first Kerr medium, I use the previous results,

namely equation (A.6) and (A.8), which gives

Eout12 = α1e
−βL exp

(

iγ

2β
|α1|2

(

1 − e−2βL
)

)

(A.14)

where

α1 =
1√
2

(αp + iαs) (A.15)

Similarly, the output of the second Kerr medium is

Eout22 = α2e
−βL exp

(

iγ

2β
|α2|2

(

1 − e−2βL
)

)

(A.16)

where

α2 =
1√
2

(αs + iαp) (A.17)

At the output of the NMZI, I have

Eout =
αpe

−βL

2

(

eiΦ2 − eiΦ1
)

− iαse
−βL

2

(

eiΦ2 + eiΦ1
)

, (A.18)

where

Φ1 =
γ

2β
|α1|2

(

1 − e−2βL
)

(A.19)

and

Φ2 =
γ

2β
|α2|2

(

1 − e−2βL
)

. (A.20)

I defineΦ1 ≡ Φ10 + Φ11, Φ2 ≡ Φ10 − Φ11,

Φ10 ≡
γ

4β
|αp|2

(

1 − e−2βL
)

, (A.21)

and

Φ11 ≡
γ

4β

(

1 − e−2βL
)

(αsα
∗
p − α∗

sαp). (A.22)
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Using the above definitions, we can simplify equation (A.18)further and get

Eout = −ie−βLeiΦ10 (αpΦ11 + αs) . (A.23)

SubstitutingΦ11 into equation (A.23), we get

Eout = −ie−βLeiΦ10

(

γ

2β

(

1 − e−2βL
)

sin(θin) + eiθin
)

|αs|. (A.24)

This equation can be rewritten as follows

Eout = µ(α)|αs|eiθin + ν(α)|αs|e−iθin , (A.25)

where

µ(α) ≡ eiφ(L)−βL
(

1 + i
γ

2β
|α|2

(

1 − e−2βL
)

)

, (A.26)

ν(α) ≡ eiφ(L)−βL
(

i
γ

2β
|α|2

(

1 − e−2βL
)

)

. (A.27)

Therefore, the maximum parametric gain is

G = γ2e−2βL|αp|4L2
eff . (A.28)

A.4 Correlation of the Vacuum Noise in the two Arms of the NMZI

It is most important to note thatδÂ2(0) andδÂ1(0) are standard vacuum fluctua-

tions that are uncorrelated. The proof is as follows:

〈

δÂ1(0)Â†
2(0)

〉

=
1

2

〈

(

δÂ + iδÂlo

)(

iδÂ + δÂlo

)†
〉

=
1

2

〈

−iδÂδÂ† + δÂδÂ†
lo + δÂloδÂ

† + iδÂloδÂ
†
lo

〉

=
i− i

2

= 0

(A.29)

125



and

〈

δÂ†
1(0)Â2(0)

〉

=
1

2

〈

(

δÂ + iδÂlo

)† (
iδÂ + δÂlo

)

〉

= 0.

(A.30)

It is very easy to see that
〈

δÂ1(0)Â2(0)
〉

=
〈

δÂ†
1(0)Â†

2(0)
〉

= 0.
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Appendix B

Detailed Derivation of NF for the Lossy Kerr Medium Based NMZI OPA

B.1 Expression for∆
(

Ê
†
outÊout

)2

To calculate the variance of̂E†
outÊout, I use the definition

Êout ≡
〈

Êout

〉

+ δÊout. (B.1)

I can then computêE†
outÊout, which is

Ê
†
outÊout =

∣

∣

∣

〈

Êout

〉∣

∣

∣

2

+
〈

Êout

〉

δÊ†
out +

〈

Êout

〉∗
δÊout + δÊ†

outδÊout
(B.2)

I can then compute
(

Ê
†
outÊout

)2

, which is

(

Ê
†
outÊout

)2

=
∣

∣

∣

〈

Êout

〉∣

∣

∣

4

+ 2
∣

∣

∣

〈

Êout

〉∣

∣

∣

2 〈

Êout

〉

δÊ†
out + 2

∣

∣

∣

〈

Êout

〉∣

∣

∣

2 〈

Êout

〉∗
δÊout

+ 3
∣

∣

∣

〈

Êout

〉∣

∣

∣

2

δÊ†
outδÊout +

〈

Êout

〉2

δÊ†
outδÊ

†
out

+
〈

Êout

〉

δÊ†
outδÊ

†
outδÊout +

∣

∣

∣

〈

Êout

〉∣

∣

∣

2

δÊoutδÊ
†
out

+
〈

Êout

〉∗2
δÊoutδÊout +

〈

Êout

〉∗
δÊoutδÊ

†
outδÊout

+
〈

Êout

〉

δÊ†
outδÊoutδÊ

†
out +

〈

Êout

〉∗
δÊ†

outδÊoutδÊout

+ δÊ†
outδÊoutδÊ

†
outδÊout

(B.3)

Taking the average of equation (B.2), I get

〈

Ê
†
outÊout

〉

=
∣

∣

∣

〈

Êout

〉∣

∣

∣

2

+
〈

δÊ†
outδÊout

〉

. (B.4)
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From the above equation, I get

〈

Ê
†
outÊout

〉2

=
∣

∣

∣

〈

Êout

〉∣

∣

∣

4

+
〈

δÊ†
outδÊout

〉2

+ 2
∣

∣

∣

〈

Êout

〉∣

∣

∣

2 〈

δÊ†
outδÊout

〉

(B.5)

Taking the average of equation (B.3), I get

〈

Ê
†
outÊoutÊ

†
outÊout

〉

=
∣

∣

∣

〈

Êout

〉∣

∣

∣

4

+ 3
∣

∣

∣

〈

Êout

〉∣

∣

∣

2 〈

δÊ†
outδÊout

〉

+
〈

Êout

〉2 〈

δÊ†
outδÊ

†
out

〉

+
∣

∣

∣

〈

Êout

〉∣

∣

∣

2 〈

δÊoutδÊ
†
out

〉

+
〈

Êout

〉∗2 〈
δÊoutδÊout

〉

+
〈

δÊ†
outδÊoutδÊ

†
outδÊout

〉

.

(B.6)

Therefore,

∆
(

Ê
†
outÊout

)2

=
∣

∣

∣

〈

Êout

〉∣

∣

∣

2 〈

δÊ†
outδÊout

〉

+
〈

Êout

〉2 〈

δÊ†
outδÊ

†
out

〉

+
∣

∣

∣

〈

Êout

〉∣

∣

∣

2 〈

δÊoutδÊ
†
out

〉

+
〈

Êout

〉∗2 〈
δÊoutδÊout

〉

+
〈

δÊ†
outδÊoutδÊ

†
outδÊout

〉

−
〈

δÊ†
outδÊout

〉2

.

(B.7)

B.2 Calculation of
〈

δÊ†
outδÊoutδÊ

†
outδÊout

〉

To calculate the noise commutator, I need to compute the following averages:

B.2.1 Calculation of
〈

N̂(w)N̂†(y)N̂(z)N̂†(x)
〉

From equation (4.6)

[

N̂(z), N̂†(z′)
]

= 2βδ(z − z′). (B.8)

where it is a Dirac delta function. Therefore,

N̂(z)N̂†(x) − N̂†(x)N̂(z) = 2βδ(z − x). (B.9)
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Therefore,
〈

N̂(z)N̂†(x)
〉

= 2βδ(z − x). (B.10)

Therefore,

N̂(w)N̂†(y)N̂(z)N̂†(x) − N̂(w)N̂†(y)N̂†(x)N̂(z) = 2βδ(z − x)N̂(w)N̂†(y). (B.11)

Since
〈

N̂(w)N̂†(y)N̂†(x)N̂(z)
〉

= 0, (B.12)

I have

〈

N̂(w)N̂†(y)N̂(z)N̂†(x) − N̂(w)N̂†(y)N̂†(x)N̂(z)
〉

= 2βδ(z − x)
〈

N̂(w)N̂†(y)
〉

.

(B.13)

Therefore,

〈

N̂(w)N̂†(y)N̂(z)N̂†(x)
〉

= 2βδ(z − x)
〈

N̂(w)N̂†(y)
〉

= 4β2δ(z − x)δ(w − y).

