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Multifunctional nanoparticles represent a class of materials with diverse therapy and 

imaging properties that can be exploited for the treatment of cancers that have 

significantly progressed or advanced, which are associated with a poor patient prognosis. 

Here, we describe the use of biodegradable Prussian blue nanoparticles (PBNPs) in 

combination with anti-CTLA-4 checkpoint blockade immunotherapy for the treatment of 

advanced cancers.  Our nanoparticle synthesis scheme yields PBNPs that possess pH-

dependent intratumoral stability and photothermal therapy (PTT) properties, and 

degrade under mildly alkaline conditions mimicking the blood and lymph. Studies using 

PBNPs for PTT in a mouse model of neuroblastoma, a hard-to-treat cancer, demonstrate 

that PTT causes rapid reduction of tumor burden and growth rates, but results in 

incomplete responses to therapy and tumor relapse. Studies to elucidate the underlying 

immunological responses demonstrate that PTT causes increased tumor infiltration of 

lymphocytes and T cells and a systemic activation of T cells against re-exposed tumor 



 

 

cells in a subset of treated mice. PBNP-based PTT in combination with anti-CTLA-4 

immunotherapy results in complete tumor regression and long-term survival in 55.5% of 

neuroblastoma tumor-bearing mice compared to only 12.5% survival in mice treated with 

anti-CTLA-4 alone and 0% survival both in mice treated with PTT alone, or remaining 

untreated. Further, all of the combination therapy-treated mice exhibit protection against 

tumor rechallenge indicating the development of antitumor immunity as a consequence of 

therapy. Our studies indicate the immense potential of our combination photothermal 

immunotherapy in improving the prognosis and outlook for patients with advanced 

cancers. 
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Chapter 1: Introduction 

 
1.1 Advanced cancers are a significant health concern 

Advanced cancer is a term commonly used to describe primary cancers that are hard to 

treat, or that have disseminated and formed secondary (metastatic) cancers. These types 

of cancers are resistant to conventional therapies, and thus there is a significant need for 

new and innovative treatments to combat these types of cancers. In this thesis, we have 

chosen neuroblastoma as a representative model of advanced cancers due to their high-

risk and difficulty to treat in patients.  

1.2 Neuroblastoma as a representative model of advanced cancers 

Neuroblastoma is the third most common pediatric cancer and the most common 

extracranial solid tumor in children accounting for 15% of cancer-related deaths in the 

pediatric age group1-2. More than 50% of neuroblastoma patients present with regional or 

distant-stage disease at initial diagnosis. Even though progress has been made over the 

last 20 years in the management and treatment of low-risk and intermediate-risk 

neuroblastoma patients, the prognosis for patients with high-risk neuroblastoma has 

remained low.3 The overall survival rate in this patient population is at 30-40%.4 Various 

treatment modalities such as surgery, chemotherapy, radiation therapy, retinoid therapy, 

and high dose radio/chemotherapy with stem cell transplant have made incremental but 

limited progress in treating patients with high-risk neuroblastoma.3 Hence there is an 

urgent need to develop novel and effective therapies for patients with this resistant and 

advanced tumor.  
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1.3 Key challenges in treating high-risk neuroblastomas 

Despite being a prevalent tumor, the etiology of neuroblastoma is not well understood. 

There are no known risk factors and there is no clear genetic predisposition for 

developing the disease. The efficacy of new candidate drugs on neuroblastoma cell lines 

does not translate into clinical efficacy because of problems associated with drug 

penetration and distribution within these tumors. Conventional research in cancer 

resistance has typically focused on the molecular mechanisms of resistance and has 

neglected the role of drug penetration and distribution within tumors. Despite 

improvements in diagnosis and surgical techniques, most deaths from neuroblastoma are 

due to advanced cancers that have metastasized or are resistant to conventional therapies. 

Therefore, the next generation cancer therapy should be able to target and remove the 

advanced primary tumor as well as elicit a response that will aid in the elimination of any 

remaining, distal, or metastatic tumors.  

1.4 Nanoparticles in the treatment of advanced cancers 

Recent advances in nanotechnology have facilitated the synthesis of multifunctional 

nanoparticles that exhibit properties that make them attractive candidates for use in the 

treatment of neuroblastoma. These properties, not observed in the current therapies for 

neuroblastoma, include: 1) 10-200 nm size ranges that enable nanoparticles to extravasate 

into tumors with poorly differentiated vasculature and lack of functional lymphatics via 

EPR effect,5-6 2) High surface area-to-volume ratios for biofunctionalizing the 

nanoparticles for long circulation, or for attaching ligands that target receptors 

overexpressed on tumor cells,7-9 and 3) The ability to carry or be used themselves as 
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therapeutic agents at the tumor sites (e.g. photothermal therapies and photothermal 

immunotherapies).9  

1.5 Photothermal immunotherapy of advanced cancers 

As mentioned before, advanced cancers such as neuroblastoma are more efficiently 

treated with combination treatments that aim at not only debulking the primary tumor, but 

also initiating an anti-tumor response. In response to this need for more effective 

therapies for neuroblastoma, we developed a combination therapy termed photothermal 

immunotherapy, which synergistically combines two treatments: 1) nanoparticle-based 

photothermal therapy, which provides a minimally invasive method to shrink primary 

tumors while simultaneously providing a robust vaccination effect by breaking up the 

cancer and releasing its antigens, and 2) checkpoint blockade immunotherapy, which 

reverses the suppressive effects of these tumors on the immune system, and unleashes a 

potent, systemic antitumor immune response. Success in these studies will facilitate our 

long-term goal of advancing this novel combination therapy to the clinic to treat patients 

with high-risk neuroblastoma, offering the potential for an improved prognosis for this 

patient population.  

1.6 Prussian blue nanoparticles for photothermal therapy of cancers 

Photothermal therapy (PTT) using Prussian blue nanoparticles (PBNPs) is a minimally 

invasive, in situ method for ablating cancer cells and reducing tumor burden.10 In this 

treatment modality, NIR light-absorbing PBNPs are injected into tumors and irradiated 

with a low-power NIR laser, resulting in rapid heating of the nanoparticles and 

destruction of the tumor. Therefore, PTT can serve as an alternative to surgery, which is 

one of the standards of care for neuroblastoma. As compared to other nanoparticles that 
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have been used for PTT, we have the ability to synthesize PBNPs that safely biodegrade 

in physiological media, thus mitigating concerns associated with the long-term fate and 

toxicity of nanoparticles within the body. Further, PBNPs can be easily synthesized in a 

scalable manner in a single-step at low costs,10-13 and is already FDA-approved for 

human oral use (to treat radioactive poisoning).14-16  

As a therapeutic platform, PBNP-based PTT offers enormous flexibility compared to 

other hyperthermia and thermal ablation methods (e.g. HIFU, RF ablation, 

cryoablation)17-19 that have been used for tumor therapy and are being investigated in 

combination with immunotherapies. Our Prussian blue nanoparticles can be easily 

modified for multiple functions (e.g. they can carry additional immunomodulatory20-22 or 

therapeutic molecules),23-24 an advantage not offered by alternative hyperthermia or 

thermal ablation methods.  

1.7 anti-CLTA-4 for checkpoint blockade immunotherapy 

In checkpoint blockade immunotherapy, monoclonal antibodies (mAbs) targeting 

checkpoint inhibitors decrease immunosuppression and elicit a potent immune response. 

Various mAbs targeting checkpoint inhibitors (e.g. nivolumab: anti-PD-1 and 

ipilimumab: anti-CTLA-4)25 are now in clinical trials and have received approval for 

treatment of cancers (e.g. ipilimumab for metastatic melanoma)26. Despite this progress, 

the vast majority of tumor antigens that function as targets of T cells activated by 

checkpoint blockade immunotherapy remain to be identified27-28. Further, it is not known 

whether these antigens can be used to generate tumor-specific vaccines for an enhanced 

therapeutic effect. Recent preclinical studies have utilized nucleic acid or peptide 

vaccines against common neuroblastoma markers in conjunction with checkpoint 
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blockade immunotherapy,29-30 this approach requires a priori knowledge of the tumor 

antigens to generate the relevant vaccines. By contrast, our strategy relies on PTT to 

release tumor antigens to the surrounding milieu,20, 31-32 and has the potential for 

increasing tumor immunogenicity via a “multi-antigen vaccination effect” without the 

need for prior knowledge of the tumor antigens. Hence, PTT in conjunction with 

checkpoint blockade immunotherapy could fill a major gap in efforts to exploit the 

immune system against disseminated neuroblastoma. 

