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Abstract

A description of the computer programming language SIMPL-R
is given. 'SIMPL-R is the member of the SIMPL family of.structured
programming languages intended for use with numericai.computa—
tions such as those which arise in connection with the solution
of scientific and engineering problems. An example is given
showing an impléménpatioﬁ;in:SIMPL-R of énvalgorithm for the
solution of sparse matfix problems using an arc-graph data
structure. Comparisons with the same algorithm coded in FORTRAN
show that the nonoptimizing SIMPL-R compiler produces code which
is ten to twenty percent faster than that produced by the opti-

mizing FORTRAN compiler.



Introduction

This report contains a first description of the programming language
SIMPL-R and a discussion of its application to a particular set of programs
used for solving large sparse matrix problems.

' SIMPL-R is a member of the SIMPL family of structured programming
languages [1]. It is intendeé for use in the solution of numerical
engineering and scientific calculations. The SIMPL family is a set of
languages which contain some common basic features, such as a subset of
data types, control structures, etc. The fundamental idea béhind‘the
family is to start with a base language and a base compiler, and then to
build each new language in the family as an extension to the base language
and each new compiler as an extension to the base compiler. Thus each new
1anguage-and its compilerare bootstrapped from some other language and
compiler in the family.

The design goals for each of the languages of the family were that
they be simple, well-defined, extensible, and transportable. The design
goals for the corresponding compilers were that they be extensible, trans-
portable and that they generate good object code.

Present members of the SIMPL family include SIMPL-X [2], a typeless
compiler-writing language, SIMPL-T [3], a typed [integer, string, character]
compiler-writing language, and SIMPL-XI [4], a systems-implemented language
for the PDP-11.

SIMPL-R has been designed as an extension to SIMPL-T and its compiler
has been built as an éxtension to the SIMPL-T compiler. The salient features

of SIMPL-T are
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1) Every program consists of a sequence of procedures which can
.. access a set of global variables, parameters, or local variables.
. 2) The statements are the assignment, if-then-else, while, case,
" call, exit and return statements. There are compound statements

in the language, but there is no block structure.

..-3) There is easy communication between separately compiled programs
by means of external references and entry points.

4) There is an integer-type variable. Associated with this variable

- is an extensive set of operations which include arithmetic, rela-
tional, logical, shift, bit and partword operations.

'5) String and character data types. Strings are of variable length

. with a declared maximum. The range of characters is the full set

of ASCII [5] characters. A set oé;string operators which includes

. concatenation, the substring operator, an operator to find an .
occurrence of a substring of a string, and the relational opera-
tors defined on the lexicographical ordering. :

.6) Strong typing is imposed and there are intrinsic functions that
convert between data types.

"'7) There is a one-dimensional array data structure.
8) Procedures and functions may be recursive. Only scalars and struc-
~tures may be passed as parameters. Scalars are passed by value
or reference and structures are passed by reference.
9) There is the facility for interfacing with other languages.

) 10) There is a'éimple set of read and‘WTite stream I/0 commands.

11) The syntax and semantics of the language are relatively 51mp1e,
consistent, .and uncluttered.

- A more expository discussion of SIMPL-T may be found in [3].

The next section contains a discussion of SIMPL-R with special empha-
sis on the extensions to SIMPL-T. The reader already familiaf with.SiMPL—T
may skip most of the next section, noting that_the development of reals in

.SIMPL-R parallels the development of integers in SIMPL-T. The significant
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differences lie in the additional operations given in the operation table,
Table 1, and in the treatment of coercion or mixed-mode conversion, dis-
cussed in the subsection on coercion. Section Slcontains the results of
testing that was done on programs used for solving large sparse matrix
problems. These programs, written’in SIMPL-R, are contained in the appen--

dix. Section 4 contains some concluding remarks.



SIMPL-R

SIMPL-R is a strongly typed, procedure-oriented language for writing
structured computer programs. At present, it contains four computational
data types (real, integer, string and character), one primitive data struc-
ture (the one-dimensional array), and four program control mechanisms (if-
then-else, loop, case, and procedure call).

A SIMPL-R program consists of three basic parts: a set of global
declarations, a set of procedure or function definitions which may contain
local declarations, and a START directive which identifies the procedure
to be activated when the program is executed. The procedure and function
definitions contain the executable statements in the program.

Declarations.

A declaration consists of one of the data type keywords, REAL, INT,
STRING, or CHAR, followed by a list of one or more variable names, separated
by commas, which are to have that type. Strings must be declared with a
maximum length, an integer constant, contained in square brackets [ ]
following the string name. Variables in global declarations may be ini-
tialized by following the name by an '=' and a constant of the appropriate
form. Arrays are declared by including the keyword ARRAY with the type
keyword and following each variable name with an integer constant in paren-
theses giving the number of elements in the array. All arrays start with
subscript zero. Arrays may be initialized by using a parenthesized list
containing the initial values. A repeat factor also in parentheses may

follow an initial array value.



Examples:

REAL VOLTAGE, CURRENT=1.0E-3, INDUCTANCE

INT ROWINDEX=0, COLINDEX=0

STRING TITLE[100]='PROGRAM TO COMPUTE INVERSES'

CHAR A=""A"

REAL ARRAY MATRIXI (100)=(0(100))

STRING ARRAY SIDES(4)[8]=('TOP','BOTTOM', 'SIDE' (2))

To facilitate communication between program segments which are compiled
separately, the modifiers EXT and ENIRY are provided to permit global declara-
tions to be known across compilations. These can be used with any of the
forms shown above as well as with function, procedure and file declarations.
Adding ENTRY to a declaration causes it to be known outside the current |
~compilation. The actual item declared to be an ENTRY exists within the
current compilation and may be initialized in the usual manner. EXT items
exist in another compilation (in which they must have been declared ENTRY).
Array bounds, string lengths and initialization are not specified for EXTernal
items.

Procedures and Functions.

Procedures and functions provide a method for dividing a program into
1ogica1 segments. Each consists of a procedure or function declaration
followed by optional local declarations for variables to be known only within
the segment. In the case where a local variable has the same name as a
global one, the local declaration governs and the global is inaccessible
from within that segment. The declarations are followed by the executable

portion of the segment which will be described below. A segment is terminated
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by the appearance of another procedure or function declaration or by the
START directive at the end of the program.

Although similar in appearance, functions and procedures differ in
one important aspect. Functions are not permitted to have side effects.
This means that a function is not permitted to alter the value of any global
variable either directly or by passing control to a procedure which does so.
This is done to simplify the semantics of the language and to simplify certain
types of optimization strategies. Functions return a value of the same type
as the function, while procedures do not.

