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Optical Parametric Amplifiers (OPA) have been of wide ingefer the past decades
due to their potential for low noise amplification and getieraof squeezed light. How-
ever, the existing OPAs for fiber applications are based am &féect and require from
few centimeters to kilometers of fiber for significant gain.

In this thesis, | review the principles of phase sensitiv@l#fination and derive the
expression for gain of a lossless Kerr medium based nomlMaah-Zehnder Interferom-
eter (NMZI OPA) using a classical physics model . Using quanoptics, | calculate the
noise of a lossless Kerr medium based OPA and show that tee figure can be close to
zero.

Since in real life a Kerr medium is lossy, using quantum eteytnamics, | derive
equations for the evolution of a wave propagating in a lossgr Khedium such as an op-
tical fiber. | integrate these equations in order to obtagng@irametric gain, the noise and
the noise figure. | demonstrate that the noise figure has desempression as a function

of loss coefficient and length of the Kerr medium and that tlezipusly published results



by a another research group are incorrect. | also develop@eiexpression for the noise
figure for high gain parametric amplifiers with distributeds$ or gain.

In order to enable construction of compact parametric gmail consider using
different nonlinear media, in particular a Saturable Absor(SA) and a Semiconductor
Optical Amplifier (SOA). Using published results on the moikom SOA | conclude that
that such device would be prohibitively noisy. Thereforpeiform a detailed analysis of
noise properties of a SA based parametric amplifier. Usinggatyym mechanical model
of an atomic 3 level system and the Heisenberg’s equati@mslyze the evolution in time
of a single mode coherent optical wave interacting with arsdie absorber. | solve the
simultaneous differential equations and find the expressinthe noise figure of the SA
based NMZI OPA. The results show that noise figure is stillagi@bly high. The source
of the noise is identified. A new approach for low noise paraimemplifier operating

with short pulses is proposed.



QUANTUM NOISE IN OPTICAL PARAMETRIC AMPLIFIER BASED
ON A LOSSY NONLINEAR INTERFEROMETER

by

Pape Maguette Sylla

Dissertation submitted to the Faculty of the Graduate Sobidihe
University of Maryland, College Park in partial fulfillment
of the requirements for the degree of
Doctor of Philosophy
2009

Advisory Committee:

Professor Julius Goldhar, Chair/Advisor
Professor Wendell T. Hill 11l

Professor Christopher C. Davis
Professor Thomas E. Murphy

Doctor Marshall Saylor



© Copyright by
Pape Maguette Sylla
2009



Dedication

To my family



Acknowledgments

| owe my gratitude to all the people who have made this thesssiple. | want
to thank with my father and mother for supporting me to segkéi education. | want
to also thank my two brothers, my two sisters and my two bmsthe law for helping
me when school was requiring too much of my time. | want to kh@hmy friends, my
aunt Rokhaya and her husband, my grandparents, and an umglesfuses to be named
for their encouragement and advices. | want to extend a apt@nks to Symantec
Corporation for its flexibility and for allowing me to work iuime while going to school.

| also want to express my gratitude to Professor Julius Goléltr his dedication
to science and engineering but also for the many weekendasdnéiced going over with
me derivations. | thank him for his patience in general arsdolaitience whenever "I fell
off the cliff’, but also for taking the time to listen to me. hank him for his countless
suggestions and ideas. | pray to God that he achieves his gadl that he seriously
positively impacts science. | also thank Dr. Marshall Seg/for spending a lot of time
proofreading and helping me reorganize this thesis. It gossible to remember all, and
| apologize to those I've inadvertently left out.

Lastly, thank you all and thank God!



Table of Contents

List of Tables

List of Figures

List of Abbreviations

1

Introduction

11
1.2

1.3

1.4

15

1.6

1.7

1.8
1.9

OVEIVIEW . . . . o e
The Balanced Homodyne Receiver . . . . . .. .. ... .. ...
1.2.1 The Lossless Optical Beam Splitter . . . . . . ... ...
1.2.2 Classical Analysis of the Balanced Homodyne Detector . . .
TheLinearMZI . . . . . . . . . .
The Nonlinear MZI Optical Parametric Amplifier . . . . .. .. ...
Brief Introduction to Quantum Mechanics . . . . . .. ... .....
1.5.1 Single Mode Field Operators . . . . .. .. ... ......

152 NumberState . . . . ... .. ... .. ...
1.5.3 NumberOperator . . . .. .. .. ... ... ... .....
154 CoherentStates . . . . ... ... ... . ... ... ...

Quantum Noise Added During Amplification and Attenuatia . . . .
1.6.1 Quantum Noise Added During Attenuation . . . . . . . .

1.6.2 Noise in Phase Insensitive Amplification
Definition of Signal to Noise Ratio and Noise Figure

1.7.1 Definition of the Photon Number Fluctuation Noise IFegu C
1.7.2 Definition of the Field Amplitude Squared Noise Figure. . . .
1.7.3 NRys of an Phase Insensitive Amplifier . . . . . . . .. ..
1.7.4 Definition of the Quadrature Field Squared Noise Fgur. . . .
1.7.5 Definition of the Quality Factor . . . . ... ... ... ..

Balanced Homodyne Detection of a Coherent State . . . . . . .. .

Nonlinear Mach-Zehnder Interferometer OPA Noise

Classical Treatment of the Kerr Medium Based NMZI

2.1
2.2
2.3

KerrEffect . . . . . . . . . . . .
Nonlinear MZIwithKerrMedia . . . ... ... ... .......
Frequency ResponseofaNMZI . . . ... ... .........
2.3.1 PhaselnsensitiveGain ... ... .............
2.3.2 PhaseSensitiveGain . . ... ... ... ... .....

Quantum Mechanical Analysis of the Lossless Kerr MediursdglaNMZI

3.1
3.2
3.3

Calculation of Average QuantitiesUsingQM . . . . . . . . .. ...
Quantum Mechanical Noise With Loss in Linear Elements . .... . . .
Quantum Mechanical Noise of NMZI with Lumped Loss . . . ..
3.3.1 Quantum Mechanical Noise of Kerr Based NMZI with ai thss
atthelnput . . . . ... ... ... .. ... .. .. ...,

viii



3.3.2 Quantum Mechanical Noise of Lossy Kerr Based NMZI waith

thelossattheOQutput . . . . . .. .. .. ... ... ....... 51

3.4 Simple Expression of Noise Figure for High Gain Paraimetr

Amplifier . . . . 54
Quantum Mechanical Noise of a NMZI with Lossy Kerr Media 59
4.1 OVEIVIEW . . . . o o e e 59
4.2 Noise Figure of a Lossy Kerr Based NMZIOPA . . . . . . .. .. ... 60

4.2.1 Differential Equation of Field Operator in Lossy Kéftedium . . 60

4.2.2 Using First Order Perturbation Theory . . . ... 61

4.2.3 Solving the Differential Equation for the Averageuﬁal ..... 62

4.2.4 Solving the Differential Equation for the Fluctugtiberms . . . 62
4.3 Detailed Comparison with Imajuku’s Calculations . . . . . 67

4.4 Quantum Mechanical Noise of a NMZI with Gain in the KerrcMHn 69

Discussions of the Results from the Lossy Kerr Based NMZA OP 73
Semiclassical Treatment of Optical Parametric Amplifies&d on Saturable Ab-
sorber and Amplifier 77
6.1 Saturable absorber/Amplifier Overview . . ... ... ... ..... 77
6.1.1 LossCharacteristics . . . .. ... ... ... ... .. ... 77
6.1.2 Phase Variation . . . . . .. ... .. ... 79
6.2 Parametric Gain of SAbased NMZI-OPA . . . .. ... ........ 79
6.2.1 Approximate Expression for the Differential Absoopt . . . . . 82
6.2.2 Parametric Gain Calculation . . . .. ... ... ........ 3 8
6.3 Bandwidth ofthe SABasedNMZI . . . . . . ... ... ... ...... 84
6.3.1 Response of a SAto aModulated Signal . . . . ... ... ... 5 8
6.3.2 Overall SystemOutput . . . ... ... ... ... ........ 89
Quantum Mechanical Model for Interaction of Light with a&@&able Absorber 91
7.1 OVEIVIEW . . . . o e e e e e 91
7.2 Quantum MechanicalModel . . . .. ... .. ... .. ......... 91
Solving Differential Equation of SA 104
8.1 OVerview . . . . . . . e e e 104
8.2 Deriving Simultaneous Differential Equations of thphiase and Quadra-
ture Phase componentofNoise . . . . .. ... ... ... ........ 104
8.3 Solving the Simultaneous Differential Equations. . ...... . . .. .. 109
8.4 NoiseFigure. . . . . . . . . 116
Discussions 119
Detailed Derivation of Noise Field Operator in Lossy Keretum 122
A.1 Solving the Differential Equation for the Average Terms. . . . . . . . 122
A.2 Derivation of the Output Noise Field Operator . . . . . . .. .. ... 123
A.3 Parametric GainDerivation . . . . . . ... .. ... .. ....... 123



A.4 Correlation of the Vacuum Noise in the two Arms of the NMZI . . . . 125

Detailed Derivation of NF for the Lossy Kerr Medium Based KMDPA 127
N N 2

B.1 Expression for\ <EiutEout) ....................... 127

B.2 Calculation of<5Elut5E0ut5Elut5E0ut> .................. 128

B.2.1 Calculation o<N(w)Nf(y)N(z)Nf(x)

A,

\/\/
[EEN
N
o

B.2.2 Calculation o<N(w)N(z)Nf(x)NT(y) ............. 129
N N 2
B.3 Simplified Expression faf\ (EfmtEom) ................. 130
B.4 Computing<NTNNTN> .......................... 132
B.5 Computing<6Eiut6E0ut6Eiut6E0ut> ................... 138
N N 2

B.6 ComputingA <EiutE0ut> ......................... 139
B.7 NoiseFigure. . . . . . . . . . . . . . e 139
Derivation of Noise for NMZ| Based Kerr Medium with Gain 140
C.1 ASEof Kerr MediumwithGain . . . ... ... ... .......... 140
C.2 NoiseFigure. . . . . . . . . e 142
Derivation of SA based NMZI-OPA Parametric Gain 143
D.1 Approximationofl's — Ty . . . . .. ... ... .. 143
D.2 Derivative of the SaturatedLoss . . . . . . ... ... ... .. ... 143
D.3 Approximationofs, — 31 . . .. .. .. 145
Bandwidth of the Saturable Absorber Based NMZI 146
E.1 Response of a Saturable absorber to non CW signal . . . ........ . 146
E.2 Overall SystemOutput . . . . ... ... .. ... .. ... ..... 814
E.3 ParametricGain . . . . . . . . . .. e 149
Quantum Mechanical Model for Interaction of Light with Gatble Absorber 151
F.1 Solvingforg, .. ......... I 151

F.1.1 Properties of Noise Sourg,(¢) . . . . . ... ... ... ... 152

F.1.2 Photon Number Equation. . . . .. .. ... ... ........ 154
F.2 Noise FromasSingle Atom . . .. .. ... .. .. ... ... .... 155
F.3 Noise From a Collectionof Atom . . .. ... ... ... ....... 581
Solving Differential Equation of SA 160
G.1 Solution for the FluctuatingTerms . . . . . ... ... ... ..... 160

G.1.1 Finding an Expression f(<|Fﬁ(t)Fﬁ(t’)> ............. 162

G.1.2 Finding an Expression f(<lf‘ab(t)]?‘ﬁ(t’)> ............ 163
G.2 CalculatingX(T)X(T)) . . . v v o o i 165

G.2.1 Amplified Initial Noise . . . . . .. .. ... ... ... ..... 166

Vi



G.2.2 Noisedueto Absorption . . ... ... ... ... .. ...... 166

G.2.3 NoiseduetoRelaxation . .. ... ... ... ... ....... 167
G.2.4 BeatNoise . . . . . . . . . e 167
G.2.5 Total AmplitudeNoise . . . . . .. ... ... .. .. .. ..., 168
G.3 Calculatingy(T)y(T)) . . -« o o o 168
Bibliography 172

Vil



List of Tables

5.1 Different fiber that could be used in a Kerr based NMZI baS€A and
their optimum length and their maximumgain. . . . . ... ... ...

viii



11

1.2

1.3

1.4

15

1.6

1.7

1.8

1.9

2.1

2.2

3.1

4.1

4.2

4.3

4.4

5.1

List of Figures

Balanced Homodyne Receiver . . . . .. . .. .. ... ... ...... 5
Beam Splitter . . . . . . . .. 6

Schematic Diagram Linear Mach-Zehnder Interferomei&tl in linear
regime, with proper phase adjustment does not mix the sagrdathe pump. 9

Nonlinear Interferometer. It is important to note tfas complex . . . . 11
Example of Attenuator: Beam coupler. Additional noisf a reservoir
channel . . . . . . . . . 18
Schematic ofanidealreceiver . . . . ... . ... ... .. ... ... 23
Noise Figure in dB as a function of attenuation . ... .. ...... .. 26
Noise Figure in dB as a function of gain (equation (1.67)). . . . . . . 27
Schematic of NMZI OPA. Appropriate operators as dedaiiiethe text
areshown. . . . . . . . e 34
Plots of gain as a function of input phase difference fdmil of Kerr
medium withy = 10 and pump powerof 1 W . . . . . . . ... .. ... 40
SchematicofaSagnac . . .. .. .. ... ... .. .. ... 42
Representation of the electric-field properties of thieecent before and

after parametric amplification . . . . . . .. .. ... ... L. 46
Plots of NF vs loss for a Lossy Kerr medium based NMZI-OPA ... . 68
Plots of Nixps Vs Length for a Lossy Kerr medium based NMZI-OPA as

a comparison to Imajukust al.figure6[8] . . . .. .. ... ... ... 70
Plots of NIxps Vs Loss for a Lossy Kerr medium based NMZI-OPA as a
comparisonto Imajukustal. . . . . ... .. ... oL 71
Plots of Nikpg vs Gain for Kerr Medium with gain based NMZI-OPA . . 72
Plot of gain versus length for a HNLF & 15.8)/km/W, 3 = —0.7dB/km

) e 76



6.1

6.2

6.3

7.1

7.2

8.1

8.2

8.3

9.1

Minimum and maximum parametric gainygP.,.; for a SA based NMZI
OPAWwithay =25,60L =4. . . . . . . i e e e 85

Minimum and maximum parametric gain v/ P, for a SOA based
NMZIOPAwithay =5,68,L=—4. . . . . .. .. .. ... ...... 86

Parametric gain in dB v& in 1/7 for a SA based NMZ| OPA with
p/Psat =25, ag = 5andﬁ0L =4 e a0

Single Mode Quantum Mechanical Model . . . . . .. ... ... ... . 92
3Llevel System . . . . . ... 95
lllustration of spectrum df5(t) relative to the spectrum d3(t). F5()

is the he Fourier Transform df ;(t) andB(Q) is the Fourier transform
of B(t). The spectrum ofF 5(t) looks flat relative to the spectrum Bf(z) 111

Noise Figure as a function of n(0) fag; = 5, 6o = 2andng,, =1 . . . . 117
Parametric gain (blue) and noise figure (red) as a fumaifon(0) for

ag =25, 0p=2andng. =1 . . .. .. . . .. .. 118
Parametric gain (blue) and noise figure (red) as a fumaifon(0) for
ag=25,0p=2andng. =1 . . .. .. . . .. .. 121



NF
SA
SOA
MZI
NMZI
OSNR
SNR
OPA
PNF
FAS
QFS

List of Abbreviations

alpha
beta

Noise Figure

Saturable Absorber
Semiconductor Optical Amplifier
Mach-Zehnder Interferometer
Nonlinear Mach-Zehnder Interferometer
Optical Signal to Noise Ratio
(Electrical) Signal to Noise Ratio
Optical Parametric Amplifier
Photon Number Squared

Field Amplitude Squared
Quadrature Field Squared

Xi



Chapter 1
Introduction

1.1 Overview

Optical communication plays an important role in the infatimn age we are in.
One fiber optic link allows us to reliably send data over tlaous of kilometers at very
high bandwidth (hundreds of Gb/s). At this time, no other medcan do better. As we
are pushing the fiber optic bit rate closer to its channel cfypat is important to keep
the noise generated by the fiber optic devices and the meadin®ne of the devices
that produces the most noise is the optical amplifier [1]. Hapter one, after a brief
introduction to quantum mechanics, | give two establishefindions of the Signal to
Noise Ratio (SNR), a measure of the quality of a signal, amsvskihy those definitions
are not best suited for our problem. | introduce a new dedinitf the SNR which will
be more appropriate. | show that any phase insensitive apimplifier, such as the
commonly used EDFA, degrades Signal to Noise Ratio (SNR)tlyast 3 dB. This is
particularly important at the optical receiver when theungignals are very weak. There
exists a class of amplifier, which is phase sensitive, thasdwt degrade SNR. The
goal of this thesis is to provide a correct quantum mechaaitalysis of phase sensitive
amplifiers, which include lossy elements. Phase sensitiy@iiers operate on a principle
very similar to balanced homodyne detector, which will ddgobriefly discussed in the

introduction.



In chapter 2, | discuss in detail a well known phase sensitmplifier: The lossless
Kerr medium based Nonlinear Mach-Zehnder Interferometarc@l Parametric Ampli-
fier (NMZI-OPA). There are numerous publications which destoate the feasibility and
applications of this device, which uses nonlinear fiber asdérr medium [4, 5, 6, 7, 8,
15, 16]. Phase sensitive gain of this device is calculatetyessimple classical model.

In chapter 3, | use a quantum mechanical model to calculatadfse properties of
a lossless NMZI OPA and | show that it does not degrade SNR.S5ipte definition of
the Noise Figure (NF) of an amplifier is the ratio of its inpaits output SNR. With this
definition, the noise figure is zero (0) dB for this ideal NMZP®&. Unfortunately, there
is always loss in a real Kerr medium, which results in a higtase figure.

This problem was analyzed in detail by Imajuéual. [8]. However, | found that some
of their results are incorrect. In order to bracket the nbggre for a lossy NMZI OPA, |
consider the effect of lumped loss in front of the Kerr medamd after the Kerr Medium.
The true answer for parametric amplifier with distributesslaust fall within those limits.
These results, unlike other results which will be discudaest, agree with the calcula-
tions of Imajukuet al.. In general, calculation of noise for this type of deviceeidious|8].
Therefore, | derived a general simple expression for noggedifor an OPA in the limit
of large parametric gain, which drastically reduces thememity of the calculations.

In chapter 4, | calculate the noise figure of a NMZI-OPA withfarmly distributed
loss in the medium. This problem was also addressed by Imatukl. However, they
made some wrong assumptions and performed unexplainatfematical steps, which
produced results which | believe to be incorrect. My appnagiges a simple and elegant
expression for noise figure. | also derive the noise figura tdMZI-OPA with distributed

2



laser gain instead of loss. | show that even small amountiof@duces 3dB increase
in noise figure. In chapter 5, I discuss the implication ofgb@ntum mechanical and the
classical noises in the NMZI-OPA. | also find the optimum léngf an optic fiber used
as a Kerr medium based on its nonlinear property and its losficient.

In order to be able to build a compact OPA, another nonlineadiom besides
optical fiber is required. There has been extensive reséaraptical signal processing,
which utilized nonlinear optical properties of semiconttus amplifiers and saturable
absorbers (TOAD, wavelength converter, fast optical dwitast pulse generator ....[9,
10, 11, 12, 13]) . These media are very attractive becaudeeafidnlinearities are very
high and the devices are compact. In chapter 6, | use a cdédssmdel to show that
phase sensitive amplification can be achieved with semigzind optical amplifiers and
saturable absorbers. Recently, there has been some initett@is class of devices [17].

Based on the resultin chapter 4, | conclude that an OPA bas8®és will produce
unacceptable noise figure. The calculation of noise figureafo OPA with saturable
absorber is non-trivial. Chapter 6 and 7 are dedicated soptuiblem. In chapter 7, | use
full gquantum mechanical model to derive basic differerg@liations for light interaction
with saturable absorber. In chapter 8, | solve these equeatind evaluate the noise figure
for this type of parametric amplifier based on saturable ddeso

In chapter 9, | discuss practical implication of resultsadied in the previous chap-

ter.



1.2 The Balanced Homodyne Receiver

The balanced homodyne receiver model has some common tésthcs with an
optical parametric amplifier. They both have gain sensdivlification. Therefore, the
analysis of an balanced homodyne receiver can give somghinsito phase sensitive
amplification. Homodyne receivers use interference of akveggnal with a strong local
oscillator of the same frequency and with proper phase tdym® gain in the receiver
[14]. They are the best available receiver for coherentcapsignals [3]. However, the
local oscillator introduces its own noise, which can be caraple to or greater than the
incoming signal [48]. The balanced homodyne receiver avees the problem of part
of the local oscillator noise, namely its Relative Intep$ibise (RIN), but not its phase
noise as we will see in equation (1.8). It works as follows. eThessage signal and
the local oscillator are split in two and mixed using seraigparent mirror, as shown in
figure 1.1. The two signals must have perfect spatial moddagemust have the same
polarization state and must have the same carrier frequélitay two optical signal are
then detected, turned into an electrical signal and suietlad hese operations produce a
larger electrical signal than direct detection and candhl fRom the oscillator. In order
to explain the operations of a balance homodyne detectotaa@dthe NMZI OPA, the

analysis of the optical beam splitter is looked at.

1.2.1 The Lossless Optical Beam Splitter

The optical beam splitter is shown in figure 1.2. It has twouisp waves with

complex amplitude £; and F,), and two outputs K5 and £,) as shown in the figure.



Detector Subtractor

@O

Signal / Z§
Detector

Y. Reflective Mirror

©

Local Oscillator

Figure 1.1: Balanced Homodyne Receiver

There is a linear relationship between the input fields amdatlitput fields which are

summarized by equation 1.1 and 1.2
E3 =r31 By +t3Fs (1.1)

and

E4 = t41E1 + T42E2 (12)

wherer, andt, are respectively complex reflection and transmission aeffi. The

above relations can be written in matrix format:

Es r31 la2 | |4
- ) (1.3)

Ey tan ra| | Eo



Beam Splitter

Figure 1.2: Beam Splitter

In order to satisfy conservation of energy and the phaseinagaent, we can choose a

convention where for a 50/50 splitter the matrix is [53]

- . (1.4)

It is important to note that this solution is not unique. Foample, the following matrix

could have been chosen

(1.5)



1.2.2 Classical Analysis of the Balanced Homodyne Detector

If £10 and E, are respectively the complex amplitudes of the electrid faflthe

local oscillator and the signal, at the detectors the anmiditof the electric fields are

1
E, = — (iE;o + E, 1.6
1 \/§ ( LO ) ( )
and
E. L (Ero + iFEy) (1.7)
= — 1 s .
2 \/i LO
The currents of the two detectors are subtracted, the nptibctirrent is
I= B\ — |E,)?
C_Ihw (| 1| | 2| )
= i (ELoE: — E;oEy) (1.8)

= 24| Brol|E.| sin (6 + 66),

wheren is the quantum efficiency, is the electric charge) is the average phase of the
complex numbe¥; , Es, d¢ is the phase fluctuation of the complex numbgy, £, and
wy it the optical frequency. We can see that the currents dugettotal oscillator cancel,
and therefore, their amplitude fluctuations, their RIN, dbappear in the current output.
We can also see that there is a power gain compared to dirtattide of the signal,

which is

(1.9)
= 4| Erol?sin® (¢ + 6¢) .

The gain is phase sensitive; it is dependent upon the relatiase between the local
oscillator and the signal. However, it is also dependent lasp noise, which leads to
RIN noise in the output. | will calculate the noise of the a¢t¢el signal later in this

chapter.