1.8 Thesis outline and specific aims 

Aim 1. Determine the degradation, stability and cytotoxicity of Prussian blue 

nanoparticles in tumor and physiological environments.  We want to control the 

degradation of Prussian blue nanoparticles so that they can be stable in tumor 

environments, and degrade in physiological environments. Furthermore, the degradation 

products will be studied for their cytotoxicity when co-cultured with cells. These studies 

are important for addressing concerns associated with the long-term fate and associated 

toxicities of the nanoparticles within the body.  

Aim 2. Determine the photothermal therapy capabilities of Prussian blue nanoparticles in 

a tumor environment. Photothermal heating in tumor and physiological pHs will be 

determined at various concentrations of Prussian blue nanoparticles to ensure that their 

photothermal characteristics are maintained in tumor environments. 

Aim 3. Determine the efficacy of Prussian blue nanoparticle-based photothermal therapy 

for treating aggressive cancers. A syngeneic mouse model of neuroblastoma will be used 

to study the effects that Prussian-blue nanoparticle-based photothermal therapy has on 

tumor regression.  
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Aim 4. Determine the effect of Prussian blue nanoparticle-based PTT on stimulating a T 

cell-mediated response. The goal of this aim is to study the effects of PTT by 

characterizing the resultant antitumor T cell responses in the mouse model of 

neuroblastoma. These studies will provide rationale for exploring PTT in combination 

with anti-CTLA-4 

Aim 5. Determine the effect of the combination photothermal immunotherapy on tumor 

regression and long-term survival in a mouse model of neuroblastoma.  We will assess 

the efficacy of PTT in combination with anti-CTLA-4 in effecting tumor regression and 

conferring long-term survival in a mouse model of neuroblastoma.  

Aim 6. Determine the effect of tumor rechallenge on long-term surviving mice that were 

previously treated with photothermal immunotherapy. We want to examine if PTT in 

combination with anti-CTLA-4 confers long-term survival in mice. Mice will be re-

challenged with Neuro2a cells, and their tumor progression or regression will be 

monitored.  
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Chapter 2: Biodegradable Prussian blue nanoparticles for 

photothermal immunotherapy of advanced cancers 

2.1 Introduction 

Recent advances in the field of nanomedicine have yielded diverse nanoparticle-based 

platforms with multifunctional therapy and imaging (“theranostic”) capabilities for 

human health. An exciting area within this field of research is the application of 

multifunctional nanoparticles for treating cancer, where numerous nanoparticles have 

received FDA approval or are currently undergoing clinical evaluation.33-34 Despite this 

promise, a key challenge confronting the field is developing therapies for cancers that 

have significantly progressed or metastasized, i.e. advanced cancers, for which the 

prognosis is dismal (e.g. the five-year survival rate is 40%-50% for patients with high-

risk neuroblastoma1, 3 and 16.6% for patients with metastatic melanoma).35 In response to 

this need, we are exploring a novel combination therapy termed photothermal 

immunotherapy, which combines Prussian blue nanoparticle (PBNP)-based photothermal 

therapy (PTT) with checkpoint blockade immunotherapy for treating advanced cancers.  

In nanoparticle-based PTT, near infrared (NIR) light-absorbing nanoparticles accumulate 

within tumors after either intratumoral or intravenous injection, and heat up when 

illuminated with a low power (< 2 W) NIR laser, causing destruction of tumor cells.36-37 

The heating effect is negligible when the low power laser is used without the 

nanoparticles, since human tissue exhibits a “window” of decreased light absorption at 

NIR wavelengths.38-39 Thus, PTT functions as a rapid and minimally invasive method for 

reducing tumor burden. Several reports have demonstrated the efficacy of diverse 

nanoparticles including gold nanoshells,40-41 gold nanorods,36, 42 gold nanocages,43-44 and 
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carbon nanotubes45-46 in reducing tumor growth rates and, in some cases, conferring long-

term, tumor-free survival in animal models (e.g. breast cancer,47 squamous cell 

carcinoma,48 prostate cancer49). Despite this promise PTT alone is generally ineffective in 

treating advanced cancers10, 31-32 and the dual requirement for nanoparticles and an 

activating laser to secure a therapeutic effect argues against the use of PTT alone for 

treating advanced disease. We propose that besides local tumor damage, PTT may release 

tumor antigens that could be exploited for immunotherapy. We thus hypothesized that 

combining PTT with checkpoint blockade immunotherapy would allow for T-cell 

expansion and induce immune mediated tumor cell killing even in advanced cancers.  

Checkpoint blockade uses monoclonal antibodies to target key immune checkpoints such 

as CTLA-4 and PD-150 in order to reverse immune suppression, unleashing potent 

antitumor responses by activating endogenous immune cells (e.g. T cells).51-52 

Checkpoint inhibitors including anti-CTLA-4 (e.g. ipilimumab) and anti-PD-1 (e.g. 

nivolumab) have received FDA approval for the treatment of advanced cancers such as 

metastatic melanoma.25-26 Still, the responses in advanced cancers treated with checkpoint 

inhibitors are restricted to only a modest subset of patients. For example, in a recent 

study, only 22% of patients with metastatic melanoma treated with both anti-CTLA-4 and 

anti-PD-1 exhibited a complete response to treatment.53 This restricted response may be 

attributed to the fact that checkpoint inhibitors result in blanket activation of endogenous 

immune cells and are not delivered in the context of antigen processing necessary for 

tumor-specific effects. Another limitation of using checkpoint inhibitors alone is that at 

high doses they are associated with toxicity and potentially lethal non-specific immune-

mediated adverse events due to hyper-immune activation.53  
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An intriguing strategy for simultaneously improving the efficacy of checkpoint inhibitors 

and decreasing their toxicity lies in providing immune cells reactivated by checkpoint 

inhibitors with an abundance of the appropriate tumor-specific antigen targets. To this 

end, various vaccines have been combined with checkpoint inhibitors and have shown 

promise in preclinical and clinical studies.29-30, 54-55 However, all of these approaches 

require a priori knowledge of the tumor antigens or manipulated tumor cells to generate 

the relevant vaccines. The problem is compounded by the highly heterogeneous nature 

and dynamic phenotypic and metabolic landscape of advanced cancers, which have 

impeded efforts to identify valid antigen-expression profiles for vaccine development.  

In this paper, we present an alternative approach where we locally ablate tumors at their 

sites of localization using nanoparticle-based PTT, thus generating an “in situ” vaccine 

by disrupting the tumor mass and enhancing its immunogenicity by exposing potential 

tumor antigens. Specifically, our combination therapy (Fig. 1) uses 1) biodegradable 

PBNPs for PTT where PBNPs are administered intratumorally and irradiated with an NIR 

laser, serving the dual purpose of primary tumor ablation and in situ vaccination, and 2) 

anti-CTLA-4 checkpoint blockade immunotherapy by intraperitoneal (i.p.) 

administration, that causes expansion of cytotoxic immune effector T cells that are the 

key to providing a robust antitumor immune response. As proof-of-concept, we tested the 

efficacy of this combination therapy termed photothermal immunotherapy in a mouse 

model of advanced neuroblastoma.52, 56-57 We hypothesized that the novel combination of 

two therapies – PBNP-based PTT and anti-CTLA-4 checkpoint blockade immunotherapy 

– will act synergistically to improve outcome over those obtained with either modality 

alone. 
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As compared with other ablative and tumor disruptive techniques such as radiofrequency 

ablation58-59, high-intensity focused ultrasound,60 and cryoablation61 that can be combined 

with checkpoint inhibitors to treat aggressive cancers, nanoparticle-based PTT offers 

enormous flexibility. The nanoparticles can be modified for multiple functions (e.g. they 

can carry additional immunomodulatory20-22 or therapeutic molecules),23-24 an advantage 

not offered by the aforementioned alternative techniques. As compared to other 

Figure 1. Hypothesized mechanism of action of photothermal immunotherapy. The novelty of 

our combination photothermal immunotherapy includes: 1) PTT-based destruction of tumors in a 

minimally invasive manner, 2) Release of tumor antigens and danger signals post-PTT providing an 

immunostimulatory, multi-antigen vaccination effect, and the 3) Use of anti-CTLA-4 that reverses 

immunosuppression and unleashes a potent antitumor immune response. A hypothesized mechanism 

of action of the combination photothermal immunotherapy using Prussian blue nanoparticle-based 

PTT and anti-CTLA-4 checkpoint blockade immunotherapy is presented. PTT ablates the PTT 

ablates the primary tumor, providing tumor antigens and danger signals that activate dendritic cells. 

