
Multi-Platform Simulation of Video Playout Performance �Ladan Gharai and Richard GerberInstitute for Advanced Computer StudiesDepartment of Computer ScienceUniversity of MarylandCollege Park, MD 20742fladan,richg@cs.umd.eduAbstractWe describe a video playout and simulation package, including (1) a multi-threaded player, which maxi-mizes performance via asynchronous streaming and selective IO-prefetching; (2) a compositional simulator,which predicts playout performance for multiple platforms via eleven key deterministic and stochastic time-generating functions; and (3) a set of pro�ling tools, which allows one to extend the range of target platformsby benchmarking new components, and converting the results into distribution functions that the simulatorcan access. Using this system, a developer can quickly estimate a video's performance on a wide spectrumof target platforms { without ever having to actually assemble them.1 IntroductionDigital video is currently used in a variety of applications, such as instructional software, computergames and multi-media presentations. While the developers of these applications usually possessfairly powerful computing platforms, the end-user systems can vary to an enormous degree { e.g.,in CPU performance, bus speeds, IO transfer rates, etc. And since software video playout tendsto monopolize all of these components, developers usually down-sample their end-result to a setof \typical" target platforms. In the ideal world, this would mean actually running the releasedapplication on a wide variety of consumer workstations, and then making successive adjustmentsto the encapsulated videos { so that the result satis�es the largest number of users. Of course,this ideal is almost never pursued, for two obvious reasons: (1) it would require a lab to purchasea huge number of (possibly obsolete) consumer platforms, and then (2) to spend a large amountof time adjusting the videos to them. In the real world, developers usually test the application onone or two targets, and perhaps augment testing with some rough bit-rate calculations to predictperformance on other potential targets.In this paper we present a cheap, fast alternative to this process, which uses discrete-eventsimulation, in concert with an abstract model of the playout platform. The model characterizesthe datapath of our QuickTime [3] playout software (described in [6]), and its operation on speci�cCPU/IO con�gurations. The simulator's inputs are (1) a speci�c CPU workstation type, (2) a SCSIdevice model, and (3) a Quicktime video header �le. These inputs, in turn, select eleven stochastic�This research is supported in part by ONR grant N00014-94-10228 and NSF Young Investigator Award CCR-9357850. 1



Engine

Interface

Simulator

Simulation

test clips

Profiler tools

Player

Model Model
Repository

Device

Figure 1: Simulator Package Architecture.and deterministic time distribution functions { which are then compositionally assembled to gaugeframe-by-frame playout performance.One reason we can achieve a reasonable level of accuracy is as follows: our playout softwaresupports its own API, and bypasses Quicktime's high-level, movie-playing functionality. On onehand, commercial APIs like those provided by QuickTime can simplify a program's interaction withthe underlying codec software. But on the other, their long, multi-layered call-paths tend to causean enormous amount of jitter and bursty frame-dropping at display time. In [6] we describe ouralternative implementation, which bypasses all high-level API functions and only interacts withQuickTime's codec support. Hence, our architecture manages all system-level details involved invideo playback, such as IO transfers, memory management, bu�ering, 
ow control and audio/videosynchronization. In our experiments, this resulted in enhanced, more deterministic performance,which scaled to di�erent classes of workstations and input videos. The results were achieved bysome simple optimizations, including: (1) prefetching via temporal locality information, i.e., usingpast performance to estimate which future frames should be selected; (2) coalescing IO requestsfor neighboring physical frames, which reduced the level of kernel involvement in IO transfers;(3) eliminating all memory-to-memory copying of frames, and (4) taking full advantage of DMA'd,asynchronous IO, which allowed the CPU to concentrate on codec-related activities. By applyingthese design principles, our software achieved performance gains of up to 345% over Apple's high-level video playout abstractions, with associated improvements in rate variance { while relying onthe exact same codec drivers.Nonetheless, the actual performance of a video on our system (and on any other system) ishighly sensitive to the underlying platform con�guration { as well as to variations in the videoitself. The subtle interaction between system components (e.g., CPU, internal bus, VRAM, SCSIIO device) and between video characteristics (e.g., frame dimension, compression ratio, codec type,color depth) all e�ect the ultimate playout performance. Thus, it is hardly possible to obtain ananalytical prediction in terms of average video bit-rates, IO transfer rates, and processor types.Alternatively, a purely stochastic simulation model would also lead to unpredictable results { afterall, many of the underlying time distributions have highly deterministic properties. For example,a given frame's transfer time from any IO device will, to some degree, be roughly proportional itssize. Hence, our simulation model contains some distributions that are principally deterministic,2