1.3 The Linear MZI

The Mach Zehnder Interferometer (MZI) is a commonly used gonent in many
optical devices [18, 19, 20, 21]. Itis often used as a bugdilock of more complex opti-
cal devices and functionalities such as optical filters,elevgth demultiplexers, channel
interleavers, intensity modulators, switches and optieds [23]. A schematic diagram
of typical MZI based on guided waves in shown on figure 1.3.olsist of two 50:50
optical couplers, which are analogous to beam splittersudised in the previous section.
The two outputs of the first coupler become inputs to the stome. It is assumed that
the two outputs of the first coupler travel through similardmen, with same length be-
fore arriving at the second coupler. It is straightforwargberform classical calculations
of the transmission of signal through this interferome®d[ The input of one arm of the
first coupler is a signal described by its complex electrid feanplitudeF. The input to
the second arm i%,, which is the field of the local oscillator, which | will als@lt the
pump field.

After the first beam coupler, | have

1 .
Eout12 = ﬁ (E, +iE;) (1.10)
at the output of the first arm and
) L (Es +1iE,) (1.11)
ou = —= s T 1 .

at the output of the second.

The signals go directly to the second coupler with equalydetand amplitude. |



1 Signal out

Pump in .
l iE
E, I
E .
S 50:50 50:50 ik,
Coupler Coupler
Signal in ] l
Pump out
L, +iEy) P

Figure 1.3: Schematic Diagram Linear Mach-Zehnder Interfeeter: MZI
in linear regime, with proper phase adjustment does not hexsignal and
the pump.

obtain at the output of one the arm of the MZI

Eoutl - (Eout22 + 7:Elout12)

1
V2
1 1 1 .
=7 (\/, (Es +iE,) +1i 7 (E, —I—zES)) 112)
1 1
2

Ey——F E, E,.
2 +2 +2

—iE,



Similarly, at the output of the second arm

1
Eou = = Eou +iEou

t2 \/5( t12 t22)

! (1 (E +'E)+'1 (E +'E))
=—|— iE) +i— (Es+1
V2 \v2 V2 :

1 1 1 1
— B - -E +LlE +LlE,
P9 p+2 _'_2

(1.13)

= ik,
Therefore, it can be seen from the balanced MZI that the tgieds’ amplitude and their

phase difference are preserved.

1.4 The Nonlinear MZI Optical Parametric Amplifier

Ina NMZI, a nonlinear medium is placed between the two opticaplers as shown
in figure 1.4. It is assumed that the nonlinear media havdaipioperties and the same
length. In general, because of interference between tmalséond the pump, similar to
the balanced homodyne detector, the total intensity i®difft in the upper and lower
arm. In a nonlinear medium, this results in different ategtians, gains and/or phase
shift of propagating waves. Unbalancing of MZI redirectsngopump power into the
signal output port, resulting in effective amplificationtbé signal. This is a conventional
implementation of the OPA [25].

In this thesis, | will first consider a nonlinear optical Ke&ffect medium, which
produces a phase shift as the function of power intensitgermtedium. | will also con-
sider a saturable absorber (SA) as a nonlinear medium inhvthare is a phase shift and
amplitude variation of the field as a function of the intepslthe average properties at the
output can be calculated either classically or using a quamhechanical model. How-

10



1, . e .
—(—E, +E) E(_lEP +E) E

Pump in \/5 out
nonlinear medium I
EP
Signal in I nonlinear medium
1
E —(E,—iE, o,
> AR éﬁ(EP—iES)

Figure 1.4: Nonlinear Interferometer. It is important tdenthat® is complex

ever, noise properties must be calculated correctly usiagiym mechanics. Calculating

the noise properties is the main objective of this thesis.

1.5 Brief Introduction to Quantum Mechanics

In quantum mechanics, for any system, there is a state viegta@ontaining every-
thing there is to know about that system at a given instarit [28y physical quantity
is described by an operat®, which is Hermitian if the physical quantity is observ-
able. The average value (the expected value) of the physiaitity can be calculated
<v }O} v> = O for the system represented hy. If the physical quantity is observable

thenO is real. We are interested in time evolution of physical ditis. There are two
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approaches for calculation of time evolution of physicahutities. In the Schrodinger

picture, the time evolution of a state vector is given by thbr8dinger s equation [56]

S dv(®) o
ih a = Hluv(t)) (1.14)

whereH is the Hamiltonian of the system, which is the energy operdatoe average of
a physical quantity is

O(t) = <v(t) o)

v(t)> . (1.15)

and O can be considered constant as a function of time. In Heisgrtieture, state
vectors remain constant in time and the operators evolverdicry to the Heisenberg

equation [27]

Q.

(@}
—~
S~—

—_

S o). 1| (1.16)

O(t)‘ U> . (1.17)

There is also the interaction picture, which is a combimatbthe Schrodinger and the
Heisenberg picture. In this thesis, | exclusively work inig¢é@berg picture because the
equations for operators are analogous to classical sy&8hand | avoid complications
associated with entangled states present in the Sch&dpigture and hidden in the
Heisenberg picture[29].

The variance of a physical quantity can be also be calculdtes

0= (¢

Using the definition of the variance above, the uncertaintplived in the simultaneous

(80)* = (v |0? O v>>2. (1.18)
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measurement of two observable can be calculate using tlseR&rg uncertainty princi-
ple, which states [30]

AAAB > i ‘< [A,B]> , (1.19)

where [A, B} is the commutator oA andB and is definet{A, B} = AB—BA. Inthe

following sections (1.5.1-1.5.4) are some examples ofatpeiand states | will be using.

1.5.1 Single Mode Field Operators

| will closely follow the formalism of Loudon [31]. Since théhesis is mainly
dealing with electric field propagation, it is important twk at the quantum mechani-
cal operator that describes it. Consider an electromagfield that has excited a single
travelling-wave mode along thedirection with wavevectok . The electric field is ex-

pressed as follows
OA

E=———
ot’

(1.20)

whereA is the vector potential. In the Heisenberg picture, thessaeéctric field operator

for a given linear polarization is written

E(x)=E"(x) +E"(v)

| hw [+ _. aL
= Ae X £ Af Zx]
2€0V [ © + ¢ ’

where the positive and negative frequency of the field operatrrespond respectively to

(1.21)

the two terms of the right hand side ands the volume of the cavity in which the electric
field is contained A is the destruction or the annihilation operator ahidis the raising

operator. They are the coefficient of the amplitude of thearguotential.y is defined as

13



follows

X =wt—kz— g (1.22)

It is convenient to remove the square root factor from eguafll.21). Therefore, by

convention the electric field is measured in unitggf%. The operator reduces to

E(y) = lAe—ix + EATez’x
2 2 (1.23)
= X cos(x) + Y sin(y),
whereX andY are quadrature operators and are defined as follows
. A+AT
X -2t (1.24)
2
and
. A—Af
Y=—"1—. (1.25)
21

1.5.2 Number State

The photon number states or Fock state are the eigenstattes gfiantum theory
of light. They form a complete set for the states of a singlelendr hey are denotea)
wheren is the number of photon. The action of the destruction opeim@ the number
state is as follows

Aln) =n|n—1) (1.26)

and the of the creation operator is

Afln) = (n+1)|n +1). (1.27)

14



From this and using equation (1.23) | can calculate the geevalue of the electric field

in a number statén), which is

<n
We can also calculate the variance of the electric field fat tlumber state which is
. 2 R 2
@B = (n|(B00) |n) - ((n[E00]n))
“ 2
= <n (E()O) n> (1.29)
IR
—o\"T3):

Therefore, for a vacuum staft@ the variance of the electric field {s This is also referred

E(X)) n> = 0. (1.28)

to as the vacuum fluctuations.

1.5.3 Number Operator

The number operator is the observable that counts the nuofilpdgrotons. It will
be very useful in this thesis as measurements of amplifiathEgvill be needed. It is
defined as follows

ATA. (1.30)

n
One way to look at this operator is that it counts the photgnseinoving and replacing

them. It acts as follows on a number state

n) = nln). (1.31)

It is important to note that for a number state, while the nanmdf photon can be accu-

rately calculated, its phase is undefined. This is condistéh an uncertainty principle,
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which states that\nA¢ = % [32]. Conversely, if there is a state for which the phase is
well defined, the pure number would be undefined. Becausédésepis undefined, the

number state cannot be used as a quantum mechanical modehgrent light.

1.5.4 Coherent States

The coherent state or Glauber state, typically denpteds defined as the following

superposition of number states

= ¢2lel? " n) (1.32)
=e 2 n .
Z /ol
wherea is any complex number. It can be observed from the above iequitat the

coherent state has a Poissonian number distribution. ler etbrds, the probability of

detectingn photons while measuring a coherent state is Poisson ditgdland its distri-

bution is
_ el
p(n) = o (1.33)
The action of the destruction operator on a coherent staie fisllows
Ala) = ala). (1.34)

Therefore|a) is an eigenstate of the destruction operator arntd eigenvalue. Although,
|a) is not an eigenstate of the creation operator, the createnator does satisfy the

left-eigenvalue relation conjugate to equation (1.34)
(a|AT = (a]a”. (1.35)
We can calculate the average number of photon in a cohegdat st
<a ‘A*A‘ a> — |af?. (1.36)
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The fluctuation in photon number for a coherent state cankasmalculated
(An)2 = <a ‘ﬁ2} a> — ((a|q] a))2
= fal"+ |af* ~ |a]' (1.37)
=n
The variance of a coherent state is equal to its average nmuhpblotons. The coherent
state is very often used to model a single mode laser. Whaeibt the only model used

for single mode laser, it is the one for whiéhd¢ is minimum, making a model of choice

in this thesis as | will be looking for the minimum noise figumedifferent OPAs.

1.6 Quantum Noise Added During Amplification and Attenuatio

In this section, | go over the process of attenuation and ficgilon and look at the
noises added and some of their properties. These noiseplaylla very important role

when OPA will be analyzed.

1.6.1 Quantum Noise Added During Attenuation

I will first look at the quantum noise added during attenuati€onsider a signal
represented at the input by a coherent statésee figure 1.5). Consider also the electric
field represented by the lowering operathr The operatorA satisfies the following
commutator relation [59]:

[A,AT] — 1. (1.38)

Following the formalism of Haus [57], the operatArevolves toB at the output of the
attenuator. IfL is the fraction of power transmitted through the attenyaioe would

17



o A B
) Loss
Input Output
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Figure 1.5: Example of Attenuator: Beam coupler. Additiomaise from a
reservoir channel

expect

B=+VILA. (1.39)

However, the evolution of the electric field inside the att@ior is described by the
Heisenberg equation. The Heisenberg equation presemesthmutator relation. There-
fore, B must obey the same commutator relationdasTherefore, equation (1.39) is in-
correct. What is physically happening is that energy isipi&ed. By the

fluctuation-dissipation theorem [44], this results in amliidn of noise. Therefore, a
Langevin noise operatd ; must be added to the expressiorfhfA specific example of
an attenuator is a beam splitter (see figure 1.5), where tlddrten the second input con-

tributes to the output. The second input of the beam splitezpresented by a vacuum

18



state|0) and its field operator is represented Ay. Therefore, at the output, one would

get

A~

B =tA +rA,, (1.40)

wheret is the transmission coefficient andhe reflection coefficient of the beam splitter.

| chooset = /L. Thereforey = i/1 — L. | calculate the commutator &, which is
[B,BT} .y [A,AT} +(1-1) [Al,A’{} _ 1. (1.41)

B obey the same commutator relation &swhich is what is expected. It can also be
noted that the term(\/l — L) A, is an additional noise term proportional to a lowering
operator. In general, this noise term is needed to preskeveammutation relation of the

evolving field operator. Thus, in general, for the outputmb#tenuator, it is
B=+VLA + N, (1.42)

whereN, is proportional to some annihilation operator[57] opergn the vacuum state

|0). Let us find the commutation relation Bf;, by computing
BB = L[A AT+ [N, N | =2+ [N, N}| =1 (1.43)

Therefore,[NL, NTL] —=1—L.
In order to characterize the output, let us compute the autpmber of photons

and the photon number fluctuations The number of photonsattenuation is:
(np) = <BTB>
— 1 (a|ATA|a) + VI (a|Al|a) (0|N.]0) (1.44)
+VL{a|A|a) (0|N}[0) + (0 [NIN;|0).
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The terms<0 ‘NL) 0> and <0 )NTL‘ 0> are zero. The tem<0 ‘N}NL) 0> is zero since

N is a lowering operator. Therefore,

(ny) = Lla|®
(1.45)
= L{na)
as expected, wherg,,) = <a ‘ATA‘ a>. Now, (n?) is calculated
(n2) = <1‘3TBBT1‘3>. (1.46)

The operators need to be arranged in normal order, which srteanng all the lowering
operator on the right of the terms and all the raising operatdhe left, as | will show. For

this, the commutator relatioBB = 1 + BB is used. The expression ¢f?) becomes

(1.47)

Now, the operators are in normal order. They can easily bieiatel by noting thalN;,

operates on the staf@) and therefore does not make any contribution. Therefore,

(n3) = 12 (ATATAR) + L (ATA) e
= L*a|* + Lla)*.

Therefore,

(An)® = L(n,). (1.49)

The output variance is equal to the output average numbdnatbps. This is due to the
fact that the output signal is a coherent state. The addeskDoj guaranties that the
output field satisfy the Heisenberg uncertainty principle.
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1.6.2 Noise in Phase Insensitive Amplification

Closely following Haus [58], an input coherent stai¢ is assumed, whose electric
field | will represent by a lowering operatét. It goes through a phase insensitive am-
plifier with field gainy/G. | will denote the outpuB. Just as in the previous section, in

order to have{]f%, BT] = 1, an extra noise teri¥ needs to be added:
B = VGA + Ng. (1.50)

This noise ternN, satisfies[Ng,Ng] =1-—G. SinceG > 1, [Ng,Ng] is negative.
Therefore N, is proportional to a raising operator. Physically, thisseocomes from
the Heisenberg uncertainty principle. Phase insensitiglification can be seen as a
simultaneous measurement and amplification of the inphadejaadrature phase com-
ponent, which are two noncommutative observables. Thexedm associated uncertainty

is added. The output number of photons is

(ny) = <BT1‘3>
(1.51)
— (GATA + VG (AING + ANL ) + NN
sinceN|, N = NoNL + G — 1, the expression becomes
(ny) = G{ng) +G — 1 (1.52)

where(n,) = <a ‘ATA‘ a> andG — 1 is extra noise added by the amplifier. Now, let us

calculate(n?)

B
- <( B — 1) (fa]:»;r — 1)> (1.53)



With (n?) expressed in anti normal ordering, the argument can be nhedette noise

operatorNG does not make any contribution. Therefore,

(n2) = <G2AAATAT — 3GAAT + 1> . (1.54)
| can now express the relation in normal ordering to evalitatehich is
(n2) = <G2 (ATA + 1) (ATA + 1) + (G* - 3G) (ATA + 1) + 1>
= (G*(ATATAA +3ATA +1) + (¢* - 3G) (ATA+1) +1)  (1.59)
= G?*(ny)? +4G?(ny) — 3G(ny) +2G? — 3G — 1
In this fashion, | can compute the variance

Any = (n) — (ny)”
(1.56)
= G(n,) +2G(G — 1)(n,) + G(G —1).

It can be verified that the output signal variance is not etputile output average number

of photons. Therefore, the output signal is not a cohereite st

1.7 Definition of Signal to Noise Ratio and Noise Figure

In this thesis, | will use the Signal to Noise Ratio (SNR) asemasure of quality of
an optical signal. There are more than one way to define SNgeneral, for an electrical

signal the definition used is [45]

__ Average Power of Electrical Signal

SNR= . —. 1.57
Average Power of Electric Noise ( )

My problems will involve the characterization of opticagjsals. This can be done

by characterizing the signal and the noise of an ideal recéiiuminated by an optical
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<n> Electrical Current

Ideal Detector §

Figure 1.6: Schematic of an ideal receiver

signal (see figure 1.6). In an ideal receiver, for each photormived, the detector emits
one electron in a circuit. To characterize the electricentrgenerated by the receiver, |
consider a repeated experiment where the statistical geenamber of photons received
(n) is defined as the signal. The generated current flows for afiegual to the duration

of the optical signal in a circuit with a resistanBewhereR is large enough not to allow

any oscillation in the circuit. The average current in thiswt is

L an)
(i) = == (1.58)

Therefore, the average electric signal power is

(1.59)

23



The average total electric power is

Pry, = <i—R> = q7<27;>. (1.60)

| can define the noise power as

) ¢#n)? ¢

Py =P =Fs = "mp ~ o = 7R

((nz) - <n>2) , (1.61)

which is proportional to the variance of the number of phetohherefore, the SNR of

the detected optical signal is

O |
SNRenr = Py ) — (2 (an) (1.62)

This definition of SNR is called the photon number fluctuagi®NR [41]. This SNR is
in principle measurable in an experiment and can be readigutated for some common
types of signals. For example, for a coherent sfajevith (n) = |a|2 and(An)® = |al?
itis

lof*

SNRewr = 115 = o2 (1.63)

When an optical signal goes through a device, its SNR chanfesompare the noise
performance of different devices, a quantity called Noiggeife (NF) is introduced. There
are more than one definition of NF based on which SNR is usedeteral, the noise

figure is [43]

NF = —101log [SNR?“} . (1.64)

where SNR, is the Signal to Noise Ratio of the signal before the deviak @NR,; is

the Signal to Noise Ratio of the signal after the device.
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1.7.1 Definition of the Photon Number Fluctuation Noise Fegu

| can use the definition in equation (1.64) to calculate that&tn-Number-Fluctuation
NF (NFpnr) Of an attenuator with field losg'L. It has been seen in section 1.6.1 that for
an input coherent state), the output average number of photon&ja/|? and the photon

number fluctuations i |a|?. Therefore, the output SNR is
SNRenr = L(ng) (1.65)

Since the input SNRwr = |a?, the noise figure based on the photon number fluctuation

defition is

N
NFpNF = —10 lOg [S Rout:|

SNRn (1.66)
= —10log(L)

(see figure 1.7). Let us now calculate the noise figure for a@lesensitive amplifier

with field gainy/G. It has been seen in section 1.6.2 that for an input cohetatet/s ),

the output average number of photon&/is|*+ G —1 and the photon number fluctuations

is Glal? + 2G(G — 1)|a|* + G(G — 1). Therefore, the output SNR is

G2|Oé|4

N = ) 1.67
SNRewr GlaP +2G(G = 1)]a> + G(G — 1) (1.67)
Since the input SNRr = ||?, the noise figure is
2 2
NFpxr = — 101og Gla| (1.68)

Gla|? +2G(G — 1)|a]? + G(G — 1)

which is plotted in figure 1.8. With higher amplification, thas a higher deterioration
of the SNR with the NEyr converging to 3 dB. It can also be seen that the NFor
phase insensitive amplifiers is signal dependent for wegkasiwhich can be a problem.
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Noise Figure vs Loss
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Figure 1.7: Noise Figure in dB as a function of attenuation

In section 5, | will show that this signal dependence of the NHs also true for Nbxg
of Kerr based NMZI OPA.
However, if a large signal is assumed$- %), then the NByr for phase insensitive

amplifiers becomes

GQ 2
NFPNF ~ — 10 log [ |a| :|

GlaP +2G(G = 1)]af?
G2
G +2G(G — 1)}

(1.69)

= —10log {
The noise figure is no longer signal dependent. | will showeaatisn 3.4, assuming a

large signal, that the Nixr is signal independent.
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For large values of G,

Gla* +2G(G = 1)]|a]* + G(G — 1) =~ 2G?|a)?

Therefore,

G2<na)2

SNRpnr & m
_ )
5

(1.70)

(1.71)

By equation (1.68) Nfyr = 10log(2) ~ 3 dB. That 3 dB is the minimum in conse-

guence of the uncertainty principle. A simultaneous measent of two noncommuting

variables must double the Heisenberg uncertainty [41]. dtber reasons, a practical

amplifier will have a larger noise figure.

Noise Figure vs Gain
3.5\ T T T

NF

O L 1 1 1 1 1 1 L 1 L |
0 10 20 30 40 50 60 70 80 90 100

Gain

Figure 1.8: Noise Figure in dB as a function of gain (equafib67))
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1.7.2 Definition of the Field Amplitude Squared Noise Figure

Haus proposed another definition of SNR called the field aoqgei squared SNR

whose noise figure is not signal dependent. It is defined &sifsl

(E)?
SNRrpg = i 1.72
AR (1.72)
For a coherent state,
‘0‘|2 2
SNRig = ~—— = 2|al? = 2(n). (1.73)

1
2
For an attenuator with field losgL with an input coherent state), it was said in
section 1.6.1 that the output is also a coherent state witage number of photah(n).

Therefore, its output SNR is

|of”

SNReas = 12— = 2|af? = 2L(n). (1.74)
2
Therefore, its noise figure is
NFpas = — 10log(L) = NFpyp. (1.75)

1.7.3 NFRg of an Phase Insensitive Amplifier

Let us calculate the field amplitude squared noise figure ®@fptiiase insensitive
amplifier with field gainy/G and with a coherent state) as an input. Using equation

(1.50), I calculate the variance of the output field, which is

AB? = AX2 + AY?2
(1.76)

-G -

N —
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Since the average number of photons at the outp@tdg|, the output SNR is

Glal?
SNReas,.. = % (1.77)
2
Since the input SNRs,, = 2|/, the noise figure is
2G
NFpas = 101log [G = 1} . (1.78)
2

It can be seen that this noise figure in independent of theabigithout any assumption
on the value of the signal. Also, for large values(éthe field amplitude squared noise
figure goes to 3 dB, which is roughly equal to the photon nurflbetuations noise figure.
However, this definition also has its problems. The eledtald is not a measurable
qguantity. Therefore, for the calculations of noise figuhe signal to noise ratio has to
be estimated. Moreover, this definition of the SNR assumastife inphase component
of the noise and the quadrature phase component of the meiseae the same power,

which makes it unsuitable for phase sensitive optical patamamplifiers as | will show.

1.7.4 Definition of the Quadrature Field Squared Noise Fgur

A new definition of SNR and its associated noise figure that asensuitable to

OPAs is introduced. It is the quadrature field squared SNRsaddfined as follows

(n)

SNRyrs = 7<AX2>' (1.79)

If this definition is applied to a coherent state, its signal to noise ratio is
SNRqrs = 4|af?. (1.80)
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For an attenuator with field los€L with an input coherent state ), the output SNR is

SNRqrs,,, = 4L|a%. (1.81)
Since SNRyrs,, = 4|a|?, the attenuator quadrature field squared noise figure is

NFqrs = — 10log(L) = NFpxr = NFpas. (1.82)
To calculate the quadrature phase squared noise figure foasepnsensitive amplifier

with field gainy/G, 1 first calculate the quadrature phase noise, which is

()=

2

N[ =

(1.83)
Since the average number of photons at the outp@tdg|, the output SNR is
2G| a)?
SNRgrs,.. = = (1.84)
G -3
Since the input SNRrs,, = 4|a/?, the noise figure is

2
NFQFS = — 1010g |: G

1
2

] — NFpas. (1.85)

For large values of G, it can be verified that {4k for the phase insensitive amplifier

goes to 3 dB, which is roughly equal to the Nf. The added advantage of the {
over the NIgas is that it is in principle measurable.

1.7.5 Definition of the Quality Factor

Another measure of a signal quality is called Quality Factio®. It is to similar

SNR and is very applicable to On-Off Keying (OOK). It is defines follows [42]

_ () = (o) 1.86
Q N Anl + ATLO’ ( )
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where(n,) and(nq) are respectively the average number of photons when bitDnis (
sent and bit zero (0) is sent, aidr; and Ang are respectively the standard deviation of
the signal when bit on (1) and bit zero (0) is sent. The Q faoct@n Pulse-Amplitude-
Modulated (PAM) OOK coherent state signal can be calculated 0 is chosen for the
bit zero (0) andx # 0 is chosen for the bit one (1). Since for a coherent statehe

varianceAn = |a|?, An; = |a|* andAny = 0. Therefore,

Q= lol = v/ (1.87

The Q factor is very convenient for calculating the Bit EfRate (BER) [42], which is.