These antigens released by dying cells are captured by dendritic cells, processed into peptides and 

presented to CD4+Th cells. Once activated, effector T cells may help generate an immune response 

through the activation of cytotoxic CD8+T cells that can eradicate tumors. Additionally, tumor-

infiltrating B cells may also help present tumor-associated antigens for the induction of a CD4+Th 

cell-mediated cellular immunity. Furthermore, CTLA-4 blockade results in direct activation of CD4+ 

and CD8+ effector T cells, resulting in an antitumor T cell response. The combinations of some or all 

of these immune responses result in the elimination of the primary tumor as well as 

metastatic/recurrent tumors 
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nanoparticles used for PTT, including a promising recent report by Wang et al.32 

describing carbon nanotube-based PTT in combination anti-CTLA-4 in a mouse model of 

breast cancer, our PBNPs offer advantages in that they are non-toxic, easily synthesized 

in a single step,10-13 and are already US FDA-approved for human oral consumption (to 

treat radioactive poisoning).14-16 Importantly, PBNPs are biodegradable thus mitigating 

concerns associated with the long-term fate and associated toxicities of using 

nanoparticles in vivo.  

Herein, we characterize the biodegradation of PBNPs by testing temporal stability at 

various pHs levels (mimicking conditions observed in the tumor interstitium, lymph, and 

blood). Next, we measure the ability of the biodegradable PBNPs to be used for PTT and 

the effect of the PTT on tumor growth rates relative to untreated controls in the mouse 

model of neuroblastoma. We also measure the ability of the PTT to elicit a tumor-specific 

T cell response and determined the effect of our combination therapy (PTT + anti-CTLA-

4) on tumor growth rates and survival in the neuroblastoma mouse model relative to mice 

treated with either therapy (PTT or anti-CTLA-4) alone or remaining untreated. Finally, 

we evaluate long-term tumor immunity in mice cured of their disease.  

 

2.2 Methods 

2.2.1 Materials 

All synthetic procedures were conducted using ultrapure water obtained from a Milli-Q 

system (Millipore Corporation, Billerica, MA) with resistivity of 18.2 MΩ ·cm. 

Potassium hexacyanoferrate (II) trihydrate (MW 422.39; K4[Fe(CN)6]·3H2O) and iron 
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(III) chloride hexahydrate (MW 270.3; Fe(Cl)3·6H2O) were purchased from Sigma-

Aldrich (St. Louis, MO).  

2.2.2 Antibodies and cells 

Anti-CTLA-4 antibody (9D9) was purchased from BioXCell (West Lebanon, NH). 

Mouse CD45-FITC and CD3-FITC antibodies were purchased from eBioscience (San 

Diego, CA). The murine neuroblastoma cell line Neuro2a was originally obtained from 

American Type Culture Collections (ATCC) and cultured under recommended 

conditions. Cells were cultured in DMEM (Gibco, Carlsbad, CA) containing 10% fetal 

bovine serum (FBS, Gibco, Carlsbad, CA) and 1% penicillin/streptomycin (Sigma-

Aldrich, St. Louis, MO). Luciferase-expressing Neuro2a cells were constructed by 

transducing the Neuro2a cells with firefly luciferase-expressing lentiviral particles 

(GenTarget Inc., San Diego, CA) and selecting with puromycin (Thermo Fisher, 

Waltham, MA). Luciferase expression was determined by measuring bioluminescence in 

a luminometer using the Luciferase Assay System (Promega, Madison, WI).  

2.2.3 Animals 

Four-to-six-week old female A/J mice were purchased from Jackson Laboratory (Bar 

Harbor, ME). The animals were acclimated for 3-4 days prior to tumor inoculation. All 

procedures were approved by the Institutional Animal Care and Use Committee of 

Children’s National Health System, Washington, DC (Protocol # 00030439). 

2.2.4 Prussian blue nanoparticles synthesis 

Prussian blue nanoparticles were synthesized using a scheme as described previously.10 

Briefly, an aqueous solution of 6.8 mg FeCl3·6H2O (2.5 × 10−5 mol) in 5 mL of Milli-Q 

water was added under vigorous stirring to an aqueous solution containing 10.6 mg of 
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K4Fe(CN)6·3H2O  (2.5 × 10−5 mol) in 5 mL of Milli-Q water. After stirring for 15 min, 

the precipitate was isolated by centrifugation (20,000 xg for 5 min) and rinsed by 

sonication (5 s, high power) in Milli-Q water. The isolation and rinsing steps were 

repeated three times before the particles were resuspended by sonication in Milli-Q 

water.  

2.2.5 Prussian blue nanoparticles stability and degradation studies 

The sizes and zeta potentials of all particles were measured using a Zetasizer Nano ZS 

(Malvern Instruments, Worcestershire, U.K.). PBNP suspensions were resuspended in pH 

7.4 or pH 5.5. These solutions were made using appropriate amounts of mild acids and 

bases to Milli-Q water until the desired pHs were obtained. Analyses were then 

performed using the manufacturer’s specifications. The Vis-NIR absorbance spectra of 

the nanoparticles in the varied pHs were measured using the VISIONlite software on the 

Genesys 10S spectrophotometer (Thermo Scientific, Waltham, MA).  

2.2.6 Prussian blue nanoparticles cytotoxicity studies 

PBNPs (0.03 mg/mL) were suspended in pH 7.0 or 7.4 solution, and their degradation 

products were co-incubated with Neuro2a cells in vitro. Cell viability after incubation 

with the degradation products was measured using the XTT assay (Trevigen, 

Gaithersburg, MD) as per manufacturer’s protocol where the absorbance of metabolized 

product indicates viability.  

2.2.7 In vitro photothermal therapy 

PTT in vitro was performed using an 808 nm NIR laser from Laserglow Technologies 

(Toronto, ON, Canada) at a power of 1.875 W/cm2. PBNPs at concentrations of 0.01 

mg/mL, 0.1 mg/mL, and 1 mg/mL were resuspended in a pH of 7.4 or 5.5, plated in a 96-
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well plate, and irradiated for ten minutes. Temporal temperature measurements were 

taken using a thermocouple (Omega, Stamford, CT).  

2.2.8 Establishment of a mouse neuroblastoma model  

For establishing primary tumors and for the rechallenge studies, 106 Neuro2a cells 

transfected with luciferase were suspended in PBS and subcutaneously injected into the 

back of each previously shaved mouse. Tumor growth was monitored on alternate days 

following tumor inoculation by imaging the mice for tumor bioluminescence using the 

IVIS Lumina III (PerkinElmer). This animal imaging system allows for quantitative 

analysis of tumor volume over time. Tumor volumes were calculated using this imaging 

system as previously described.62 A tumor size of 17 mm diameter in any dimension was 

designated as the endpoint and mice were euthanized at that time. Euthanasia was 

achieved through cervical dislocation after CO2 narcosis. If the tumor impaired mobility 

of the animal, became ulcerated or appeared infected, or if the mice displayed signs of 

distress by sick mouse posture, the mice were euthanized and removed from the group.  

