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1 INTRODUCTIONIn automatic target recognition (ATR) applications, features that distinguish targets from thebackground and recognition criteria are the two key issues to be resolved. In single channel SARimages, backscattering amplitude is used for target detection and it is usually assumed that strongbackscattering comes from targets. A target will be lost when the backscattering amplitude fromthe target is not large enough compared with the background at some aspect angles [1]. To overcomethis, fully polarimetric SAR images are used. The value at every pixel of a polarimetric SAR imageis a four-element complex vector. Usually, a three-element complex vectorX = 266664 HHHVV V 377775= 266664 HHi + jHHqHVi + jHVqV Vi + jV Vq 377775 (1)is used according to the reciprocity principle [2]. In (1), j = p�1, and the real and imaginaryparts are the in-phase and quadrature components. The ensemble average of every element is zeroand the polarimetric covariance matrix is� = 266664 hHH;HHi hHH;HV i hHH; V V ihHV;HHi hHV;HV i hHV; VV ihV V;HHi hV V;HV i hV V; V V i 377775 (2)where h�i represents ensemble average. The polarimetric covariance matrix is a useful feature fordistinguishing targets from the background. Since the average of every element is zero,dc(X) = (X�)T��1c X (3)is a weighting distance if the covariance matrix of the background �c is known, where X� is theconjugate of X.When the determinant of the polarimetric covariance matrix of the targets is much larger thanthat of the background, the distance (3) is a measure of the di�erence between the targets andthe background. In this case, the distance for samples from the background is smaller than thedistance for samples from the targets. The distance is also the output of a polarimetric whitening1



�lter. The properties of the �lter are discussed in [3]. In this paper, it is used as a criterion torecognize targets that are of much stronger re
ectance than the background.When dc(X) is greater than a threshold T , the sample X is considered as a target pixel. Thekey problem is the choice of the threshold T .Ulaby [4] statistically models the background, which is usually called clutter in the radar liter-ature. The distance dc(X) is also statistically modeled. Since the background is not uniform andthe backscattering amplitude from the background 
uctuates, a CFAR detector is adopted.For a given pixel, called the pixel under test (PUT), its neighboring pixels, called the referencepixels, are used to calculate test statistics [5] or to estimate the parameters in the probability densityfunction (PDF) [6]. The threshold for a �xed false alarm rate is obtained from the statistical model.If the distance for PUT is greater than the threshold, PUT belongs to the target.The spatial relations between PUT and the reference pixels is shown in Figure 1, where d(u; v)is PUT and is located at the center. The window is called the reference window and its size isd(u� p; v� q) � � � d(u� p; v) � � � d(u� p; v+ q)d(u� p+ 1; v� q) � � � d(u� p+ 1; v) � � � d(u� p+ 1; v+ q)... ... ... ... ...d(u; v� q) � � � d(u; v) � � � d(u; v+ q)... ... ... ... ...d(u+ p� 1; v� q) � � � d(u+ p� 1; v) � � � d(u+ p� 1; v+ q)d(u+ p; v� q) � � � d(u+ p; v) � � � d(u+ p; v+ q)Figure 1: Spatial Position of Reference Pixels and the Pixel Under Test.Qw �Pw. All of the pixels in the reference window except d(u; v) are reference pixels. The numberof reference pixels is Qw � Pw � 1, where Pw = (2� p+ 1) and Qw = (2� q + 1).The CFAR detector has been widely used in radar applications [5, 6, 7, 8]. It adapts the thresh-old automatically to the local background in an attempt to maintain an approximately constantfalse alarm rate. Traditional CFAR algorithms are used for point targets and are applied to multi-look SAR images in order to reduce the e�ects of speckle noise [5, 6, 7, 8]. They are not suited forsingle-look, high-resolution SAR images. For the purpose of recognition, we emphasize the single-look case because multi-look SAR images are usually obtained by reducing spatial resolution anda portion of the information is lost. We also emphasize high-resolution because targets have someextension in high-resolution SAR images and much more information on the targets is available2



