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Abstract

A fully-pipelined systolic array for computing the minimum variance distortionless re-
sponse (MVDR) was first proposed by McWhirter and Shepherd. The fundamental concept
1s to fit the MVDR beamforming to the non-contrainted recursive least-squares (RLS) min-
imization. Until now, their systolic array processor is well-recognized as the most efficient
design for MVDR beamforming. In this paper, we first point out the mistake by relating
the MVDR beamforming and RLS minimization and then propose a new algorithm for the
MVDR beamforming. Moreover, a fully parallel and pipelined systolic array for the newly

proposed algorithm is presented and the square-root free implementation is also considered.






1 Introduction

Research in implementing the minimum variance distortionless response (MVDR) al-
gorithm by systolic array processors to compute the optimal residual has been very
active in the last few years [1, 2, 3, 4, 6, 7]. This is due to the advancements in VLSI
circuit technology and the demand for sophisticated systems with high throughput
rate and superior numerical accuracy. The major issues in implementing the algo-
rithm onto a systolic array processor are (1) numerical stability, (2) computational
efficiency, and (3) single fully-pipelined structure. In a recent paper a numerically sta-
ble and computationally efficient algorithim for MVDR beamforming was introduced
by Schreiber [1]. His algorithm only requires O(N? + K N) arithmetic operations per
sample time, where N is the number of sensors from an adaptive antenna array and K
is the number of look direction constraints. It has robust numerical properties, nev-
ertheless, it is difficult to implement the whole algorithm onto a single fully-pipelined
structure as pointed out in [3, 4]. Lately, McWhirter and Shepherd [4] proposed a sin-
gle fully-pipelined systolic array processor (SAP) for minimum variance distortionless
response (MVDR) beamforming by implementing Schreiber’s algorithm without the
need of an extra back substitution processor for computing the residual [1, 4]. Up to
now, McWhirter and Shepherds’ systolic array processor is well-recognized as the most
efficient design for MVDR beamforming. Their SAP for MVDR beamforming is de-
signed by using the recursive least squares (RLS) algorithm proposed in McWhirter’s
earlier paper [5]. According to McWhirter and Shepherds’ paper, by comparing the
MVDR algorithm to the RLS algorithm, it seems easy to obtain the residual of the
MVDR beamforming from that of the RLS algorithm by forcing the desired input
data to be zero. Unfortunately, the residual of the RLS algorithm described in [5]
is derived by employing the lower part of a unitary matrix, S, while the residual of

MVDR is obtained by using the upper part of a unitary matrix, P, where the up-
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P(n
per part and lower part of the unitary matrix @Q(n) is defined as Q(n) = (n)
S(n)

In this paper, we first point out that the algorithm for McWhirter and Shepherds’
MVDR beamforming to compute the residual by forcing the desired data to zero is
not correct and then propose a new and correct systolic algorithm and systolic array
processor to compute the optimal residuals for MVDR beamforming [6, 7].

This paper is organized as follows. In the second section McWhirter’s RLS and
MVDR algorithms are summarized and the problem of using the residual algorithm
of RLS for MVDR is pointed out. In the third section, the newly proposed MVDR
algorithm with single fully-pipelined systolic array processors is presented in detail. In
the fourth section, a single fully-pipelined MVDR systolic array processor is illustrated
and the operations for its processor elements are also described. In the fifth section,
the square-root free MVDR beamforming is considered. Finally, in the last section,

we conclude our results.

2 Comparison Between McWhirter’s RLS and MVDR
Algorithms

In this section, the problem of using the RLS for MVDR algorithm is addressed and
McWhirter’s RLS and MVDR algorithms are summarized. We claim that MVDR, can
not use RLS simply by driving the desired data y(t,) to zero. The correct MVDR
algorithm should be rederived since the RLS algorithm can not be used directly. To
understand why the solution of the MVDR algorithm for computing the residual can
not use the RLS algorithm, McWhirter’s famous RLS systolic arrays and MVDR
systolic arrays are necessary to be examined again in detail. The comparison of the

McWhirter’s two systolic array processors is very important to have a clear picture of



the approach described in this paper. Therefore, we start with a detailed description
of McWhirter’s work and then present a correct solution for computing the residual
for MVDR beamforming. In the next two subsections McWhirter’s algorithm for RLS
minimization i1s summarized and the MVDR algorithm for computing the residual by

driving the desired data to be zero is described [5].