and others which are only stochastic.Figure (1) displays the architecture of the simulation system. The system is composed of (1) aset of pro�ler tools, (2) the simulation engine, and (3) the playback software. The pro�ler toolsautomatically benchmark di�erent parts of the playout datapath, by stressing them with a series oftest videos. The resulting time distributions are indexed according to the main physical componentsinvolved { the speci�c IO device, and the CPU type. These \virtual component" models, in turn,include other parameters, which are indexed primarily via a movie's header information (e.g., codec,frame size, frame type). The synthesized device models are then put into the simulator's \plug-in"directory, and are accessed during a simulation run. At that time, the models are combined tocreate a system con�guration. This design style has the following advantages:1. A developer can \virtually" con�gure di�erent playback platforms, and test a speci�c video'sperformance on each. The actual platform need not be present in the laboratory { all thedeveloper needs is the model directory.2. The simulator is a \value-added" application, since it can easily be extended by running thepro�le tools on a new IO or CPU device.For example, a user may have three options of SCSI IO devices, with average transfer rates of5Mbytes/sec, 4Mbytes/sec and 1900Kbytes/sec, respectively. For a given processor type, and agiven video, the actual performance of each con�guration can be quickly obtained by doing threesimulation runs { which usually requires a few seconds.The remainder of this paper is organized as follows. In Section 2 we discuss some of the relatedwork in the �eld. In Section 3 we present an overview of the components of our simulation package.Then, in Section 4, we describe the pro�ling process, and how the pro�led results generation timedistribution functions. In Section 5 we compare the simulator's predictions for selected con�gura-tions with corresponding on-line playout performance. Finally, we give some concluding remarksin Section 6.2 Related WorkIn this paper we concentrate on simulating the entire playout process; hence we model many ofthe components involved at a fairly coarse level. Alternatively, other researchers have constructeddetailed models of certain key components, and then subjected them to simulated video workloads.In particular, IO subsystems have often been studied in this manner. For example, the resultsin [8] illustrate the performance of various disk-scheduling algorithms, when tested with syntheticvideo simulations. For single video streams, decent performance was shown to be realized byboth CSCAN and SCAN-EDF { a hybrid of the traditional SCAN technique, and the \earliest-deadline-�rst" strategy used in real-time thread schedulers. Another technique, the Group SweepingScheme [5], is a hybrid of round-robin and SCAN. A number of \groups" are scheduled via round-robin, whereas within each group the SCAN algorithm is used. To a large extent, this allows forcompromising between the disk-head's ability to \sweep up" physically neighboring blocks, and thetemporal requirements imposed on concurrent, time-based media streams.We do not capture this aspect (and other aspects) of the IO architecture, for two basic reasons.The �rst is fairly simple: if one wishes to use o�-the-shelf disks, then one must live with thevendor-supplied, proprietary policies which are hard-coded into controller's micro-program. (Onthe positive side, however,disk controllers are increasingly being optimized for \multimedia systems"{ which usually translates into good \sustained" read/write performance over contiguous blocks.)However, the second reason we abstracted out disk-scheduling { as well as internal disk caching { is3



somewhat more subtle: we found that for single-client workloads, details like these are \smoothedout" during the simulation's datapath; especially when the end-point, monitored process recordsframe-display times. As we show in the sequel, for our purposes an IO device can be su�cientlymodeled by its rate and latency distributions.Although described in the context of networked video, Stone and Je�ay's [10] queue monitoringmethod is quite similar to the way our playout loop manages jitter. As they have found withnetworked tra�c { and as we have found in dealing with IO and compression software { a balancemust be found between a stream's jitter and its delivery rate. They prescribe a feedback policyto dynamically adjust of display latency, which supports low-latency conferences with acceptablegap-rates.A related issue is achieving graceful degradation of service in the event of network congestion.One approach to this problem is for the client to adaptively scale the playback rate by determin-istically dropping some of its frames. This is the approach taken in the the Nemesis [7] project,which uses a predictive prefetch algorithm to scale a client's input streams. This is also the ap-proach taken in Vosaic [11], which uses its own specialized a real time variant of UDP, and allowsthe server to scale its transmission by the feedback it receives from the client. As we show in thefollowing section, these techniques are similar to our system's feedback loop { however, since weconcentrate on single-client streams, the rate adjustments can obviously be made faster.Chen and Kandlur describe a player in [2], which, like ours, is a stand alone client station player.However their emphasis is on supporting VCR playback capabilities, such as forward and backwardplayback for an MPEG encoded video stream. For display, a video is �rst downloaded from theserver in entirety; then during playback the stream is converted to a local form, by separatelysegregating all P frames and I frames. In this manner, a rough backward playback is simply amatter of displaying a series of I frames.The system described in [1] scales not only the rate, but also the spatial resolution of a videostream. This is done by packaging three versions of every frame, with each o�ering a monotonicimprovement over the previous one. The �rst is a 160x120 abstraction of the original picture; thenext is the residue term which, when added to the 160x120 image, achieves a resolution of 320x240.The �nal version is another residue which can be added to the 320x240 image, resulting in full640x480 resolution. At any point in the process the codec can stop improving the current frame,and proceed to the next. Of course, this 
exibility is achieved by using a custom codec, which wasdesigned speci�cally for this purpose.Our focus on IO and data paths is echoed in [4], which proposes a means of optimizing thetransmission of compressed videos. A splice mechanism is introduced, in which an application canassociate a kernel-level data source with its sink point; this allows for a direct point-to-point datapath between source and sink, obviating unnecessary kernel interference.3 System OverviewOur simulation engine was designed to quickly and accurately predict video playback performance ona range speci�c platform con�gurations. To achieve this goal, we have to balance several competingobjectives. First, our model should be su�ciently abstract to produce quick results, yet su�ciently�ne-grained to yield accurate information. Second, we require a way to isolate the roles of theparticular CPU type, the SCSI device, and the video characteristics { and reproduce their individuale�ect on playback performance via simple time-distribution functions. Third, we need a means ofcombining and scaling these separately generated functions into simulated on-line behavior.In this section we give an overview of our approach. First, we discuss the datapath and semantics4