(B.14)

B.2.2 Calculation of
〈

N̂(w)N̂(z)N̂†(x)N̂†(y)
〉

From the commutator relationship, I have

N̂(z)N̂†(x) − N̂†(x)N̂(z) = 2βδ(z − x). (B.15)

Therefore,

N̂(z)N̂†(x)N̂†(y) − N̂†(x)N̂(z)N̂†(y) = 2βδ(z − x)N̂†(y). (B.16)

Therefore,

N̂(w)N̂(z)N̂†(x)N̂†(y) − N̂(w)N̂†(x)N̂(z)N̂†(y) = 2βδ(z − x)N̂(w)N̂†(y). (B.17)
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Therefore,

〈

N̂(w)N̂(z)N̂†(x)N̂†(y) − N̂(w)N̂†(x)N̂(z)N̂†(y)
〉

= 4β2δ(z − x)δ(w − y). (B.18)

Using the result of the previous section, I have

〈

N̂(w)N̂(z)N̂†(x)N̂†(y)
〉

− 4β2δ(w − x)δ(z − y) = 4β2δ(z − x)δ(w − y). (B.19)

Therefore,

〈

N̂(w)N̂(z)N̂†(x)N̂†(y)
〉

= 4β2
[

δ(z − x)δ(w − y) + δ(w − x)δ(z − y)
]

. (B.20)

B.3 Simplified Expression for∆
(

Ê
†
outÊout

)2

It was seen that the noise from the noise from the upper arm of the NMZI and the

lower arm are uncorrelated. Therefore, the noise at the output of the NMZI is of the same

form as the ones in each of the arm of the NMZI given in equation(A.8), which is

δÊout = µ(αp)δÂ(0)eiθin + ν(αp)δÂ
†(0)e−iθin + N̂. (B.21)

I make the following approximation

N̂ = γ|αp|2
∫ L

0

∫ z

0

eβ(x−2z)
(

N̂†(x)eiφ(x) + N̂(x)e−iφ(x)
)

dxdz

+

∫ L

0

eβzN̂(z)e−iφ(z)dz

≈ γ|αp|2
∫ L

0

∫ z

0

eβ(x−2z)
(

N̂†(x)eiφ(x) + N̂(x)e−iφ(x)
)

dxdz

(B.22)

The term is neglected since it will small relative to the pumppower|αp|2. In general, I

am only going to keep terms with factor of|αp|8 in variance of the output . Also, I will

use the high gain approximation

|µ|2 ≈ |ν|2. (B.23)
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I compute
〈

δÊ†
outδÊoutδÊ

†
outδÊout

〉

, which is

〈

δÊ†
outδÊoutδÊ

†
outδÊout

〉

≈ |µ|4
〈

δÂδÂ†δÂδÂ†
〉

+ |µ|4
〈

δÂδÂδÂ†δÂ†
〉

+ |µ|2
〈

N̂†δÂδÂ†N̂
〉

+ |µ|2
〈

N̂†N̂δÂδÂ†
〉

+ |µ|2
〈

δÂδÂ†N̂†N̂
〉

+ |µ|2
〈

δÂN̂N̂†δÂ†
〉

+
〈

N̂†N̂N̂†N̂
〉

.

(B.24)

I use the following expressions

〈

δÂδÂ†δÂδÂ†
〉

= 1, (B.25)

〈

δÂδÂδÂ†δÂ†
〉

= 2, (B.26)

〈

N̂†δÂδÂ†N̂
〉

=
〈

N̂†N̂
〉

, (B.27)

〈

N̂†N̂δÂδÂ†
〉

=
〈

N̂†N̂
〉

, (B.28)

〈

δÂδÂ†N̂†N̂
〉

=
〈

N̂†N̂
〉

, (B.29)

〈

δÂN̂N̂†δÂ†
〉

=
〈

N̂N̂†
〉

, (B.30)

and the fact that
〈

N̂†N̂
〉

=
〈

N̂N̂†
〉

. (B.31)

I substitute these expressions into the equation, I get

〈

δÊ†
outδÊoutδÊ

†
outδÊout

〉

= 3|µ|4 + 4|µ|2
〈

N̂†N̂
〉

+
〈

N̂†N̂N̂†N̂
〉

. (B.32)
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Also, it can easily be shown that

〈

δÊ†
outδÊout

〉

=
〈

δÊoutδÊ
†
out

〉

=
〈

δÊoutδÊout

〉

=
〈

δÊ†
outδÊ

†
out

〉

.

(B.33)

Therefore,

∆
(

Ê
†
outÊout

)2

=
〈

δÊ†
outδÊout

〉

[

2
∣

∣

∣

〈

Êout

〉∣

∣

∣

2

+ 2ℜ
(

〈

Êout

〉2
)]

+
〈

δÊ†
outδÊoutδÊ

†
outδÊout

〉

−
〈

δÊ†
outδÊout

〉2
(B.34)

B.4 Computing
〈

N̂†N̂N̂†N̂
〉

〈

N̂†N̂N̂†N̂
〉

= γ4 e
−4βL|αp|8

16

〈

∫ L

0

∫ x′

0

eβ(x−2x′)
(

N̂†(x)eiφ(x) + N̂(x)e−iφ(x)
)

dxdx′

×
∫ L

0

∫ w′

0

eβ(w−2w′)
(

N̂†(w)eiφ(w) + N̂(w)e−iφ(w)
)

dwdw′

×
∫ L

0

∫ y′

0

eβ(y−2y′)
(

N̂†(y)eiφ(y) + N̂(y)e−iφ(y)
)

dydy′

×
∫ L

0

∫ z′

0

eβ(z−2z′)
(

N̂†(z)eiφ(z) + N̂(z)e−iφ(z)
)

dzdz′
〉

.

(B.35)
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Keeping only the terms that are not going to average to zero, Ihave

〈

N̂†N̂N̂†N̂
〉

= γ4 e
−4βL|αp|8

16

∫ L

0

∫ x′

0

∫ L

0

∫ w′

0

∫ L

0

∫ y′

0

∫ L

0

∫ z′

0

× eβ(x+w+y+z−2(x′+w′+y′+z′))

×
[

〈

N̂(x)N̂†(w)N̂(y)N̂†(z)
〉

+
〈

N̂(x)N̂(w)N̂†(y)N̂†(z)
〉

]

× dxdx′dwdw′dydy′dzdz′.

(B.36)

I now use the results in section B.2, I get

〈

N̂†N̂N̂†N̂
〉

= β2γ4 e
−4βL|αp|8

4

∫ L

0

∫ x′

0

∫ L

0

∫ w′

0

∫ L

0

∫ y′

0

∫ L

0

∫ z′

0

× eβ(x+w+y+z−2(x′+w′+y′+z′))

×
[

δ(x− w)δ(y − z) + δ(w − y)δ(x− z)

+ δ(x− y)δ(w − z)

]

× dxdx′dwdw′dydy′dzdz′.

(B.37)

From this, I get

〈

N̂†N̂N̂†N̂
〉

= β2γ4 e
−4βL|αp|8

4

∫ L

0

∫ L

0

∫ w′

0

∫ L

0

∫ y′

0

∫ L

0

∫ z′

0

×
[

eβ(2w+y+z−2(x′+w′+y′+z′))δ(y − z)

+ eβ(w+y+2z−2(x′+w′+y′+z′))δ(w − y)

+ eβ(w+2y+z−2(x′+w′+y′+z′))δ(w − z)

]

× dx′dwdw′dydy′dzdz′.

(B.38)
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From this, I get

〈

N̂†N̂N̂†N̂
〉

= β2γ4 e
−4βL|αp|8

4

{

∫ L

0

∫ L

0

∫ L

0

∫ L

0

∫ w′

0

∫ y′

0

×
[

eβ(2w+2y−2(x′+w′+y′+z′))
]

dydwdx′dw′dy′dz′

+

∫ L

0

∫ L

0

∫ L

0

∫ L

0

∫ L

0

∫ y′

0

∫ z′

0

[

eβ(2y+2z−2(x′+w′+y′+z′))

+ eβ(2y+2z−2(x′+w′+y′+z′))
]

dzdydx′dw′dy′dz′
}

.

(B.39)

From this, I get

〈

N̂†N̂N̂†N̂
〉

= βγ4 e
−4βL|αp|8

8

{

∫ L

0

∫ L

0

∫ L

0

∫ L

0

∫ w′

0

×
[

eβ(2w−2(x′+w′+z′)) − eβ(2w−2(x′+w′+y′+z′))
]

× dwdx′dw′dy′dz′ +
∫ L

0

∫ L

0

∫ L

0

∫ L

0

∫ y′

0

× 2
[

eβ(2y−2(x′+w′+y′)) − eβ(2y−2(x′+w′+y′+z′))
]

× dydx′dw′dy′dz′
}

.

(B.40)

From this, I get

〈

N̂†N̂N̂†N̂
〉

= γ4 e
−4βL|αp|8

16

{

∫ L

0

∫ L

0

∫ L

0

∫ L

0

×
[

e−2β(x′+z′) − e−2β(x′+w′+z′)

+ e−2β(x′+w′+y′+z′) − e−2β(x′+y′+z′)
]

× dx′dw′dy′dz′ +
∫ L

0

∫ L

0

∫ L

0

∫ L

0

× 2
[

e−2β(x′+w′) − e−2β(x′+w′+y′)

+ e−2β(x′+w′+y′+z′) − e−2β(x′+w′+z′)
]

× dx′dw′dy′dz′
}

.

(B.41)
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Rewriting the integrals, I have

〈

N̂†N̂N̂†N̂
〉

= γ4 e
−4βL|αp|8

16

{

∫ L

0

∫ L

0

∫ L

0

∫ L

0

×
[

e−2β(x+z) − e−2β(x+w+z) + 3e−2β(x+w+y+z) − 3e−2β(x+y+z)
]

+ 2
[

e−2β(x+w) − e−2β(x+w+y)
]

dxdwdydz

}

.

(B.42)

From this, I get

〈

N̂†N̂N̂†N̂
〉

= γ4 e
−4βL|αp|8

32β

{

∫ L

0

∫ L

0

∫ L

0

×
[

e−2βz − e−2β(L+z) + e−2β(L+w+z) − e−2β(w+z)

+ 3e−2β(w+y+z) − 3e−2β(L+w+y+z)

+ 3e−2β(L+y+z) − 3e−2β(y+z) + 2
[

e−2βw − e−2β(L+w)
]

+ 2
[

e−2β(L+w+y) − e−2β(w+y)
]

dwdydz

}

.