- Procedure declarations consist of the keyword PROC followed by the
name of the procedure and an optional parenthesized list of the formal para-
meters used by the procedure. The parameters are separated by commas and are
typed with one of the four data types. Scalar parameters are normally passed
by value which means that an assignment to a parameter Qithin a procedure
or function will not affect the value of the argument which was passed to .
the segment. Arrays are passed by reference so that an assignment to an
element of an array parameter will alter the value of the corresponding argu-
ment. It is possible to specify call by reference for scalar parameters by
using the keyword REF in the procedure declaration.

Function declarations are similar to procedure declarations except
that PROC is replaced by one of the type keywords and FUNC.

Examples:

PROC EXTRACIMIN (REAL ARRAY X, REF REAL Y)

REAL FUNC MINIMUM (REAL ARRAY X) |
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PROC LOOKUP (STRING ARRAY TABLE, STRING ENT, REF INT INDEX)

STRING FUNC REVERSE (STRING TEXT)

Adding ENTRY to a segment declaration causes it to be known outside
the current compilation. Segments occurring in other compilations are
declared with the other global declarations by the addition of EXT. The
names of formal parameters are not declared in EXTernal segment declara- -
tions.

Procedures or functions may be declared as recursive (i.e., they may
refer to themselves either directly or indirectly). This is done by adding
the keyword REC to the segment declaration.

Expressions -

Before discussing statements in detail, expressions will be described.
In its simplest form, an expression consists of a constant, a variable name,
an array element or a function reference.

Constants come in four types, INT, REAL, STRING and CHAR. An integer
constant may take on several forms, the simplest of which is a string of
digits (0-9) with an optional minus sign preceding them. Integer constants
may also be expressed in binary, octal or hexidecimal by preceding the con-
stant by the appropriate letter (B, O, or H) and enclosing a string of the
appropriate digits (0-1, 0?7, or 0-9, A-F) in single quotes. In these
forms trailing zeros may be abbreviated by including the letter Z followed
by a decimal number giving the number of zeros as the last portion of the

string.



Examples:

123 - 45678 $1177000 117723

B'10010000000' B'1001Z7'  H'lAFF'

Real constants are distinguished by the inclusion of a decimal point.
They may also contain a scale factor indicating that the value is to be

multiplied by a power of 10.

Examples:
123. - 123. 123.E-5 .123E+5  1.23E7
0.000123 = - .123 - .123E3

Imbedded blanks are not permitted within the numeric part of either integer
or real constants. Blanks may occur between the minus sign and the first
digit or decimal point.

Character constants consist of single characters from the ASCII

character set [5] enclosed in double quotes.

Examples:
HAH 1ron NOH HHH’ 1 ARRA}

String constants consist of a series of characters enclosed in single
quotes. Two adjacent single quotes are used to represent a quote within a
string constant. Two adjacent single quotes alone represent the null or
zero length (empty) string.

- Examples:
'ABCDEFG', 'THIS CONTAINS A'' ', '','THE PREVIOUS STRING WAS EMPTY' .:

The length of string constants is limited to 256 characters.
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Variable names are those which have been declared either as global
or as local to the segment in which the reference occurs. Note that in
SIMPL-R, unlike many languages, all variables must be declared.

Array elements consist of a name which has been declared as an array
followed by an integer expression contained in parentheses. The value of
the expression must be equal to or greater than zero and léss than the size
declared for the array.

Function references consist of the hame of a segment declared to be a
function followed by a parenthesized list of expressions whose types match
the types declared for the parameters of the function. Note that only a
variable name or array element is an appropriate argument for’a REF para-
meter. If the function has no parameters, the reference consists of only the
function name.

More complicated expressions are built by applying operators to expres-
sions. Operators are unary, requiring one operahd, or binary, requiring two.
| Table One below gives the opérands available in SIMPL-R.. They appear in order
of increasing precedence. Successive operators of the same precedence afe
evaluated left to right. Pareﬁtheses can be used to alter the order of
evaluation of expressions.

: The meanings of most.of the operators are obviqus. The more obscure
ones are given below. |

[ ], part operator. Thisvis used to refer to partg‘of sfrihgs or
words. Strings start with character positidn 1 on the left while words

start with bit position 0 on the left. Two integer expressions separated



Prec. Operator -
11 [ 1]
10 .C. .NOT.
10 .ABS. - (unary)
9 .RA. .RL.
.LL. .LC.
8 A,
7 J.ooX.
6 *k
5 * /
5 .REM.
4  + - (binary)
'3 MAX. .MIN.
2 = <> < >
<= >=
-1 AND. .OR.
0 .CON.
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Table 1

' 'SIMPL-R Operators

Name

part
unary

shift
bit logical

arithmetic

relational
logical
string

Type of Operand

string, int, real
int
int, real

int
int
int, real -

int, real

int

int, real

int, real

int! real, char,
string

int

string

Type of Result

. int,

string, int, int
int

int, real

int
int
int, real
int, real
int
int, real
real
int, int, int, int
int

string

kby a comma enclosed in the square brackets indicate the starting position and

length of the part reference. Note that the part operator applied to a real

provides an integer result.

The use of the part operator on integers or reals

is of course machine dependent and requires caution in transportable software.

.C.,.A.,.V.,.X. are bit logical operators which perform the logical

operations complement, and, inclusive or, and exclusive or on all bits of

their operands.

The shift operators .RA.,.RL.,.LL.,.LC. return their first operand

shifted in the appropriate manner (right with sign extension, right or left
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with zero fill or left circular) by the amount indicated by the second
operand.

The unary arithmetic operators - and .ABS. return the negative or
absolute value of their operands. ** is the exponentiation operator which
returns the first operand raised to the power indicated by the second.

-REM. gives the remainder after integer division. .MAX. and .MIN. return
the greater or lesser of their arguments. |

The relational operators =, <>, <, >, <=, >= test for equality, in-
equality, lesser, greater, less or equal, and greater or equal. The result
of these tests is the integer value 1 if the test is satisfied, or 0 if
it is not.

The logical operators .NOT.,.AND., and .OR. assume that a zero argu-
ment is false while a nonzero argument is true. They return 1 for true
and 0 for false.

.CON. joins two strings so that the left-most character of the second
operand is adjacent to the right-most character of the first. The iength
of the combined string is the sum of the lengths of the operands.

Coercion.

In keeping with the philosophy of strong’typing, SIMPL-R does not
allow free mixing of data types in expressions. It does, however, adopt the
common mathematical notion that integers form a subset of the reals and
permits integers to be used in any place in which a real is expected. Thus,
an integer may be passed by value as an argument to a segment expecting a
real; integer constants may be used to initialize real variables or arrays,

and they may be used in combination with a real as one operand of a binary
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operator. In addition, an integer expression may be assigned to a real.
Note that this is possible without ambiguity only because the precedence
of operators is known and scan is strictly left to right for operations
of equal precedence. As a practical matter, division is the only operator
for which especial care must be taken as the fragment below shows.
Example:
INT A=2,B=3
REAL C=5.0

... B/A*C <> C*B/A ...
. B/A*C = C*(B/A) ...