than in low-resolution images.When CFAR detectors are applied to single-look, high-resolution SAR images, several shortcom-ings remain. Firstly, extended targets disappear because backscatterers from the targets are usedto calculate the required statistics. Secondly, it takes a long time to complete detection because ofpixelwise computation of the statistics. Thirdly, false targets can be found almost everywhere dueto the presence of speckle in SAR images. Finally, the full backscattering patterns from targets aremissed because some backscatterers from targets are not much stronger than the local clutter. Tosolve these problems, a two stage CFAR detector is designed here.The performance of a CFAR detector depends on the correctness of the statistical model becausethe calculation of the threshold is based on the assumptions that the PDF of the background isknown except for some parameters and that the reference pixels are independent of each other. Theperformance may be degraded if an incorrect statistical model is used. It is preferable to performa goodness-of-�t test and an independence test.The organization of this paper is as follows. Section 2 describes the goodness-of-�t test and theindependence test. The two stage CFAR detector and conditional dilation algorithms are describedin Section 3. Experimental results are reported in Section 4. Conclusions and future researchdirections are brie
y described in Section 5.2 STATISTICAL TESTSThe Rayleigh [4], the log-normal [4], the Weibull [4, 5, 6, 7], and the K distribution [8] are all used inradar applications to describe the amplitude or intensity of backscatterers statistically. The Weibulldistribution can be made to approach either the Rayleigh or the log-normal distribution [7]. TheRayleigh distribution is also a special case of the K distribution. Recent papers focus on the Kdistribution and the Weibull distribution. The K distribution is usually used for sea background [8].Our goal is to detect stationary man-made objects on land, so we use the Weibull distribution. Inthis paper, the CFAR detector is based on the distance dc(X). In order to show the validityof the Weibull distribution for the distance, a Kolmogorov-Smirnov (K-S) test [9] is used as agoodness-of-�t test.Assume that y0; : : : ; yn�1 are n independent samples from the same distribution and that thecumulative distribution function is F (Y ). Let Fn(Y ) be the sampled cumulative distribution func-3



tion. The samples are ordered as y(0) � y(1) � � � � � y(n�1) and thenF (yi) = Probfy � y(i)g (4)Fn(yi) = i=n (5)and Mn = maxyi jFn(yi)� F (yi)j (6)are computed for the test. When the samples actually belong to the distribution being tested for,the probability of P = Prob(Mn � c) (7)is shown in Table 1a . Table 1: Signi�cant LevelsP 0.01 0.05 0.10 0.15 0.20c 1.63 1.36 1.22 1.14 1.07For the Weibull case, the probability density function isf(y) = CB � yB�C�1 exp "�� yB�C# (8)and the cumulative distribution function isF (Y ) = 1� exp ��YB�C! (9)where C is the shape parameter and B is the scale parameter. When C = 2, it is a Rayleighdistribution, and when C = 1, it is an exponential distribution. Given the parameters C and Band the independent samples, a con�dence test on the Weibull distribution can be set up accordingto Table 1 and (8) and (9).When CFAR is implemented, it is required that the samples be independent. The samplecorrelation coe�cient [9] is used. The smaller the sample correlation coe�cient is, the less correlatedthe data are. Although decorrelation is a necessary but not a su�cient condition for independence,it is commonly used due to the simplicity of computing correlation coe�cients. Since the dataaThis table is from [10]. 4



