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Abstract

We describe a video playout and simulation package, including (1) a multi-threaded player, which maxi-
mizes performance via asynchronous streaming and selective IO-prefetching; (2) a compositional simulator,
which predicts playout performance for multiple platforms via eleven key deterministic and stochastic time-
generating functions; and (3) a set of profiling tools, which allows one to extend the range of target platforms
by benchmarking new components, and converting the results into distribution functions that the simulator
can access. Using this system, a developer can quickly estimate a video’s performance on a wide spectrum
of target platforms — without ever having to actually assemble them.

1 Introduction

Digital video is currently used in a variety of applications, such as instructional software, computer
games and multi-media presentations. While the developers of these applications usually possess
fairly powerful computing platforms, the end-user systems can vary to an enormous degree — e.g.,
in CPU performance, bus speeds, 10 transfer rates, etc. And since software video playout tends
to monopolize all of these components, developers usually down-sample their end-result to a set
of “typical” target platforms. In the ideal world, this would mean actually running the released
application on a wide variety of consumer workstations, and then making successive adjustments
to the encapsulated videos — so that the result satisfies the largest number of users. Of course,
this ideal is almost never pursued, for two obvious reasons: (1) it would require a lab to purchase
a huge number of (possibly obsolete) consumer platforms, and then (2) to spend a large amount
of time adjusting the videos to them. In the real world, developers usually test the application on
one or two targets, and perhaps augment testing with some rough bit-rate calculations to predict
performance on other potential targets.

In this paper we present a cheap, fast alternative to this process, which uses discrete-event
simulation, in concert with an abstract model of the playout platform. The model characterizes
the datapath of our QuickTime [3] playout software (described in [6]), and its operation on specific
CPU/IO configurations. The simulator’s inputs are (1) a specific CPU workstation type, (2) a SCSI
device model, and (3) a Quicktime video header file. These inputs, in turn, select eleven stochastic
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Figure 1: Simulator Package Architecture.

and deterministic time distribution functions — which are then compositionally assembled to gauge
frame-by-frame playout performance.

One reason we can achieve a reasonable level of accuracy is as follows: our playout software
supports its own API, and bypasses Quicktime’s high-level, movie-playing functionality. On one
hand, commercial APIs like those provided by QuickTime can simplify a program’s interaction with
the underlying codec software. But on the other, their long, multi-layered call-paths tend to cause
an enormous amount of jitter and bursty frame-dropping at display time. In [6] we describe our
alternative implementation, which bypasses all high-level API functions and only interacts with
QuickTime’s codec support. Hence, our architecture manages all system-level details involved in
video playback, such as IO transfers, memory management, buffering, flow control and audio/video
synchronization. In our experiments, this resulted in enhanced, more deterministic performance,
which scaled to different classes of workstations and input videos. The results were achieved by
some simple optimizations, including: (1) prefetching via temporal locality information, i.e., using
past performance to estimate which future frames should be selected; (2) coalescing 10 requests
for neighboring physical frames, which reduced the level of kernel involvement in 10 transfers;
(3) eliminating all memory-to-memory copying of frames, and (4) taking full advantage of DMA’d,
asynchronous 10, which allowed the CPU to concentrate on codec-related activities. By applying
these design principles, our software achieved performance gains of up to 345% over Apple’s high-
level video playout abstractions, with associated improvements in rate variance — while relying on
the exact same codec drivers.

Nonetheless, the actual performance of a video on our system (and on any other system) is
highly sensitive to the underlying platform configuration — as well as to variations in the video
itself. The subtle interaction between system components (e.g., CPU, internal bus, VRAM, SCSI
10 device) and between video characteristics (e.g., frame dimension, compression ratio, codec type,
color depth) all effect the ultimate playout performance. Thus, it is hardly possible to obtain an
analytical prediction in terms of average video bit-rates, IO transfer rates, and processor types.
Alternatively, a purely stochastic simulation model would also lead to unpredictable results — after
all, many of the underlying time distributions have highly deterministic properties. For example,
a given frame’s transfer time from any 10 device will, to some degree, be roughly proportional its
size. Hence, our simulation model contains some distributions that are principally deterministic,



and others which are only stochastic.