(B.43)

From this, I get

〈

N̂†N̂N̂†N̂
〉

= γ4 e
−4βL|αp|8

32β

{

∫ L

0

∫ L

0

[

Le−2βz − Le−2β(L+z)

+ 3Le−2β(L+y+z) − 3Le−2β(y+z) +
1

2β

(

e−2β(L+z)

+ e−2β(L+z) − e−2βz + 3e−2β(y+z) − 3e−2β(L+y+z)

− e−2β(2L+z) + 3e−2β(2L+y+z) − 3e−2β(L+y+z)

+ 2
[

1 − e−2βL
]

+ 2
[

e−2β(2L) − e−2βL
]

+ 2
[

e−2β(L+y)

− e−2β(2L+y)
]

+ 2
[

e−2β(L+y) − e−2βy
]

)

dydz

}

.

(B.44)
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Rewriting the equation, I have

〈

N̂†N̂N̂†N̂
〉

= γ4 e
−4βL|αp|8

32β

{

∫ L

0

∫ L

0

[

Le−2βz − Le−2β(L+z)

+ 3Le−2β(L+y+z) − 3Le−2β(y+z) +
1

2β

(

2e−2β(L+z)

− e−2β(2L+z) − e−2βz + 3e−2β(y+z) − 6e−2β(L+y+z)

+ 3e−2β(2L+y+z) + 2
[

1 − 2e−2βL + e−2β(2L)
]

+ 2
[

2e−2β(L+y) − e−2β(2L+y) − e−2βy
]

)

dydz

}

.

(B.45)

From this, I get

〈

N̂†N̂N̂†N̂
〉

= γ4 e
−4βL|αp|8

32β

{

∫ L

0

[

L2e−2βz − L2e−2β(L+z)

+
3L

2β

[

e−2β(L+z) − e−2β(2L+z) + e−2β(L+z) − e−2βz
]

+
1

2β

(

2Le−2β(L+z) − Le−2β(2L+z) − Le−2βz

+
3

2β

[

e−2βz − e−2β(L+z) + 2e−2β(2L+z) − 2e−2β(L+z)

+ e−2β(2L+z) − e−2β(3L+z)
]

+ 2L
[

1 − 2e−2βL + e−2β(2L)
]

+
1

β

[

2e−2βL − 2e−4βL

+ e−6βL − e−4βL + e−2βL − 1
]

)

dz

}

.

(B.46)
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Rewritting the equation, I have

〈

N̂†N̂N̂†N̂
〉

= γ4 e
−4βL|αp|8

32β

{[

L2

2β

[

1 − 2e−2βL + e−4βL
]

+
3L

4β2

[

3e−2βL − 3e−4βL + e−6βL − 1
]

+
1

2β

(

L

2β

[

3e−2βL − 3e−4βL + e−6βL − 1
]

+
3

4β2

[

1 − e−2βL + 3e−4βL − 3e−2βL

+ 3e−4βL − 3e−6βL + e−8βL − e−6βL
]

+ 2L2
[

1 − 2e−2βL + e−2β(2L)
]

+
L

β

[

3e−2βL − 3e−4βL + e−6βL − 1
]

)]}

.

(B.47)

From this, I get

〈

N̂†N̂N̂†N̂
〉

= 3γ4 e
−4βL|αp|8

64β2

{

L

β

[

3e−2βL − 3e−4βL + e−6βL − 1
]

+
1

4β2

[

1 − 4e−2βL + 6e−4βL + e−8βL − 4e−6βL
]

+ L2
[

1 − 2e−2βL + e−4βL
]

}

.

(B.48)

Which reduces to

〈

N̂†N̂N̂†N̂
〉

= 3γ4 e
−4βL|αp|8

64β2

{

−L
β

(

1 − e−2βL
)3

+
1

4β2

(

1 − e−2βL
)4

+ L2
(

1 − e−2βL
)2

}

.

(B.49)

I define

Leff ≡ 1 − e−2βL

2β
. (B.50)

SubstitutingLeff in the equation, I get

〈

N̂†N̂N̂†N̂
〉

= 3γ4 e
−4βL|αp|8

8

{

1

2
L4

eff +
1

2
L2L2

eff − LL3
eff

}

(B.51)
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B.5 Computing
〈

δÊ†
outδÊoutδÊ

†
outδÊout

〉

If I rewrite equation (A.10) usingLeff , I get

|µ|4 ≈ e−4βLγ
4

16
|αp|8L4

eff

≈ |ν|4.
(B.52)

Using equation (B.22), I find an expression for
〈

N̂†N̂
〉

, which is

〈

N̂†N̂
〉

= γ2 e
−2βL

4
α4
p (L− Leff)Leff . (B.53)

Using equation (B.21), I find an expression for
〈

δÊ†
outδÊout

〉

, which is

〈

δÊ†
outδÊout

〉

=
γ2e−2βL

4
α4
pLLeff . (B.54)

I use these results in equation (B.32) to get

〈

δÊ†
outδÊoutδÊ

†
outδÊout

〉

≈ 3|µ|4 + 4|µ|2
〈

N̂†N̂
〉

+
〈

N̂†N̂N̂†N̂
〉

≈ γ4e−4βL|αp|8
{

3L4
eff

16
+

(L− Leff)L3
eff

4

+
3

8

(

1

2
L4

eff +
1

2
L2L2

eff − LL3
eff

)

}

=
γ4

16
e−4βL|αp|8

(

3L2L2
eff − 2LL3

eff + 2L4
eff

)

.

(B.55)

Putting everything together, I have

∆
(

δÊ†
outδÊout

)2

=
γ4

16
e−4βL|αp|8

(

2L2L2
eff − 2LL3

eff + 2L4
eff

)

=
γ4

8
e−4βL|αp|8

(

L2L2
eff − LL3

eff + L4
eff

)

(B.56)
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B.6 Computing∆
(

Ê
†
outÊout

)2

Since

∆
(

Ê
†
outÊout

)2

=
〈

δÊ†
outδÊout

〉

[

2
∣

∣

∣

〈

Êout

〉∣

∣

∣

2

+ 2ℜ
(

〈

Êout

〉2
)]

+
〈

δÊ†
outδÊoutδÊ

†
outδÊout

〉

−
〈

δÊ†
outδÊout

〉2

,

(B.57)

I have

∆
(

Ê
†
outÊout

)2

=
γ2e−2βL

4
α4
pLLeff

[

2Gα2
s + 2Gα2

s cos(2Φ10)
]

+ ∆
(

δÊ†
outδÊout

)2

,

(B.58)

where the expression ofΦ10 is given by (A.21). The maximum noise in then when

cos(2Φ10) = 1. After some algebraic manipulation, I get

∆
(

Ê
†
outÊout

)2

= G2

[

L

Leff

α2
s +

1

8

(

L2

L2
eff

− L

Leff

+ 1

)]

. (B.59)

It can be verified that ifβ −→ 0

∆
(

Ê
†
outÊout

)2

= G2

[

α2
s +

1

8

]

, (B.60)

which is the result I obtain in equation (3.16). Therefore, the output SNR is

SNRout =
α4
s

L
Leff

α2
s + 1

8

(

L2

L2
eff

− L
Leff

+ 1
) . (B.61)

B.7 Noise Figure

With SNRin = α2
s, I get the following expression of the noise figure

NF = − 10 log





α2
s

L
Leff

α2
s + 1

8

(

L2

L2
eff

− L
Leff

+ 1
)



 . (B.62)
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Appendix C

Derivation of Noise for NMZI Based Kerr Medium with Gain

C.1 ASE of Kerr Medium with Gain

To get the field output of Kerr Medium with gain instead of loss, I follow the same

procedure as in section 4.2 The differences in the equation are that instead ofβ, I have

−g0, g0 being the gain coefficient, and instead ofN̂ being a lowering operator, it is a

raising operator. I get

〈

Â(z)
〉

= αeg0z exp

(

iγ

2g0
|α|2

(

e2g0z − 1
)

)

, (C.1)

δX̂(L) = δX̂(0) +

∫ L

0

e−g0z

2

(

N̂†eiφ(z) + N̂e−iφ(z)
)

dz (C.2)

and

δŶ(L) = δŶ(0) +
γ

g0

|α|2
(

e2g0L − 1
)

δX̂(0)

+

∫ L

0

2γ|α|2e2g0z
∫ z

0

e−g0x

2

(

N̂†eiφ(x) + N̂e−iφ(x)
)

dxdz

+

∫ L

0

e−g0z

2i

(

N̂e−iφ(z) − N̂†eiφ(z)
)

dz.

(C.3)

Therefore,

〈

δX̂
2
(L)
〉

=
〈

δX̂
2
(0)
〉

+
1

4

∫ L

0

∫ L

0

e−g0(z+z
′)
〈

N̂†(z)N̂(z′)
〉

dzdz′

=
1

4
+

1 − e−2g0L

4
,

(C.4)

where I used
〈

δX̂
2
(0)
〉

= 1
4

since our input signal is a coherent state. To calculate
〈

δŶ
2
(L)
〉

, I first make the following approximation based on the fact that |α|2, the pump
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power is very large

δŶ(L) =
γ

g0
|α|2

(

e2g0L − 1
)

δX̂(0)

+

∫ L

0

2γ|α|2e2g0z
∫ z

0

e−g0x

2

(

N̂†eiφ(x) + N̂e−iφ(x)
)

dxdz.