in this paper are from non-Gaussian distributions, it is di�cult to set a con�dence level for thedecorrelation test. Therefore, decorrelation of the data is performed only when the data fail topass the goodness-of-�t test regardless of the values of the correlation coe�cients. Decorrelationfor every stage of the CFAR detector is considered in Section 3.3 THE CFAR DETECTORIn a CFAR detector, the absolute amplitude makes no sense. The square root of the distance isscaled to make the root representable by integers without loss of signi�cant bits. In the rest of thispaper, the scaled square root of the distance is used and is represented as an integer d(u; v), whereu and v denote a given spatial position in the image, u = 0; : : : ; U � 1 and v = 0; : : : ; V � 1.As described in Section 2, the Weibull distribution is used to model d(u; v). In practice, C andB in (8) are unknown and they vary with spatial position (u; v). To make the threshold adapt tothe variations, a CFAR detector is used. An order statistic (OS) CFAR algorithm [5] is proposed forthe Weibull distribution. This algorithm exhibits extensive CFAR loss [6]. Ravid and Levanon [6]suggest a maximum-likelihood CFAR detector for a Weibull background. In this algorithm [6], thethreshold is calculated according to the maximum-likelihood estimation of C and B. This algorithmis adopted to calculate the threshold in this paper, but the method of getting the reference pixelsis di�erent.Suppose that there are n samples in the reference window of PUT, say d0; : : : ; dn�1. The samplescome either from the background or from targets. If the samples from targets are used to estimatethe statistical parameters, the performance of CFAR will be degraded. To reduce this degradation,the l% smallest samples are used to estimate the parameters, and the (100� l)% largest samples,which might come from targets, are not used. The samples are ordered as d(0) � d(1) : : : � d(n�1),and L = l%� n is calculated. The maximum-likelihood estimate [6] of C satis�esPL�1j=0 dĈ(j) ln d(j)PL�1j=0 dĈ(j) � 1̂C = 1L L�1Xj=0 ln d(j) (10)Solving this equation iteratively, as shown in the Appendix, we obtain the estimated parameter Ĉand then the estimated parameter B̂ fromB̂ = 0@ 1L L�1Xj=0 dĈ(j)1A 1̂C (11)5



From Ĉ and B̂, the thresholdT = 8><>: (lnPFA) 1̂C B̂ if L � 120(120L ln PFA) 1̂C B̂ if L < 120 (12)is obtained, where PFA is the prede�ned false alarm rate.In this paper, the algorithm for parameter estimation is slightly di�erent from the algorithmproposed by Ravid and Levanon [6] in that we discard the (100�l)% largest samples whereas Ravidand Levanon [6] set them equal to the largest of the l% smallest samples. It is unlikely that onevalue occurs many times in a small window since the dynamic range of the SAR image is large.Therefore, it is more reasonable to discard the largest samples than to set them equal to the samevalue since the largest samples might come from targets and the statistical parameters should beestimated using data from the background.In our algorithm, the samples are also ordered. But it is di�erent from the algorithm in [5] inthe method used to get the threshold. The l% smallest order stastistics are used in this paper,while only two are used in [5]. The performance analysis of the maximum-likelihood algorithm canbe found in [6].As mentioned in Section 1, traditional CFAR algorithms have shortcomings when they areapplied to single-look, high-resolution SAR images. To improve detection, CFAR detection isperformed twice. The CFAR detection algorithms are described in the following subsections.3.1 THE GLOBAL CFAR DETECTORThe k% smallest pixels in the whole image are used to estimate C and B in (8). We refer to thisCFAR as global. The prede�ned parameters are k and the false alarm rate PGCFA . The threshold isthe same for the whole image, and CFAR is not a proper name for the detector since the thresholddoes not change with spatial position. However, the method used to get the threshold is the sameas in CFAR, so we still adopt the name CFAR.When the global CFAR detector is used, spatial correlation must be considered before doingthe goodness-of-�t test and obtaining the threshold. A straightforward way to decorrelate the datais to divide the image into small windows, to compute the correlation coe�cients between any twoof these windows [9], and to select windows whose correlation coe�cients with each other are small.However, this method is impractical. For a 1024� 256 image, 1023! correlation coe�cients wouldneed to be computed if the size of the small windows is 16 � 16. To prevent this burdensome6