L (R .
BER_Qefc<ﬂ). (1.88)

In this thesis, | will be analyzing the output signal of OPAdarsing the different

noise figures defined above.

1.8 Balanced Homodyne Detection of a Coherent State

Because of similarities to Phase-Sensitive-Amplified ck&te, | will first analyzed
the Balanced Homodyne Detector (BHD), which is more widetpwn. For this, | as-
sume that all dark and thermal noise is negligible in congeerito the photon noise.
Balanced Homodyne Detectors can be readily described imtQoaMechanics using
the Heisenberg picture [2]. | denofe;, A,, B; andB, respectively, the operators of
the complex amplitude of the electric field of the local datdr, the incoming signal, and
the signal incident on the photodetectors after an idedtepl

B, — % (ALO + iAs> , (1.89)
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B, — % (AS _ iALO) . (1.90)

The difference between the charges collected by the twatheteis

0q=gq (BJ{Bl - B;BZ)
(1.91)
= —iq (AloA, — AlAL).
| assume that the frequency of the local oscillator is theesasithe incoming signal

frequency. Using the coherent stateg,) and|«;) respectively as the wave vectors of

the local oscillator signal and the incoming signal, | have

(6g) = — <as <CYL0 "iq (ATLOAS - AIAL0> ‘ CVLO>‘ a5>
(1.92)
= 2q|lapoas| sin(¢),
whereg is the phase ofi} ,a, Under optimum phase,
(64) = 2q|aroasl. (1.93)
The mean square fluctuation is
A(64)* = ((60)°) — (sa)’
= q2 (‘O{LOP + |O[S|2) (194)
= ¢’ ({nro) + (ns)),
where
(nio) = (AloAso) (1.95)
and
(ny) = <A§AS> . (1.96)
For large relative values of the local oscillator sigral,) can be neglected
qu = q2<nLo>. (197)
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Therefore,

SNRPNS = 4<ns>7 (198)

which is equal to twice field amplitude squared SNR of theagpsignal and four times
its photon number square SNR. However, the SNR is not theendtoly when it comes
to determining sensitivity of a receiver in digital commeations. Let us calculate its
quality factor. To calculate Q for this receiver, = 0 is chosen for the bit zero (0) and

a,s # 0is chosen for the bit one (1). Itis

_ 2qla 00| — 1.99
0 V(o) + v (nLo) il (:99)

The quality factor of a ideal detector and a balanced homedgtector are the same.

1.9 Nonlinear Mach-Zehnder Interferometer OPA Noise

In this section, | derive the expression for the noise at thipwut of a NMZI OPA
without input signal using quantum mechanics, and | compaseesults with the one
from classical analysis. Assuming that a field operataran be expanded as a perturba-

tion which is small around the average value, the field carepeesented as

A—A+dA (1.100)

whereA = <A> This is known as Quazi Linearization. This assumes that JA

Also, the fluctuations can be broken up into a inphase anddrgture phase as follows

A=A (55< + m?) . (1.101)
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Figure 1.9: Schematic of NMZI OPA. Appropriate operatorsiatailed in
the text are shown.

Now, let us consider a NMZI OPA as shown in figure 1.9, with gruirpump field
denoted with the operato&p and a signal field denoted with the operafoy. In the
following chapters, | will show how the evolution of the fiedgherator is calculated in a
nonlinear medium. Below is the computation of the NMZI outpaise assuming that
field operators at the output of the two nonlinear medium a@in.

| denote respectivelA; and A, the field operators at the inputs to the output cou-
pler. Under normal conditions, the signal comes out in onead the pump in the other.

On the signal arm, | have

" 1
Aou = =
VR

1

(Al + Z-AQ)
(1.102)

<A1 Fidy + [55{1 n rm?l] Y [55(2 + m‘@] )
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Assuming that the input signal power is zero, the average &ethe input of the nonlin-
ear medium a the upper arm of the NMZI%, while the one at the lower arm of the
nonlinear medium ié%. Since the power of the field going through the two nonlinear
medium are the same, their amplitude and phase respondeeviie same. Therefore, at

the output A; = A,, so that equation (1.102) becomes

A = % [(65(1 - 68?2) +i (5\?1 + 55(2)] . (1.103)

The noise in the upper arm of the NMZI OPA describedBy; anddY; is uncorrelated
to the noise in the lower arm described &%, and§Y,)(see appendix A.4). Therefore,

the Amplified Spontaneous Emission (ASE) is

ASE= (Al Ao
_ % [<5Xf> ROSEID N APERO & (1.104)
(522 4 [5x2,m]>] |

Since the noise at the output of the nonlinear medium havsaire statistics

ASE= [(aX7) + (%) +i ([oX,0¥])]. (1.105)

It is well known thatsX anddY do not commute. Using equations (1.24) and (1.25) |

can calculate their commutator, which is[55]
PN 1
[5X,5Y] =, (1.106)

and obtain
ase= [(5%7) + (5%7)] - % (1.107)
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Chapter 2
Classical Treatment of the Kerr Medium Based NMZI

2.1 Kerr Effect

Discovered in 1875 by John Kerr, the DC Kerr effect or the qatd electro-optic
effect (QEO effect)is a change in the refractive index of demal in response to the
power of an electric field. The optical Kerr effect or the ACrKeffect is the case in
which the change is due to light. The relationship for OptiGarr effect is described as
follows [52, 33]. Let us assume an electric vector fiBld= Eg cos(wt). For a nonlinear
material, in general the electric polarization fi@dwill depend on the electric field

such that

3 3 3
DRI WAUCLEED N W RULLE

j=1 k=1 j=1 k=1 I=1 (2.1)
+---+ HOT,
whereg, is the vacuum permittivity ang™ is the n-th order component of the electric
susceptibility of the medium, and wheie= 1,2, 3. It is assumed that 1 represents
2y and 3z. For materials exhibiting a non-negligible Kerr effecte tiird, x> term is
significant, with the even-order terms typically cancgloiue to inversion symmetry of
the nonlinear medium (a change in sigrfiirmeans a changing sign ). From that, the

following equation can be obtained [33]:

3
P~ ¢ (X(l) + ZX(3)|ES|2) Eq cos(wt). (2.2)
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This equation looks like the polarization equation for inenaterial
P = ¢y xEs cos(wt). (2.3)

The difference is that in (2.2), the linear susceptibiliaslan extra nonlinear term:

X = XrLin T XNL
(2.4)
3
= X(l) + ZX(3)|Es|2-

Since the index of refraction = (1 + x)2, we defineny = (1 + xm)2. The Kerr

medium’s index of refraction can be written

N

n = (1+ Xzin + XNL)

1
1 + XLin

1 3
=g (1 + —QXNL)
L
1+ L
~n —
0 2n3 XNL

3
=g [ 1+ -5 x®|Eg)?

:n0+n21.

D=
D=

= (14 xzim)? (1 + XNL)

(2.5)

There are many phenomena such as four wave mixing, polamzedtation and
cross phase modulation built into the nonlinear indgx However, the principal phe-
nomenon is a phase shift due to the retardation of propagatiproportion to the inten-
sity, called self phase modulation. The Kerr medium of cedar many applications is

Highly Nonlinear Fiber (HNLF)[4].
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2.2 Nonlinear MZI with Kerr Media

| will assume a noiseless pump and a negligeable thermad nbét us consider an
experimental setup as in figure 1.4. At one input, a stronggpsignal is assumed repre-
sented by the complex phasby, which | will pick to be real without loss of generality.
At the second input of the NMZI, a weak sign@l is assumed. After the first coupler,

the expression of the two outputs are

1

OU ( S ) ) ( )
E E ZE . 2. 7

As discussed earlier, when those two signals go through #rerdedia in both arms of
the NMZI, they self phase modulate and pick up a phase shift.assumed that the Kerr
media in both arms have the same length. The expression efdtieic field at the output

of the two Kerr media can be expressed as follows

(E, +iE,) (2.8)

and

|
]

Eoutoz = ﬁ (Es + 'lEp) . (29)

the phase of shifts are calculated as follows [52].

(I)l = —ngL 9 —noL

27 (Es —iE,) (Ef +1iE)) 27
) X

(2.10)

2
~ ;mL (E2+iE, (E. — E7)) + %nOL
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and

(I)Q = —HQL 9 —noL

27 ((Ep —iE) (1B + Ep)) 27
) X

(2.11)
m , . 2m

~ L (E; —iE, (E,— EY)) + ~ oL

The approximations are valid becausgis weak compared t&,.

| can also writed; = ¢ + ¢,; and®, = &, — P11, Wwhere the common phase is

2
By = ~nyLE? + "Xy L, (2.12)
A LD
and the phase difference is,
m
(I)ll = —QXTLQLEP%(ES), (213)

where(-) means imaginary part. After the two signals propagate tjinahe second

coupler, | get at one of the outputs of the NMZI

Ly

: (6i<1>2 _ ei¢1) _ % (6i<1>2 + eiq)l) . (214)

Eout - 2

| can rewritee’® ~ e'®10(1 4 i®y;) ande®? ~ ei®10(1 — i®y;) sincedy; is small. This
allows a further reduction of the electric field output edgumato.
Egu = — iE, ™00y — e ™10
= — (B0, + E,) (2.15)
= — i (1@ (B, — EY) + E,).
If | rewrite E, = |E,|e?, then

Eou = —ie'*10|Ey| (2®19sin(¢) + ') . (2.16)

Therefore, the gain of the NMZl is

Eout
Es

2

G:

(2.17)

2T 2

TTL?LEI% sin(¢) + '

Y
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which is a phase sensitive gain.
A common constant used to describe the characteristics @rarfedium isy in

units of W-tkm~! [34] which is defined as follows:

2mng

f}/_ )\AOH7

(2.18)

where A is the effective area. In this cases = 1 For 1 km of nonlinear fiber with
~ = 10 and a pump signal of 1 W and a signal of 1 mW, a phase sensitimgéggshown

in figure 2.1

Power Gain vs Input Phase Difference Power Gain vs Input Phase Difference
! !

120,
% 450

Input Phase Difference (radian)

I | N
0 1 2 3 4 5 6 7
Power Gain (W/W)

Figure 2.1: Plots of gain as a function of input phase difiesefor 1 km of
Kerr medium withy = 10 and pump power of 1 W
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2.3 Frequency Response of a NMZI

Even for linear MZI, unbalancing the interferometer by nmakione arm shorter
than the other can introduce bandwidth limitations. Fomepi, let us consider a MZI
with the same parameters as the one in section 2.2 but wittomlinear effects and with
one arm longer byA L. It can be shown following the same procedure as the one tn tha

section that the output field is

Bt = iet xm0(L+5) [Ep sin GnOAL) — E, cos (%nOALﬂ . (219

Looking only at the field signal output, | assume that its nmaxin is reached at frequency
wp. Therefore,

wo .
cos <—20n0AL> =1. (2.20)
The minimum is reached at frequency= w, + Aw, where

e

Aw = AL

(2.21)

Aw is the estimated bandwidth. F&x, = 1mm, the bandwidth is about 100 Ghz. To
avoid this bandwidth limitation, an interferometer call®dgnac is used in practice (see
figure 2.2). The Sagnac is a MZI folded on itself so that one iarosed instead of two.
It guaranties that the interferometer is always balancddlewts behavior is similar to
a regular MZI. Therefore, for an easier analysis, the MZldgedi But in practice, the

Sagnac is used.
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Pump in

Nonlinear Medium

50:50

Signal in Il OUtpUt

Figure 2.2: Schematic of a Sagnac

2.3.1 Phase Insensitive Gain

Here | am considering a case where the signal and the pumldifferent carrier
frequency and there is no dispersion in the Kerr mediun® i the difference between
their carrier frequencies, the, = A,(t)e'l*+9] is the input signal and, = A, is the

pump. Based on equation (2.15), the total output electrid 6ethe NMZI is:

ET

out

— ,éeiwotAseiCPm (@10(2 sin(Qt + ¢)) + 6i[Qt+¢])
(2.22)

_ ,éeiwotAseiélo (<I>10(4z' (e(Qt+¢) _ 6—i(Qt+¢))) + ei[m+¢>}> )
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Note that the output electric field includes the idler sigAalt)e~*[(V*+¢] which is not
part of the input signal. To look at the amplification of thgrsl, we keep only the terms

that includes the input signal and obtain:

ES — ZezwotA P10 ( Z-(I)loei(m+¢>) + ei[Qt+¢]) ) (2_23)

out —

From this | get an expression for the gain, which is:

|E0ut|2

“= B

= |—i®y + 1|7 (2.24)
= (P%O + 1,
with &, = §n2L\AP\2. It can be seen that a phase insensitive amplification isrodata

and that it is independent of frequency detuniagin the real world, the bandwidth is

determined by the finite response timexé?, which can be almost instantaneous.

2.3.2 Phase Sensitive Gain

Consider the signal and the pump to be at the same carrierdney. However, the
signal is amplitude modulated. Therefore, | can wiite= A,(t)e’* andE, = A, where

A4(t) real. Then, based on equation (2.15), the electric fielduwpthe NMZI is:
Eout = iAs(£)e™106 0" (D1(25in(¢)) + ) . (2.25)

| can then get an expression for the gain, which is:

|Eout |2

G =
|Es[?

(2.26)
= [4®],sin*(@) + 2Pyosin(20) + 1],
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whered,, = §n2L\AP|2. It can be seen that the gain is sensitive to phase but is hdtidw
independent.
In conclusion, we can say that the Kerr medium is an imposanglifier with large

gain and wide bandwidth.
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Chapter 3
Quantum Mechanical Analysis of the Lossless Kerr Mediume@ddsMZ|
3.1 Calculation of Average Quantities Using QM

Using notation from section 1.6.2 | can write the output figpérator3 in terms of

the input field operatoA by replacing in equation (2.15). Further, by replacitigwith

A, E* with Af, andE,,, with B. | obtain:

B = — ,l'ei<1>1o <i(1>10 <A - AT> + A)

(3.1)
= uA + vAf
wherepy = —ie®10 (idp+ 1) andv = —e®10d,,. As a cross check, using equation
(3.1), | compute the commutator 8f and obtain
BB = (uf -~ p?) = 1. (3.2)

This time, unlike in section 1.6.2, the commutator has beesgyved by the device with-
out the need of the addition of an extra noise term operattitérexpression aB. This

is interesting because there is gain. To explain what happleysically consider a phasor
representing the electric field of a coherent state as shovigure 3.1 and a disk rep-
resenting uncertainties in amplitude and phase of theraldatld. After amplification,
the inphase component of the noise with the gain gets antpliftdle the out of phase
component of the noise gets attenuated, in a such way thptaldect of photon number
and phase uncertainties is keph A¢p = % This noise is called squeezed noise.
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Y

5 ) -(X) L (X)

Field before Field after
parametric amplification parametric amplification

Figure 3.1: Representation of the electric-field propsrtiethe coherent be-
fore and after parametric amplification

For an input signal modeled by a coherent state | can compute the number of
photons at the output:

(a

BB

a> = <a ‘ (u*AT + I/*A) <,LLA + I/AT> ‘ a>

= |uPlaf? + 2R (o) + v (jof + 1)

(3.3)

whereR(-) means real part. From the above equation, it can be seefiitat|v|?)|a|>+
2% (v*pa?) is the amplified input signal anef is the ASE. The maximum signal output

happens whefk (v* o) is maximum, which happens when all the teriua? is real.
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Therefore, the maximum signal output relative to signauinghase occurs when

R (v o) = lullvllaf? (3.4)
The output is then
(a[B'B|a) = |uflal?+2lullvllal + v (jaf + 1)
= (Iul+ ) [af? + |vf* (3.5)
= Glaf* + v,
where
G = (ul + v])? (3.6)

and is the parametric gain. Some useful equations involviagparametric gain are:

_1_
o GG =2

y (3.7)

and

s G+G 142
nf? = ———.

- (3.8)

Using these equation, the maximum signal output relativeidgoal input phase, which

occurs whenv is real can be obtained. It is

G+G1-2
(M) = (1 + )P a2+ =2
-1 _
= Gngy + TFE 2 (3.9)
G
~ G(na) + Z,

where(n,) = <a ‘BTB‘ a> and(n,) = |a|?. SinceG is assumed to be large, in the order

of 20 dB, the following approximation can be made

<nb>max ~ G(na> -+ % (310)
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Similarly, the minimum output, which occurs wheris purely imaginary, is:

G+G1-2
(MbYenin = (1] = [V])? |a]” + —
_ (na> + G+ G_l ‘l‘ 2 (311)
G 4
N (ng) G
¥~ tT1

3.2 Quantum Mechanical Noise With Loss in Linear Elements

To compute the noise, | calculate the variance of power $igma In order to do
so, | compute<BT]§BTB> using (3.1).

(BIBBB) — |uf* (Jo2(1+ [af?) + 2R (ululv"a*(2 + |af)

+ 2R (P 0?lof?) + Pl (4ol +8lof? + 2)

(3.12)
+ 2R (1Pra’t) + 2R (v plvPe® (4 + 2|af?))
+ v* (1 + 3|a)® + |of*) .
| then find(n)? using (3.3) , which is
<n)2 = |,u\4|oz\4 + 2% (V*2u2a4) + |V|4 (1 + 2\0z|2 + |oz\4)
+ 4R (|p)|a)?v pa®) + 4R (v pa®v]? (laf* + 1)) (3.13)
+ 2luPlalv)* (|lal? + 1) + 2[pl*[v?|a].
The variance is:
(An)* = (|,LL\4 + \1/\4) |or|? + 4R (,u|,u\2y*oz2) + 4R (V*,LL‘I/‘2CY2)
(3.14)

+ |l ) (6]al* +2) .

when the relative phase between the signal and the pumpustadjto give maximum
gain, | use (3.4)
(An)* = (|l* + [v*) lo” + 4 (u” + [v*) |l vl + uPlv)? (6lof” +2) . (3-15)
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Substituting equation (3.7) and (3.8) in the above equatmhusing the approximation

\u? =~ |v|?, | get the variance for the maximum output to be

(An)? ~ G ((na> + %) | (3.16)

This implies that the output photon number squared SNR is

G2 <na>2
SN = 3.17
RPNsout G2 (<na> + é) ( )
Since SNRys,, = (n.), the photon number squared NF is
<na>
NFpng = 101log | ————~ (3.18)
A [<<na> +3)

Even for high parametric gain, the photon number squared NRi® OPA is signal
dependent for weak signal. For large signal,f > %), the photon number squared NF

approaches 0 dB. Also, | have

G+G1 (3.19)

(AB) = —

Therefore, the output field amplitude squared SNR is

SNRuxs,,, = ol (3.20)

Since SNRys,, = 2(n,), the field amplitude squared NF is

NFgas = —101log {%} : (3.21)

For large parametric gain, Nks approaches -3 dB, which shows thatiN§is not ap-

propriate for this OPA. The quadrature field noise variasce i

<AX2> - %A_l. (3.22)
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Therefore, the output quadrature field squared SNR is

4G{n,
SNReas,,.. = % (3.23)

Since SNRyys,, = 4(n,), the field amplitude squared NF is

G
NFqrs = —101log [—G e 1] . (3.24)

For a large parametric gafd, NFqrg converges to 0 dB.

3.3 Quantum Mechanical Noise of NMZI with Lumped Loss

Real couplers are usually the largest practical loss anttibate heavily to total
noise. To get an estimate of their impact in the NMZI OPA'ssedigure, | will consider

a lumped loss before the Kerr medium and one after.

3.3.1 Quantum Mechanical Noise of Kerr Based NMZI| with a# tbss
at the Input

If there is a loss that is placed before each Kerr Medium,eggivalent to placing
the losses at the inputs of the NMZI's. | have shown that foatienuator with los<.
in section (1.6.1) Ngrs = NFpas = NFpns = —10log(L). The lossless parametric
amplifier has a noise figure of Nfs = NFpns = 0 dB and NRas = —3 dB for large
parametric gain. Therefore, for a NMZI OPA with lumped losaced before the Kerr

medium, the noise figures are

NFpNS = NFQFS = —1010g(L) (325)

50



and

NFFAS = —1010g(L) -3 (326)

Let us now look for noise figures expressions with the lumped hfter the Kerr medium.

3.3.2 Quantum Mechanical Noise of Lossy Kerr Based NMZI vailih
the loss at the Output

If the losses are placed after the Kerr Medium, it is equiviie placing them after
the NMZI's. The output field operator of the OPA is as given lopation (3.1). The

output after the loss is

A

C=VILB+N, (3.27)

whereN is Langevin noise operator proportional to the annihilataperator and that
[NT,N} — 1 — L. In order to characterize this output signal, | need to dateuits

average and its variance. The average signal output is

<(‘J*c‘3> = L [JuPlal? + 2% (v uo?) + v (Jaf2 +1)] (3.28)
To calculate its variance, | first calculaéé\JTCCTC>
(CICCIC) = L{Jul* (Ja2(1 + o) + 2 (ululv a*(2 + |af)
+ 2R (ululPv a®lal®) + |uflv® (4lal* + 8lal? +2)
+ 2R (1Pv?at) + 2R (v ulvPe® (4 + 2|al?)) (3.29)
+ )t (1+ 3l + [af*) } n L[G% (v pa?)

1 (14 3Jaf?) + vf? 2+ 3Jaf?) + L]
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o A\ 2
| then find (n)? = <CTC> using (3.28) , which is

<n>2 _ L2{|u|4|a|4 + 2% (u*2u2a4) + |l/|4 (1 + 2|Oé|2 + |Oé|4)

+ 4R (|pl*|a)?v* pa®) + 4R (v pav]? (|of® + 1))

(3.30)
2P lalPlvf (jaf? + 1) + 20uvlal'} + L]2luPlof?
+4AR (v pa®) +2|v)? (laf* + 1) + L] .
Therefore, the variance is
(An)? = L2{ (Jul" + [v]") Jaf? + 4% (u|pf>v"0?) + AR (v" plv0?)
+ |l (6laf* +2) | (3.31)

+ L[2§R (v ue®) + |pl? (1 + |of?) + |1/|2|a|2].
When the relative phase between the signal and the pumpustadjto give maximum
gain, | use equation (3.4) to get
(An)? = 22 (|ul* + %) ol + 4 (uf* + %) Lullvlaf? + Pl (6laf? +2) |
+ L2l + [l (14 |af?) + laf?].
(3.32)
For high parametric gain, using equations (3.7) and (3:®) approximationu|* ~ |v|?
can be made. Substituting equation (3.7) and (3.8) in theeabquation and using the

approximation thatu|* ~ |v|?, | get the variance for the maximum output to be

(An)? ~ [2G? ((na> i %) e <<na> i i) | (3.33)

For high parametric gai& much larger than the logds | have

(An)* ~ L*G? ((na) + %) . (3.34)
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With the output signal bein@'L(n,), the output photon number squared SNR is

G2L2<na>2
SNRPNSom - 2,9 1
1
~ <na> + g
Since SNRxs,, = (n,),
NFpns = — 101og { (1) } . (3.36)
(na) + é
For large signalgn,) > % NFpns is roughly O dB.
To calculate the field amplitude squared NF, | comguté)?, which is
-1 _
app-p&te =2, 1 (3.37)
4 2
From this, it is then easy to show, using equations (1.64)Yam®) , that
2GL
- — 3.38
NFeas = — 101og {LG+LG—1 —2L+2} (3.38)
For a large parametric gaid, NFgag converges to 0 dB.
A\ 2
To calculate the quadrature field squared NF, | com;éuﬂé() , Which is
5\ 2 G+G1t-2 1
(AX) I e (3.39)
It is then easy to show that
2GL
= _ 3.40
NFars 101og [LG+LG—1 —2L+1]|" (3.40)

For a large parametric gaid, NFqrg converges to 0 dB.
Let us find an expression that will reduce the amount of necgsslculations for
the NF.
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3.4 Simple Expression of Noise Figure for High Gain Paraimetr

Amplifier

In this section, | derive an expression for the noise for agarhigh gain parametric
amplifier, which will simplify the necessary calculatiomsthe following chapters. For
important applications, the amplifier gain will be at lea@tB. Unlike in the section 1.9,
| assume that there is an input signal that is much greaterttienoise. | calculate the
output photon number variance of the OPA. | denAtg;, the field operator at the output
of the parametric amplifier. Assuming that perturbationakdy i.e. <Aout> > 5Agu, |
can write

Ao = (Aow) + A0, (3.41)
where<A0ut> is the amplified signal field arrii&out is the noise field operator. From this
equation above, | find the variance of photon number, whi¢kdas appendix B.1)

A (AlwAan) = [(Ao)| (5810080 ) + (Bou) (5ALIAL,)
A)] (5R0dAL) + (Aoe)” (5AunbBo)  (3:42)

4 (FAL A dAL A ) — (FAL A0 )

out

| assume that the signal power is much greater than the pdwiee moise. Therefore, |
only keep the beat terms between noise and signal sincedhesiee source of the noise

in the electrical domain. Therefore, | have
A (AlAw) ~ [(Au)| (FALGAMY) + (Ao) (sR1,5AL,)
[ Aa)| (5RoibAL) + (Aun)” (5Ruiho) (343

= |(Aau ) 6B + (Aau) 6A0

2
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2

The average number of photon at the outpu‘t<i:&out> . At the input, | denote the

average input number of photdm;,|*. | denote byG,, the parametric gain of the OPA.

