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Abstract

In this report we address the problem of nonlinear filtering in the presence of integer uncer-
tainty. In the simulation results we show that particle filtering is capable of resolving integer
ambiguity in the given nonlinear setup. Motivated by these results we introduce particle filtering
for an exponential family of densities. We prove that under certain conditions the approximated
conditional density converges to the true conditional density. For the case where the conditional
density does not lie in an exponential family but stays close to it, we show that under certain
assumptions the error of the estimate given by this approximate nonlinear filtering, projection
particle filtering, is bounded. In the simulation results we show the application of particle
filtering to Global Position System (GPS).

1 Introduction

GPS provides world wide positioning with acceptable accuracy, if four or more satellites are in view.
Although the satellite constellation guarantees availability of four or more satellites (sometimes
even nine) world wide, natural or man-made obstacles can easily block the satellites’ signal. To
overcome this vulnerability, one might think of integrating dead reckoning or Inertial Navigation
System (INS) with the GPS [1][2][3]. In this case, the INS or the dead reckoning provide positioning
that is adjusted by the GPS.

Using differential GPS allows the user to have a more accurate measurement. In fact, a good
portion of the positioning error can be removed from the estimation. This and new technology allow
the use of the carrier phase as part of the positioning information. This can increase the accuracy
of the estimation to centimeter, or in the static case, to millimeter levels. This can happen only if
we are able to estimate the number of full cycles of the carrier phase, which cannot be measured.
This problem is called integer ambiguity resolution [4][5] [6][7].

Although carrier phase differential GPS allows for very accurate positioning, it is very sensitive
to obstacles that can block satellite signals and cycle slips. A good estimation algorithm should be
able to quickly estimate the integer ambiguity on the fly. Most of the algorithms use integer least
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square methods for this [6][7][4]. In [4] a Kalman filter type of setup is used to estimate the
integer ambiguity.

In most of the applications, integrated INS/GPS, dead reckoning/GPS, or vehicle dynam-
ics/GPS, linearization of the dynamics and the GPS observation is the main tool for estimation
[6][7][4]. It can be shown [3] that when the number of satellites is below a certain level or the
geometry of the current constellation is near singular, the linearization causes the system to be
unobservable. In this case, it is important to use a nonlinear setup for the estimation problem. In
[3] this case is studied by using an approximation for nonlinear filtering [8][9].

Except for very special cases in nonlinear settings, estimating the state given the observations
results in an infinite dimensional filter [10]. Therefore, approximation methods of finite dimension
are very appealing. The most widely used approximation filtering method is the Extended Kalman
Filter (EKF), which is a heuristic method based on the linearization of the state dynamics and
observation near the nominal path [10]. EKF is computationally simple but, the convergence of
the conditional distribution to the actual distribution is not guaranteed.

Projection filtering is another approximation method [11][12][13][14]. In projection filtering it is
assumed that the conditional density of the state of the system can be approximated by a member
of parametric family of densities. In this case, estimating the conditional density is equivalent to
estimating the parameter of the family. In [11][12][13] the exponential family of densities is chosen
as the parametric family. In [14] the approach is different; there a Galerkin approximation is used
for solving the Fokker-Planck equation [10].

An entirely different approach to approximate the conditional density was proposed in [8][9].
This method is based on the Monte Carlo method and is called particle filtering. In this method,
the particles at time ti are i.i.d. random vectors that are distributed according to the empirical
conditional distribution of the state, given the observations up to time ti. These particle/state
vectors are used in the state equation to find the values of particles at time ti+1. Then at time
ti+1, the empirical distribution is evaluated according to the values of the particles. The new
observation at time ti+1 is taken into account through Bayes’ Rule to calculate the conditional
empirical distribution, and this process can be repeated. In [8] it is proved that by a large enough
number of particles, one can get an approximate conditional distribution that is arbitrarily close
to the true conditional distribution.

In the cases where we have some prior information about the distribution, we should expect
to achieve higher performance if we take this information into account. By higher performance,
we mean a reduction in the computational cost and an increase in the convergence rate. Here
we assume that the conditional distribution has a density in an exponential family of densities,
or at least stays close to it in a sense that we will define. Using this assumption, we replace the
empirical distribution in [8] with the Maximum Likelihood Estimate (MLE) of the parameters of an
exponential density. We call this new method projection particle filtering. In Theorem 5.6 we show
that if the conditional density of the state given the observations lies in an exponential family of
densities then the estimated conditional density converges to the true conditional density in a sense
that will be defined. In Theorem 6.7 for the case where the true conditional density stays close
to an exponential family of densities we show that the error of the estimate given by projection
particle filtering is bounded.

To use nonlinear filtering methods for carrier phase differential GPS, one should be able to
include the integer ambiguity resolution in these methods. In this report we present some simulation
results which show that particle filtering, with minor modifications, is capable of resolving integer
uncertainties present in a problem similar to carrier phase differential GPS. One problem of particle
filtering is the need for large number of particles. This problem is even more important for the
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cases where integer uncertainty is present. The writers are optimistic that particle filtering for
exponential families of densities is more suitable for nonlinear filtering with integer ambiguity.

In this report, Section 2 states the nonlinear filtering problem. In Section 3 we review the
results in [11][12][13] on projection filtering. In Section 4 we explain particle filtering and we state
the results in [8][9]. In Sections 5 and 6 we introduce a new particle filtering and we state the main
results of this report. In Section 7 we apply the particle filtering to a nonlinear system with integer
uncertainty and we present the simulation results. In Section 8 we discuss the future research on
this subject.

2 Nonlinear Filtering, Problem Setup

Filtering problems consist of “estimating” the process {xt} (or something about it) given the
related process, {yt}, which can be observed [15]. The observation is available in an interval, i.e.,
{ys, 0 ≤ s < t} and the function of the state is estimated at time t. To proceed, we need to give
some structure to the concerned processes.

We assume that all stochastic processes are defined on a fixed probability space (Ω, F, P ), and a
finite time interval, [0, T ], on which there is defined an increasing family of σ-fields, {Ft, 0 ≤ t ≤ T}.
It is assumed that each process, {xt}, is adapted to Ft, i.e., {xt} is Ft-measurable for all t. We
assume that {xt} is a vector diffusion process of the form

xt = x0 +
∫ t

0
fs(xs)ds +

∫ t

0
Gs(xs)dws, (1)

where xt ∈ Rn, and wt ∈ Rq is a vector from an independent Brownian motion process; the
second integral is in the Ito sense [16], and the function ft(·) and the matrix Gt(·) have the proper
dimensions. The observation, yt, is a discrete time process given as follows:

ynτ = hn(xnτ ) + vn, (2)

where ynτ ∈ Rd, and vn ∈ Rd is a discrete time white Gaussian noise process with zero mean and
known covariance matrix. The state dynamics and observation equations can be rewritten formally
as follows:

dxt = ft(xt)dt + Gt(xt)dwt, given the distribution of x0

ynτ = hn(xnτ ) + vn
(3)

The noise processes {wt, t ≥ 0}, and {vn, n = 0, 1, · · ·} , and the initial condition x0 are as-
sumed to be independent. We use Qt and Rn for the covariance matrices of the processes wt and
vn, respectively. We assume that Rn is invertible for all n’s. We have the following additional
assumptions [17]:

A 2.1 [local Lipschitz continuity] ∀ x, x′ ∈ Br and t ∈ [0, T ], where Br is a ball of radius r, we
have

‖ft(x)− ft(x′)‖ ≤ kr‖x− x′‖, and
‖Gt(x)QtG

T
t (x)−Gt(x′)QtG

T
t (x′)‖ ≤ kr‖x− x′‖. (4)

A 2.2 [Non-Explosion] There exists k > 0 such that

xT ft(x) ≤ k(1 + ‖x‖2), and
trace(Gt(x)QtG

T
t (x)) ≤ k(1 + ‖x‖2). (5)

∀ t ∈ [0, T ] and ∀ x ∈ Rn.
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Under Assumptions (A2.1) and (A2.2), there exists a unique solution {xt, t ∈ [0, T ]} to the
state equation, and xt has finite moment of any order [17].