computation, a very simple method is used in this paper. Since the dynamic range of SAR imagesis large and a single value seldom occurs many times in one small spatial window, samples with thesame value are considered to be a single sample and samples with di�erent values are used to dothe goodness-of-�t test and to estimate the statistical paprameters. The global CFAR algorithm isthen the following.� Algorithm I.1. Find the maximum value Dmax and the minimum value Dmin of the image d(u; v) andthen compute the histogram h(d) of the image, where h(d) is the number of times thatvalue d occurs in the image and d = Dmin; : : : ; Dmax.2. Find the minimum D which makes PDd=Dmin h(d) � k% � V � U . The image size isV � U .3. Let h0(d) = 1 if h(d) > 1, where d = Dmin; : : : ; D.4. Calculate L =PDd=Dmin h0(d).5. Order the samples as d(0) < d(1) < � � �< d(L�1), where h0(d(i)) = 1 and Dmin � d(i) � Dfor i = 0; : : : ; L� 1.6. Substitute samples d(i)(i = 0; : : : ; L� 1) into (10) and use the iterative function in theAppendix to get Ĉ. B̂ is obtained by substituting the samples and Ĉ into (11).7. Substitute the prede�ned false alarm rate PGCFA and the estimated parameters Ĉ and B̂into (12) and obtain the threshold T .8. Set GC(u; v) = 0 if d(u; v) � T . Otherwise set GC(u; v) = 1, where u = 0; : : : ; U � 1and v = 0; : : : ; V � 1 .If GC(u; v) = 1, the pixel d(u; v) is accepted as a target pixel in the global CFAR detector.Otherwise, it belongs to the background.When the goodness-of-�t test is needed, the estimated parameters Ĉ and B̂ and the samplesd(i) (i = 0; : : : ; L� 1) are used to compute Mn in (6). The value of Mn is reported in Section 4.3.2 THE LOCAL CFAR DETECTORThe pixels which are accepted as targets by the global CFAR detector will be detected again usinganother CFAR detector. In order to distinguish the CFAR detector in this subsection from that in7



the previous subsection, the name \local CFAR" is used in this subsection because the thresholdis calculated according to local statistical parameters.When the local CFAR detector is used, the value ofMn is much smaller than that in the globalCFAR detector and correlation need not be considered since data in small windows are used toestimate the statistical parameters. If the data in some windows cannot pass the goodness-of-�ttest, an auto-regression model is used to decorrelate the data.If GC(u; v) = 1, that is, pixel d(u; v) is accepted as a target by the global CFAR detector, thel% smallest samples in the reference window are used to estimate C and B in (8). The thresholdT is calculated according to the prede�ned false alarm rate PLCFA . If d(u; v) > T , the pixel d(u; v)is accepted as a target pixel. Otherwise, it is rejected as a target pixel. The value of T varies withspatial position (u; v).When extended targets are present, there are reference windows in which most of the pixels arealready thought to be targets by the global CFAR detector. If the pixels which have been acceptedas targets by the global CFAR detector were to be used, the detection would be unreliable sincethese pixels might come from targets and should not be used to estimate the statistical parameters.In this case, we enlarge the reference window until the number of pixels which are rejected astargets by the global CFAR detector is large enough.Two algorithms are used in the implementation of the local CFAR detector. In one, the sizeof the reference window is �xed, and in the other the size of the reference window varies with theposition of PUT. The former is used for point targets and the latter is used for extended targets.It is easier to implement the former than to implement the latter. However, the former cannot beused for extended targets. We prefer the latter algorithm since it can be used for both point targetsand extended targets. The drawback of the latter algorithm is that false targets might occur in thedetected image.The two algorithms are implemented in the following steps.� Algorithm II (Point targets).1. Calculate n = Qw � Pw � 1 and L = l%� n.2. For every pair (u; v), do the following steps if GC(u; v) = 1. Otherwise set LC(u; v) = 0,where u = 0; : : : ; U � 1 and v = 0; : : : ; V � 1.3. Order the reference pixels as d(0) � d(1) : : :� d(n�1).8