2.1 McWhirter’s RLS Algorithm

McWhirter’s RLS algorithm is summarized as follows. The n x 1 residual vector for

the least squares problem is

eg(n) = X(n)w(n) - y(n), (1)

where X (n), is a given n x p observed data matrix,

XT(n) = Bn) | a(t) a(t) - z(t) ],
y(n), is a given n x 1 desired data vector,
v = Bin) | y(6) yit) oy ]
w(n), is a given p x 1 weight vector,
W) = [ wn(t) walt) o wn(t) ]
e(n), the residual vector,
en)’ = | eltr) elt) o elta) |-

with B(n), an exponentially forgetting matrix which emphasizes the statistical weight

on the new data and gradually scales down the old data in the least squares compu-



tation, given by

(61 0 0 0 0]
0 82 0 0 0
Bm)=| 0 0 . 0 0],
0 0 0 80
0 0 0 01|

where 0 < 8 < 1.

A QR decomposition can be applied to the data matrix X(n), so that

R(n)
0

Q(n)X(n) = (2)

The n x n unitary matrix @(n) can be partitioned into two submatrices which are a

p xn matrix P(n) and a (n — p) x n matrix S(n) as {ollows,

(3)

Also, the QR decomposition can be applied to the desired data vector y. Then, we

P(n)y(n) } _ {u(m } | "

have

The L, norm of the residual is
lle(m)llz = X (n)w(n) —y(n)]

R(n u(n
(=) _’LQ(N)*{M( )})2
v(n)

R(n)w(n) - u(n) } |
.

—u(n)

= |lQ™(

= |l




Therefore, the optimal least-squares weight vector w; g(n) must satisfy the equation
wrs(n) = R (n)u(n), (6)

and hence the minimized |[¢|; is
lle(m)]l2 = [lu(n)]l2, (7)

where v(n) = S(n)y(n).

[t was shown in [5] that the unitary matrix Q(n) can be factorized as follows:

Q(n) = Q(m)Q(n — 1), (8)
where Q(n — 1) is
Pn—-1) 0
Qn—1)=| Sn-1) 0|, (9)
0 1
and @(n) is
A(n) 0 a(n)
Quy=| 0o I 0 | (10)
b"(n) 0 4(n)
Accordingly, the submatrices P(n) and S(n) of the unitary matrix Q(n) are
P(n) = [ An)P(n—1) a(n) } , (11)
and
S(n—1 0
Sty =1 (n=1) . (12)
b (n)P(n—1) ~(n)
By substituting (6) into (1), the residual vector is found to be
ers(n) = X(n)R™ (n)u(n) — y(n). (13)



The derivation of the current residual at the n**-snapshot for recursive least squares

described by McWhirter is given as follows. According to (13), we have

B0 Bty - Q7 ()
0 v(n)

ers(n) = QH(n)

Therefore, the residual vector has the form

ers(n) = —QH(”)[

where ST(n) has the form

with a(n) given by
a(n) = Bb" (n)u(n — 1)+ y(n)y(t.). (17)

The current residual ergs(t,,), i.e., the last element of e;s(n), is then given by

ers(ln) = —y(n)a(n) = =y(n)(Bb (n)u(n — 1) + y(n)y(ta)). (18)

where v(n) and b” (n) are given in the Appendix. (15) shows that the residual for the
recursive least squares problem is obtained from the lower part of the unitary matrix
S(n). Notice that the upper part of unitary matrix, P(n), is not used to compute
the residual. We will describe in the next section that without the desired data, the

upper part of the unitary matrix P(n) is used to compute the residual for the case of
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MVDR beamforming. According to the RLS algorithm discussed in this subsection,
McWhirter’s systolic array for the recursive least-squares problem illustrated in [5] is

shown in Figure 1.