In addition to these, we assume that the probability distribution of the state xt, given the
observation up to time t, πt(dx) = P (xt ∈ dx|yt), where yt = {yn, i = 1, · · · , n, nτ < t}, has a
density pt with respect to the Lebesgue measure on Rn. Then {pt, t > 0} satisfies the following
partial differential equation and updating equations [12]:

∂
∂tpt = L∗t pt nτ ≤ t < (n + 1)τ, and
pnτ = cnΨnpnτ−

(6)

where

L∗t (Φ) = −∑n
i=1

∂
∂xi

[f i
tΦ] + 1

2

∑n
i,j=1

∂2

∂xi∂xj
[aij

t Φ],

[aij
t ] = GtQtG

T
t ,

Ψn(x) 4= exp
(
−1

2(ynτ − hn(x))T R−1
n (ynτ − hn(x))

)
,

and cn is a normalizing factor.
Except for the linear Gaussian case, and some very special nonlinear cases, solving System (6)

constitutes an infinite dimensional filter [10]. Therefore, for practical problems it is necessary to ap-
proximate the conditional density in (6). In the next section, we discuss one of these approximation
methods.

3 Projection Filtering on Exponential Families of Densities

This section is mainly a review of the results we use from [12]. We start this section with the
definition of the exponential family of densities.

Definition 3.1 Let {c1, · · · , cp} be affinely independent 1 scalar functions defined on Rn, and as-
sume that the convex set

Θ0 =
{

θ ∈ Rp : Υ(θ) = log

∫
exp

(
θTc(x)

)
dx <∞

}
,

has nonempty interior. Then,

S = {p(·, θ), θ ∈ Θ}
p(x, θ):= exp

[
θTc(x) −Υ(θ)

]
,

where Θ ⊆ Θ0 is open, is called an exponential family of probability densities.

We denote by S 1
2 the space of square roots of the densities in S , i.e., S 1

2 = {√p(·, θ); θ ∈ Θ}.
If p(·, θ) ∈ S, then

√
p(·, θ) ∈ L2. The functions 1

2
√

p(·,θ)

∂p(·,θ)
∂θi

, i = 1, · · · , p form a basis for the

tangent vector space at
√

p(·, θ) to the space S 1
2 , i.e., the tangent space at

√
p(·, θ) is given by [19]:

L√
p(·,θ)
S 1

2 = span

{
1

2
√

p(·, θ)
∂p(·, θ)

∂θ1
, · · · , 1

2
√

p(·, θ)
∂p(·, θ)

∂θp

}
. (7)

1{c1, · · · , cp} are affinely independent if for distinct points x1,x2, · · · ,xp+1,
∑p+1

i=1
λic(xi) = 0 and

∑p+1

i=1
λi = 0

implies λ1 = λ2 = · · · = λp+1 = 0 [18].
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The inner product of any two basis elements is defined as follows〈
1

2
√

p(·,θ)

∂p(·,θ)
∂θi

, 1

2
√

p(·,θ)

∂p(·,θ)
∂θj

〉
= 1

4

∫ 1
p(x,θ)

∂p(x,θ)
∂θi

∂p(x,θ)
∂θj

dx

= 1
4gij(θ)

(8)

It can be easily seen that g(θ) = (gij(θ)) = (E[cicj ]− E[ci]E[cj ]) is the Fisher information matrix
of p(·, θ).

Any member of L2 can be projected to the tangent space L√
p(·,θ)
S 1

2 according to the following
projection formula

Πθ : L2 ⊇ V → L√
p(·,θ)
S 1

2

v →
p∑

i=1

p∑
j=1

4gij(θ)
〈

v, 1

2
√

p(·,θ)

∂p(·,θ)
∂θj

〉
1

2
√

p(·,θ)

∂p(·,θ)
∂θi

.
(9)

Projection filtering seeks a solution pt for (6) that lies in S. Of course, this solution is only an
exponential density, but we hope, by choosing the proper family, to keep the approximation error
small (in the L2 sense).

If we consider the square root of the density in (6), we get

∂
√

pt

∂t
=

1
2
√

pt

∂pt

∂t
=

1
2
√

pt
L∗t pt. (10)

Define αt,θ = L∗t pt(·,θ)
pt(·,θ) . We assume that for all θ ∈ Θ and all t ≥ 0, Ep(·,θ){|αt,θ|2} < ∞, which

implies that L∗t pt(·,θ)√
pt(·,θ)

is a vector in L2 for all θ ∈ Θ and all t ≥ 0 [12].

Now assume that in equation (10), for {√pt, t ≥ t0}, starting at time nτ from the initial
condition,

√
pnτ =

√
p(·, θnτ ) ∈ S 1

2 for some θnτ ∈ Θ. Under these assumptions, the right hand
side of (10) is in L2, which can be projected into the finite dimensional tangent vector space
L√

p(·,θnτ )
S 1

2 . The propagation part of the projection filter for the exponential family, S, in the

interval [nτ, (n + 1)τ), is defined as the solution to the following differential equation in the same
interval:

∂
√

pt(·, θt)
∂t

= Πθt

L∗t pt(·, θt)
2
√

pt(·, θt)
. (11)

We also assume that hn(x) in equation (2) is time invariant, i.e., hn(x) = h(x), and the
components of h(x), hi(x), and ‖h(x)‖2R−1 are linear combinations of ci(x), i = 1, · · · , p:

1
2
‖h(x)‖2R−1 =

p∑
i=1

λ0
i ci(x) and hk(x) =

p∑
i=1

λk
i ci(x), k = 1, · · · , d (12)

where ‖x‖A =
√

xT Ax. Then, if vn is stationary with the covariance matrix Rn = R, the likelihood
function Ψn(n) can be written as follows:

Ψn(x) = exp(−1
2(yT

nτR
−1ynτ )) exp(−1

2 (hT (x)R−1h(x)) + (yT
nτR−1h(x)))

= An exp

(
−

d∑
i=1

λ0
i ci(x) +

p∑
k=1

(
p∑

i=1
λk

i z
k
nτ )ci(x)

)
,

(13)

where znτ = yT
nτR

−1, and An is a constant depending on ynτ . Therefore, the coefficient Ψn(x) is
a member of exponential family of densities. This family is closed under multiplication. Using all
of these facts, we can present the following theorem [12]:

5



Theorem 3.2 [Brigo 1996] For system (3), where wt is a Brownian motion process with covari-
ance Qt and vi is a white Gaussian noise with covariance R, we assume (A2.1) and (A2.2) to be

true. We also assume that 1
2‖h(x)‖2R−1 =

p∑
i=1

λ0
i ci(x), hk(x) =

p∑
i=1

λk
i ci(x), for k = 1, · · · , d, and

Ep(·,θ)‖L
∗
t p(·,θ)
p(·,θ) ‖2 < ∞, ∀θ ∈ Θ, ∀t ≥ 0. Then for all θ ∈ Θ, and all t ≥ 0, Πθ

L∗t p(·,θ)√
p(·,θ)

is a vector

on the exponential manifold S 1
2 . The projection filter density, pΠ

t = pt(·, θt) is described by

∂
√

pt(·,θt)

∂t = Πθt

L∗t pt(·,θt)

2
√

p(·,θt)
, nτ ≤ t < (n + 1)τ

pnτ (·, θnτ ) = cnΨn(ynτ )pnτ−(·, θnτ−) ,

and the projection filter parameter satisfies the following combined differential and stochastic dif-
ference equations:

g(θt)dθt = Eθt{Ltc}dt, nτ ≤ t < (n + 1)τ,

θnτ = θnτ− − λ0
0 +

∑d
k=1 λk

0z
k
n,

where

Lt =
n∑

i=1

f i
t

∂

∂xi
+

1
2

n∑
i,j=1

aij
t

∂2

∂xi∂xj
,

and λi
0 = [λi

1, · · · , λi
p]

T , i = 0, · · · , d, and zk
n is the kth component of zT

nτ = R−1ynτ .

Henceforth, we shall use Eθ and Ep(·,θ), θnτ and θn, and pnτ and pn, interchangeably, respectively.
Remark: The differential equation for θt is an ordinary differential equation with the vec-

tor field g(θt)−1Eθt{Ltc}. This vector field should be computed analytically. If the analytical
computation of this vector field is not possible an off-line numerical computation should be carried.

