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Threshold regression is a relatively new alternative approach to the Cox pro-

portional hazards model when the proportional hazards assumption is violated. It is

based on first-hitting-time models, where the time-to-event data can be modeled as

the time at which the stochastic process of interest first hits a boundary or threshold

state. In this dissertation, we develop a semiparametric threshold regression model

with flexible covariate effects. Specifically, we propose a B-spline approximation

method to estimate nonlinear covariate effects on both the initial state and the rate

of the process. We show that the spline based estimators are consistent and achieve

the possible optimal rate of convergence under the smooth assumption. Simulation

studies are conducted for practical situations, and the methodology is applied to a

study of osteoporotic fractures that motivated this investigation.

To check the validity of threshold regression model with parametric link func-

tions, we propose two supremum-type test processes: one is based on cumulative



sums of martingale residuals; the other one is based on censoring consistent residu-

als. The realizations of these test stochastic processes under the assumed model can

be easily generated by computer simulation. We show that both tests are consistent

against model misspecification. Both model checking methods have been applied to

a kidney dialysis data set.
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Chapter 1: Introduction

1.1 Background

Analysis of time-to-event data has become a very important and active area

in statistical research in the past several decades. One major issue in the study of

time-to-event data is how to deal with censored data. Censoring means that the

time to the event of interest is not available for all individuals due to loss to follow-

up or non-occurrence of event before the end of study. It often occurs in clinical

trials and reliability studies. For example, in a two year clinical study evaluating

treatment effect of a new drug for lung cancer, death from the disease is the event

of interest. Those patients who drop out of the study before the end and those who

have not died by the end of the study are censored. For those patients, we only

know that their event times are beyond some time points. There are different types

of censoring, such as right censoring, left censoring and interval censoring. Right

censoring occurs if the event of interest occurs at a time after a right bound but

the actual time of event is unknown. Left censoring is when the event has already

occurred before the observation time and the time of event is not known precisely.

Interval censoring occurs when an interval bounding the event time is known but

the exact event time is not known.
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Traditional statistical methods can not be used in analyzing time-to-event

data since there is often a mixture of complete and incomplete observations be-

cause of censoring. Many methods including both parametric and semiparametric

approaches have been proposed to model time-to-event data in the past several

decades. Survival analysis which focuses on time-to-event data has become one of

the hottest topics in statistical research.

Survival function and hazard function are two basic concepts in survival anal-

ysis. Let T denote the random variable representing time to event of interest with

the cumulative distribution function F (t) = Pr(T ≤ t). The survival function S(t)

is defined as

S(t) = Pr(T > t) = 1− F (t), (1.1.1)

which is the probability that the event has not happen by time t. The hazard

function λ(t) gives the instantaneous rate of occurrence of the event at time t. It is

defined formally as

λ(t) = lim
dt→0

Pr(t ≤ T < t+ dt|T ≥ t)

dt
. (1.1.2)

Let

Λ(t) =

∫ t

0

λ(s)ds (1.1.3)

denote the cumulative hazard function. Let f(t) be the probability density function
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of T if F (t) is absolutely continuous. By some simple probabilistic arguments, one

can get following basic relations between survival function, hazard function and

probability density function:



λ(t) = − d
dt

(
logS(t)

)
S(t) = exp

(
− Λ(t)

)
f(t) = λ(t)S(t).

As shown above, specifying one of the three functions S(t), λ(t) and f(t) speci-

fies the other two functions. The survival function S(t) and the cumulative hazard

function Λ(t) can be estimated by Kaplan-Meier estimator and Nelson-Aalen esti-

mator (Chapter 1, Kalbfleisch and Prentice 2002), respectively. Both of them are

constructed based on nonparametric methods. Because of the flexibility of nonpara-

metric statistics they are commonly adopted by researchers. In some special cases,

parametric distributions (e.g., Weibull, Exponential, Gompertz-Makeham, Gamma,

etc.) can also be used to model statistical characteristics of the failure time T . One

important part of modern survival analysis is to explore effects of covariates on in-

dividual’s survival experience. Next, we will briefly review some popular survival

analysis models that can be used to deal with covariate effects in analyzing time-to-

event data.

Cox model: The Cox model (Cox, 1972) is often referred to as the propor-

tional hazards model. Let λ(t|Z) denote the hazard function for an individual with
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a p × 1 vector Z of covariates. Under the Cox model, the hazard function λ(t|Z)

can be written as the product of an unspecified baseline hazard function λ0(t) and

exp(β′0Z), i.e.,

λ(t|Z) = λ0(t) exp(β′0Z)

where β0 is a p× 1 vector of unknown regression parameters. One can estimate β0

through the partial likelihood method. Let β̂ denote the resulting estimate of β0.

Andersen and Gill (1982) and Tsiatis (1981) discussed the asymptotic behavior of β̂.

As shown in the above functional form of λ(t|Z), the covariates have a linear

effect on the log hazard function in Cox model. This assumption is relatively strong

and may not always be guaranteed. To relax this assumption and enhance the

accuracy of the model, nonlinear covariates effects have been considered by many

authors. Hastie and Tibshirani (1986) proposed a local scoring algorithm for esti-

mating smooth covariate functions (potentially nonlinear) in a class of generalized

additive models (which is a set of likelihood based regression models). Its application

on the Cox model was also discussed. O’Sullivan (1988) adopted smoothing splines

to estimate nonlinear covariate effects in the Cox model through penalized partial

likelihood. Sleeper and Harrington (1990) discussed using splines to approximate

additive nonlinear covariate effects in the Cox model. Strawderman and Tsiatis

(1996) and Huang (1999) explored consistency and convergence rate for the spline

based estimators in the Cox model with unknown functional forms of covariates by

various approaches.
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In the application of survival analysis, some prognostic factors may vary over

time or other prognostic factors. For example, a drug may gradually lose its efficacy

on treating certain diseases because of virus mutation. Several authors have stud-

ied Cox models with varying coefficients. Murphy and Sen (1991) proposed sieve

method to estimate varying coefficient functions in the Cox model by modeling them

as piecewise constants. Cai and Sun (2003) adopted the kernel smoothing approach

to estimate time-dependent regression coefficients in the Cox model locally, based

on partial likelihood within an interval around each time point. They also estab-

lished the pointwise consistency and asymptotic normality of their estimators. This

method was further discussed by Tian et al. (2005). Our model development in

Chapter 2 is inspired by discussions of these authors.

Accelerated failure time model: The accelerated failure time model (Chap-

ter 7, Kalbfleisch and Prentice 2002) describes the logarithm of the event time T

as a linear function of covariates Z. Because of the way it links event time with

covariates, the accelerated failure time model has a direct physical interpretation.

The model can be written in the following general form

log(T ) = β′0Z + ε,

where β0 is a p×1 vector of unknown regression parameters and ε is an independent

error term under some distribution. Let S0(·) denote the survival function of ε and
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let T0 = exp(ε) be the baseline survival time. By some simple arguments, the

survival function of T given Z can be written as

S(t|Z) = S1

(
t exp(−β′0Z)

)
,

where S1(·) is the survival function of T0 and S1(·) = S0(log(·)). This can be inter-

preted as a reduction of the survival time T by a factor exp(−β′0Z) as compared

to the baseline survival time. If the distribution of ε is known, β0 can be estimated

based on the maximum likelihood method.

When the distribution of ε is unknown, Buckley and James (1979) developed

an estimation procedure for β0 by modifying the least squares normal equations to

accommodate censored observations. Tsiatis (1990) derived a linear rank test statis-

tics based estimating equations for regression parameters β0. Asymptotic properties

of the rank estimator were studied by Tsiatis (1990), Wei et al. (1990), Lai and Ying

(1991), and Wei (1993), among others. Ritov (1990) discussed the relation between

two classes of estimating equations and showed that they are asymptotically equiv-

alent.

The Cox model has been the most commonly used approach among others,

since one does not need to specify a particular baseline hazard function. However,

the proportional hazards assumption may not always be satisfied in real applica-

tions and one needs to carefully check this assumption when using the standard Cox
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model.

The threshold regression (TR) model can be one alternative approach when

the proportional hazards assumption is violated. The TR model, which is based

on first-hitting-time (FHT) models, describes the time-to-event as the first time a

stochastic process reaches a boundary. FHT models have been widely used in many

fields, such as sociology, engineering, medicine, etc. Lee et al. (2006) pointed out

that a FHT model has two basic components:

1. a parent stochastic process {X(t), t ∈ T , x ∈ X} with an initial value X(0) =

x0, where T is the time space and X is the state space of the process.

2. a boundary set B, where B ∈ X .

Then the event time T can be interpreted as the first time the parent stochastic pro-

cess X(t) starting at X(0) reaching the threshold B, that is, T = inf{t : X(t) ∈ B}.

Lee et al. (2006) also mentioned many possible choices for the parent stochastic

process X(t), such as Gamma process, Ornstein-Uhlenbeck process, Wiener process,

etc. Because of its feasibility in its assumption and explicit distribution of first

hitting time T , Wiener process has been chosen by many researchers as the parent

stochastic process in their studies. It can be shown that the first hitting time T of

a Wiener process with a fixed threshold B follows an inverse Gaussian distribution.

For the statistical properties of the inverse Gaussian distribution one can refer to

Tweedie (1957). Lancaster (1972) adopted a FHT model based on the Wiener
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process to describe the duration of a strike and he found that the fit of the model to

the observations was very close. Eaton and Whitmore (1977) considered the length

of hospital stay as a Wiener process based FHT model and got a better fitted

result compared with results of other models. Chhikara and Folks (1977) suggested

using the inverse Gaussian distribution to model the lifetime of a industrial product

because of its advantages in statistical characterization. Whitmore (1979) adopted

a FHT model based on the Wiener process for describing the employee service time.

Doksum and Hoyland (1992) developed a time-scale changed Wiener process to

model accumulated decay of a product under accelerated life testing trial where

time-transformed inverse Gaussian distribution were used for parameter estimation.

However, in these applications, the covariate effects were not taken into account for

the heterogeneity in populations.

1.2 Literature Review: Threshold Regression

As pointed out by Lee et al. (2006), to be truly valuable in applications, FHT

models must be capable of extension to include regression structures since regression

structures allow the effects of covariates to explain the inherent dispersion of the

data. Usually, FHT models with regression structures are referred to as threshold

regression.

Whitmore (1983) proposed a regression method for analyzing censored time-

to-event data. He adopted an FHT model based on the Wiener process starting from
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origin with a drift parameter δ and a volatility parameter v for modeling censored

failure time data and set the absorbing threshold as a constant (one unit from ori-

gin). The drift parameter δ was modeled as a linear function of covariates. An EM

algorithm was developed to find the maximum likelihood estimates of the regression

parameters β and volatility parameter v where the first passage time (event time)

follows the inverse Gaussian distribution. The similarities and differences of other

alternative general regression methodologies (i.e., Cox and log-linear models) from

the inverse Gaussian model were also discussed.

Lee and Whitmore (2010) investigated in depth the connections between the

Cox model and TR models and showed that the Cox model is a special case of TR

models for most purposes. They showed that TR models can yield proportional

hazards functions mainly through the following two methods: (1) changing the time

scale of TR model; (2) altering the boundary of TR model. They also discussed how

to estimate the time scale and boundary with or without the proportional hazards

assumption.

Lee et al. (2004) used the TR model for analyzing lung cancer risk in railroad

workers. They modeled the latent health status process by a Wiener process with

an unknown positive initial value x0 and the occurrence of event as the first time

this Wiener process reaching threshold boundary zero. They described the initial

value x0 and drift µ of the Wiener process as linear functions of covariates for con-

sideration of the inherent dispersion of data. Instead of using calendar time they
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used operational time scale since the rate of disease progression varied for different

intervals of life experience.

Lee et al. (2009) extended the TR model for analyzing survival data with time-

varying covariates using a Markov decomposition technique. They showed that the

proposed Markov TR model is consistent with the Cox model with time-varying

covariates. The connection between the Markov TR model and the concept of a

collapsible survival model was also discussed.

Pennell et al. (2010) proposed a Bayesian approach for TR models. They

assumed that an individual’s health status can be modeled as a Wiener process

with subject-specific initial state and drift. In addition to modeling initial process

state and drift as linear functions of covariates, they assumed a prior distribution

for regression parameters in the process initial state and drift. They argued that

this Bayesian approach is able to address the issue of presence of unmeasured co-

variates. They applied the Bayesian method to a melanoma data set and compared

their results with regular TR models.

Whitmore et al. (1998) proposed a bivariate Wiener process model in which

one process models the marker and the other latent process determines the failure

time. The failure occurs when the latent process hits a threshold boundary. They

derived the joint probability distribution and density function for event time and

marker level where the maximum likelihood method can be used for parameter es-
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timation. Lee et al. (2000) extended this model by relating covariates to the model

parameters through linear regression functions. They applied the model to an AIDS

clinical trial data set in which the CD4 count was treated as the bio-marker. Tong et

al. (2008) further extended this bivariate Wiener process model to analyze current

status data (sometimes called case I interval censored data where there is only one

observation time for each subject).

Horrocks and Thompson (2004) developed a model for length of stay in hospi-

tal (LOS) through a Wiener process reaching two absorbing thresholds, one for the

healthy discharge and the other for the death in hospital, where the two thresholds

are modeled as linear functions of covariates. The also showed that the density of

the first hitting time and its derivatives are absolutely and uniformly convergent

under certain regularity conditions.

Yu et al. (2009) extended TR models to accommodate nonlinear independent

covariate effects. They proposed a spline approximation method for the estimation of

unknown functional effect of covariate. Cross-validation method was also discussed

for the selection of number of knots and determination of smoothing parameters.

However, consistency of the resulting spline based estimator was not shown.

Many researchers have discussed various ways to link covariates’ effects in TR

models, but most of them only considered linear regression structures of covariates

to explain the heterogeneity in the sample data. However, in real applications most
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phenomena can not be fully explained by models with linear structures. Analysis

results may have misleading conclusions if one forces such a linear relation in TR

models. This is the main inspiration for the model development in Chapter 2 and

model checking in Chapter 3 of this dissertation.

Recently, Li and Lee (2011) discussed TR models with varying coefficients

for prognostic factors. In their article, they considered the case that regression

coefficients vary with time dependent variables. However, our model proposed in

Chapter 2 is different from their model in the following ways:

1. Li and Lee (2011) modeled drift parameter of Wiener process X(t) as a func-

tion of covariates and assumed each individual had the same initial value (i.e.,

X(0) = 1). In our model, the variability in different individuals when they

first come into the study is also considered through modeling initial value X(0)

as a regression function of covariates with both linear and nolinear structures.

2. Li and Lee (2011) adopted a local polynomial method to approximate un-

known functions; spline approximation technique is used to estimate smooth

functions of covariates in our proposed method. Besides, the consistency and

convergence rate of the estimator are discussed in a different manner.

1.3 TR Model Based on One Dimensional Wiener Process

Although TR model is applicable to many different areas, we focus on its ap-

plications in clinical and epidemiological studies. Fluctuations of an individual’s

12



latent health status can be well described by a stochastic process and time to event

can be interpreted as the first time this stochastic process hits a threshold boundary.

As shown in Section 1.2, many authors have chosen a Wiener process as the parent

stochastic process for TR models. We also model latent health status by a Wiener

process, mainly because this kind of process has been often found to be a suitable

model for many physical processes that exhibit random variation over time (Lee

et al. 2004). Besides, Wiener process has flexible assumptions and its statistical

properties have been well developed in the past several decades.

Specifically, let {X(t)} be a Wiener process that represents the health status

of a subject at time t. At t = 0, we assume that the subject’s initial health status

is a positive value δ = X(0), which is an unknown parameter to be estimated. Let

µ and σ2 denote the drift and infinitesimal variance of {X(t)}, respectively. Then

X(t) can be written as

X(t) = δ + µt+ σWt,

where Wt is a standard Brownian motion. The process X(t) has independent incre-

ments with

X(t)−X(s) ∼ N
(
µ(t− s), σ2(t− s)

)
for 0 ≤ s < t.

An event time, such as death and disease progression can be interpreted as

the first time X(t) reaches the threshold boundary B = 0. Denote the first hitting
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time by S, where

S = inf{t : X(t) = 0}.

Let Φ(·) and φ(·) be the standard normal cumulative distribution function and

standard normal density function, respectively. Following Lee et al. (2004), the first

hitting time S for the Wiener process {X(t)} follows an inverse Gaussian distribution

with the following density function :

f(s|θ) =
δ

(2πσ2s2)1/2
exp

[
− (δ + µs)2

2σ2s

]
s > 0, (1.3.1)

for −∞ < µ < +∞, σ2 > 0 and δ > 0 ,

where θ = (δ, µ, σ)′. Then the cumulative distribution function of S is given by

F (s|θ) = 1− Φ

[
µs+ δ

(σ2s)1/2

]
+ exp

(
−2δµ

σ2

)
Φ

[
µs− δ

(σ2s)1/2

]
. (1.3.2)

If µ > 0 there is a point mass at infinity:

Pr(S =∞) = 1− exp(−2δµ/σ2) .

The underlying Wiener process X(t) may not reach the threshold boundary B = 0

eventually. This case can be interpreted as a certain proportion of individuals are

“cured” or never experience the event of interest. For µ ≤ 0, the first-hitting time

S < ∞ almost surely (Chhikara and Folks, 1989). The expected survival time
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(first-hitting-time) is

E(s|θ) =
δ

|µ|

whenever µ < 0.

Assume right censored data are available. Let Y = S ∧ C represent the event

time subject to right censoring time C. Assume that S and C are independent. Let

∆ = I(S ≤ C) be the event indicator (∆ = 1 if Y is an observed event time and 0

otherwise). Figure 1.3 illustrates two cases: path 1 shows an observed event before

the end of a follow-up time of 600 days, while a censored event time is illustrated

by path 2 when health process has not reached the threshold boundary B = 0 by

the end of the follow-up time.