Therefore,
(Aow) = VGylanle”. (3.44)
where|¢| is some phase.
A (AlAoe) = Clowl? [5AL e + 6A e | (3.45)

| definedX anddY, such that

AT oid A —ig
5% = VBoue” + 0Aoue (3.46)
2
and
AT o SA —i¢
5 = PR MR T (3.47)
1

This is equivalent to the following expression

Y- (55{ + m?) e, (3.48)

Substituting this expression and equation (3.44) into 8gu#3.43), | get

A (Al Aout)z ~ 4G, o (5X°). (3.49)

out

In equation (1.107), we saw that

ASE — [<5Y2> + <5X2>] _ % (3.50)

Under the condition tha@X2> > <5Y2>

ASE = <5X2>. (3.51)
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This condition is expected since the component of the nbiesdad in phase with the signal
is expected to be considerably amplified compared to the ooemt of the noise in the

guadrature phase. Therefore,

~ “ 2
A (A* Aout) — 4G |?ASE. (3.52)

out

| can compute using equation (1.62) the output photon nusdpgaired SNR, using equa-

tion (3.44) for the signal and (3.52) for the noise. | get

G|Oéin|2

, (3.53)
AASE

S N RPNSout =

For a coherent state input, the input SNRuig |2. Therefore, the photon number squared

noise figure is

NFpns = — 101log { (3.54)

ase)
It is important to note that this result is only valid for largarametric gain (greater than
10dB) and for large signal power (greater than 10 photons).

To compute the quadrature field squared noise figure, | asannrgput coherent

state|a,) for an OPA. The output quadrature phase squared SNR is

G|Oéin|2
SNRgAS... ~ <5X2> : (3.55)

For large gain, assuming the out of phase component of tlse i®negligible relative to

the inphase component, the SNR becomes

G Qlin 2
SNRgas,,, ~ A|SE| . (3.56)
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The input quadrature field squared SNR of an coherent &tateis 4|a;,|?, the field

amplitude squared noise figure is

G
NFgrs = — 101og [WSE} : (3.57)

This means that for large signals and large parametric gain,

NFqrs = NFpys. (3.58)

Now, | compute NIras. | first calculate the field amplitude squared output SNR for
an OPA with input coherent stafe;, ), which is
G|Oéin|2
(AE)?
= Clowl 3.59
(X7 + (a%7) (3:59)

. G|Oéin‘2
- ASE+ 1L

SNReas,.. =

For large gain, | have

G Qlin 2
SNRos,., ~ 1 (3.60)

Since the input field amplitude squared SNR of an coheretgt[sta) is 2|a,|?, the field

amplitude squared noise figure is

G
NFpas = — 101og [TSE] : (3.61)

which shows that for large signal and large parametric gain,

NFpas = NFpns,., — 3 = NFqps — 3. (3.62)
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This result shows one more time that the dN§is inappropriate for OPAs. Therefore,
| will stop using it. The expression for Nfrs and NFps Will be used to significantly

reduce the necessary calculations in the following chapethis thesis.
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Chapter 4
Quantum Mechanical Noise of a NMZI with Lossy Kerr Media

4.1 Overview

In the previous chapter, we have looked at the NMZI noise iiclvloss is either
at the input or at the output of the Kerr medium . In this chgpte look at another case
in which the loss is uniformly distributed throughout therkKemedium. In section 3.3,
| have shown that the signal is least degraded when all tleeisdecated after the Kerr
medium, in which case Nfrs ~ NFpng ~ 0. | have also shown that the degradation is
the strongest when all the loss is placed before the Kerrunedn which case Nfys ~
NFpns =~ —10log(L). Therefore, | can expect the noise figure for the distriblbed
in the Kerr medium to be bracketed by the previous two extreases, which is to be
between-10log(L) and 0 dB.

While, this problem has been considered before by Imagilal. [8], their deriva-
tion seems to have errors. In this chapter | show a properaddtr solving the problem.
In order to solve this problem, | derive the differential ajan involving the quantum
operators in the lossy Kerr Medium. | then use first orderysbgtion theory to linearize

and solve the differential equation.
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4.2 Noise Figure of a Lossy Kerr Based NMZI OPA

4.2.1 Differential Equation of Field Operator in Lossy Kétedium

For this analysis, | chose a small segment on the Kerr mediuoan choose a
model for that segment from a variety of possibilities. Foaraple, it can be a lossless
propagation followed by loss, or loss followed by losslessppgation, or half of loss
followed by lossless propagation and then followed by hidliss. These different models
for the small segments adds to the same Kerr medium. Thetdfay are all expected to
yield the same results. | chose the model in which there sdas propagation followed
by loss because | expect the calculations to be simpler. ithjrtant to note that the
results in the previous chapter in which it was said that lngsont of a lossless Kerr
medium yield different results from loss after the Kerr madj assumes a high gain. For
infinitesimal length, the gain produced by the Kerr mediurmigiitesimal. Therefore,
those results do not apply.

During the lossless propagation, the field goes througtpbal$e modulation which

can be described by the following equation [54]

= iyAT(2)A(2)A(2). 4.1)

SinceA’(z)A(z) is invariant of motion within the lossless Kerr medium aftespagation

dz, | have

(4.2)
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Then the signal goes through loss. The signal field operaixpressed as follows:

A(z+dz) = A'(2)e P 4 df

(4.3)
—A() + <i7AT(z)A(z) - 5) A(2)dz + df,
where d is Langevinian noise such that
df off] =1 - (%)
(4.4)
~ 2(dz.
Therefore, | have
dﬁ@) = (wAT(z)A(z) - ﬁ) A(z)+N
& (4.5)
where
[N(z), NT(zf)] —285(z — ), (4.6)
whered(-) is a Dirac delta function.
4.2.2 Using First Order Perturbation Theory
To solve equation (4.5), | introdu@e\ () such that
JA(z) = A(z) — <A(z)> . (4.7)

| substitute this in the differential equation and sepafhatetuating terms from steady

state terms, keep the linear terms and throw away the higtler terms, | get:
d—i (&) +9A() = [Z’v (\<A<z>> "+ (AR) oA + (A) 5A<z>)
— ﬁ] ((A2) +0A()) +N.
(4.8)
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Therefore
déi(Z) _ [’W (‘<A(z)> ‘2 SA(2) + <A(z)>2 SAT(z) + )<A(z)>‘2 5A(2)>

— BSA(2)

+ N.

For the average value equation, | get:

4 (w }<A<z)>\2 - 6) (A). (4.10)

4.2.3 Solving the Differential Equation for the Average (val
To solve (4.10), | take an integral on both side of the equad®follows
/ —_— = / <27)<A(z)>) —ﬁ) dz. (4.11)
0 <A(z)> 0
Since input state i), <A(0)> = «. Since this is a propagation of a field through a
lossy medium with loss coefficiemt | have
<A(z)> = ae "7 (4.12)

| substitute this result in the equation then evaluate thegnal to get an expression for

<A(z)> (see appendix A.1)

<A(z)> = ae P exp <;—g|a|2 (1— 6_26z)) . (4.13)

4.2.4 Solving the Differential Equation for the Fluctugtifierms

Finding a solution for equation (4.9) is a bit more involvéstart by simplifying the

equation with a series of substitution. | begin with thedwling for short hand notation:

6(2) = %W (1= e7%) + 6. (4.14)

62



These equation are then substituted in equation (4.9)

doA(z)
dz

= (i27]al?e™* = B) 6A(2)

+ (iy|al?e2Pe%9) SAT(z2) + N.

| make a series of change of variable starting wil(z) = 6Be’**), which gives

A

doB(z
dz

Then, substitutingB(z) = §C(z)e~?* in equation (4.16) gives

A

déC(2)
dz

= iy|al|*e 207 (5@(2) + 5CT(2)> + Ne ()2,

Then, | introduce the variables

and

§X anddsY are Hermitian and

6C(2) = 0X +i6Y

Therefore, if | substitute this relation in equation (4.19et

dz

The Hermitian conjugate of the equation is

z
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) _ (iv]al2e™2% — B) 6B(2) + ivlal2e 6B (z) + Ne= ),

d <5X + iéY) = iy|al?e 2P? (5@(2’) + 5CT(2)) + Ne @) ehz,

di <6X - MY) = —iy|al?e (5@(2) + 5@*(2)) + Nfei@)ehz,

(4.15)

(4.16)

(4.17)

(4.18)

(4.19)

(4.20)

(4.21)

(4.22)



Summing equations (4.21) and (4.22), | get

d - N ~
95k = 7 (Fteio ~id(2) (4.23)
P 0X 5 (N e + Ne ) .

Subtracting equations (4.21) and (4.22), | get

d ¢ 2 i €
—0Y = 29|al7 e 0 X + —
dz 21

(Ve — W) (4.24)
From equation (4.23), | get
A ~ Leﬁz ~ ~ .
5X(L) = 6X(0) + / (N1 1 R g (4.25)
0

From equation (4.24), | get

Y - 2 _—2pz 5 e’ < —ig(2) _ Wt oi0(2)
0Y (L) = 2y|alfe™ 26X (2) + 5 (Ne —N'e ) dz
0
= 5V (0) + %|a|2 (1—e21) 6% (0)
(4.26)

L z IB:E R ) . )
+/ 27|a|2e_262/ % (NTe"z’(I)jLNe_“b(x)) dzdz
0 0

L Bz
n / e (Ne—w(z) _NTei¢(Z)> d-.
0

21

wherez is a dummy variable and not a physical dimension. Therefore,
~ 2 A2
<5X (L)> - <(5X (0)>

L pL
b (e (e o S (Ries) o Neme)) dia)
0 J0

= (5%°0) + § /O " /0 ) (N()NI()) dad
= (X)) + : L4_ !

eQﬁL
-

(4.27)
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5.2 . . . . .
where | use(<5X (0)> = 1 since our input signal is a coherent state. | will ysg =

'a§‘2, where|a,|* is the pump power (only half of the pump power goes into eactt Ke

medium). Therefore,
2
<5Y2(L)> - <5Y2(0)> + 47—62\%44 (1— 2Ly’ <5X2(0)>
1 < / ’ / " B (NTe’W) _ Ne—z’mz)) (Ne—w(z') _ Nfews(z’)) dzdz'>
\ozp|4/ / // Bla—2z4y—22")+i($(z)—¢(v)) <NNT> dzdydz'dz

1 2 1— —26L
= S Dl (1= e 4 el (- ) (1= 1)

4 1632 20
el 1 VQ 4 —28L
—T+§@\0zp| (1—6 )L
(4.28)
It is conventional to define
1 — e 28
Lgg=——-+. 4.29
"= (4.29)
Therefore,
. 28L 2
<5Y2(L)> =% Ll (4.30)
4 4
Substituting back the changes of variables, it is easy twshat
JA(L) = (5X(L) n iéY(L)) (9L (4.31)
| definedX 5 = §Xe2@D)-BL) gnd§Y 5 = §Y ez (@(L)-BL) Therefore,
~ 2 1
S (4.32)
<5XB(L)> :
and
. 1 2
<5Y2B<L>> =17 7zl%ﬁLeffLe—%L (4.33)
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Using equation (1.107), | get the output ASE of the parametmplifier, which is

~9 ~ 92 1
ASE = <5XB(L)> + <6YB(L)> -
; (4.34)

The large gain expression of the parametric amplifier isveédrin appendix A.3 and is
G = ~?e 2|, |* LY. (4.35)

The observation of equation (A.24) shows that the field ghasp ise’*(") relative to that

of the input field, while that of the noise i€’(") (see equation (4.31)). Therefore, at the
output, the noise field i§ out of phase relative to our phase frame of reference. Theref
the in phase component of noise with the output signélis and the quadrature phase
component i9X 5. <5YZ(L)> is much greater thaééXZ(L)>. Therefore, | can use
equation (3.54) to get the noise figure since it requiresttiein phase component of the

noise be much larger than its quadrature phase. | calctlatedise figure and get

1 — e 200

See figure 4.1. This expression was obtained with the appiaiei expression (3.54) valid
only for high gain and large signal. In Appendix B, | derive tphoton number squared
noise figure of a lossy Kerr Medium based NMZI assuming ordy the parametric gain
is high. In other words, the input signal can be weak, theeasgion of the noise figure is
as follows

Oé2

T <L_ o 1) . (4.37)
Leff & 8 Lgﬁ Leff

The noise figure shows that Haus [41] is right since it is ddpahon the input signal,

“ NFpNS = —10 lOg

which is a problem for this choice of definition of the noiseaufig.
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If | assume that the input signal is large, | can ignore in thisefigure expression

any term not containing the input signal power. | get

OéQ
NFPNS ~ — 1010g 7 2 5| - (438)
Leg —s
Therefore,
NF 10log | L2 4.39
PNS__OOg[QﬁiL}’ ( )

which is in aggreement with equation (4.36).

This result is different from the result given by Imaju&ual. [8], which is

NFpyns = —101og [1 + (em —1-23L — % (zﬁL)Qﬂ (4.40)

2
(28L)*

4.3 Detailed Comparison with Imajuku’s Calculations

In this section, | want to show the steps in Imajuial’s calculations that led to

the differences in our results. Imajuktial. [8] write that the output field operator of the

NMZI OPA is
A(L) = Ag(L)e™PL + /1 — e=28LT (L), (4.41)
where
~ . / 2 2 ~ -n/ 2 A =N/
Ao(L) = i+ (\/ 1+ (%) A(0)e ™ + W’;LA*(O)eZQ) . (4.42)
1 — e 20L
2 __ 2
|tout | el 53L (4.43)
|a|? is the averaged photon number of the input pump,
o= 1220 (4.44



NF vs Loss
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NF (dB)

0 0.5 1 1.5 2 2.5 3 3.5
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Figure 4.1: Plots of NF vs loss for a Lossy Kerr medium basedNMPA

2]
¢o = arctan (%) , (4.45)
2
ou L
v =g+ Mool L, (4.46)

¢y is the pump field phase at the output of the NMZI,

N o [ 2Be—28L , L
[, (L) = W) 2pe T e~ i%o / eP7ey(2)dz
1—e 0

el [ (4.47)
+ 7/ / [ie"‘boeﬁzéo(z') + eﬁzég(z')] d2'dz |,
2 0 0
&oz) = e 00 ), (4.48)
o(z) = Sma (@) + Ena(?) (4.49)

\/§ )
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¢m1(z) and &, o(z) are the vacuum operator in each nonlinear medium of the NMZI.

They obey the following commutation relation
emi(2) + &l ()] = 32 = 2), (4.50)

where: = 1, 2. At this point, this result is similar to the one | obtaineceguation (A.8).
Without any explanation, they use the following mathenstidentity (possibly it is an

approximation)
/ ¢o(2)d2' = (L — 2)&9(2) (4.51)
0

Consequently, in equation (53) of their publication, thejtev

. L 23e—28L _ L
T, (L) = @0y 2Be™ T (e_’¢"/ eP7ey(2)dz
1—e 0

. (4.52)
+ ’Y|Oéout|2 (L _ Z) |:,L~6—iq§oeﬁzé ( Bzat
—_ o(z) + €€l (2)] dz |.
0

2

From then on, our results diverge. See figure 4.2 and 4.3

4.4 Quantum Mechanical Noise of a NMZI| with Gain in the Kerrdiem

It has been shown that the loss in the nonlinear medium of NOEZA deteriorates
its noise figure. This gives me an idea on what to expect if trdinear medium is a
saturable absorber. However, it does not give much insifivhat to expect in the case
where the nonlinear medium is an SOA. For this, | am going teser a NMZI OPA
with gain in the Kerr medium instead of loss.

With a process similar to the previous section (see appe@iliXx get the noise

figure of a NMZI with gain in the Kerr medium instead of lossl dhoose

2g0L __ 1
Lg=" "+ (4.53)
290
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NF vs Length

T I e R R R A

Length (km)

Figure 4.2: Plots of Nkps Vs Length for a Lossy Kerr medium based NMZI-
OPA as a comparison to Imajukiés al. figure 6 [8]

then | have
. " 1 L
T ~ ~2,290L AT2 9o
(OBt ) e 0y Ll | 5 = 5 1)]' s
Under those condition, the expression of the parametritigai
G~ ’yzegOLaﬁLzﬂ. (4.55)
| use the noise figure formula | derived earlier
NFNPS ~ — 1010g |:—:|
4ASE
(4.56)

L
— 10log |2 — .
Og{ Loﬂ]
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Imajuku’s /

. ///
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Figure 4.3: Plots of Nkps vs Loss for a Lossy Kerr medium based NMZI-
OPA as a comparison to Imajukiés al.

It can be seen that the noise figure goes very quickly to 3 dB(fi§are 4.4).
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Figure 4.4: Plots of Nkps vs Gain for Kerr Medium with gain based NMZI-OPA
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Chapter 5

Discussions of the Results from the Lossy Kerr Based NMZI OPA

In the previous chapters, | have looked the affects of the ilo&err based NMZI
OPA on its noise figure. In order to calculate its noise, | glted quantum mechanically
the fluctuations of the field after the nonlinear medium. Ftbat result, | calculated the
output ASE of the OPA. From those results interesting thoagsbe noticed.

First, in classical physics, when a noisy signal goes thnautpssy medium, both
the signal and the noise decay the same way. Therefore, tRedBBis not degrade. We
have seen that in section 4 that in quantum mechanics thistisue. It was seen that
the in phase component of the noise remaining constant (gesien (4.32)) while the
guadrature phase component grew (see equation (4.33)ht@uanechanics guaranteed
that the noise did not go below the minimum threshold impdsethe Heisenberg un-
certainty principle. Since the signal decays, the SNR dakxgaFurthermore, it was seen
that the inphase component of the noise, while remainingteom, made the quadrature
phase component grow (see equation (4.26)). This differéetween classical physics
and quantum mechanics justifies the use of quantum mecharic section. Moreover,
The ASE at the output is the amplified vacuum fluctuations.useget a typical value of

the ASE for a gain of 30 dB. From equation (4.34) and (4.35aJeh

G L
ASE= <1_2§7—25L) . (5.1)

It can be seen in the absence of gain, there is no ASE. Let usseRGL = In(2) (this
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choice will be justified later in this chapter). Then the eegmion of the ASE becomes

ASE = % In(2). (5.2)

Therefore, for a 30 dB gain, the ASE is about 347 photons. Matein the absence of
loss, it is 250 photons. It is also important to note thatsitzd OPA has classical noise,
for example from pump fluctuation (RIN and phase noise) aachtlal noise. However, in
the absence of photon quantization there is no quantum dog&s# the uncertainty dh)
and no vacuum input giving rise to ASE. In actuality, for btk classical and quantum
OPA, the pump noise is the dominant noise. Loss in classiPAl @bes however lead to
noise. Thermal heat causes the index of refraction to hagtifitions, introducing phase
noise, and the thermal Rayleigh scattering causes RIN.eThes thoroughly classical
noises.

Second, in section 1.6.2, | calculated an expression foABIE of a NMZI OPA

using quantum mechanics. From equation (1.107), the esipresf the ASE is

ase= [(5%7) + (5%7)] - % (5.3)

This expression tells us that if the output from the nonlimaadium are coherent beams,
for which <5?3> = <5XT> = 1 there will be no ASE. We have also seen that the out-
put of a NMZI OPA amplifying a coherent state always conta®. Therefore, in the
absence of ASE, there is no gain. ASE as derived here is in euoflphotons. Typi-
cally for high gain parametric amplification, ASE is in theler of 10 to a 100 photons.
Therefore, the—% in the expression of the ASE is not important and can be naxglec
The expression becomes the same as the one given by clgdsysats. Therefore, in

that scenario quantum mechanics is not needed.

74



Table 5.1: Different fiber that could be used in a Kerr basedaNhased OPA and their

optimum length and their maximum gain.

Fiber Type| v (/lkm/W) | 3 (dB) Opt. Length (km)| Max. Gain (dB)
SF 2.2 | —0.1 15 | 20.2
HNL Fiber 15.8 | —0.35 4.3 | 31.9
BOBF 460 | —1.9-10° 0.8-107% | 23.8
LSF 640 | —1.3-10° 1.2-107% | 28.4

Now, for practical devices Kerr based NMZI OPA, let us cadtelthe best perfor-
mance we can expect if different types of lossy fiber were asederr medium. In table
5.1, | show the loss coefficient and the nonlinear coefficarftandard Fiber (SF)[8],
Highly Nonlinear Fiber (HNLF)[8], Bismuth-Oxide Based E(BOBF) [39], Lead Sil-
icate Fiber (LSF) [40]. Let us calculate their optimum gaiie expression of the para-

metric gain from (4.35) is

9 4 —2pr (1 — e 20k

The parametric gain is length dependent (See figure 5.1)mdtsmum as a function of
L is reached when

In(2)
Lopt — W

The above expression justifies the earlier choicg®f = In(2). The maximum gain is

(5.5)

2
Grnax = 2=y |* (5.6)
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Figure 5.1: Plot of gain versus length for a HNLF£ 15.8)/km/W, 5 = —0.7dB/km )

At maximum gain, the noise figure is

NFQFS = NFPNS =—-10 lOg [ :| ~ 1.4186. (57)

1
21n(2)
To illustrate this, | compare the maximum gain for OPAs basedthe fibers in table 5.1

for an input pump of 2 Watt. It shows that HNLF fiber would yig¢ihe highest gain.

In the next chapter, | consider a different nonlinear medium
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Chapter 6
Semiclassical Treatment of Optical Parametric Amplifies@&hon

Saturable Absorber and Amplifier

In this chapter, | show that a Saturable Absorber (SA) or Senductor Optical
Amplifier (SOA) can be used as a non linear medium in the NMZA@35%]. The steady
state parametric amplifier gain is calculated from a simfassical model. | assume that
variation of gain or loss is usually accompanied by largesphraodulation as generally
described by the Kramers-Kronig relation, which is typicb$éemiconductor media. The
calculations are done for saturable absorber. The resudtgdantical for an amplifier

except for the sign of the absorption coefficient.