FeedBackPredict Schedule IOControlCodec Request QueueFrame QueueDisplay SoundCallBackSoundCardIO CallBackFigure 2: Our software playback system.of our playout software. Then we discuss our simulation model, and describe how we have structuredthe time-generation input �les.3.1 The Player StructureFigure 2 depicts the structure of our playout software, which is composed of three threads andtwo callback functions. As the �gure shows, the system operates as a simple feedback loop. Basedon the player's past performance, the Predict thread selects a set of frames to be played in thefuture, and inserts their IDs into the Request Queue. The IOControl thread removes them, looks uptheir corresponding �le locations, and initiates the appropriate asynchronous IO commands for theSCSI manager. If there are requests for (physically) neighboring frames, the IOControl thread willattempt to bundle as many neighbors as possible within a single IO transfer. By bundling adjacentframes the IOControl thread (and all associated SCSI handlers) can execute less frequently; thisCPU time can be better used by activities such as decompression.When an IO operation completes, its associated callback function preemptively executes, likean interrupt service routine. It inserts a pointer to each transferred frame into the Frame Queue.They subsequently get removed by the Display thread which, according to its real-time movie clock,will either display the associated frames, or just discard them. If the frames have been deliveredon time, then they get decompressed by the codec.Part of the Display thread's job is to update feedback information for the Predict thread, whichis done at every time interval �. (For the results displayed in the sequel, � was set to 12sec.) Thefeedback is in the form of a predicted playout rate for the next interval, and the Predict threaduses it to dynamically scale its prefetch rate. This scheme is partially aided by the scheduler, whichensures that the Predict thread gets at most most 12 second ahead of the Display thread.Let t be a multiple of �, RMOVIE the digitized rate of the video, and let PR(t) be the predictedplayback rate for the time interval [t; t+�]. Then if we let R(t) be the rate that the Display threadactually achieved during the interval, PR(t+�) is calculated as follows:PR(t +�) = � ��R(t) + (1 � �)� PR(t) if R(t) < PR(t)min(R(t) + c;RMOVIE) if R(t) = PR(t)where for the experiments reported in this paper, we set � = :85 and c = 1. In other words,when playback falls behind its predicted rate, we exponentially average the old prediction with theachieved rate. (This is to smooth out sporadically large frame sizes, or abnormally high decom-pression times.) But when playback meets its prediction, we gradually ratchet up the new prefetch5



rate, so that eventually the highest potential quality can be realized.The objective of our design is to let the system achieve a steady state, so that IO and playbackare always working in parallel, at their full capacity. This means the Display thread should neverhave to wait for a frame { the IO should always have prefetched it ahead of time, while the Displaythread was processing a previous frame.Keyframes. Our scheme is complicated by the existence of keyframes (which are analogous toI-Frames in MPEG [9]); e.g., if a keyframe is dropped, then the the interpolated sequence followinghas to be discarded. Thus, while PR(t) is the current predicted rate, the Predict thread cannotsimply fetch frames at a constant frequency. First a decision is made whether an entire sequencewill be avoided. If not, its keyframe is requested, as are selected interpolated frames within thesequence. The Display thread may end up only decompressing { but not playing { the keyframe,so that it can be used to display its dependent, interpolated frames.Sound. The player software interacts with the sound card via a simple double-bu�ering scheme.When one bu�er is almost �nished being played, the sound card triggers a callback routine, andthen switches to the other bu�er. The sound callback routine places IO requests for sound sampleson the Request Queue. Unlike video, sound samples cannot be dropped, and so the IO thread givesthem priority.3.2 The Simulation EngineThe simulation engine basically mimics the control and data paths of the player software itself.The threads are represented by discrete events { called predict, display and IOControl { withtime distributions corresponding to their CPU cost per one service, on a speci�c host. Additionalevents represent playback activities like decoding (decode), SCSI device callbacks (IOcallback),and sound card callbacks (SNDcallback). The �nal two events are assigned to the scheduler'sactivity (schedule) and context-switch overhead (switch). Events are placed on a \ready queue,"and dispatched by the same protocols as their system-level counterparts. For example, the eventscorresponding to scheduler-controlled actions (e.g., threads) are dispatched in FIFO order, whileasynchronous, device-related events (e.g., IOcallback, SNDcallback) execute via a speci�c �ringtime. The simulator's internal clock is updated after an event is completed.The raw output of a simulation run is a list of all frames processed, accompanied by 
agsdenoting whether the frames were played or dropped, and if played, their simulated display time.From this list, the tool produces several statistics, including the movie's mean playback rate, andits rate variance over 1-second intervals. Also, if a developer wishes, the display-time list can beused as input to a previewer, which allows watching the movie from the context of the simulatedworkstation.3.3 Platform Pro�lingThe pro�ling tools create hierarchical models of the IO device and CPU platform, which are col-lected in the simulator's repository. Before a simulation run, the user \assembles" a platform byselecting particular models of CPU and SCSI devices. Then, the simulation engine interacts withthese models to update its clock during the run.Each device model is, in fact, a collection of time generating functions. Figure (3) displaysthe directory hierarchy which the simulator accesses. The IO model contains a single distributionfunction, which captures both the deterministic and stochastic properties inherent in the device'stransfer time. The CPU model, on the other hand, is composed of distribution functions for theplayer software itself, in addition to a set of codec-related decompression times for all codecs pro�led6