Figure (1) displays the architecture of the simulation system. The system is composed of (1) a
set of profiler tools, (2) the simulation engine, and (3) the playback software. The profiler tools
automatically benchmark different parts of the playout datapath, by stressing them with a series of
test videos. The resulting time distributions are indexed according to the main physical components
involved — the specific IO device, and the CPU type. These “virtual component” models, in turn,
include other parameters, which are indexed primarily via a movie’s header information (e.g., codec,
frame size, frame type). The synthesized device models are then put into the simulator’s “plug-in”
directory, and are accessed during a simulation run. At that time, the models are combined to
create a system configuration. This design style has the following advantages:

1. A developer can “virtually” configure different playback platforms, and test a specific video’s
performance on each. The actual platform need not be present in the laboratory — all the
developer needs is the model directory.

2. The simulator is a “value-added” application, since it can easily be extended by running the
profile tools on a new 10 or CPU device.

For example, a user may have three options of SCSI 10 devices, with average transfer rates of
5Mbytes/sec, 4Mbytes/sec and 1900Kbytes/sec, respectively. For a given processor type, and a
given video, the actual performance of each configuration can be quickly obtained by doing three
simulation runs — which usually requires a few seconds.

The remainder of this paper is organized as follows. In Section 2 we discuss some of the related
work in the field. In Section 3 we present an overview of the components of our simulation package.
Then, in Section 4, we describe the profiling process, and how the profiled results generation time
distribution functions. In Section 5 we compare the simulator’s predictions for selected configura-
tions with corresponding on-line playout performance. Finally, we give some concluding remarks
in Section 6.

2 Related Work

In this paper we concentrate on simulating the entire playout process; hence we model many of
the components involved at a fairly coarse level. Alternatively, other researchers have constructed
detailed models of certain key components, and then subjected them to simulated video workloads.
In particular, IO subsystems have often been studied in this manner. For example, the results
in [8] illustrate the performance of various disk-scheduling algorithms, when tested with synthetic
video simulations. For single video streams, decent performance was shown to be realized by
both CSCAN and SCAN-EDF — a hybrid of the traditional SCAN technique, and the “earliest-
deadline-first” strategy used in real-time thread schedulers. Another technique, the Group Sweeping
Scheme [5], is a hybrid of round-robin and SCAN. A number of “groups” are scheduled via round-
robin, whereas within each group the SCAN algorithm is used. To a large extent, this allows for
compromising between the disk-head’s ability to “sweep up” physically neighboring blocks, and the
temporal requirements imposed on concurrent, time-based media streams.

We do not capture this aspect (and other aspects) of the IO architecture, for two basic reasons.
The first is fairly simple: if one wishes to use off-the-shelf disks, then one must live with the
vendor-supplied, proprietary policies which are hard-coded into controller’s micro-program. (On
the positive side, however,disk controllers are increasingly being optimized for “multimedia systems”
— which usually translates into good “sustained” read/write performance over contiguous blocks.)
However, the second reason we abstracted out disk-scheduling — as well as internal disk caching — is



somewhat more subtle: we found that for single-client workloads, details like these are “smoothed
out” during the simulation’s datapath; especially when the end-point, monitored process records
frame-display times. As we show in the sequel, for our purposes an 10 device can be sufficiently
modeled by its rate and latency distributions.

Although described in the context of networked video, Stone and Jeffay’s [10] queue monitoring
method is quite similar to the way our playout loop manages jitter. As they have found with
networked traffic — and as we have found in dealing with IO and compression software — a balance
must be found between a stream’s jitter and its delivery rate. They prescribe a feedback policy
to dynamically adjust of display latency, which supports low-latency conferences with acceptable
gap-rates.

A related issue is achieving graceful degradation of service in the event of network congestion.
One approach to this problem is for the client to adaptively scale the playback rate by determin-
istically dropping some of its frames. This is the approach taken in the the Nemesis [7] project,
which uses a predictive prefetch algorithm to scale a client’s input streams. This is also the ap-
proach taken in Vosaic [11], which uses its own specialized a real time variant of UDP, and allows
the server to scale its transmission by the feedback it receives from the client. As we show in the
following section, these techniques are similar to our system’s feedback loop — however, since we
concentrate on single-client streams, the rate adjustments can obviously be made faster.

Chen and Kandlur describe a player in [2], which, like ours, is a stand alone client station player.
However their emphasis is on supporting VCR playback capabilities, such as forward and backward
playback for an MPEG encoded video stream. For display, a video is first downloaded from the
server in entirety; then during playback the stream is converted to a local form, by separately
segregating all P frames and I frames. In this manner, a rough backward playback is simply a
matter of displaying a series of I frames.