Suppose that (Yi,∆i), i = 1, . . . , n, are n i.i.d. copies of (Y,∆). Then the

log-likelihood function of the observed data has the form

ln(θ) =
n∑
i=1

li(θ;Yi,∆i)

=
n∑
i=1

{
∆i log

[
f(Yi|θ)

]
+ (1 + ∆i) log

[
1− F (Ci|θ)

]}
(1.3.3)

It is clear that the proposed log-likelihood function (1.3.3) depends on the following

two parameter quantities: δ/σ and µ/σ. The health status process is latent so it

can be given an arbitrary measurement unit (Lee and Whitmore, 2006). Thus, we

assume that σ = 1.

15



Figure 1.1: Two illustrative sample paths of health status: path 1 reaches the
threshold boundary zero before the end of a follow-up time of 600 days and event
time is observed; path 2 has not reached the threshold boundary by the end of the
follow-up time and event time is censored.

To incorporate the covariate effects several authors have considered the link

functions:

ln(δ) = Z ′δβδ ,

µ = Z ′µβµ ,

where Zδ = (Zδ1, . . . , Zδd1)
′ and Zµ = (Zµ1, . . . , Zµd2)

′ are d1×1 and d2×1 vectors of

covariates, and βδ = (βδ1, . . . , βδd1)
′ and βµ = (βµ1, . . . , βµd2)

′ are the corresponding

vectors of unknown regression parameters. Modeling the logarithm of δ as a function
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of covariates ensures that δ > 0. One advantage of TR models with the above link

functions is their ability to distinguish two types of covariate effects: the covariate

effects on how far the process has advanced prior to the study (i.e., the effects

on δ) and the causal effects on the degradation (i.e., the effects on µ) (Pennell et

al., 2010). In contrast, the Cox model is only able to estimate covariate effects

during the study and explain covariate effects in terms of hazard ratio. However,

for example, a smaller hazard rate of treatment group compared to control group

could be a result of effective treatment or better health condition at the beginning

of the study. This question can not be answered using Cox model. We refer the

readers to Section 6 of Lee and Whitmore (2010) for more details on this issue. We

will further discuss covariate effects on latent process X(t) in Chapter 2. Another

advantage of TR models is that they can estimate hazard ratios at different time

points. This can be seen from the hazard function

λ(s|θ) =
f(s|θ)

1− F (s|θ)

=
δ(2πs2)−1/2 exp

[
− (δ + µs)2/2s

]
Φ
[
(µs+ δ)/(s)1/2

]
− exp(−2δµ)Φ

[
(µs− δ)/(s)1/2

] ,
while Cox model can only estimate a constant hazard ratio.

1.4 Overview of the Dissertation

This dissertation is organized as follows. In Chapter 2, we present the thresh-

old regression model with flexible covariate effects in which covariates are modeled
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as partially linear and partially nonlinear in the link functions. We adopt the B-

spline approximation method to estimate nonlinear covariate effects. Regression

parameters and coefficients of B-spline basis functions are estimated by the method

of maximum likelihood. Asymptotic properties of the spline-based estimator are

established through the empirical process. In particular, our proposed estimator

attains the optimal convergence rate in nonparametric regression analysis when the

number of spline basis functions are chosen properly. Simulation studies show that

the proposed estimation procedure works well. The methodology is applied to the

data from a study of osteoporotic fractures.

In Chapter 3, we discuss two model checking techniques for assessing the

goodness-of-fit of TR models with parametric link functions. One is based on cu-

mulative sums of martingale residuals, which was first proposed by Lin et al. (1993)

under the Cox model. The other is based on cumulative sums of censoring consistent

residuals, which was originally introduced by León and Tsai (2004) for testing the

functional form specification of covariates under the Cox model. We show how to

calculate p-values for both test processes through simulation. Large sample prop-

erties are established under fixed alternative hypotheses for the two methods. We

apply both model checking approaches to a kidney dialysis data set.

In Chapter 4, we provide a summary of this dissertation and discuss several

directions for future research.

18



Chapter 2: Threshold Regression with Flexible Covariate Effects

2.1 Introduction

2.1.1 Background

Linear models are one of the most commonly used statistical methods to ex-

plore effects of covariates on a particular outcome. The assumption that regression

coefficients are constants is relatively strong and thus may not be satisfied in certain

applications. One may get biased estimates and misleading results if this assump-

tion is violated. Varying-coefficient models which allow regression coefficients to vary

with certain covariates are a natural alternative to linear models and can improve

the accuracy of parameter estimation. There are mainly two approaches to estimate

functional coefficients. One is the local polynomial method and the other is the

spline approximation technique. Hastie and Tibshirani (1993) discussed the regres-

sion and generalized regression models in which the coefficients are allowed to vary

over other variables. They adopted a penalized spline method to estimate coefficient

functions. Hoover et al. (1998) studied varying-coefficient model for longitudinal

data, in which both local polynomial and smoothing spline methods were discussed.

Chiang et al. (2001) considered the component-wise smoothing spline method for
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the estimation of functional coefficients. Huang et al. (2002) studied the spline ap-

proximation for estimating parameters of a varying-coefficient model. Consistency

and convergence rates of their resulting estimators were established. Huang et al.

(2004) further explored the asymptotic normality of the spline approximation based

estimator for functional coefficients. Huang and Shen (2004) discussed the spline

approximation technique for estimating functional coefficient regression models for

non-linear time series. For the estimation of functional coefficients through the lo-

cal polynomial approach, one can refer to the review paper by Fan and Zhang (2008).

In survival analysis, the varying-coefficient modeling approach has received

much attention recently. These works include Murphy and Sen (1991), Cai and Sun

(2003), Tian et al. (2005), Nan et al. (2005), Cai et al. (2007), among others.

In this chapter, we will discuss TR models with flexible covariate effects in which

some of the covariates may have nonlinear coefficients and others retain the linear

effects on both the initial health status δ = X(0) and the drift parameter µ of the

latent process X(t). We will adopt a spline approximation technique to estimate

functional coefficients because it has been well developed and demonstrated to be a

powerful tool in the estimation of semiparametric models.

2.1.2 Review of B-spline Approximation

In this section, we will briefly review basic concepts and properties of spline

approximation. Interested readers can refer to the book by de Boor (2001) for more
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detailed information on splines. Using the spline approximation technique to ap-

proximate unknown functions has a long history in statistical inference. One can

find rich resources in this area from Sleeper and Harrington (1990), Shen and Wong

(1994), Stone (1994), Huang (1996), and Lu et al. (2007), among others.

A polynomial function of order k has the functional form

f(x) = a1 + a2x+ . . .+ akx
k−1 =

k∑
i=1

aix
i−1 .

A spline function is constructed based on piecewise polynomial functions with same

order k, where the degree of spline with order k is k − 1. The points at which

the piecewise polynomial functions meet are called knots. In this section we focus

on a class of splines which are named B-splines. The term “B-spline” is short for

basis-spline. One important property of B-splines of order k is that its (k − 2)th

derivative is continuous at the knots if the knots are distinct.

We will first review how B-spline basis functions are generated when their

order and knot sequence of support are given. Let t be the knot sequence for closed

interval [a, b] where t = (ti)
n+k
1 with

t1 = . . . = tk = a < tk+1 ≤ . . . < b = tn+1 = . . . = tn+k .

Let Bj,k,t denote the jth B-spline basis function of order k for the knot sequence
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t. The number of B-spline basis functions is n, that is, the number of the knots

n + k minus the order of B-spline basis k. The B-spline basis functions Bj,k,t for

j = 1, 2, . . . , n are defined through their order k and the number of knots n + k

and can be recursively constructed through the following formulas (Chapter IX, De

Boor, 2001):

Bj,1,t(t) =


1, if tj ≤ t < tj+1;

0, otherwise

(2.1.1)

Bj,k,t(t) = wj,k(t)Bj,k−1,t(t) +
[
1− wj+1,k(t)

]
Bj+1,k−1,t(t), for k > 1, (2.1.2)

where

wj,k(t) =
t− tj

tj+k−1 − tj
.

In the above formulas, 0/0 is defined as 0.

For example, given a knot sequence t where t1 = t2 = t3 = 0, t4 = 0.3, t5 =

0.5, t6 = 0.5, t7 = 0.6 and t8 = t9 = t10 = 1, we get

B1,3,t(t) = (1− 10

3
t)2, 0 ≤ t < 0.3;

B7,3,t(t) = 2.5(5t− 3)2, 0.6 ≤ t < 1

based on the above recursive formula (2.1.2). Figures 2.1 and 2.2 show the steps to

compute B1,3,t(t) and B7,3,t(t), respectively.
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B1,3,t(t)

B2,2,t(t) B1,2,t(t)

B3,1,t(t) B2,1,t(t) B1,1,t(t)

Figure 2.1: Calculation steps for B1,3,t(t). Here, B3,1,t(t) = I[t3, t4), B2,1,t(t) =
I[t2, t3) and B1,1,t(t) = I[t1, t2) based on formula (1.1.1).

B7,3,t(t)

B8,2,t(t) B7,2,t(t)

B9,1,t(t) B8,1,t(t) B7,1,t(t)

Figure 2.2: Calculation steps for B7,3,t(t). Here, B9,1,t(t) = I[t9, t10), B8,1,t(t) =
I[t8, t9) and B7,1,t(t) = I[t7, t8) based on formula (1.1.1).

As pointed out by de boor (2001), any spline function S(x) of order k with knot

sequence t can be written as a linear combination of B-spline basis functions with

the same order and knot sequence t. Let $k,t denote the set of all such functions.

Then, we have

$k,t =
{∑

i

αiBi,k,t : αi real, all i
}
.

Because of their ability to approximate functions with unknown functional form,

splines are widely used in semiparametric and nonparametric analysis. The function
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is approximated by B-spline basis (polynomial function) within consecutive knots.

The convergence of spline approximation for a smooth function g is guaranteed by

Theorem (6) (p. 149) of de Boor (2001), as stated below.

Lemma 2.1.1 (de Boor 2001). For j = 0, . . . , k − 1, there exists constk,j so that,

for all t = (ti)
n+k
1 with

t1 = . . . = tk = a < tk+1 ≤ . . . < b = tn+1 = . . . = tn+k

and for all g ∈ C(j)[a, b],

dist(g, $k,t) ≤ constk,j|t|jω(Djg; |t|).

In particular, for j = k − 1, we get

dist(g, $k,t) ≤ constk|t|k‖Dkg‖

in case g has k continuous derivatives (since then ω(Dk−1g;h) ≤ h‖Dkg‖).

Notation in the above lemma is specified below:

1. Djf := jth derivative of f .

2. dist(g, S) := inf{‖g − f‖ : f ∈ S}, the distance of g ∈ C[a, b] from the subset

S of C[a, b] .

3. C(n)[a, b] := {f : [a, b]→ R : f is n times continuously differentiable}.
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4. ‖f‖ := max{|f(x)| : a ≤ x ≤ b}, the uniform norm of f ∈ C[a, b].

5. ∆τi := τi+1 − τi, the forward difference.

6. |τ | := maxi ∆τi, the mesh size.

7. ω(f ;h) := max{|f(x) − f(y)| : x, y ∈ [a, b], |x − y| ≤ h}, the modulus of

continuity for f ∈ C[a, b].

The above lemma will be used in Section 2.5 for proving the consistency and

convergence rate of the resulting estimator.

2.2 Model and Likelihood

In Section 1.3 we briefly introduced TR models with linear covariate effects.

However, this assumption is not always guaranteed, which can lead to misleading

conclusions. To relax this assumption, Yu et al. (2009) incorporated penalized and

regression splines into TR models to accommodate nonlinear covariates’ effects. Li

and Lee (2011) generalized their models and discussed TR models with varying co-

efficients. They adopted a local polynomial technique to approximate the unknown

functional form of coefficients. Both articles assume that the initial health status

δ = X(0) to be constant (one unit away from threshold boundary B = 0) and de-

scribe the drift parameter µ of latent health process X(t) as a function of covariates.

However, artificially forcing the initial health for all subjects to be the same is not

appropriate since different individuals with different values of covariates may not

share the same initial health status. To better understand covariate effects on X(t),
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we propose a more general approach in which both δ and µ are considered as func-

tions of covariates with possibly varying coefficients to accommodate the potential

nonlinear interactions between covariates. We also assume σ2, the infinitesimal vari-

ance of X(t), to be 1 for which the reason is explained in Section 1.3, and rewrite

the parameters as θ = (δ, µ)′. Then from (1.3.1), the density function for the first

hitting time S of the latent Wiener process {X(t)} is given by

f(s|θ) =
δ

(2πs2)1/2
exp

[
− (δ + µs)2

2s

]
s > 0, (2.2.1)

for −∞ < µ < +∞ and δ > 0 .

The corresponding cumulative distribution function is

F (s|θ) = 1− Φ

[
µs+ δ

(s)1/2

]
+ exp(−2δµ)Φ

[
µs− δ
(s)1/2

]
. (2.2.2)

For each subject, the observed data are denoted by (Y,∆,Z ′δ,Z
′
µ,V

′
δ ,W

′
δ,V

′
µ,

W ′
µ); where Y and ∆ follow the same definition as in Section 1.3; Zδ = (Zδ1, . . . , Zδd1)

′

and Zµ = (Zµ1, . . . , Zµd2)
′ are d1-dimensional and d2-dimensional vectors of co-

variates, respectively; Vδ = (Vδ1, . . . , Vδp1)
′ and Wδ = (Wδ1, . . . ,Wδp1)

′ are p1-

dimensional vectors of covariates; Vµ = (Vµ1, . . . , Vµp2)
′ and Wµ = (Wµ1, . . . ,Wµp2)

′

are p2-dimensional vectors of covariates. We assume that the censoring time C is

independent with the stochastic process {X(t)} given the covariates Zδ, Zµ,Vδ, Wδ,
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Vµ and Wµ.

To incorporate the covariate effects into the stochastic process X(t), we pro-

pose a class of semiparametric partially linear varying-coefficient TR models. Sup-

pose that the covariate effects can be described by


ln(δ) = ZTδ βδ +

∑p1
m=1 Vδmηm(Wδm)

µ = ZTµβµ +
∑p2

n=1 Vµnϕn(Wµn)

where βδ and βµ are d1-dimensional and d2-dimensional vectors of unknown re-

gression parameters and ηm(·) (m = 1, . . . , p1) and ϕn(·) (n = 1, . . . , p2) are com-

pletely unspecified smooth functions. When Vδm = 0 (m = 1, . . . , p1) and Vµn = 0

(n = 1, . . . , p2), the model reduces to the regular TR model, which has been well

studied by Lee et al. (2000, 2004), among others. When Vδm = 1 (m = 1, . . . , p1)

and Vµn = 1 (n = 1, . . . , p2), it reduces to the additive semiparametric TR model

which proposed by Yu et al. (2009). In this dissertation, for simplicity of notation,

we only consider the case with p1 = p2 = 1, that is,


ln(δ) = ZTδ βδ + Vδη(Wδ)

µ = ZTµβµ + Vµϕ(Wµ).

The proposed models can be easily generalized to the cases with p1 > 1 and p2 > 1.
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Suppose the observed data for the ith subject is Ui = (Yi,∆i,Z
′
δi,Z

′
µi, V

′
δi,

W ′
δi, V

′
µi,W

′
µi) for i = 1, . . . , n. Then the log-likelihood function has the form

ln(τ ∗) =
n∑
i=1

li(τ
∗;Ui)

=
n∑
i=1

{
∆i log[f(Yi|Zδi,Zµi, Vδi,Wδi, Vµi,Wµi, τ

∗)]

+ (1−∆i) log[1− F (Ci|Zδi,Zµi, Vδi,Wδi, Vµi,Wµi, τ
∗)]

}
, (2.2.3)

where τ ∗ = (β′δ,β
′
µ, η(·), ϕ(·))′.

2.3 Estimation Procedure

The functions η(·) and ϕ(·) can not be estimated directly from the log-likelihood

function (2.2.3) since their functional forms are completely unspecified. We use the

B-spline function approximation technique as briefly reviewed in Section 2.1 for the

estimation of smooth functions η(·) and ϕ(·).

Without loss of generality, assume that Wδ has support on [aη, bη]. Let

tη = {tηi}kn+m
1 ,

with

tη1 = . . . = tηm = aη < tηm+1 ≤ . . . < bη = tηkn+1 = . . . = tηkn+m,

be a sequence of knots that partitions [aη, bη], the support of Wδ, into kn + 1 −m
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subintervals Iηi = [sηm+i, sηm+i+1], for i = 0, 1, . . . , kn −m. Let

fη(·) = (fη1(·), . . . , fηkn(·))′ ,

the B-spline basis function for the space of m-th order polynomial splines with knots

tη. fηi, i = 1, . . . , kn, can be constructed recursively by (2.1.1) and (2.1.2). Then

we can approximate η(Wδ) by

ηn(Wδ) = α′ηfη(Wδ) ,

where αη = (αη1, . . . , αηkn)′ is a kn-dimensional vector of unknown coefficients.

Similarly, we can approximate ϕ(·) by a spline function. Assume that Wµ has

support on [aϕ, bϕ]. Let

tϕ = {tϕi}kn+m
1 ,

with

tϕ1 = . . . = tϕm = aϕ < tϕm+1 ≤ . . . < bϕ = tϕkn+1 = . . . = tϕkn+m

be a sequence of knots that partitions [aϕ, bϕ], the support of Wϕ, into kn + 1−m

subintervals Iµi = [sµm+i, sµm+i+1], for i = 0, 1, . . . , kn −m. Let

fϕ(·) = (fϕ1(·), . . . , fϕkn(·))′ ,

the B-spline basis function for the space of m-th order polynomial splines with knots
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tϕ. Then fϕi for i = 1, . . . , kn can be constructed recursively by (2.1.1) and (2.1.2).

Thus ϕ(Wµ) can be approximated by

ϕn(Wµ) = α′ϕfϕ(Wµ) ,

where αϕ = (αϕ1, . . . , αϕkn)′ is a kn-dimensional vector of unknown coefficients.