4. Substitute samples d(i)(i = 0; : : : ; L� 1) into (10) and use the iterative function in theAppendix to get Ĉ. B̂ is obtained by substituting the samples and Ĉ into (11).5. Substitute the prede�ned false alarm rate PLCFA and the estimated parameters Ĉ and B̂into (12) and compute the threshold T . This threshold changes with spatial position(u; v), but the false alarm rate does not change.6. Set LC(u; v) = 0 if d(u; v) � T . Otherwise set LC(u; v) = 1.If the distribution test needs to be performed, calculate Mn in (6) instead of the threshold Tin Step 5 .� Algorithm III. (Extended targets)1. Calculate L = l%�Qw �Pw � 1. The smallest size of the reference window is Qw �Pw.2. For every pair (u; v), do the following steps if GC(u; v) = 1. Otherwise set LC(u; v) = 0,where u = 0; : : : ; U � 1, v = 0; : : : ; V � 1.3. Set P = Pw and Q = Qw. The size of the reference window is Q� P .4. Order the reference pixels as d(0) � d(1) : : :� d(n�1), where n = Q� P � 1.5. Do the following if there exists at least one pixel (i; j) in the reference window whichsatis�es GC(i; j) = 0 and d(i; j) = d(L�1). Otherwise set P = P + 2 and Q = Q+ 2 andgo back to Step 4 to �nd new reference pixels in the enlarged reference window.6. Substitute samples d(i)(i = 0; : : : ; L� 1) into (10) and use the iterative function in theAppendix to get Ĉ. B̂ is obtained by substituting the samples and Ĉ into (11).7. Substitute the prede�ned false alarm rate PLCFA and the estimated parameters Ĉ and B̂into (12) and compute the threshold T . This threshold changes with spatial position(u; v), but the false alarm rate does not change.8. Set LC(u; v) = 0 if d(u; v) � T . Otherwise set LC(u; v) = 1.If the distribution test needs to be performed, calculate Mn in (6) instead of the threshold Tin Step 7 .As in the global CFAR detector, a pixel d(u; v) is accepted as a target pixel if LC(u; v) = 1.Otherwise, it is rejected as a target pixel. 9



3.3 CONDITIONAL DILATIONConditional dilation is performed according to the binary images GC(u; v) formed in the globalCFAR detector and LC(u; v) formed in the local CFAR detector.If a pixel is accepted as a target pixel by the local CFAR detector, all the pixels connected toit will also be accepted as target pixels if these pixels are accepted as target pixels by the globalCFAR detector. Doing this is based on the following considerations.Since the impulse response of a target to the incident wave is not a �(t) function and neither isthe incident wave, the backscatterers from the target are distributed in a region instead of at onepixel. But the backscattering is very strong only at a few pixels. To see the pattern of backscatteringfrom the target clearly, we prefer to retrieve the pixels which are backscatterers from the targetbut are not much stronger than the backscatterers from the neighboring background. These pixelsshould be extracted by the global CFAR detector since the k% smallest pixels in the whole image,not only the neighbors of the target, are used to get the threshold.The algorithm for conditional dilation based on 8-neighbors is described as follows.� Algorithm IV.1. Scan the �rst row from left to right to �nd all the continuous intervals in which (andat the endpoints of which) the values of GC(u; v) are all equal to one but the values ofLC(u; v) are all equal to zero. Let [v1; v2] be such an interval. This description can beexpressed as GC(0; v) = 1 and LC(0; v) = 0 for any v 2 [v1; v2]. Note that a special caseis v1 = v2.2. Set LC(0; v) = 1 for any v 2 [v1; v2] if LC(0; v1 � 1) = 1 or LC(0; v2 + 1) = 1, where[v1; v2] is an interval found at the �rst step. This is repeated for all the intervals foundat the �rst step.3. Do the following, beginning at u = 1 and ending at u = U�1. Find all the intervals in theu-th row as in the �rst step. Set LC(u; v) = 1 for any v 2 [v1; v2] if LC(u; v1 � 1) = 1or LC(u; v2 + 1) = 1 or there exists an m such that LC(u � 1; m) = 1, where m 2[v1 � 1; v2 + 1] and [v1; v2] is an interval found in the u-th row. This is repeated for allthe intervals found in the u-th row.4. Do the following, beginning at u = U�2 and ending at u = 0. Find all the intervals in theu-th row as in the �rst step. Set LC(u; v) = 1 for any v 2 [v1; v2] if LC(u; v1 � 1) = 110