(C.5)

I will use = |α|2 = |αp|2
2

, where|αp|2 is the pump power (only half of the pump power

goes into each Kerr medium). Therefore,

〈

δŶ
2
(L)
〉

=
γ2

4g2
0

|α|4
(

e2g0L − 1
)2
〈

δX̂
2
(0)
〉

+
γ2

4
|α|4

∫ L

0

∫ L

0

∫ z

0

∫ z′

0

eg0(2z−x+2z′−y)+i(φ(x)−φ(y))
〈

N̂†N̂
〉

dxdydz′dz

=
γ2

16g2
0

|α|4
(

e2g0L − 1
)2

+
1

8

γ2

g0
|α|4

(

1 − e−2g0L
)

(

e2g0L − 1

2g0
− L

)

.

=
γ2e2g0L

4g0
|α|4

(

e2g0L − 1
)

[

e2g0L − 1

2g0
− L

2

]

=
γ2e2g0L

4g2
0

|α|4
(

e2g0L − 1
)2

[

1

2
− Lg0

2 (e2g0L − 1)

]

.

(C.6)

I define

Leff ≡ e2g0L − 1

2g0
. (C.7)

Therefore, I have

〈

δŶ
2
(L)
〉

= γ2e2g0L|α|4L2
eff

[

1

2
− Lg0

2 (e2g0L − 1)

]

. (C.8)
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C.2 Noise Figure

The gain of this OPA is calculated using the same steps as in appendix A.3, but with

−g0 instead ofβ. I obtain

G = γ2eg0L|α|4L2
eff . (C.9)

using the same argument as in section 4.2, it can be shown thatδŶ is the component of

noise in phase with the output signal. Therefore, I can use the equation (3.54) to geet the

noise figure, which is

NF ≈ − 10 log

[

G

4ASE

]

= 10 log

[

2 − 2Lg0

(e2g0L − 1)

]

= 10 log

[

2 − L

Leff

]

.

(C.10)
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Appendix D

Derivation of SA based NMZI-OPA Parametric Gain

D.1 Approximation ofΓ2 − Γ1

I substitute (6.19) and (6.20) in (6.21) and (6.22) and I obtain

Γ1 =
Psat

E2
p − 2EpEs sin(θin)

×W

(

(

E2
p − 2EpEs sin(θin

)

Psat
e
(E2

p−2EpEs sin(θin)
Psat

−β0

) (D.1)

and

Γ2 =
Psat

E2
p + 2EpEs sin(θin)

×W

(

(

E2
p + 2EpEs sin(θin

)

Psat
e
(E2

p+2EpEs sin(θin)
Psat

−β0

)

.

(D.2)

For any differentiable functionf atx, to the first order I have

f(x+ ∆) − f(x− ∆) ≈ 2f ′(x)∆. (D.3)

I choose∆ = 2EpEs sin(θin). Therefore,

Γ2 − Γ1 = Γ(∆) − Γ(−∆) ≈ 2∆Γ′(E2
p), (D.4)

D.2 Derivative of the Saturated Loss

I setp ≡ 1
2
E2
p . Therefore,

Γ(p) =
Psat

p
W

(

p

Psat

e
p

Psat
−β0L

)

. (D.5)
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Taking the derivative with respect top

Γ′(p) = − Psat

p2
W

(

p

Psat
e

p
Psat

−β0L

)

+
Psat

p

d
dp
W

(

p

Psat
e

p
Psat

−β0L

)

(D.6)

For short hands, I will writeW for W
(

p

Psat
e

p
Psat

−β0L
)

andW ′ for W ′
(

p

Psat
e

p
Psat

−β0L
)

.

Then the derivative of the gain can be written

Γ′(p) = − Psat

p2
W +

1

p

(

p

Psat
e

p
Psat

−β0L + e
p

Psat
−β0L

)

W ′. (D.7)

Substituting for the derivative of the LambertW function which is

dW (x)

dx
=

W (x)

x (1 +W (x))
(D.8)

I get

Γ′(p) = − Psat

p2
W +

1

p

(

p

Psat

e
p

Psat
−β0L + e

p
Psat

−β0L

)

W

(1 +W )
(

p

Psat
e

p
Psat

−β0L
)

= − Psat

p2
W +

1

p

(

p

Psat

+ 1

)

W

(1 +W )
(

p

Psat

)

= − Psat

p2
W +

1

p

(

Psat

p
+ 1

)

W

(1 +W )
.

(D.9)

UsingΓ as short forΓ(p) and substituting for

Γ(p) =
Psat

p
W

(

p

Psat
e

p
Psat

−β0L

)

, (D.10)

I get

Γ′(p) = − Γ

p
+

Γ

p

1

1 + Γp
Psat

(

p

Psat
+ 1

)

= − Γ(Γ − 1)

Psat + Γp

(D.11)
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D.3 Approximation ofβ2 − β1

I denoteβ(p) ≡ − ln(Γ(p)). Therefore,

β(p+ ∆) ≈ − ln(Γ(p)) − ∆Γ′(p)

= − ln(Γ(p)) − ∆
Γ′

Γ

(D.12)

Therefore,

β ′(p) = − Γ′

Γ

=
(Γ − 1)

Psat + Γp
.

(D.13)

Sinceβ2 = β(p+ ∆) andβ1 = β(p− ∆),

β2 − β1 ≈ 2∆
(Γ − 1)

Psat + Γp

= 2EpEs
(Γ − 1)

Psat + Γp
sin(θin).

(D.14)
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Appendix E

Bandwidth of the Saturable Absorber Based NMZI

E.1 Response of a Saturable absorber to non CW signal

I substitute forδβΩ(z) using (6.53) in (6.62) and obtain

d∆P̃s(z,Ω)

dz
=
βs(z)∆P̃s(z,Ω)

1 + P (z) + iΩτ
P (z) − βs(z)∆P̃s(z,Ω). (E.1)

I then factor forβs(z) and∆P̃s(z,Ω), I get

1

∆P̃s(z,Ω)

d∆P̃s(z,Ω)

dz
= βs(z)

(

P (z)

1 + P (z) + iΩτ
− 1

)

. (E.2)

I take the integrals. I get

∫ L

0

d∆P̃s(z,Ω)

∆Ps(z,Ω)
=

∫ L

0

βs(z)

(

P (z)

1 + P (z) + iΩτ
− 1

)

dz. (E.3)

We introduce a change of variable in right hand side of the equationX = P (z). From

equation (6.59), we have

dX
dz

= −βs(z)P (z). (E.4)

Therefore,

dX = −βs(z)P (z)dz. (E.5)

After substitution into the integral, I obtain

∫ L

0

d∆P̃s(z,Ω)

∆P̃s(z,Ω)
=

∫ P (L)

P (0)

(

1

X
− 1

1 +X + iΩτ

)

dX. (E.6)
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The evaluation of the integrals leads to

[

ln
(

∆P̃s(z,Ω)
)

]L

0

=

[

ln

(

X

1 +X + iΩτ

)]P (L)

P (0)

, (E.7)

with

P (z) = P (0)W
(

P (0)eP (0)−β0z
)

. (E.8)

I can then solve for∆P̃s(L,Ω) as follows

ln

(

∆Ps(L,Ω)

∆Ps(0,Ω)

)

= ln

(

P (L)(1 + P (0) + iΩτ)

P (0)(1 + P (L) + iΩτ)

)

. (E.9)

If I define the total steady state gain asΓs = P (L)
P (0)

, I then have

∆Ps(L,Ω) = ∆Ps(0,Ω)Γs

(

1 + P (0) + iΩτ

1 + P (L) + iΩτ

)

. (E.10)

I define the total loss of an SA as

Γ(Ω) = e−
∫ L
0 βs(z)dz−

∫ L
0 δβΩ(z)dz. (E.11)

I know that

Γs = e−
∫ L
0 βs(z)dz. (E.12)

I define

∆β(Ω) =

∫ L

0

δβΩ(z)dz. (E.13)

Therefore,

Γ(Ω) = Γs(1 − ∆β(Ω)). (E.14)

I then have

Γs(1 − ∆β(Ω))(P (0) + ∆Ps(0,Ω)) = P (L) + ∆Ps(L,Ω). (E.15)
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I expand the equation, dropping the higher order terms. I get

ΓsP (0) + Γs∆Ps(0,Ω) − Γs∆β(Ω)P (0) = P (L) + ∆Ps(L,Ω). (E.16)

SinceΓsP (0) = P (L), I have

Γs∆Ps(0,Ω) − Γs∆β(Ω)P (0) = ∆Ps(L,Ω). (E.17)

Substituting for∆Ps(L,Ω), I have

Γs∆Ps(0,Ω) − Γs∆β(Ω)P (0) = ∆Ps(0,Ω)Γs

(

1 + P (0) + iΩτ

1 + P (L) + iΩτ

)

. (E.18)

Solving for∆β(Ω), I get

∆β(Ω) =
∆Ps(0,Ω)

P (0)

(

1 − 1 + P (0) + iΩτ

1 + P (L) + iΩτ

)

. (E.19)

Therefore,

∆β(Ω) =
∆Ps(0,Ω)

P (0)

(

P (L) − P (0)

1 + P (L) + iΩτ

)

, (E.20)

which can be rewritten

∆β(Ω) =
−(1 − Γs)

1 + ΓsP (0) + iΩτ
∆Ps(0,Ω). (E.21)

This results is consistent with our previous results since for Ω = 0 I obtain equation

(D.14).