As can be seen from the statement of the theorem, the calculation of the conditional probability
density is reduced to the calculation of the parameter of an exponential family. But, solving the
differential equation in the theorem is not an easy task. At each moment g(θt) and Eθt{Ltc}
need to be calculated. This imposes a heavy computational load. In this report, we introduce a
Monte Carlo method to calculate the parameter of the exponential family with a more affordable
computational load.

Although projection filtering gives a better solution than EKF, there is no known error bound
with which we can compare the distance between the real density and the density given by the pro-
jection filter. In the next section we review particle filtering as an alternative to optimal nonlinear
filtering.

Remark : The assumption on hn(·) and Rn in this are made only to ensure that Ψn(·) is in the
family of exponential densities. These assumptions can be relaxed if Ψn(·) is guaranteed to stay in
the family.

4 Particle Filtering

Consider either the continuous dynamics and discrete observation in (3) or the discrete case,

xn+1 = fn(xn) + Gn(xn)wn, given the distribution of x0

yn = hn(xn) + vn.
(14)

We assume that in both cases, the initial distribution for x0 is given. The propagation of the
conditional density, at least conceptually, can be calculated as follows [10]:
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• Step 1 . Initialization:
p0(x0|y0) = p(x0).

• Step 2 . Diffusion:

p
(n+1)− (xn+1|Yn) =

∫
p(xn+1|xn)pn(xn|Yn)dxn,

where Yn = {y1,y2, · · · ,yn}.
• Step 3 . Bayes’ rule update:

p
(n+1)

(xn+1|Yn+1) =
p(yn+1|xn+1)p

(n+1)− (xn+1|Yn)∫
p(yn+1|xn+1)p

(n+1)− (xn+1|Yn)dxn+1
,

• Step 4 . n← n + 1; go to Step (2).

The conditional density given by the above steps is exact, but in general it can be viewed as an
infinite dimensional filter, thus, not implementable. Particle filtering, in brief, is an approximation
method that mimics the above calculations with a finite number of operations using the Monte
Carlo method. The procedure for particle filtering is as follows [20, 8]:

Algorithm 4.1 Particle Filtering

• Step 1 . Initialization

� Sample x1
0, · · · , xN

0 , N i.i.d. random vectors with the initial distribution P0(x).

• Step 2 . Diffusion

� Find x̂1
n+1, · · · , x̂N

n+1 from the given x1
n, · · · , xN

n , using the dynamic rules:

dxt = ft(xt)dt + Gt(xt)dwt, nτ ≤ t < (n + 1)τ
or

xn+1 = fn(xn) + Gn(xn)vn.

• Step 3 . Find the empirical distribution

PN
(n+1)−(x) =

1
N

N∑
j=1

δ
x̂j

n+1
(x)

• Step 4 . Use Bayes’ Rule

PN
(n+1)(x) =

1
N

N∑
j=1

δ
x̂j

n+1
(x) ·Ψn+1(x)

1
N

N∑
j=1

δ
x̂j

n+1
(x̂j

n+1) ·Ψn+1(x̂
j
n+1)

• Step 5 . Resample
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� Sample x1
n+1, · · · , xN

n+1 according to PN
n+1|n+1(x)

• Step 6 . n← n + 1; go to Step (2).

where δv(w) = 1 if w = v and 0 otherwise, and Ψn(x) is the conditional density of the observation
yn given the state x.

It is customary to call x1
n, · · · , xN

n particles. In the next few lines, we try to explain in words
the evolution of these particles using the above algorithm.

Let x̂1
n, · · · , x̂N

n be the distinct particles at time n before incorporating the observation at
time n. The probability of each particle is 1

N , that is, is uniformly distributed. After using the
observations, the conditional probability of each particle changes. Some will have small, and some
large probabilities. Therefore, in the process of resampling, it is very likely that some particles will
never be used and instead some other particles (with high probabilities) will be sampled more than
once. Therefore, after resampling, some particles have repeated versions, but in the diffusion phase
they go through different paths and at the end of the diffusion phase, it is very likely, we would
have N distinct particles. This automatically makes the approximation one of better resolution in
the areas where the probability is higher.

In [8] it is proved under some conditions that

lim
N→∞

E

( ∣∣∣∣∣ 1
N

N∑
i=1

f(x̂i
n)− EPn(f(x))

∣∣∣∣∣
)

= 0 (15)

for every bounded Borel test function, f(·).
One problem in using the particle filtering method is the computational cost. In particular, for

a high dimensional system, getting reasonable accuracy means using a large N , which results in a
heavy computational cost. In the next section, we propose a method that can reduce the number
of particles for a certain class of problems.

5 Particle Filtering for Exponential Families of Densities

In the previous section, we saw two approximation methods for nonlinear filtering. In the particle
filtering method, we saw that the conditional distribution is approximated by the empirical dis-
tribution. Unlike the empirical distribution, in most cases, the actual conditional distribution is
smooth. Intuition suggests that if we have prior knowledge of some properties of the distribution,
we can improve on the quality of the estimates over just using the empirical distribution. In this
section first, we assume that the conditional density lies in an exponential family of densities. We
will see that with this assumption, we can show the convergence of the approximated density to
the actual one. Later, we relax this assumption and we only require that the conditional density
stay close to the exponential family of densities. We prove that the error of the estimate for the
latter case is bounded.

For System (3), we assume that the probability density of xt, given the observation, is in a
family of exponential densities S 2.

With this assumption, the proposed algorithm is as follows:

Algorithm 5.1 Particle Filtering for an Exponential Family of Densities.
2This assumption is rather strong. We will drop this assumption later, and we will only assume that there exists

a known family of densities that approximates the real density well, i.e., with acceptable accuracy.
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• Step 1 . Initialization

� Sample x1
0, · · · , xN

0 , N i.i.d. random vectors with the density, p0(x).

• Step 2 . Diffusion

� Find x̂1
n+1, · · · , x̂N

n+1 from the given x1
n, · · · , xN

n , using the dynamic rule:

dxt = ft(xt)dt + Gt(xt)dwt, iτ ≤ t < (i + 1)τ

• Step 3 . Find the MLE of θ̂(n+1)− given x̂1
n+1, · · · , x̂N

n+1 [21]

θ̂(n+1)− = arg max
θ

N∏
i=1

exp(θTc(x̂i
n+1)−Υ(θ))

• Step 4 . Use Bayes’ Rule

p(x, θ̂(n+1)) =
exp

(
θ̂T
(n+1)−c(x)−Υ(θ̂(n+1)−)

)
Ψn+1(x)∫

exp
(
θ̂T
(n+1)−c(x)−Υ(θ̂(n+1)−)

)
Ψn+1(x)dx

• Step 5 . Resample

� Sample x1
n+1, · · · , xN

n+1 according to p(x, θ̂n+1).

• Step 6 . n← n + 1; go to Step (2).

To generate x1
n+1, · · · , xN

n+1, a Gibbs sampler can be used [22]. This brings an extra computational
cost, which should be taken into account when choosing Algorithm 5.1 over Algorithm 4.1.

It is instructive to discuss the structure of the ML estimator. We are going to use this structure
for the proof of convergence.

Let x̂1
n, · · · , x̂N

n be the value of the particles right before the measurement at time n. The MLE
of θn, θ̂n, satisfies the first order necessary condition

N∑
i=1

cj(x̂i
n)−N

∫
x cj(x) exp(θ̂T

n c(x))dx∫
x exp(θ̂T

n c(x))dx
= 0.

Therefore, we get

1
N

N∑
i=1

cj(x̂i
n) = Eθ̂n

(cj(x)), for j = 1, · · · , p . (16)

Equation (16) says that the sample average of cj(x) and its probabilistic average, evaluated at θ̂n,
should be equal. The MLE of θ is the solution to the system of equations in (16). Let Fj(θ) be as
follows:

Fj(θ) =
1
N

N∑
i=1

cj(x̂i
n)−

∫
cj(x) exp(θTc(x))dx∫

exp(θTc(x))dx
, j = 1, · · · , p.

9



For simplicity we drop the index n from θn. It is easy to see that

−∂Fi

∂θj
= Eθ(ci(x)cj(x))− Eθ(ci(x))Eθ(cj(x)).