Seagate

IO Device

DiskPowerMac: 7100/66

Processor

codec

User 
Input

Movie
Header

decode time

Cinepak

Frame Dimension

decode time

code modules

context switching

call back functions

IO transfer time

Model Repository

CPU−Model

IO−Model

Codec Model 1 Codec Model 2

ST12400

Figure 3: Hierarchy of virtual device models. Users select IO and CPU devices. The simulatorextracts codec-related statistics, using the input movie header.on the particular CPU.In the next section we discuss these distribution functions in detail, and show how the IO andCPU models are composed to produce a single system model.4 The Time Distribution FunctionsThe simulator's eleven time variables (listed in Table 1) range over values produced by theirrespective time-generating functions. Some of these have deterministic inputs (as well as stochasticresiduals), while others are purely stochastic. Table (2) categorizes the time variables by theirunderlying distribution functions, and lists their deterministic indices if they possess any.Each function is generated by its corresponding pro�ler tool, which collects a trace of discretetime-samples, and indexes each sample with its deterministic input (if any). The pro�lers for CPU-centric variables are basically modi�ed versions of our playback software, which collect the responsetimes of each player component in isolation. The entire process is controlled by an executive, whichrepeatedly feeds a number of test clips into each pro�ler, until all of the sample traces have been7



Model VariablesIOIO transfer time TioCPUDisplay execution time TplyPredictor execution time TpreIOControl execution time TIOcSchedular execution time TschIO callback execution time Tio�cbContext switching overhead TcntsSound callback execution time Tsnd�cbMovie Header/codecKeyFrame decode time TkeyIntermediate frame decode time TintrSound chunk play time TsndTable 1: The simulator interacts with these eleven random variables to update time.constructed. The test clips were produced to cover a range of video characteristics (codec, framedimension, color depth), and they vary in content (range of motion, color intensity).The IO pro�ler, on the other hand, is independent of any playback activity, and simply measuresasynchronous SCSI transfer times (indexing the results by the size requested).Time TimeGenerator Function Variables Steps Deterministic Index (x)Deterministic L(x) +R�1(u) Tio 103 Number of bytes transfered+ Tintr 104 Size of compressed frameStochastic Tply , Tpre, TIOc, Tio�cb 103 Number of iterationsTsnd 103 Size of sound chunkPure Stochastic F�1(u) Tkey 104 noneTsch, Tsnd�cb, Tcnts 103 noneTable 2: Time variables and their distribution functions.Time sample post-processing is handled in two di�erent ways, depending on whether the un-derlying variable has a deterministic component. We summarize the two methods here:Pure stochastic variable: In this case the time-sample list is sorted as a histogram { dividedinto either 103 or 104 buckets (depending on the range and variation of the recorded process).Then, the histogram is normalized to the interval [0; 1], which yields a (synthesized) discreteprobability distribution function (or pdf) f(t) for the variable, where we now assume that agiven outcome is made as a simple Bernoulli decision. I.e., f(t) returns the probability of asample time t being realized during playback on the device. Next, f 's cumulative distributionfunction F (t) is produced, and the output of the entire process is F�1(u), the CDF's inversetransform, where u is uniformly distributed in [0; 1]. The simulator uses this function togenerate random response times, in concert with a dedicated random number generator.Deterministic/stochastic variable: The sample trace is linearized by its deterministic index,8