E.2 Overall System Output

At the output of each SA, I have

E1(L,Ω) =
1√
2

(

E1(0,Ω)e−
βs+∆β(Ω)

2
(iαH+1)

)

(E.22)
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and

E2(L,Ω) =
1√
2

(

E2(0,Ω)e−
βs−∆β(Ω)

2
(iαH+1)

)

, (E.23)

whereβs = − ln(Γs),

E1(0,Ω) =
1√
2

(

iAp − Ãs(Ω)eiθin
)

(E.24)

and

E2(0,Ω) =
1√
2

(

−Ap + iÃs(Ω)eiθin
)

. (E.25)

Therefore, the NMZI field output at one of its arms is:

Eout =
−1

2

(

− i(−iAp + Ãs(Ω)eiθin)e−
βs+∆β(Ω)

2
(iαH+1)

+ (Ap − iÃs(Ω)eiθin)e−
βs−∆β(Ω)

2
(iαH+1)

)

=
−1

2

(

Ap

(

e−
βs−∆β(Ω)

2
(iαH+1) − e−

βs+∆β(Ω)
2

(iαH+1)
)

− iÃs(Ω)eiθin
(

e−
βs−∆β(Ω)

2
(iαH+1) + e−

βs+∆β(Ω)
2

(iαH+1)
)

)

.

(E.26)

factoringe−
βs
2

(iαH+1) and expandinge−
∆β(Ω)

2
(iαH+1) ≈ 1 − ∆β(Ω)

2
(iαH + 1), I get

Eout ≈
−e−βs

2
(iαH+1)

2

(

∆gΩ(iαH + 1)Ap − 2i(Ãs(Ω)eiθin)
)

=
−e−βs

2
(iαH+1)

2

(

−
2(1 − Γs)A

2
p sin(θin)

1 + ΓsA2
p + iΩτ

(iαH + 1) − 2ieiθin
)

Ãs(Ω).

(E.27)

E.3 Parametric Gain

I define

Ẽin(Ω) ≡ Ãs(Ω)eiθin . (E.28)

Eout1 can then be rewritten

Eout1 = e−
βs
2

(iαH+1)

(

(1 − Γs)p sin(θin)

1 + Γsp+ iΩτPsat

(iαH + 1) + ieiφ
)

Ãs(Ω), (E.29)
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where P is the power of the input pump on each arm of the NMZI:p = A2
p. I reintroduce

Psat. Substituting forẼin, I get

Eout1 = e−
βs
2

(iαH+1)





(1 − Γs)p
(

Ẽin(Ω) − Ẽ∗
in(Ω)

)

Psat + Γsp+ iΩτPsat
(iαH + 1) + iẼin(Ω)



 . (E.30)

I defineµ andν such that

Eout1 = µẼin(Ω) + νẼ∗
in(Ω). (E.31)

Therefore, I have

µ ≡ ie−
βs
2

(iαH+1)

[

1 − 1

2
(iαH + 1)

(Γ − 1)

Γsp+ Psat + iΩτPsat
p

]

(E.32)

and

ν ≡ ie−
βs
2

(iαH+1)

[

1

2
(iαH + 1)

(Γ − 1)

Γp+ Psat + iΩτPsat
p

]

. (E.33)

I can be seen that forΩ = 0, equation (E.32) and (E.33) are equivalent to equation (6.42)

and (6.43) I can now find the parametric gain, which is

Γ(Ω) =
|Eout|2
|Ãs(Ω)|2

= |µ(Ω)eiθin + ν(Ω)|e−iθin |2.
(E.34)
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Appendix F

Quantum Mechanical Model for Interaction of Light with Saturable

Absorber

F.1 Solving forσ̂+

I multiply equation (7.21) bye−(iω21−γ)t

e−(iω21−γ)tdσ̂+(t)

dt
= e−(iω21−γ)t (iω21 − γ) σ̂+(t) +

iκ∗

~
Â†N̂1(t)e

−(iω21−γ)t

+ F̂+(t)e−(iω21−γ)t,

(F.1)

which is

d
dt
σ̂+(t)e−(iω21−γ)t =

iκ∗

~
Â†N̂1(t)e

−(iω21−γ)t + F̂+(t)e−(iω21−γ)t. (F.2)

Therefore,

σ̂+(t) = σ̂+(0)e(iω21−γ)t +
iκ∗

~
e(iω21−γ)t

∫ t

0

Â†(t′)N̂1(t
′)e−(iω21−γ)t′dt′

+ e(iω21−γ)t
∫ t

0

F̂+(t′)e−(iω21−γ)t′dt′.

(F.3)

I define

F̂
†
ab ≡iκ

~
e−iω0t

∫ t

0

F̂+(t′)e−(iω21−γ)(t−t′)dt′. (F.4)

I use this definition in the expression ofσ̂+(t), I get

σ̂+(t) = σ̂+(0)e(iω21−γ)t +
iκ∗

~
e(iω21−γ)t

∫ t

0

Â†(t′)N̂1(t
′)e−(iω21−γ)t′dt′

+
~

iκ
F̂

†
ab(t)e

iω0t.

(F.5)
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I assume sufficient time lapse so that the initial conditionsare forgotten by the system. I

obtain

σ̂+(t) =
iκ∗

~
e(iω21−γ)t

∫ t

0

Â†(t′)N̂1(t
′)e−(iω21−γ)t′dt′ +

~

iκ
F̂

†
ab(t)e

iω0t. (F.6)

let Â(t) ≡ B̂(t)e−iω0t. N̂1(t) and the envelopêB(t) are pretty much constant relative to

the oscillatione(iω21−γ)t. The equation becomes

σ̂+(t) =
iκ∗

~
e(iω21−γ)tB̂†(t)N̂1(t)

∫ t

0

e−(i(ω21−ω0)−γ)t′dt′ +
~

iκ
F̂

†
ab(t)e

iω0t. (F.7)

After evaluating the integral, I get

σ̂+(t) =
κ∗

i~

B̂†(t)N̂1(t)

(i(ω21 − ω0) − γ)

(

eiω0t − e(iω21−γ)t)+
~

iκ
F̂

†
ab(t)e

iω0t. (F.8)

Assuming thatγ far more significant than the oscillationω21, I get

σ̂+(t) =
κ∗

~

Â†(t)N̂1(t)

((ω0 − ω21) − iγ)
+

~

iκ
F̂

†
ab(t)e

iω0t. (F.9)

F.1.1 Properties of Noise SourcêFab(t)

F̂ab(t) is chosen so that
[

Â(t), Â†(t)
]

= 1 for all values oft. Without F̂ab(t), I

have

dÂ(t)

dt
= − ℧Â(t)N̂1(t) + iω0Â(t), (F.10)

where℧ ≡ ℧r + i℧i. I setĈ ≡ ℧N̂1(t) + iω0. This gives

dÂ(t)

dt
= − ĈÂ(t). (F.11)

I solve this equation and get

Â(t) = Â(0)e−Ĉt. (F.12)
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Therefore,

[

Â(t), Â†(t)
]

=
[

Â(0), Â†(0)
]

e−(Ĉ+Ĉ
†)t

= e−(Ĉ+Ĉ
†)t,

(F.13)

which is obviously wrong as it has to be one (1) regardless oft To fix this, I add the

following the noise term back

dÂ(t)

dt
= − ĈÂ(t) + F̂ab(t)e

−iω0t (F.14)

and I require that that
[

F̂ab(t), F̂
†
ab(t

′)
]

= Aδ(t− t′). The solution is

Â(t) = Â(0)e−Ĉt +

∫ t

0

e−Ĉ(t−t′)−iω0t
′

F̂ab(t
′)dt′. (F.15)

I compute the commutator

[

Â(t), Â†(t)
]

=
[

Â(0), Â†(0)
]

e−(Ĉ+Ĉ†)t

+ A

∫ t

0

∫ t

0

e−Ĉ(t−t′)−iω0t
′

e−Ĉ
†(t−t′′)+iω0t

′′

δ(t′ − t′′)dt′dt′′.

(F.16)

After some algebra, I get

1 = e−(Ĉ+Ĉ†)t + A

∫ t

0

e−(Ĉ+Ĉ†)(t−t′)dt′. (F.17)

I evaluate the integral

1 = e−(Ĉ+Ĉ†)t + A
(

1 − e−(Ĉ+Ĉ
†)t
)(

Ĉ + Ĉ†
)−1

. (F.18)

Therefore,

A = Ĉ + Ĉ†

= 2ℜ(℧)N̂1(t)

= 2℧rN̂1(t).

(F.19)
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Therefore,

[

F̂ab(t), F̂
†
ab(t

′)
]

= 2℧rN̂1(t)δ(t− t′). (F.20)

Remembering that I wrotêN1(t) becausêN2(t) ≈ 0. In reality it wasN̂2(t) − N̂1(t).