A spline function of order m with knot sequence t is any linear combination

of B-splines of order m for the knot sequence t (de Boor 2001, p. 93). Let

$m,tη =
{
ηn(Wδ) : ηn(Wδ) =

kn∑
i=1

αηifηi(Wδ), αηi real, all i,Wδ ∈ [aη, bη]
}

be the collection of spline functions of order m with knot sequence tη and

$m,tϕ =
{
ϕn(Wµ) : ϕn(Wδ) =

kn∑
i=1

αϕifϕi(Wµ), αϕi real, all i,Wµ ∈ [aϕ, bϕ]
}

denote the collection of spline functions of order m with knot sequence tϕ. Let Aη

be the support of αη and Aϕ be the support of αϕ. After replacing η(Wδ) and

ϕ(Wµ) in the log-likelihood function (2.2.3) by their spline approximation functions
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ηn(Wδ) and ϕn(Wµ), respectively, the log-likelihood function has the following form

ln(τ ) =
n∑
i=1

li(τ ;Ui)

=
n∑
i=1

{
∆i log[f(Yi|Zδi,Zµi, Vδi,Wδi, Vµi,Wµi, τ )]

+ (1−∆i) log[1− F (Ci|Zδi,Zµi, Vδi,Wδi, Vµi,Wµi, τ )]

}
, (2.3.1)

where τ = (β′δ,β
′
µ,α

′
η,α

′
ϕ)′. Let Θ ⊂ Rd1+d2 denote the domain of the regression

parameters (β′δ,β
′
µ). To estimate the unknown parameters τ one can maximize

the log-likelihood function ln(τ ) over its parameter space Θ × Aη × Aϕ which is

equivalent to maximizing ln(τ ∗) over Θ× $m,tη × $m,tϕ .

The parameter estimator which maximizes ln(τ ) over its parameter space Θ×

Aη × Aϕ is denoted by (β̂′δ, β̂
′
µ, α̂

′
η, α̂

′
ϕ)′. The regression spline estimators can be

obtained by

η̂n(Wδ) = fη(Wδ)
′α̂η

and

ϕ̂n(Wµ) = fϕ(Wµ)′α̂ϕ ,

respectively. Let

H(β̂′δ, β̂
′
µ, α̂

′
η, α̂ϕ) =

[
∂2l(τ )

∂τ∂τ ′

]
(d1+d2+2kn)×(d1+d2+2kn);τ=(β̂′δ ,β̂

′
µ,α̂
′
η ,α̂
′
ϕ)′

be the Hessian matrix of the log-likelihood function ln(τ )|τ=(β̂′δ ,β̂
′
µ,α̂
′
η ,α̂
′
ϕ)′ . Then the
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variance estimators for η̂n and ϕ̂n are given by

fη(Wδ)
′

[
−H(β̂′δ, β̂

′
µ, α̂

′
η, α̂

′
ϕ)

]−1

αη ,αη

fη(Wδ)

and

fϕ(Wµ)′

[
−H(β̂′δ, β̂

′
µ, α̂

′
η, α̂

′
ϕ)

]−1

αϕ,αϕ

fϕ(Wµ) ,

respectively, where [−H(β̂′δ, β̂
′
µ, α̂

′
η, α̂

′
ϕ)]−1

αη ,αη and [−H(β̂′δ, β̂
′
µ, α̂

′
η, α̂ϕ)]−1

αϕ,αϕ are

the kn × kn submatrices of [−H(β̂′δ, β̂
′
µ, α̂

′
η, α̂

′
ϕ)]−1 corresponding to α̂η and α̂ϕ,

respectively.

To check whether the functional coefficient is a parametric function, one

can adopt the likelihood ratio test. For example, to examine if η(Wδ) in ln(δ)

is linear over Wδ, one can fit the nested TR model under the null hypothesis

H0 : η(Wδ) = α0 + α1Wδ and then conduct the likelihood ratio test against the

full model.

We will discuss the asymptotic behavior of spline-based maximum likelihood

estimator in the next section.
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2.4 Asymptotic Property of Estimator

2.4.1 Introduction

Empirical process theory is a powerful tool for studying asymptotic properties

of estimators from complex statistical models. In this section we will briefly review

some basic concepts and important theorems of empirical processes. These theo-

rems will be used to prove the main results in this section. For a comprehensive

treatment and for references to the extensive literature on the subject one may refer

to the books by van der Vaart and Wellner (1996) and van der Vaart (1998).

We mainly follow the notation in van der Vaart (1998). For a probability

measure P on measurable space (X ,B) and a measurable function f : X 7→ R, let

Pf =

∫
fdP .

That is, Pf = EP(f). Let X1, . . . , Xn be a random sample from P. We denote

Pnf =
1

n

n∑
i=1

f(Xi) .

The empirical process Gnf is defined as

Gnf =
1√
n

n∑
i=1

{f(Xi)− Pf} .
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Research on empirical processes focuses on studying empirical processes as random

functions over the associated index set. Let F denote a class of measurable functions

f : X 7→ R. If

‖Pnf − Pf‖F = sup
f∈F
|Pnf − Pf |

a.s.→ 0 ,

we say that F is P-Glivenko-Cantelli. Let G be a mean zero Gaussian process which

is indexed by F . Assume that the covariance of G is P (fg)−PfPg for all f, g ∈ F .

Then F is called P-Donsker if

Gn
D→ G

in l∞(F), where l∞(F) is the collection of all bounded functions in F . One can

interpret P-Glivenko-Cantelli and P-Donsker as stronger versions of the law of large

numbers and central limit theorem, respectively.

The Bracketing number which is a way of measuring the size of a function

class F . It can be used to determine if F is a Glivenko-Cantelli or Donsker class.

The bracket [l, u] is the set of all functions f with l ≤ f ≤ u where l and u are two

given functions. The Lr(P )-norm is defined as

‖f‖P,r =

(∫
X
|f(x)|rdP(x)

)1/r

= (P |f |r)1/r .

An ε-bracket in Lr(P ) is a bracket [l, u] with P (u− l)r < εr. The bracketing number

N[ ](ε,F , Lr(P )) is the minimum number of ε-brackets needed to cover F . (The
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bracketing functions l and u must have finite Lr(P )-norms but need not belong

to F .) The entropy with bracketing is the logarithm of the bracketing number.

The covering number, denoted by N(ε,F , Lr(Q)), is another way of measuring the

size of a function class F . The covering number N(ε,F , Lr(Q)) is the minimum

number of ε-balls need to cover F , where an ε-ball around a function f is the

set {h : ‖h − f‖Q,r < ε}. The entropy is the logarithm of the covering number.

Bracketing number and covering number are closely related. They have the following

relations (Kosorok 2008, p. 160-161):

1. Bracketing numbers are in general larger than covering numbers. For any

norm ‖ · ‖ on F one has

N(ε,F , ‖ · ‖) ≤ N[ ](ε,F , ‖ · ‖) .

2. For any norm ‖ · ‖ dominated by ‖ · ‖∞,

logN[ ](2ε,F , ‖ · ‖) ≤ logN(ε,F , ‖ · ‖∞) .

The following theorem answers what kind of function class is P-Glivenko-

Cantelli.

Lemma 2.4.1 (van der Vaart 2002, Theorem 19.4). Every class F of measurable

functions such that N[ ](ε,F , L1(P )) <∞ for every ε is P-Glivenko-Cantelli.

In most cases, the bracketing numbers N[ ](ε,F , Lr(P )) are decreasing func-

tions of ε and grow to infinity when ε ↓ 0. One way to tell whether a function class
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F is P-Donsker is to check how fast N[ ](ε,F , Lr(P )) goes to infinity as ε ↓ 0. The

bracketing integral

J[ ](δ,F , L2(P )) =

∫ δ

0

√
logN[ ](ε,F , L2(P ))dε

can be used to measure the speed. Then we have the following theorem.

Lemma 2.4.2 (van der Vaart 2002, Theorem 19.5). Every class F of measurable

functions with J[ ](δ,F , L2(P )) <∞ is P-Donsker.

The above lemma requires more stringent condition on the number of brack-

ets needed to cover F . The value of J[ ](δ,F , L2(P )) depends only on the size of

the bracketing numbers for ε ↓ 0. Since we know that
∫ 1

0
(1
ε
)rdε converges given

r < 1, J[ ](δ,F , L2(P )) is bounded if the entropy with bracketing grows with an

order slower than (1/ε)2.

The following result provides other equivalent descriptions of a P-Donsker class

F and they can be used as properties of F , as stated below.

Lemma 2.4.3 (van der Vaart and Wellner 1996, Corollary 2.3.12). Let F be a class

of measurable functions. Then the following are equivalent:

(1) F is P-Donsker;

(2) (F , ρP ) is totally bounded and

lim
δ↓0

lim sup
n→∞

P

(
sup

ρP (f−g)<δ
|Gn(f − g)| > ε

)
= 0
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where ρP (f) = (P (f − Pf)2)1/2 for f ∈ F .

(3) (F , ρP ) is totally bounded and

E
√
n‖Pn − P‖Fδn → 0, for every δn → 0

where ‖Pn−P‖F = supf∈F |Pnf−Pf | and Fδ = {f−g : f, g ∈ F , ρP (f−g) <

δ}.

Lemma 2.4.3 will be used to show consistency of our proposed spline based

estimator. To get exact convergence rate of our estimator, we will mainly check

conditions in the next lemma.

Lemma 2.4.4 (van der Vaart and Wellner 1996, Theorem 3.4.1). Let Mn be stochas-

tic processes indexed by a semimetric space Θ and M : Θ 7→ R a deterministic

function, such that for every θ in a neighborhood of θ0,

M(θ)−M(θ0) . −d2(θ, θ0).

Suppose that, for every n and sufficiently small δ, the centered process Mn − M

satisfies

E sup
d(θ,θ0)<δ

|(Mn −M)(θ)− (Mn −M)(θ0)| . φn(δ)√
n
,

for functions φn such that δ 7→ φn(δ)/δα is decreasing for some α < 2 (not depending

on n). Let

r2
nφn(

1

rn
) ≤
√
n, for every n.
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If the sequence θ̂n satisfies Mn(θ̂n) ≥Mn(θ0)−OP (r−2
n ) and converges in probability

to θ0, then rnd(θ̂n, θ0) = OP (1). If the displayed conditions are valid for every θ and

δ, then the condition that θ̂n is consistent is unnecessary.

The condition on the centered process Mn − M in Lemma 2.4.4 is hard to

check in most situations. One alternative is to use Lemma 3.4.2 in van der Vaart

and Wellner (1996). We define the bracketing integral of a function class F by

J̃[ ](δ,F , ‖ · ‖) =

∫ δ

0

√
1 + logN[ ](ε,F , ‖ · ‖)dε ,

where ‖ · ‖ is a given norm.

Lemma 2.4.5 (van der Vaart and Wellner 1996, Lemma 3.4.2). Let F be class a of

measurable functions such that Pf 2 < δ2 and ‖f‖∞ ≤M for every f in F . Then

EP‖Gn‖F . J̃[ ](δ,F , L2(P ))

(
1 +

J̃[ ](δ,F , L2(P ))

δ2
√
n

M

)
.

2.4.2 Consistency

We will show the consistency of the spline based estimator for TR models with

flexible covariate effects which was discussed in Section 2.3. We will mainly use the

empirical process techniques that reviewed in Section 2.4.1 to prove the main result

in this section.

Analogous to Wellner and Zhang (2007), the following regularity conditions
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are needed to derive consistency of spline based maximum likelihood estimator

τ̂n = (β̂δ, β̂µ, η̂n(Wδ), ϕ̂n(Wµ)′.

Assumption 2.4.1.

(1) Zδ and Zµ are bounded, i.e., there exists Z0 > 0 such that P (‖Zδ‖ ≤ Z0) = 1

and P (‖Zµ‖ ≤ Z0) = 1.

(2) Θ is a compact subset of Rd1+d2.

(3) η(Wδ) ∈ C1[aη, bη] and ϕ(Wµ) ∈ C1[aϕ, bϕ], where Ci[a, b] denotes a class of

functions with continuous i-th derivatives in [a, b].

(4) Censoring time C is bounded, C < T <∞.

Lemma 2.4.6. For f ∈ Cj[a, b], there exists a fn ∈ $m,t with order m ≥ j+1, where

t = (ti)
kn+m
1 is the knot sequence for [a, b] and maxi∈{1,2,...,kn+m−1}(ti+1−ti) = O(k−1

n )

such that

‖f − fn‖∞ = O(k−jn ) .

Proof. This is a direct conclusion of Lemma 2.1.1. Since f (j) ∈ C(j)[a, b] ⊂ C(j−1)[a, b],

we have

dist(f, $m,t) ≤ constk,j−1|t|j−1ω(Dj−1f ; |t|) .

By the mean value theorem, ω(Dj−1f ; |t|) ≤ |t|‖Djf‖∞. This implies that

dist(f, $m,t) ≤ constk,j−1|t|j‖Djf‖∞ .
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The quantity Djf is bounded by some constant C since Djf is continuous on [a, b]

(f ∈ Cj[a, b]). This leads to

dist(f, $m,t) ≤ constk,j−1|t|jC ;

that is, ‖f − fn‖∞ = O(k−jn ) for some fn ∈ $m,t.

Let tη and tϕ be partitions of [aη, bη] and [aϕ, bϕ] as defined in Section 2.2. For

each n, we further assume that tη and tϕ have meshes which satisfy


∆̄ηn = maxi{tηi − tηi−1} = O(k−1

n )

∆̄ϕn = maxi{tϕi − tϕi−1} = O(k−1
n )

(2.4.1)

where kn = O(nv) for v ∈ (0, 1). Based on Lemma 2.4.6 and Assumption 2.4.1 (3),

we have the following facts:

1. ∃α0
η = (α0

η1, . . . , α
0
ηkn

)′ ∈ Aη such that ‖η(Wδ) − η0
n(Wδ)‖∞ ≤ O(k−1

n ) where

η0
n(Wδ) = α0

η
′fη(Wδ) ∈ $m,tη .

2. ∃α0
ϕ = (α0

ϕ1, . . . , α
0
ϕkn

)′ ∈ Aϕ such that ‖ϕ(Wµ)− ϕ0
n(Wµ)‖∞ ≤ O(k−1

n ) where

ϕ0
n(Wµ) = α0

ϕ
′fϕ(Wµ) ∈ $m,tϕ .

The functions η(Wδ) and ϕ(Wµ) are bounded under Assumption 2.4.1 (3). We
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further assume that

Aη = {αη = (αη1, . . . , αηkn)′ : max
i=1,...,kn

|αηi| ≤M} , (2.4.2)

Aϕ = {αϕ = (αϕ1, . . . , αϕkn)′ : max
i=1,...,kn

|αϕi| ≤M} (2.4.3)

for some constant M such that α0
η ∈ Aη and α0

ϕ ∈ Aϕ.

Let ‖ · ‖ denote the Euclidean distance; that is, ‖p‖ =
√
p2

1 + . . .+ p2
n where

p is a vector in Rn. For any probability measure P, the L2-norm is defined as

‖f‖2 =
(∫

f 2dP
)1/2

.

For τ1 = (βδ1,βµ1, η1(Wδ), ϕ1(Wµ)) and τ2 = (βδ2,βµ2, η2(Wδ), ϕ2(Wµ)), define

the following L2-metric:

d(τ1, τ2) =
{
‖βδ1 − βδ2‖2 + ‖βµ1 − βµ2‖2

+ ‖η1(Wδ)− η2(Wδ)‖2
2 + ‖ϕ1(Wµ)− ϕ2(Wµ)‖2

2

}1/2

=
{
‖βδ1 − βδ2‖2 + ‖βµ1 − βµ2‖2

+

∫
[(η1 − η2)(Wδ)]

2dP(Wδ) +

∫
[(ϕ1 − ϕ2)(Wµ)]2dP(Wµ)

}1/2

.

The main result of this section is given in the following theorem.

Theorem 2.4.7. Suppose (1)–(4) in Assumption 2.4.1 hold. As n → ∞ and for
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kn = O(nv) where v ∈ (0, 1),

d(τ̂n, τ0)→ 0,

where τ̂n = (β̂δ, β̂µ, η̂n(Wδ), ϕ̂n(Wµ)) is the spline based maximum likelihood esti-

mator and τ0 = (β0
δ ,β

0
µ, η

0(Wδ), ϕ
0(Wµ)) denotes the true parameter value.

We will prove Theorem 2.4.7 by checking conditions in Theorem 5.7 of van der Vaart

(1998), which is an important tool for showing consistency of estimators based on

estimating equations, as stated below.

Lemma 2.4.8 (van der Vaart 1998, Theorem 5.7). Let Mn be random functions

and let M be a fixed function of θ such that for every ε > 0

sup
θ∈Θ
|Mn(θ)−M(θ)| p→ 0,

sup
θ:d(θ,θ0)≥ε

M(θ) < M(θ0)

(2.4.4)

Then any sequence of estimators θ̂n with Mn(θ̂n) ≥ Mn(θ0) − op(1) converges in

probability to θ0.

We will prove each condition in Lemma 2.4.8 as a lemma for our spline based

maximum likelihood estimator τ̂n = (β̂δ, β̂µ, η̂n(Wδ), ϕ̂n(Wµ)′. In the process of

proving these conditions, we will summarize other useful conclusions as lemmas.
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Lemma 2.4.9. Let $m,t =
{∑kn

i=1 αiBi,m,t,maxi=1, ...,kn |αi| ≤ M
}

, where Bi,m,t

are B-spline basis functions of order m on [a, b]. Then the bracketing number

N[ ](ε, $m,t, ‖ · ‖∞) under the ‖ · ‖∞-norm and N[ ](ε, $m,t, L2(P )) under L2(P )-norm

are bounded by c(M/ε)kn and c(
√
knM/ε)kn for some constants c, respectively.