This shows that (−∂Fi
∂θj

)i,j = g(θ), where g(θ) is the Fisher information matrix of the exponential
density at θ. Since ci(x), i = 1, · · · , p are affinely independent g(θ) > 0,∀θ ∈ Θ. Therefore, (16) is
the necessary and sufficient condition for optimality.

In the next few pages, we prove the convergence of the MLE of θn, θ̂n, to θn in the mean square
sense.

In each iteration the proposed algorithm starts from the density pθ̂t

(
xt|yt

)
, t = τn, where θ̂t

is the best estimate θt according to the algorithm. After a full iteration, the algorithm yields θ̂t+1

which is the best estimate of θt+1. The error in θ̂t+1 is a combination of the series of possible
errors for which we want to find an upper bound. The first source of error is the error in θ̂t, which
will propagate even if no other error is considered. The other source comes from the fact that in
each iteration new particles are resampled based on the estimated density which is different from
the actual density. Finally, the last source of error comes from the discretization of the stochastic
dynamics of the system. We want to emphasize that here we assume Ψn(x) = exp(−1

2(ynτ −
hn(xnτ ))T R−1

n (ynτ − hn(xnτ ))) lies in the chosen family of densities. Therefore, no other error is
added to the estimate because of the Bayes’ correction.

We recall the following fact [21]:

Fact 5.2 For the family of densities S with probability density

p(x, θ) = exp(θTc(x) −Υ(θ)),

the Fisher information matrix g(θ) = (E(ci(x)cj(x))−E(ci(x))E(cj(x)))i,j is positive definite. Also
the log likelihood function

l(θ) = θTC(x)−Υ(θ),

is strictly concave. Therefore, for

cj(x) = Eθ[cj(x)], j = 1, · · · , p,

if a solution exists3, it is unique. In addition if x1, · · · , xN are N i.i.d. random variables distributed
according to p(x, θ), then the MLE of θ, θ̂N , is asymptotically normal, i.e.

θ̂N = arg max
θ

N∏
i=1

p(xi, θ) ,
√

N(θ̂N − θ) ∼ N (0, g−1(θ)).

Using this fact, it is easy to see that

E

(∥∥∥θ̂N − θ
∥∥∥2
)

=
1
N

trace(g−1(θ)),

therefore, when N −→ ∞, θ̂N −→ θ in the m.s. sense. On the other hand, θ̂N is the solution
to (16). Using the strong law of large numbers [23], when N → ∞ the LHS in (16) goes to

3In [18] it is shown that if N > p, the solution exists almost surely.
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Eθ(cj(x)), j = 1, · · · , p, with probability one. In other words, the solution to (16) when the LHS
is the exact Eθ(cj(x)), j = 1, · · · , p, gives the exact solution for θ. Using this argument, one
can expect that by finding a good estimate of the left hand side of (16), a good estimate of θ is
accessible. In each iteration of the algorithm presented in this section the estimate of the LHS of
(16) is found by using the Monte Carlo method and the approximate solution for the stochastic
differential equation (3).

To approximate the solution to the stochastic differential equation (3), we employ the method
used in [24]. In the following, we review this method briefly. The stochastic differential equation
in (3) can be rewritten as follows:

dxt = ft (xt) dt +
q∑

r=1

gr
t (xt) dwr

t , (17)

where gr
t (·) is the rth column of the matrix Gt(·), and wr

t is the rth component of wt. We introduce
the operators

Λru =
(
gr ,

∂

∂x

)
u,

Lu =


 ∂

∂t
+
(
f ,

∂

∂x

)
+

1
2

q∑
r=1

n∑
i=1

n∑
j=1

gr
i g

r
j

∂2

∂xi∂xj


u,

where
(
a , ∂

∂x

)
=

n∑
i=1

ai
∂

∂xi
. Then, the approximate solution for the stochastic differential equation

can be written as follows:

xk+1 = xk +
q∑

r=1
gr
tk

ξr
kh

1
2 + ftkh +

q∑
r=1

q∑
i=1

(Λrgr)tk
ξir
k h+

1
2

q∑
r=1

(Lgr + Λrf)tk ξr
kh

3
2 + (Lf)tk

h2

2 ,
(18)

where h is the step size and the coefficients gr
tk

, ftk , (Λigr)tk
, etc., are computed at the point

(tk,xk). Also, the sets of random variables ξr
k, ξir

k are independent for distinct k and can, for each
k, be modeled as follows:

ξij =
1
2
ξiξj − 1

2
γijζ

iζj, γij =
{−1 , i < j

1 , i ≥ j .

and ξi and ζj are independent random variables satisfying

Eξi = Eξ3
i = Eξ5

i = 0, Eξ2
i = 1, Eξ4

i = 3,
Eζj = Eζ3

j = 0, Eζ2
j = ζ4

j = 1.

In particular, ξi can be modeled by the law P (ξ = 0) = 2
3 , P

(
ξ =
√

3
)

= 1
6 , and P

(
ξ = −√3

)
= 1

6 ,

and ζj can be modeled by P (ζ = −1) = P (ζ = 1) = 1
2 .
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Definition 5.3 We say that a function u(·) belongs to the class F , written as u ∈ F , if we can
find constants, k > 0, and κ > 0, such that for all x ∈ Rn, the following inequality holds:

‖u(x)‖ ≤ k (1 + ‖x‖κ) .

Before we present our results we need to specify the probability space in which the random
variables are defined. As we mentioned before, the stochastic process associated to the dynamics
and the observation equation are defined on a fixed probability space (Ω, F, P ), the expectation
associated to this probability space is denoted by E. In Algorithm 5.1 the generated particles
form a Markov process. Similar to section 2.2 of [8] we denote the probability space associated to
this process by (Ω′, F ′, P ′

[y]). The subindex y is used to emphasize that the probability measure
is conditioned on the observation y. Another set of random variables, ξi, ζi, are defined for the
approximation of the stochastic differential equation (17). We denote the probability space asso-
ciated to these random variables by (Ω′′, F ′′, P ′′). The expectation associated to this process is
denoted by E′′. Finally we define (Ω̃, F̃ , P̃ ), where Ω̃ = Ω × Ω′ × Ω′′ and F̃ = F × F ′ × F ′′. For
every ω̃ ∈ Ω̃ we define ω̃ = (ω, ω′, ω′′), then for every A ∈ F , B ∈ F ′, and C ∈ F ′′ we define the
probability measure P̃ (A×B×C) =

∫
A

(∫
C P

′
[Y ](B)dP ′′(ω′′)

)
dP (ω). The expectation with respect

the probability measure P̃ is denoted by Ẽ.
The following theorem summarizes the weak approximation results for (18).

Theorem 5.4 [ Milstein [24]] Suppose (A2.1) from Section (2), and suppose that the functions
f(·), gr(·), r = 1, · · · , q together with the partial derivatives of sufficiently high order, belong to class
F . Also, suppose that the functions Λigr, Lgr, Λrf , and Lf grow at most as a linear function
in ‖x‖. Then, if the function u(·) and all its derivatives up to order 6 belong to class F , the
approximation (18) has the order of accuracy 2, in the sense of weak approximation, i.e.,

‖Ẽu (x0,x0 (tk))− Ẽu (x̂0,x0 (tk)) ‖ ≤ Kh2, tk ∈ [0, T ],

where K is a constant and x0,x0(·) and x̂0,x0(·) are the exact and approximate solutions for the
stochastic differential equation, respectively.

The Monte Carlo approximation of Ẽu (x0,x0 (tk)) brings another error term. The combination of
these errors can be expressed as follows:∥∥∥∥∥Ẽu (x0,x0 (tk))− 1

N

N∑
i=1

u
(
x̂0,xi

0
(tk)

)∥∥∥∥∥ ≤
∥∥∥Ẽu (x0,x0 (tk))− Ẽu (x̂0,x0 (tk))

∥∥∥+

∥∥∥∥∥Ẽu (x̂0,x0 (tk))− 1
N

N∑
i=1

u
(
x̂0,xi

0
(tk)

)∥∥∥∥∥ .