The system described in [1] scales not only the rate, but also the spatial resolution of a video
stream. This is done by packaging three versions of every frame, with each offering a monotonic
improvement over the previous one. The first is a 160x120 abstraction of the original picture; the
next is the residue term which, when added to the 160x120 image, achieves a resolution of 320x240.
The final version is another residue which can be added to the 320x240 image, resulting in full
640x480 resolution. At any point in the process the codec can stop improving the current frame,
and proceed to the next. Of course, this flexibility is achieved by using a custom codec, which was
designed specifically for this purpose.

Our focus on 10 and data paths is echoed in [4], which proposes a means of optimizing the
transmission of compressed videos. A splice mechanism is introduced, in which an application can
associate a kernel-level data source with its sink point; this allows for a direct point-to-point data
path between source and sink, obviating unnecessary kernel interference.

3 System Overview

Our simulation engine was designed to quickly and accurately predict video playback performance on
a range specific platform configurations. To achieve this goal, we have to balance several competing
objectives. First, our model should be sufficiently abstract to produce quick results, yet sufficiently
fine-grained to yield accurate information. Second, we require a way to isolate the roles of the
particular CPU type, the SCSI device, and the video characteristics — and reproduce their individual
effect on playback performance via simple time-distribution functions. Third, we need a means of
combining and scaling these separately generated functions into simulated on-line behavior.

In this section we give an overview of our approach. First, we discuss the datapath and semantics
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Figure 2: Our software playback system.

of our playout software. Then we discuss our simulation model, and describe how we have structured
the time-generation input files.

3.1 The Player Structure

Figure 2 depicts the structure of our playout software, which is composed of three threads and
two callback functions. As the figure shows, the system operates as a simple feedback loop. Based
on the player’s past performance, the Predict thread selects a set of frames to be played in the
future, and inserts their IDs into the Request Queue. The I0Control thread removes them, looks up
their corresponding file locations, and initiates the appropriate asynchronous IO commands for the
SCSI manager. If there are requests for (physically) neighboring frames, the IOControl thread will
attempt to bundle as many neighbors as possible within a single IO transfer. By bundling adjacent
frames the I0Control thread (and all associated SCSI handlers) can execute less frequently; this
CPU time can be better used by activities such as decompression.

When an 10 operation completes, its associated callback function preemptively executes, like
an interrupt service routine. It inserts a pointer to each transferred frame into the Frame Queue.
They subsequently get removed by the Display thread which, according to its real-time movie clock,
will either display the associated frames, or just discard them. If the frames have been delivered
on time, then they get decompressed by the codec.

Part of the Display thread’s job is to update feedback information for the Predict thread, which
is done at every time interval A. (For the results displayed in the sequel, A was set to %sec.) The
feedback is in the form of a predicted playout rate for the next interval, and the Predict thread
uses it to dynamically scale its prefetch rate. This scheme is partially aided by the scheduler, which

ensures that the Predict thread gets at most most % second ahead of the Display thread.

Let t be a multiple of A, Ryovie the digitized rate of the video, and let PR(t) be the predicted
playback rate for the time interval [¢, ¢+ A]. Then if we let R(t) be the rate that the Display thread
actually achieved during the interval, PR(t + A) is calculated as follows:

ax R(E)+ (1 —a)x PR() if R(t) < PR(t)

PR(t + A) - mm(R(t) +c, RMOVIE) if R(t) = PR(t)

where for the experiments reported in this paper, we set @ = .85 and ¢ = 1. In other words,
when playback falls behind its predicted rate, we exponentially average the old prediction with the
achieved rate. (This is to smooth out sporadically large frame sizes, or abnormally high decom-
pression times.) But when playback meets its prediction, we gradually ratchet up the new prefetch



rate, so that eventually the highest potential quality can be realized.

The objective of our design is to let the system achieve a steady state, so that IO and playback
are always working in parallel, at their full capacity. This means the Display thread should never
have to wait for a frame — the 10 should always have prefetched it ahead of time, while the Display
thread was processing a previous frame.

Keyframes. Our scheme is complicated by the existence of keyframes (which are analogous to
I-Frames in MPEG [9]); e.g., if a keyframe is dropped, then the the interpolated sequence following
has to be discarded. Thus, while PR(t) is the current predicted rate, the Predict thread cannot
simply fetch frames at a constant frequency. First a decision is made whether an entire sequence
will be avoided. If not, its keyframe is requested, as are selected interpolated frames within the
sequence. The Display thread may end up only decompressing — but not playing — the keyframe,
so that it can be used to display its dependent, interpolated frames.