2.2 McWhirter’s MVDR Beamforming

Let the n x 1 residual vector for the MVDR problem be

e(n) = X(n)w(n), (19)

where X (n) and w(n) are the same as that of in the least squares problem. Mathe-
matically, the MVDR problem is to find a w(n) that solve the following optimization
problem,

min w (n)M(n)w(n)

w(n)

. ~H : . N
subject to ¢ w(n) =r" for i=1,2,--- K.

where ¢ is the steering vector and K is the number of constrained directions. Using

the method of Lagrange multipliers, the optimal weight vector w!,(n) is
; r'M-(n)c . )
.wopt(n) = m fOT 7 = 1’ [ 7[\’ (20)
where
M(n) = XH(n)X(n). (21)

By applying the QR decomposition to the input observed data X(n), we obtain

R
Q(n)X(n) = (n) . (22)
0
Substituting (22) into (21), we have
M(n) = R"(n)R(n). (23)



Therefore, the optimal weight vector is
o — r'R=(n)R~H(n)c
—opt T giHR‘l(n)R‘H(n)g"

for i=1,--- K. (24)
Let us define a parameter vector z'(n) given by
Z(n) = R (n)c" (25)

The upper triangular matrix can be updated by using the QR decomposition given

by

BR(n —1) R(n)
Q(n) 0 = 0 |, (26)
ﬁT(tn) 0

where @(n) has the form as given in (10).
From (25), we have
¢ = RU(n)z'(n)

= R(n-1)z'(n— 1)

-~

= | BRM(n—1) 0 27(t,) | Q" (n)Q(n) # 7 (27)

and from (26), the same QR decomposition can be applied to update the parameter

z'(n —1), so that

1zi(n —1) £(n)
Q(n) # = # |, (28)
0 #

where # denotes an arbitrary vector of no interest in mathematical and physical
concept. On substituting (25) and (24) into (19), the residual vector for MVDR

beamforming is .
r _ ;
emvpr(n) = WX(N)R H(n)z'(n). (29)
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For convenience, we define a vector €,y pr(n) as

envpr(n) = X(n)R™} (n)z'(n). (30)
Obviously, the current residual can be obtained by evaluating

émvor(ts) = 2’ (ta) R (r)Z'(n). (31)

By changing the data matrix X (n) and the desired data vector y(n) into a data vector
z7(t,) and a desired data y(t,) at the n** snapshot in (13), the current residual of

the RLS algorithm can be written as

ers(ts) = 2l (1) R (n)u(n) — y(tn). (32)

Comparing to (31) and (32), it seems that by forcing the desired data y(t,) to zero,
u(n) to z'(n), and B to %, the current residual for MVDR beamforming can be
obtained by using that of the RLS algorithm [4]. Therefore, according to (18), the

residual for MVDR beamforming seems to be

emvor(ts) = —y(n)a(n)
1

= —o (b —1). (33)
B

Comparing the two residual equations for RLS and MVDR shown in [4], McWhirter’s
MVDR beamforming seems to have the same residual for RLS by driving the desired
data to zero. Therefore, it looks as if the MVDR systolic array could employ the
RLS systolic array by inputting zeroes. In [4], the systolic array processor for MVDR

beamforming has the structure given by Figure 2.
The question now arises “Can MVDR beamforming use the RLS algorithm by
driving the desired data to zero to compute the residual?” The answer is NO because
given the zero desired data, the algorithm to compute the current residual for MVDR

}

at the n'"-snapshot is not the same as McWhirter’s RLS algorithm. It is also known
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that when the desired data set to be zero continually, the residuals will be zero
eventually. By a simple derivation in the next section, we point out that the algorithm
for McWhirter’s MVDR beamforming, using (33) to compute the residual by forcing
the desired data y(t,) in the (32) to be zero, is not correct. The new and correct

algorithm to compute the current residual for MVDR beamforming will then be given.

3 A Novel MVDR algorithm

Recall that the residual vector for MVDR beamforming is

emvpr(n) = I ( HQY(”)R—I(W)i(n)- (34)

For convenience, define a vector €5y pgr(n) as in (30)

eyvpr(n) = X(n)R™ (n)z'(n). (35)

By substituting (22) into (35), we have

ar ]
€uvprln) = QH(n) E)) R™(n) z (n)
= Q"(n) Z ) = P (n)z'(n)
L O o
Hip — H z'n
R UA'()_()}’ 0
a(n)zi(n)

where QY (n) is

and from (11) PH(n) is




Obviously, here €y pr(n) depends only on P{n), instead of S(n) in the RLS case.
On substitution (10) into (28), z'(n) is given by

zH(n) 52 (n—1) A(n)zz'(n —1)
4 [=0m)| ¢ |= i , (37)
# 0 #

Therefore, the current residual associated with (35) for MVDR beamforming has the

form
emvor(t,) = QH(1z)gi(71) = —;—Q_H(n)A(n)_z_i(n —-1)
= —;—(81(71)@(71)21(71 — 1)+ cr(n)s2(n)(—s1(n)si(n)z1(n — 1)
tep(n)za(n — 1))+ e + (er(n) -+ - enm1(n)sn(n))
(=s1(n)es - cas()s(m)2a(n — 1) = sp(R)es(n) -+ -y s ()
si(m)zaln = 1) = ey(n)zln = 1), (38)
where a”(n) has the form (see Appendix)
QH(n) = | 81 8201 83CC; -+ SNCN-1""°C1 |>

and A(n) is also given in the Appendix.