On the left side of each relation an integer division will be done
giving an integer value of 1. This will be converted to 1.0 for multi-
plication by C resulting in a value of 5.0. On the right side of the
first relation, B will be converted to floating point giving a value of
15.0 for C*B. A will be floated and the result of the division will
be - 7.5. On the right side of the second relation, the parentheses force
evaluation of the B/A as an integer giving the same result as the left.

For the sake of completeness. CHARacter variables and constants are
considered as a subset of the strings and will be coerced into strings of
length 1 if used with the .CON. operator, passed as value arguments in

‘place of strings, or assigned to STRING variables.
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Statements.

The basic statement type in SIMPL-R is the assignment statement. It
replaces the value of a variable or array element with the result of an
expression. The indicator of assignment is :=. This is to avoid confu-
sion with = which is a relational operator and to emphasize that a re-
placement is taking place. It is possible to assign values to partwords or
~to part strings by using the part operator following the item on the left
side .of the :=.

Examples:

INT ‘A,B

REAL C

STRING D[10]="'ABCDEFGHIJ'

INT ARRAY F(5)
A :=B
C:=A+1.,0
C:=8B

F(1)[0,18] := A*B
‘D[l,S] =X
Note that coercion may occur in assignment and that paft assignmentyleaves
'the rest of the item ﬁnchanged. In string assignment, the right side is
truncated if its length exceeds the maximum length of the left side; other-
wise, the left side is given the length of the right. For part assignments

to strings the length of the left side does not change and the right side
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is truncated or padded to the right with blanks as necessary.

There are six control statements in SIMPL-R. They are the CALL
statement, the RETURN statement, the IF-THEN-ELSE statement, the WHILE
statement, the EXIT statement, and the CASE statement. The call state-
ment .is used to transfer control to a procedure. It consists of the
word CALL followed by the procedure name and a list of arguments in paren-
theses if this is required. If the parameters of the procedure are of the
~ value type, the corresponding arguments may be any form of expression of the
appropriate type. The call statement transfers control to the first execu-
table statement in the procedure called. The RETURN statement transfers
control to the statement following the CALL which invoked the procedure,
or to the appropriate point in the evaluation of an expression containing
a function reference. In a function the RETURN is followed by a parenthe-
sized expression of the same type as the function which will be used as
the value of the function. Procedures or functions may contain several
RETURN statements. There is an implied RETURN after the last executable
statement of a procedure.

The IF-THEN-ELSE statement comes in two forms with or without the ELSE
portion. It allows selective execution of a block of code or alternate
‘execution of two blocks depending on the'fbrnu The basic statements appear

as follows:

IF <integer expression> IF <integer expression>
: , . : THEN
(one or moTe : (one or more,
, statements statements
ELSE - END
gone or moTe
statements

END



- 15 -

In both cases the integer expression is evaluated. If its value is non-
zero, the statements following the THEN are executed (and those following
the ELSE, if it is present, are skipped). A zero result for the expression
causes the statements following the THEN to be skipped (and those follow-
ing the ELSE, if it is present, to be executed). In any case, execution
continues with the statement following the END.

The WHILE statement provides the basis for loops or repeated actions.
Its form is
| WHILEﬁSinteger expression>
{Statements *
END

When execution reaches a WHILE, the expression is evaluated. If its value

is nonzero, then the statements between the DO and the END are executed.

Control is then passed to the top of the loop where the expression is again

evaluated., If at any time, including the first, the value of the integer

expression is zero, control passes to the statement following the END.
‘This is the normal method of terminating a loop. It is sometimes desir-

able to leave a loop at some intermediate,point. The EXIT statement which
may appear Qn1y within a WHILE provides this facility. It causes an

immediate transfer of control to the statement following the END for the

loop. .TQ provide for abnormal exit from two or more nested loops at a

time, it is possible to name loops by preceding the WHILE with an identi—
fier enclosed in back slashes (\). Control can be passed to the statement

following the END for such a named loop from anywhere within the WHILE
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statement by following the EXIT with the loop name in parentheses.

The CASE statement is a logical extension of the IF-THEN-ELSE
construction which allows execution of one from a number of blocks of
statements.

It has one of the two forms:

CASE <case expression> CASE <case expression>
OF * OF *

<selector> { <selector> } <selector> { <selector> }
(one or morey (one or more,
statements * statements ~ . %

<selector> { <selector> } <selector> { <selector> }
(one or more, (one or more
statements statements

ELSE END
(one or more,
statements

END

The case expression is either an integer expression with integer con-
stants as selectors or a character expression with character constants as
selectors. In either form the expression is evaluated and control passed
to the statements following the selector with the same value as the expfes-
:Sion. Control then passes to the statement following the END. If the
expression does not match any selector and there is an ELSE clause, it is
executed; otherwise, control goes to the statement following the END. Note
that more than one selector can apply to a given block of statements but
thét'all'selectors must be unique. It is not necessary to provide a conti-
guous sequence of selectors or to provide them in any special order, although

doing so improves program readability.
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Intrinsic Procedures and Functions.

In addition to the features discussed above, the SIMPL-R system con-
tains a library of procedures and functions to perform utility services
commonly needed by SIMPL-R programs. These facilities fall into three
loose catagories: input and output support, data conversion facilities,
and mathematical routines. The keyword CALL is optional for intrinsic
procedures.

Input and output are handled by the intrinsic procedures READ and
WRITE. These take an arbitrary number of arguments which may be variable
Oor array names or control parameters. The read procedure assigns data in
the input stream to the arguments in the parameter list. The data con-
sists of a series of constants of the appropriate form separated by blanks
or commas. Note that here also an integer forﬁ.may be coerced to real.
An individual data item may not extend across a card boundary. Because
READ is item-directed, there is no fixed relationship between the number
of READs and the number of records read. The intrinsic parameters SKIP,
SKIPO, SKIP1...SKIP9 allow control over records in the input stream.

- SKIPO causes the scan to start (or restart) at the beginning of the current
record (a reread feature), SKIP or SKIP1 causes the scan to start at the
beginning of the next record, etc.

On output, the variables are converted to strings of characters of
the appropriate form. Integers are converted to decimal and reals to a

fixed or exponential form with eight significant digits. The output
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record is treated as a line with tab positions every eight characters.
Each new item starts on a tab position. Note that expressions are valid
arguments to WRITE. The intrinsic parameters for WRITE are the same as
for READ with the addition of EJECT which causes a new page to be started.
SKIPO on WRITE causes the current line to be restarted.

The intrinsic function EOI provides a method of detecting the end of
the input file. It returns a value of 1 if no more items are available
for input to READ or 0 if there are more items.

Conversion functions are provided to facilitate conversion of data
between the various types. These provide explicitly a more varied set
of conversions than the rather limited coercion facilities discussed
above. Only a few of these are discussed here.

INTF converts reals, strings of decimal digits, or a decimal charac-
ter into an integer. REALF operates in an analogous manner for conversion
to REAL.