If the variance of u (x̂0,x0 (tk)) is bounded, we have

Ẽ

∥∥∥∥∥Ẽu (x0,x0 (tk))− 1
N

N∑
i=1

u
(
x̂0,xi

0
(tk)

)∥∥∥∥∥ ≤ Kh2 +
k
′

N1/2
, (19)

where K and k
′
are constants, and h is the step size for the approximation of the solution of the

stochastic differential equation.
The next lemma relates the approximate solution to the stochastic differential equation and the

estimate of the parameter θ. This lemma is the main building block for our result in this section.
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Lemma 5.5 For the stochastic differential equation

dxt = ft (xt) dt + Gt (xt) dwt, x0, t ∈ [0, tf ],

assume that ft(·), Gt(·) are such that for the Brownian motion, wt, the probability density of the
state xt lies in the family S for Θ bounded, with g(θ) ≥ ϑI for some ϑ > 0. We also assume the
conditions in Fact 5.2 and in Theorem 5.4 with c(x) replacing u(x). Then, there exist k1 and k2

such that

Ẽ[‖θt − θ̂t‖] ≤ k1h
2 +

k2

N1/2
, t ∈ [0, tf ] (20)

where θ̂t is the estimate of θt, and N and h are the number of particles and the time step, respec-
tively.

Proof: Let θ0 be the initial condition for θ. At t = 0, N independent initial conditions are
generated based on the density p (x, θ0), and the approximation method (18) is applied. From (19)
we know that:

Ẽ‖Eθtc (xt)− 1
N

N∑
i=1

c
(
x̂i

t

)
‖ ≤ Kh2 +

k
′

N1/2
.

On the other hand, from (16), we know that θ̂ is a solution to the system of equations

1
N

N∑
i=1

cj(x̂i
t) = Eθ̂t

(cj(xt)), for j = 1, · · · , p.

From Fact 5.2, the solution is exact if we replace 1
N

N∑
i=1

cj(x̂i
t) by Eθt(cj(xt)). Subtracting the

term Eθt(cj(x)) from both sides of the above equations and using the vector form for it, we get

1
N

N∑
i=1

c(x̂i
t)− Eθt(c(xt)) = Eθ̂t

(c(xt))− Eθt(c(xt)).

On the other hand, we know that Eθ(c(x)) is a differentiable and one to one function of θ ( see
Fact 5.2). The derivative of this function, g(θ), is positive definite and by assumption g(θ) ≥ ϑI.
Therefore, ∃α > 0 such that

‖θt − θ̂t‖ ≤ α‖Eθt(c(xt))− Eθ̂t
(c(xt))‖

= α‖Eθt(c(xt))− 1
N

N∑
i=1

c(x̂i
t)‖.

Taking the expectation on both sides of the inequality we have

Ẽ‖θt − θ̂t‖ ≤ α Ẽ‖ 1
N

N∑
i=1

c(x̂i
t)− Eθt(c(xt))‖

≤ α

(
Kh2 + k

′

N1/2

)
= k1h

2 + k2

N1/2 �
Now we are ready to present the main result of this section.
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Theorem 5.6 For System (3) assume that ft(·), Gt(·), and h(·) are such that for the Brownian mo-
tion wt, and the Gaussian noise vn, the conditional probability density of the state xt, conditioned
on the observations, lies in the family S for Θ bounded and for t ∈ [0, T ]. Also assume the condi-
tions in Fact 5.2 and in Theorem 5.4 with c(x) replacing u(x). Then, if g−1 (θt)Eθt (Ltc (x)) is
Lipschitz with Lipschitz constant L and g(θ) ≥ ϑI, there exist l1 and l2 such that

Ẽ‖θn − θ̂n‖ ≤
n−1∑
i=0

exp(Liτ)
(

l1h
2 +

l2
N1/2

)
, nτ ∈ [0, T ],

where θ̂n is the estimate of θn, and N and h are the number of particles and the time step, respec-
tively. This inequality implies convergence of the estimated parameter, θ̂n, to the true parameter,
θn, as h −→ 0 and N −→∞.

Proof: Let θt and θ̂t be the actual and the estimated values of the parameter of the density at
time t = nτ , respectively. At time t

′
= (n + 1)τ the error in the estimate of θt

′ is a combination of
the error in the estimate in θ̂t and the error added in the time interval [t, t

′
].

If the conditional density stays in the exponential family of densities, θt has to satisfy the
following differential equation:

θ̇ = g−1 (θ)Eθt (Ltc (x)) dt, nτ ≤ t < (n + 1) τ.

Let θ̃t
′ be the estimate of θt

′ , if the error due to resampling and the approximation of the
stochastic differential equation solution is not taken into account in the interval [t, t

′
] (i.e. θ̃t′ is

computed from the above ordinary differential equation starting at θ̂t), then

‖θt′ − θ̂t′‖ ≤ ‖θt′ − θ̃t′‖+ ‖θ̃t′ − θ̂t′‖.

By the assumption of the theorem, g−1 (θ)Eθt (Ltc (x)) is Lipschitz with Lipschitz constant L,
then by continuity of the solution of the differential equation with respect to the initial condition
[25], we know that ∥∥∥θt′ − θ̃t′

∥∥∥ ≤ ∥∥∥θt − θ̂t

∥∥∥ eL(t′−t),

therefore,

Ẽ
∥∥∥θt′ − θ̃t′

∥∥∥ ≤ Ẽ
∥∥∥θt − θ̂t

∥∥∥ eL(t′−t).

Also from the Lemma 5.5, ∃k1(t
′
) and k2(t

′
) such that

Ẽ[‖θ̃t
′ − θ̂t

′‖] ≤ k1(t
′
)h2 +

k2(t
′
)

N1/2
,

therefore,

Ẽ‖θt′ − θ̂t′‖ ≤ Ẽ
∥∥∥θt − θ̂t

∥∥∥ eL(t′−t) + k1(t
′
)h2 +

k2(t
′
)

N1/2
.

The observation noise vn and the function h(·) are such that Bayes’ Rule does not introduce any
further error in the estimate of θ̂t

′ . More precisely, Ψn(x) is assumed to be a member of S. This
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implies that after applying Bayes’ Rule to p(x, θt′) and p(x, θ̂t′) parameters θt′ and θ̂t′ are shifted
with the same vector and therefore, ‖θt+′ − θ̂t+′‖ = ‖θt′ − θ̂t′‖. Here t+

′
represents the time right

after Bayes’ correction. Therefore, starting from the initial condition θ0 we get

Ẽ‖θn − θ̂n‖ ≤
n−1∑
i=0

exp(Liτ)
(

l1h
2 +

l2
N1/2

)
, nτ ∈ [0, T ]

where
li = max

n
ki(nτ), nτ ∈ [0, T ], i = 1, 2.

�

Here, we would like to make a few remarks:

• The result of Theorem 5.6 can be easily extended to convergence in the mean square sense.

• The assumption that the probability density stays in the family of densities, S, does not seem
very realistic. But with our approach, we should be able to get the result in [12]. In fact, in
[12] the evolution of the density is forced to stay in the family at every single moment. In
our method, we only force the density to be in the family at the end of each full iteration, i.e.
observation epoch. This allows the estimated density to be closer to the actual density.

• In [12] the observation equation is considered to be time invariant. Here, the time-varying
nature of hn (x) does not complicate the algorithm. It surely affects the assumption that the
density stays in the family, but as we explained earlier, this assumption is not realistic to
begin with, and it will be dropped.

• If u(·) is in F , then

lim
N−→∞
h−→0

Ẽ ‖Eθu(x)− Eθ∗u(x)‖ = 0.

This is a criterion similar to the one used in [8].

6 Projection Particle Filtering for Exponential Families of Densi-

ties

In this section, we drop the assumption that the conditional density of the state given the obser-
vation (6) lies in the exponential family of densities, S. Also, we do not require that Ψn(x) is a
member of S. Instead we make other assumptions. First we need the following definition:

Definition 6.1 We say that a function u(·) belongs to the class Fkκ, written as u ∈ Fkκ, for fixed
k > 0 and κ > 0, such that for all x ∈ Rn, the following inequality holds:

‖u(x)‖ ≤ k (1 + ‖x‖κ) .