Therefore,

[

F̂ab(t), F̂
†
ab(t

′)
]

= − 2℧r

(

N̂2(t) − N̂1(t)
)

δ(t− t′). (F.21)

Therefore,

〈

F̂
†
ab(t)F̂ab(t

′)
〉

= 2℧r

〈

N̂2(t)
〉

δ(t− t′)

= 0

(F.22)

and

〈

F̂ab(t)F̂
†
ab(t

′)
〉

= 2℧r

〈

N̂1(t)
〉

δ(t− t′). (F.23)

F̂ab(t) is a lowering operator.

F.1.2 Photon Number Equation

By definitionn̂(t) = Â†(t)Â(t). Taking the derivative of this equation, I get

dn̂(t)

dt
= Â†(t)

dÂ(t)

dt
+

dÂ(t)

dt
Â(t). (F.24)

After substituting equation (F.14), I get

dn̂(t)

dt
= − 2℧rN̂1(t)n̂(t) + Â†(t)F̂ab(t)e

−iω0t + F̂
†
abÂ(t)eiω0t. (F.25)
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The term−2℧rN̂1(t)n̂(t) represent absorption. Using equation (F.15), I can compute
〈

Â†(t)F̂ab(t)e
−iω0t

〉

and
〈

F̂
†
ab(t)Â(t)eiω0t

〉

, which contains absorbed noise. Taking the

Hermitian conjugate of (F.15), I get

Â†(t) = Â†(0)e−Ĉ†t +

∫ t

0

e−Ĉ†(t−t′)+iω0t
′

F̂
†
ab(t

′)dt′. (F.26)

I Multiply the equation bŷFab(t)e
−iω0t

Â†(t)F̂ab(t)e
−iω0t = Â†(0)F̂ab(t)e

−(Ĉ†+iω0)t +

∫ t

0

e−(Ĉ†+iω0)(t−t′)F̂†
ab(t

′)F̂ab(t)dt
′.

(F.27)

Since

〈

Â†(0)F̂ab(t)
〉

= 0 (F.28)

and

〈

F̂
†
ab(t

′)F̂ab(t)
〉

= 0, (F.29)

I have

〈

Â†(t)F̂ab(t)e
−iω0t

〉

= 0. (F.30)

Similarly,

〈

F̂
†
ab(t)Â(t)e−iω0t

〉

= 0. (F.31)

F.2 Noise From a Single Atom

I addedF̂N (t) to equation (7.17) empirically. I remove it from (7.65). I consider

separately the population decay. This is done by turning offthe electric field, setting
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Â(t) = 0 in equation (7.65), and letting the system relax. For one single atom, I have:

dN̂1j(t)

dt
=

1 − N̂1j(t)

τ
. (F.32)

I also know that

N̂3j(t) = 1 − N̂1j(t) − N̂2j(t), (F.33)

because the number of carrier is conserved. SinceN̂2j(t) ≈ 0, I have

N̂3j(t) = 1 − N̂1j(t). (F.34)

Therefore our original equation, can be rewritten

dN̂1j(t)

dt
=

N̂3j(t)

τ
. (F.35)

Also,

dN̂1j(t)

dt
= − dN̂3j(t)

dt
. (F.36)

Therefore, the equation can be rewritten

dN̂3j(t)

dt
= − N̂3j(t)

τ
. (F.37)

For a small∆t, I have

N̂3j(t+ ∆t) = N̂3j(t) −
N̂3j(t)

τ
∆t

= N̂3j(t)

(

1 − ∆t

τ

)

.

(F.38)

SinceN̂3j(t)N̂3j(t) = N̂3j(t) for anyt, I have

(

N̂3j(t+ ∆t)
)2

=
(

N̂3j(t)
)2
(

1 − ∆t

τ

)2

≈ N̂3j(t)

(

1 − 2∆t

τ

)

.

(F.39)
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Therefore,

N̂3j(t+ ∆t) = N̂3j(t)

(

1 − 2∆t

τ

)

. (F.40)

Since I started with

N̂3j(t+ ∆t) = N̂3j(t)

(

1 − ∆t

τ

)

, (F.41)

something is wrong. Let’s add a noise term̂FNj(t) (phonon)

dN̂1j(t)

dt
=

1 − N̂1j(t)

τ
+ F̂Nj(t), (F.42)

which can be rewritten

dN̂3j(t)

dt
= − N̂3j(t)

τ
+ F̂Nj(t). (F.43)

I require that

〈

F̂Nj(t)F̂Nj(t
′)
〉

= Aδ(t− t′). (F.44)

Therefore,

N̂3j(t+ ∆t) = N̂3j(t)

(

1 − ∆t

τ

)

+

∫ t+∆t

t

F̂Nj(t
′)dt′. (F.45)

Multiplying this equation by itself, I get

N̂3j(t+ ∆t) = N̂3j(t)

(

1 − 2∆t

τ

)

+ N̂3j(t)

(

1 − 2∆t

τ

)
∫ t+∆t

t

F̂Nj(t
′)dt′

+

∫ t+∆t

t

∫ t+∆t

t

F̂Nj(t
′)F̂Nj(t

′′)dt′dt′′.

(F.46)

When I take the average of the equation

〈

N̂3j(t+ ∆t)
〉

=
〈

N̂3j(t)
〉

(

1 − 2∆t

τ

)

+

∫ t+∆t

t

∫ t+∆t

t

〈

F̂Nj(t
′)F̂Nj(t

′′)
〉

dt′dt′′,

(F.47)
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I get

〈

N̂3j(t+ ∆t)
〉

=
〈

N̂3j(t)
〉

(

1 − 2∆t

τ

)

+ A∆t. (F.48)

I choose

A =

〈

N̂3j(t)
〉

τ
. (F.49)

This implies that

〈

N̂3j(t+ ∆t)
〉

=
〈

N̂3j(t)
〉

(

1 − ∆t

τ

)

, (F.50)

which works. Therefore

〈

F̂Nj(t)F̂Nj(t
′)
〉

=

〈

N̂3j(t)
〉

τ
δ(t− t′)

=
1 −

〈

N̂1j(t)
〉

τ
δ(t− t′).

(F.51)

F.3 Noise From a Collection of Atom

I have for a single atom

dN̂1j(t)

dt
=

1 − N̂1j(t)

τ
+ F̂Nj(t). (F.52)

Therefore, for a collection of atoms, I have

N
∑

j=1

dN̂1j(t)

dt
=

N
∑

j=1

1 − N̂1j(t)

τ
+ F̂Nj(t), (F.53)

which gives

dN̂1(t)

dt
=
N − N̂1(t)

τ
+

N
∑

j=1

F̂Nj(t). (F.54)
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I define

F̂N(t) ≡
N
∑

j=1

F̂Nj(t). (F.55)

Then,

〈

F̂N (t)F̂N(t′)
〉

=
N
∑

j=1

N
∑

k=1

〈

F̂Nj(t)F̂Nk(t
′)
〉

. (F.56)

SinceF̂Nj(t) and F̂Nk(t) are uncorrelated forj 6= k, all the cross terms of the double

sum are zero. Therefore,

〈

F̂N (t)F̂N(t′)
〉

=

N
∑

j=1

〈

F̂Nj(t)F̂Nj(t
′)
〉

=
N
∑

j=1

1 −
〈

N̂1j(t)
〉

τ
δ(t− t′)

=
N −

〈

N̂1(t)
〉

τ
δ(t− t′).

(F.57)
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Appendix G

Solving Differential Equation of SA

G.1 Solution for the Fluctuating Terms

Substituting equation (8.26) in equation (7.77), I get

d
dt

[

B(t) (1 + x̂(t) + iŷ(t))
]

= − B(t)

2T

(

β̂(t)(iαH + 1)
)

(1 + x̂(t) + iŷ(t))

+ F̂ab(t).

(G.1)

Therefore,

dB(t)

dt

(

1 + x̂(t) + iŷ(t)
)

+B(t)
d
dt

(

x̂(t) + iŷ(t)
)

= − B(t)

2T

(

β̂(t)(iαH + 1)
)

× (1 + x̂(t) + iŷ(t))

+ F̂ab(t).

(G.2)

It is easy to show that by substitutinĝB(t) = B(t) + δB̂(t)(t) andβ̂(t) = β(t) + δβ̂(t)

in equation (7.77) and separating the average terms from thefluctuating terms, I get for

the average terms

dB(t)

dt
= − 1

2T
β(t) (1 + iαH)B(t). (G.3)

Substituting equation (G.3) in equation (G.2), I get

d
dt

(

x̂(t) + iŷ(t)
)

= − δβ̂(t)

2T

(

(iαH + 1)
)(

1 + x̂(t) + iŷ(t)
)

+
F̂ab(t)

B(t)

≈ − δβ̂(t)

2T

(

(iαH + 1)
)

+
F̂ab(t)

B(t)
.