STRINGF converts numbers into strings of numeric characters. It
can take an optimal second argument for integer or real conversion. In
the integer case, the second argument is the radix for the conversion so
that binary, octal, or hexidecimal output is possible. For reals, the
second argument controls the number of significant digits in the string.

ROUND and TRUNC provide real to integer conversions of the types
implied by their names.

. SIMPL-R contains a limited set of mathematical functions. These.

will probably be augmented in the near future. They presently include
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EXP - e to the power of the argument, LN - natural logarithm, SQRT - square
root, SIGN - returning 1, 0, or -1 depending on whether the argument is
positive, zero or negative, and the trigonometric functions (using angles

in radians) SIN, COS and ARCTAN.
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Sparse Matrix Programs in SIMPL-R

The Problem: The solution of systems of linear equations is a problem
which occurs frequently in many disciplines. There are numerous straight-
forward techniques available for solving this type of problem in the cases
where the size of the matrix is fairly small. For large matrices, storage
of the entire matrix becomes prohibitive or impossible. If the matrix is
sparse, i.e., only a few of the matrix elements are nonzero, it may be
possible to store and operate on only those, making it possible to treat
problems which would otherwise prove intractable.

The particular storage structure and algorithm used in the program
given in the appendix have been adapted from those given in [6]. The
program does an LU decomposition of a nonsymmetric matrix followed by
solution of the decomposed system. The above reference gives a detailed
description of both the data structure and the algorithm. The discussion
below deals with the implementation of these in SIMPL-R.

Both versions divide the code into four subroutines or procedures.
The read routine (READ in FORTRAN, MATREAD in SIMPL-R) reads the nonzero
elements of the matrix and establishes the initial arc-graph structure.
LU does the actual decomposition, calling NEWPIV to select the pivot
elements. This organization simplifies experimentation with various pivot
selection techniques. SOLVE solves the decomposed system and may be
called repeatedly with different righthand sides for the same system.

Data Structures and Transportability. -

As noted in the introduction, one of the objectives of the SIMPL

family of languages is transportability. By this we do not mean that every
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‘program should run, unchanged, on every implementation since this is
clearly unrealistic for many programs. The primary reasons for this lie
in the fact that it is often necessary to use machine-dependent features
such as data packing in order to make the problem fit the machine. More
subtle factors such as differences in the precision or even the nature
of floating point arithmetic on various machines are also involved.

B In'order to aid in achieving transportability we would like to be able
to isolate any machine-dependent features of the program in such a way
that they may be easily recognized and changed when the program is moved
from one machine to another. The data packing described below is clearly
a hindrance to moving the program to another machine, especially one with
a word size different from that on the UNIVAC 1108. As an aid to isolat-
ing such machine dependencies, a macro processor [7] (written in SIMPL-T)
has been used to define the data structures involved. The program given
in the appendix has been written using these macros. Transporting the
program to a machine with a different word size would require only a re-
definition of the data structure macros and possibly their underlying data
structures.

Translation of the FORTRAN program to SIMPL-R

The SIMPL-R segment which appears in the appendix is a translation of
the FORTRAN-V code for the nonsymmetric Vefsions of READ, LU, NEWPIV and
SOLVE which appear in [6]. The sections of READ and SOLVE which deal with
automatic écaling of the data were not included since they were not required

for the test data used. The FORTRAN versions were quite well-structured,
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and translation into the SIMPL-R data and control structures was straight-
forward. The data structures were implemented using the above-noted macro
processor.  In the listings in the appendix quantities which have been .
defined as macros can be identified as they begin with an exclamation
point '(!). The definitions of these quantities appear with the global
declarations for the segment. The translation of the FORTRAN control
structures to equivalent structures was done by flow charting the FORTRAN
and recognizing the equivalent SIMPL constructs such as IF-THEN-ELSE
clauses and WHILE loops. In general, this is a nontrivial operation, but
in this case it was simplified by the relatively well-structured FORTRAN.
‘In a few cases, it was necessary to use abnormal loop exits of one or two
levels to achieve the equivalent flow of control. It was not necessary

to create any extra Boolean variables to accomplish the translation,
although the unconditional, abnormal exit from loop L120 in LU is a case
in which such an additional variable might be preferred. It was necessary
to duplicate code at only one place (the section of LU which finds the
‘intersecting element). The FORTRAN code here represented two improperly
nested loops, and it was necessary to repeat two lines of code to obtain a
properly nested structure. No attempt was made to reorganize the algorithm
or tailor it to SIMPL-R since a comparison of the same algorithm in the
two languages was desired.

. The storage required by the algorithm is of the order 10N + 5M where

- N 1is the size of the matrix and M is the number of nonzero elements

after decomposition. A number of these items are of limited precision.
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The data structure used for the matrix consists of 2*(N+M) links which
must have a precision of at least N+M and 2*(N+M) flags requiring one
bit. The remaining six order N items are used as temporaries during
decomposition and require at most a precision of N+M. The remaining
order M item is the value of the matrix element which is a floating
point value of the appropriate precision. Since the length of the computer
word used is greater than the precision required for most of these items,
considerable space can be saved by packing several such items per word.

In the 1108 implementation the actual storage requirement was reduced by

packing to 4N + 2M words.

The Comparisons.

The SIMPL-R segment shown in the appendix was compared with the FORTRAN
version from [6]. It was also compared with a version containing carefully
coded assembly language versions of LU, NEWPIV and SOLVE. Both the UNIVAC
FORTRAN V compiler [8] and RALPH [9], a University of Maryland FORTRAN and
MAD compiler, were used in some of the tests. The UNIVAC version is iden-
tified as FORTRAN/FOR in the accompanying tables while the Maryland version
is. FORTRAN/RALPH.

In addition to the basic SIMPL-R version, three minor variations were
triéd. The first, labelled 'partword' in the tables, contains a modifica-
tion of the definitions for the row and column links (!R and !C in the
listing)‘ and for the flags (!T and !L) which causes the normal code sequence
for fetching these items (a load followed by left and right shifts) to be
replaced by more efficient code (a half-word load followed by a right shift

or an 'and').
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The second variation labeled 'functions' contains the improved part-
word code and replaces in line code for finding the row or column index
of a matrix element (typically,

IX := IR(IY)
WHILE IX > N
DO
IX := IR(IX)
with an integer function coded in SIMPL-R (say ROW(IY)) to do the same -
thing. This change was made to improve the readability of the program
and to investigate the expense of the calling sequence.

The final variation labelled 'ASM funcs' consisted of coding the
functions ROW and COL in assembly language, attempting to use only code
such as could be produced if SIMPL-R contained a good global optimizer.