6.1 Saturable absorber/Amplifier Overview

6.1.1 Loss Characteristics

For a cross sectiom , the absorption or gain of a travelling wave is [51]

dP(z)
dz

= —oN(z)P(z), (6.1)

where P(z) is the field amplitude squared,is the axis of propagation andi(z) is the
number of atoms per unit length. For a SA/SOA, the absorpstmulated emission of
a photon changed'. Assuming one atom is removed for each photon and also asgumi
that atoms relaxes and return with some time constatite equation of the number of
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atoms is

dN(z) _ _O_N(Z)P(Z) N Ny — N(z)’ 6.2)
dz hw T
wherelV, is the total number of atoms per unit length. In steady state
No

Psat

whereP,,; = % P,.: is the saturation power. Substituting the equation aboyé.m, |

get

1 di(z) o Ny
_ 4
PG) d: 1420 64

The absorption/gain coefficient iz) = o N(z). Multiplying equation (6.2) by | get

d3(:) _ BIPE) , o= B(2)

d: 7P T ’ (6.5)
wherefs, = o Ny. [y is the loss/gain per unit length in the material. Also,[49]
1 dP(z) _ —[o (6.6)

P(z) dz 1+ y'
The same equation may represent the behavior of a SOA ifgimeo$is is inverted.3, is
positive if the device is a SA and is negative if it is an SOAeBolution of this equation

in implicit algebraic form for a lengtii of the device is

In (%) + <—P(Lgtp(0)) = —GoL. (6.7)

The solution to this equation is

P(L) = Poat - W (@6%—ﬁ0[/) ) (68)

sat

wherelV (y) is the Lambert W function defined as the inverse of the functio

y=We". (6.9)
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The loss ratio is then [65]

r % _ IIt (6.10)
| define
3= —1In(D). (6.11)
Therefore,
A % W (%6%—%2) , (6.12)

6.1.2 Phase Variation

The SA also shifts the phase of the electric field as it profgsgdorough it. This
change in phase depends on the Henry-alpha fagtgrof the medium which is the ratio
between the real and imaginary parts of a complex loss. @ypmlues for the Henry-
alpha factor ranges between three and five. For an iBipuitin an SA, the output electric

field after the SA is [65]

E(L) = E(0)e 3tientD), (6.13)
Therefore,
eout - _@QH + eina (614)

whered;, is the phase at the input to the medium.

6.2 Parametric Gain of SA based NMZI-OPA

Here | consider an NMZI as shown in figure 1.4 in which the nogdir medium is

a saturable absorber. At the input of one arm of the NMZI, leidne electric field of the
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pumpE,, which | will chose to be real, and on the other arm, | have tWéiGput signal
E,e%n whereé,, is the relative phase betweén andE,. As previously, after the first

beam coupler, | have

1 i
Eou11 = ﬁ (Ep +iEge 9”‘) ) (6.15)
at the output of the first arm and
Ey11 = L (E ewin +iE ) (616)
ou \/i S P

in the other arm. | denote b¥,(z) and P,(z) respectively the power in the first SA and

second SA. From equations (6.15), | obtain
1
Pi(0) = 5 (E? + E} — 2E,E,sin(6;,)) (6.17)
and from equation (6.16)

Py(0) = = (E? + E2 4+ 2E,E,sin(6;,)) - (6.18)

N —

Assuming that, is weak, then to the first order | have

Py(0) ~ = (E2 — 2E,E, sin(6;,)) (6.19)

N —

and

P(0) ~ = (B} + 2E,E, sin(6;,)) - (6.20)

N —

| will define the total relative loss of each SA using (6.8)

r, = Pi(L)
Fi(0) (6.21)
_ Psat W <P1(0> 6215—21)—50L)
Pl (0) Psat
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and

L — Py(L)
* T Py(0)
g (6.22)
_ Psat W <P2(O>€F;D2S—S?—BOL) .
P2(O> Psat
| write the exponential los§; = — In(I";) andf; = — In(I'y). Since at the input of each
SA | had
1 ,
Eou11(0) = 7 (E, + i Ey) (6.23)
1, .
Eou2(0) = 7 (e E, +iE,). (6.24)
At the output of each SA | have
e—%(iaH—i-l)ﬁlL _
Eouni (L) = ——=—— (B, +iF.) (6.25)
and
o3 (i +1)B2L »
Eoui2(L) = —5 (Ey + iE,). (6.26)
The output fields of the NMZI are
By = 1[ (e—%(iaml)m _ 6—%(mH+1>62L> E,
2 (6.27)
1 jeitn (e—%(z‘aml)ﬁw I 6—%(iocH+1>ﬁzL> ES}
and
By = l[i <e—%(mH+1)ﬁlL n 6—%(mH+1>62L> E,
2 (6.28)

1 eifhn (6—%(iaH+1)ﬁzL _ e—%(mHH)ﬁlL) ES]-
| am only interested in output field one since it is the signapat, which can be rewritten

as
—(iag+1)(B1+062)L
B e 1 (e +1)(B1+62) [(6_%(iaH+1)(ﬁ1—52)L_e—%(iaH—i-l)(ﬁl—ﬁg)L) E,
ou 2

+ jetfin <€—i(mH+1)(ﬁ1—ﬁ2)L + 6_%(1'04H+1)(51—52)L) ES] )

(6.29)
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Next, | simplify the above expression by defining the différal absorptions; — 3,

and calculating its approximate expression.

6.2.1 Approximate Expression for the Differential Absaoopt

| substitute (6.19) and (6.20) in (6.21) and (6.22) and | mbta

Psat
I = -
B2 -2E,E, sin(6;y,)
o (E;z% . 2EpES sin(@in) . (ngzEﬁi: sin(@in) 5o
Psat
and
Psa
Iy -

~ B2+ 2E,E,sin(6;)

W ( (Eg + 2EpES sin(@in) . (E§+2E£:i sin(ein) —Bo

Psat

For any differentiable functiorfi(x), to the first order, | have
fl@+A) = flz = A) = 2f(x)A.
| chooseA = 2FE,F; sin(f;, ). Therefore (see appendix D.1),
[y — T =D(A) —=T(—A) =~ 2AIY(E2),

where

It can be shown (see appendix D.2)

I'(E2) = —
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(6.30)

(6.31)

(6.32)

(6.33)

(6.34)

(6.35)



Therefore,

=D o), (6.36)

— 0 == 2F,F,
62 61 P Psat + Fp

wherep = 1 E? (see appendix D.3).

6.2.2 Parametric Gain Calculation

SinceA is small, to the first ordes, + (5, ~ 24 where3 = In(I'(E7)). Therefore,

equation (6.29) can be written
B
— 5 (tag+1)
B %% [ (e—iaaml)(ﬁl—ﬁg) _ e—i(mwl)(ﬁz—ﬁl)) E,

1 jeitn (6—5(mH+1>(m—62) i e—ﬁ(mml)(@—m)) ES].

(6.37)

Substituting for the approximation ¢gf — 3, from equation (6.36) and introducing=

SE2, 1 get
_By; . 30 . (1 - F) Sin(‘%n)
Eou ~ e 200t ot _ 1 E.. 6.38
R e ie (iag +1) Tt P P (6.38)
| define
En = Een, (6.39)
Substituting forEy,, | get
_B . (lag+1) (1-T)
Eou — (ZC“H+1) Eln — Eln — E* . 6.40
t1 € 2 ? 2 E§F+Psatp( 1n) ( )
| definep, andv such that
Eoutl = ,UEin + VE;(na (641)
then | have
— —ﬁ(iaH-l—l) . 3 . 1 (1 - F) 6 42
p=e s H2(mHjL )Fp+Psatp (6.42)
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and

_ ~Llan+y) |1 1 (-1 6.43
v=e 2 2(zaH+ )FP+Psatp . (6.43)

Therefore, the parametric gain is
Gpar = ‘Mewin + ve n 2 (644)

The maximum parametric gain that can be attained by adgierelative phase between

the pump and the signal is

Gpar = |+ v|°. (6.45)

The minimum parametric gain that can be attained by adjg$tia relative phase between

the pump and the signal is

Coar = |11 — V[, (6.46)

See figures 6.1 and 6.2
It can be seen that a phase sensitive amplifier is obtainédaypbssibility of more
than 10 dB gain difference between the minimum and the maxirdapending on the

relative phase.

6.3 Bandwidth of the SA Based NMZ|

So far, | have considered a CW signal. In this section, | witld for the bandwidth
and noise of the SA based NMZI. As before, | assume that the arennormally balanced

so that that the low power bandwidth is very large.
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Parametric Gain vs p/Psat for SA based NMZlI OPA

20+

10

Maximum Gain

Gain (dB)

-10 Ve Minimum Gain

-20

301/

_40 1 1 1
0 5 10 15 20 25 30

p/Psat

Figure 6.1: Minimum and maximum parametric gairpy$,, for a SA based
NMZI OPA with ay = 25, By L = 4.

6.3.1 Response of a SA to a Modulated Signal

To find the response of a SA to a modulated signal, | will assamveak modulated
signal at the input and a strong CW pump. | will write for ougreal £, = A, (t)e®n
where 4,(t) a real signal and anél, = /24, for the pump. From equation (6.5), the

expression of the absoption coefficient is

0B(z) _ Bo—B(z)  B(2)|E(R)P
o T Pt (6.47)

with

|E(z)|* = AX(z) — 24,(2) As(z, ) sin(6;,) (6.48)

85



Parametric Gain vs p/Psat for SOA based NMZI OPA

30

25

20

Gain (dB)

15}

10 <— Maximum Gain

Minimum Gain

|
0 5 10 15 20 25 30
p/Psat

Figure 6.2: Minimum and maximum parametric gain yg.Fs,; for a SOA
based NMZI OPA withwy = 5, Gy L = —4.

and 7 is the carrier lifetime. To simplify the expressions, | wakt P.,,; = 1, which

is equivalent to saying that powers are normalized’tq. | will reintroduce P,,; at
the end by dividing all the powers b¥,.;. Using a perturbation technique , | write
B(z) = Bs(z) + 08(z), wheref,(z) is the steady state loss afd(z) is the perturbation
inloss.—2A,(z)As(z, t) sin(fy,) is the driving term of the perturbation. | substitute these
relations in equation (6.47) and separate the constanstéom the pertubation terms

and obtain the two equations:

Taégt(z) = 28,(2) Ay (2) As (2, t) sin(0in) — 58(2) (1 + A2(2)) (6.49)
0= Bo — B B ﬁA;%(Z)_ (6.50)
T T
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Equation (6.50) gives me the steady state solution, which is

_
whereP(z) = A2(z). Taking the Fourier transform of equation (6.49), | get
iQ7630(2) = 26(2)Ap(2) Ay (2, Q) sin(fy,) — 68a(2)(1 + Af)(z)), (6.52)

where( is the signal envelope frequendyjq (=) is the Fourier transform af3(z) and
A,(z,Q) is the Fourier transform ofi,(z,¢). | shall here after represent the Fourier
transform of any variable by a over the variable symbol. Bajvor 63, | get

. _ﬁs<z)APs(z7 Q)

2alz) = 1+ P(2) +iQr (6.53)
The equation of the power inside each SA is governed by [52]
dp,
L L) (6.54)
¥4
Taking the Fourier transform of the equation, | get
dPi(z, Q . .
D oz )P 9). (6.55)

Using a perturbation technique , | will writg (z, Q) = P(z) + AP,(z, Q) whereP(z) is

the constant portion andﬁs(z, 1) is the perturbation of the power. Obviously,
P(z) = Ai(z) (6.56)
and
AP,(2,Q) = —2A,(2)A(2, Q) sin(fy,). (6.57)

| substitute this perturbation equation in equation (6&%) obtain

dP(z) N dAP,(z, Q)

! S5 = B,(2)P(2) — 8a(2) P(2) — B(2)AP(5, Q). (658)
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| separate this equation into a steady state equation andwalggion equation. For the

steady state equation, | have

dP(z)
dz

= —B,(2) P(2), (6.59)

wheref,(z) is given by equation (6.51). Therefore,

/OL (sz) + 1) dP(z) = — /OL Bo dz. (6.60)

It has been already seen that the solution to this equation is

P(z) = P(O)W (P(0)e" =57 . (6.61)

For the perturbation equation, | have

dAP,(z,Q - 5
% = —6Ga(2)P(2) — Bu(2) AP,(2, ). (6.62)
If | define the total steady state gainlas= %, then | can show that the solution of this

equation is (see appendix E.1)

AP,(L,Q) = AP,(0,Q)T, (111 If ((2))12?2:) (6.63)
| will define
AB(Q) = /O " 5a(2)d. (6.64)
Therefore, | can prove that (see appendix E.1)
AB(Q) —(1-L) AP,(0,9). (6.65)

T 1+1,P(0) +iQr
This results is consistent with the previous results simeelf = 0, | obtain equation
(6.36).
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6.3.2 Overall System Output

In this section, | will follow a procedure identical to theensed in section 6.2.2

(see appendix E.2). | define

Ein(Q) = A (Q)en. (6.66)
The output field is then
Eow = 1B (Q) + vE (), (6.67)
where
_ . —Bs(iay+1) 1— 1 . 1 (P — 1) 6.68
= 2 |: 2<ZO[H+ )Psp+Psat+iQTPsatp ( . )
and
o Blagt) |1 | (I'-1) 6.69
v=te s {2(2%’ * )Fp+ Pox + Q7P L | (6.69)

where P is the power of the input pump on each arm of the NMT_éI:Af,. Reintroducing
P..:, | see that fof2 = 0, equation (6.68) and (6.69) are equivalent to equatior2jGgad
(6.43). | can now find the parametric gain, which is

|E~10ut|2
G(Q) = —
D =1L@p

(6.70)

= [H(Q)e + p(Q)|e

See figure 6.3.
To calculate the noise figure, | need to use quantum mechtniedculate the noise

generated by this device.
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o1 Parametric Gain vs Frequency for a SA Based NMZI OPA

Gain (dB)

1 3 i 1 i 1 1 L 1

Figure 6.3: Parametric gain in dB ¥&in 1/7 for a SA based NMZI OPA
with p/Psat =25, ag = 5andﬁoL = 4.
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Chapter 7
Quantum Mechanical Model for Interaction of Light with a Qaible
Absorber

7.1 Overview

| considered two possible candidates for the new type ofghkassitive amplifier,
based on either SOA or on SA. Based on results from Sataif. [66], | concluded that
the SOA produces too much ASE noise to be useful. Therefategided to investigate
the noise properties of non linear media based saturabteladys. The question which
| am trying to answer in the next several chapters is whatagriimimum noise in a SA
based NMZI OPA. In this chapter, | will follow closely the faalism of Professor Rana
[61] to derive the equations for time evolution of operatdescribing the field and the

medium.

7.2 Quantum Mechanical Model

Figure 7.1 shows schematically a saturable absorber atbegavith a single quan-
tized mode of electromagnetic field. | will use Jaynes-Cungsiformalism to describe
the electromagnetic field interacting with atoms [46, 62jill start with the Hamiltonian,

which gives the energy of the atom, the energy of the eleti&rid and their coupling.

H = F\N, + B3Ny + hwoATA + kA6, + k*AT6_ + 3 (7.1)

91



Saturable Absorber

Figure 7.1: Single Mode Quantum Mechanical Model

whererk is a complex constant that | will discuss latérand £, are the energy levels of
the atoms_, .., N; andN, are atomic state operators. For two atomic energy lewels
and|e,), the operatof .. raises the atomic state from level 1 to level 2, wisilelowers

it. Therefore,

6+ = |ea){eil, (7.2)
G- = ler){eal, (7.3)
thus
G_ =61, (7.4)
Further,
N; = e1) (e (7.5)



and

Ny = |eg)(es]. (7.6)
From this, it follows that
N, =6_6, (7.7)
and
N, =6,6_. (7.8)

The Hamiltonian for the electric field interacting witi atoms becomes

A

N

. . ] A 1

fI— <E1N1 o+ BNy + kAG, , + r*AT5_ k) +hATA+ 5, (7.9)
k=1

whereN, , andN, ., k € {1,2,.., N} are the raising operator and lowering operator of

the k' atom. | define

N
Nl = ZNI ks (710)
k=1
N
Ny =) Ny, (7.11)
k=1
N
G_=> by (7.12)
k=1
and
N
Go=> bk (7.13)
k=1

The Heisenberg equation for a general oper&(ﬁj is given by

O _ [ow.a]. (7.14)

Applying this equation to each of the operators, and usiegehations between the oper-

ators, | get

dNG(H) 1 s .
G = i oA — (AT, (7.15)




d dt (7:46)
le(t) o 1 - 1 * A AT
= = [k (AW - e (DAT(0)] (7.17)
dA(t) . s o i,
Brraie iwoA(t) — 70— (7.18)
do.(t) . . K2y TR {
Jt( ) i, (t) — AT R - Ny (1) (7.19)
where
Wo1 = E2 ; El . (720)

Any population in level 2 causes spontaneous emission,hwikigery detrimental.
Because, | am trying to consider only saturable absorb&mincing minimum noise into
the parametric amplifier, | will consider only a system in @hhthe upper level is quickly
depopulated by fast transitions to other levels lumpedws & As illustrated in figure
7.2 this level then slowly relaxes back to ground state. Thtgpical of what occurs in
many semiconductor absorbers.

Therefore, | am going to add fast relaxation and dephasieguation (7.19) [50]

dﬁgt(t) = (i — )54 (1) + AR (1) + B, (7.21)

where~ is the relaxation and dephasing rate d?m(t) is the noise associated with it. |
also add an empirical term for repopulation of level 1 to egua(7.17), which results in

dﬁ;lt(w = _f 0 % [“5+(t)A(t) — Kko_()AT()| + Fn(t), (7.22)

wherer is the rate of relaxation arly(¢) is the noise due to relaxation. | will see later
in this chapter whyi, (¢) andF () had to be added and | will evaluate their properties.
Now | have a complete system of differential equations. Teesthem, | will first find an
expression fof ., which | will later substitute in the differential equatidmA(t).
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fast dephasing and equilibration

N

— “

laser

Figure 7.2: 3 Level System
From equation (7.21), it can be shown that (see appendix F.1)
-k t
G4(t) = G(0)eliwn=t 4 %6(iw21—v)t /AT(t/)Nl(t,)e_(iwm_w/dt'
0

where

St IR P —(iwg1 —) (t—t") my!
Fab :ﬁe F+(t )6 21 dt .
0

(7.23)

(7.24)

For the semiconductor | am considerings large. As a result, the first term of the above

eqguation can be neglected and the initial conditions arektyuforgotten by the system.
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Therefore,
k" t R , , o ,
G.(t) = ?e(“‘m_”)t / AT(t)Ny (t)e™ =1t 4 EFab(t)ewot. (7.25)
0

Let A(t) = B(t)e ™!, Ny (t) andB(t) are varying much slower than the teeffr21 ",

Therefore, they can be moved in front of the integral

) ) X ,\ o / h -~ .
G, (t) = %e(lwm—v)tBT(t)Nl(t) /6_(2(W21—W0)_’7)t dt’ + EFlb(t)eZWOt_ (7.26)
0

After evaluating the integral, | have

BN, (¢ . . h
5’+(t) - ’i_ ( ) 1( ) (ezwgt - e(zwgl—'y)t) 4+

- L () eiwot 7.27
ih (i(wg1 — wp) — ) ik aw(t)e (7.27)

When~ is very large, | can again neglect“>' =), | then obtain the expression fér.,
which is

5. (1) = %k(( ATONE) | P it (7.28)

wo —wo1) — 1Y) IR

Now, | will substitute this expression &f, into the differential equation oA (¢).
Equation (7.18) is a differential equation fd(t) in terms of5_

dA(t) . & iR
& iwoA(t) — 70— (7.29)

| can use the expression fér. from equation (7.28) to get an expressionsaf, since

Gy = &1, which can be substituted in the above equation. | get

A@)Nl(’”< (@0 — ) +77) <<wo—wm>2+vz>) (7.30)

+ o () e +iwg A (1),

| defineU such that

_ |k v i (wo — wo1)

0= <_((w0 —wn)? 497 ((wo —wa)? + 72))
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The first term corresponds to absorption of the field with ficieht

2
5= I8 7 , (7.32)
h? ((wo — wa1)? +7?)

and the second corresponds to index of refraction change

o= 157 (o —wa) (7.33)
TR ((wo —wa)? 492

Now, | will calculate the properties d.y,(t), required when | solve the differential equa-
tion in A (¢).

In equation (7.21), | added an empirical term for the noiseeaisted with relaxation
and dephasing. This noise lead to the expressioﬁ‘jg(rt) in equation (7.24). The noise
term is necessary so that so tI{ét(t), AT(t)} — 1 for all values oft. WithoutF,, (%), |

would have

= UA ()N (t) + iwoAl(t). (7.34)
| defineC = BN, (1) + iwy
dAl) _ _eAg). (7.35)
dt
| then have
A) = A(0)e . (7.36)
Therefore

(7.37)



which is obviously wrong as the answer should be one (1) . Tthisg | must add the

following noise term

d“;_f’f) _ _GA() + B (t)e (7.38)

| can assume th%tﬁ‘ab(t), Flb(t’)} = Cyd(t — t'), since the noise fluctuates much faster

that the other variables(on a time scafe)) [63]. The solution of this equation is

~

e ¢ A~ . 7 A
A(t) = A(0)e ©" + / e~ CU)—iwot | (1) dlt'. (7.39)
0

Computing the commutator &€ (¢), | can show that (see appendix F.1.1)

CO == C + CT
(7.40)
Therefore,
[Fab(t),ﬁgb(t')] — 20, N, (H)8(t — t'). (7.41)
In general, starting with equation (7.21), | would obtain
[Fab(t),ﬁgb(t')} — 20, (Ng(t) - Nl(t)> St — 1), (7.42)
and
(Bl (0B (t)) =20, (No(t) ) (¢ — ¥) (7.43)
and [64]
<Fab(t)ﬁgb(t')> — 20, <N1(t)> 3t —1). (7.44)



Because | am neglectify,(t), | can set

(Bl (0P (1)) = 0. (7.45)
Nl(t) cannot be neglected due to its importance. Now, | will deaidifferential equation
for a(t), the number of photons in the mode operator, which will l&tgp us solve the
system of differential equations. By definitidirit) = Af(t)A(t). Taking the derivative

of this equation, | get

di(t) .. dA() dA(1) . .
T_AT@ a a0 (749

After substituting equation (7.38) | get

dr;f) = — 20, Ny (t)i(t) + AT () Fap (t)e 0" + F A(t)e™". (7.47)

The term—20, N, (t)i(t) represent absorption. Using equation (7.39), | can compute
<AT(t)]?‘ab(t)e‘i°’0t> and<]§‘lb(t)A(t)ei“0t>. | can obtain (see appendix F.1.2)
<AT<t>Fab<t>e—iwot> —0. (7.48)

Similarly

(Bl (DA @)e ") =0 (7.49)
Using perturbation theory in equation (7.47), it can easdyshown that

dn(t)
ot

= —20,Nin(t), (7.50)

whereN; = <N1(t)> and is assumed to be constant, arid) = (ii(¢)). Solving this

differential equation gives us

In {”(Tq — 95, N, T. (7.51)



Referring back to equation (7.32) for the definitiont®f, we can see tha} is the Rabi

frequency [37]. It can also be expressed as follows [38]

"1‘2 “Wo o R 2
Lkl B . D
whereV is the volume D, is the dipole moment. Therefore,
L S T M (7.53)
h? 2¢hSL ’

where S is the cross sectional area of the optical beam Arte length of the cavity.

SinceT = £, | get

|57 = s

2 Y
Nj. 7.54
12| ((wo o w21)2 _'_ ’}/2> 1 ( )

Since this expression is the absorption coefficient, | define

B(t) = 0 € Diof? g Ny (). (7.55)

Returning to the differential equation éf(t), | simplify equation (7.30) by substi-

tuting for A(t) = B(t)e ™", | get

dB(t) . R

— = — ONi(B)B(1) + Fu (1), (7.56)
Equation (7.56) can be rewritten
dlzf) = (1 + ’48—) N (1)B(t) + Fan(t). (7.57)

Then using equation (7.55), | have

dB(t) _ A (1 + z—) B(t) + Fap(t). (7.58)
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Let

Ui
the Henry alpha factor. Finally, the equation becomes
dB(t) - B(t) . ~ ~ 7.60
dt = — oT (1+ZOZH) B(t)+Fab(t) ( )

As a check on this equation, | consider the case of unsatuladd. For unsaturable

lossj3(t) = 3 is constant. After the interaction, | have

A

Bout - Bine_g(l—”aH) + Flossa (761)

whereB;, = B(0) is the input wave, before interactioB,,; = B(T") is the output wave

and
Floss = e 2(1Fi0m) / ' o (t)e st (Himtqy (7.62)
0
| use equation (7.45) to get
<F}0581§“loss> ~0. (7.63)
| then use equation (7.44)to get
<F1FZT> —1-e, (7.64)

which is consistent with what | said in section 1.6.1 ang has no effect on the loss
induced noise.