Sound. The player software interacts with the sound card via a simple double-buffering scheme.
When one buffer is almost finished being played, the sound card triggers a callback routine, and
then switches to the other buffer. The sound callback routine places 10 requests for sound samples
on the Request Queue. Unlike video, sound samples cannot be dropped, and so the IO thread gives
them priority.

3.2 The Simulation Engine

The simulation engine basically mimics the control and data paths of the player software itself.
The threads are represented by discrete events — called predict, display and IOControl — with
time distributions corresponding to their CPU cost per one service, on a specific host. Additional
events represent playback activities like decoding (decode), SCSI device callbacks (I0callback),
and sound card callbacks (SNDcallback). The final two events are assigned to the scheduler’s
activity (schedule) and context-switch overhead (switch). Events are placed on a “ready queue,”
and dispatched by the same protocols as their system-level counterparts. For example, the events
corresponding to scheduler-controlled actions (e.g., threads) are dispatched in FIFO order, while
asynchronous, device-related events (e.g., I0callback, SNDcallback) execute via a specific firing
time. The simulator’s internal clock is updated after an event is completed.

The raw output of a simulation run is a list of all frames processed, accompanied by flags
denoting whether the frames were played or dropped, and if played, their simulated display time.
From this list, the tool produces several statistics, including the movie’s mean playback rate, and
its rate variance over 1-second intervals. Also, if a developer wishes, the display-time list can be
used as input to a previewer, which allows watching the movie from the context of the simulated
workstation.

3.3 Platform Profiling

The profiling tools create hierarchical models of the 10 device and CPU platform, which are col-
lected in the simulator’s repository. Before a simulation run, the user “assembles” a platform by
selecting particular models of CPU and SCSI devices. Then, the simulation engine interacts with
these models to update its clock during the run.

Fach device model is, in fact, a collection of time generating functions. Figure (3) displays
the directory hierarchy which the simulator accesses. The IO model contains a single distribution
function, which captures both the deterministic and stochastic properties inherent in the device’s
transfer time. The CPU model, on the other hand, is composed of distribution functions for the
player software itself, in addition to a set of codec-related decompression times for all codecs profiled
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Figure 3: Hierarchy of virtual device models. Users select 10 and CPU devices. The simulator
extracts codec-related statistics, using the input movie header.

on the particular CPU.
In the next section we discuss these distribution functions in detail, and show how the 10 and
CPU models are composed to produce a single system model.

4 The Time Distribution Functions

The simulator’s eleven time variables (listed in Table 1) range over values produced by their
respective time-generating functions. Some of these have deterministic inputs (as well as stochastic
residuals), while others are purely stochastic. Table (2) categorizes the time variables by their
underlying distribution functions, and lists their deterministic indices if they possess any.

Each function is generated by its corresponding profiler tool, which collects a trace of discrete
time-samples, and indexes each sample with its deterministic input (if any). The profilers for CPU-
centric variables are basically modified versions of our playback software, which collect the response
times of each player component in isolation. The entire process is controlled by an executive, which
repeatedly feeds a number of test clips into each profiler, until all of the sample traces have been



‘ Model ‘ Variables ‘

10
10 transfer time T
CPU
Display execution time Tory
Predictor execution time Thre
I0Control execution time Troe
Schedular execution time Toch
10 callback execution time Tio—ch
Context switching overhead Tonts
Sound callback execution time Tond—ch
Movie Header/codec
KeyFrame decode time They
Intermediate frame decode time | T}
Sound chunk play time Tond

Table 1: The simulator interacts with these eleven random variables to update time.

constructed. The test clips were produced to cover a range of video characteristics (codec, frame
dimension, color depth), and they vary in content (range of motion, color intensity).

The IO profiler, on the other hand, is independent of any playback activity, and simply measures
asynchronous SCSI transfer times (indexing the results by the size requested).

Time Time
Generator Function Variables Steps | Deterministic Index (x)
Deterministic | L(z) + R=Y(u) | T; 103 Number of bytes transfered
+ Tintr 10% Size of compressed frame

Stochastic Toiys Tores Troc, Tio—ch 103 Number of iterations

Tend 103 Size of sound chunk
Pure Stochastic | F'~1(u) They 10% none

Tscha Tsnd—cba Tcnts 105 none

Table 2: Time variables and their distribution functions.