2.2.9 In vivo photothermal therapy  

For photothermal therapy (PTT) in vivo, neuroblastoma-bearing mice were treated when 

their tumor volumes reached ~60mm3. Mice were anesthetized prior to and during 

treatment using 2-5% isoflurane. The mice were intratumorally injected with 50 µL of 

PBNPs (1 mg/mL), and the tumor area was irradiated with an 808 nm NIR laser 

(Laserglow Technologies; Toronto, ON, Canada) at 1.875 W/cm2 for 10 minutes. The 

animals’ eyes were covered with opaque black cardboard during treatment to avoid eye 

damage by the laser. The temperatures reached during PTT were measured using a FLIR 

thermal camera (Arlington, VA).  
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2.2.10 Anti-CLTA-4 injections 

Anti-CTLA-4 antibody (150 µg per mouse) was administered intra-peritoneally (i.p.) on 

days 1, 4, and 7 for the combination (PTT + aCTLA-4) group, and on days 0, 3, and 7 for 

the anti-CTLA-4 only group.  

2.2.11 T cell mediated response studies 

Whole tumors were extracted from experimental and control tumor-bearing mice, and 

were minced and run through a 70µm filter. Once single cell suspensions were obtained, 

the tumor cells were cultured in complete DMEM medium prior to studies. Tumor isolate 

was used to assess leukocyte infiltrate by flow cytometry. Cells were stained with CD45 

and CD3 antibodies conjugated to FITC (BD Biosciences) and samples were run on the 

BD Accuri cytometer at a threshold of 80,000. Analysis of flow cytometry results was 

conducted in FlowJo 7.6 (TreeStar Inc.) and populations of interest and mean 

fluorescence intensity (MFI) were determined from ungated live samples. 

2.2.12 IFN-γ expression studies 

T cells were harvested from spleens of tumor-bearing mice and isolated with CD5 

immunomagnetic beads (Ly-1, Miltenyi Biotec). 200,000 murine T cells were included in 

an ELISpot assay (IFN-γ ELISpot, Mabtech, Inc.) at 1:1 with ex vivo tumor cells, which 

was conducted according to the manufacturer’s protocol. Splenocytes and isolated T cells 

were cultured in complete RPMI medium.  

2.2.13 Statistical analysis 

Statistical significance between groups was determined using a Student’s t-test. 

Significant difference between two groups of flow cytometry data was determined using 

a chi-square test. To determine minimum sample sizes for each group in the animal 
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studies, we conducted a power analysis using α  = 0.05 (Type I error probability 

associated with this test of this null hypothesis) and power = 0.8. After inputting the 

values of σ/δ for each t-test (using PS power and sample size software), we calculated 

the number of mice/group needed to generate statistically meaningful results. Our sample 

sizes are consistent with those in similar studies published in the literature.30, 52 The log 

rank test was used to determine statistically significant differences in survival between 

the various groups, (α = 0.05, rejecting the null hypothesis of no difference in survival 

between independent groups if χ2 exceeds the critical value for the test). Survival results 

were analyzed according to a Kaplan-Meier curve. A p-value < 0.05 was considered 

statistically significant.  

 

2.3 Results 

2.3.1 Degradation, stability, and cytotoxicity of Prussian blue nanoparticles.  

We utilize intratumoral administration of PBNPs for PTT in these studies to maximize 

nanoparticle dose at the site of injection within the tumor, although this technique could 

result in poor nanoparticle distribution within the tumor.63 However, given the nature of 

our combination therapy where PBNP-based PTT provides a local effect complemented 

by a systemic effect of anti-CTLA-4 immunotherapy, we posit that the effect of the 

potentially poor spatial distribution of the nanoparticles would be negligible or overcome 

by the systemic immunotherapy effect. To assess the suitability of using PBNPs for 

intratumoral PTT, we conducted studies analyzing the biodegradation, stability, and 

cytotoxicity of the PBNPs (and potential degradation products) in vitro. We measured the 

degradation and stability of PBNPs using visible-NIR (Vis-NIR) spectroscopy and 
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dynamic light scattering (DLS) as a function of time and at various pH levels (Fig. 2) - 

mimicking conditions typically encountered by intratumorally administered 

nanoparticles, i.e. the tumor interstitium, lymphatics, and vasculature. Tumor interstitia 

exhibit a slightly acidic pH (~5.5),64-65 while blood and lymph exhibit mildly alkaline 

pHs (~7.4). We measured the Vis-NIR and DLS properties of PBNPs over seven days at 

three pHs - 5.5 representing tumor interstitia, 7.0 representing neutral pH, and 7.4 

representing blood/lymph. 
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Figure 2. Degradation, stability, and cytotoxicity of PBNPs. (A-C) Degradation properties were 

quantified by measuring the visible-NIR spectra of PBNPs over seven days (Day 0-7) at A) pH 5.5, B) 

pH 7.0, and C) pH 7.4, exhibiting increased stability at mildly acidic and neutral pHs (5.5 and 7.0) 

mimicking pHs observed in tumor interstitia and decreased stability at mildly alkaline pH (7.4) 

mimicking pH observed in the lymph and blood. D) Stability was quantified by measuring the 

hydrodynamic diameters (sizes) of PBNPs over seven days at varying pHs (5.5, 7.0, and 7.4) 

exhibiting increased degradation of PBNPs at mildly alkaline pH. E) Cytotoxicity of the degradation 

products of PBNPs co-incubated with neuroblastoma (Neuro2a) cells showing insignificant changes in 

viability when treated with both intact and degraded PBNPs relative to untreated controls. Means ± 

standard deviation; n=3. 
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The Vis-NIR spectrum of PBNPs demonstrated its characteristic absorption band from 

650-900 nm, corresponding to the energy of the metal-to-metal charge transfer between 

FeII and FeIII through the cyanide bridge of the PBNP lattice (λmax = 705 nm) (Fig. 

S1).10, 12, 66 PBNPs incubated at pH 5.5 (tumor interstitial pH) exhibited negligible change 

in their Vis-NIR spectra over seven days (Fig. 2A) indicating that the PBNPs were 

insignificantly degraded at pH 5.5 over the seven days. Similarly, insignificant 

degradation properties were observed with PBNPs incubated at pH 7.0 (Fig. 2B). 

However as the pH of the solution was marginally increased from 7.0 (neutral) to 7.4 

(mildly alkaline, mimicking blood and lymph pH), we observed a significant (51%) 

reduction in their Vis-NIR spectrum peak intensity over the course of seven days (Fig. 

2C), indicating degradation of the PBNPs at pH 7.4. This was most likely caused by 

attack of the characteristic FeII-CN-FeIII bonds of PBNP by the slight excess of hydroxyl 

ions, as previously observed.67-68 These observations were corroborated by a temporal 

DLS study, which was used to assess nanoparticle size distributions and stability, where 

PBNPs were observed to be stable when incubated at pH 5.5 and 7.0 (constant mean 

hydrodynamic diameters; Fig. 2D and S2). In contrast, DLS demonstrated an increase in 

the mean hydrodynamic diameter of the PBNPs at pH 7.4 compared to pH 5.5 (Fig. 2D 

and S2), indicating instability and aggregation of the nanoparticles at this blood/lymph-

mimicking pH. 

We then assessed the cytotoxicity of both the PBNPs and their degradation products on 

neuroblastoma tumor cells (Neuro2a cells) in vitro. For these studies, we incubated 0.03 

mg/mL PBNPs or 0.03 mg/mL PBNPs pre-contacted at pH 7.4 (to degrade them) with 

Neuro2a cells and measured the resultant cell viability using an XTT cell viability assay 
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(Fig. 2E). The concentration of the nanoparticles used in this study was representative of 

the effective concentrations of the nanoparticles attained after intratumoral 

administration. We observed that neither the PBNPs nor their degraded products were 

cytotoxic to Neuro2a cells at these concentrations, i.e. the measured viability was not 

significantly different from untreated controls (Fig. 2E), indicating the suitability of 

using the PBNPs in vivo. Taken together, our findings indicate that our PBNPs are 

suitable for intratumoral administration as they exhibit an inherent pH-dependent 

degradation and stability, where they are stable under conditions mimicking the tumor 

interstitium (lower pH), and degrade and are unstable under conditions mimicking the 

blood and lymph.  Importantly, our findings suggest that the resulting degradation 

products are not cytotoxic.  