By a calculation of Shen and Wong (1994) (p. 597) we get N[ ](ε, $m,t, ‖·‖∞) ≤

c(M/ε)kn . For N[ ](ε, $m,t, L2(P )) one just needs to change the δ-sphere and the cube

with diameter ε/n in Lemma 5 of Shen and Wong (1994) into a cube in Rkn with

diameter M and a small cube with diameter ε/
√
kn, respectively.

We denote

l(τ ;U) =∆ log[f(S|Zδ,Zµ, Vδ,Wδ, Vµ,Wµ, τ )] + (1−∆)

× log[1− F (C|Zδ,Zµ, Vδ,Wδ, Vµ,Wµ, τ )] .

Let M(τ ) = Pl(τ ;U ) and Mn(τ ) = Pnl(τ ;U). In this dissertation, we do not

consider the cure rate model and assume that the drift parameter µ ≤ 0. The first

condition in Lemma 2.4.8 is given by the following lemma.

Lemma 2.4.10. Let Tn = Θ × Aη × Aϕ, where Aη and Aϕ are defined in (2.4.2)

and (2.4.3), respectively. Under Assumption 2.4.1 we have:

sup
τ∈T n

|Mn(τ )−M(τ)| p→ 0 . (2.4.5)
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Proof. Let F1 = {l(τ ;U) : τ ∈ Tn}. From Lemma 2.4.9, for all ε > 0, there exists

a set of brackets

{
[ηli(Wδ), η

u
i (Wδ)] : ‖ηui (Wδ)− ηli(Wδ)‖∞ ≤ ε for i = 1, 2, . . . , (

√
knM/ε)kn

}

such that for any ηn(Wδ) ∈ $m,tη ,

ηli(Wδ) ≤ ηn(Wδ) ≤ ηui (Wδ)

for some 1 ≤ i ≤ (
√
knM/ε)kn and all Wδ ∈ [aη, bη]. Similarly, for all ε > 0, there

exists a set of brackets

{
[ϕlj(Wµ), ϕuj (Wµ)] : ‖ϕuj (Wµ)− ϕlj(Wµ)‖∞ ≤ ε for j = 1, 2, . . . , (

√
knM/ε)kn

}

such that for any ϕn(Wµ) ∈ $m,tϕ ,

ϕlj(Wµ) ≤ ϕn(Wµ) ≤ ϕuj (Wµ)

for some 1 ≤ j ≤ (
√
knM/ε)kn and all Wµ ∈ [aϕ, bϕ]. From arguments in the proof

of Lemma 7.2 of Huang (1991), Θ can be covered by [c(1/ε)d1+d2 ] balls with radius

ε where c is some constant since Θ ∈ Rd1+d2 is compact. So for any θ ∈ Θ there
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exists an 1 ≤ s ≤ [c(1/ε)d1+d2 ] such that ‖θ − θs‖ < ε. Then we have:


‖βδ − βδs‖ < ε for some 1 ≤ m ≤ [c(1/ε)d1+d2 ]

‖βµ − βµs‖ < ε for some 1 ≤ n ≤ [c(1/ε)d1+d2 ].

Since Zδ and Zµ are bounded, we have


|β′δZδ − β′δmZδ| < cε

|β′µZµ − β′µnZµ| < cε

for some constant c. The above inequalities are equivalent to:


β′δZδ ∈ [β′δmZδ − cε,β′δmZδ + cε]

β′µZµ ∈ [β′µnZµ − cε,β′µnZµ + cε]

for any Zδ,Zµ ∈ Θ.

Based on above facts, we can build a set of brackets

{
[lli,j,m,n(U), lui,j,m,n(U)] : i, j = 1, 2, . . . ,[c(

1

ε
)d1+d2 ];

m,n = 1, 2, . . . , [(

√
knM

ε
)kn ]
}

such that for any function l(τ ;U) ∈ F1 and any sample point U

l(τ ;U) ∈ [lli,j,m,n(U), lui,j,m,n(U)]

45



for some 1 ≤ i, j ≤ [c(1
ε
)d1+d2 ] and 1 ≤ m,n ≤ [(

√
knM
ε

)kn ]. The brackets lli,j,m,n(U)

and lui,j,m,n(U) are constructed as follows:

lli,j,m,n(U) = ∆ log

{
δli,j,m,n

(2πS3)1/2
exp

[
−

(δui,j,m,n + µui,j,m,nS)2

2S

]}

+ (1−∆) log

{
Φ

[
µli,j,m,nC + δli,j,m,n

C1/2

]

− exp(−2δli,j,m,nµ
l
i,j,m,n)Φ

[
µli,j,m,nC − δui,j,m,n

C1/2

]}

and

lui,j,m,n(U) = ∆ log

{
δui,j,m,n

(2πS3)1/2
exp

[
−

(δli,j,m,n + µli,j,m,nS)2

2S

]}

+ (1−∆) log

{
Φ

[
µui,j,m,nC + δui,j,m,n

C1/2

]

− exp(−2δui,j,m,nµ
u
i,j,m,n)Φ

[
µui,j,m,nC − δli,j,m,n

C1/2

]}

where 
ln(δli,j,m,n) = β′δmZδ + V ηli(Wδ)− cε

ln(δui,j,m,n) = β′δmZδ + V ηui (Wδ) + cε

and 
µli,j,m,n = β′µnZµ + V ϕlj(Wµ)− cε

µui,j,m,n = β′µnZµ + V ϕuj (Wµ) + cε.

The above brackets are constructed based on the monotonic properties of the Φ(·)

function and the exponential function. Without loss of generality, we assume that
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V > 0. By using Taylor expansion and Assumption 2.4.1 one can easily get

P |lui,j,m,n(U)− lli,j,m,n(U)| ≤ cε

for all 1 ≤ i, j ≤ [c(1/ε)d1+d2 ] and 1 ≤ m,n ≤ [(
√
knM/ε)kn ] where c is some

constant. This means that the ε-bracketing number for F1 with L1(P )-norm is

bounded by [c(1/ε)d1+d2 ] × [(
√
knM/ε)2kn ], which is less than infinity. So F1 is

P-Glivenko-Cantelli by Lemma 2.4.1. This leads to

sup
τ∈T n

|Mn(τ )−M(τ)| p→ 0 .

Let

lβδ(τ ;U) = lβδ(βδ,βµ, η, ϕ;U) =
∂l(βδ,βµ, η, ϕ;U)

∂βδ
,

lβµ(τ ;U) = lβµ(βδ,βµ, η, ϕ;U) =
∂l(βδ,βµ, η, ϕ;U)

∂βµ
,

lβδβδ(τ ;U) = lβδβδ(βδ,βµ, η, ϕ;U) =
∂lβδ(βδ,βµ, η, ϕ;U)

∂βδ
,

lβδβµ(τ ;U) = lβδβµ(βδ,βµ, η, ϕ;U ) =
∂lβδ(βδ,βµ, η, ϕ;U)

∂βµ
,

lβµβδ(τ ;U) = lβµβδ(βδ,βµ, η, ϕ;U ) =
∂lβµ(βδ,βµ, η, ϕ;U )

∂βδ
,

lβµβµ(τ ;U) = lβµβµ(βδ,βµ, η, ϕ;U) =
∂lβµ(βδ,βµ, η, ϕ;U)

∂βµ
.

For any fixed η(Wδ) ∈ C1[aη, bη], suppose that {ηα1 : α1 in a neighborhood of 0 ∈
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R} is a smooth curve in C1[aη, bη] running through η at α1 = 0, i.e., ηα1|α1=0 = η.

Let {ϕα2 : α2 in a neighborhood of 0 ∈ R} denote a smooth curve in C1[aϕ, bϕ] such

that ϕα2|α2=0 = ϕ. Let

H1 =
{
h1 : h1 =

∂ηα1

∂α1

|α1=0

}
,

H2 =
{
h2 : h2 =

∂ϕα2

∂α2

|α2=0

}
.
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For any h1 ∈ H1 and any h2 ∈ H2, we define

lη(τ ;U )[h1] = lη(βδ,βµ, η, ϕ;U)[h1] =
∂l(βδ,βµ, ηα1 , ϕ;U)

∂α1

|α1=0 ,

lϕ(τ ;U )[h2] = lϕ(βδ,βµ, η, ϕ;U )[h2] =
∂l(βδ,βµ, η, ϕα2 ;U)

∂α2

|α2=0 ,

lβδη(τ ;U )[h1] = lβδη(βδ,βµ, η, ϕ;U)[h1] =
∂lβδ(βδ,βµ, ηα1 , ϕ;U)

∂α1

|α1=0 ,

lβµη(τ ;U )[h1] = lβµη(βδ,βµ, η, ϕ;U)[h1] =
∂lβµ(βδ,βµ, ηα1 , ϕ;U)

∂α1

|α1=0 ,

lβδϕ(τ ;U )[h2] = lβδϕ(βδ,βµ, η, ϕ;U)[h2] =
∂lβδ(βδ,βµ, η, ϕα2 ;U)

∂α2

|α2=0 ,

lβµϕ(τ ;U )[h2] = lβµϕ(βδ,βµ, η, ϕ;U)[h2] =
∂lβµ(βδ,βµ, η, ϕα2 ;U)

∂α2

|α2=0 ,

lηβδ(τ ;U )[h1] = lηβδ(βδ,βµ, η, ϕ;U)[h1] =
∂lη(βδ,βµ, η, ϕ;U)[h1]

∂βδ
,

lηβµ(τ ;U )[h1] = lηβµ(βδ,βµ, η, ϕ;U)[h1] =
∂lη(βδ,βµ, η, ϕ;U)[h1]

∂βµ
,

lϕβδ(τ ;U )[h2] = lϕβδ(βδ,βµ, η, ϕ;U)[h2] =
∂lϕ(βδ,βµ, η, ϕ;U )[h2]

∂βδ
,

lϕβµ(τ ;U )[h2] = lϕβµ(βδ,βµ, η, ϕ;U)[h2] =
∂lϕ(βδ,βµ, η, ϕ;U)[h2]

∂βµ
,

lηη(τ ;U )[h1, h1] = lηη(βδ,βµ, η, ϕ;U)[h1, h1] =
∂lη(βδ,βµ, ηα1 , ϕ;U)[h1]

∂α1

|α1=0 ,

lηϕ(τ ;U )[h1, h2] = lηϕ(βδ,βµ, η, ϕ;U)[h1, h2] =
∂lη(βδ,βµ, η, ϕα2 ;U)[h1]

∂α2

|α2=0 ,

lϕη(τ ;U )[h2, h1] = lϕη(βδ,βµ, η, ϕ;U)[h2, h1] =
∂lϕ(βδ,βµ, ηα1 , ϕ;U)[h2]

∂α1

|α1=0 ,

lϕϕ(τ ;U )[h2, h2] = lϕϕ(βδ,βµ, η, ϕ;U)[h2, h2] =
∂lϕ(βδ,βµ, η, ϕα2 ;U )[h2]

∂α2

|α2=0 .

The h1 and h2 in brackets are functions denoting the direction of the functional

derivative with respect to η and ϕ, respectively.

49



To show the second condition in Lemma 2.4.8 for our proposed spline based

estimator τ̂n, Lemma 8.8 from van der Vaart (2002) is used and stated below.

Lemma 2.4.11 (van der Vaart 2002). Let h, g1 and g2 be measurable functions

such that c1 ≤ h ≤ c2 and (Pg1g2)2 ≤ cPg2
1Pg

2
2 for a constant c < 1 and constants

c1 < 1 < c2 close to 1. Then

P (hg1 + g2)2 ≥ C(Pg2
1 + Pg2

2),

for a constant C depending on c, c1 and c2 that approaches 1 −
√
c as c1 ↑ 1 and

c2 ↓ 1.

Lemma 2.4.12. Suppose Assumption 2.4.1 holds. Then

sup
τ :d(τ ,τ0)≥ε

M(τ ) ≤M(τ0) .

Proof.

M(τ )−M(τ0) =Pl(τ ;U)− Pl(τ0;U)

=P [l(τ ;U )− l(τ0;U)]

=Eτ0 [l(τ ;U)− l(τ0;U)] . (2.4.6)
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By using Taylor expansion of l(τ ;U) around τ0 we have:

l(τ ;U) ∼=l(τ0;U ) +
[
U0(τ0)

]′
(β′δ − β0

δ
′,β′µ − β0

µ
′, 1, 1)′

+
1

2
(β′δ − β0

δ
′,β′µ − β0

µ
′, 1, 1)′H0(τ0)(β′δ − β0

δ
′,β′µ − β0

µ
′, 1, 1)

where

[
U0(τ0)

]′
=
(
lβδ(τ ;U), lβµ(τ ;U), lη(τ ;U)[h1], lϕ(τ ;U)[h2]

)
τ=τ0

and

H0(τ0)

=



lβδβδ(τ ;U ) lβδβµ(τ ;U) lβδη(τ ;U)[h1] lβδϕ(τ ;U)[h2]

lβµβδ(τ ;U) lβµβµ(τ ;U) lβµη(τ ;U )[h1] lβµϕ(τ ;U)[h2]

lηβδ(τ ;U)[h1] lηβµ(τ ;U )[h1] lηη(τ ;U)[h1, h1] lηϕ(τ ;U)[h1, h2]

lϕβδ(τ ;U )[h2] lϕβµ(τ ;U)[h2] lϕη(τ ;U)[h2, h1] lϕϕ(τ ;U)[h2, h2]


τ=τ0

.

Without loss of generality, we take derivative of l(τ ;U) with respect to η and ϕ

with direction η − η0 and ϕ − ϕ0, respectively, i.e., h1 = η − η0 and h2 = ϕ − ϕ0.

By the chain rule, this leads to:

l(τ ;U) ∼=l(τ0;U) + [U(τ0)]′(β′δ − β0
δ
′,β′µ − β0

µ
′, η − η0, ϕ− ϕ0)′

+
1

2
(β′δ − β0

δ
′,β′µ − β0

µ
′, η − η0, ϕ− ϕ0)′H(τ0)

× (β′δ − β0
δ
′,β′µ − β0

µ
′, η − η0, ϕ− ϕ0)
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where [
U(τ0)

]′
=

(
∂l(τ ;U )

∂βδ
,
∂l(τ ;U)

∂βµ
,
∂l(τ ;U)

∂η
,
∂l(τ ;U)

∂ϕ

)
τ=τ0

and

H(τ0) =



lβδβδ(τ ;U) lβδβµ(τ ;U) ∂2l(τ ;U)
∂βδ∂η

∂2l(τ ;U)
∂βδ∂ϕ

lβµβδ(τ ;U) lβµβµ(τ ;U) ∂2l(τ ;U)
∂βµ∂η

∂2l(τ ;U)
∂βµ∂ϕ

∂2l(τ ;U)
∂ηβδ

∂2l(τ ;U)
∂ηβµ

∂2l(τ ;U)
∂ηη

∂2l(τ ;U)
∂ηϕ

∂2l(τ ;U)
∂ϕβδ

∂2l(τ ;U)
∂ϕβµ

∂2l(τ ;U)
∂ϕη

∂2l(τ ;U)
∂ϕϕ


τ=τ0

.

Plugging the above expression for l(τ ;U ) into equation (2.4.6) we get:

M(τ )−M(τ0) =Eτ0

{
[U(τ0)]′(β′δ − β0

δ
′,β′µ − β0

µ
′, η − η0, ϕ− ϕ0)′

}
+ Eτ0

{1

2
(β′δ − β0

δ
′,β′µ − β0

µ
′, η − η0, ϕ− ϕ0)′H(τ0)

× (β′δ − β0
δ
′,β′µ − β0

µ
′, η − η0, ϕ− ϕ0)

}
.

(2.4.7)

By changing the order of derivative and integral one can derive that the first

term Eτ0
{

[U(τ0)]′(β′δ − β0
δ
′,β′µ − β0

µ
′, η − η0, ϕ− ϕ0)′

}
in equation (2.4.7) equals

0. Similarly by changing the order of derivative and integral and doing some calcu-
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lation for the second term in equation (2.4.7) we have:

M(τ )−M(τ0)

=− Eτ0
{

1

2
(β′δ − β0

δ
′,β′µ − β0

µ
′, η − η0, ϕ− ϕ0)′[U(τ0)][U(τ0)]′

× (β′δ − β0
δ
′,β′µ − β0

µ
′, η − η0, ϕ− ϕ0)

}
=− 1

2
E

{
Eτ0

{[
(β′δ − β0

δ
′)
∂l(τ0;U )

∂β0
δ

+ (β′µ − β0
µ
′)
∂l(τ0;U)

∂β0
µ

+ (η − η0)
∂l(τ0;U)

∂η0
+ (ϕ− ϕ0)

∂l(τ0;U)

∂ϕ0

]2

|Zδ,Zµ,Wδ,Wµ, V
}}

.

(2.4.8)

Let


g1(U) = (β′δ − β0

δ
′)(∂/∂β0

δ )l(τ0;U) + (η − η0)(∂/∂η0)l(τ0;U)

g2(U) = (β′µ − β0
µ
′)(∂/∂β0

µ)l(τ0;U ) + (ϕ− ϕ0)(∂/∂ϕ0)l(τ0;U) .

By the Cauchy-Schwarz inequality one can easily get

(Pg1g2)2 < P (g2
1)P (g2

2)

since g1 and g2 are not linearly dependent. Then based on Lemma 2.4.11 we have

P (g1 + g2)2 ≥ C(Pg2
1 + Pg2

2)
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for some constant C with h = 1. This leads to

M(τ )−M(τ0)

≤− 1

2
CE

{
Eτ0

{[
(β′δ − β0

δ
′)
∂l(τ0;U)

∂β0
δ

+ (η − η0)
∂l(τ0;U)

∂η0

]2

+
[
(β′µ − β0

µ
′)
∂l(τ0;U)

∂β0
µ

+ (ϕ− ϕ0)
∂l(τ0;U)

∂ϕ0

]2

|Zδ,Zµ,Wδ,Wµ, V
}}

.

Let 
g11 = (β′δ − β0

δ
′)(∂/∂β0

δ )l(τ0;U)

g12 = (η − η0)(∂/∂η0)l(τ0;U)

and 
g21 = (β′µ − β0

µ
′)(∂/∂β0

µ)l(τ0;U )

g22 = (ϕ− ϕ0)(∂/∂ϕ0)l(τ0;U) .