Time sample post-processing is handled in two different ways, depending on whether the un-
derlying variable has a deterministic component. We summarize the two methods here:

Pure stochastic variable: In this case the time-sample list is sorted as a histogram — divided
into either 10® or 10* buckets (depending on the range and variation of the recorded process).
Then, the histogram is normalized to the interval [0, 1], which yields a (synthesized) discrete
probability distribution function (or pdf) f(¢) for the variable, where we now assume that a
given outcome is made as a simple Bernoulli decision. Le., f(¢) returns the probability of a
sample time ¢ being realized during playback on the device. Next, f’s cumulative distribution
function F(t) is produced, and the output of the entire process is F~!(u), the CDF’s inverse
transform, where u is uniformly distributed in [0,1]. The simulator uses this function to
generate random response times, in concert with a dedicated random number generator.

Deterministic/stochastic variable: The sample trace is linearized by its deterministic index,
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Figure 4: 10 time-sample postprocessing, clockwise from top left: (1) Recorded response times
for requested sizes; (2) Linearized response times; (3) Residual function; (4) Inverse-transform of
residual CDF.

via a least-squares fit. (E.g., in the case of 10 transfer, the profiler creates a line capturing
the relationship between transfer-time and request-size.) Then, it generates the the residual
deviations between the synthesized line and the recorded samples, sorts them in histogram
form, and creates the corresponding inverse CDF, as in the stochastic case.

4.1 Profiling and Component Time Distributions

(1) 10 Profiling: A device’s 10 datapath is abstracted using a single variable, indexed by the
requested transfer size. This includes all factors such as the device’s head latency and rotational
delay, its internal caching mechanisms, the SCSI control signals, the SCSI-IO bus latch setup times,
the DMA control, all the way to the end-point — which is the final DMA interrupt at the host.
While this model may seem somewhat coarse, we have consistently found that the transfers involved
in video are large enough to “smooth out” the effects of intermediate hops along the 10 datapath.
In other words, pure transfer times typically dominate the cost of the device’s response overhead —
and the intermediate factors can be treated in a stochastic fashion.

Our 10 profiler samples sustained transfer times by requesting a variety chunk sizes, which
start at 2 Kbytes and increase in 2 Kbytes increments up to 2 Mbytes. A given request starts at a
random disk location, and measures the chunk’s elapsed response time, from the initial 10 call to
the the first statement in the callback routine.

Figure 4 illustrates the post-processing that takes place after all samples are collected. First,
the least-squares fit L(size) is constructed from the list of response times and their corresponding
sizes. Then, a residual sample function is created, i.e., for every time sample (size;,time;), the



distance r; from the line is calculated:
V(size;, time;) 1 r; = time; — L(size;)

Then, from the frequency histogram for the r;, the inverse CDF-transform R~!(u) is generated.
Finally, at simulation time, we get our 10 time variable as follows:

Tio = L(size) + R™(u)

where “size” is the number of bytes requested by the simulated 10 thread, and u € [0, 1] is obtained
via a random-number generator.

(2) CPU Profiling: The CPU-based playout software itself is modeled by the variables T),,
Tores Trocs Tio—chs Tonds Tochy Tond—ch and Tepgs, which represent execution times for the different
segments active during playout. These variables do not cover that wide a range of variation, and
their corresponding pdf’s are discretized into 10° steps each.

Among these variables, Ty, (scheduler execution time), Ty,q—cp (sound card’s ISR callback),
and T,..s (context-switch overhead) are all modeled in a stochastic manner, and their variation is
due mainly to second-order factors like cache affinity, pipeline state, etc. On the other hand, the
thread processing times — T}, T}y and Tjo. — have deterministic components, and they depend
on the number of activities performed during one scheduled service of the thread. For example, the
Predictor may issue anywhere from 1 to 25 frame requests, and this number does have an impact on
the CPU time used. There are similar factors which affect the cost of the Display and 10 threads.

The remaining CPU-based variables, T7o. and T4, also have deterministic components. The
10 callback’s execution time, T, is deterministic in the number of frames it places on the Finished
Queue. Also, the sound playout time T, 4 is proportional to the number of samples in a given sound

chunk.