- Two sizes of matrices were used, 50 x 50 with ZOO.nonzero,elements,
and 100 x 100 with 400 nonzero elements. Three matrices of each size
were generated using the techniques given in [6]. All the programs were
- run against each matrix on the University of Maryland's UNIVAC 1106.
Since the ASSEMBLER version used the FORTRAN/FOR read routine, only one
value is reported for these. Similarly, all four SIMPL-R versions use
the same read code and again only one value is reported.

Results.

’ Tables 2 and 3 show the results of the comparisons. The read times
for SIMPL-R are slightly over half those of the FORTRAN versions. Since
the FORTRAN is interpreting a format statement, a notoriously slow process,

this is not surprising. The rest of the results are less expected.
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UNIVAC's FORTRAN V is considered to be quite efficient with a high degree
of’optimization achieved by its compiler. This includes detection of
comhon Sﬁb-ekpressions, removalyof loop invarianf code from loops and
deferre@ storage of variables calculated within loops. SIMPL;R contains
no'giobal optimization at all in its present version, yet it is producing
code which, for this type of problem, is running between ten and twenty
percent faster than the FORTRAN code. Sincé the control structures of
SIMPL-R lend themSelves to similar forms of optimization, the potential
execution speed for the language should be high.

A program such as the one given here is quite sensitive to small
variations in code since much of the code executed over and over again.
The results of the tests on the three SIMPL-R variations illustrate this.
Altering the SIMPL-R code for accessing the row and column links from a
form like X[18,17] requiring a load and two shifts to X[18,18].RL.1
which requires a load and one shift and performing a similar change in
the code for accessing the flag bits reduced the execution time of the
partword optimized version of the program by several percent compared
to the basic version. Since it is possible to detect the partword forms
involved at compile time, this optimization could be incorporated in the
compiler.

The second variation indicates that it is not too expensive to use
functions for repetitive operations in SIMPL-R. The loss in speed is about
equal to the gain from the first variation, while the increase in read-
ability is significant. In passing, it might be noted that the macro

processor offers a way of obtaining both the readability of the functions
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and the speed of the inline code.

The final variation illustrates the potentials for optimization.
With only the row and column functions optimized (by hand coding in
assembly'laﬁguage), the solution time is reduced to about 1.4 times
’that of the assembly language version and about half that of the FORTRAN
versioﬁ. It is suspécted that the entire segment could be made to per-

form this well with only a modest optimization effort.
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Conc1u51ons B

The programmlng language SIMPL R has been de51gned and 1mp1emented
for appllcatlon to sc1ent1f1c and englneerlng problems It supports the
writing ofktransportable software by 1nc1ud1ng a sufficient numoer of
machine—independenteratures for most applications It aiso provides a
powerful macro processor in whlch to hlde any machlne dependent segments,
such as data packlng, Wthh may be needed for eff1c1ency for some partl—
cular 1mp1ementatlon. The language also contains the approprlate con-
structs for writing programs that conform to the standards of structured
programming. '

In this report, an example has been given demonstrating the SIMPL-R
language and its application to the solution of sparse matrix problems.
The algorithms programmed in SIMPL-R may be found in the appendix. It
is hoped that the reader will find that the expression of these algorithms
in the language easy to read and understand. One of the goals of the
language design was to enhance the reliability of software written in the
language by making it easier to read and write. This was accomplished in
the SIMPL-R design by making the language simple (it contains a minimal
number of constructs needed for solving the problem) and consistent (all
like constructs are written and behave in similar ways). |

The SIMPL-R compiler, which was written in SIMPL-T, is highly trans-
portable. It also generates relatively efficient code. Tests with the
example program resulted in run times for the algorithm programmed in

SIMPL-R that were about ten percent less than run times for the algorithm
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programmed in FORTRAN. It also appears to be possible to improve the
SIMPL-R ruﬁ time by adding an optimization pass to the compiler.
| DeVelopment of the language is continuing. Features being added
include double-precision realkarithmetic, multidimensioned arrays and
an iterative loop structure, as well as enhancement of the mathematical
>libfary. ’With these additions, SIMPL-R will be applicable to an even

wider range of scientific and engineering calculations.
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Appendix

The program segment on the following pages has been modified slightly
from the versions used to obtain the results reported on the previous pages.
The modifications are cosmetic in nature and were made to improve readability.
They consist of the elimination of several unused variables which were con-
tained in the FORTRAN version and the replacement of other temporary varia-
bles by expressions. These items were left in the SIMPL-R version used to
obtain the timing data in order to improve the accuracy of the comparison.
The version shown herekhas been run and produces results identical with

those from the version used to obtain the timings.
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/# A SEGMENT FOR THE SOLUTION OF LARGE, SPARSE, MON=SYMETRIC MATRIX PRORLEMS =/

CNTRY STRING VERSION[8]=vBASIC® /s VERSION IDENTIFICATION s/

/8% STORAGE FNR THE ARCGRAPH REPRESENTATION OF THE MATRIX AND THE ASSOCIATED
COEFFICIENT VALUES =/ :

EXT INT MX /% SIZE OF THE MATRIX STORAGE ARRAYS »/

EXT INT ARRAY 6 /* FOR STORAGE OF ARC GRAPH s/
EXT REAL ARRAY B /% FOR STORAGE OF MATRIX COEFFICIENTS s/

/e STORAGL FOR RLADIN, DECUMPOSITION AND PIVOTING &/

EXT INT NX /* MAXIMUM MATRIX DIMENSION (SIZE OF PIVOT, ETCe ARRAYS #/
EAT IHT ARRAY 1P, /% PIVOT SEQUENCE e/
ND /% USED DURING NECOMPOSITION AND READIN s/

/% MISC EXTERNAL PARAMETERS e/

EXT INT M, /* FINAL NUMBER OF NON=ZERO ELEMENTS IN THE MATRIX #*/
Ny /¢ MATRIX SI1ZE s/
1Pl /¢ INDEX OF DECOMPOSITION STEP e/
EXT REAL UP, /% PIVOT SELECTION PARAMETER =/
CT1l, /e MAX MAGNITUDE IN INPUT MATRIX e/
cT? /% MAX MAGNITUDE IN DECOMPOSFD MATRIX s/

/* DATA PACKING DEFINITIONS e/

/% EACH WORD OF ARRAY G IS USED TO STORE ?ouR_DATA ITEMS, TWO FLAGS OF ONE BIT,
AND TwO LINKS OF 17 BITSe THE FOLLOWING DEFINITIONS ARE USED TO DEFINE THESE

FIELDS. #»/

tMACRO L=G(!IV[17,1] fEND /% TAG L=G[17,1] =/

'MACRO T=G(!1)[35,1] fEMD /% TAG T=G[35,1] s/

fMACRU R=G(!1)[0417] fEND /% ROW LINKAGE R=G[0,17] s/
'MACRO C=G(!1)1[18,17] tEND /% COLUMN LINKAGE C=G[18,17] =/

/% NGI(I) AND NG2(I) HOLD THE NUMBER -OF NON~ZERO ELFMENTS IN THE ITH ROW
AND COLUMNe SINCE THF FIRST N ELEMENTS OF B ARE NOT USED FOR COEFFICIENTS
UNTIL *'SOLVE®, THESE COUNTS ARE PACKED INTO R(1l) I«=z]<aN o/