We have the following inequalities:


(Pg11g12)2 < P (g2

11)P (g2
12)

(Pg21g22)2 < P (g2
21)P (g2

22) .

by the Cauchy-Schwarz inequality. After applying Lemma 2.4.11 with h = 1 again,

we get: 
P (g11 + g12)2 ≥ C(Pg2

11 + Pg2
12)

P (g21 + g22)2 ≥ C(Pg2
21 + Pg2

22)
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for some constant C. Hence

M(τ )−M(τ0)

≤− 1

2
Eτ0
{
c1

[
(β′δ − β0

δ )⊗2 + (β′µ − β0
µ)⊗2 + (η − η0)2 + (ϕ− ϕ0)2

]}
≤− Cd2(τ , τ0) (2.4.9)

for some constant C. Inequality (2.4.9) implies that:

sup
τ :d(τ ,τ0)≥ε

M(τ ) ≤M(τ0)− Cε2 < M(τ0) .

The third condition of Lemma 2.4.8 for our proposed spline based estimator

τ̂n is stated as following Lemma 2.4.13.

Lemma 2.4.13. Under Assumption 2.4.1 we have:

Mn(τ̂n) ≥Mn(τ0)− op(1) . (2.4.10)
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Proof. Let τ0,n = (β0
δ ,β

0
µ,α

0
η,α

0
ϕ)′. We have:

Mn(τ̂n)−Mn(τ0)

=Mn(τ̂n)−Mn(τ0,n) +Mn(τ0,n)−Mn(τ0)

≥Mn(τ0,n)−Mn(τ0)

=Pn[l(τ0,n;U)− l(τ0;U)]

=(Pn − P )[l(τ0,n;U )− l(τ0;U)] + P [l(τ0,n;U)− l(τ0;U)] (2.4.11)

where the first inequality follows from the fact that τ̂n is MLE. Let

F2 =
{
lc[(η, ϕ);U ] = l[(β0

δ ,β
0
µ, η, ϕ);U ]− l[τ 0;U ] : η ∈ $m,tη , ϕ ∈ $m,tϕ ,

‖η − η0‖∞ = O(k−1
n ) and ‖ϕ− ϕ0‖∞ = O(k−1

n )
}
.

Based on facts 1 and 2 (p. 40), we can construct a set of brackets

{[
llc;m,n(U), luc;m,n(U)

]
: m,n = 1, 2, . . . ,

[(√knM
ε

)kn]}

such that for any function lc[(η, ϕ);U ] ∈ F2 and any sample point U

lc[(η, ϕ);U ] ∈
[
llc;m,n(U), luc;m,n(U)

]

for some 1 ≤ m,n ≤ [(
√
knM/ε)kn ]. The brackets llc;m,n(U ) and luc;m,n(U) are
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constructed as follows:

llc;m,n(U) = ∆ log

{
δlc;m,n

(2πS3)1/2
exp

[
−

(δuc;m,n + µuc;m,nS)2

2S

]}

+ (1−∆) log

{
Φ

[
µlc;m,nC + δlc;m,n

C1/2

]

− exp(−2δlc;m,nµ
l
c;m,n)Φ

[
µlc;m,nC − δuc;m,n

C1/2

]}
− l[τ 0;U ]

and

luc;m,n(U) = ∆ log

{
δuc;m,n

(2πS3)1/2
exp

[
−

(δlc;m,n + µlc;m,nS)2

2S

]}

+ (1−∆) log

{
Φ

[
µuc;m,nC + δuc;m,n

C1/2

]

− exp(−2δuc;m,nµ
u
c;m,n)Φ

[
µuc;m,nC − δlc;m,n

C1/2

]}
− l[τ 0;U ]

where 
ln(δlc;m,n) = β0

δ
′Zδ + V ηli(Wδ)− cε

ln(δuc;m,n) = β0
δ
′Zδ + V ηui (Wδ) + cε

and 
µlc;m,n = β0

µ
′Zµ + V ϕlj(Wµ)− cε

µuc;m,n = β0
µ
′Zµ + V ϕuj (Wµ) + cε.

The above brackets are constructed based on the monotonic properties of Φ(·) func-

tion and exponential function. Without loss of generality, we also assume that:
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V > 0. By Taylor expansion and Assumption 2.4.1 one can get

P |luc;m,n(U)− llc;m,n(U)|2 ≤ cε

for all 1 ≤ m,n ≤ [(
√
knM/ε)kn ] where c is some constant. This means that the

ε-bracketing number for F1 with L2(P )- norm is bounded by [(
√
knM/ε)2kn ], i.e.,

N[ ](ε,F2, L2(P )) ≤ c
[k1/2

n M

ε

]2kn
.

This leads to:

J[ ](1,F2, L2(P )) =

∫ 1

0

√
logN[ ](ε,F2, L2(P ))dε

=

∫ 1

0

2ckn log
[k1/2

n M

ε

]
dε.

We have J[ ](1,F2, L2(P )) < ∞ since the integrand grows of slower order than

(1/ε)2 which can be seen from the functional form of the integrand in the integral

of J[ ](1,F2, L2(P )). Therefore, F2 is P -Donsker. For any function lc[(η, ϕ);U ] in

class F2 we find that

P
[
lc[(η, ϕ);U ]

]2

=P
[
l[(β0

δ ,β
0
µ, η, ϕ);U ]− l[(β0

δ ,β
0
µ, η

0, ϕ0);U ]
]2

→0
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by the Dominated Convergence Theorem. Then by Lemma 2.4.3 we have

E
√
n‖Pn − P‖F2 → 0

⇒ (Pn − P )[l(τ0,n;U )− l(τ0;U)] = op(n
− 1

2 ). (2.4.12)

By the Dominated Convergence Theorem, it follows that

P [l(τ0,n;U)− l(τ0;U)] = op(1). (2.4.13)

By plugging equations (2.4.12) and (2.4.13) into (2.4.11) we find that

Mn(τ̂n)−Mn(τ0) ≥ −op(1).

This completes the proof of Lemma 2.4.13.

2.4.3 Convergence Rate

In this section, we further explore the convergence rate of the spline based

estimator τ̂n = (β̂δ
′, β̂µ

′, η̂n(Wδ), ϕ̂n(Wµ)′ to the true parameter vector τ0 = (β0
δ
′,

β0
µ
′, η0(Wδ), ϕ

0(Wµ))′, when sample size n goes to infinity.

Assumption 2.4.2. η(Wδ) ∈ Cj[aη, bη] and ϕ(Wµ) ∈ Cj[aϕ, bϕ] where j ≥ 1.

Theorem 2.4.14. Let Kn = O(nv) where v satisfies [2(1 + j)]−1 < v < (2j)−1.
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Suppose that Assumption 2.4.1 (1), (2), (4) and Assumption 2.4.2 hold. Then

d(τ̂n, τ0) = Op

(
n−min(jv,(1−v)/2)

)
.

Remark. We want to point out that when v = 1/(2j + 1)

d(τ̂n, τ0) = Op

(
n−j/(1+2j)

)

which is the optimal convergence rate in nonparametric regression analysis.

Proof. We will use Lemma 2.4.4 to show the result of Theorem 2.4.14. From equa-

tion (2.4.9) we have

M(τ0)−M(τ ) ≥ Cd2(τ , τ0)

where C is some constant. From equation (2.4.11) we have

Mn(τ̂n)−Mn(τ0)

≥(Pn − P )[l(τ0,n;U)− l(τ0;U)] + P [l(τ0,n;U)− l(τ0;U)] . (2.4.14)

By using Taylor expansion of l(τ0,n;U) around τ0 we get

(Pn − P )
[
l(τ0,n;U)− l(τ0;U)

] ∼=(Pn − P )
{[
U1(τ0)

]′
(1, 1)′

}

where U1(τ0) =
(
lη(τ ;U)[h1], lϕ(τ ;U)[h2]

)′
τ=τ0

. Without loss of generality, we take

the derivative of l(τ ;U) with respect to η and ϕ with direction η0
n−η0 and ϕ0

n−ϕ0,
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respectively, i.e., h1 = η0
n − η0 and h2 = ϕ0

n − ϕ0. By the chain rule, this leads to

(Pn − P )
[
l(τ0,n;U)− l(τ0;U)

]
=(Pn − P )

[
∂l(τ ;U )

∂η
|τ=τ0(η0

n − η0) +
∂l(τ ;U)

∂ϕ
|τ=τ0(ϕ0

n − ϕ0)

]

=n−jv+ε(Pn − P )

[
∂l(τ ;U)

∂η
|τ=τ0

(η0
n − η0)

n−jv+ε
+
∂l(τ ;U)

∂ϕ
|τ=τ0

(ϕ0
n − ϕ0)

n−jv+ε

]

in which 0 < ε < 1
2

+ jv. Let

F3 =
{
lc
[
(η, ϕ);U

]
=l
[
(β0
δ ,β

0
µ, η, ϕ);U

]
− l[τ0;U ] : η ∈ $m,tη , ϕ ∈ $m,tϕ ,

‖η − η0‖∞ = O(k−1
n ) and ‖ϕ− ϕ0‖∞ = O(k−1

n )
}
.

By a similar argument as that in the proof of Lemma 2.4.13, F3 is P - Donsker. Note

that

P

[
∂l(τ ;U)

∂η
|τ=τ0

(η0
n − η0)

n−jv+ε
+
∂l(τ ;U)

∂ϕ
|τ=τ0

(ϕ0
n − ϕ0)

n−jv+ε

]2

≤ 2

{
P
[∂l(τ ;U )

∂η
|τ=τ0

(η0
n − η0)

n−jv+ε

]2

+ P
[∂l(τ ;U)

∂ϕ
|τ=τ0

(ϕ0
n − ϕ0)

n−jv+ε

]2
}
.

Under Assumption 2.4.1 (1), (2), (4) and Assumption 2.4.2, ∂l(τ ;U)
∂η
|τ=τ0 and ∂l(τ ;U)

∂ϕ
|τ=τ0

are uniformly bounded. From Lemma 2.4.6,


‖η0

n − η0‖∞ = O(k−jn ) = O(n−jv)

‖ϕ0
n − ϕ0‖∞ = O(k−jn ) = O(n−jv)

.
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Therefore,

P

[
∂l(τ ;U)

∂η
|τ=τ0

(η0
n − η0)

n−jv+ε
+
∂l(τ ;U)

∂ϕ
|τ=τ0

(ϕ0
n − ϕ0)

n−jv+ε

]2

→ 0 as n→∞ .

Since F3 is P - Donsker, from Lemma 2.4.3 we get

(Pn − P )

[
∂l(τ ;U)

∂η
|τ=τ0

(η0
n − η0)

n−jv+ε
+
∂l(τ ;U)

∂ϕ
|τ=τ0

(ϕ0
n − ϕ0)

n−jv+ε

]
= op(n

−1/2) .

Then

(Pn − P )
[
l(τ0,n;U )− l(τ0;U)

]
= op(n

−jv+ε · n−1/2) = op(n
−2jv) (2.4.15)

because 2jv < jv − ε+ 1
2
< jv + 1

2
. From equation ( 2.4.8), we have

P
[
l(τ0,n;U)− l(τ0;U)

]
=− 1

2
E

[
Eτ0

{[
(η0
n − η0)

∂l(τ0;U)

∂η0
+ (ϕ0

n − ϕ0)
∂l(τ0;U)

∂ϕ0

]2|Zδ,Zµ,Wδ,Wµ, V
}]

≥− E

[
Eτ0

{[
(η0
n − η0)

∂l(τ0;U)

∂η0

]2
+
[
(ϕ0

n − ϕ0)
∂l(τ0;U)

∂ϕ0

]2|Zδ,Zµ,Wδ,Wµ, V
}]

=−O(n−2jv) (2.4.16)
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Plugging equation (2.4.15) and equation (2.4.16) into equation (2.4.14), we have

Mn(τ̂n)−Mn(τ0) ≥ −Op(n
−2jv)

≥ −Op

(
n−2 min(jv,(1−v)/2)

)
. (2.4.17)

Let

F4 =
{
l(τ ;U)− l(τ0;U) : τ ∈ Tn and d(τ , τ0) ≤ δ

}
.

By a similar construction of brackets as that for F1 along with Lemma 2.4.9, the

ε- bracketing number of F4 with L2(P )-norm, N[ ](ε,F4, L2(P )) is bounded by

(M/ε)ckn where c is some constant. Then

J̃[ ]

(
δ,F4, L2(P )

)
=

∫ δ

0

√
1 + logN[ ](ε,F4, L2(P ))dε

=

∫ δ

0

√
1 + log

(M
ε

)ckn
dε

=

∫ δ

0

√
1 + ckn log

(M
ε

)
dε

≤
∫ δ

0

√
ckn + ckn log

(M
ε

)
dε

=
√
ckn

∫ δ

0

√
1 + log

(M
ε

)
dε .

Let X =
√

1 + log
(
M/ε

)
, then

ε =M exp(1−X2)

dε =− 2M exp(1−X2)dX .
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We get

∫ √
1 + log

M

ε
dε =

∫
X(−2M) exp(1−X2)dX

= M

∫
exp(1−X2)d(1−X2)

= M exp(1−X2)

= M exp

[
1−

(√
1 + log

M

ε

)2
]

= ε .

Therefore,

J̃[ ]

(
δ,F4, L2(P )

)
≤
√
ckn

∫ δ

0

√
1 + log

(M
ε

)
dε

=
√
cknδ .

Under Assupmtion 2.4.1 (1), (2), (3) and Assumption 2.4.2, l(τ ;U) is uniformly

bounded. By Lemma 2.4.5, we know that

E‖Gn‖F4 .
√
cknδ

(
1 +

√
cknδ

δ2
√
n
M

)

=
√
c
√
knδ +

Mckn√
n

.
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That is,

E sup
d(τ ,τ0)<δ

|(Mn −M)(τ )− (Mn −M)(τ0)| . 1√
n

(
√
c
√
knδ +

Mckn√
n

)

=
1√
n
φn(δ) ,

where φn(δ) =
√
c
√
kn + Mckn√

n
. Since

φn(δ)

δα
=
√
c
√
knδ

1−α +
Mckn√

n
δ−α ,

it is obvious that φn(δ)/δα is decreasing for some α < 2 (e.g., α can be 1.5.). We

note that

n2jvφn

( 1

njv

)
= n2jv

√
c
√
kn

1

njv
+ n2jvMckn√

n

= O
(
njvn

v
2 + n2jvnv

1√
n

)
= O

(
n

1
2

[
njv−

1−v
2 + n2(jv− 1−v

2
)
])

(2.4.18)

and

n2×(1−v)/2φn

( 1

n(1−v)/2

)
= n2×(1−v)/2

√
c
√
kn

1

n(1−v)/2
+ n2×(1−v)/2Mckn√

n

= O
(
n(1−v)/2n(v)/2 + n1−vnvn−1/2

)
= O(n1/2) (2.4.19)
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since kn = O(nv). Expressions (2.4.18) and (2.4.19) imply that

r2
nφn

( 1

rn

)
≤ n1/2

where rn = min
(
jv, (1− v)/2

)
. From (2.4.17) we get

Mn(τ̂n)−Mn(τ0) ≥ −Op(r
−2
n ) .

Therefore

rnd(τ̂n, τ0) = Op(1)

by Lemma 2.4.4.

2.5 Simulation Study

In this section, we conduct simulation studies to evaluate the finite sample

performance of the proposed methodology under different scenarios. Observed fail-

ure times are generated following the idea of Tong et al. (2008). We first generate

a follow-up time C. The latent process X(t) is simulated by accumulating nor-

mally distributed independent increments ∆X = X(t+ ∆t)−X(t) over time incre-

ments of length ∆t. Specifically, for subject i, we first generate a set of increments

{∆Xj : j = 1, . . . , ni} from a normal distribution with mean ∆tµ and variance 1,

where ni = [Ci/∆t]. Let Xij = δ +
∑j

k=1 ∆Xk, j = 1, . . . , ni. If Xij > 0 for all

j, then subject i has not failed by the end of follow-up time Ci. If there exists j

such that Xil > 0 for l = 1, . . . , j − 1 and Xij ≤ 0, then subject i has failed before
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follow-up time Ci and the corresponding failure time is calculated as j ×∆t (∆t is

chosen to be very small).

For given covariates, we simulate event times based on the following link func-

tions 
ln(δ) = ZT

δ βδ + Vδη(Wδ)

µ = ZT
µβµ + Vµϕ(Wµ) ,

where Zδ = (1, Zδ2)T , Zµ = (1, Zµ2)T , η(Wδ) = −0.8 sin[π(Wδ + 1)] + 1.2Wδ and

ϕ(Wµ) = − 4√
π

exp[−(3Wµ − 4)2] − 3.9. The covariates are simulated by Zδ2 ∼

Bernoulli(1, 0.5), Zµ2 ∼ N(0, 1), Vδ ∼ N(0.5, 0.2), Vµ ∼ Uniform(0, 1), Wδ ∼

Unifiorm(0, 1) and Wµ ∼ Uniform(1, 2). The time increment ∆t is chosen to be

0.001. We consider the following cases of regression parameters:

Case 1. βδ = (1,−0.5)T , βµ = (−0.4,−0.3)T ,

Case 2. βδ = (1,−0.6)T , βµ = (−0.4, 1)T ,

Case 3. βδ = (1, 0)T , βµ = (−0.4, 0)T ,

Case 4. βδ = (1, 0.4)T , βµ = (−0.4,−0.4)T ,

Case 5. βδ = (1, 0.6)T , βµ = (−0.4,−1)T .

Let the censoring time C ∼ N(2.8, 0.2), which is independent of event times. The

event rates range from 65% to 80% roughly for the above cases. Sample sizes of 200,

400 and 600 are considered for each case. For the estimation of smooth functions

η(·) and ϕ(·), we place the inner knots of the B-spline basis functions at the 1st
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quartile, 2nd quartile and 3rd quartile of Wδ and Wµ, respectively.