 

2.3.2 Photothermal therapy capabilities of Prussian blue nanoparticles  

We conducted studies to determine whether the pH-dependent stability of PBNPs had an 

effect on their function as PTT agents by assessing their PTT capabilities in vitro (Fig. 

3A) and in vivo (Fig. 3B). We measured the PTT capabilities of the PBNPs as a function 

of concentration (0.01 – 1 mg/mL) at the two pHs – 5.5 (representing the tumor 

interstitial pH at which the nanoparticles are stable) and 7.4 (representing the pH of 

blood/lymph at which the nanoparticles are unstable). As expected, we observed that the 

PBNPs heated to higher temperatures when they were incubated in a pH of 5.5 versus 

7.4, and this occurred in a concentration-dependent manner (Fig. 3A). This is likely due 

to the fact that at higher pH, PBNPs exhibit a significant reduction in their PTT 

capabilities due to their degradation and instability under these conditions, consistent 

with our earlier findings. The reduction in the PTT capabilities was also concentration-
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dependent; 1 mg/mL PBNPs incubated at pH 7.4 exhibited a ~16 oC decrease in 

temperature after PTT compared 1 mg/mL PBNPs at pH 5.5, and 0.1 mg/mL PBNPs 

exhibited a ~7oC decrease in PTT capabilities between these pHs. Although not studied 

here, the duration of incubation (hours-days) would also be expected to play a role in the 

PTT capabilities of the PBNPs as longer incubations under destabilizing conditions (i.e. 

higher pH) would be expected to further decrease the PTT capabilities of the 

nanoparticles.  

 

 

We then measured the PTT capabilities of the PBNPs in the syngeneic mouse model of 

neuroblastoma. Given the degradation and stability properties of the PBNPs, the goal of 

this study was to determine the effective intratumoral dose of the PBNPs to achieve 

temperatures suitable for thermal ablation of the tumors (i.e. 50-55 oC). Using IR 

thermography, we determined that mice bearing 5 mm tumors (~60 mm3 tumor volumes) 
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intratumorally injected with 50 µL of 1 mg/mL PBNPs were able to heat up to ablative 

temperatures in 2-4 minutes when irradiated with an 808 nm NIR laser at 1.875 W/cm2 

laser power densities (Fig. 3B). The temperature achieved is a function of PBNP dose 

(concentration and volume) and tumor pH/vasculature/lymphatics. These results indicate 

that the PBNPs exhibit pH-dependent PTT capabilities where they heat to higher 

temperatures at intratumoral pH when compared to that of blood and lymph. 

2.3.3 Prussian blue nanoparticle-based photothermal therapy for treating aggressive 

cancers. 

 

After completing the biodegradation, stability, and PTT characterization studies that 

demonstrated improved properties of the PBNPs at intratumoral pH, we conducted 
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Figure 4. Tumor debulking after PBNP-based PTT in vivo. Representative images of A) a PTT-

treated mouse showing near complete debulking of the tumor mass after PTT (no measured 

bioluminescence) and B) an untreated mouse showing faster tumor progression. Scale bars on the right 

of panels A and B represent the bioluminescent intensity in p/s/cm
2
/sr. C) Normalized tumor growth 

curves for PTT-treated (red; n = 5) and untreated mice (black; n = 7) showing slower tumor progression 

in PTT-treated mice relative to untreated controls.  
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studies evaluating the efficacy of PBNP-based PTT in treating aggressive tumors. For 

these studies, we utilized a syngeneic mouse Neuro2a model of neuroblastoma using 

Neuro2a cells, which have been previously demonstrated to exemplify an advanced or 

challenging tumor type. Specifically, 4-6-week old A/J mice were subcutaneously 

injected with 1 million luciferase-expressing bioluminescent Neuro2a cells in accordance 

with Children’s National Health System’s Institutional Animal Care and Use Committee 

(IACUC)-approved protocol. Tumor treatment was commenced when the animals 

reached a tumor size of at least 5 mm (~60 mm3 volume) measured using both calipers 

and bioluminescence measurements. Due to the intrinsic variation in tumor engraftment, 

the mice were treated within a range of 3-5 days rather than on the same day. The tumor-

bearing mice were either intratumorally injected with 50 µL of 1 mg/mL PBNPs and 

irradiated with an 808 nm laser (1.875 W/cm2 for 10 minutes) or left untreated (Fig. 4). 

Tumor bioluminescence was measured every two days to assess the efficacy of the 

treatment or tumor progression (Fig. 4A-B). Mice in the PTT-treated group exhibited 

near complete tumor eradication immediately after treatment (minimal measured 

bioluminescence; Fig. 4A) compared with mice in the untreated, control group that 

exhibited consistent tumor progression and growth (increased in measured 

bioluminescence; Fig. 4B). Aggregate data from multiple tumor progression studies 

showed that when tumor-bearing mice where treated with PTT, their tumors were 

eradicated almost completely, and that the mice in this group had an average of 3 tumor-

free days before they reappeared (Fig. 4C). Furthermore, although the tumors relapsed, 

the tumor progression was slower in these mice compared with mice in the untreated, 

control group, which exhibited a rapid increase in tumor volume. Our results indicate the 
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efficacy of PBNP-based PTT in effecting rapid tumor debulking, increasing the number 

of tumor-free days, and decreasing tumor growth rates in neuroblastoma tumor-bearing 

mice. Despite this, PBNP-based PTT therapy did not generate sustained tumor 

eradication, and the tumors eventually reappeared.  

 

2.3.4 Effect of Prussian blue nanoparticle-based photothermal therapy on stimulating a T 

cell-mediated response.  

The incomplete responses to PBNP-based PTT seen in neuroblastoma-bearing mice 

prompted us to investigate therapies that could be combined synergistically with PTT to 

confer long-term survival. Specifically, we sought therapies that exploited the immune 

system, as they offer the potential for improved treatment outcomes and conferring 

immunity against disease recurrence by harnessing molecular and cellular components of 

the complex immune system. Additional impetus for exploring immunotherapy in 

combination with PTT came by way of earlier reports demonstrating the 

immunostimulatory effects of nanoparticle-based PTT.20, 31-32 We decided to pursue 

checkpoint blockade immunotherapy in particular for our combination with PBNP-based 

PTT given the growing body of evidence demonstrating its role in significantly 

improving survival in patients with advanced cancers in clinical trials.69-73 We selected 

anti-CTLA-4 as it was the first FDA-approved checkpoint blockade immunotherapy 

(ipilimumab). Anti-CTLA-4 reverses T cell exhaustion, unleashing their potent antitumor 

effects. Therefore, we investigated the ability of PBNP-based PTT to stimulate a T cell-

mediated response, as that would provide the rationale for exploring it in combination 

with anti-CTLA-4.  
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We conducted studies quantifying the relative proportions of tumor infiltrating 

lymphocytes after PTT. As described previously, neuroblastoma-tumor bearing mice 

were divided into two groups: PTT-treated and untreated controls. To measure the tumor 

expression levels of lymphocytes and specifically T cells after PTT, mice were sacrificed 

24 h and 96 h post-treatment and their tumors (or residual tumors in case of tumor 

shrinkage) were isolated. Tumors were processed to obtain single cell suspensions and 

analyzed using flow cytometry for CD45 (lymphocyte) and CD3 (T cell) expression. 

After 24 h, there was no significant difference in lymphocyte and T cell populations in 

the treated versus untreated tumors (Fig. S3). However, 96 h post-treatment, the tumors 

in PTT-treated mice exhibited a significant increase in lymphocyte (i.e. average values of 

CD45+; 9.7% PTT-treated vs. 4.1% untreated; Fig. 5A-C) and T cell (i.e. average values 

of CD3+; 6.2% PTT-treated vs. 2.2% untreated; Fig. 5D-F) infiltration.  These results 

suggest an increased recruitment of T cells to the tumor site after PTT given the 

appropriate time scale.  