The next two assumptions are to guarantee the existence of an exponential density close to the
true conditional density.
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A 6.2 For the density in (6) there exists an exponential family of densities S such that ∀t ∈
[0, T ], ∀u ∈ Fkκ ∃θ∗t ∈ Θ∗ and ε > 0 such that

Ẽ‖Ept
(u(x)) − Eθ∗t (u(x))‖ ≤ ε , (21)

where Θ∗ is convex 4 and compact.

A 6.3 For θ∗n− in (A6.2) and Ψn(x), ∃Ψ∗
n(x) such that

p(x, θ) =
p(x, θ∗n−)Ψ∗

n(x)∫
p(x, θ∗n−)Ψ∗

n(x)dx

is in the family S for some θ ∈ Θ∗ and we have:

• ∀θ ∈ Θ∗ and ∀u(·) ∈ Fkκ, ∃ε > 0 such that

Ẽ‖EθΨn(x)u(x)
EθΨn(x)

− EθΨ∗
n(x)u(x)

EθΨ∗
n(x)

‖ ≤ ε.

• ∀u(·) ∈ Fkκ, ∃ε > 0 such that

Ẽ‖
Eθ∗

n−
Ψ∗

n(x)u(x)

Eθ∗
n−

Ψ∗
n(x)

−
Ep

n−
Ψn(x)u(x)

Ep
n−

Ψn(x)
‖ ≤ ε.

From Assumption (A6.3) it is clear that if Ψ∗
n(·) satisfies the requirements of the assumption then

cΨ∗
n(·) satisfies the same requirements, where c is a positive constant. Therefore, without loss of

generality we assume that Ψ∗
n(·) = exp(αT c(·)) for some α ∈ Rp. Using Assumption (A6.2), we

can state the following fact.

Fact 6.4 ∀θ1, θ2 ∈ Θ∗ and ∀u ∈ Fkκ, ∃K1,K2 positive such that

‖Eθ1u(x)− Eθ2u(x)‖ ≤ K1‖θ1 − θ2‖ (22)

‖θ1 − θ2‖ ≤ K2‖Eθ1c(x) −Eθ2c(x)‖ . (23)

Proof: To prove (22), define fu(θ) = Eθu(x) for u(·) ∈ Fkκ. Then

d

dθi
fu(θ) = Eθci(x)u(x) − Eθci(x)Eθu(x).

4It is easy to see that the assumption of convexity is very natural. Assume θ1, θ2 ∈ Θ∗ then
∫

exp(θT
i c(x))dx ≤ ∞

for i = 1, 2. Therefore, using the Holder inequality we have∫
exp((αθT

1 + (1 − α)θT
2 )c(x))dx =

∫
(exp(θT

1 c(x)))α(exp(θT
2 c(x)))(1−α)dx

≤
(∫ ((

exp(θT
1 c(x))

)α)1/α
dx

)α
(∫ ((

exp(θT
2 c(x))

)1−α
)1/1−α

dx

)1−α

=
(∫

exp(θT
1 c(x))dx

)α (∫
exp(θT

2 c(x))dx
)1−α

≤ ∞

where 0 < α < 1.
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Since ‖u(x)‖ ≤ k(1 + ‖x‖κ) and θ ∈ Θ∗, where Θ∗ is compact, then there exists a constant A such
that

‖dfu(θ)
dθ
‖ ≤ A ∀u(·) ∈ Fkκ and ∀θ ∈ Θ∗.

Since Θ∗ is convex and compact, it is clear that ∃K1 independent of u(·) such that fu(x) is Lipschitz
over Θ∗ with the Lipschitz constant K1 [25].

Inequality (23) follows from the fact that Θ∗ is compact and the Fisher information matrix
g(θ) > ϑI over Θ∗.

�
Denote the interior of the set Θ∗ by Θ∗

int. For Θ∗
int we can state the following fact.

Fact 6.5 The set

A =
{

α :
∫

exp(αT c(x)) exp(θTc(x))dx <∞,∀θ ∈ Θ∗
int and α ∈ Rp

}

is closed.

Proof: Assume A is not closed. Therefore, there exists a converging sequence {αi} ⊂ A with
converging point α /∈ A, then ∃θ ∈ Θ∗

int such that

∫
exp(αTc(x)) exp(θTc(x))dx > M, ∀M ∈ R.

Since Θ∗
int is an open set, ∃ε > 0 such that Nε(θ) ∈ Θ∗

int. Also, since {αi} is a converging sequence,
∃k > 0 such that αk ∈ Nε(α). This implies that θ1 ∈ Θ∗

int where θ1 = θ + α− αk. Therefore,

∫
exp(αT

k c(x)) exp(θT
1 c(x))dx <∞.

On the other hand, we know that

exp(αT
k c(x)) exp(θT

1 c(x)) = exp(αTc(x)) exp(θTc(x)) .

This is a contradiction, therefore, A is closed.

�
The following lemma is one of the building blocks of the results of this section.

Lemma 6.6 For θ∗n− and Ψ∗
n(x) defined in (A6.3), and ∀u(·) ∈ Fkκ, ∃ positive numbers k1, k2, k3, k4

independent of θ∗n− and Ψ∗
n(x), such that ∀θ1, θ2 ∈ Θ∗ the following are true.

(a) k1 ≤ ‖EθΨ∗
n(x)‖ ≤ k2 ∀θ ∈ Θ∗.

(b) ‖EθΨ∗
n(x)u(x)‖ ≤ k3 ∀θ ∈ Θ∗.

(c) ‖Eθ1Ψ
∗
n(x)u(x) − Eθ2Ψ

∗
n(x)u(x)‖ ≤ k4‖θ1 − θ2‖.
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Proof: Let M be a set defined as follows

M = {m : m = θ1 − θ2, ∀θ1, θ2 ∈ Θ∗}.
We claim thatM is compact. To prove this claim, assume {mi} to be a sequence inM, i.e mi ∈M.
Also we assume that lim

i−→∞
mi = m. We know that there exist sequences {θ1,i} and {θ2,i} such that

mi = θ1,i − θ2,i and θ1,i, θ2,i ∈ Θ∗. Since Θ∗ is compact there exist converging subsequences {θ1,i}
and {θ2,i} in Θ∗. This implies that m = θ1− θ2, where θ1 and θ2 are the limits of the subsequences
{θ1,i} and {θ2,i}. Since θ1 and θ2 ∈ Θ∗, then m ∈M, thereforeM is closed. Since Θ∗ is bounded,
M is bounded and therefore, it is compact.

We define set A1 as follows:

A1 =
{

α :
∫

exp(αT c(x)) exp(θTc(x))dx <∞,∀θ ∈ Θ∗ and α ∈ Rp
}

.

It is clear that A1 ⊂ A. As we mentioned before, without loss of generality we can assume
Ψ∗

n(x) = exp(αTc(x)) and from Assumption (A6.3) it is clear that α ∈ A⋂M. Since A⋂M and
Θ∗ are compact we have

min
θ∈Θ∗

min
α∈A

⋂
M
‖EθΨ∗

n(x)‖ ≤ ‖EθΨ∗
n(x)‖ ≤ max

θ∈Θ∗
max

α∈A
⋂
M
‖EθΨ∗

n(x)‖.

In other words (a) is true with k1 = min
θ∈Θ∗

min
α∈A

⋂
M
‖EθΨ∗

n(x)‖ and

k2 = max
θ∈Θ∗

max
α∈A

⋂
M
‖EθΨ∗

n(x)‖. Similarly, since u(·) ∈ Fkκ, (b) is true.

Using the above argument and the argument in Fact 6.4, we can show that ‖ d
dθEθΨ∗

n(x)u(x)‖
is uniformly bounded and since Θ∗ is convex and compact, then (c) is true [25].