Table 2.1 presents the simulation results for the parametric components of link

functions based on 100 replications. The table includes the estimated bias (BIAS),

the averages of estimated standard errors (Estimated SE) and the sample standard

deviations of the estimates (Empirical SE). We display the true functions, estimated

functions and 95% point-wise confidence intervals for all cases in Figures 2.3 to 2.5

corresponding to different sample sizes.

These simulation results indicate that our proposed B-spline based estimation

procedure works fairly well. Specifically, it can be seen from Table 2.1 that the

estimates of parametric coeficients β̂δ and β̂µ are approximately unbiased for all

cases and all sample sizes. Their estimated standard errors increase as sample

size increases and they are all very close to the corresponding empirical standard

deviations. For the functional coefficients, the estimated function ϕ̂(Wµ) does not

match the true function ϕ(Wµ) perfectly when the sample size is 200, but it can

capture the trend of ϕ(Wµ). However, when the sample size is 400 or more, the

estimated covariate functions ϕ̂(Wµ) and η̂(Wδ) match the true functions ϕ(Wµ)

and η(Wδ) very well, as can be seen from Figures 2.4 and 2.5.
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2.6 An Application

In this section we illustrate the proposed threshold regression models with

flexible covariate effects to a study of osteoporotic fractures.

The primary purpose of this study is to identify risk factors for osteoporotic

fractures. Briefly, 9, 704 primarily Caucasian women aged 65 or older were recruited

in the Study of Osteoporotic Fractures (SOF) from four metropolitan areas in the

United States, Baltimore, Pittsburgh, Minneapolis and Portland, from 1986 through

1989. They have been continuously tracked with clinical visits approximately every

other year. In 1997, 662 African-American women were added into this cohort. The

second visit was set to be the baseline in our analysis. The final analytic sample

consists of 6, 869 individuals after removing missing data, among which 3, 075 had

experienced any type of fracture by the end of the study. The predictor variables

are listed in Table 2.2.
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Table 2.2: Predictor variables in the analysis of osteoporotic fracture data set.

Variable Name Label

estrk Doctor ever told you have had a stroke?

earth Doctor ever told you have arthritis?

ediab Doctor ever told you have diabetes?

lndpth Low near depth perception

estcur Currently taking estrogen pills

bmi Body mass index (kg/m2)

thd Total hip BMD (g/cm2)

We consider ediab, earth, estrk in the initial status ln(δ) and estcur in the

degradation rate µ based on past literature. Since bmi would affect both ln(δ) and

µ, it is included in both of these link functions. Based on our preliminary data

analysis, interaction effect of age and thd is significant in ln(δ), and thus we suspect

that the effect for thd may change with age. Therefore age is modeled as a varying

coefficient of thd. Specifically, covariate effects are described in the following link

functions



ln(δ) = βδ1 + estrkβδ2 + earthβδ3 + ediabβδ4 + bmiβδ5

+ lndpthβδ6 + η(age)thd

µ = βµ1 + estcurβµ2 + bmiβµ3

.

To estimate the unknown functional coefficient η(age), we place the inner knots of

the B-spline basis functions at 1st quartile, 2nd quartile and 3rd quartile of age.

The estimate η̂(age) along with 95% point-wise confidence interval are displayed in
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Figure 2.6. Table 2.3 presents the constant regression coefficient estimates.

As shown in Table 2.3, we note that the coefficient of estrogen pills is posi-

tive (0.00190) with a p-value of 0.01 in the drift parameter µ, indicating that the

bone health status of those individuals who are currently taking estrogen pills tends

to decline slower as compared to that of those without taking estrogen pills. The

bone health degradation of individuals with a higher body mass index tends to be

faster (-0.00013, p-value=0.07). The results for the initial status ln(δ) indicate that

individuals who ever had stroke or diabetes have a worse initial bone health status.

Positive coefficient estimates of arthritis and body mass index in ln(δ) indicate that

individuals who ever had arthritis or higher body mass index have a better initial

bone health status.

The estimated functional coefficient η̂(age) of the total hip BMD stays positive,

suggesting that the effect of the total hip BMD is positive. That is, the higher total

hip BMD, the lower is the chance of developing any type of fractures. The curve of

age first increases from 65 to 73 and then starts to decrease for older individuals,

indicating that the protective effect of total hip BMD on the risk of osteoporotic

fractures reaches its maximum around age 73. Further studies may be needed to

confirm this finding.
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2.7 Summary

In this chapter, we have explored a general approach to incorporate covariates

in TR models in which both the drift parameter µ and the natural logarithm of

the initial status parameter δ are functions of given covariates with partially con-

stant coefficients and partially varying coefficients. A spline approximation method

was proposed to estimate varying coefficients. One main advantage of the proposed

methodology is that it leaves functional forms of certain covariates completely un-

specified. We have shown that our spline based estimator is consistent under the

L2-norm. Besides, the optimal rate of convergence under nonparametric regression

setting can be achieved if the number of spline basis functions are chosen properly.

Our simulation results suggest that the proposed estimation procedure performs well

for practical situations. The analysis of the osteoporotic fracture data set indicates

that the total hip BMD has protective effect on the risk of osteoporotic fractures

and that the effect varies with age.
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Table 2.1: Simulation results for the parametric components of link functions based
on 100 replications.

Sample size: n = 200

True Bias Estimated SE Empirical SE

Case 1
βTδ = (1,−0.5) (0.0492 , 0.0047) (0.0772, 0.0401) (0.0834, 0.0434)

βTµ = (−0.4,−0.3) (-0.0069, -0.0230) (0.1441, 0.0710) (0.1518, 0.0806)

Case 2
βTδ = (1,−0.6) (0.0616, 0.0029) (0.0775, 0.0408) (0.0891, 0.0398)

βTµ = (−0.4, 1) (-0.0430, 0.0791) (0.1543, 0.0957) (0.1679, 0.0980)

Case 3
βTδ = (1, 0) (0.0501, 0.0054) (0.0769, 0.0361) (0.0869, 0.03883)

βTµ = (−0.4, 0) (-0.0496, 0.0008) (0.1526, 0.0662) (0.1670, 0.0645)

Case 4
βTδ = (1, 0.4) (0.0702, 0.0025) (0.0793, 0.0345) (0.0830, 0.0359 )

βTµ = (−0.4, 0.4) (0.0153, 0.0295) (0.1742, 0.0726) (0.1637, 0.0781)

Case 5
βTδ = (1, 0.6) (0.0670, -0.0026) (0.0818, 0.0348) (0.0908, 0.0388)

βTµ = (−0.4,−1) (-0.0660, -0.0756) (0.1905, 0.0989) (0.2124, 0.1121)

Sample size: n = 400

True Bias Estimated SE Empirical SE

Case 1
βTδ = (1,−0.5) (0.0322, 0.0010) (0.0542, 0.0283) (0.0551, 0.0298)

βTµ = (−0.4,−0.3) (-0.0161, -0.0022) (0.1004, 0.0488) (0.1025, 0.0565)

Case 2
βTδ = (1,−0.6) (0.0345, -0.0013) (0.0548, 0.0289) (0.0576, 0.0310)

βTµ = (−0.4, 1) (-0.0231, 0.0278) (0.1068, 0.0646) (0.1105, 0.0656)

Case 3
βTδ = (1, 0) (0.0297, -0.0003) (0.0537, 0.0254) (0.0535, 0.0263)

βTµ = (−0.4, 0) (-0.0083, -0.0033) (0.1051, 0.0448) (0.1073, 0.0483)

Case 4
βTδ = (1, 0.4) (0.0418, -0.0002) (0.0557, 0.0244) (0.0634, 0.0240)

βTµ = (−0.4, 0.4) (-0.0337, 0.0062) (0.1196, 0.0491) (0.1099, 0.0530)

Case 5
βTδ = (1, 0.6) (0.0284, 0.0000) (0.0577, 0.0247) (0.0601, 0.0235)

βTµ = (−0.4,−1) (-0.0163, -0.0299) (0.1294, 0.0670) (0.1306, 0.0677)

Sample size: n = 600

True Bias Estimated SE Empirical SE

Case 1
βTδ = (1,−0.5) (0.0220, 0.0034) (0.0442, 0.0230) (0.0446, 0.0253)

βTµ = (−0.4,−0.3) (-0.0151, -0.0040) (0.0811, 0.0395) (0.0825, 0.0391)

Case 2
βTδ = (1,−0.6) (0.0191, -0.0013) (0.0446, 0.0235) (0.0430, 0.0241)

βTµ = (−0.4, 1) (-0.0014, 0.0145) (0.0865, 0.0523) (0.0834, 0.0537)

Case 3
βTδ = (1, 0) (0.0245, -0.0005) (0.0439, 0.0207) (0.0458, 0.0214)

βTµ = (−0.4, 0) (-0.0157, 0.0024) (0.0858, 0.0367) (0.0839, 0.0414)

Case 4
βTδ = (1, 0.4) (0.0252, -0.0040) (0.0456, 0.0199) (0.0416, 0.0196)

βTµ = (−0.4, 0.4) (-0.0297, 0.0043) (0.0960, 0.0396) (0.0878, 0.0405)

Case 5
βTδ = (1, 0.6) (0.0257, 0.0004) (0.0468, 0.0199) (0.0461, 0.0203)

βTµ = (−0.4,−1) (-0.0076, -0.0244) (0.1057, 0.0546) (0.1021, 0.0613)
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Figure 2.3: Simulation results based on sample size 200 and 100 runs for covari-
ate functions ϕ(Wµ) and η(Wδ). Solid line: true function; dotted line: estimated
function; dashed line: 95% point-wise CI.
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Figure 2.4: Simulation results based on sample size 400 and 100 runs for covari-
ate functions ϕ(Wµ) and η(Wδ). Solid line: true function; dotted line: estimated
function; dashed line: 95% point-wise CI.
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Figure 2.5: Simulation results based on sample size 600 and 100 runs for covari-
ate functions ϕ(Wµ) and η(Wδ). Solid line: true function; dotted line: estimated
function; dashed line: 95% point-wise CI.
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Table 2.3: Constant regression coefficient estimates in the osteoporotic fracture data
set.

Regression for degradation rate µ:

Coefficient Estimate Standard Error p-value

estcur 0.00190 0.00070 0.01

bmi -0.00014 0.00007 0.07

intercept 0.00980 0.00191 < 0.01

Regression for initial status ln(δ):

Coefficient Estimate Standard Error p-value

estrk -0.33444 0.05946 < 0.01

earth 0.14756 0.02000 < 0.01

ediab -0.55546 0.05865 < 0.01

bmi 0.03475 0.00279 < 0.01

lndpth -0.23780 0.02785 < 0.01

intercept 2.26417 0.08035 < 0.01
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Figure 2.6: Estimated functional coefficient η̂(age).
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Chapter 3: Model Checking Techniques for TR Models

In this chapter, we discuss two supremum type goodness-of-fit techniques for

regular TR models (with parametric link functions). TR models assume that (1)

latent health status follows a Wiener process X(t); (2) initial health status X(0)

and drift parameter µ depend on covariates. Violation of these assumptions may

seriously affect validity and efficiency of statistical inference. Thus, ensuring the

correctness of model assumptions is an important issue. Since the application of TR

models in survival analysis is relatively new, little has been done for model checking.

It is imperative to develop model checking techniques for TR models.

This chapter is organized as follows. First, Section 3.1 describes goodness-

of-fit procedures based on cumulative sums of martingale residuals. Specifically,

we derive a test statistic and discuss how to calculate its p-value in Section 3.1.1.

Section 3.1.2 discusses the consistency of the test. Second, we explore model check-

ing techniques through censoring consistent residuals for TR models in Section 3.2.

Section 3.2.1 discusses test statistic and how to evaluate the p-value using the boot-

strap method. We show the consistency of the test in Section 3.2.2. Simulation

studies are conducted in Section 3.3 to evaluate the performance of the proposed

79



tests based on martingale residuals and censoring consistent residuals. In Section

3.4, we apply both model checking procedures to a kidney dialysis data set. We

conclude in Section 3.5 with a discussion.

3.1 Model Checking Based on Martingale Residuals

Lin et al. (1993) proposed model checking techniques for the Cox model using

cumulative sums of martingale residuals. It is supremum-type test and can be used

to check the functional form of a covariate, the form of the link function, the pro-

portional hazards assumption, and the overall fit of the Cox model. Under model

assumptions, the observed test process converges to a zero-mean Gaussian process

which can be easily simulated through the Monte Carlo method.

This model checking approach has received a considerable attention in the lit-

erature recently. Lin et al. (2000) discussed this test procedure for recurrent event

data, while Lin et al. (2002) explored this model checking method for generalized

linear models and marginal models. Li and Sun (2003) adopted this idea and pro-

posed a simulation-based supremum-type test for Aalen’s multiplicative intensity

counting process model. Furthermore, Li (2003) developed a nonparametric like-

lihood ratio goodness-of-fit test to measure the discrepancy between a parametric

family and the observed data by a similar idea.

Next, we discuss in detail how this method can be applied to TR models with
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parametric link functions.

3.1.1 Test Statistic

Recall for TR models, the first hitting time S of a latent Wiener process {X(t)}

has the density function

f(s|θ) =
δ

(2πs2)1/2
exp

[
− (δ + µs)2

2s

]
s > 0, (3.1.1)

for −∞ < µ < +∞ and δ > 0

and the cumulative distribution function

F (s|θ) = 1− Φ

[
µs+ δ

(s)1/2

]
+ exp(−2δµ)Φ

[
µs− δ
(s)1/2

]
, (3.1.2)

where θ = (δ, µ)′. Let C denote the censoring time. For each subject, the ob-

served data are denoted by (Y,∆,Z ′δ,Z
′
µ), where Y = S ∧ C, ∆ = I(S ≤ C),

Zδ = (Zδ1, . . . , Zδd1)
′ and Zµ = (Zµ1, . . . , Zµd2)

′. We assume that the censoring

time C is independent with S given the covariates Zδ and Zµ.

Suppose that the covariate effects on the drift parameter µ and the nature

logarithm of the initial health status δ are linear, i.e.,


ln(δ) = Z ′δβδ

µ = Z ′µβµ

. (3.1.3)
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where βδ = (βδ1, . . . , βδd1)
′ and βµ = (βµ1, . . . , βµd2)

′ are d1-dimensional and d2-

dimensional vectors of regression parameters, respectively. Let Z = (Z ′δ,Z
′
µ)′ and

β = (β′δ,β
′
µ)′. Suppose that the observed data consist of n independent replicates

of (Y,∆,Z ′)′. Then the log-likelihood function for β takes the form

ln(β) =
n∑
i=1

l(β;Yi,∆i,Zi)

=
n∑
i=1

{
∆i log f(Yi|Zi,β) + (1−∆i) log

[
1− F (Ci|Zi,β)

]}
. (3.1.4)

The maximum likelihood estimator β̂ is the solution to U(β) = 0 where U(β) =

∂ln(β)/∂β. By Taylor expansion and some simple probabilistic arguments, one can

easily get the following fact

√
n(β̂ − β0) =

1√
n
I−1(β0)

n∑
i=1

∂l(β;Yi,∆i,Zi)

∂β

∣∣∣
β=β0

+ op(1) (3.1.5)

where β0 = (β0
δ
′,β0

µ
′)′ is the vector of true values of regression parameters and

I(β0) = Eβ0

[(∂l(β;Y,∆,Z)

∂β

∣∣∣
β=β0

)(∂l(β;Y,∆,Z)

∂β

∣∣∣
β=β0

)′]

denotes the Fisher information matrix, which can be consistently estimated by

I(β̂) =
1

n

n∑
i=1

(∂l(β;Yi,∆i,Zi)

∂β

∣∣∣
β=β̂

)(∂l(β;Yi,∆i,Zi)

∂β

∣∣∣
β=β̂

)′
. (3.1.6)

Let Θ be the domain of β. We assume that Θ is a convex compact subset of

Euclidean space Rd1+d2 . To check the overall fit of TR models with linear link
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functions (3.1.3), one may consider testing the null hypothesis H0 that F (s|Z,β)

belongs to a parametric family

D = {F (s|Z,β) : β ∈ Θ} ;

that is,

H0 : F (s|Z,β) ∈ D, v.s. H1 : F (s|Z,β) = F1(s|Z,β) /∈ D.

For i = 1, . . . , n, define the counting process Ni(t) = ∆iI(Yi ≤ t). Then the

intensity function of Ni(t) is given by Ri(t)λi(t|Z,β) where Ri(t) = I(Yi ≥ t) is

the at-risk function and λ(t|Zi,β) represents the hazard function of S for the ith

subject. Based on the definition of the hazard function given in Chapter 1,

λ(t|Z,β) =
f(t|Z,β)

1− F (t|Z,β)
.

We define

Mi(t) = Ni(t)−
∫ t

0

Ri(s)λ(s|Zi,β0)ds .