'MACRO NGL=3(!1)[u,18] 'END /* ROW COUNT B[O,18] s/
!MACRU NG2®B(I1)[18,18] !END /¢ COLUMN COUNT R[18,18] =/

/* TEMPORARY PACKING USED DURING DECOMPOSITION AND PIVOT SELECTION '/

IMACRO IHI=IP(!1)[U,18] YEND /e IH1=1P[.0,18] e/
!MACRO TH2=1P(!1)[18,18] fEND /% IH2=1P[18,18] e/

/+ TEMPORARIES USED TO HOLU THE SORTED INDEX ARRAYS s/

'MACRO NDI=ND(?1)[0,18] fEND
'MACRO ND2=nND(!1)[18,18] !END
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ENTRY PROC MATREAD ] /%% MATREAD #e/

/¢ THIS PROCEDURE READS THE. DIMENSION OF THE MATRIX FOLLOWED BY TRIPLES OF
( ROW,COLUMN,VALUE) FOR EACH NON ZERO ELEMENT IN THE MATRIX &/

/% THE LARGEST ELEMENT 1S DETERMINED AS ARE ROW AND COLUMN COUNTS &/

/% AFTER INPUT 1S COMPLETEs THE ARCGRAPH IS BUILT e/

INT 1sdsK /* TEMPORARY STORAGE AND INDICES '/
REAL Vv /% MATRIX ELEMENT VALUE LA

READ (N) /+ READ MATRIX SIZE s/
I'F N>NX
THEN /¢ TO0O BIG #/
WRITE (SKIP,* DIMENSION (*,STRINGF(N),*) LARGER THAN *,STRINGF(NX)}
ABORT :
END

M 2 N

CTl:=0.0

1 = |

WHILE I <= N
DO /# ESTABLISH THE INDEX ARCS AND ZERO COUNT FlELDS e/
tR(T) =1 '
'CLr) im g
"l 1= 0
'T(I) = D
INGI(I) S=
ING2(1) =
Ii=]+]

END /+ LOOP TO ESTABLISH INDEX ARCS e/

co

WHILE «NOT. EOI
DO /¢ READ MATRIX e/ ,
READ (I+JsV) /® TRIPLE OF ROW, COLs VALUE ¢/
M = M+]
IF M>MX
THEN /¢ TOO MANY ELEMENTS e/
WRITE (SKIP+*MORE THAN *,STRINGF(MX),* MATRIX ELEMENTS?)
ABORT '
END
CTl $m CT]1 «MAXe +ABSsV /& LARGEST MAGNITUDE THUS FAR e/
B(M) = v . ;
'R(M)IS= | /+ TEMPORARILY STORE ROW AND COL WITH VALUE e/
1CiM)sm . :
fTIM) = O
ILIM)Ss
INGI(I) “tm INGLIT) + 1 /% ROW COUNT IN NGI(I) e/
ING2(J) 1= ING2(J) + 1 /7% COLUMN COUNT IN NG2(J) s/
END /& READ LOOP e/ ! )

/8 ZERO TAGS »/

o

K o= N+]
WHILE K <= M
DO /* ESTABLISH ARC GRAPH e/
I = IR(K), /¢ GET TEMPORARY VALUE o/
J = 1C(K)
IR(K) = !R(1) /e LINK ARC TO INDEX ARCS ¢/
1CIK)Y = 1C(J) .
IR(L) = K
1C(Y) = K
K ¢= K + 1
END /¢ LOOP TO LINK ARC GRAPH ¢/

/¢ END PROC 'MATREAD' s/
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/% LU=DECOMPOSITION FOR NON=SYMETRIC MATRICES ¢/

/+ FLAG IS

0 FOR
FOR
FOR

RETURNED

1 SINGQUL AR
2 INSUFFIC

INT T2IRsIWsIXsTY,1

I<=N

/¢ LOOP FOR P

1Pl =z [=1

CALL NEWPIV(IPI(

IF FLAG

THEN /& ERROR
IP1 = 1
RETURN

END

WHILE
Do

X
1F

= JP(I)

¢ABS.B(IX) <

SUCCESSFUL COMPLETION

MATRIX
IENT STORAGE

Zy JedWadYsuz

IVOTING #/
1)sFLAG)

IN NEWPIV s/

1.0E=20

./

/* POINTERS AND INDICES #/

THEN /# CALL IT SINGULAR &/

IPI
FLAG
RETURN
END
'TUIX) =]
IR
1y

= 1

= ]

HE I |
HE I B
WHILE |
Do
1y
IF

t=IR(IY)
IY=1X
THEN
EXIT
END
IF 1Y >
THEN
IR
PIHLCIR
17 :=
WHILE
Do
12
END
'TH2(IR
'TUIY)

N

END
END

1y = IX
WHILE 1

Do

1Y =

IF 1Y = IX

s AND.

= IR + |

ceryd)
I1Z>N

cily)

/e SET TAG T FOR PIVOT

/¢ DONE s/

'TUIY =0

/e
/e
/e

1y
o= ICL1IZ)

) = 12 /e

ING2(1Z)

.
+ B

/* LOOP TO €COLLECT PIVOT

/¢ LOOP FOR THE COLUMN OF
/% GET

THEN /e DONE @/

EXIT
END .

!TLIY)=0
THEN

B(lIvy)

1F

«ANDe IY>N

= BUIY)/BULIX)

ING2(1Z)1~1

./

/¢ COLLECT THE ARCS IN THE ROw OF THE PIVOT #/

SAVE ARC s/
AND FIND s/
ITS OTHER INDEX =/

SAVE OTHER INDEX s/
/¢ DECREASE COLUMN DEGREE #/

ROW ARCS ®/

THE PIVOT e/
AN ELEMENT e/

/¢ DIVIDE 1TS VALUE e/

CT2:%CT2eMAXs s ABSeB(1Y)
IT(IY) =)
LIy
12:=!R(1Y)
WHILE IZ>N

bo
12
END

IR(12)

/¢ SET T AND L FLAGSe/

/e  GET ITS ROW INDEX #/
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INGI(12) .-"NGIIIZ)- X4 DECREASE Row DEGREE -/>

IF IR 3 1

THEN /¢ LOOP oN 5AV€D 'ROW ELEHENTS "/
S Jierel :
WHILE J<=IR
DO /¢ LOOP TO. FIND INTERSECTING ELEMENT e/
JY = !'IHL(J)
JZ im $IH2(J)
IW t= 12
W tm1C(U2)