(3) Codec Profiling: While the decode times are also processor-dependent, their distributions
are grouped according to the specific codec used, the video’s frame dimensions and color depth.
The profiler instantiates these variables, and then gathers frame-by-frame decode times for several
test videos corresponding to the current instantiation. In these tests, [0 and decompression are
performed serially, thus isolating decode time as a dedicated process. This is done by repeatedly
transferring sequences of frames into memory, then freezing all IO driver activity, and then mea-
suring the frame-decode response times. This continues until all frames in the test clips have been
decompressed and measured.

There are two time variables associated with decompression — T}, for intermediate frames, and
They for keyframes — and they have markedly different distribution functions. As for T}, we have
consistently observed that QuickTime’s interpolated-frame decode times are directly related to the
size of the compressed frame. Hence, T}, is generated in the same manner as T;,: The profiler
first compiles a list of frame sizes and their corresponding decompression times; then it generates
the least-squares fit, and finally it produces the residual’s inverse-CDF'.

As for T}y, its values form a pronounced step-function, indexed by the displayed frame dimen-
sionality — along with some stochastic noise at each step level. Hence, this leads to separate time
functions for different frames dimensions (we currently only profile 4:3 dimensions, e.g., 640x480,
320x240 and 160x120). Our profiling tool collects sets of time samples at the three modeled dimen-
sions, and then produces their inverse CDF's to represent the noise at each level. Thus, in Table 2,
They is shown as a purely stochastic variable, since it is indexed in a “global” sense, and used for

10
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the duration of a video run.

4.2 Composing CPU and IO: Interference Modeling

While 1O transfers and CPU activities are profiled separately, the simulator has to compose the
two models to “build” an abstract platform. For many parameters (such as thread-execution times),
this is simply a matter of using the two separately generated distributions in a given simulation
run, without adjusting either of them. Unfortunately, this is not the case for decode times, which
use most the CPU and memory cycles available — and are thus quite sensitive to interference cause
by IO transfers. Recall that most decode activities are pipelined with 10 — and these two functions
share many of the same resources. For example, often the SCSI driver has to handle multiple
block-based DMA interrupts to assemble frames, and the DMA itself steals memory cycles from
the codec software. Hence, when decoding and IO requests overlap, these stolen cycles serve to
lengthen the codec’s actual completion times. During a simulation run, this interference has to be
recaptured.

We use the following process: As part of a CPU’s profile, we measure the 10 interference
produced by any SCSI disk attached to it (usually just the internal drive). This interference factor
is stored with the CPU abstract model, along with the tested device’s transfer rate. Then, when the
simulator builds a system model using another 10 device, the CPU’s interference factor is scaled
by the new device’s mean transfer rate.

Specifically, let Bcpui,io,,, be the percentage overhead realized by C'PU1, when configured
with its internal internal drive 1O;,;. We capture Scpui io,,, by running a series of decode tests
on C'PU1 without any 10O active, and then re-running the same tests with 10, active throughout
every codec activity — which then yields the mean percentage difference between the two series of
readings.

Then, to construct the interference model for C' PU1 configured with some new device 10,
we scale 8cpui,10,,, as follows:

E[Ratejonew]

— X
BCPULIOmw = BOPULIO M, E[Ratejo

int]

where E[Ratejo, ] and E[Ratejo, ] are the mean transfer rates on the new device and the old
(internal) device, respectively. While this is a fairly coarse abstraction, it produces a sufficient

model of interference, and one which proved fairly accurate in our on-line tests. The method works

11



for one basic reason: a CPU (equipped with a set of given drivers) executes its SCSI interactions in
a fairly consistent way, regardless of the device connected. Since a constant amount of interference
is realized whenever a block is transfered, the percentage overhead is roughly proportional to the
data transfer rate into the system. (A fast SCSI device, especially with the same blocking factor,
will produce more interference than a slower device.)

As an example, on the PowerMac 7100/66, we measured g6 10,,, to be 0.057,in a configuration
with a local transfer rate of 2530 Kbytes/sec. When we simulated the the 7100/66 with an external
drive — which had a transfer rate of 3700 Kbytes/sec — we used fg6,70.,, = 0.057 X (3700/2530),
or 0.083. When we actually connected the external disk, this interference factor proved roughly
correct within 15% accuracy, which sufficed for our purposes.