(G.4)
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where the last step is a first order approximation. Taking theHermitian conjugate of this

equation, I get

d
dt

(

x̂(t) − iŷ(t)
)

=
δβ̂(t)

2T

(

(iαH − 1)
)

+
F̂

†
ab(t)

B∗(t)
. (G.5)

Summing the equation (G.4) and (G.5) and dividing the resultby 2, I get

∂x̂(t)

dt
= − 1

2T
δβ̂(t) +

B−1(t)F̂ab +B∗−1(t)F̂†
ab

2
(G.6)

Subtracting the equation (G.4) and (G.5) and dividing the result by2i, I get

dŷ(t)

dt
=
B−1(t)F̂ab −B∗−1(t)F̂†

ab

2i
− αH

2T
δβ̂(t), (G.7)

Check:

I assume thatnsat → ∞, which is the case of unsaturable loss. In that case equation

(8.19) gives

τ
dδβ̂(t)

dt
= − δβ̂(t) + τ F̂L(t). (G.8)

I saw in equation (8.24) that under this condition the driving termF̂L(t) contains no power

and that̂FL(t) = 0. Therefore,δβ̂(t) = 0. Therefore,

∂x̂(t)

dt
=
B−1(t)F̂ab +B∗−1(t)F̂†

ab

2
. (G.9)

Therefore,

x̂(T ) = x̂(0) +

∫ T

0

B−1(t)F̂ab +B∗−1(t)F̂†
ab

2
dt. (G.10)

〈x̂(T )x̂(T )〉 = 〈x̂(0)x̂(0)〉 +
1

4T

∫ T

0

β(t)

n(t)
dt (G.11)
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Here,n(t) = n(0)e−
1
T
β0t andβ(t) = β0

〈x̂(T )x̂(T )〉 = 〈x̂(0)x̂(0)〉 +
β0

4Tn(0)

∫ T

0

e
1
T
β0tdt

= 〈x̂(0)x̂(0)〉 +

[

e
1
T
β0t
]T

0

4n(0)

= 〈x̂(0)x̂(0)〉 +
eβ0 − 1

4n(0)

(G.12)

Multiplying the whole equation byn(T ) = n(0)e−β0, I get

〈

δX̂
2
(T )
〉

= e−β0

〈

δX̂
2
(0)
〉

+
1 − e−β0

4
, (G.13)

which is what is expected.

G.1.1 Finding an Expression for
〈

F̂β(t)F̂β(t
′)
〉

At the scale at which I look at this problem,̂Fβ(t) is roughly a delta correlated

noise. In this section, I will compute the integral of
〈

F̂β(t)F̂β(t
′)
〉

and rewrite it as a

delta correlated function . I can rewrite equation (8.20) assuch

〈

F̂L(t)F̂L(t′)
〉

= Kδ(t− t′), (G.14)

where

K ≡ T

nsat





β0 +
(

n(t)
nsat

− 1
)〈

β̂(t)
〉

τ 2



 . (G.15)

Also, equation (8.40) can be rewritten

F̂β(t) =

∫ t

0

G(τ1)F̂L(t− τ1)dτ1, (G.16)

where

G(τ1) =
1

2T
e
−
(

1+
n(t)
nsat

)

τ1
τ . (G.17)
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Therefore,

〈

F̂β(t)F̂β(t− τ1)
〉

=

∫ t

0

∫ t−τ1

0

G(τ2)G(τ3)
〈

F̂L(t− τ2)F̂L(t− τ1 − τ3)
〉

dτ2dτ3

= K

∫ t

0

∫ t−τ1

0

G(τ2)G(τ3)δ(t− τ2 − t+ τ1 + τ3)dτ2dτ3

= K

∫ t

0

G(τ3 + τ1)G(τ3)dτ3,

(G.18)

sincet′ − t = −τ1. Substituting forG(·), I get

〈

F̂β(t)F̂β(t− τ1)
〉

=
K

4T 2

∫ t

0

e
−
(

1+
n(t)
nsat

)

2τ3+τ1
τ dτ3

= − τK

8T 2

(

1 +
n(t)

nsat

)−1 [

e
−
(

1+ n(t)
nsat

)

2t+τ1
τ − e

−
(

1+ n(t)
nsat

)

τ1
τ

]

=
τK

8T 2

(

1 +
n(t)

nsat

)−1

e
−
(

1+
n(t)
nsat

)

τ1
τ .

(G.19)

I look for the total energy of̂Fβ(t) as follows

∫ ∞

−∞

〈

F̂β(t)F̂β(t− τ1)
〉

dτ1 = 2

∫ ∞

0

{

τK

8T 2

(

1 +
n(t)

nsat

)−1

e
−
(

1+
n(t)
nsat

)

τ1
τ

}

dτ1

≈ τ 2K

4T 2

(

1 +
n(t)

nsat

)−2

.

(G.20)

Therefore,

〈

F̂β(t)F̂β(t
′)
〉

=
τ 2K

4T 2

(

1 +
n(t)

nsat

)−2

δ(t− t′) (G.21)

G.1.2 Finding an Expression for
〈

F̂ab(t)F̂β(t
′)
〉

Equation (8.23) can be rewritten

〈

F̂ab(t)F̂L(t′)
〉

= K1δ(t− t′), (G.22)
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where

K1 ≡ −B(t)

nsatτ
β(t). (G.23)

I take equation (G.16) and multiply it bŷFab(t) and take the average, I get

〈

F̂ab(t)F̂β(t+ τ1)
〉

=

∫ t+τ1

0

G(τ2)
〈

F̂ab(t)F̂L(t+ τ1 − τ2)
〉

dτ2

= K1

∫ t−τ1

0

G(τ2)δ(t− t− τ1 + τ2)dτ2

= K1G(τ1)

=
K1

2T
e
−
(

1+
n(t)
nsat

)

τ1
τ .

(G.24)

I take the integral of the expression, I get

∫ ∞

−∞

〈

F̂ab(t)F̂β(t+ τ1)
〉

dτ1 = 2

∫ ∞

0

K1

2T
e
−
(

1+
n(t)
nsat

)

τ1
τ dτ1

≈ τK1

T

(

1 +
n(t)

nsat

)−1

.

(G.25)

Therefore,

〈

F̂ab(t)F̂β(t
′)
〉

≈ τK1

T

(

1 +
n(t)

nsat

)−1

δ(t− t′). (G.26)

Similarly,

〈

F̂β(t
′)F̂ab(t)

〉

≈ τK1

T

(

1 +
n(t)

nsat

)−1

δ(t− t′). (G.27)

164



G.2 Calculating〈x̂(T )x̂(T )〉

I take equation (8.43) and use equation (8.39) to substitutethe expression of̂Nx(t),

I get

〈x̂(T )x̂(T )〉 = 〈x̂(0)x̂(0)〉H2(0)2

+

∫ T

0

∫ T

0

H2(t
′)H2(t

′′)
〈

F̂β(t
′)F̂β(t

′′)
〉

dt′dt′′

+

∫ T

0

∫ T

0

H2(t
′)H2(t

′′)

(

B−1(t)

2

〈

F̂ab(t
′)F̂β(t

′′)
〉

+
B∗−1(t)

2

〈

F̂β(t
′′)F̂†

ab(t
′)
〉

)

dt′dt′′

+

∫ T

0

∫ T

0

H2(t
′)H2(t

′′)
|B(t′)|−2

4

〈

F̂ab(t
′)F̂†

ab(t
′′)
〉

dt′dt′′.

(G.28)

Using equations (G.26),(G.27), (G.21) and (7.72) in the above expression, I obtain

〈x̂(T )x̂(T )〉 =〈x̂2(0)〉H2(0)

+
1

4T

∫ T

0

H2(t′)







β(t′)

n(t′)
+
β0 +

(

n(t′)
nsat

− 1
)

β(t)

nsat

(

n(t′)
nsat

+ 1
)2






dt′

+
1

T

∫ T

0

H2(t′)





β(t′)

nsat

(

n(t′)
nsat

+ 1
)



dt′.

(G.29)

check:

I setnsat → ∞. ThenH(t) → 1 and

〈x̂(T )x̂(T )〉 =〈x̂2(0)〉 +
1

4T

∫ T

0

[

β(t′)

n(t′)

]

dt′. (G.30)

This gives us

〈

δR̂(T )δR̂(T )
〉

= e−β0

〈

δR̂(0)δR̂(0)
〉

+
1 − e−β0

4
(G.31)

as before.
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G.2.1 Amplified Initial Noise

The incoming signal’s noise is amplified. At the output, it becomes the first expres-

sion of equation (G.29), which is

Initx =H2
2 (0)〈x̂2(0)〉. (G.32)

Using equation (8.42), I obtain

Initx =
1

4

(

n(0) + nsat

n(T ) + nsat

)2
1

n(0)
. (G.33)

G.2.2 Noise due to Absorption

I compute the first integral of equation (G.29), which is noise due to absorption. I

get

Noiseabsx
=

1

4T

∫ T

0

H2(t′)

(

β(t′)

n(t′)

)

dt′

=
1

4T

∫ T

0

(

n(t′) + nsat

n(T ) + nsat

)2(
β(t′)

n(t′)

)

dt′

= − 1

4

∫ n(T )

n(0)

(

n+ nsat

n(T ) + nsat

)2(
1

n2

)

dn

= − 1

4

[

2nsat ln(n) + n− n2
sat

n

]n(T )

n(0)

(n(T ) + nsat)
2

=
1

4

2nsat ln
(

n(0)
n(T )

)

+
n2

sat

n(T )
− n2

sat

n(0)
+ n(0) − n(T )

(n(T ) + nsat)
2 ,

(G.34)

As a check, I set, asnsat → ∞ (nonsaturable loss). The above expression converges to

Noiseabsx
=

1

4

[

1

n(T )
− 1

n(0)

]

=
1

4

eβ0 − 1

n(0)
,

(G.35)

which is expected.
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G.2.3 Noise due to Relaxation

I compute the second integral of equation (G.29), which is noise due to relaxation.