0.00

100.00

200.00

300.00

400.00

500.00

0.00 0.50 1.00 1.50 2.00

bytes*10
6

sec*10
−3 sampled time(size) =)LLS

0.00

100.00

200.00

300.00

400.00

500.00

0.00 0.50 1.00 1.50 2.00

sec*10

bytes*10
6

−3 L(size)
−200.00

−100.00

0.00

100.00

200.00

0.00 0.50 1.00 1.50 2.00

Sec*10
−3

byes*10
6

sampled time(size) - L(size) =)CDF�1
−2.00

0.00

2.00

4.00

0.00 0.20 0.40 0.60 0.80 1.00

Sec*10
−3

prob

−4.00

R�1(u)Figure 4: IO time-sample postprocessing, clockwise from top left: (1) Recorded response timesfor requested sizes; (2) Linearized response times; (3) Residual function; (4) Inverse-transform ofresidual CDF.via a least-squares �t. (E.g., in the case of IO transfer, the pro�ler creates a line capturingthe relationship between transfer-time and request-size.) Then, it generates the the residualdeviations between the synthesized line and the recorded samples, sorts them in histogramform, and creates the corresponding inverse CDF, as in the stochastic case.4.1 Pro�ling and Component Time Distributions(1) IO Pro�ling: A device's IO datapath is abstracted using a single variable, indexed by therequested transfer size. This includes all factors such as the device's head latency and rotationaldelay, its internal caching mechanisms, the SCSI control signals, the SCSI-IO bus latch setup times,the DMA control, all the way to the end-point { which is the �nal DMA interrupt at the host.While this model may seem somewhat coarse, we have consistently found that the transfers involvedin video are large enough to \smooth out" the e�ects of intermediate hops along the IO datapath.In other words, pure transfer times typically dominate the cost of the device's response overhead {and the intermediate factors can be treated in a stochastic fashion.Our IO pro�ler samples sustained transfer times by requesting a variety chunk sizes, whichstart at 2 Kbytes and increase in 2 Kbytes increments up to 2 Mbytes. A given request starts at arandom disk location, and measures the chunk's elapsed response time, from the initial IO call tothe the �rst statement in the callback routine.Figure 4 illustrates the post-processing that takes place after all samples are collected. First,the least-squares �t L(size) is constructed from the list of response times and their correspondingsizes. Then, a residual sample function is created, i.e., for every time sample (sizei; timei), the9



distance ri from the line is calculated:8(sizei; timei) : ri = timei � L(sizei)Then, from the frequency histogram for the ri, the inverse CDF-transform R�1(u) is generated.Finally, at simulation time, we get our IO time variable as follows:Tio = L(size) +R�1(u)where \size" is the number of bytes requested by the simulated IO thread, and u 2 [0; 1] is obtainedvia a random-number generator.(2) CPU Pro�ling: The CPU-based playout software itself is modeled by the variables Tply,Tpre, TIOc, Tio�cb, Tsnd, Tsch, Tsnd�cb and Tcnts, which represent execution times for the di�erentsegments active during playout. These variables do not cover that wide a range of variation, andtheir corresponding pdf's are discretized into 103 steps each.Among these variables, Tsch (scheduler execution time), Tsnd�cb (sound card's ISR callback),and Tcnts (context-switch overhead) are all modeled in a stochastic manner, and their variation isdue mainly to second-order factors like cache a�nity, pipeline state, etc. On the other hand, thethread processing times { Tply, Tpre and TIOc { have deterministic components, and they dependon the number of activities performed during one scheduled service of the thread. For example, thePredictor may issue anywhere from 1 to 25 frame requests, and this number does have an impact onthe CPU time used. There are similar factors which a�ect the cost of the Display and IO threads.The remaining CPU-based variables, TIOc and Tsnd, also have deterministic components. TheIO callback's execution time, TIOc, is deterministic in the number of frames it places on the FinishedQueue. Also, the sound playout time Tsnd is proportional to the number of samples in a given soundchunk.(3) Codec Pro�ling: While the decode times are also processor-dependent, their distributionsare grouped according to the speci�c codec used, the video's frame dimensions and color depth.The pro�ler instantiates these variables, and then gathers frame-by-frame decode times for severaltest videos corresponding to the current instantiation. In these tests, IO and decompression areperformed serially, thus isolating decode time as a dedicated process. This is done by repeatedlytransferring sequences of frames into memory, then freezing all IO driver activity, and then mea-suring the frame-decode response times. This continues until all frames in the test clips have beendecompressed and measured.There are two time variables associated with decompression { Tintr for intermediate frames, andTkey for keyframes { and they have markedly di�erent distribution functions. As for Tintr, we haveconsistently observed that QuickTime's interpolated-frame decode times are directly related to thesize of the compressed frame. Hence, Tintr is generated in the same manner as Tio: The pro�ler�rst compiles a list of frame sizes and their corresponding decompression times; then it generatesthe least-squares �t, and �nally it produces the residual's inverse-CDF.As for Tkey , its values form a pronounced step-function, indexed by the displayed frame dimen-sionality { along with some stochastic noise at each step level. Hence, this leads to separate timefunctions for di�erent frames dimensions (we currently only pro�le 4:3 dimensions, e.g., 640x480,320x240 and 160x120). Our pro�ling tool collects sets of time samples at the three modeled dimen-sions, and then produces their inverse CDFs to represent the noise at each level. Thus, in Table 2,Tkey is shown as a purely stochastic variable, since it is indexed in a \global" sense, and used for10