\L120\ WHILE 1|
DO /* FIND !NTERSECTXNG ELEMENT AND SET VALUES ./

/% EXIT (L120) MEANS THAT THE INTERSECTION EXISTS e/

/* EXIT (L100) MEANS THAT IT DOES NOT e/
IF JWw > N
THEN

\LIOO\ WHILE' 1
bo
IW :=!R{IW)
IF 1w <= N
THEN
EXIT (L100)
END
IF 1w = JUW
THEN
EXIT (L120)
END
IF Iw < UW
THEN
JW 1= 1C{JW)
IF JW <= N
THEN
EXIT (L10O)
END

WHILE 1
DO /e INNER LOOP »/
IF Iw = JW
THEN
EXIT (L120)
END _
IF IW > JW
THEN
EXIT /¢ TO TOP OF L1000 &/
END )
W SmICtuwW)
IF JW <=N
THEN
EXIT (L100)
END
END /8INNER LOOP#/

, END /e IF e/
“END /% LOOP L100 e/
END /s IF o/ .
Mi= M+l /% NO INTERSECTION, CREATE ELEMENT e/
IW = M
IF M>MX , _ ;
THEN /¢ OUT OF SPACE e/
IPI = 1| i
FLAG = 2
RETURN
END
BlIW):= 0.0 /¢ SET CREATED ELT VALUE 0.0 o/
1ICILIW)mIC(UZ)
IT(IW) im0
IR(IW)SmtR(1Z) "
LCIW) =0 ‘
1CLUZItmIN /e LINK IT e/
IR(1Z)=IW /¢ IN ./

INGI(1Z)SmINGL(1Z)+1 /e INCREASE ROW AND COL DEGREES e/

ING2(JZ) = ING2(JZ)+]
EXIT
END /e LOOP L120 s/
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BUIW) = BUIW)=R({IY)®#B(JY) /& MODIFY INTERSECTION #/
CT2 = CT2eMAXeeABS«B(1IW) :

JizJd+l /* MODIFY LOOP INDEX s/
END /e LOOP ON ROW ELEMFNTS e/

EMD /# IF IR > 1 #/
END /% IF T(IY)=0 «ANDe I1Y>N #/
END /& LOOP FOR COLUMN OF PIVOT =/

Ti=1+] /s ADJUST LOOGP INDEX #/
END /% LOOP FOR PIVOTING #/ :

/* END PROCEDURE fLU* s/

PRUC NEWPIV (REF INT PIVOT,REF INT FLAG) /ee NEWPLIV #»s/

/¥ PIVOT SELECTION ROUTIME HY SORTING DEGREES OF COLUMNS AND ROWS AND
USING MIXED PARTIAL PIVOTING e/

/% FIVOT IS THE INDEX IN B OF THE MEWLY SELECTED PIVOT ELEMENT

FLAG IS 1 FOR SUCCFSS
I FOR SINGULAR MATRIX s/

IGT TCGIDGIDX IR IXNWIY 412411412y JsdUsJdly K.K‘iK?. NDX’NK"NKZ
/¢« POINTERS, COUNTERS, AND INDICES ¢/

RLAL Br,
HMAX

/. NITIALIZF FOR SORTING e/

If IPI=0
THEN /% FIRST CALL #/
Jo 1= |
J o= ]
WHILE J <= N
DO /¢ INITIALIZE SORTED INDEX ARRAY e/
INDYI(Y) o=
IND2(U) =
Ji= oJ o+ |
END
END /¢ INITIALIZATION s/

LS

/* LNOFS TO SORT ROWS BY COLUMN AND DEGREE )
INDL(#) AND !RD2(*) WILL CONTAIN THE SORTED INDEX ARRAYS ./

J o= U1
WHILF J<=N
DO /¢ CLEAR COUNT ARRAY s/
IPtY) 3= O
Jizd+]
END

J = Jo
WHILE J<=N
VO /* CALCULATE COUNT ARRAY #/
K += INDL1(J)
IF K <> 0
THEN
K o= !NGL(K)+IPI
PIH2(K) o= !JH2(K) + 1
END
J o= U+l
END



K =
J =
WHIL

Do

EN

Ji=J
WHIL
bo

EN

Ji=J
WHIL
0o

EN
J =
WHIL
DO
EN
J i=

WHIL
Do

EN

K i=
J 1=
WHIL

Do

EN
Ji=J

WHIL
Do

EN
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Pl

J1
E J<=N

/% SUM UP COUNT FIELDS s/
K ¢= K + !IH2(J)

'IH2(J) = K
JimJ+]
D

o
E J<=N
/¢ GET INDEX ARRAY IN ORDER e/
K = !IND1(J)
IF K <> 0
THEN
Kl := INGL(K) + IPI
K2 = !IH2(KI)
fIH2(K1) = K2 =1
PIHILKZ) = K
END
JowE oJ o+ ]
o]

1
E J<=N
/% TRANSFER SORTED ARRAY s/
INDLI(J) = fIHICY)
Joi=® oJd o+ ]
D

Jl

£ J<=N

/e CLEAR COUNT ARRAY +/
IP(J) = O

JisJd+]

D

JO
E J<=N
/¢ CALCULATE COUNT ARRAY s/
K := !ND2(J)
IF K <> 0
THEN :
K $= !NG2{(K)+IP1
1IH2(K) = !IH2{K) + 1
~ END
J i=x J+]
D

iPl

Ji
E J<=N

/% SUM UP COUNT FIELDS s/
K = K + 'IH2tJ)

IH2(J) = K
NEENL !
D

0

£ J<=N

/e GET INDEX ARRAY IN ORDER &/

K $= IND2(J)

IF K <> 0

THEN

K1 $= ING2(K) + IPI
K2 $= !IHZ(K1)
TIH2(K1) 1= K2 =1
'IH1(K2) 3= K

 END

J =g+

D
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JimJl
WHILE J<=sN .
DO /& TRANSFER SORTED ARRAY &/
IND2(J) = TIHICJ)
J = J + 1
END '

/% INITLALIZE FOR MINIMUM DEGREE SEARCH ¢/

IDX = N#s2 !
BM t= 0.0

11 1= Jl

1z 3= Jl

Kl 2= !NDICILD)

NKI $= INGI(K1)=1

\L100N WHILE 1
DO /e SEARCH FUR MINIMAL DEGREE ELEMENT e/
K2 t= I!ND2(12)
MKZ = ING2(K2)=1

WHILE 1
DO /% POSSIBLE MINIMAL DEGREE »/

NDX $= NKI®NK2

IF IDX < HDX
THEN /# SEARCH 1S DONE IF PREVIOUS CANDIDATE HAS SMALLER DEGREE #/

EXIT (L10D)