�
In the following we go through the proof of the theorem that we state later precisely. Assume

θ̂n is calculated according to Algorithm 5.1 and assume p(x, θ̂n) is such that ∀u ∈ Fkκ

Ẽ‖Eθ̂n
u(x)− Eθ∗nu(x)‖ ≤ δ , (24)

where θ∗n (see Assumption (A6.2)) satisfies

Ẽ‖Epnu(x)− Eθ∗nu(x)‖ ≤ ε. (25)

Using the density p(x, θ̂n), new particles x1
n, · · · ,xN

n are generated. The approximate solution for
the stochastic differential equation at time (n + 1)τ maps these particles to x̂1

n+1, · · · , x̂N
n+1. From

these new particles θ̂n+1 is calculated. From (24) and (25) we have

Ẽ‖Epnu(x)− Eθ̂n
u(x)‖ ≤ δ + ε. (26)

We define the function r(x) as follows:

r(x) = E′′c(x̂n,x((n + 1)))

where x̂n,x((n + 1)τ) is the approximate solution of stochastic differential equation (17) at time
(n + 1)τ with the given initial condition x at time nτ using the method in (18). Since according to
our assumption c ∈ Fkκ, then by using lemma 9.1 in [24], we have

‖r(x)‖ ≤ K3(1 + ‖x‖µ),
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where K3 and µ only depend on the function c(·) and the dimension of x. We assume that r ∈ Fkκ.
If the argument of r(·) is a random variable, then using (26) we have

Ẽ‖Epnr(x)− Eθ̂n
r(x)‖ ≤ δ + ε. (27)

More explicitly,

Ẽ‖EpnE′′[c(x̂n,x((n + 1)τ))] − Eθ̂n
E′′[c(x̂n,x((n + 1)τ)]‖ ≤ δ + ε. (28)

From Theorem 5.4 we have

Ẽ‖Epnc(xn,x((n + 1)τ)) − EpnE′′c(x̂n,x((n + 1)τ))‖ ≤ K4h
2, (29)

for some K4 > 0.
Using the Monte Carlo method to calculate the Epnc(x̂n,x((n + 1)τ)) brings another error

term that is due to the finite number of particles as the initial conditions for method (18). The
expectation of this error is bounded, i.e. ∃K5 > 0 s.t.

Ẽ‖Eθ̂n
E′′c(x̂n,x((n + 1)τ)) − 1

N

N∑
i=1

c(x̂n,x̂i
i
((n + 1)τ))‖ ≤ K5

N
1
2

, (30)

where x̂i are distributed according to p(x, θ̂n). Combining (28), (29), and (30) we get

Ẽ‖Epnc(xn,x((n + 1)τ))− 1
N

∑N
i=1 c(x̂n,x̂i((n + 1)τ))‖ ≤

δ + ε + K4h
2 + K5

N
1
2
. (31)

Based on (A6.2), we know that ∃θ∗(n+1)− such that

Ẽ‖Ep
(n+1)−c(x)− Eθ∗

(n+1)−
c(x)‖ ≤ ε. (32)

We know that, if x (initial condition at time nτ) is distributed according to pn(x), then Ep
(n+1)−c(x) =

Epnc(xn,x((n + 1)τ)), therefore, from (31) and (32) we get

Ẽ‖Eθ∗
(n+1)−

c(x) − 1
N

N∑
i=1

c(x̂n,x̂i((n + 1)τ))‖ ≤ δ + 2ε + K4h
2 +

K5

N
1
2

. (33)

Then θ̂(n+1)− given by Algorithm 5.1 satisfies the following inequality

Ẽ‖Eθ∗
(n+1)−

c(x) − Eθ̂
(n+1)−

c(x)‖ ≤ δ + 2ε + K4h
2 +

K5

N
1
2

. (34)

From (A6.3) we know that ∃θ ∈ Θ∗ such that

Ẽ

∥∥∥∥∥
Eθ∗

(n+1)−
Ψ∗n+1(x)u(x)

Eθ∗
(n+1)−

Ψ∗n+1(x) −
Ep

(n+1)−
Ψn+1(x)u(x)

Ep
(n+1)−

Ψn+1(x)

∥∥∥∥∥ = Ẽ
∥∥∥Eθu(x)− Ep

(n+1)
u(x)

∥∥∥
≤ ε.

Since θ satisfies the inequality in (A6.2), we can choose θ∗(n+1) to be θ, i.e.
θ∗(n+1) = θ.
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On the other hand we have

∥∥∥Eθ∗
(n+1)

u(x)− Eθ̂(n+1)
u(x)

∥∥∥ =

∥∥∥∥∥
Eθ∗

(n+1)−
Ψ∗n+1(x)u(x)

Eθ∗
(n+1)−

Ψ∗n+1(x) −
E

θ̂
(n+1)−

Ψn+1(x)u(x)

E
θ̂
(n+1)−

Ψn+1(x)

∥∥∥∥∥

≤
∥∥∥∥∥

Eθ∗
(n+1)−

Ψ∗n+1(x)u(x)

Eθ∗
(n+1)−

Ψ∗n+1(x) −
Eθ∗

(n+1)−
Ψ∗n+1(x)u(x)

E
θ̂
(n+1)−

Ψ∗n+1(x)

∥∥∥∥∥+

∥∥∥∥∥
Eθ∗

(n+1)−
Ψ∗n+1(x)u(x)

E
θ̂
(n+1)−

Ψ∗n+1(x) −
E

θ̂
(n+1)−

Ψ∗n+1(x)u(x)

E
θ̂
(n+1)−

Ψ∗n+1(x)

∥∥∥∥∥+

∥∥∥∥∥
E

θ̂
(n+1)−

Ψ∗n+1(x)u(x)

E
θ̂
(n+1)−

Ψ∗n+1(x) −
E

θ̂
(n+1)−

Ψn+1(x)u(x)

E
θ̂
(n+1)−

Ψn+1(x)

∥∥∥∥∥ ,

therefore, ∥∥∥Eθ∗
(n+1)

u(x)− Eθ̂(n+1)
u(x)

∥∥∥ ≤
‖Eθ∗

(n+1)−
Ψ∗n+1(x)u(x)‖

‖Eθ∗
(n+1)−

Ψ∗n+1(x)‖‖E
θ̂
(n+1)−

Ψ∗n+1(x)‖

∥∥∥∥Eθ∗
(n+1)−

Ψ∗
n+1(x)− Eθ̂

(n+1)−
Ψ∗

n+1(x)
∥∥∥∥+

1
‖E

θ̂
(n+1)−

Ψ∗n+1(x)‖

∥∥∥∥Eθ∗
(n+1)−

Ψ∗
n+1(x)u(x) − Eθ̂

(n+1)−
Ψ∗

n+1(x)u(x)
∥∥∥∥+

∥∥∥∥∥
E

θ̂
(n+1)−

Ψ∗n+1(x)u(x)

E
θ̂
(n+1)−

Ψ∗n+1(x) −
E

θ̂
(n+1)−

Ψn+1(x)u(x)

E
θ̂
(n+1)−

Ψn+1(x)

∥∥∥∥∥ .

Using Lemma 6.6 and (A6.3) we get

Ẽ‖Eθ∗
(n+1)

u(x) −Eθ̂(n+1)
u(x)‖ ≤ k3k4 + k1k4

k2
1

Ẽ‖θ∗(n+1)− − θ̂(n+1)−‖+ ε.

Therefore, from (34) and Fact 6.4 we get

Ẽ‖θ∗(n+1)− − θ̂(n+1)−‖ ≤ K2

(
δ + 2ε + K4h

2 +
K5

N
1
2

)
.

This implies that, ∃ι1, ι2, ι3, ι4 > 0 such that

Ẽ‖Eθ∗
(n+1)

u(x)− Eθ̂(n+1)
u(x)‖ ≤ ι1δ + ι2ε + ι3h

2 + ι4N
− 1

2 .

The next theorem summarizes our result in this section.

Theorem 6.7 For the system (3) assume (A2.1), (A2.2), (A6.2), and (A6.3). We also assume
the conditions in Fact 5.2 and in Theorem 5.4 with c(x) replacing u(x), and we assume r ∈ Fkκ.
Then in Algorithm 5.1 with approximation (18), if ∀u(·) ∈ Fkκ

Ẽ‖Eθ̂n
u(x) −Eθ∗nu(x)‖ ≤ δ

then
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Ẽ‖Eθ∗
(n+1)

u(x)− Eθ̂(n+1)
u(x)‖ ≤ ι1δ + ι2ε + ι3h

2 + ι4N
− 1

2 ,

for some ι1, ι2, ι3, ι4 > 0.