Now, | will obtain a differential equation falN, (¢). | substitute the expression of
&_ andag, from equation (7.28) in equation (7.22), | get

N(t) _ _ 20,41(t)

dt T (7.65)

Z»
=
+
r
2
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To solve the differential equation above, | will need to fihd properties OFN(t). | use
an argument similar to the one | used li‘x;b(t) to justify its addition in equation (7.17)

and to prove that for a single atom (see appendix F.2)

(B (F () = 1_<N—”(t)>5(t ). (7.66)

T

For a collection ofV atoms, it is (see appendix F.3)

N — (Nt
<FN(t)FN(t/)> = ﬂ(s(t _ t/). (767)
| can now simplify equation (7.65) by substitutidgt) = B(t)e™". | get
dnns (¢) = — 2Urﬁ(t)N1(t) + ]?‘N(t) + LNl(t)
& T (7.68)

— Bi(t)F.p(t) — FI B(1).

| substitute in the above relation equation (7.55) and afvene algebraic manipulations,

| get
o) _ fo = BLE) _ 20,4 (1) 3(t) + FL(t), (7.69)
dt T
where
b =220,N (7.70)
and
N /S - L, -
Fi(t) = 20, (B*(t)Fab(t) + FabB(t)> +2-0Fy (1), (7.71)

F . (t) is Hermitian. | can compute its properties by comput(rfg(t)]?‘L(t)>. For this, |

first substitute equation (7.55) in equation (7.44) to get

(Fu(tFL (1)) = % (b)) st —1). (7.72)
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| then use this result to get

B+ (270, (8(1) = 1) (B(1))

T

<FL(t)FL(t')> = 20, T

| multiply equation (7.71) by,,,(t) and take the average to get

<FL(t)F;b(t')> — 20, <]§T(t)> <B(t>> 5t —1').
| multiply equation (7.71) by!, (¢) and take the average to get

A

(Fa®Fw(t)) = 20, (B)) (5t) ) ot — ).

In conclusion, | obtained from this chapter the followingukts

diit) _ B —Tﬁ(t) — 20,0(8)3(t) + FL(1),

dB(t) 1, A :
5 =~ g0 (L ian) B(t) + Fa (1),

and | can rewrite equation (7.47) as follows

103

5(t—t).

(7.73)

(7.74)

(7.75)

(7.76)

(7.77)

(7.78)



Chapter 8
Solving Differential Equation of SA

8.1 Overview

In the previous chapter, | derived equation (7.76) and éguéf.77), which are the
simultaneous differential equation describing the irdtBom between the field operator
and a saturable absorber. In this chapter, | will find a soiuto those differential equa-
tion. In these solutions, | assumed that the noise termswaad sompared to the average

values of the parameters. Therefore, | will use first ordetuypleation theory.

8.2 Deriving Simultaneous Differential Equations of thphiase and Quadra-

ture Phase component of Noise

It is important to note that the average is a statistical average, or ensemble aver-
age and not a time average. | use perturbation theory to sodvéifferential equation of

ii(t) andj3(t). For that, | make the following substitution
B(t) = B(1) + (B(1)) (8.1)
To simplify notation, | will useB(t) = <]§(t)>. Similarly

Bty = 0B + () ). (8:2)
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To simplify notation, | will uses(t) = <B(t)>.

i(t) = 6a(t) + (A(t)) . (8.3)

= — —G()a) + B () F.u(t) + FL (O)B(1). (8.4)
| substitute equation (8.3) in equation (7.78) and lookinthea averaged equation, | get

dn(t) 1 .
= = — 0N, (8:5)

Substituting equation (8.2) in equation (7.76) gives

déf(t)  dB(t)  Bo—B(t) — ()«
o + T . +F(t)

— 90, (n(t) + 5ﬁ(t)) (55@) + 6(t)> .

(8.6)

Separating the averaged terms to the fluctuating terms, thgefiollowing equation for

the fluctuating terms

0O s 4y (t) — 20,7 <5B(t)n(t) + 6(t)5ﬁ(t)> 8.7)

dt

and the following equation for the averaged terms

dg(t) By — B(1) .
G - 20, 8(t)n(t). (8.8)

n(t) is the driving term in the above equation. | will assume th@b changes slowly
enough for the atom to follow without oscillation. In otheomls thatdﬁd—it) ~ 0. There-

fore,

o
Bt) = T o (8.9)

105



Substituting this result in equation (8.5), | get
(8.10)

Lde@) 1 B
n(t) dt  T1+270,n(t)
| define
1 (8.11)

Ngat =
270,

and use this definition in equation (8.10) to get

1 dn(t) 700
W@ @ e o

which is a differential equation which agrees with the séasisical result | had in equa-

tion (6.6), where the differential equation was
(8.13)

1 dP(Z) . —61
P(z)’

P(z) d:  14LC

where/; is the absorption coefficient per unit length. The solutibaquation (8.12) is
) (8.14)

0) no_1
n(t) = n(0) - W <Mens§1 rT
Ngat

n(0) is the input number of photons and?) is the output number of photons, | have
(8.15)

nin Nout __ y
Nout = Nin * W <n ena 0 )
sat

Again, this agrees with semiclassical results, where thédisa to equation (6.6) is
(8.16)

in
—e Psat,

P:
Powy = Py - W an o .
‘ <Psat )

| use (8.11) to get
(8.17)

T = .
26rnsat
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Using the above equation, equation (7.76) can be rewritten

dB(t) _ Bo — B(t) _ ﬁ(t)B(t) 4 FL(t) (8.18)
g )

t T Neat T

equation (8.7) can be written

Tdéi(t) = —60(t) + TFL(t) — nlt <5ﬁ(t)n(t) + ﬁ(t)éﬁ(t)), (8.19)

equation (7.73) can be written

. Go+ (M2 1) (Bt
<FL<t)FL(t’)> = nT 0 ( p ) < > 5(t—1), (8.20)
equation (8.9) can be written
b
B(t) = 1+Z‘§”’ (8.21)
and equation (7.74) and (7.75) can be written consecutively
(BLOBL W) = - —— (BI®) (5(0)) ét — ), (8.22)
and
<Fab(t)FL(t’)> = - ml : <B(t)> <B(t>> 5(t —t'). (8.23)

It can be verified that ifi,,; — oo, | am back to the non saturable case. In that case

equation (8.20) becomes

<FL(t)FL(t')> —0. (8.24)

SinceF . (¢) is Hermitian, in that cask', (t) = 0.
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B(t) can be written

B(t) = B(t) + 6X(t) +i6Y (1), (8.25)

wheresX (¢) andd¥Y (t) are the in phase and the quadrature phase compon@B{( of(t).

A

B(t) can also be written

(8.26)
= B(t) (1 +%(t) +i9(t)),
where
o 0X(2)
() = 29, (8.27)
and
y(t) = 5;(_%). (8.28)

Substituting equation (8.26) in equation (7.77) and aftene algebraic manipulation (see

appendix G.1) | get the following equations

dy(t) B (). — B'OF,  an (8.29)
) _ _ 158(0),
and
ox(t) 1 . BYO)F.+ BLUH)F
5 = _ﬁ‘w(t) + 5 ) (8.30)

As a check, | assume that,; — oo, which is the case for unsaturable loss. In that

case equations (8.30)and (8.19) can be easily solved aed giv

R R ) ) ebo _ 1
(R(D)X(T)) = (%(0)%(0)) + — ©) (8.31)
Multiplying the whole equation by (T) = n(0)e=%, | get
(5% D)) = e (5% (0)) + L (8.32)



which is what is expected.

8.3 Solving the Simultaneous Differential Equations

The solution of (8.19) is

t) = { /O tH1 (t') (E(t’) - Mi(t’)) dt’} Hi\(t), (8.33)

TNgat

sinced3(0) = 0 and where

Hy(t) = exp < /0 tht’) . (8.34)

TNgat

It is important to note from equation (8.19) that for timedgarompared to 5@(1&) can be
considered memoryless and can be determined by event thatattime very close ta

Therefore,

Hy(t) ~ exp ((1 + ”(t)) E) . (8.35)

Nsat T

This approximation can be used becatiléét) is memoryless. The equation can further

be reduced as follows

3p(t) ~ /O H(EL () — 2 o 2B ¢ 4 / Hy( dt} “1p)
_/tHl(t/)FL(t/) ¢ Mx( )/Oe(lﬂfiii)idy} HO'(t)  (8.36)

TNsat

Q

Q

b3

n(t)
/ Hi(t)FL(t' _% (t)Hl(t)] H'(b),
1+

Nsat

where the lower values of the integral has been ignoredesif¢) forgets and only
remembers what happened at tit@ndx(¢), n(¢) and3(t) are considered slowly varying

and can be taken outside of the integral. The equation gives

n(t
/ Hy () F ()t — Mf ((t) (t), (8.37)

Nsat
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since everything is slowly varying except fﬁrL(t). Substituting this result in equation

(8.30) gives us.

i -7 o + N, (8.38)
where
1\ T x—1 2\t
Nx = B (t)Fab + B (t)Fab 4 Fg(f% (839)
2
where

~ FL()dt. (8.40)

%(t) = Hy\(t) [HQ(O)X(O) + OtH2(t’)det’} : (8.41)

where

n(t/) /
1 g Nsat 6<t ) /
Hy(t) = exp (f/t w7 ] dt

Misat (8.42)
_ ( n(t) + Ngat )
n(T) + Nat )
| use this result to get the expression of the power of theaspmoise
(X(T)%(T)) = (%(0)%(0)) Hz(0)*
(8.43)

T pT R .
+ / / Ho (') Ha(t") <Nm(t’)Nm(t”)> dt'dt”,
0 Jo
where<§<(0)Nx(t/)> —0 and<Nx(t’)§c(O)> —0.
It is clear that in order to get an expression{®&(7")x(7")) | will need an expression
for <]?‘5(t)]§“ﬁ(t’)>, <]?‘ab(t)]?‘5(t’)> and <]§‘ﬁ(t)]§“ab(t’)>. Let us first find an expression
for <F5(t)ﬁﬁ(y)>.
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Q

Figure 8.1: lllustration of spectrum @&f(t) relative to the spectrum db(t).
F () is the he Fourier Transform af;(¢) andB(Q) is the Fourier transform
of B(t). The spectrum of 5(t) looks flat relative to the spectrum B(t)

On the scale at which | look at this probleif%(t) is roughly a delta correlated
noise. This can be understood by observing Ih@tt) oscillates much faster than the
signal and can be approximated by a delta correlated func¥et, another way to look
at it (see figure 8.1) is to see that the spectrunﬁ‘@@) relative to the spectrum of the
signal looks constant, similar to the one of a delta coreelétinction.

| will compute the integral of<f‘5(t)ﬁ‘ﬁ(t’)> and rewrite it as a delta correlated

function (see appendix G.1.1). | can rewrite equation (Ba®0such

<F‘L(t)F‘L(t’)> — Ko(t—1'), (8.44)
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where

n(t) A
7 [Bo+ (5 —1)(BQ1)
. [ (i -1) )] 45
Nsat T
Equation (8.40) can be rewritten
A~ t A~
Fg(t):/G(Tl)FL@—Tl)dTl, (846)
0
where
_ L) (8.47)
G(Tl) = 2T6 .
Therefore,
Lo TK n()\ " -(1+22)z
—_ ~ — Msat / T 848
(Ro(t)falt —m)) ~ T (1+ n) c | (8.48)
| now compute the integral
/m<ﬁaﬁ‘u—7wdrz7”{ )4 - (8.49)
—00 o 7 ! ! 4T2 Nsat .
Therefore,
<F@ﬁ%ﬂ>%3ﬁgl+"® Qar%q (8.50)
PR AT? Nsat '

| now look for an expression f r]?‘ab(t)]?‘ﬁ(t’)>. Equation (8.23) can be rewritten

<Fwwﬁﬂﬂ>:Kﬁu—£% (8.51)
where
mz_f@mw (8.52)
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Following a procedure identical to the one in the previousise (see appendix G.1.2), |

get
(Fa(0)F5(t) ) ~ %Kl (1 + Z(tf)_l 5(t—t). (8.53)
Similarly
<]§‘ﬁ(t/)]§‘ab(t)> ~ TTKl <1 + Z(tf)_l St —1). (8.54)

| can now use the expression @ﬁ(t)f‘g(t’)>, <]§“ab(t)]§“ﬁ(t’)> and<f‘5(t)]§“ab(t’)>
to get an expression for the power of the inphase nodd,)%(7")). | take equation (8.43)
and use equation (8.39) to substitute the expressiﬁf@(ﬁ), with the results in equations
(8.53),(8.54), (8.50) and (7.72), | get (see appendix G.2)

(X(T)%(T)) =(%*(0)) H*(0)

n(t’)
17wy Pt <n - 1) HORN
tar /0 H() nt) © ) 1)2 a (8.55)

n.
sat Nsat

I A ,
+?/O H=(t") (nm <n(t,) +1)) dt’.

Nsat

The inphase noise can be broken into four noises: the antplifigal noise, the
relaxation noise, the absorption noise and the beat noiseeba the the absorption
noise and the relaxation noise. The amplified initial nose@oise due to the amplifi-
cation of the incoming signal’'s nois&?(0)). The relaxation noise is the noise due to
<]§‘ﬁ(t)]§“ﬁ(t’)>. The absorption noise is noise dueltg,(t)F,,(t'). The beat noise is

noise due tc<]§‘ab(t)]§‘5(t’)> and<]?‘5(t)]?‘ab(t’)>.

The amplified initial amplitude noise is

Init, =H2(0)(%x2(0)). (8.56)
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Using equation (8.42), | have

1 (n(0) 4 ng \ 1
Init, =~ (n(T)+nsat) "ok (8.57)

| compute the first integral of equation (8.55)(see appef®X2), which is noise

due to absorption

2

1 2 (65 ) + 5 — B +n(0) — n(T)

. n(T 8.58)
Noise,,, = — : (8.
" (2(T) + 1sar)?
which, asng,; — oo converges to
lefo —1
Noisep, = ———— 8.59

which is what was expected. | compute the second integratjoatton (8.55) (see ap-

pendix G.2.3), which is noise due to relaxation

n(0) — n(T)

1 nl0) = nld) (8.60)
2 (n(T) + 1wt

Noise.;, =

| compute the third integral of equation (8.55)(see appeiR.4), which is the beat

noise between the relaxation noise and the absorption noise

1(0) — n(T) + nga In (%)

NOiS@.q:, = (8.61)
' (n(T) + ngar)?
The power of the amplitude noise is the sum of all the noisdgsan
n(0 ngat ng‘at
<§((T>§((T>> _ 1 <7’L(O) + Nsat )2 1 16nsat hl <%> + n(T) o n(0)
4 n(T) + Ngat n(O) 4 (n(T) + nsat)2 (862)
L 3(n(0) —n(T))
2
2 (n(T') + Ngar)
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Now, | calculate the quadrature phase nojgé(T")) Using equation (8.29) and

equation (8.30), It can be shown that (see appendix (G.3))

ey = B [ Lo sy - L (20 o)

i a0 2 7(0) \lT) + s
n_(]) Msat __ Msat (863)
B ﬁ 3In <n(T)> + 2 n(0)
2 n T) + Nsat

For verification, | set,; — co. Then using equation (8.31), | can verify that

(33(T)) = i {ﬁ} , (8.64)

which is what was expected. The incoming signal’s noise ipldied. At the output, it

becomes

Init, =

n(T) + Ngat n(T> + Ngat

(1+02) + o (M)z — 2% <”<0) T Mot )] [n(10)] . (8.65)

From equation (8.63), the expression of the absorptiorerisis

. 1+a%) [ 1 1 5 N
Noise,. = — Noise,,
I P S RET0) I
( ) Nsat nsat (8'66)
n(T n(
2 [ n(T) + Ngay :I

From equation (8.63), the expression of the relaxationenisis

Noise.;, = a3 Noise.,,. (8.67)

From equation (8.63), the expression of the beat noise is

In <"((g)))
Nois cat, = 042 Nois cat. — 042 —_—
& ty H Qcat. H TL(T) T Mgt

} . (8.68)

Now that | have the inphase and quadrature phase noise ddtiln@le absorber, |
use it to get the noise figure of the NMZI OPA.
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8.4 Noise Figure

From equation (3.54), assuming a large parametric gain dadja signal, a good

estimate of the noise figure is

NFgrs = NFpas + 3 = NFpyg &~ —101og [%&] , (8.69)
with
ASE = n(T) [(°(1)) + (=2(T))] — . 8.70)
It is easy to prove that the parametric gain is
Gpar = ‘,uewi“ + ve Wi & (8.71)
where
1 = e~ 3lia+D) {z + %(mH + 1)%71(0)} (8.72)
and
y = e~ 3lion+D) B(MH - 1)%71(0)} . (8.73)

| calculated the noise figure for this device for a large rasfgearameters and found
thatitis always above 3 dB. | plot the noise figure of a SA baskiZ| OPA with a Henry
alpha factor 53, = 2 andn,; = 1 (see figure 8.2). It can be seen that the noise figure
remains high, more than 8 dB. | plot the gain and the noisedifura saturable absorber

of ay = 25, By = 2 andng,, = 1 on the same graph (see figure 8.3).
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Noise Figure vs n(0)
13 R

T —

R S

S N S
o | |

\ : : :
L s

NF

o S N

8.5 | ‘ | ‘
0

Figure 8.2: Noise Figure as a function of n(0) foy = 5, 5, = 2 andng,; = 1
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Parametric Gain and NF vs n(0)
25 . T T . :

Parametric Gain(dB)
Noise Figure(dB)

Figure 8.3: Parametric gain (blue) and noise figure (red)fas@ion of n(0)
for ag = 25, By = 2 andng,, = 1
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Chapter 9

Discussions

In this thesis, | have done the following:

¢ | went over two definitions of noise figure (NFs and NFR:xs) and shown that the
NFyps is signal dependent for weak signals in OPAs. | have also shbat the
NFgas is inappropriate for OPAs. Therefore, a new definition of tloése figure
was introduced, namely the quadrature phase noise figurgsgNFwhich works
very well for OPAs and phase insensitive amplifiers. In otherds, it is not signal

dependent and is much easier to calculate.

| have a derived a simple expression to get the noise figurOR¥ in high gain

regime and large signal based on their parametric gain aiid AS

| have derived the proper expression of the noise figure cdsyl&err based NMZI
OPA. | have also found the expression for the optimum lengthife length of a

fiber used as a Kerr medium based on its nonlinear propertegsaoss coefficient.

| have shown that Kerr based NMZI OPA with gain instead of lasder high gain

have a minimum 3dB noise figure.

| have demonstrated the feasibility of a SOA based and SAddEd&ZI OPA as an

alternative to the Kerr based NMZ| OPA. | have

— | have calculated their steady state parametric gain.
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— | have calculated their steady state bandwidth.

— | have used Quantum Mechanics to show that the noise figugAd3ased

NMZI OPA is very high, in the order of 9 dB.

While at the beginning, the unexpectedly high noise figurthefSA based NMZI OPA
came as a little surprise, because the expected noise figigréwhe order of 1 dB, after
a closer look at the expression something interesting beegoparent. | expected most of
the noise to come from the absorption naise , the noise due to the signal absorption.
However, most of the noise comes from relaxation ndisg), due to the relaxation of
the electrons. This noise is well known and was by Yamarab#d. [67]. The magnitude
of the relaxation noise could be due to an overestimate Iseaafitthe way that noise was
calculated. Indeed, the noise average value was calculatggpendix F.2 based on the
assumption that

N3N3 == N3 (91)

This is actually only true if the atom is isolated, which ig really the case. While | could
get a better estimate of this noise, it is better to completahcel that noise or make it
not interfere with the signal. There are two ways this cowdabhieved.

The first way is to not let the electrons relax back to level dnstead, the electrons
and their associated holes can be removed by applying al@erpoise current. A pos-
sible technique to produce very low fluctuations currenissussed by Yamamotet al.
[67]. Yamamotoet al. explain that if such current is used to pump a laser oscilléts
no longer subject to the standard quantum limit. It can thexpce amplitude squeezed

states.
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The second way, is to send very short pulses as the signalhanpuimp, much
shorter that the relaxation timebut still much longer than the decoherence tityie. In
this fashion, by the time the relaxation occur, the expeningeover.

Assuming these techniques are applied, then the noise dedat(ation]?‘ﬁ(t) can
be neglected. This significantly improves the noise figuie @aces it in the order of 1

to 0.5 dB (see figure 9.1). However, the application of theshariques are left to future

research.

Parametric Gain and NF vs n(0)

Parametric Gain(dB)
Noise Figure(dB)

Figure 9.1: Parametric gain (blue) and noise figure (red)fas@ion of n(0)
for ayg = 25, /60 =2 andnsat =1
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Appendix A
Detailed Derivation of Noise Field Operator in Lossy Kerrdilan

A.1 Solving the Differential Equation for the Average Terms

To solve (4.10), | take an integral on both side of the equad®follows

/Or d<<j(:)>> = /Ox <’i7 )<A(Z)>)2 - B) d-. (A1)

To solve it, | define<A(0)> = «. Since this is a propagation of a field through a lossy

medium with loss coefficient, | have

<A(z)> = ae 72 (A.2)

| substitute this result in our equation. | get

cd(A) e
/0 W:/O (iv]o%e o — ) d-. (A.3)

| evaluate the right left hand side of the equation. | get

§ Qiizii) B /0 (irlae™* - 5) dz. (A.4)

After some more algebraic manipulation, | get

In (<A($)>) = (—;—;kﬂ2 (1- 6_25:”) — ﬁx) . (A.5)

(67

| setz = z and obtain the following solution of the differential egioat
Al — D2 (] =282
<A(z)> = aexp <2ﬁ|a| (1—e?%) ﬁz)

= ae P exp (%\042 (1- e_zﬁz)) :

(A.6)
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A.2 Derivation of the Output Noise Field Operator

The definition offA (L) is

~

SA(L) = (5X(L) + m?(L)) ¢ié(L)=6L, (A7)

Substituting for the values @fX (L) anddY (L) from equation (4.25) and (4.26), | get

SA(L) = pu(a)dA(0)e 4+ v(a)dAT(0)e P + N, (A.8)
where
— (L)~ i _
() = e*h-rL (1 + Z%W (1—e 2ﬁL)) , (A.9)
v(a) = AL <i%|a|2 (1— 6_26L)) (A.10)
and

L pz
N = 7\a|2/ / efle=22) (NT(x)eM’(z) + N(m)e‘”’(m)) dzdz
0 /o (A.11)

L
—i—/ e N(z)e 3 dz.
0
A.3 Parametric Gain Derivation

| consider Kerr based NMZI with a strong pump in the first inpith average field
intensity ,. Similarly, at the second input of the NMZI | assume a weakalgvith

average field intensity,. After the first coupler, | have the two outputs

1
Eoui1 = ﬁ (cyp + icvs) (A.12)
at the output of the first arm and
E —i(a + iay,) (A.13)
out21 \/5 s p) - .
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To get an expression for the output of the first Kerr mediunsd the previous results,

namely equation (A.6) and (A.8), which gives

Eou12 = are” " exp (%|a1\2 (1 — e_%L)) (A.14)
where
1
o = — (a, + 10 A.15
1 \/é( P ) ( )

Similarly, the output of the second Kerr medium is

Eoguao = ane P exp (%|O¢2|2 (1- e_sz)) (A.16)
where
1
g = — (g + 10 A.17
2 \/é ( p) ( )

At the output of the NMZI, | have

-BL ) ; -hL .
e e e TS G
where
o, = %\aﬂz (1—e2) (A.19)
and
O, = %\aﬂ? (1 -2y, (A.20)
| define<I>1 = (I)l() + (I)n, (I)g = (1)10 - (I)llu
Byp = %mpﬁ (1—e 2, (A.21)
and
o), = ﬁ (1 — e (a0 — atoy,). (A.22)



Using the above definitions, we can simplify equation (A.fl8)her and get
Eoy = —ie Plei®io (P11 + ) (A.23)
Substituting®;; into equation (A.23), we get
Eoy = —ie Blei®io (% (1 - 6_26L) sin(fy,) + ewin) v |. (A.24)

This equation can be rewritten as follows

Eou = p(a)|asle™ + v(a)|agle (A.25)

where
p(a) = B0k (1 + z’%m\? (1- e—%L)) , (A.26)
v(a) = =Pl (i%|a|2 (1- 6_261’)) . (A.27)

Therefore, the maximum parametric gain is

G = ~?e 2|, |' LY. (A.28)

A.4 Correlation of the Vacuum Noise in the two Arms of the NMZI

It is most important to note thatA,(0) anddA,(0) are standard vacuum fluctua-

tions that are uncorrelated. The proof is as follows:
A -~ ]_ -~ ~ -~ ~ T
-|- _ = . .
<5A1(0)A2(0)> = <(5A + zéAlo) (zéA + 5Alo) >

1 A~ A~ ~ ~ ~ ~
~ - <—z’5A5AT +5ASA] +5A,0AT + wAloéA;'O>
2N (A.29)
17— 1

2

=0
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and

< <5A + iéAzo)T (i5A + 5/&10) >

N —

S _
<5A1(0)A2(0)> (A.30)
=0.