or LC(u; v2 + 1) = 1 or there exists an m such that LC(u + 1; m) = 1, where m 2[v1 � 1; v2 + 1] and [v1; v2] is an interval found in the u-th row. This is repeated for allthe intervals found in the u-th row.5. The third and fourth steps are repeated until no pixel whose value is equal to one inGC(u; v) and is equal to zero in LC(u; v) is set to one after dilation at both the thirdand fourth steps.The binary image LC(u; v) which is obtained after dilation is the �nal result.4 EXPERIMENTAL RESULTSThree single-look, fully polarimetric SAR images obtained from Dr. Les Novak of MIT LincolnLaboratory were used. The resolution is 1ft by 1ft and the size is 1024 � 256. Due to spacelimitations, only a portion of each image is displayed. The original SAR images are shown in(a) of Figures 2, 3 and 4. The man-made objects with strong backscattering in these images arepowerlines, bridge fences, metallic guard rails, and buildings.We have estimated the polarimetric covariance matrix of the background using raw data.�c = 266664 1 0 0:80 0:2 00:8 0 1 377775 (13)is a good approximation to the polarimetric covariance matrix for di�erent types of background.In (13), the matrix has been normalized to make the �rst element equal to 1.For all three images, k = 60, PGCFA = 10�6, PLCFA = 10�7, l = 90, Pw = 11 and Qw = 11. Noother parameters are required for the CFAR detectors. In the local CFAR detector, the algorithmfor point targets is used for the images in Figures 2 and 3 and the algorithm for extended targetsis used for the image in Figure 4. The �nal detection results are shown in (b) of Figures 2, 3 and 4.For illustration purposes, the black dots are used to denote targets with strong backscattering inthe detected images. The results of the distribution test are shown in Table 2. In the global CFARdetector, the value of Mn in (6) before decorrelation is given in the second row and the value afterdecorrelation is given in the third row. The maximum value of Mn for all the pixels under test inthe local CFAR detector is shown in the fourth row. The number of pixels under test in the localCFAR detector is given in the �fth row. The number of pixels under test whose reference pixels fail11



(a) SAR Image

(b) Detected ImageFigure 2: Powerlines12



(a) SAR Image

(b) Detected ImageFigure 3: Bridge Fences and Metallic Guard Rails13



(a) SAR Image

(b) Detected ImageFigure 4: Buildings14



Table 2: Results of Distribution TestFigure 2 3 4Mn B. D. 18.09 16.47 23.56Mn A. D. 2.78 3.23 2.97M. Mn 2.03 2.18 1.70N. PUT 18705 13398 8855N. F. P1 18 110 1N. F. P2 908 1326 188to pass the distribution test is shown in the last two rows. The next to the last row is for P = 0:05;see (7). The last row is for P = 0:20.If the pixels whose reference pixels fail to pass the distribution test are displayed, we can seethat most of the pixels are target pixels and the rest are neighbors of target pixels when P=0.05.5 SUMMARYCompared with other detection algorithms, the method proposed in this paper has the followingadvantages. Single-look data are used instead of multi-look data so that the resolution of the SARimages remains; the pattern of backscattering from the targets is kept, and small targets, which maydisappear in multi-look data, are kept in the detected images. The e�ects of speckle are removedby the global CFAR detector. The full pattern of backscattering from the targets is retrieved byconditional dilation. Extended targets are extracted since the size of the reference window varieswith spatial position. Compared with other algorithms, fewer computations are required. In theglobal CFAR detector, the ordering is realized by computing the histogram, and the computationis fast. As shown in Table 2, the numbers of pixels required to do the detection in the local CFARdetector are 18705, 13398 and 8855 for Figures 2, 3 and 4 respectively. Therefore, the computationin the local CFAR detector is much faster than in other algorithms, where the local statisticalparameters for each of the 1024� 256 pixels in the image need to be calculated.The polarimetric covariance matrices in di�erent regions of the background are used to do thedetection. The detection results are almost the same using our method, whereas false targets occuralmost everywhere with other algorithms due to improper polarimetric covariance matrices. Thus,our method is robust compared with other algorithms.From Table 2, we see that the decorrelation is successful in the global CFAR detector. The15