Now, when the simulator is actually run, there are two interference scenarios which have to be
treated separately. These two cases are depicted in Figure 5, where §;, and F;, denote the start
and finish times of the current 10 transfer, and where 5; and F; denote that start and finish times
of the simulated decode, respectively. In the first case, decode-time is completely overlapped by
10, while in the second case, decode activity is only partially overlapped by 10 — however it is
interrupted by the 10 callback, which also has to be taken into account. To adjust decompression
time for these two scenarios, first Tyecode is computed from Tye, or Tiny,, according to the frame
type, and then scaled up to T}, . using the current fcpy 1o factor:

Case (a):
Tc/lecode = ; X Tgecode
1 = Beru,io
Case (b):
Tiecode = Bopuio X (Fio — Sa) 4 Taecode + Troc

When 10 and decompression do not overlap, T7... .. = Tdccode-

In theory, while interference applies to all other CPU activities in the player, we note that in
practice it has negligible affect. This is due to a simple fact: the durations of the other CPU
activities are about an order of magnitude shorter than decoding, and the overhead percentage is
relatively small itself. Hence, we have sacrificed a bit of accuracy for the sake of quick simulation
results.

5 Simulation Engine and Test Results

The Engine. Table 5 overviews the simulator’s internal transitions, and the queuing protocols
used for each event. Asits initial configuration, the event queue contains two elements: soundISR as
its first member, and schedule asits second. From this point on the events take over, and handle the
simulation run until the movie’s last frame and sound sample are processed. Dispatching is handled
in FIFO order, except in the case of (1) SNDcallabck, which re-schedules itself to asynchronously
fire again after the current sound chunk is finished; and (2) I0callback, which is scheduled by 10
thread to fire when a simulated 10 transfer is complete.

Results. In this section we compare some results of the simulator’s runs with corresponding
performance on our playback software. For these tests we used three Macintosh CPUs, (1) a
PowerMac 7100/66, (2) a PowerMac 7100/80 and (3) a PowerMac 7500/100. The external 10
devices were a Seagate ST12400 (with read transfer rates of 2800Kbytes/sec) and a Quantum
XP34300 drive (with higher transfer rates of 3700Kbytes/sec) (see Table 4).
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Event ‘ Dispatch Time ‘ Duration | Events Spawned

predict FIFO Thre switch, schedule

display FIFO Tory switch, schedule, decode

I0control FIFO Troe switch, schedule, IOcallback
schedule FIFO Tscn switch, display, predict, IOcontrol
switch FIFO Tonts -

I0callback | Tspwn + Tio Tioch -

SNDcallback | Tspquwn + Tsnd Tond—ch SNDcallback

decode FIFO T evode -

Table 3: Relating the time variables to simulator events. The variables denote the duration or
relative dispatch time of an event.

For our test videos, we digitized and compressed two scenes from the popular movie “Pulp
Fiction.” Both clips are approximately one minute long, and both were digitized from clean tape,
using a Radius VideoVision M-JPEG board at 30fps, with minimal signal loss. Then the clips
were re-compressed into the Cinepak codec, at full 24-bit 640x480, again at 30fps. The keyframe
distributions were varied from 1 per 30 frames, up to 1 every frame (i.e., all keyframes). Here we
give the results for 1 and 10 keyframes per frame, respectively. A synopsis for the clips is given in
Table 5.

In Table 6 we show a combinatorial set of results, ranging over the four videos, the two disk
drives, and the three workstation models. Before the simulation phase we built the abstract device
models as described above, and we profiled each component in isolation with its own local SCSI
disk. (We note that the profiler’s test videos do not include the Pulp fiction clips; they are much
shorter, and range over different codecs and frames sizes.) Then the simulator assembled the six
different systems from its repository file — scaling the respective 8¢ py,10’s to suit the two external
devices. Fach simulation took approximately one second to run on a Sun SPARCstaion 5, and they
used the header files from the test clips as as their input.

Note that the differences between the simulator’s prediction of playout performance, and the
actual monitored performance, range between 0% to 7% — and the predictions may err either on
the optimistic or pessimistic side.

On the PowerMac 7500/100, the percentage differences in playout rate are almost zero (and
exactly zero in 3 instances). This is due to the fact that the 7500/100 is capable of displaying
all video clips at Ryovig; likewise the simulator achieves the same rates. On the 7100/80 and
7100/66, the simulator reflects the lower achievable frame rates. The greatest disparity is realized
on the 7100/66 with the Quantum disk, during playback of Intercom/1.