It is very easy to see th@Al(O)Az(O)> = <5AJ{(0)A$(0)> = 0.
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Appendix B

Detailed Derivation of NF for the Lossy Kerr Medium Based NMZPA

2
B.1 Expression foﬂ( ot Out)

To calculate the variance &' E.,, | use the definition

out

Eout = <E0ut> + 6E0ut

| can then comput&! . E..., which is

out

A~

N ~ 2
ElutEout = ‘<Eout> + < 0ut> 5Eout + < > 5Eout + 6Eout6EOut

N 2
| can then computéEOut Out> , Which is

N N 2 N 4 N 2 /. N N
(E(T)ut Eout) = <E0ut> +2 ‘ <Eout> <E0ut> 5E(T)ut +2 ‘ <Eout>
+ 3 ‘ < 0ut> 5Eout5Eout + < 0ut> 5Eout 5ET

out
_'_ < out> 5Eout5Eout5Eout _'_ ‘<E0ut>

B) Y 31

+ <Eout> 6Eout6Eout + < out> 6Eout6Eout5Eout
+ < Out> BYOLNE) DN oL < Out> YL DN oA

+ 0B BBl 0By

Taking the average of equation (B.2), | get

N N N 2
<ElutE0ut> = ‘ <Eout>
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<5E0ut5Eout> .

(B.1)

(B.2)

2 /. *
<E0ut> 5Eout

(B.3)

(B.4)



From the above equation, | get

A 2 . 4
<Ej>utEout> - ‘<Eout>
~ 2
_'_ 2 ‘<E0ut>
Taking the average of equation (B.3), | get
<EiutEOUtElutE0ut> = ‘<Eout>
~ 2, . . . 2, . A
+3 }<Et> <6Eiut6Eout> + <Et> <6Elut6Elut>
(B.6)
~ 2 N N N *2 R R
+ ’<Eout> <6Eout5Elut> + <Eout> <6E0ut5Eout>

n <5Elut5Eout5E1ut5Ewt> .

~ ~ 2
+ < 5E(T)ut 5E0ut >

(B.5)

(OBl 0B

4

Therefore,

A(Elutﬁ)out)zz ‘<E0ut> >+<E t> <5E(’gut5ﬁyjm>
+ |(E out> <5E OBl ) + (B, t> (BB BD)

~ ~ 2
<5Eiut5Eout5Elut5Eom> _ <5Elut5Eout> .

(L,

B.2 Calculation of<5E‘L 5Eout5E0ut5Eout>

out

To calculate the noise commutator, | need to compute theviallg averages:

B.2.1 Calculation ot<N(w>NT(y)N(z>Nf(x)>
From equation (4.6)
[N(z), NT(zf)] —285(z — ). (B.8)
where it is a Dirac delta function. Therefore,

N(2)Nf(z) = NT(2)N(2) = 236(z — z). (B.9)
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Therefore,

<N(Z)NT(x)> = 288(z — 1). (B.10)
Therefore,
N(w)N(y)N(2)N(z) — N(w)N(y)N'(2)N(2) = 2686(z — 2)N(w)N'(y). (B.11)
Since
<N(w)NT(y)N*(x)N(z)> —0, (B.12)

| have

A~

(R(w)N () N(=)N () = Nw)N' ()N (@) (2) ) = 286(: —2) (N(@)N'())

(B.13)
Therefore,
(N(w)N (y)N(2)N/ (2) ) = 265(z — ) (N(w)N'(y) )
(B.14)
=45%0(z — 2)5(w — y)
B.2.2 Calculation o<N(w)N(Z)NT(x)NT(y)>
From the commutator relationship, | have
N(2)Nf(z) = NT(2)N(2) = 236(z — z). (B.15)
Therefore,
N(z)N'(2)N(y) — N(2)N(2)N'(y) = 286(= — 2)N' (y). (B.16)
Therefore,



Therefore,

A~ A~ A~ A~

()N R ()N () — R(w)N @) NN (y) ) = 46%( — 2)é(w — y). (B.18)

Using the result of the previous section, | have

A~

<N(w)N(z)NT(x)N*(y)> A5 (w — 2)0(2 — y) = 46%5(2 — 2)6(w — y).  (B.19)

Therefore,

A~

<N(w)N(z)NT(x)N*(y)> — 4 {5(2 —)(w —y) + 8w — 2)5(z —y)|.  (B.20)

R N 2
B.3 Simplified Expression faf (ElutEout)

It was seen that the noise from the noise from the upper arineoNtMZI and the
lower arm are uncorrelated. Therefore, the noise at theubofghe NMZI is of the same

form as the ones in each of the arm of the NMZI given in equai8), which is

5Bout = 11(c,)5A(0)e + v(a,)5AT(0)e P + N. (B.21)

| make the following approximation
~ L Z A . A~ .
N = 7|ap|2/ / ePle=22) (Nf(x)e“z’(x) + N(x)e_"z’(x)) dzdz
0 JO

L
+/ P N(2)e dy (B.22)
0

~ v]ay|? /L/Zeﬁ(w_zz) <NT(x)ei¢(:”) + N(x)e_i‘z’(:”)) dzdz
0 JO
The term is neglected since it will small relative to the pupapver|a,|?. In general, |
am only going to keep terms with factor f,|* in variance of the output . Also, | will
use the high gain approximation
|uf? ~ v, (B.23)
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I compute<5Elut6Eout5Eiut6E0ut>, which is

<5ELut5E0ut5E1ut5E0ut> ~ | <5A5AT5A5AT>
+ |l (6A6ASATIAT)
+ |l (N'SASATN) + |uf? (N'ROAGAT)  (B.24)
+ |uf? (SASATNIN) + |uf? (JANNISAT)
+ (N'RN'N).

| use the following expressions

<5A5A*5A5AT (B.25)

)=
<5A5A5A*5AT> 2, (B.26)
<NT5A5ATN> <NTN>, (B.27)
(NiksKT) - (1), o2
<5 ATNTN> <NTN>, (B.29)
< )= (N

SANNTSAT NN, (B.30)

and the fact that
<NTN> - <NNT> . (B.31)

| substitute these expressions into the equation, | get

<5Elut5]§)0ut5]§)lm5ﬁ)0ut> = 3|u|* + 4| <NTN> + <NTNNTN> : (B.32)
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Also, it can easily be shown that

<5E0ut5Eout> = <5Eout5Eout>

= (BB ) (B.33)
— (O] 08h )
Therefore,
A (BLuBo) = (5B],080) {2 (B )| + 20 ((E}Z)}

(B.34)

<(5 E! 0Bt OB 0Fou > <5E(’Ut5EOUt > 2

out

B.4 Computing<NTNNTN>

o 6—451;‘& E 4 . 4
<NTNNTN> v / / Ale=2e) (N ()@ + N(x)e_“b(x)) dzdz’
X / / eﬁ(w_zw/) (Nf(w)em(w) + N(w)e_i‘b(w)) dwduw’
0 Jo
L y/ / A~ . A~ .
> / / eBly=2y") <Nf(y)6z¢(y) + N(y)e—wb(y)) dydy’
0 Jo
L p2 ) ~ 4 R '
X / / eflz=22) (NT(z)e"b(z) + N(z)e_’¢(z)> dzdz' ).
0 Jo

(B.35)
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Keeping only the terms that are not going to average to zdraye

@WW®= w%”////////

ﬁ(x-i—w-l—y-‘,—z 2(z’+w'+y’ +2")

x drdx’dwdw'dydy’dzdz’.

| now use the results in section B.2, | get

(NN - W”w%”////////

ﬁ(x—i-w-i-y—i-z 2(z' 4w’ +y'+2")
X [6(1' —w)o(y — z) + 0(w —y)d(x — 2)
+(z —y)o(w — z)]

x drdx’dwdw'dydy’dzdz’.

From this, | get

(o =l PP

% [66(2w+y+z 2(z’ +w'+y'+2") 5(?/ o Z)

+ eﬁ(w+y+2z—2(:c’+w’+y’+z’))5(w —y)

+ eﬁ(w+2y+z—2(x’+w’+y’+z’))5(,w _ Z)]

x dz’dwdw’'dydy’'dzdz’.
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(B.37)

(B.38)



From this, | get

(NINNIN) = e e /L /L /L /L /w /
4 0o Jo Jo JOo JO 0

> [eﬁ(2w+2y—2(:c’+w’+y’+z’))} dydwdx'dw'dy’dz’

LT[

+ ePCyF2=2a" twty'+21) } dzdydz'dw’dy’dz’ }

(B.39)

From this, | get

—48L 8 L pL pL pL pw’
<NTNNTN>:M46 || /////
8 0 J0o JO0 JOo JO

% [eﬁ(2w—2(x’+w’+z’)) . 66(2w—2(x’+w’+y’+z’))]

x Chwdz'dw’dy’dz’ +/ / / // (B.40)

y 2[ B2y—2a'+w'+y) _ B2y—2('+u'+y'+2 ))]
X dydx'dw/dy/dz'}.
From this, | get
o —45L|a E
<NTNNTN> = / / / /
> |:6—26(x’+z’) _ e—26(x’+w’+z’)

L oL pL L
x dz’dw’dy’dz’ +/ / / / (B.41)
0o Jo Jo Jo

x 2 [e—2ﬁ(m’+w’) _ e—2,8(x’+w’+y’)

+ e—2,8(w’+w’+y’+z’) _ e—2,8(w’+w’+z’):|
x dz'dw’dy’dz’ }
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Rewriting the integrals, | have

() =

% [6—26(m+z) _ o 2Wlatwtz) | g -2B(twtytz) _ g,-2B(xty+a)

+2 [€—2ﬁ(w+w) — e‘zﬁ(w+w+y)] dxdwdydz}.

(B.42)
From this, | get
(RIRRIRY) = Lol / / /
328
% [6—252 _ e 2B(LAR) 4 —2B(Ltwtz) _ o—2B(wt2)
+ 3¢~ 28(wty+z) _ 3,-28(L+wty+z) (B.43)
1 3e-2B(Lty+a) _ 3,-20ut2) 4 o [e—Qﬁw _ 6—2B(L+w)}
+2 [e‘zﬁ(uﬂ”ﬂ’) — e‘26(w+y)] dwdydz}.
From this, | get
e~48L|q, |3
(NINNIR) — 415Kl / / [Lem20 — [em200+)
3203
+ 3Le—25(L+y+Z) o 3L6—26(y+z) + i (6—26(L+Z)
20
4o 2B(L42) _ =267 | 3,-2B(u+z) _ g,-26(L+y+z)
(B.44)

e 28(2L+z2) + e 282L+y+2) _ g,=20(L+y+z)
) [1 _ €—2ﬁL] 19 [€—2ﬁ(2L) _ €—2ﬁL] ) [e—2ﬁ(L+y)

€—2ﬁ(2L+y)] +9 [e—Qﬁ(Lﬂ/) — 6‘259] ) dydz}.
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Rewriting the equation, | have

o e~ 1L [®
<NT NN N> =~ P / / Le—zﬁz _ [e—28(L+2)
3203
B(L —2 1 —28(L
+ 3Le~2Ay+2) _ 3=20F2) | [ 9p26(L+2)
20
_ m2B0L+2) =282 | 3,-26(y+2) _ go—2B(Lty+2) (B.45)
1 3e28(Ltytz) 4 9[1 _ 9.—28L 4 e—2ﬁ(2L)}
+ 2 [26_26@”) — 0Ly _ 6—2631} ) dydz}.
From this, | get

<NTNNTN> — 6_46L‘ap|8 /L|:L2e—2ﬁz _ [ 2B(L+z)
320 0

n % [6—2B(L+z) — e 26@2L+z) 4 —26(L+z) _ ,—202

23
L (o] -28(+2) _ [ 280042 _ [, -282
25
n % [e—2ﬁz _ o 2(2) 9,280+ _ o —25(L+2) (B.46)

1 e280L+2) _ 6—26(3L+z)] Y [1 _9e28L | 6—26(2L)]

5}

4 e O8L _ o8l | =280 1]>dz}.
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Rewritting the equation, | have

o 4oL 18 [ [ 12
NINRIN) = S | 2o 1= 26720 4 o740 |
< REETY: 25 ¢t

+ j—ﬁl; [36_261' — 374k 4 om0l 1]
+ % (% [36_261' — 3e Wk 4 7O 1]
+ 4152 [1 — e 2L 4 g4l _ 3720k

+ 37k 3e760L 4 o780l _ e‘GﬁL}
+2I? [1 — 27 4 6_26(2”]
L —208L —48L —608L
+ = [36 — 3e +e — 1} .
5
From this, | get

SRR\ 46_46L‘Oép|8 £ —28L o _—48L —66L _
N'NN'N —3776462 536 e +e 1

+ 4i52 [1 — 4e7 8L 4 B 4 o78BL _ 46_66L]
+ L2 [1 — e 2L 4 6_46L} }

Which reduces to

o —48Ly, 18 [ _
(NINNIN) - 374%{7[/ (1—e2)°

tap (e 2 (=) }
| define
1L
Leff = 25

SubstitutingL.¢ in the equation, | get

RIRRIRY 3900l J 10 Lraps s
- fy 8 2 eff+ 2 eff eff
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out out

B.5 Computing<5]§fr k) SNy ol 5E0ut>

If | rewrite equation (A.10) usind..g, | get
4 4 LVA‘ 814
ul* & e Lol [P Ly
~ [v[*.

Using equation (B.22), | find an expression <dfsTTN> which is

—26L

<NTN> = 250! (L = Leg) Leg.

Using equation (B.21), | find an expression <0?ET 5E0ut>, which is

out

o 2,26
<5Elut5Eout> = 2 4 aﬁLLefP

| use these results in equation (B.32) to get

<51::guta]::m5]::gut51::m> ~ 3|l + 4| <NTN> n <NTNNTN>

3L L — L) L?
%746—4BL|ap|8{ eff +( ff) eff

16 4

3/1 1
+ 3 <§L;ﬁcf + §L2L§H — LLZ’H) }

’Y4

= —e Pa,|® (BLPL%; — 2LLY; +2LY;) .

16
Putting everything together, | have

out

. 2 4
0Bow) = Toe | (2L2L2; — 2L LYy + 2Lly)

4
= %6_4BL|%|8 (L?Les — LLYg + Leg)
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N . 2
B.6 ComputingA (EiutEout>

Since

A <ElutEOUt>2 = <5Elut5Eout> {2 ‘<E0ut>

Crom ((Bn) )|

N N N N N N 2
n <5Elut5Eout5Elut5Eout> _ <5Elut5Eout> ,

(B.57)

| have

2,—20L
aﬁLLeﬂr [2Ga§ + 2Ga§ cos(2(I>10)}
4 (B.58)

A <5Eiut5]330ut) °

out

~ ~ 2
A (ET Eout) =7

where the expression @b, is given by (A.21). The maximum noise in then when

cos(2®4y) = 1. After some algebraic manipulation, | get

i oA 2 L 1/ L? L
A(E! B = G? 24 - — 1) B.59
( o Om) “ {Leﬂa5+8 (Lgﬁ Lt )} (8:59)
It can be verified that iff — 0
A(B Boy) =62 la2+ 2 (B.60)
<E0utE0ut> e {a5+g}, .

which is the result | obtain in equation (3.16). Therefohe, dbutput SNR is

4

«
SNRyut = . : (B.61)
(- 5 +1)
B.7 Noise Figure
With SNR,, = o2, | get the following expression of the noise figure
OAZ
NF = — 10log A . (B.62)

L o, 1(1>2 L
Lcﬁas+8<L2 Lcﬁ+1>
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Appendix C
Derivation of Noise for NMZI Based Kerr Medium with Gain
C.1 ASE of Kerr Medium with Gain
To get the field output of Kerr Medium with gain instead of losfllow the same
procedure as in section 4.2 The differences in the equat®ithat instead of, | have

—go, go being the gain coefficient, and instead§fbeing a lowering operator, it is a

raising operator. | get

A — 0% Y2 (2000 C.1l
<A(z)> aed*” exp <2g0|oz\ (e 1)), (C.1)
. R Lo—goz , o
SX(L) = 6% (0) + / (Rfe®) 1 Re90)) i (C.2)
0
and
SY(L) = 6Y(0) + Llaf? (€28 — 1) 5X(0)
9o
L Zo—gox R ) R )
+ / 27|ar|2e?0 / < <NT6’¢(x)+Ne_’¢(x)> dzdz  (C.3)
0 0 2
Le_gOZ ~ i ~ .
Ne—0¢) _ Ntei¢®)) ds.
+/0 5 < e e )dz
Therefore,
A 2 s 2 1 L L_ (z42") A % / !
<5X (L)> — <5X (0)> +4 e~ 90 <N (z)N(z)> d-d-
0 Jo (C.4)
1 11— e 20l
Tit T

where | used<55(2(0)> = 1 since our input signal is a coherent state. To calculate

<5Y2(L)>, | first make the following approximation based on the faatth|?, the pump
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power is very large

SY(L) = Llaf? (2" — 1) 6X(0)
gJo

L Z5,—90T
+/ 27|a|2629(’z/—€
0 0o 2

|ap‘2
2

| will use = |al?

goes into each Kerr medium). Therefore,

<53?2(L)> - Z—;‘a|4 (2L — 1)? <5X2(0)>

0
2 L pL pz p2
_‘_7_|a|4////eg()(zz—x'i‘?Z'—y
4 0 JO0 JO JO
2

(C.5)

(NTeM’(I) + Ne‘i‘b(x)) dzdz.

, where|a,|? is the pump power (only half of the pump power

(6 (@)= () <NTN> dzdyd:'dz

2g0L _
et (6 1

_gl

290

-1).

2
_ ,y 4 2go L _ 1 2 17_ 4 1
AL I P
_ ek la]* (€207 — 1) el — 1
440 240
2 2goL 1 L
= T lalf (@ = 1)" |5 - s |
495 2 2(e%ol —1)

| define

e20l — 1

290

Therefore, | have

1

(3°(1)) = e ol Ly | 5
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C.2 Noise Figure

The gain of this OPA is calculated using the same steps apenaiix A.3, but with

—go instead off. | obtain

G = 7% a|* L. (C.9)

using the same argument as in section 4.2, it can be showAYhit the component of
noise in phase with the output signal. Therefore, | can usetjuation (3.54) to geet the

noise figure, which is

e290L _ 1)

L
=101 2 — .
Og{ Leﬂ”}

—101log {2 - (2&} (C.10)

142



Appendix D
Derivation of SA based NMZI-OPA Parametric Gain

D.1 Approximation ofi’y — I'y

| substitute (6.19) and (6.20) in (6.21) and (6.22) and | wbta

F o Psat
' E2—2E,E,sin(0:,)
< W (E]% — 2EpES sin(@in) . (EI%*QE;;i: sin(Qirl) —Bo
Psat
and
Psa
T, :

T E2+42E,E, sin(6;)

Psat

Psat

y W ( (EI% + 2EpE8 Sin(ein) . (E5+2EpEs sin(Gin) _60> .

For any differentiable function at x, to the first order | have
fla+A) = flz—A)=2f(z)A.
| chooseA = 2E, E; sin(#;,). Therefore,

Iy =T =T(A) —T(—A) = 2AT(E2),

D.2 Derivative of the Saturated Loss

| setp = JEZ. Therefore,

(D.1)

(D.2)

(D.3)

(D.4)

(D.5)



Taking the derivative with respect to

Psat YL N Psat d —BoL
W Peay 10 —W Pbdt 0 D.6
p2 <Psat ‘ _I— p dp Psat P ( )

For short hands, | will writdV for W( PPy 0 ) and W’ for W’( PP ﬁOL)

I'(p) = —

Then the derivative of the gain can be written

W+ = (Pieﬁ‘@ﬂ + eﬁ‘m) W (D.7)
sat

D.8
dx (1+W(x)) (D-8)
| get
p p Psat (1+W)(P ePsat —Bo >
P, 1
S S;tW+—(p +1) W (D.9)
p p Psat (1 + W) (%)
Psat 1 (Psat ) W
— W+ - +1 .
p? p\ P (1+W)
UsingI as short fol*(p) and substituting for
Py b _r _p3 L)
[(p) = =2W [ ——ePa 7% ) | D.10
0= (- (0.10)
| get
) T, T 1
I'(p) = (Pi + 1)
p p 1 + P sat (Dll)
. Ir-1
B Psat + Fp
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D.3 Approximation ofg, — 3,

| denoteS(p) = — In(I'(p)). Therefore,

B(p+A)~ —In(I'(p)) — Al'(p)

o (D.12)
= —In(T'(p)) — AF
Therefore,
B'(p) = —Ff
(D.13)
_ T-1)
B Psat _I' Pp
Sincel; = B(p + A) andp, = B(p — A),
-1
— By ~ 2A
Po — P~ 2 P+ Tp (0.14)

r-1) .
=2Fk,F, Oin).
P Psat + Fp Sln( )
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Appendix E
Bandwidth of the Saturable Absorber Based NMZI

E.1 Response of a Saturable absorber to non CW signal

| substitute for 5 (z) using (6.53) in (6.62) and obtain

dAP,(z, Q) B By(2)AP(2,9)
dz 14+ P(2) +iQr

| then factor for3,(z) andAP,(z,Q), | get

1 dAP,(z, Q) B P(z)
A]Ss(z, Q) & = (s(2) ( 1) ) (E.2)

| take the integrals. | get

/OL % _ /OLﬁs(Z) (1 +P1(DZ()Z)+ - 1) dz. (E.3)

We introduce a change of variable in right hand side of theaggn X = P(z). From

equation (6.59), we have

dx
re = —Bs(2) P(2). (E.4)
Therefore,
dX = —f,(z)P(2)dz. (E.5)

After substitution into the integral, | obtain
LdAP,(z,Q PL) 7 1
/ e CLL / <_ - —) dx. (E.6)
0o AP(z,9Q) P(0) X 1+X4+4Qr
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The evaluation of the integrals leads to

{m (AP(z2) ]j = [ln <ﬁ) ]:;)

with

| can then solve fon P, (L, Q) as follows

AP(L,Q)\ . (P(L)(1+ P(0)+iQr)
n (APS(O,Q)) = <P(0)(1 T P(L)+ mﬂ) '

If | define the total steady state gainlas= %, | then have

AP,(L,Q) = AP,(0, Q)T (1 + P(0) + mT) .