I do it as follows

Noiserelx =
1

4T

∫ T

0

H2(t′)







β0 +
(

n(t′)
nsat

− 1
)

β(t′)

nsat

(

n(t′)
nsat

+ 1
)2






dt′. (G.36)

Since

β(t) =
β0

n(t)
nsat

+ 1
, (G.37)

I can make a change of variable and evaluate the integral as follows

Noiserelx =
1

4T

∫ T

0

β(t′)H2(t′)







1

n(t′) + nsat

+

(

n(t′)
nsat

− 1
)

nsat

(

n(t′)
nsat

+ 1
)2






dt′

= − 1

4

∫ n(T )

n(0)

1

n

(

n + nsat

n(T ) + nsat

)2







1

n+ nsat
+

(

n
nsat

− 1
)

nsat

(

n
nsat

+ 1
)2






dn

=
1

2

n(0) − n(T )

(n(T ) + nsat)
2 .

(G.38)

G.2.4 Beat Noise

I compute the third integral of equation (G.29), which is thebeat noise between the

relaxation noise and the absorption noise. I evaluate it as follows

Noisebeatx =
1

T

∫ T

0

H2(t′)





β(t′)

nsat

(

n(t′)
nsat

+ 1
)



 dt′

= −
∫ n(T )

n(0)

1

n

(

n + nsat

n(T ) + nsat

)2




1

nsat

(

n
nsat

+ 1
)



dn

=
n(0) − n(T ) + nsat ln

(

n(0)
n(T )

)

(n(T ) + nsat)
2 .

(G.39)
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G.2.5 Total Amplitude Noise

I get an expression for the total amplitude noise from the saturable absorber, which

is

〈x̂(T )x̂(T )〉 = Initx + Noiseabsx
+ Noiserelx + Noisebeatx

=
1

4

(

n(0) + nsat

n(T ) + nsat

)2
1

n(0)
+

1

4

2nsat ln
(

n(0)
n(T )

)

+
n2

sat

n(T )
− n2

sat

n(0)
+ n(0) − n(T )

(n(T ) + nsat)
2

+
1

4

n(0) − n(T )

(n(T ) + nsat)
2 +

n(0) − n(T ) + nsat ln
(

n(0)
n(T )

)

(n(T ) + nsat)
2

=
1

4

(

n(0) + nsat

n(T ) + nsat

)2
1

n(0)
+

1

4

6nsat ln
(

n(0)
n(T )

)

+
n2

sat

n(T )
− n2

sat

n(0)

(n(T ) + nsat)
2

+
3

2

(n(0) − n(T ))

(n(T ) + nsat)
2 .

(G.40)

G.3 Calculating〈ŷ(T )ŷ(T )〉

To get the phase noise, I use equation (G.7)

∂ŷ(t)

∂t
=
B−1(t)F̂ab −B∗−1(t)F̂†

ab

2i
− αH

2T
δβ̂(t) (G.41)

and equation (G.6)

∂x̂(t)

∂t
= − 1

2T
δβ̂(t) +

B−1(t)F̂ab +B∗−1(t)F̂†
ab

2
. (G.42)

I define

N̂pi(t) ≡
B−1(t)F̂ab − B∗−1(t)F̂†

ab

2i
(G.43)

and

N̂pr(t) ≡
B−1(t)F̂ab +B∗−1(t)F̂†

ab

2
. (G.44)
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Therefore, equation (G.6) can be written

− 1

2T
δβ̂(t) =

∂x̂(t)

∂t
− N̂pr(t) (G.45)

and equation (G.7) can be written

∂ŷ(t)

∂t
= N̂pi(t) + αH

(

∂x̂(t)

∂t
− N̂pr(t)

)

. (G.46)

Algebraic manipulation of equation (G.7) and equation (G.6) gives us

∂ŷ(t)

∂t
− αH

∂x̂(t)

∂t
= N̂pi(t) − αHN̂pr(t). (G.47)

From this, I can write an expression of the phase noise, whichis

ŷ(t) − αH x̂(t) = ŷ(0) − αH x̂(0) +

∫ t

0

(

N̂pi(t) − αHN̂pr(t)
)

dt′. (G.48)

The power of the phase noise is

〈

ŷ(t)2〉 =
〈

ŷ2(0)
〉

+ α2
H

〈

x̂2(0)
〉

+ α2
H

〈

x̂(t)2〉− 2α2
H 〈x̂(0)x̂(t)〉

+

∫ t

0

∫ t

0

[

〈

N̂pi(t
′′)N̂pi(t

′)
〉

+ α2
H

〈

N̂pr(t
′′)N̂pr(t

′)
〉

− αH

(〈

N̂pr(t
′′)N̂pi(t

′)
〉

+
〈

N̂pi(t
′′)N̂pr(t

′)
〉)

]

dt′dt′′

− α2
H

∫ t

0

[

〈

N̂pr(t
′)x̂(t)

〉

+
〈

x̂(t)N̂pr(t
′)
〉

+ αH

(〈

x̂(t)N̂pi(t
′)
〉

+
〈

N̂pi(t
′)x̂(t)

〉)

]

dt′.

(G.49)

I use in the above expression the fact that〈ŷ2(0)〉 = 〈x̂2(0)〉 = 1
4n(0)

,

〈

N̂pi(t
′′)N̂pi(t

′)
〉

=
〈

N̂pr(t
′′)N̂pr(t

′)
〉

(G.50)

and
〈

N̂pr(t
′′)N̂pi(t

′)
〉

= −
〈

N̂pi(t
′′)N̂pr(t

′)
〉

. (G.51)
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I also use the following relation

∫ T

0

∫ T

0

〈

N̂pi(t
′′)N̂pi(t

′)
〉

dt′dt′′ =
1

4T

∫ T

0

(

β(t′)

n(t′)

)

dt′

= − 1

4

∫ n(T )

n(0)

(

1

n2

)

dn

=
1

4

[

1

n(T )
− 1

n(0)

]

.

(G.52)

Therefore, the expression of the power of the phase noise becomes

〈

ŷ2(T )
〉

=
(1 + α2

H)

4

[

1

n(0)
+

1

n(T )
− 1

n(0)

]

+ α2
H

〈

x̂2(T )
〉

− 2α2
H 〈x̂(0)x̂(t)〉

− α2
H

∫ t

0

[

〈

N̂pr(t
′)x̂(t)

〉

+
〈

x̂(t)N̂pr(t
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〉

+ αH

(〈

x̂(t)N̂pi(t
′)
〉

+
〈

N̂pi(t
′)x̂(t)

〉)

]

dt′.

(G.53)

I can see that
〈

x̂(t)N̂pi(t
′)
〉

= −
〈

N̂pi(t
′)x̂(t)

〉

(G.54)

and
〈

N̂pr(t
′)x̂(t)

〉

=
〈

x̂(t)N̂pr(t
′)
〉

. (G.55)

Therefore,

〈

ŷ2(T )
〉

=
(1 + α2

H)

4

[

1

n(T )

]

+ α2
H

〈

x̂2(T )
〉

− 2α2
H 〈x̂(0)x̂(t)〉

− 2α2
H

∫ T

0

〈

N̂pr(t
′)x̂(t)

〉

dt′.

(G.56)

I rewrite the integral in the expression as follows

2

∫ T

0

〈

N̂pr(t
′)x̂(t)

〉

dt′ =
1

2T

∫ T

0

H(t′)

(

β(t′)

n(t′)

)

dt′

+
1

T

∫ T

0

H(t′)





β(t′)

nsat

(

n(t′)
nsat

+ 1
)



 dt′.

(G.57)
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Using equation (8.42) and our usual change of variable, I have

2

∫ T

0

〈

N̂pr(t
′)x̂(t)

〉

dt′ =
1

2

[

3 ln(n) − nsat

n

n(T ) + nsat

]n(0)

n(T )

=
1

2





3 ln
(

n(0)
n(T )

)

+ nsat

n(T )
− nsat

n(0)

n(T ) + nsat





(G.58)

Substituting this answer in the expression of the phase noise, I get

〈

ŷ2(T )
〉

=
(1 + α2

H)

4

[

1

n(T )

]

+ α2
H

〈
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− α2
H

2





3 ln
(

n(0)
n(T )

)

+ nsat

n(T )
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
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(G.59)

Finally, using equation (8.42), I get

〈

ŷ2(T )
〉

=
(1 + α2

H)
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1

n(T )

]

+ α2
H

〈
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
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
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(G.60)

As a check, I setnsat → ∞ (unsaturable loss case). Then from equation (G.12), the

expression of the amplitude noise is

〈

x̂2(T )
〉

=
〈

x̂2(0)
〉

+
1

4

[

1

n(T )
− 1

n(0)

]
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4

[

1

n(T )

]

.

(G.61)

Therefore, equation (G.60) becomes

〈

ŷ2(T )
〉

=
(1 + 2α2

H)

4

[

1

n(T )

]

− α2
H

2

1

n(0)
− α2

H

2

[

1

n(T )
− 1

n(0)

]

=
1

4

[

1

n(T )

]

+
(α2

H − α2
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2

[

1

n(T )
− 1

n(0)

]

=
1

4

[

1

n(T )

]

,

(G.62)

which is what was expected.
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