END

BMAX:=06

/% PROCEED FROM THE MINIMAL ROW OR COLUMN WITH SMALLER DEGREE e/
IF NK1>=NK2
THEN /* COLUMNS: EXIT ROW LOOP &/
EXIT
END

/% OTHERWISE ROW CASE s/
1Y = Kl
IF UP<>0
THEN /® FIND THE LARGEST ELEMENT s/
WHILE 1
Do
1Y $¢= !'ROIY)}
1IF 1Y = Kl
THEN
EXIT
END
IF ITUIY) = 0O
THEN . -
BMAX $= BMAX «MAXe ¢ABSe. BUIY)
END _
. END /% LOOP TO FIND LARGEST ELEMENT s/
BMAX := UPeBMAX
1y = K
END '

WHILE |
DO /* SEARCH ELEMENTS IN ROW ¢/
1Y = !R(1Y) ’
IF 1Yy = K1
THEN /¢ FULL CIRCLE #/
EXIT
END ,
IF 'TUIY)=0 +ANDe «ABSeB(IY) >= BMAX
THEN /% FIND COL DEGREE »/
1z = tCUIY)
WHILE IZ>N
no
1Z = 1C(1Z)
END



aAQ;

ID t=( ING2(IZ)=1)eNKlI :
IF ID < IDX +ORs ( 1D = IDX oANDe o+ABSeBLIY)D>BM)
THEN /+ COMBINED DEGREE SMALLEK THAN LAST,
KEEP AS A NEW CANDIDATE e/
IDX = ID
BM = ,ABS.B{(1Y)
IX t= Y
IR = I1
IC = ~12
END /¢ NEW CANDIDATE #/
END /e FIND DEGREE s/
END /® SEARCH s/

Il 3= [1+} /% GET NEXT ROW »/
IF T1I>N
THEN /% 0UT OF ROWS «/
EXIT (L1OO)
END
Klem!NDI(IL)
NKlim!NGl(K])=1i

END /# LOOP FOR POSSIBLE MINIMAL DEGREE e/

1y = K2
IF UP <> 0
THEN /# FIND THE LARGEST ELEMENT &/
WHILE 1
Do ;
1y = !CU1y)
IF 1Y = K2

THEN .
BMAX $= BMAX sMAXe eABSe B(IY)
END
END /# LOOP TO FIND LARGEST ELEMENT e/
BMAX $= UP#BMAX
1Y $a K2
END

WHILE 1
DO /% SEARCH ELEMENTS IN COL - o/
1Y 3= 1ctiv) :
IF 1Y = K2 '
THEN /¢ FULL CIRCLE #/
EXIT
END
IF !T(1Y)=0 «ANDe «ABS<RB(IY) «GEe BMAX
THEN /# FIND ROW DEGREE ®/
1z := !RCIY)

WHILE IZ>N
Do
12 3= !R(1Z2)
END

ID ¢={ !NGI(IZ)=]1)eNK2
IF ID < IDX «ORe [ ID = IDX oANDe oABS«B(IY)I>BM)
THEN /% COMBINED DEGREE SMALLER THAN LAST,
KEEP AS A NEW CANDIDATE e/
IDx = 1D
BM (=2 JABS.B{1Y)
CIX twm 1Y
IC ¢= 12
IR 3= =127
END /% NEW CANDIDATE s/
END /¢ FIND DEGREE #/
END /# SEARCH o/ ' '

12 i= 12 +1 /e GET NEXT COLUMN »/
IF 125N
THEN /* OUT OF COLUMNS e/
EXIT
END

ERND /# LOOP \L10ON\ &/
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IfF IX = O : .
THEN /% NO PIVOT ¢/
FLAG 1= 1
RETURN
END

/% CLEAR ROW AND COLUMN IN THE SORTED ARRAY e/
If IC >= 0 R T
THEN
12 = 'MD2(I1C)
IND2(IC) = O
IC t= |2
IR = =IR
J = Ui
WHILE 1
Do
IF INDL{JI=1R
THEN
INDE(J) = 0
EX1T
EnD
JimJ+t
END
ELSE
11 = 1HDICIR)
INDICIRY = O
Ik ¢= 11
IC 1= =IC
J = ul
WHILE |
Do
IF IND2(J) = IC
THEN
tND2(J) = O
EXIT
END
J iz J + 1

1T(1C) = t /% SET L AND T FLAGS ON PIVOT ROW AND COLUMN ¢/
LIIR)Y 1= |

PIVOT = IX /% SET VALUE OF PIVOT FOR RETURN ./

/% END PROC 'NEWPIV' #/

ENTRY PROC SOLVE (REAL ARRAY W)

/% SOLVE DECOMPOSED NON=SYMMETRIC SYSTEM ®/
/% W 1S THE RIGHT HAND SIDE ON ENTRY
W RETURNS THE SOLUTION
THE DIMENSION OF W IS ASSUMED. TO BE N #/

INT KoeIWsIXs1Y,12Z /» INDICES AND POINTERS »/

K := 1
WHILE K <= N
DO /# REARRANGE RIGHT SIDE e/
IX ¢= IP(K)
Iy = IR(IX)
12 = 1CUIX)
WHILE TY>N

Lo
IY := !R(IY)}
END
WHILE 1Z>N
Do
17 = !1CU12)
END

B(I1Z2) = wilY)

K. i= K+1
END /#% REARRANGEMENT LOOP &/



Ki=n2
WHILE K <= N ) e : . Con
DO /e SOLVE LOWER TRIANGULAR SYSTEM e/
IX ¢= IP(K)
Iw = 1CLIX)
1Z = I!R(IX)
WHILE Iw>M
Do
Iw = !1C(IwW)
END

WHILE 172<>1IX
DO /+ LOOP ROW OF PIVOT IN L e/
IF I7Z > N «ANDe !L{IZ)<>0
THEN
Iy = !Ct1y
WHILE 1Y>N

Do
1y (= 1CU1Y)
END -
RlIW) = RITW)=RB{IZ)sBL(IY)

EiD
12 = 'R(L}1Z)
END 7/« PIVOT ROW LOOP e/
Ki=K+]
END /® LOWFR SOLUTION e/

Ki=1
WHILE K <= N i
DO /% SOLVE UPPER TRIANGULAR SYSTEM s/
IX i= IP(N+1=K)
1w im !1COIX)
12 = !ROIX)
WHILE IW>N
Do _
Iw = 1CUIw)
END .

1IF K<>1
THEN .
WHILE [2<>1X .
no /% LOOP IN THE ROW OF THE PIVOT IN U ¢/
IF 1Z > N «ANDe 'L {1Z)20 -
THEN
Iy := 1C(12)
WHILE I1Y>N

Do
ly = 1CU1Y)
END

BlIW) t= BUIW)=B(I1Z)eB{1Y)
END : -
1Z 1= !R(1Z)
END /% PIVOT ROW LOOP &/
END :

BOIW) $= BUIW)/BUIX)
Ki=K+1
END /® UPPER SOLUTION #/
Ke=l
WHILE K<=aN
DO /# PLACE BACK SOLUTION e/
WIK)I=B(K)
K 1% K+l
END

/+ END PROC 'SOLVE® »/

START
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