Next, we investigated whether PTT resulted in global activation of T cells, necessary for 

mounting a robust systemic antitumor immune response. For these studies, T cells were 

isolated from the spleens of PTT-treated and untreated mice (using mouse T cell-specific 

CD5 immunomagnetic beads) were co-cultured with tumor stimuli for evaluation of IFN

γ production (a cytokine produced by activated T cells)74-75 using an ELISpot assay 

(Fig. 5G). Although the mean IFNγ  secretion levels from the isolated splenocytes 

following stimulation with control Neuro2a tumor cells were higher in the PTT-treated 

group compared to the untreated group, this was largely due to the fact that two out of the 

five mice in the group secreted significantly higher levels of IFNγ; the other three mice 
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in this group secreted basal levels. By contrast, none of the mice in the untreated group 

secreted significantly elevated levels of IFNγ. Taken together, our results suggest that 

PTT alone can stimulate a T cell-mediated response, although these effects may not be 

strong enough to eradicate advanced cancers  

 

 

 

Figure 5. Effect of PBNP-based PTT on stimulating a T cell-mediated response. Representative scatter 

plots of CD45 positive tumor cells in A) Untreated and B) PTT-treated mice. C) Percentage of CD45+ cells 

in the tumors of untreated (n= 4) and PTT-treated (n=5) mice showing significantly higher percentage of 

CD45+ cells in tumors of PTT-treated relative to untreated mice (9.70% vs. 4.09%, p-value = 0.0294). 

Representative scatter plots of CD3 positive tumor cells in D) Untreated and E) PTT-treated mice. F) 

Percentage of CD3+ cells in the tumors of untreated (n= 4) and PTT-treated (n=5) mice showing 

significantly higher percentage of CD3+ cells in tumors of PTT-treated relative to untreated mice (6.22% 

vs. 2.21%, p-value = 0.0424). G) Interferon gamma (IFNγ) ELISpot using splenocytes from PTT-treated 

and untreated mice. PTT-treated mice splenocytes exhibited increased expression of IFNγ following re-

exposure to Neuro2a cells in a subset of mice (2/5) compared to untreated mice, which showed no response 

(0/4) 
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2.3.5 Effect of the combination photothermal immunotherapy on tumor regression and 

long-term survival.  

In order to increase the antitumor immune response for improved therapeutic outcomes in 

our mouse neuroblastoma model, we used anti-CTLA-4 immunotherapy in combination 

with PBNP-based PTT to decrease immunosuppression and unleash the killing potential 

of activated T cells. We conducted studies investigating the efficacy of this combination 

photothermal immunotherapy. Specifically, neuroblastoma tumor-bearing mice (~60 

mm3 tumor volumes) were divided into four groups (Table 1): 1) PTT + anti-CTLA-4 

group (n=9): which received intratumoral PTT and i.p. anti-CTLA-4, 2) PTT group 

(n=6): which received intratumoral PTT, 3) anti-CTLA-4 group (n=8): which received 

i.p. anti-CTLA-4 , and 4) Untreated group (n=10): where the mice were not subject to any 

treatment. We monitored both the tumor progression through bioluminescent imaging, 

and the long-term survival of the mice.  

 

 

A representative temporal image measuring the tumor-specific bioluminescence indicated 

a gradual decrease in tumor size and subsequent elimination of the tumor in a mouse 

treated with our combination photothermal immunotherapy (Fig. 6A). Further, the tumor 

Group (# mice) Treatment 

PTT*+anti-CLTA-4# (n=9) PTT on Day 0; 

anti-CTLA-4 on Days 1, 4, 7 

PTT* (n=6) PTT on Day 0 

anti-CTLA-4# (n=8) anti-CTLA-4 on Days 0, 3, 6 

Untreated (n=10) No treatment 

* PTT-treated groups receive 50 µL of 1 mg/mL PBNPs 

intratumorally, irradiated by an 808 nm laser at 1.875 W/cm2 

for 10 minutes 

# anti-CTLA-4-treated groups receive 150 µg of anti-CTLA-4 

per dose by i.p. injection 

Table 1. Groups and treatments used in the study.  
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progression was significantly slower in the combination PBNP-based PTT + anti-CTLA-

4 group when compared with untreated controls (Fig. 6B). Most importantly, the 

combination therapy resulted in complete tumor regression and long-term survival in 

55.5% of the treated mice (Fig. 6C and S4). The long-term, tumor-free survival was 

significantly higher (determined by a log-rank test) than that observed for mice treated 

with anti-CTLA-4 alone (12.5%), PTT (0%), or left untreated (0%). The results suggest 

that the PTT caused the initial reduction in tumor burden, which was complemented by 

the anti-CTLA-4 treatment which targeted and eliminated residual tumor cells, conferring 

long-term tumor-free survival in the combination therapy-treated mice. Our results also 

suggest the potential of our combination therapy to confer long-term survival in advanced 

cancers.  
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Figure 6. Effect of the combination therapy (combined PTT+anti-CTLA-4 therapy) on 

tumor regression and long-term survival in the neuroblastoma mouse model. A) 

Representative image of a long-term surviving mouse treated with PTT+anti-CTLA-4 showing 

tumor regression (decrease in bioluminescence, measured on the same scale for multiple days) 

and fading of the PTT-induced scar. Scale bar on the right represents the bioluminescence 

intensity measured in p/s/cm2/sr. B) Normalized tumor growth curves for tumor-bearing mice 

treated with PTT+anti-CTLA-4 (blue) or left untreated (black). 55% of the mice treated with 

PTT+anti-CTLA-4 survived tumor-free.  C) Kaplan-Meier survival plots of neuroblastoma mice 

that were treated with PTT+anti-CTLA-4 (n=9), anti-CLTA-4 alone (n=8), PTT alone (n=6), or 

untreated (n=10). Mice receiving the combination therapy showed significantly higher long-

term survival (> 100 days, not plotted above so as to observe changes in survival within the 

other groups) compared with mice in the other groups (determined by a log-rank test; p < 0.05). 
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2.3.6 Effect of tumor rechallenge on long-term surviving mice that were previously 

treated with photothermal immunotherapy.  

 

 

An ideal tumor therapy would be one that not only effectively eradicates tumors but 

prevents recurrence after their successful elimination from the body. We conducted 

studies to investigate whether our combination therapy conferred protection in long-term 

surviving mice that are rechallenged with the original tumor cells (Neuro2a). Our studies 

consisted of two groups: 1) naïve group (n=3): where mice were challenged with 106 

Neuro2a cells and 2) rechallenged group (n=3): where long-term surviving mice 
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Figure 7. Effect of tumor rechallenge in combination photothermal immunotherapy-treated, long-

term surviving mice. Representative images showing protection against tumor rechallenge in A) 

combination therapy treated mice (n=3) and B) progression of tumor in naïve, untreated mice (n=3). 

Scale bar represents the bioluminescence intensity measured in p/s/cm
2
/sr. C) Tumor growth curves 

after challenge with 10
6
 neuroblastoma cells in untreated mice (naïve, black; n=3) and long-term 

surviving combination therapy-treated mice (rechallenged, blue; n=3). When the mice were previously 

treated with the combination therapy (blue), they all survived tumor-free, compared to the controls 

(black), which rapidly grew tumors after challenge (inoculation). D) Kaplan-Meier survival plots of 

rechallenged and naïve mice. Mice in the rechallenged group showed significantly higher long-term 

survival compared to naïve mice (determined by a log-rank test, p < 0.05).  
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previously treated with the combination therapy were rechallenged with 106 Neuro2a 

cells after at least 90 days of tumor-free survival. Remarkably, all of the long-term 

surviving mice exhibited protection against tumor rechallenge; the mice rapidly 

eliminated the rechallenged tumors (Fig. 7A and S5), compared with consistent tumor 

progression post-challenge in the naïve mice (Fig. 7B and S5).  