In Theorem 6.7 only one step of Algorithm 5.1 is considered; it is straightforward to then use
Theorem 6.7 repeatedly for the time interval [0, T ], where T = Mτ . In that case, ‖Eθ̂0

u(x) −
Eθ∗0u(x)‖ ≤ δ0, then ∃α1, α2, α3, and α4 positive such that

Ẽ‖Eθ∗nu(x((n)τ)) −Eθ̂n
u(x((n)τ))‖ ≤ α1δ0 + α2ε + α3h

2 + α4N
−1/2,

for 0 ≤ n ≤M .

7 Particle Filtering for Nonlinear Systems
with Constant Integer Uncertainty

Consider the following nonlinear dynamics and observation

dxt = ft(xt)dt + Gt(xt)dwt

ynτ = hn(x(nτ)) + Jnz + vn

where the assumptions and the dimensions for xt, ynτ , wt, and vn are the same as in the previous
sections. We assume that z is a random integer vector, i.e. z ∈ Zm and Jn has the proper
dimension. Vector z is assumed to be constant in time. This problem can be set up in discrete
time as well. In this case,the system dynamics and the observation can be written as follows:

xn+1 = fn(xn) + Gn(xn)wn

yn = hn(xn) + Jnz + vn

In both setups we assume that the integer uncertainty affects only some components of the
observation, and other components are unaffected by z. The affected components have associated
noise components in vn that have considerably lower energy. In other words, the uncertain compo-
nents of ynτ (or equivalently yn) would be considerably more accurate than the other components,
if the integer ambiguities were known. This suggests that an accurate estimation of z can increase
the accuracy of the estimate of the state of the system significantly. With this explanation, our
treatment of z is clear. From the state dynamics and the observation equation we first estimate
z and then, with fixed z, we use regular nonlinear filtering methods to estimate the state of the
system xt.

We augment the state xt with the integer ambiguity z. Having done that, the state dynamics
and the observation have the following form:

d

[
xt

zt

]
=

[
ft(xt)

0

]
dt +

[
Gt(xt)

0

]
dwt

ynτ = hn(x(nτ) + Jnz(nτ)) + vn.

(35)

We assume that the initial distribution of (xT
0 , zT

0 )T is known. Now the state dynamics and the
observation have the same form as was studied in Section (4). Therefore, we can apply particle
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filtering to find the conditional probability distribution of the augmented state. This setup is a
special case of the setup in Section (4). In (35) there is no state transition for zt, therefore, using
particle filtering in its original form may not be the best option. Recall that in particle filtering
we start with N i.i.d. particles distributed according to the initial distribution. In the resampling
part the low probability particles die and the high probability particles produce many particles
identical to themselves. Since zt does not change, the part of the particles associated to zt tends
to cover smaller and smaller portions of the state space. In fact, the state space of the integer
vectors is defined by the particles at the initial time. This problem can be overcome by modifying
the algorithm mentioned in Section (4). In the new algorithm, Step 5 is changed in such a way
that the particles are the addition of the original particles found by Algorithm 4.1, with a random
vector. The modification is very important for the integer values, since the integers do not have
a dynamics that is driven by a random input. In [9], a similar modification has been used for the
regular nonlinear filtering setup. It seems that the convergence results given in [9] can be applied
to the current case as well.

Based on the modified algorithm, we simulated a nonlinear filtering problem similar to the
problem involved in the GPS system.

In a two dimensional space, three transmitters (imagine three pseudo satellites) are mounted
on three known points (2000, 100000), (0, 100000), and (-2000, 100000). The moving object can
measure its distance from these transmitters. For each pseudo satellite, two types of measurement
are possible: One with high measurement noise and the other with low measurement noise. For the
low measurement noise, though, there is an integer ambiguity. The dynamics of the moving object
for this example is considered to be in discrete time and linear time invariant. The dynamics and
observation equation is given as follows:


x1

v1

x2

v2




n+1

=




1 ∆t 0 0
0 1 0 0
0 0 1 ∆t
0 0 0 1






x1

v1

x2

v2




n

+




w1

w2

w3

w4




n

,

ya
n = ‖x− si‖+ va

n , i = 1, 2, 3
yb

n = ‖x− si‖+ ni + vb
n , i = 1, 2, 3,

where x = (x1, x2)
T , si is the position of pseudo satellite i in two dimensional space, ∆t = 0.1

unit of time, ni is the integer ambiguity of the pseudo satellite i, and w = (w1, w2, w3, w4)
T and

v =
(
va
1 , vb

1, v
a
2 , vb

2, v
a
3 , vb

3

)T
are zero mean white Gaussian noise process with covariance matrices

Σw = diag (1, 0.5, 1, 0.5) and Σv = diag (5, 0.2, 5, 0.2, 5, 0.2), respectively. In the simulation, it is
assumed that the initial condition for the position is distributed in a square of size 200× 200 units
squared, symmetric with respect to the origin.

In brief, the simulation can be separated into two parts, initialization and the full non-linear
filtering. In the initialization part, we start with the initial probability distribution for (x1, x2)
and from a series of observations, we find an estimate for the probability distribution of (v1, v2).
In this part, we do not use the dynamics of the moving object. Using our estimate for the prob-
ability distribution of (x1, v1, x2, v2) we find the distribution for the integer ambiguity. After this,
the initialization is over, and the full non-linear filter is used. There are some minor numerical
considerations that we would like to point out. In the Bayes step of the algorithm, the numbers
are usually very small, and without proper scaling the original algorithm would not work. In the
resampling part, one can use the law of large numbers and regenerate the particles based on their
weight without generating random numbers that are time consuming. The result of the simulations
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Figure 1: Estimated integer ambiguity versus the actual integer ambiguity of pseudo satellite (1).
At time 100 there is a cycle slip of strength -20 for the measured phase of the carrier from pseudo
satellite (1).

are shown in Figures 1, 2, 3, 4, 5, and 6. To display the estimated integers, we simply used the
mean value, which is not necessarily the best choice. Of course, since we have the distribution,
we can use the MAP estimate of the integers. In this simulation we forced one of the integers to
have a jump. Although our algorithm is not designed for these kinds of changes, we see that it can
estimate the new integer values. In future, we use special treatment for the times when these kinds
of jumps happen. As we can see, the estimates for the integers are reasonably good. The reliability
of the estimate for the integers depends on the energy of the noise.

8 Future Works

The simulations results show that our method is capable of estimating the integer ambiguity and
the position. There are certain issues that need further investigation. In the following, we itemize
these issues:

• What are the proper criteria to stop the integer ambiguity estimation part and fix the integers?

• What happens when a cycle slip happens, i.e. one or more of the integers have a jump? What
change detection algorithm is proper and what is the performance of this algorithm? How
can we repair the integer ambiguity efficiently?

• What happens when the number of the satellites drops from the critical number?

• How much improvement does the method of Section 5 for integer ambiguity and position
estimation have over particle filtering?
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Figure 2: Estimated integer ambiguity versus the actual integer ambiguity of pseudo satellite (2).
At time 100 there is a cycle slip of strength -20 for the measured phase of the carrier from pseudo
satellite (1).
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Figure 3: Estimated integer ambiguity versus the actual integer ambiguity of pseudo satellite (3).
At time 100 there is a cycle slip of strength -20 for the measured phase of the carrier from pseudo
satellite (1).
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Figure 4: Estimated x1 component versus the actual x1 component of the position of the car. At
time 100 there is a cycle slip of strength -20 for the measured phase of the carrier from pseudo
satellite (1).

0 20 40 60 80 100 120 140 160 180 200
−340

−320

−300

−280

−260

−240

−220

−200

−180

−160

−140

Time

Y

The estimated y component versus the actual y component

Figure 5: Estimated x2 component versus the actual x2 component of the position of the car. At
time 100 there is a cycle slip of strength -20 for the measured phase of the carrier from pseudo
satellite (1).
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Figure 6: Estimated trajectory versus the actual trajectory of the car. At time 100 there is a cycle
slip of strength -20 for the measured phase of the carrier from pseudo satellite (1).

These questions are to be answered in the future work. In addition to these, we shall be more
specific in our simulations, and use real GPS data for our results.
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