Then {Mi(t) : 0 ≤ t ≤ τ} are martingales with respect to the filtration

σ{Ni(s),Zi, Ri(s), 0 ≤ s ≤ t}

where τ represents the study duration, i.e., 0 ≤ C ≤ τ .
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Following Lin et al. (1993), we check the adequacy of the proposed model by

using the following cumulative sums of M̂i(t) which is given by

F(t, z) =
1√
n

n∑
i=1

I(Zi ≤ z)M̂i(t) (3.1.7)

where I(Zi ≤ z) means that each of the d1 + d2 components of Zi is no larger than

the corresponding components of z and

M̂i(t) = Ni(t)−
∫ t

0

Ri(s)λ(s|Zi, β̂)ds .
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By using the Taylor series expansion around β0 and equation (3.1.5), we have

F(t, z)

≈ 1√
n

n∑
i=1

I(Zi ≤ z)

{
Ni(t)−

∫ t

0

Ri(s)
[
λ(s|Zi,β0)

+ (β̂ − β0)
∂λ(s|Zi,β)

∂β

∣∣∣
β=β0

]
ds

}

=
1√
n

n∑
i=1

I(Zi ≤ z)

{[
Ni(t)−

∫ t

0

Ri(s)λ(s|Zi,β0)ds
]

− (β̂ − β0)

∫ t

0

Ri(s)
∂λ(s|Zi,β)

∂β

∣∣∣
β=β0

ds

}

=
1√
n

n∑
i=1

I(Zi ≤ z)Mi(t)−
1√
n

n∑
i=1

{
I(Zi ≤ z)

1

n
I−1(β0)

×

[
n∑
j=1

∂l(β;Yj,∆j,Zj)

∂β

∣∣∣
β=β0

]∫ t

0

Ri(s)
∂λ(s|Zi,β)

∂β

∣∣∣
β=β0

ds

}

=
1√
n

n∑
i=1

I(Zi ≤ z)Mi(t)−
1√
n

[ n∑
i=1

I(Zi ≤ z)
1

n
I−1(β0)

×
∫ t

0

Ri(s)
∂λ(s|Zi,β)

∂β

∣∣∣
β=β0

ds
][ n∑

j=1

∂l(β;Yj,∆j,Zj)

∂β

∣∣∣
β=β0

]
=

1√
n

n∑
i=1

{
I(Zi ≤ z)

[
Mi(t)−

1

n
I−1(β0)

∫ t

0

Ri(s)
∂λ(s|Zi,β)

∂β

∣∣∣
β=β0

ds

×
( n∑
j=1

∂l(β;Yj,∆j,Zj)

∂β

∣∣∣
β=β0

)]}

=
1√
n

n∑
i=1

{
I(Zi ≤ z)

[
Mi(t)−

1

n
I−1(β0)

∫ t

0

Ri(s)
∂λ(s|Zi,β)

∂β

∣∣∣
β=β0

ds ·U(β0)
]}

.
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Let

F̃(t, z)

=
1√
n

n∑
i=1

{
I(Zi ≤ z)

[
Mi(t)−

1

n
I−1(β0)

∫ t

0

Ri(s)
∂λ(s|Zi,β)

∂β

∣∣∣
β=β0

ds · U(β0)
]}

.

Then the processes F and F̃ are asymptotically equivalent. The score function U(β)

has the following martingale representation (Kalbfleisch and Prentice 2002, p. 179):

U(β0) =
n∑
i=1

∫ τ

0

[∂ log λ(s|Zi,β)

∂β

∣∣
β=β0

]
dMi(s) .

This leads to

F̃(t, z)

=
1√
n

n∑
i=1

{
I(Zi ≤ z)

[
Mi(t)−

1

n
I−1(β0)

∫ t

0

Ri(s)
∂λ(s|Zi,β)

∂β

∣∣∣
β=β0

ds

×
n∑
i=1

∫ τ

0

[∂ log λ(s|Zi,β)

∂β

∣∣
β=β0

]
dMi(s)

]}
.

(3.1.8)

It is difficult to evaluate the above distribution analytically, because the lim-

iting process of F̃ does not have an independent increment structure. Lin et al.

(1993) proposed to substitute Ni(t)Gi for Mi(t) where {Gi; i = 1, . . . , n} denotes a

random sample of standard normal variables. The idea behind using Ni(t)Gi is that

the variance function of Mi(t) is E(Ni(t)) (Fleming and Harrington 1991, Theorem

2.5.3). Replacing β0 and Mi(t) in (3.1.8) with β̂ and {Ni(t)Gi}, respectively, we
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have

F̂(t, z)

=
1√
n

n∑
i=1

{
I(Zi ≤ z)

[
Ni(t)Gi −

1

n
I−1(β̂)

∫ t

0

Ri(s)
∂λ(s|Zi,β)

∂β

∣∣∣
β=β̂

ds

×
n∑
i=1

∫ τ

0

[∂ log λ(s|Zi,β)

∂β

∣∣
β=β̂

]
dNi(s)Gi

]}

=
1√
n

n∑
i=1

{
I(Zi ≤ z)

[
∆iI(Yi ≤ t)Gi −

1

n
I−1(β̂)

∫ t

0

Ri(s)
∂λ(s|Zi,β)

∂β

∣∣∣
β=β̂

ds

×
n∑
i=1

∆i

[∂ log λ(s|Zi,β)

∂β

∣∣
β=β̂

]
Gi

]}
. (3.1.9)

Following the same line of Lin et al. (1993)’s proof, we know that the process F̂(t, z)

given the observed data {(Yi,∆i,Zi) : i = 1, . . . , n} and the process F(t, z) converge

in distribution to the same zero-mean Gaussian random field.

To approximate the distribution of F(t, z), one can obtain a large number of re-

alizations from F̂(t, z) by repeatedly generating the standard normal random sample

{Gi : i = 1, . . . , n} while fixing {(Yi,∆i,Zi) : i = 1, . . . , n} at their observed values.

More formally, we apply the supremum test statistic sup0≤t≤τ,z |F(t, z)|, for which

the p-value can be obtained by comparing the observed value of sup0≤t≤τ,z |F̃(t, z)|

to a large number of realizations from sup0≤t≤τ,z |F̂(t, z)|. Let L denote the num-

ber of independent samples of {Gi; i = 1, . . . , n}. Let pn(α) be the 100(1 − α)th

percentile of

sup
0≤t≤τ,z

|F̂1(t, z)|, . . . , sup
0≤t≤τ,z

|F̂L(t, z)| ,
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where each F̂l(t, z) is calculated from (3.1.9) for the l-th sample set {Gi; i =

1, . . . , n}, l = 1, . . . , L. The null hypothesis H0 is rejected if

sup
0≤t≤τ,z

|F̃(t, z)| > pn(α) .

3.1.2 Consistency

Under TR models with link functions (3.1.3), we show that the asymptotic

power of the test discussed in Section 3.1.1 under the alternative

H1 : F (s|Z,β) = F1(s|Z,β) /∈ D (3.1.10)

(i.e., the probability of rejecting the null hypothesis H0 under H1) is 1.

Let Mn(β) = 1
n
ln(β) and let

M(β) = EF1

[
Mn(β)

]
= EF1

[
l(β;Yi,∆i,Zi)

]
.

To derive the asymptotic power of the test, we require the following assumptions.

Assumption 3.1.1.

(1) supβ∈Θ |Mn(β)−M(β)| p→ 0.

(2) There exists β̃ such that supβ:‖β−β̃‖≥0M(β) ≤M(β̃) for any ε > 0.

88



Theorem 3.1.1. Suppose (1) and (2) in Assumption 3.1.1 hold. Then under the

fixed alternative hypothesis H1,

P
(

sup
0≤t≤τ,z

|F̃(t, z)| > pn(α)
)
→ 1, as n→∞ .

Proof. By law of large numbers, we have

lim
n→∞

1√
n

sup
0≤t≤τ,z

|F̂(t, z)| = 0 .

Hence, we only need to show that sup0≤t≤τ,z
1√
n
|F(t, z)| does not converge to zero

under the alternative hypothesis H1 since F(t, z) and F̃(t, z) are asymptotically

equivalent. Assume that the cumulative distribution function of Z is Fz(Z). Let

λH1(t|Z,β1) be the hazard function under the alternative hypothesis H1. Suppose

that H1 holds. We note that

β̂
p→ β̃
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by Lemma 2.4.8. Then,

1√
n
F(t, z)

=
1√
n

n∑
i=1

I(Zi ≤ z)M̂i(t)

=
1

n

n∑
i=1

I(Zi ≤ z)
[
Ni(t)−

∫ t

0

Ri(s)λ(s|Zi, β̂)ds
]

=
1

n

n∑
i=1

I(Zi ≤ z)
[
Ni(t)−

∫ t

0

Ri(s)λ(s|Zi, β̃)ds
]

+ op(1)

a.s.−→EFz

{
I(Zi ≤ z)EH1

[(
Ni(t)−

∫ t

0

Ri(s)λ(s|Zi, β̃)ds
)
|Zi

]}

=

∫
Zi≤z

{
EH1

(
Ni(t)|Zi

)
− EH1

[ ∫ t

0

Ri(s)λ(s|Zi, β̃)ds|Zi

]}
dFz(Zi)

=

∫
Zi≤z

{
EH1

[ ∫ t

0

Ri(s)λH1(s|Zi,β1)ds|Zi

]
−
∫ t

0

EH1

[
Ri(s)|Zi

]
λ(s|Zi, β̃)ds

}
dFz(Zi)

=

∫
Zi≤z

{∫ t

0

EH1

[
Ri(s)|Zi

]
λH1(s|Zi,β1)ds

−
∫ t

0

EH1

[
Ri(s)|Zi

]
λ(s|Zi, β̃)ds

}
dFz(Zi)

=

∫
Zi≤z

{∫ t

0

EH1

[
Ri(s)|Zi

][
λH1(s|Zi,β1)− λ(s|Zi, β̃)

]
ds
}
dFz(Zi) .

The above expression is not zero for some t, z (i.e., limn→∞ sup0≤t≤τ,z n
−1/2|F(t, z)| 6=

0) .

3.2 Model Checking Based on Censoring Consistent Residuals

In this section, we discuss the goodness-of-fit test based on censoring con-

sistent residuals for checking the validity of TR models with linear link functions.
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León and Tsai (2004) proposed censoring consistent residuals based test statistics

for identifying the functional forms of covariates in the Cox model. In contrast to

the martingale residuals, which can be interpreted as the difference between the ob-

served and expected number of events for the ith subject, the censoring consistent

residuals can be interpreted, asymptotically, as the difference between the observed

and expected survival time for the ith subject (León and Tsai, 2004).

3.2.1 Test Statistic

Consider the following hypotheses

H0 : F (s|Z,β) ∈ D, v.s. H1 : F (s|Z,β) = F1(s|Z,β) /∈ D

where F (s|Z,β) denotes the cumulative distribution function of the first hitting

time S and D is the parametric family defined in Section 3.1.1.

We follow the notation in Section 3.1. The expectations of observed sur-

vival times Yi are not the same as those of true survival times Si (i.e., E(Yi|Zi) 6=

E(Si|Zi)) because of censoring. Fan and Gijbels (1996) discussed a censoring unbi-

ased transformation such that the expectations of the transformed observed survival

times are equivalent to those of the survival times without censoring. We now briefly

explain their approach.
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Let G(t) = P(C > t) be the survival function of censoring time. Define

θ = min
{i:∆i=1}

∫ Yi
0

[1/G(t)]dt− Yi
Yi/G(Yi)−

∫ Yi
0

[1/G(t)]dt
.

Let ϕ(·) denote the transformation function. Then the transformed observed sur-

vival time is given by

ϕ(Yi) =


ϕ1(Yi) if uncensored

ϕ2(Yi) if censored

= ∆iϕ1(Yi) + (1−∆i)ϕ2(Yi) , (3.2.1)

where

ϕ1(t) = (1 + θ)

∫ t

0

1

G(s)
ds− θ t

G(t)

and

ϕ2(t) = (1 + θ)

∫ t

0

1

G(s)
ds .

Then we have

E(ϕ(Yi)|Zi) = E(Si|Zi) .

One can estimate G(t) by the Nelson-Aalen estimator Ĝ(t). Let ϕ̂(·) denote the

estimated transformation function upon replacing G(·) in (3.2.1) by Ĝ(·). Let

m(Zi) = E(Si|Zi). Then m(Zi) can be estimated by

m̂(Zi) =

∫ ∞
0

(
1− F (s|β̂,Zi)

)
ds .
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León and Tsai (2004) referred to

R̂i = ϕ̂(Yi)− m̂(Zi)

as the censoring consistent residual.

To check the overall fit of TR models with linear link functions, we adopt the

following cumulative sums of censoring consistent residuals

R(z) =
1√
n

n∑
i=1

I(Zi ≤ z)
[
ϕ̂(Yi)− m̂(Zi)

]
.

We approximate the above process R(z) by the following bootstrap method as

discussed in León and Tsai (2004). Let (Y ∗i ,∆
∗
i ,Z

∗
i ) denote the bootstrap data.

Specifically, for i = 1, . . . , n,

1. Let Z∗i = Zi.

2. Generate u∗i ∼ U(0, 1).

3. If u∗i ≤ F
(

maxj∈{1,...,n}{Yj}|β̂,Zi

)
, then S∗i = minj∈{1,...,n}

{
Sj : F

(
Sj|β̂,Zi

)}
;

otherwise, S∗i = maxj∈{1,...,n}{Yj}.

4. If ∆i = 0, let C∗i = Yi; if ∆i = 1, by analogy to step 2, generate C∗i from

FY (t) = [Ĝ(t)− Ĝ(Yi)]/Ĝ(Yi) for t ≥ Yi.

Then ∆∗i = I(S∗i ≤ C∗i ) and Y ∗i = S∗i ∧C∗i . We can approximate the distribution of
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R(z) by generating L bootstrap realizations

R∗k(z) =
1√
n

n∑
i=1

1(Z∗i ≤ z)
[
ϕ̂(Y ∗i )− m̂(Z∗i )

]
, k = 1, . . . , L .

We apply the supremum-type test statistic supz |R(z)| to check the adequacy

of TR models with linear link functions. Let p∗(α) denote the 100(1−α)th percentile

of

sup
z
|R∗1(z)|, . . . , sup

z
|R∗L(z)| .

The null hypothesis H0 is rejected if

sup
z
|R(z)| ≥ p∗(α) .

3.2.2 Consistency

In this section, we investigate the asymptotic power of the proposed test above.

Theorem 3.2.1. Suppose Assumption 3.1.1 holds. Then under the fixed alternative

hypothesis H1,

P
(

sup
z
|R(z)| ≥ p∗(α)

)
→ 1, as n→∞ .

Proof. It can be shown that

1√
n
R∗k(z)

a.s.−→ 0, by law of large numbers .
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To establish the conclusion of Theorem 3.2.1, we only need to show that

1√
n
R(z)

p→ a 6= 0

under H1. We have

β̂
p→ β̃

under Assumption 3.1.1 by Lemma 2.4.8. Then,

1√
n
R(z) =

1

n

n∑
i=1

I[Zi ≤ z]
{
ϕ̂(Yi)− m̂(Zi)

}
=

1

n

n∑
i=1

I[Zi ≤ z]
{
ϕ̂(Yi)− m̃(Zi)

}
+ op(1) ,

where m̃(Zi) = Eβ̃(Si|Zi). This leads to

1√
n
R(z)

a.s.−→ E

{
I[Zi ≤ z]E

[
ϕ̂(Yi)− m̃(Zi)|Zi

]}

=

∫
Zi≤z

E
[
ϕ̂(Yi)− m̃(Zi)|Zi

]
dFz(Zi)

=

∫
Zi≤z

EH1 [Si|Zi]dFz(Zi)−
∫
Zi≤z

m̃(Zi)dFz(Zi)

=

∫
Zi≤z

∫ ∞
0

(
1− F1(Si|Zi)

)
dSidFz(Zi)−∫
Zi≤z

∫ ∞
0

(
1− F (Si|Zi, β̃)

)
dSidFz(Zi)

=

∫
Zi≤z

∫ ∞
0

(
F1(Si|Zi)− F (Si|Zi, β̃)

)
dSidFz(Zi) .

The above expression is not zero for some z.
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3.3 Simulation Study

To access the performance of the tests based on martingale residuals and cen-

soring consistent residuals, we conduct simulation studies under various situations.

We simulate an event time S (first hitting time) using the method described in

Section 2.5. Specifically, we consider the following four different cases:

Case 1 (Covariate-dependent initial status with correct link functions in the

estimation):

• Event time S is generated from the following link functions


ln(δ) = βδ1 + βδ2Zδ2

µ = βµ1 + βµ2Zµ2 ,

where (βδ1, βδ2)′ = (1, 1.8)′, (βµ1, βµ2)′ = (−1.3,−1.6)′, and Zδ2 = Zµ2 ∼

Uniform(0, 1).

• We use the following correctly specified link functions in estimation


ln(δ) = βδ1 + βδ2Zδ2

µ = βµ1 + βµ2Zµ2.

Case 2 (Covariate-dependent initial status with wrong link functions in the

estimation):

96



• Event time S is generated from the following link functions


ln(δ) = βδ1 + βδ2Zδ2

µ = βµ1 + βµ2Zµ2 + βµ3Zµ3 ,

where (βδ1, βδ2)′ = (1, 1.8)′, (βµ1, βµ2, βµ3)′ = (−1.3,−1.6,−1)′, Zδ2 =

Zµ2 ∼ Uniform(0, 1), and Zµ3 ∼ N(1, 1.4).

• We use the following wrong link functions in the estimation


ln(δ) = βδ1 + βδ2Zδ2

µ = βµ1 + βµ2Zµ2.

Case 3 (Covariate-independent initial status with correct link functions in the

estimation):

• Event time S is generated from the following link functions


ln(δ) = βδ1

µ = βµ1 + βµ2 ln(Zµ2) ,

where βδ1 = 2.3, (βµ1, βµ2)′ = (−1.3, 1.6)′, and Zµ2 ∼ Uniform(0, 1).
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• We use the following correctly specified link functions in the estimation


ln(δ) = βδ1

µ = βµ1 + βµ2 ln(Zµ2) .

Case 4 (Covariate-independent initial status with wrong link functions in the

estimation):

• Event time S is generated from the following link functions


ln(δ) = βδ1

µ = βµ1 + βµ2 ln(Zµ2) ,

where βδ1 = 2.3, (βµ1, βµ2)′ = (−1.3, 1.6)′, and Zµ2 ∼ Uniform(0, 1).

• We use the following wrong link functions in the estimation


ln(δ) = βδ1

µ = βµ1 + βµ2Zµ2 .

The censoring time C follows a chi-squared distribution with 7 degrees of freedom.

The censoring rates for Case 1 and Case 2 are around 15%. The censoring rates

for Case 3 and Case 4 are around 27%. Simulation results are summarized in Table

3.1 and Table 3.2. For each simulation case, we simulate 100 data sets with sample

size n = 200. The p-values are calculated from L = 100 realizations of F̂(t, z) and

R∗(z). The significance level α is 0.05.
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Table 3.1: Empirical sizes of test statistics at the α = 0.05 significance level.