IO IO

decoding decoding

(a) (b)

callbackIO

Sio Fio Sio FioSd Fd Sd FdFigure 5: (a) IO completely overlaps decoding; (b) IO completes during decoding; decoding isinterrupted by the IO callback function.the duration of a video run.4.2 Composing CPU and IO: Interference ModelingWhile IO transfers and CPU activities are pro�led separately, the simulator has to compose thetwo models to \build" an abstract platform. For many parameters (such as thread-execution times),this is simply a matter of using the two separately generated distributions in a given simulationrun, without adjusting either of them. Unfortunately, this is not the case for decode times, whichuse most the CPU and memory cycles available { and are thus quite sensitive to interference causeby IO transfers. Recall that most decode activities are pipelined with IO { and these two functionsshare many of the same resources. For example, often the SCSI driver has to handle multipleblock-based DMA interrupts to assemble frames, and the DMA itself steals memory cycles fromthe codec software. Hence, when decoding and IO requests overlap, these stolen cycles serve tolengthen the codec's actual completion times. During a simulation run, this interference has to berecaptured.We use the following process: As part of a CPU's pro�le, we measure the IO interferenceproduced by any SCSI disk attached to it (usually just the internal drive). This interference factoris stored with the CPU abstract model, along with the tested device's transfer rate. Then, when thesimulator builds a system model using another IO device, the CPU's interference factor is scaledby the new device's mean transfer rate.Speci�cally, let �CPU1;IOint be the percentage overhead realized by CPU1, when con�guredwith its internal internal drive IOint. We capture �CPU1;IOint by running a series of decode testson CPU1 without any IO active, and then re-running the same tests with IOint active throughoutevery codec activity { which then yields the mean percentage di�erence between the two series ofreadings.Then, to construct the interference model for CPU1 con�gured with some new device IOnew,we scale �CPU1;IOint as follows:�CPU1;IOnew = �CPU1;IOint � E[RateIOnew ]E[RateIOint ]where E[RateIOnew ] and E[RateIOint ] are the mean transfer rates on the new device and the old(internal) device, respectively. While this is a fairly coarse abstraction, it produces a su�cientmodel of interference, and one which proved fairly accurate in our on-line tests. The method works11



for one basic reason: a CPU (equipped with a set of given drivers) executes its SCSI interactions ina fairly consistent way, regardless of the device connected. Since a constant amount of interferenceis realized whenever a block is transfered, the percentage overhead is roughly proportional to thedata transfer rate into the system. (A fast SCSI device, especially with the same blocking factor,will produce more interference than a slower device.)As an example, on the PowerMac 7100/66, we measured �66;IOint to be 0.057, in a con�gurationwith a local transfer rate of 2530 Kbytes/sec. When we simulated the the 7100/66 with an externaldrive { which had a transfer rate of 3700 Kbytes/sec { we used �66;IOext = 0:057� (3700=2530),or 0.083. When we actually connected the external disk, this interference factor proved roughlycorrect within 15% accuracy, which su�ced for our purposes.Now, when the simulator is actually run, there are two interference scenarios which have to betreated separately. These two cases are depicted in Figure 5, where Sio and Fio denote the startand �nish times of the current IO transfer, and where Sd and Fd denote that start and �nish timesof the simulated decode, respectively. In the �rst case, decode-time is completely overlapped byIO, while in the second case, decode activity is only partially overlapped by IO { however it isinterrupted by the IO callback, which also has to be taken into account. To adjust decompressiontime for these two scenarios, �rst Tdecode is computed from Tkey or Tintr, according to the frametype, and then scaled up to T 0decode using the current �CPU;IO factor:Case (a): T 0decode = 11� �CPU;IO � TdecodeCase (b): T 0decode = �CPU;IO � (Fio � Sd) + Tdecode + TIOcWhen IO and decompression do not overlap, T 0decode = Tdecode.In theory, while interference applies to all other CPU activities in the player, we note that inpractice it has negligible a�ect. This is due to a simple fact: the durations of the other CPUactivities are about an order of magnitude shorter than decoding, and the overhead percentage isrelatively small itself. Hence, we have sacri�ced a bit of accuracy for the sake of quick simulationresults.5 Simulation Engine and Test ResultsThe Engine. Table 5 overviews the simulator's internal transitions, and the queuing protocolsused for each event. As its initial con�guration, the event queue contains two elements: soundISR asits �rst member, and schedule as its second. From this point on the events take over, and handle thesimulation run until the movie's last frame and sound sample are processed. Dispatching is handledin FIFO order, except in the case of (1) SNDcallabck, which re-schedules itself to asynchronously�re again after the current sound chunk is �nished; and (2) IOcallback, which is scheduled by IOthread to �re when a simulated IO transfer is complete.Results. In this section we compare some results of the simulator's runs with correspondingperformance on our playback software. For these tests we used three Macintosh CPUs, (1) aPowerMac 7100/66, (2) a PowerMac 7100/80 and (3) a PowerMac 7500/100. The external IOdevices were a Seagate ST12400 (with read transfer rates of 2800Kbytes/sec) and a QuantumXP34300 drive (with higher transfer rates of 3700Kbytes/sec) (see Table 4).12