1+ P(L) +1iQr

| define the total loss of an SA as

[(Q) = e~ Jo el Balz)dz,

| know that
T, = ¢ fo Ao,
| define
L
AB(@) = [ 5pa(a)e
0

Therefore,

L(Q) =Ty(1 - AB(Q)).
| then have

Is(1—AB(Q))(P(0) + AP(0,9)) = P(L) + AP,(L, Q).
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| expand the equation, dropping the higher order terms. | get

I, P(0) + T, AP,(0,Q) — T,AB(Q)P(0) = P(L) + AP,(L, Q). (E.16)

Sincel'P(0) = P(L), | have

I, AP,(0,Q) — T,AB(Q)P(0) = AP(L, Q). (E.17)

Substituting forA P, (L, 2), | have

TLAP,(0,9) — T,AB(Q)P(0) = AP,(0, )T, (11 I 58)) ilz?z:) . (E18)
Solving forAj5(£2), | get
_ AP(0,9) 1+ P(0) +iQr
ABY = - P0) (1 14+ P(L)+ z'm) ‘ (E.19)
Therefore,
_AP(0,9) [ P(L) - P(0)
ABEY) = P(0) (1 + P(L) + z'm) ’ (E.20)
which can be rewritten
AB(Q) —(1-T,) AP,(0,9). (E.21)

T 1+1,P(0) +iQr
This results is consistent with our previous results sirare(¥ = 0 | obtain equation

(D.14).

E.2 Overall System Output
At the output of each SA, | have

Ey(L,Q) = <E1(0, Q)e” S (iO‘H+1)) (E.22)

S
V2
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and

Ey(L,Q) = % (EZ(O, Q)e—%ﬁ(%aﬁﬂ) , (E.23)
whereg, = —In(T',),
Ei(0,Q) = % (iAp - AS(Q)ewin) (E.24)
and
E5(0,9) = % (—4, +idu(@)e™). (E.25)

Therefore, the NMZI field output at one of its arms is:

B = _71 ( —i(—iA, + A (Q)etn) e BT lan+D)

+ (A, - iAS(Q)ewi")e‘%(ia’{Jrl))

(E.26)
A (@) (o G | o ) ) .
factoringe~ 3 (iex+1) and expanding= "2 (o +D) & 1 — A5 (jay + 1), | get
_6_%(20‘1{4'1) ~ )
Eow ~ ————— (Agalian +1)4, - 2i(A,(Q)"))
2 (E.27)
_e—%(iou{-i-l) 2(1 — FS)A?) sin(@in) . 1 9 i0- A 0 .
2 1+ TA2 4407 (iop +1) = 2ie 5(2)-
E.3 Parametric Gain
| define
Ein(Q) = A (Q)en. (E.28)
E..+1 can then be rewritten
_Bs (1 =T,)psin(b,) ,. i\
Eout1 = (e +1) 1 @) A (Q E.29
w=e iy p an ) il ) A@),  (E29)
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where P is the power of the input pump on each arm of the NMZ&:AIZ,. | reintroduce
P.... Substituting forE,,, | get

(1 =Top (Ea(®) - B4 ()
Psat + Fsp + iQTPsat

Eoutl = 6_%(iaH+1) ( (ZOéH + ].) + ’LEm(Q)) : (ESO)

| definep, andv such that

Eou1 = 1tEwn(Q) + vEL(Q). (E.31)
Therefore, | have
_ o =Bsiag+1) 1— 1 . 1 (P — ].) E 30
M_Ze 2 |: 2(ZQH+ )Psp+Psat+iQTPsatp ( 3 )
and
— —&(iaH—i-l) 1 . 1 (F - 1) E 33
V=ie 2 [2@@1{—1— )Fp+Psat+iQTPsatp . (E.33)

| can be seen that fd2 = 0, equation (E.32) and (E.33) are equivalent to equatior2{6.4

and (6.43) | can now find the parametric gain, which is

‘Eout‘z
A ()2

rQ) =
(E.34)

= [u(@e + v
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Appendix F
Quantum Mechanical Model for Interaction of Light with Satile
Absorber

F.1 Solving forg .

| multiply equation (7.21) by~ (w21=7)t

. dé. (t . KX~ LA .
e—(zwzl—’y)t Uc—ij-t( ) _ 6—(zw21—'y)t (’iw21 _ ’Y) 5‘+(t) + %ATNl(t)e—(wm—fy)t
(F.1)
+ F+(t)e—(iw21—’y)t’
which is
%&+ (t)e—(iwm—’Y)t — %ATNl(we—(iwm—y)t + ]’:—“w+<t)€—(iw21—fy)t. (F2)
Therefore,

sk t
G.(t) =64 (O)G(iwm—’y)t 4 %e(iwzl—v)t/() AT(t/)Nl(t/)e—(iwm—’y)t'dt/

. (F.3)
+ e(iwzl—“/)t/ F+<t/>€—(iw21_fy)t/dt/.
0
| define
~ ’LKJ . t A . /
B, = e [ B t)e gy, (F.4)
0
| use this definition in the expression®f (¢), | get
5k t
Go(t) = 5+(0)€(iwz1—v)t + %e(iwm—’y)t /AT(t/)Nl(t/)e—(iwm—'y)t’dt/
0 (F.5)
h -
_FT 1)etwot
+ ik ab( )6
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| assume sufficient time lapse so that the initial conditiaresforgotten by the system. |

obtain

K* t, N ) , h )
G.(t) = %e(w—’”t /O AT)N (e o= qy 4+ — Rl (p)eiot. (F.6)

1K
let A(t) = B(t)e ™. Ny(t) and the envelopB(t) are pretty much constant relative to

the oscillatiore21=7)*, The equation becomes

K . . o , h - .
0‘-+(t) — %6(Zw21—7)tBT(t)N1(t) /e—(l(wzl—wo)—ﬂt dt’ + EFLb(t)eWOt' (F.7)
0
After evaluating the integral, | get
BN (2) L h - .
6.(t) = —— elwot _ €(2w21—’7)t + ,—FT £)eiwot (F8)
+( ) ih (Z(Wzl _ WO) _ ’7) ( ) ik ab( )

Assuming thaty far more significant than the oscillation, | get

.o B AN () Pt iwor
T = R o —wm) ) i =)

F.1.1 Properties of Noise Sourtgy, ()

A~

F., (1) is chosen so thaﬁA(t),AT(t)} = 1 for all values oft. Without ¥, (), |

have

B 5A 080 + A ), (F10)

whereU = U, + iU;. | setC = UN|(t) + iw,. This gives

dA(t)  az F11
5 — — CAQ®. (F.11)

| solve this equation and get

A(t) = A(0)eC, (F.12)



Therefore,

F.13
6—(C+CT)t ( :

Y

which is obviously wrong as it has to be one (1) regardless T fix this, | add the

following the noise term back

dﬁ_t@) _ A + By (t)e it (F.14)

and | require that tha@ab(t), Flb(t’)] — Ad(t — t'). The solution is

¢ A . /A
A =A@ 4 [ Oy (¢, (F.15)
0
| compute the commutator

[A(t), A’r(t)] - [A(O), AT(O)] e~ (C+CET)t

t pt (F.16)
+A//e—é(t—t’)—iwot’e—CJT(t—t”)+mot”5<t/ . t”)dt/dt”.
0J0
After some algebra, | get
~ -~ t -~ -~
1= e (E+€N 4 4 / e~(E+ENE=t) gy (F.17)
0
| evaluate the integral
1= (€Nt Ly (1 _ e—(C—I—CT)t) (C n CT>_1‘ (F.18)
Therefore,
A=C+Cf
= 2R(V)N (1) (F.19)
- 2U¢Nl(t)

153



Therefore,

Fab(t),ﬁgb(t’)] = 20, (1)5(t — t'). (F.20)

Remembering that | wrot®, () becauseéN,(t) ~ 0. In reality it wasN,(t) — Ny (t).

Therefore,
[Fab(t),ﬁgb(tf)} = 20, (N2(t) - Nl(t)> 5t —1). (F.21)
Therefore,
<F;b(t)ﬁab(t')> — 20, <N2(t)> 5(t —t) 2
~0
and
<Fab(t)ﬁgb(t')> — 20, <N1(t)> St —t'). (F.23)

F..,(t) is a lowering operator.

F.1.2 Photon Number Equation

By definitionfi(t) = Af(t)A(t). Taking the derivative of this equation, | get

B - AT(t)dit(t) " dﬁf)A(t). (F24)

After substituting equation (F.14), | get

dr(;it) = — 20, Ny (t)i(t) + AT (t)F, (H)e ™0 + B, A(t)e™o! (F.25)

154



The term—20, N, (t)ii(t) represent absorption. Using equation (F.15), | can compute
<AT(t)]?‘ab(t)e‘W0t> and<]?‘1b(t)A(t)ei“0t>, which contains absorbed noise. Taking the
Hermitian conjugate of (F.15), | get
Al(t) = A(0)e " + / -Gt B () (F.26)
0
| Multiply the equation by, (¢)e ot

AT Fp(t)e ™0t = AT(0)Fy (¢)e(CHwo) 4 / e—@*mo)(t—t’)ﬂb(t')Fab(t)dt’.
0

(F.27)
Since
<AT(0)]§“ab(t)> —0 (F.28)
and
<F’;b(tf)ﬁab(t)> =0, (F.29)
| have
<Af(t)Fab(t)e—W> —0. (F.30)
Similarly,
<F;b(t)A(t)e—W> —0. (F.31)

F.2 Noise From a Single Atom

| addedF y(¢) to equation (7.17) empirically. | remove it from (7.65). Insider
separately the population decay. This is done by turninghadfelectric field, setting
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A(t) = 0 in equation (7.65), and letting the system relax. For ongleiatom, | have:

dNy(f) 1 —Ny(t)
dt T

| also know that

A~ A~ A~

N;(t) = 1 — Ny () — Noj(t),
because the number of carrier is conserved. Siggt) ~ 0, | have

A~ A~

Therefore our original equation, can be rewritten

dNy;(f) _ Na(t)
dt T

Also,

dNy(f) _ dNg(t)

dt dt

Therefore, the equation can be rewritten

dNu(t) _ Ny(h)

dt T

For a smallAt, | have

A

SinceNs; (t)Ny;(t) = Ng,(t) for anyt, | have

(Ngj(t + At))2 = (Ngj(t)>2 <1 _ ﬁy

T

~ N, () (1 — Q—At) :

T

(F.32)

(F.33)

(F.34)

(F.35)

(F.36)

(F.37)

(F.38)

(F.39)



Therefore,

N (t + At) = Ny;(t) (1 — Q—At) .

T

Since | started with

Ruy(t+80 = Ny () (1- 21,

T

something is wrong. Let’s add a noise tefi, (¢) (phonon)

dNy;(t) 1 —Ny(t)

— ot
which can be rewritten
dN;(t) Ns;(t)  «
i/ S VAT AN
dt T +Fu;(t)

| require that

(i (F s (8)) = Ad(t— 1),
Therefore,

" R At t+AtA
N (¢ + At) = Ny (t) (1 - —) + / B, (t)dt.
t

T

Multiplying this equation by itself, | get

N, (t + At) = Ny;(t) <1 - Q—At) + N, (t) <1 - Q—At) [WFN]( t)dt'

=
t+At t+At
+/ / F; () Fn; (t")dtdt”.
t

When | take the average of the equation

<N3j(t + At)> = <N3j(t)> (1 - 2TAt)
[ k) arar,
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(F.40)

(F.41)

(F.42)

(F.43)

(F.44)

(F.45)

(F.46)

(F.47)



| get
| choose
This implies that

<N3j(t v At)> - <N3j(t)> (1 _ %) ,

which works. Therefore

- r- / <N3j(t)> /
(B (0F (1)) = A——Lo(t — )
1— (Ny(t)
o N0)
T
F.3 Noise From a Collection of Atom
| have for a single atom
dNy;(f)  1-Ny(t) |«
T . + Fn;(t).
Therefore, for a collection of atoms, | have
N & N &
dNy;(t) 1-Ny(t) | &
Z dt Z T i (0),
7j=1 7=1
which gives
dNG (1) N-Ni(t) <
1 . — INg v
da T + ; F; (1)

(F.48)

(F.49)

(F.50)

(F.51)

(F.52)

(F.53)

(F.54)



| define

Fy(t) =) Fu(). (F.55)
Then,
<FN@ﬂmxf»::§:§:<FNAwFNMf». (F.56)
=1 k=1

SinceFy;(t) and F v (t) are uncorrelated foj # k, all the cross terms of the double

sum are zero. Therefore,

= iwg(t_t’) (F.57)
:N_<Nﬁwaw%q
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Appendix G
Solving Differential Equation of SA

G.1 Solution for the Fluctuating Terms

Substituting equation (8.26) in equation (7.77), | get

%[B(t) (1+%(1) +ig(1) | = - % (B(t)ian +1)) (1 +%(t) + 3t on
+ F.n(t)
Therefore,
dﬁ—iﬂ (1+%(t) +iy(t)) + B(t)%(fc(t) +iy(t) = — % (3(75)@% " 1))
x (14 X(t) +i9(t)) (G.2)
+Fa(t)

It is easy to show that by substitutid(t) = B(t) + 0B(t)(t) and3(t) = ((t) + 65(t)
in equation (7.77) and separating the average terms frorfiutiating terms, | get for

the average terms

dB(t) 1 , G.3
Substituting equation (G.3) in equation (G.2), | get

N

G &0 +15(0) = = 5 (o + D) (14 %) +15(0) + ) ©.4)
53 o :
B
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where the last step is a first order approximation. Takingteemitian conjugate of this

equation, | get

d, OB, Fl (1)
Summing the equation (G.4) and (G.5) and dividing the rdsuR, | get
ox(t) 1 .- B (t)F., + B ()FT,
& - —ﬁéﬁ(t) + 5 (G.6)
Subtracting the equation (G.4) and (G.5) and dividing tisailteoy 2i, | get
dy(t) B (t)F. — B'OF,  an 4 G.7)
dt 2 ~ 5P,

Check:
| assume that,,; — oo, which is the case of unsaturable loss. In that case equation

(8.19) gives

Tdéi(t) = —3B(t) + R (). (©8)

| saw in equation (8.24) that under this condition the dlg]\ljerm]?‘L(t) contains no power

and thatf"; () = 0. Therefore3(t) = 0. Therefore,

Ox(t) B (t)Fa + B (H)F!

- : (G.9)
Therefore,
R(T) = %(0) + / BT (t)Fw ZB*_I(t)FLb dt. (G.10)
0
T
K(T)R(T)) = <5<(0)5<(0)>+% /0 %dt (G.11)
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0 (G.12)

<6X2(T)> __— <5X2(0)> LR (G.13)

which is what is expected.

G.1.1 Finding an Expression f@éﬂ?‘ﬁ(t)f‘g(t,)>

At the scale at which | look at this problerfs(t) is roughly a delta correlated
noise. In this section, | will compute the integral <)F5(t)]§“ﬁ(t’)> and rewrite it as a

delta correlated function . | can rewrite equation (8.203wsh

<FL(t)FL(t’)> = K8t — 1), (G.14)
where
Bo+ (52 —1) (B(®)
K—T[ <2>< > . (G.15)
Nsat T
Also, equation (8.40) can be rewritten
A~ t A~
Fﬁ(t):/G(Tl)FL(t_Tl)dTla (G.16)
0
where
R (G.17)
G(Tl) = 2T6 .



Therefore,
(Bst)Fs(t —m)) = /O t /0 T ) Gm) (Bult —m)By(t —m — 7)) drad,

t t—71
:K// G(TQ)G(Tg)é(t_TQ_t+T1+T3>dT2dT3
0 J0

= K/OtG(Tg + 71)G(13)dr3,
(G.18)
sincet’ — t = —7;. Substituting forGG(-), | get
(Fatfs(t - ) = oy [ CH) =,
G (e s) e
(G.19)

| look for the total energy of's(t) as follows

/:<F5(t)l:“g(t _ T1)> dr = 2/000{;—;2 (1 + %) -1 e‘(uﬁiﬁ)T}dn
(G.20)

2K n(t)\
~ 1 .
4T2 < * Ngat )

Therefore,

<ﬁﬁ(t)ﬁﬁ(t')> - Zf (1 + Z(tz)_25(t—t’) (G.21)

G.1.2 Finding an Expression f@éﬂ?‘ab(t)ﬁﬁ(t,)>
Equation (8.23) can be rewritten

A

<Fab(t)f‘L(t’)> — K.6(t — 1), (G.22)
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where

B(t).

Ngat T

| take equation (G.16) and multiply it by, (¢) and take the average, | get
R R t+711 R R
<Fab(t)F5(t + 7'1)> = / G(TQ) <Fab(t)FL(t + 71— 7'2)> dTQ
0

t—71

K, / G(r2)8(t — t — 71 + 72)d
0

= KlG(T1>

= ﬁe_(l—’_ Zs(:i)% .
2T

| take the integral of the expression, | get

=/t : CK; _(14r®0) 1
[ (EawRse s m)an = [T (i) 2
—o0 o 2T

~ %Kl (1+"(t))_1.

Nsat

Therefore,

Similarly,
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(G.23)

(G.24)

(G.25)

(G.26)

(G.27)



G.2 Calculatingx(7T)x(T))

| take equation (8.43) and use equation (8.39) to substitetexpression dN,,(t),
| get
(X(T)X(T)) = (x(0)%(0)) H2(0)
T T
+ /0 /0 Ho (') Ha (") <Fﬁ(t')ﬁﬁ(t”)> dt'dt”
" /OT /:Hz ) (e (BTW) (BBt (©.28)

N B*—l (t)

<F5(t”)1.3“gb(t’)> ) dt'dt”

o ! / ey PO (BB ) v

Using equations (G.26),(G.27), (G.21) and (7.72) in thevalexpression, | obtain

(X(T)%(T)) =(%*(0)) H*(0)

check:

| setng,, — oco. ThenH(t) — 1 and

(R(T)R(T)) =(=2(0)) + 2 /0 [i Em o' (G.30)
This gives us
(SR(T)OR(T) ) = e (SR(0)R(0) ) + ! _:_60 (G.31)

as before.
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G.2.1 Amplified Initial Noise

The incoming signal’s noise is amplified. At the output, itbmes the first expres-

sion of equation (G.29), which is

Init, =H2(0)(x2(0)). (G.32)
Using equation (8.42), | obtain
1 (n(0) +ng \? L
Init, =2 (n(T) +nsat) ) (G.33)

G.2.2 Noise due to Absorption

| compute the first integral of equation (G.29), which is eaisie to absorption. |

get

Nois€y,, = 41T / THQ(t’) <§ Ezg) dt’
[ G ()

1/”@( )2(1)(’
= — = . ™ i
4 n(0) n(T) + Ngat n? (634)

As a check, | set, as,,; — oo (honsaturable loss). The above expression converges to
. 1 1 1
Nois€ys, = — | — — — =
S {nm n<o>}
Cle—1
4 n(0) 7

(G.35)

which is expected.
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G.2.3 Noise due to Relaxation

| compute the second integral of equation (G.29), which isendue to relaxation
| do it as follows

1 T Bo + (2(—1) — 1) B(t)
Nois€..;, =17 H*(t) 5 dt’. (G.36)
0 Ngat (% + 1)
Since
Bo
b0 =g (G.37)

| can make a change of variable and evaluate the integrallas/fo

n()
. [ 1 (52 -1)
N0|sefelzzﬁ BYH(t) -
0

! , 2
(#) + nsar (y L 1)
1 ™0 N+ Neat 2 1 (n::t o 1)
T 4wy 0 \n@) ) | :

n(0) nA\n Nsat N T Ngat Nsat (nLt + 1)
1 n(0) —n(T)
2 (n(T) 4 near)”

dt’

4 (G39)

G.2.4 Beat Noise

| compute the third integral of equation (G.29), which is lieat noise between the

relaxation noise and the absorption noise. | evaluate blisAfs

NOiS€cq, = —

; dt’
0 Nsat (n(t) + 1)

B n(0) — n(T') + ngat In <"—:0F)>
(n(T) + nsat)2

167



G.2.5 Total Amplitude Noise

| get an expression for the total amplitude noise from tharsale absorber, which
is

(X(T)%X(T)) = Init, + Noise,,s, + Noise.;, + N0iS€.q,

2 e In (2O ) 4 M e n(0) — n(T)
1 (n(O) + nsat) 1 1 4Tsat n(T) (T) 7(0)
n

W(T) +nem ) n(0) "1

1 n(O) — n(T) n(0> - n(T> + Ngat In
4 (n(T) + nsat)z ( (T) + nsat

(n(O) g \2 1 1 6754t In (n(T ) m
3
2

_I_
/—\/'\

n(T) + ngy /) n(0) 4 (n(T) +n. )

(G.40)

G.3 Calculatingy(T)y(T))

To get the phase noise, | use equation (G.7)

o9(t) B '\(t)F., — B'OF  ay (G.41)
o _ % 1 530

and equation (G.6)

ox(t) 1 -
o~ P

B~ (t)Fa, + B (H)F!
() b+ () ab. (G42)

| define

(G.43)

and

(G.44)



Therefore, equation (G.6) can be written

1 .
—ﬁdﬁ(t) =5 N, (1)
and equation (G.7) can be written
oy() _ ox(t)
o Doll) + o (7 N (1)

Algebraic manipulation of equation (G.7) and equation j@iGes us

o9(t) _ 0%(1
ot

) _ Ni(t) — agN,.(t).

From this, | can write an expression of the phase noise, which

(1) — agk(t) = $(0) — agk(0) + /ot (Nm(t) - aHNm(t)) dt'.

The power of the phase noise is

and

(G.45)

(G.46)

(G.47)

(G.48)

(G.50)

(G.51)



| also use the following relation
L [TBE)Y o
[ [ oo =7 | (5 )¢
e
4 n(0) TL2

Al

Therefore, the expression of the power of the phase noisaes

ey (1+a2) [ 1 1 1
(F4(1)) = 4 [n(o) * n(T)  n(0)

—a% /0 t [<Npr(t’))2(t)> + <>‘<(t)Npr(t’)>

tag (<f<(t)1<rp,-(t')> v <Np,-(t’)§<(t)>> ] dt’

} T o (R(T)) - 20 (XO)X(1)

(G.53)
| can see that
(KON(1)) = = (Nyu(t)x(1)) (G.54)
and
(N ()%(1)) = (X(ON,(1) ). (G.55)
Therefore,
() = B 2 o (RD)) — 20 R(OR(0)
(G.56)
2 Te AR /
202, /0 (N, ()%(0)) o
| rewrite the integral in the expression as follows
T T /
) /0 (N, (1)) ) di = % RG (%) o
(G.57)




Using equation (8.42) and our usual change of variable, ¢ hav

Nsat TL(O)

Q/OT <Npr( )% ()>dt 2 [%Lm

w Nsat _ Nsat (G b 58)
_ 1 3In (n(T)) T2 T n(0)
2 n(T) + Ngat

Substituting this answer in the expression of the phasenbget

(52(1)) = L) [ 1 )] 1 a2 (RA(T)) — 2Hy(0)0, (£2(0))

4 (T
0 nsat Nsat (G . 59)
oy [3m ( ) —
2 ) + Ngsat .

Finally, using equation (8.42), | get

(5 = B L] g sy - L (0 )

1 (T) 2 n(0) \n(T) + ngat
n 0 Nsat Nsat G.6O
B i 31n ( % ) n(T BRI ( )
2 ) + Ngat .

As a check, | set,,; — oo (unsaturable loss case). Then from equation (G.12), the

expression of the amplitude noise is

—_
—_
—_

A2 o )A(Z 1 - -
@) =€)+ [~ 70

o (G.61)
Al
Therefore, equation (G.60) becomes
w0 =5 o) -~ 3 [
-3 {n(lT)} o lrz(lT) ) n<10>] (662
1 1
i s

which is what was expected.
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