Using correct link functions in the estimation

Case 1 Case 3

Martingale residual test 0.04 0.07
Censoring consistent residual test 0 0.04

Table 3.2: Empirical powers of test statistics at the α = 0.05 significance level.

Using wrong link functions in the estimation

Case 2 Case 4

Martingale residual test 0.95 0.90
Censoring consistent residual test 0.63 0.73

Results in Table 3.1 indicate that both test procedures maintain the null size

when link functions are correctly specified. Results in Table 3.2 suggest that the

rejection powers are reasonable for both tests if the model is misspecified.

3.4 An Application

In this section, we apply our proposed model checking methods to the kidney

dialysis data set in Nahman et al. (1992). The data contains 119 patients with renal

insufficiency in which 43 patients used a surgically placed catheter (group 1) and

76 patients utilized a percutaneous placement of their catheter (group 2). Time (in

months) to first exit-site infection in patients was recorded. Of the 43 patients in

group 1, 28 were censored; while 65 among 76 patients in group 2 were censored.
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The proportional hazards assumption does not hold for this data set based pre-

vious studies (Klein and Moeschberger, 2003; Xiao et al., 2012). Xiao et al. (2012)

also noted that regular TR model fits this data set fairly well since the predicted

survival curves from the TR model match the Kaplan-Meier curves. We apply our

model checking procedures to test the overall fit of the TR model using this data

set. The test based on cumulative sums of martingale residuals yields a p-value

of 0.319 using L = 1, 000 realizations from F̂(t, z) under the null hypothesis. We

obtain a p-value of 0.381 from the test based on censoring consistent residuals using

L = 1, 000 bootstrap samples. Therefore, p-values from both tests show no evidence

against the TR model. For the reader’s convenience, we also report the estimated

parameters in Table 3.3 and plot the predicted survival curves from the TR model

along with Kaplan-Meier survival curves for the two groups in Figure 3.1. We code

the group variable as group = 1 if percutaneous placed catheter, 0 if surgically

placed catheter, in the analysis.

Table 3.3: Estimated regression coefficients in the analysis of kidney dialysis data
set.

Regression for degradation rate µ:

Coefficient Estimate Standard Error p-value

group 0.6377 0.1280 < 0.01
intercept -0.0959 0.0765 0.21

Regression for ln(δ):

Coefficient Estimate Standard Error p-value

group -1.0731 0.1891 < 0.01
intercept 1.4113 0.1434 < 0.01
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Figure 3.1: Predicted survival curve from TR model versus Kaplan-Meier curve for
the kidney dialysis data set.

3.5 Summary

Lin et al. (1993) proposed cumulative sums of martingale residuals for the

model checking of Cox model. León and Tsai (2004) introduced functional form

diagnostics for the Cox model based on censoring consistent residuals. We have

adopted their ideas and proposed two model checking procedures to check the over-

all fit of the TR model in this dissertation. We ahve showed that both tests are

asymptotically consistent when the model is misspecified. Simulation studies indi-

cate that the performances of the two tests are quite satisfactory. We illustrate the

practical application of the proposed two tests using data from a kidney dialysis.
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Chapter 4: Future Study

In this chapter, we discuss several potential directions for future research.

In Chapter 2, we investigated TR models with flexible covariate effects for

right censored data. This modeling approach can be easily extended to accommo-

date left and interval censored or truncated observations. We explored consistency

and convergence rate of the spline based estimator for TR models with flexible co-

variate effects. It would be useful to derive the asymptotic distribution of the spline

based estimator. One can use its asymptotic distribution to construct simultane-

ous variability bands. The interested reader is referred to Strawderman and Tsiatis

(1996) and Huang et al. (2004) for further information.

Knot selection is a main research direction in regression splines. The perfor-

mance of spline smoothing depends on the location of the knots and number of

knots, especially for curves with varying shapes. It would be meaningful to develop

knot selection techniques for TR models with flexible covariate effects to obtain an

efficient estimator. To conduct further research in this direction, one may consider

the cross-validation method. For more details we refer the reader to Rice and Sil-
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verman (1991) and Yu et al. (2009).

We have noticed that local polynomial approach is another popular tool in

statistical models with varying coefficients. It is of interest to compare the per-

formance between the proposed spline based estimator and the estimator based on

local polynomial regression under different circumstances.

We discussed model checking techniques for TR models with linear link func-

tions in Chapter 3. Extending these model checking approaches for TR models with

flexible covariate effects is worth exploration.
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Chapter A: Appendix

A.1 R Functions for Model Checking Based on Martingale Residuals

#====================================================================#

# Function name: Ftx #

#--------------------------------------------------------------------#

# Input variables: #

# delta: vector of length n which records estimated delta for all #

# subjects #

# mu: vector of length n which records estimated mu for all subjects #

# cov: n by (d_1+d_2) matrix which records values of all covariates #

# cov_com: matrix with (d_1+d_2+1) columns which records all #

# different combinations of values of covariates and event #

# time; covariates order is same as cov and the last column #

# is for event time #

# dt: vector of length n which records the event times for all #

# subjects #

# ft: numerical valued (0,1) vector which records event indicators #

# for all subjects #

#--------------------------------------------------------------------#

# Output of Ftx: #

# Return the maximum of absolute values of the true process #

#====================================================================#

Ftx= function(delta, mu, cov, cov_com, dt, ft) {

ind= length(dt)

ncounti= rep(0, ind)

secteri= rep(0, ind)

Mit= rep(0, ind)

# Distribution function of the event time S

F= function(t) {1-pnorm((mu*t+delta)/(1*t)^0.5)+

exp((-2*delta*mu)/(1))*pnorm((mu*t- delta)/(1*t)^0.5)}
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# Density function of the event time S

f=function(t) (delta)/(2*pi*1*t^3)^.5*exp(-(delta+mu*t )^2/(2*1*t ))

# Function of N_i(t)

ncount= function(t) ft*as.numeric(dt<=t)

# Hazard function;

# I used the relationship of F(t) and cumulative hazard function H(t)

secter= function(t) -log(1- F(pmin(t, dt)))

# I(X_i<=x)

indi= function(x,y) as.numeric(x<=y)

last_col_no= dim(cov_com)[2]

indi_m= matrix(0, ind, (last_col_no-1))

rol_no= dim(cov_com)[1]

# each_value records values of process at each point

each_value= rep(0, rol_no)

for(w in 1:rol_no){

for(i in 1:(last_col_no-1)) {indi_m[ ,i]= indi(cov[,i], cov_com[w, i])}

indic= rep(0, ind)

rowProds= function(X) {apply(X, 1, FUN="prod")}

indic= rowProds(indi_m)

secteri= secter(cov_com[w, last_col_no])

ncounti= ncount(cov_com[w, last_col_no])

# Mit records values of M_i(t) at each point

Mit= ncounti- secteri

each_value[w]=sum(indic*Mit)*1/sqrt(ind)

}

max(abs(each_value))

}

#====================================================================#

# Function name: Fhat #

#--------------------------------------------------------------------#

# Input variables: #

# delta: vector of length n which records estimated delta for all #

# subjects #

# mu: vector of length n which records estimated mu for all subjects #

# cov: n by (p+q) matrix which records values of all covariates #

# cov_com: matrix with (p+q+1) columns which records all different #

# combinations of values of covariates and event time; #

# covariates order is same as cov and the last column is #

# for event time #

# cov_mu: n by (1+d_2) matrix which records all covariates used in #

# mu with first column all 1 representing intercept #
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# cov_delta: n by (1+d_1) matrix which records all covariates used #

# in delta with first column all 1 representing intercept #

# dt: vector of length n which records the event times for all #

# subjects #

# ft: numerical valued (0,1) vector which records event indicators #

# for all subjects #

# number: number of approximated processes #

#--------------------------------------------------------------------#

# Output of Fhatx: #

# Return a vector of length ’number’ which records all maximums of #

# absolute values of the simulated processes #

#====================================================================#

Fhat= function(delta, mu, cov_mu, cov_delta, cov, cov_com, dt, ft, number) {

ind= length(dt)

# Distribution function of the event time S

F= function(t) {1-pnorm((mu*t+delta)/(1*t)^0.5)+

exp((-2*delta*mu)/(1))*pnorm((mu*t- delta)/(1*t)^0.5)}

# Density function of the event time S

f=function(t) (delta)/(2*pi*1*t^3)^.5*exp(-(delta+mu*t )^2/(2*1*t ))

# Derivative of f w.r.t mu

f1= function(t) (1/(2*pi*t^3)^.5)*exp(-(delta+mu*t)^2/(2*t))*

(-delta^2-delta*mu*t)

# Derivative of f w.r.t delta

f2= function(t) (1/(2*pi*t^3)^.5)*exp(-(delta+mu*t)^2/(2*t))*

(1-delta^2/t-delta*mu)

# Derivative of F w.r.t mu

F1= function(t) -dnorm( (mu*t+delta)/t^.5 )*t^.5+

exp(-2*delta*mu)*(-2*delta)*pnorm((mu*t-delta)/t^.5 )+

exp(-2*delta*mu)*dnorm((mu*t-delta)/t^.5 )*t^.5

# Derivative of F w.r.t delta

F2= function(t) -dnorm( (mu*t+delta)/t^.5 )*t^-.5+

exp(-2*delta*mu)*(-2*mu)*pnorm((mu*t-delta)/t^.5 )+

exp(-2*delta*mu)*dnorm((mu*t-delta)/t^.5 )*(-t^-.5)

# Estimated fishier information matrix

mu_col_no= dim(cov_mu)[2]

delta_col_no= dim(cov_delta)[2]

li_mu= matrix(0, ind, mu_col_no)

li_delta= matrix(0, ind, delta_col_no)

i=1

while (mu_col_no>=1) {

# take the derivative w.r.t coeff of cov_mu[ ,mu_col_no] in mu

li_mu[ ,i]= (ft*f1(dt)/f(dt)- (1-ft)*F1(dt)/(1-F(dt)))*cov_mu[ ,mu_col_no]
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i= i+1

mu_col_no= mu_col_no-1

}

i=1

while (delta_col_no>=1) {

# take the derivative w.r.t coeff of cov_delta[ ,delta_col_no] in delta

li_delta[ ,i]= (ft*f2(dt)/f(dt)- (1-ft)*F2(dt)/(1-F(dt)))*

cov_delta[ ,delta_col_no]

i= i+1

delta_col_no= delta_col_no-1

}

infisher= solve(1/ind*t(cbind(li_mu, li_delta))%*%cbind(li_mu, li_delta) )

# Function lambda

lambd= function(t) f(t)/(1-F(t))

# derivative of lambd w.r.t mu

lambdp1= function(t) 1/(1-F(t))*f1(t)+f(t)*F1(t)/(1-F(t))^2

# derivative of lambd w.r.t delta

lambdp2= function(t) 1/(1-F(t))*f2(t)+f(t)*F2(t)/(1-F(t))^2

#Derivative of function lambda

mu_col_no= dim(cov_mu)[2]

delta_col_no= dim(cov_delta)[2]

dlambd_mu= matrix(0, ind, mu_col_no)

dlambd_delta= matrix(0, ind, delta_col_no)

i=1

while(mu_col_no>=1) {

# derivative of log(lambd(yi)) w.r.t coeff of cov_mu[ ,mu_cov_no] in mu

dlambd_mu[ ,i]= lambd(dt)^(-1)*lambdp1(dt)*cov_mu[ ,mu_col_no]

i= i+1

mu_col_no= mu_col_no-1

}

i=1

while(delta_col_no>=1) {

# derivative of log(lambd(yi)) wrt coef of cov_delta[ ,delta_cov_no] in delta

dlambd_delta[ ,i]= lambd(dt)^(-1)*lambdp2(dt)*cov_delta[ ,delta_col_no]

i= i+1

delta_col_no= delta_col_no-1

}

dlambd= rbind(t(dlambd_mu), t(dlambd_delta))

long_no= dim(cov_com)[1]

cov_no= dim(cov_com)[2]

# Function N_i(t)

ncount= function(t) ft*as.numeric(dt<=t)
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# Function I(X_i<=x)

indi= function(x,y) as.numeric(x<=y)

indi_m= matrix(0, ind, (cov_no-1))

# Store all values of 1st term besides G_i

ecount= matrix(0, long_no, ind)

for(w in 1:long_no) {

for(i in 1:(cov_no-1)) {indi_m[ ,i]= indi(cov[,i], cov_com[w, i])}

indic= rep(0, ind)

rowProds= function(X) {apply(X, 1, FUN="prod")}

indic= rowProds(indi_m)

ecount[w, ]= 1/sqrt(ind)*indic*ncount(cov_com[w, cov_no])

}

# 2nd term

mu_col_no= dim(cov_mu)[2]

delta_col_no= dim(cov_delta)[2]

# store all values of Bhat

ebhat= matrix(0, long_no, (mu_col_no+delta_col_no))

## Record integral part of B_hat(t,x)

Bint_mu= matrix(0, mu_col_no, ind)

Bint_delta= matrix(0, delta_col_no, ind)

Bint= matrix(0, (mu_col_no+delta_col_no), ind)

# derivative of the integal w.r.t mu;

# I used the relationship btw sruvival function and cumulative hazard function

integr1= function(t) 1/(1- F(pmin(t, dt)))*F1(pmin(t, dt))

# derivative of the integral w.r.t delta;

# I used the relationship btw sruvival function and cumulative hazard function

integr2= function(t) 1/(1- F(pmin(t, dt)))*F2(pmin(t, dt))

# R_i(t)

rit= function(t) 1-as.numeric(dt<t)

indi_m= matrix(0, ind, (cov_no-1))

for(w in 1:long_no) {

for(i in 1:mu_col_no) {

Bint_mu[i, ]= integr1(cov_com[w , cov_no])*cov_mu[ , mu_col_no]

mu_col_no= mu_col_no-1

}

for(i in 1:delta_col_no) {

Bint_delta[i, ]= integr2(cov_com[w , cov_no])*cov_delta[ , delta_col_no]

delta_col_no= delta_col_no-1

}

Bint= rbind(Bint_mu, Bint_delta)

for(i in 1:(cov_no-1)) {indi_m[ ,i]= indi(cov[,i], cov_com[w, i])}

indic= rep(0, ind)

rowProds= function(X) {apply(X, 1, FUN="prod")}
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indic= rowProds(indi_m)

mu_col_no= dim(cov_mu)[2]

delta_col_no= dim(cov_delta)[2]

for (i in 1:(mu_col_no+delta_col_no)) {

ebhat[w, i]= 1/ind*sum(indic*Bint[i, ])

}

}

# Simulate G_i

g= matrix(rnorm(number*ind), number, ind)

# msimulated stores the maximum for each simulated data

msimulated= rep(0, number)

# install foreach package first

library(foreach)

msilulated= foreach(i= 1:number, .combine=’c’) %dopar% {

max(abs(ecount%*%g[i,]- 1/sqrt(ind)*ebhat%*%infisher%*%dlambd%*%(g[i,]*ft) ))

}

msilulated

}

A.2 R Functions for Model Checking Based on Censoring Consistent

Residuals

#====================================================================#

# Function name: R_n #

#--------------------------------------------------------------------#

# Input variables: #

# delta: vector of length n which records estimated delta for all #

# subjects #

# mu: vector of length n which records estimated mu for all subjects #

# cov: n by (d_1+d_2) matrix which records values of all covariates #

# cov_com: matrix with (d_1+d_2) columns which records all different #

# combinations of values of covariates #

# covariates order is same as cov #

# dt: vector of length n which records event times for all subjects #

# ft: numerical valued (0,1) vector which records event indicators #

# for all subjects #

#--------------------------------------------------------------------#

# Output of R_n: #

# Return the maximum of absolute values of the process #
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#====================================================================#

R_n= function(delta, mu, cov ,cov_com ,dt, ft) {

# No. of individuals

ind= length(dt)

# survival function for the censor time

library(survival)

temp= survfit(coxph(Surv(dt,as.numeric(!ft))~1),type="aalen")

# f=0 makes it right continuous

survivalfunc1= stepfun(temp$time,c(1,temp$sur) ,f=0)

# next to calculate theta

# integrate of 1/G(t) where 1-G(t) is the censoring distribution

int_G= function(t) integrate(function(t) 1/survivalfunc1(t),0, t,

subdivisions=100000)$value

min_theta= function(x) (int_G(x)-x)/(x/survivalfunc1(x)-int_G(x))

sub_set= dt[(ft==1)]

thetam= rep(0, length(sub_set))

for(i in 1:length(sub_set)) {thetam[i]=min_theta(sub_set[i])}

# omit those NaN in thetam which is a result from zero in denominator

# of min_theta for some dt

theta=min(na.omit(thetam))

# transformed death time for uncensored obs.

fi1= function(x) (1+theta)*int_G(x)- theta*x/survivalfunc1(x)

# transformed death time for censored obs.

fi2= function(x) (1+theta)*int_G(x)

# new_survivaltime records transformed survival time

new_survivaltime= rep(0, ind)

new_survivaltime[ft==1]= mapply(fi1, dt[ft==1])

new_survivaltime[ft==0]= mapply(fi2, dt[ft==0])

# value of test statistics

col_no= dim(cov)[2]

indi_m= matrix(0, ind, col_no)

# I(z_i<=z)

indi= function(x,y) as.numeric(x<=y)

rol_no= dim(cov_com)[1]

# each_value records values of process at each point

each_value= rep(0, rol_no)

for(w in 1:rol_no){

for(i in 1:col_no) {indi_m[ ,i]= indi(cov[,i], cov_com[w, i])}

indic= rep(0, ind)

rowProds= function(X) {apply(X, 1, FUN="prod")}

indic= rowProds(indi_m)

each_value[w]=sum(indic*(new_survivaltime- delta/abs(mu)))*1/sqrt(ind)

110



}

max(abs(each_value))

}
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