assumption that the background is Weibull distributed is reasonably good according to the exper-imental results.In practice, the polarimetric covariance matrix of the background is not known beforehand andthe matrix changes from one region to another in the SAR images. It is desirable to design analgorithm in which both the threshold for detection and the polarimetric covariance matrix adaptto variations in the background.For the CFAR algorithm, detection performance also depends on the false alarm rate. If the rateis too large, targets may be lost. If it is too small, false targets may be found almost everywhere.To solve this, one idea is to compute sample polarimetric covariance matrices for every region whichis recognized as a target by the CFAR algorithm and compare them with a priori information onthe background and the target. However, the matrices of some targets are very similiar to thatof the background. This makes it di�cult to distinguish targets from the background using thepolarimetric covariance matrix.References[1] R. D. Chaney, M. C. Burl and L. M. Novak, On the performance of polarimetric target detectionalgorithms, IEEE International Radar Conference, Arlington, VA, 1990, 520{525.[2] F. T. Ulaby and C. Elachi, Radar Polarimetry for Geoscience Applications. Norwood, MA:Artech House, 1990.[3] L. M. Novak and M. C. Burl, Optimal speckle reduction in POL-SAR imagery, IEEE Trans.on Aerospace and Electronic Systems, Vol. 25, No. 2, March, 1989, 150{165.[4] F. T. Ulaby and M. C. Dobson, Handbook of Radar Scattering Statistics for Terrain. Norwood,MA: Artech House, 1989.[5] N. Levanon and M. Shor, Order statistics CFAR for Weibull background, IEE Proceedings-F,Vol. 137, No. 3, June, 1990, 157{162.[6] R. Ravid and N. Levanon, Maximum-likelihood CFAR for Weibull background, IEEProceedings-F, Vol. 139, No. 3, June, 1992, 256{264.[7] D. C. Schleher, Radar detection in Weibull clutter, IEEE Trans. on Aerospace and ElectronicSystems, Vol. 12, No. 6, November, 1976, 736{743.16
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AppendixIt is straightforward to use the one-point iterative function [11]1Cm+1 = PL�1j=0 dCm(j) ln d(j)PL�1j=0 dCm(j) � 1L L�1Xj=0 ln d(j) (14)for estimating C in (10), where the initial value C0 = 2. When the algorithm is implemented, thesequence fCmg is often divergent or its convergence speed is slow. Analyzing these sequences, thefollowing features are discovered: Cm = C + �m (15)Cm+1 = C + �m+1 (16)where C is the correct solution of (10). For a divergent sequence, � is an extremely small positivevalue when m is large enough, and for a sequence whose convergence speed is slow, � is an extremelysmall negative value when m is large enough. Based on the analysis, a two-point iterative functionis adopted: C2m+1 = C2m + C2m�12 (17)where C2m is obtained from the one-point iterative function. The initial values are C0 = 1 andC�1 = 3. If there exists an M such that����C2M�1 � C2MC2M ���� < 0:01 (18)the iteration is terminated and the estimated parameter isĈ = C2M (19)After the two-point iterative function is used, M is less than 10 when the sequence Cm is convergentaccording to the criterion in (18).
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