CpPU Local Disk
Platform Processor Bus Bcpu,io Transfer Rate

7100/66 | PPC 601 - 66MHz | NuBus | 0.057 | 2530 Kbyes/sec
7100/80 | PPC 601 - 80MHz | NuBus | 0.053 | 2600 Kbytes/sec
7500/100 | PPC 601 - 100MHz | PCI 0.031 | 3100 Kbytes/sec

Table 4: System characteristics of CPU platforms.
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Key Frame Total Size Length

Name Distribution | Number of Frames | (Mbytes) | (secs)
Jack Rabbit Slim’s/1 1 1950 145.7 65
Jack Rabbit Slim’s/10 10 1950 91.1 65
Intercom/1 1 1920 141.1 64
Intercom/10 10 1920 94.8 64

Table 5: Video characteristics of test movies. All movies are full-frame, cinepak videos digitized at
30fps.

10 Devices
Seagate Quantum
CPU Video Simulator | Player | Simulator | Player
Jack Rabbit Slim’s/1 17.77 17.18 19.08 18.58
Jack Rabbit Slim’s/10 22.66 23.68 25.17 24.69
7100/66 | Intercom/1 17.38 16.39 16.64 17.98
Intercom/10 21.38 22.12 22.69 21.86

Jack Rabbit Slim’s/1 21.98 21.92 21.85 21.97
Jack Rabbit Slim’s/10 27.83 28.49 28.12 28.75
7100/80 | Intercom/1 22.02 21.88 21.75 21.97
Intercom/10 25.33 25.97 25.75 25.97

Jack Rabbit Slim’s/1 29.98 29.98 29.98 30.00
Jack Rabbit Slim’s/10 29.95 30.00 29.97 29.98
7500/100 | Intercom/1 29.98 29.98 29.98 29.98
Intercom/10 29.89 30.00 29.92 30.00

Table 6: R(t) of the video clips, generated from the player and the simulator.
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Figure 6: Comparison of the player and the simulator. Dashed lines denote the simulator and solid
lines denote the player.

While the simulator is quite good at capturing average rates — over the course of an entire clip —
it is less accurate on a per second basis. Figure (6) displays second-by-second playout performance
for a subset of the experiments. Note that on the 7100/80 and 7100/66 (which are forced to drop
frames in both simulation and true playback), there seem to be large variations in several trials.
But this is to be expected. While we have modeled many of the time variables as pure Bernoulli
decisions, they do, after all, have some deterministic causes. And in fact, the playout software can
never even repeat its own second-by-second pattern, when when tested multiple times with the
same clip. The differences lie in the system’s inherent nondeterminism, which includes (1) varying
behavior of the SCSI handlers, (2) differences in the callback firing times, (3) the pattern of IO and
decode pipelining, as well as many other factors.

As afinal fidelity test, we fed simulator’s display-time lists to a previewer, and used the 7500/100
as a “viewing platform” to “watch” the timelines generated by the simulated 7100/66 and 7100/80.
Esthetically, actual playback and simulated playback were visually equivalent, and that the disparity
displayed in our second-by-second graphs was not visually discernible.
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6 Conclusion

In this paper we described our prototype simulation package, which allows developers to quickly
estimate performance of video clips running on different target platforms. The advantages of
such a system are fairly obvious: it gives a reasonably accurate representation of video playout
traces, which can then be used for extracting performance statistics, and for “viewing” the target’s
simulated behavior on a (superior) video production system. As long as the target models are
in the simulator’s repository, one can forgo actually buying the actual system, or even any of its
component devices. This scheme, of course, relies on someone having profiled the components, but
this need only be done once, and the component models can then be shared.

Note that there is a fairly simple reason why we can achieve a high level of accuracy: while
many of the time variables have stochastic parameters, the simulator’s main input — i.e., the
movie’s header itself — is completely determined in advance. Since the header contains the essential
characteristics of every frame, these can be used as deterministic inputs for the time generating
functions. In addition, we also note that video playout itself is significantly more deterministic
than almost any other type of computer workload.

We are extending this work in several directions. First, we are expanding the device models
to include various multi-spin CD-ROMs, which are now capable of delivering full-frame video at
reasonable rates. Second, we are expanding the codec models to include higher resolutions, as well
as different codec types (including software-only MPEG). Finally, we plan to extend our method
to include hardware-codecs as well; we believe that the same profiling and simulation methods can
be applied in a fairly straightforward manner.
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