Event Dispatch Time Duration Events Spawnedpredict FIFO Tpre switch, scheduledisplay FIFO Tply switch, schedule, decodeIOcontrol FIFO TIOc switch, schedule, IOcallbackschedule FIFO Tsch switch, display, predict, IOcontrolswitch FIFO Tcnts -IOcallback Tspawn + Tio Tio�cb -SNDcallback Tspawn + Tsnd Tsnd�cb SNDcallbackdecode FIFO T 0decode -Table 3: Relating the time variables to simulator events. The variables denote the duration orrelative dispatch time of an event.For our test videos, we digitized and compressed two scenes from the popular movie \PulpFiction." Both clips are approximately one minute long, and both were digitized from clean tape,using a Radius VideoVision M-JPEG board at 30fps, with minimal signal loss. Then the clipswere re-compressed into the Cinepak codec, at full 24-bit 640x480, again at 30fps. The keyframedistributions were varied from 1 per 30 frames, up to 1 every frame (i.e., all keyframes). Here wegive the results for 1 and 10 keyframes per frame, respectively. A synopsis for the clips is given inTable 5.In Table 6 we show a combinatorial set of results, ranging over the four videos, the two diskdrives, and the three workstation models. Before the simulation phase we built the abstract devicemodels as described above, and we pro�led each component in isolation with its own local SCSIdisk. (We note that the pro�ler's test videos do not include the Pulp �ction clips; they are muchshorter, and range over di�erent codecs and frames sizes.) Then the simulator assembled the sixdi�erent systems from its repository �le { scaling the respective �CPU;IO's to suit the two externaldevices. Each simulation took approximately one second to run on a Sun SPARCstaion 5, and theyused the header �les from the test clips as as their input.Note that the di�erences between the simulator's prediction of playout performance, and theactual monitored performance, range between 0% to 7% { and the predictions may err either onthe optimistic or pessimistic side.On the PowerMac 7500/100, the percentage di�erences in playout rate are almost zero (andexactly zero in 3 instances). This is due to the fact that the 7500/100 is capable of displayingall video clips at RMOVIE; likewise the simulator achieves the same rates. On the 7100/80 and7100/66, the simulator re
ects the lower achievable frame rates. The greatest disparity is realizedon the 7100/66 with the Quantum disk, during playback of Intercom/1.CPU Local DiskPlatform Processor Bus �CPU;IO Transfer Rate7100/66 PPC 601 - 66MHz NuBus 0.057 2530 Kbyes/sec7100/80 PPC 601 - 80MHz NuBus 0.053 2600 Kbytes/sec7500/100 PPC 601 - 100MHz PCI 0.031 3100 Kbytes/secTable 4: System characteristics of CPU platforms.13



Key Frame Total Size LengthName Distribution Number of Frames (Mbytes) (secs)Jack Rabbit Slim's/1 1 1950 145.7 65Jack Rabbit Slim's/10 10 1950 91.1 65Intercom/1 1 1920 141.1 64Intercom/10 10 1920 94.8 64Table 5: Video characteristics of test movies. All movies are full-frame, cinepak videos digitized at30fps.
IO DevicesSeagate QuantumCPU Video Simulator Player Simulator PlayerJack Rabbit Slim's/1 17.77 17.18 19.08 18.58Jack Rabbit Slim's/10 22.66 23.68 25.17 24.697100/66 Intercom/1 17.38 16.39 16.64 17.98Intercom/10 21.38 22.12 22.69 21.86Jack Rabbit Slim's/1 21.98 21.92 21.85 21.97Jack Rabbit Slim's/10 27.83 28.49 28.12 28.757100/80 Intercom/1 22.02 21.88 21.75 21.97Intercom/10 25.33 25.97 25.75 25.97Jack Rabbit Slim's/1 29.98 29.98 29.98 30.00Jack Rabbit Slim's/10 29.95 30.00 29.97 29.987500/100 Intercom/1 29.98 29.98 29.98 29.98Intercom/10 29.89 30.00 29.92 30.00Table 6: R(t) of the video clips, generated from the player and the simulator.14



Seagate Quantum7100/66 0.00

10.00

20.00

30.00

0.00 10.00 20.00 30.00 40.00 50.00 60.00

Intercom

Time(sec)

F
ra

m
es

 D
is

pl
ay

ed
 P

er
 S

ec

/ 1

0.00

10.00

20.00

30.00

0.00 10.00 20.00 30.00 40.00 50.00 60.00

Intercom /10

Time(sec)

F
ra

m
es

 D
Is

pl
ay

ed
 P

er
 S

ec

7100/80 0.00

10.00

20.00

30.00

0.00 10.00 20.00 30.00 40.00 50.00 60.00

Jack Rabbit Slim’s /1

Time(sec)

F
ra

m
es

 D
is

pl
ay

ed
 P

er
 S

ec

0.00

10.00

20.00

30.00

0.00 10.00 20.00 30.00 40.00 50.00 60.00

Jack Rabbit Slim’s /1

F
ra

m
es

 D
is

pl
ay

ed
 P

er
 S

ec

Time(Sec)

0

7500/100 0.00

10.00

20.00

30.00

0.00 10.00 20.00 30.00 40.00 50.00 60.00

Intercom /10

Time(sec)