Tumor volumes in the rechallenged mice rapidly disappeared in contrast with the tumor 

progression observed in the naïve mice (Fig. 7C). The rechallenged mice went on to 

survive for more than 90 days post tumor rechallenge compared with naïve mice that had 

to be sacrificed due to high tumor burden 12-14 days post-challenge (Fig. 7D). These 

data suggest the potential of the combination therapy in conferring tumor immunity and 

protection in long-term surviving mice against tumor rechallenge/recurrence.  

 

2.4 Discussion 

We have described a novel combination therapy termed photothermal immunotherapy 

that combines PBNP-based PTT with anti-CTLA-4 checkpoint blockade immunotherapy 

(Fig. 1) for treating advanced tumors. As synthesized by us, PBNPs exhibited an inherent 

pH-dependent degradation (Fig. 2A-C) and stability (Fig. 2D) where they were stable at 

acidic pH mimicking conditions observed in the interstitia of tumors, and exhibited 

incipient degradation and instability at higher pH mimicking blood/lymph. Importantly, 

the degradation products were not observed to exhibit cytotoxicity (Fig. 2E) under the 

conditions tested. Harnessing the pH gradient of tumor interstitia relative to surrounding 

tissue is an intriguing strategy to selectively trigger and/or control tumor treatment.76-77 

Tumor interstitia are typically acidic, due to the hypoxia and lactic acid accumulation that 

rapidly occurs in a growing tumor.78 Our in vitro data demonstrating that PBNPs exhibit 
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properties strongly dependent on the pH of the environment suggest their potential for 

use in delivering tumor-specific therapies, where the PBNPs remain intact and stable 

intratumorally, while rapidly and safely degrading when they enter the bloodstream or 

lymphatic system, thereby minimizing potential toxicities to normal cells – an important 

consideration in the field of nanomedicine for eventual clinical translation. The pH-

dependent properties of PBNPs had a significant effect on their PTT capabilities; PTT 

capabilities were decreased at blood/lymph pHs relative to intratumoral pHs (Fig. 3A). 

This led us to establish the concentrations of PBNPs intratumorally administered to 

ensure that there were sufficient nanoparticles intratumorally to effect tumor ablation 

(Fig. 3B). It is likely that similar optimization studies will have to be carried out should 

the conditions under which PTT is administered is changed, e.g. superficial versus deeper 

tumors may require different nanoparticle doses, laser power densities, and/or duration of 

irradiation. It is important to state here that should the need arise for PBNPs to exhibit 

longer temporal stability and significantly slower degradation kinetics than that observed 

(especially in applications that require intravenous administration), the PBNPs can be 

appropriately surface-coated with biocompatible polymers such as polyethylene glycol, 

as previously described.79   

PBNP-based PTT in our mouse model for an antigenic but aggressive cancer (the 

syngeneic Neuro2a model of neuroblastoma) demonstrated an incomplete response in 

tumor-bearing mice relative to untreated mice (Fig. 4), although it significantly decreased 

tumor burden immediately after PTT, and decreased tumor growth rates (Fig. 4). As 

described previously, PTT confers long-term, tumor-free survival in multiple animal 

models of cancer premised on the observation that cancer cells are more susceptible to 
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heat than normal tissue because of their elevated metabolic rates.80-81 However, in the 

case of aggressive cancers, such as our neuroblastoma model, we suspect that PTT does 

not eliminate all cancer cells even when they are undetectable by bioluminescence or 

caliper measurements.  The nascent cancer cells likely grow into new tumors, similar to 

clinical observations in neuroblastoma.82 It is possible that residual cancer cells remain 

even in other tumor models that show complete remission. We speculate that in those 

cases, the residual tumor cells may be cleared by a robust immune response.  

PBNP-based PTT resulted in increased T cell infiltration into the tumor regions (Fig. 5). 

Lymphocytes found in tumors have been shown to be effective at delaying tumor 

progression, suggesting their potential influence on improved patient prognosis.83-86 

Therefore, the increased population of CD45+ cells (Fig. 5A-C) in the residual tumors of 

PTT-treated mice presents an opportunity to recruit these cells for tumor eradication.87 

Within this subset of lymphocytes, T cells are also present in increased numbers (CD3+ 

cells; Fig. 5D-F) and similarly present an opportunity to recruit this subset of immune 

effector cells to generate a T cell mediated antitumor response.88 Furthermore, results 

from our IFNγ ELISpot indicate that a subset of PTT-treated mice (40%) exhibited 

increased systemic T cell function as compared to untreated mice. IFNγ is produced by a 

wide variety of immune cells including T lymphocytes once immune activation and 

antigen specific immunity is initiated.74 Therefore, its upregulation in a subset of mice 

indirectly reflects the role of PTT in generating tumor antigens or providing an in situ 

vaccination effect, important for generating a robust antitumor immune response. Our 

studies thus demonstrate that PTT not only ablates the tumors, but elicits a T cell-

mediated immune response, which alone cannot prevent tumor relapse or recurrence 
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likely due to the immunosuppressive mechanisms89-90 exerted by tumor cells to evade T 

cell-mediated responses.   

PTT in combination with anti-CTLA-4 immunotherapy resulted in complete tumor 

regression and long-term survival in 55.5% of the tumor-bearing mice compared to only 

12.5% survival observed in mice treated with anti-CTLA-4 alone and 0% survival 

observed in both mice treated with PTT alone or left untreated (Fig. 6). We attribute this 

significantly higher long-term survival benefit in the combination therapy-treated mice to 

the reversal of T cell exhaustion and immunosuppression by anti-CTLA-4, which is 

complemented by the debulking and priming of a T cell-mediated response by PTT.  

Previous studies using the Neuro2a mouse model have demonstrated higher long-term 

survival using anti-CTLA-4 alone than observed in this study (~40-50% vs. 12.5% in our 

study).30, 52 The difference between these observations can potentially be attributed to the 

fact that the earlier studies commenced the anti-CTLA-4 immunotherapy when their mice 

reached tumor sizes of ~1 mm or after a fixed number of days (typically 5-6 days) after 

tumor inoculation, while we commenced the therapy only after tumors reached ~5 mm, 

thus potentially reflecting a significantly higher tumor burden and disease progression in 

our studies. Finally, long-term surviving mice treated with the combination therapy 

exhibited protection against tumor rechallenge indicating the development of immunity 

against these tumors in the combination therapy-treated mice (Fig. 7). However, further 

studies are necessary to elucidate the underlying immunological mechanisms that elicit 

these protective responses.  

In summary, this body of work represents one of the first studies that exploit 

multifunctional nanoparticles in combination with immunotherapy in the field of cancer 
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therapy. Our work points to the important role that PBNPs (and other nanoparticle 

platforms) may play in the upcoming years in immunoengineering,91 where nanoparticles 

are used to engineer a suitable immune response to treat advanced cancers.  
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Chapter 3: Conclusions 

3.1 Summary 

We have described biodegradable PBNPs that were used in combination with anti-

CTLA-4 immunotherapy for treating mice in an aggressive model of neuroblastoma. Our 

PBNPs exhibit pH-dependent degradation and stability, where they are stable at lower pH 

mimicking the intratumoral milieu and degrade at mildly alkaline pH mimicking 

blood/lymph. PTT by itself was observed to confer only a marginal survival benefit in 

mice with neuroblastoma, but resulted in a robust infiltration of lymphocytes and 

activation of systemic (splenic) T cells against tumor cells. Finally, mice treated with 

combination PTT and checkpoint inhibition exhibited significantly tumor regression and 

long-term tumor immunity. Our results showcase the potential for the use of PBNP-based 

PTT in combination with checkpoint blockade immunotherapy in treating advanced 

cancers, and these proof-of-concept studies should serve as an important prelude to 

further clinical translation. 

3.2 Contributions to the field 

This project utilizes Prussian blue nanoparticles for photothermal therapy (PTT) in 

combination with anti-CTLA-4 checkpoint blockade immunotherapy to treat 

neuroblastoma in a mouse model. The innovative aspects of our approach and 

contributions to the field include: 

3.2.1 Use of biodegradable Prussian blue nanoparticles for photothermal therapy of 

neuroblastoma. Prussian blue nanoparticle-based photothermal therapy is a minimally 

invasive, in situ method for destroying cancer cells and reducing tumor burden. As 

compared to other nanoparticles that have been used for PTT, we have the ability to 
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synthesize Prussian blue nanoparticles that are stable in tumor environments, and safely 

biodegrade in physiological media (from hours to weeks), thus mitigating concerns 

associated with the long-term fate and toxicity of these nanoparticles within the body. 