F
ra

m
es

 D
is

pl
ay

ed
 P

er
 S

ec

0.00

10.00

20.00

30.00

0.00 10.00 20.00 30.00 40.00 50.00 60.00

Jack Rabbit Slim’s /1

Time(sec)

F
ra

m
es

 D
is

pl
ay

ed
 P

er
 S

ecFigure 6: Comparison of the player and the simulator. Dashed lines denote the simulator and solidlines denote the player.While the simulator is quite good at capturing average rates { over the course of an entire clip {it is less accurate on a per second basis. Figure (6) displays second-by-second playout performancefor a subset of the experiments. Note that on the 7100/80 and 7100/66 (which are forced to dropframes in both simulation and true playback), there seem to be large variations in several trials.But this is to be expected. While we have modeled many of the time variables as pure Bernoullidecisions, they do, after all, have some deterministic causes. And in fact, the playout software cannever even repeat its own second-by-second pattern, when when tested multiple times with thesame clip. The di�erences lie in the system's inherent nondeterminism, which includes (1) varyingbehavior of the SCSI handlers, (2) di�erences in the callback �ring times, (3) the pattern of IO anddecode pipelining, as well as many other factors.As a �nal �delity test, we fed simulator's display-time lists to a previewer, and used the 7500/100as a \viewing platform" to \watch" the timelines generated by the simulated 7100/66 and 7100/80.Esthetically, actual playback and simulated playback were visually equivalent, and that the disparitydisplayed in our second-by-second graphs was not visually discernible.15



6 ConclusionIn this paper we described our prototype simulation package, which allows developers to quicklyestimate performance of video clips running on di�erent target platforms. The advantages ofsuch a system are fairly obvious: it gives a reasonably accurate representation of video playouttraces, which can then be used for extracting performance statistics, and for \viewing" the target'ssimulated behavior on a (superior) video production system. As long as the target models arein the simulator's repository, one can forgo actually buying the actual system, or even any of itscomponent devices. This scheme, of course, relies on someone having pro�led the components, butthis need only be done once, and the component models can then be shared.Note that there is a fairly simple reason why we can achieve a high level of accuracy: whilemany of the time variables have stochastic parameters, the simulator's main input { i.e., themovie's header itself { is completely determined in advance. Since the header contains the essentialcharacteristics of every frame, these can be used as deterministic inputs for the time generatingfunctions. In addition, we also note that video playout itself is signi�cantly more deterministicthan almost any other type of computer workload.We are extending this work in several directions. First, we are expanding the device modelsto include various multi-spin CD-ROMs, which are now capable of delivering full-frame video atreasonable rates. Second, we are expanding the codec models to include higher resolutions, as wellas di�erent codec types (including software-only MPEG). Finally, we plan to extend our methodto include hardware-codecs as well; we believe that the same pro�ling and simulation methods canbe applied in a fairly straightforward manner.References[1] Navin Chaddha, Gerard A.Wall, and Brian Schmidt. An End to End Software Only ScalableVideo Delivery System. In Proceedings of the Workshop on Network and Operating Systemsfor Digital Audio and Video (NOSSDAV 95), 1995.[2] Ming-Syan Chen and Dilip D.Kandlur. Downloading and Stream Conversion: SupportingInteractive Playout of Videos in a Client Station. In Proceedings of the International Conferenceon Multimedia Computing and Systems, pages 73{80, 1995.[3] Apple Computer Corporation. Inside Machintosh: Quicktime. Addison Wesley, 1994.[4] Kevin Fall and Joseph Pasquale. Improving Continuous-Media Playback Performance with In-Kernel Data Paths. In Proceedings of the First International IEEE Conference on MultimediaComputing and Systems, pages 100{109, 1994.[5] D.James Gemmell, Harrick M.Vin, Dilip D.Kandlur, P.Venkat Rangan, and Lawrence A.Rowe.Multimedia Storage Servers: A tutorial. IEEE Computer, pages 40{49, May 1995.[6] Richard Gerber and Ladan Gharai. Experiments with Digital Video Playout. In ACM Sig-metrics, pages 210{221, 1996.[7] Howard P. Katse� and Bethany S.Robinson. Predictive Prefetch in the Nemesis MultimediaInformation Service. In ACM Multimedia Proceedings, pages 201{209, 1993.[8] A.L. Narasimha Reddy and James C.Wyllie. IO Issues in a Multimedia System. IEEE Com-puter, pages 69{74, March 1994. 16



[9] Ralf Steinmetz. Compression Techniques in Multimedia Systems. Technical Report 43.9307,IBM European Networking Center, Vangerowstrabe 18, 69020 Heidelberg, Germany, 1993.[10] Donald L. Stone and Kevin Je�ay. An Empirical Study of Delay Jitter Management Policies.Multimedia Systems, 2(6):267{279, 1995.[11] Roy H. Campbell Zhigang Chen, See-Mong Tan and Yongcheng Li. Real Time Video andAudio in the World Wide Web. In Proceedings of the Fourth International World Wide WebConference, 1995.

17