Further, Prussian blue nanoparticles can be easily synthesized in a scalable manner with a 

single-step at low costs, and is already FDA approved for human oral use.  

When compared to the current state of the art in hyperthermia and thermal ablation 

methods, Prussian blue nanoparticle-based PTT offers enormous flexibility. Our Prussian 

blue nanoparticles can be easily modified for multiple functions such as 

biofunctionalization for immunomodulatory or therapeutic molecules; an advantage not 

offered by alternative hyperthermia or thermal ablation methods.  

3.2.2 Prussian blue nanoparticle-based photothermal therapy offers a vaccination effect 

that elicits a T-cell based response. The release of key tumor antigens and “danger 

signals” that fight against the tumor are a result of PTT-based destruction of 

neuroblastoma cells. This release provides an immunostimulatory, multi-antigen 

vaccination effect without the need for knowledge on specific tumor antigen targets, as 

required for standard vaccines. As compared with other nanoparticles in the field such as 

carbon nanotubes, and gold nanoparticles, the immune response elicited by Prussian blue 

nanoparticles is solely based on PTT, and not on a side effect from the toxicity of these 

nanoparticles, making it ideal for combining it with an immunotherapy such as 

checkpoint blockade, due to the increased infiltration of T-cells that will aid in starting a 

robust anti-tumor immune response.  

3.2.3 Use of anti-CTLA-4 for checkpoint blockade immunotherapy in conjunction with 

Prussian blue nanoparticle-based photothermal therapy. We are one of the first groups to 
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demonstrate the use of a checkpoint inhibitor with photothermal therapy for the treatment 

of advanced cancers. Our novel photothermal immunotherpy expands the field of cancer 

therapies because as demonstrated by our results, photothermal immunotherapy is more 

effective than either immunotherapy or photothermal therapy alone against primary 

treated tumor in a mouse model of neuroblastoma. It has been shown that photothermal 

ablation of cancer cells alone is not enough to provide the patient protection against 

metastatic or distal tumors. Additionally, clinical reports on the use of ipilimumab 

showed that patients responsed poorly to this treatment alone. This is because some 

tumors are poorly immunogenic and hardly eny endogenouse tumor-specific T cells are 

stimulated before intervention. By combinting photothermal heating with checkpoint-

blockade immunotherapy, it elicits stronger immune responses against the tumor, 

increasing the response rate in patients. Although the mechanistic details remain to be 

investigated, the therapeutic effects shown by PTT and anti-CTLA-4 are very 

encouraging. Further efforts should now be focused on enhancing treatment protocols for 

clinical trials to improve efficacy. 

 

3.3 Future directions 

The findings here suggest that photothermal immunotherapy results in complete tumor 

regression and long-term survival in a significantly higher proportion of mice (56%) in 

the standard Neuro2a model of neuroblastoma. The next projects will evaluate the 

combination therapy in aggressive (AgN2a, an aggressive subclone of Neuro2a) model of 

cancer, where the therapeutic outcomes will be compared to standards of care for 

neuroblastoma: surgery, chemotherapy, and anti-GD2 immunotherapy.  
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Efficacy studies in an aggressive model of neuroblastoma will be conducted in the future 

since it poses critical hurdles for treatment: it is less immunogenic,52 can adapt to its 

environment92 and it is capable of subverting the immune response, making it harder to 

treat. These criteria are all met by the AgN2a mouse model, which should ensure a more 

objective evaluation of the therapeutic potential of our photothermal immunotherapy 

strategy.  

Additionally, we will study the effects of PTT itself on the antitumor immune response 

by developing a “PTT vaccine” comprised of injected PTT-treated AgN2a cells, alone 

and in combination with anti-CTLA-4. This will answer our question of whether or not 

PTT serves the dual purpose of rapidly reducing tumor burden and generating a multi-

antigen vaccination effect.  

The mechanisms of prolonged immune protection will be further studied in the 

aggressive model of neuroblastoma by studying the immunological memory against the 

target cells, and performing immune cell depletion studies where a single type of immune 

cell (NK, CD4, CD8) is depleted using intraperitoneally administered antibodies against 

the specific cell type. These studies may help elucidate the role of the various cell types 

in conferring prolonged immunity.  

Lastly, we will biofunctionalize the Prussian blue nanoparticles with antibodies for 

targeting or with immunomodulatory or therapeutic molecules for further therapeutic 

functions. The modification of these nanoparticles will further help making them 

translatable into the clinic, by offering characteristics that will help make them better at 

targeting and treating cancers.  
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Supporting Information 

Vis-NIR spectroscopy of the PBNPs; DLS of the PBNPs as a function of pH and time 

(day); Flow cytometry analysis of tumor infiltration 24 h after PTT; ELISpot analysis of 

splenic T-cell activation; Bioluminescent monitoring of tumor progression in PTT + anti-

CTLA-4, anti-CTLA-4, PTT, and untreated mice; Bioluminescent monitoring of tumor 

progression in rechallenged and naïve mice.  
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Figure S1. Vis-NIR spectrum of PBNPs. PBNPs were analyzed 

using the VISIONlite software on the Genesys 10S 

spectrophotometer (Thermo Scientific, Waltham, MA). 
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Figure S2. Hydrodynamic diameter intensity distributions of PBNPs in varied pH. PBNP sizes were 

quantified by dynamic light scattering (DLS) over 7 days (Day 0: blue, Day 7: red) at pH A) 5.5, B) 7.0, 

and C) 7.4, illustrating stability at mildly acidic/neutral pHs that mimic tumor interstitia and instability at 

mildly alkaline pHs (7.4) mimicking the lymph and blood.  
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Figure S3. Effect of PBNP-based PTT on stimulating a T cell-mediated 

response. A) Percentage of CD3+ cells in the tumors of untreated (n= 4) and 

PTT-treated (n=5) mice statistically insignificant differences between the two 

groups. B) Percentage of CD45+ cells in the tumors of untreated (n= 4) and 

PTT-treated (n=5) mice also showing statistically insignificant differences 

between the two groups. C) Interferon gamma (IFNb) ELISpot using 

splenocytes from PTT-treated and untreated mice re-exposed to Neuro2a tumors 

cells (+CTRL tumor) or pooled PTT tumor cells (+ PTT tumor). 
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Figure S4A. Representative images of untreated tumor-bearing mice. Scale bars on the panel 

represent the bioluminescent intensity in p/s/cm
2
/sr.  
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Figure S4B. Representative images of tumor-bearing mice that were treated with photothermal therapy (PTT). 

Scale bars on the panel represent the bioluminescent intensity in p/s/cm
2
/sr.  



44 

 

 

Day 0 Day 2 Day 4  

 

 

Day 0 Day 2 Day 4 
 

Day 0 Day 2 Day 4 

Day 5 Day 3 Day 0 Day 7 

Day 0 Day 2 Day 4 Day 6 

Mouse 1 

Mouse 2 

Mouse 3 

Mouse 4 

Mouse 5 

Mouse 6 

Day 0 Day 5 Day 10 Day 25 

Day 0 Day 2 Day 4 Day 6 

Day 0 Day 2 Day 4 Day 6 

Mouse 7 

Day 6 

Day 6 

Day 6 

Mouse 8 

11152 

233 
p/s/cm

2
/sr 

 

 

Figure S4C. Representative images of tumor-bearing mice that were treated with anti-CTLA-4 therapy. Scale 

bars on the panel represent the bioluminescent intensity in p/s/cm
2
/sr.  
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Figure S4D. Representative images of tumor-bearing mice that were treated with the 

combination photothermal immunotherapy. Scale bars on the panel represent the bioluminescent 

intensity in p/s/cm
2
/sr.  
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tumor rechallenge in combination therapy treated mice (n=3). 
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