Recall that (33) given by McWhirter and Shepherd can be evaluated as

emvpr(tn) = “%’Y(n)l_?Tzi(n —1)
= ——%((cl(n)@(n) cep(n))(=s1(n)ez(n) - ep(n)za(n = 1) — - ee e
—Sp-1(n)en(n)zn1(n — 1) — 5,(n)z,(n — 1))). (39)

Comparing (38) and (39), it is readily seen that both equations are absolutely differ-

ent. The current residual of the MVDR beamforming is given by

ehrvpr(ta) = mﬁ(nmn» (40)

12
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The solution obtained by the MVDR algorithm for the residual is used only for time
n > N for which the data matrix X (n) is of full rank. However, the initial constant
which sets the whole system to be zero requires an initialization algorithm. The exact
initialization is used for the period 0 < n < N. Initialization algorithm must be used
first before the recursive algorithm is employed. The initialization and the recursive

updating are described in the following subsection.

3.1 Initialization Procedure

The initialization for data samples taken for 0 < n < N will now be introduced
to obtain the initial upper triangular matrix R(N) and a vector z'(N). The QR
decomposition applied to the first N data snapshots X (N) to obtain the initial upper

triangular matrix has the form given by

Q(N)X(N) = R(N). (41)

Z(N) = RA(N)E. (42)

3.2 Recursive Updating

The recursive algorithm is applied for time n > N to update and compute the residu-
als. It is well known [4] that the QR decomposition of the observed data X (n) can be
implemented recursively on a triangular systolic array. Recall from (26), by applying

the QR decomposition, the upper triangular matrix can be updated, so that

BR(n—1) R(n)
Q)| 0 =l 0 | (43)
l;T(tn) 0



where Q(n) is given in (10).
From (27), the parameter z*(n — 1) can be updated by using the same QR decompo-

sition, so that

5z (n —1) Z(n)
Om | # = # | (44)
0 #
Therefore, recall from (40) the current residual is given by
ehrvpr(tn) = - a(n)z'(n)
[z (n)
P n
- = (n H2 Zsjc] 1001 (45)

The newly developed MVDR. algorithm is summarized in Table 1. The residuals
obtained by this algorithm is defined only during the recursive updating for n > N
when the observed data matrix is of full rank. First, the upper triangular matrix and
a parameter vector are initialized by setting to be zero, i.e., R(0) = 0 and z(0) = 0.
In the initialization, mode 1 and mode 2 are required while only mode 1 is needed
in recursive updating. In the initialization for 0 < n < N, when the observed input
data matrix X(/N) is available, where N is the number of sensors, the initial upper
triangular R(N) is generated by the QR decomposition called the mode 1 operation
and the initial parameter vector z'(N) is computed by parallel multiplication instead
of the forward substitution and this is called the mode 2 operation. Finally, for
the recursive updating during the time period n > N, the upper triangular matrix
R(n — 1) and the parameter matrix z'(n — 1) can be updated and at the same time,
the current residual of MVDR is obtained by the multiplication and accumulation
operation using the updated data R(n — 1) and z'(n — 1) under the mode 1 operation

only.

14



1. Initialize Conditions at n = 0 by setting
R(0)=0 2z(0)=0

2. Imtialization Procedure for 0 < n < N:

(a) QN)X(N) = R(N) (Mode 1)
(b) 2(N) =R (N)¢ (Mode 2)
3. Recursive Procedure for n > N (Mode 1 only):

BRn-1) | [ Bm)

(a) Qn) 0 = 0
| 2T() | | 0]
EECE N

(b) Q(n) # =| #
0L #F

(¢) ehrvpr(ts) = TaimiE L=t $iCi-1" " Cim(i-1)%]

Table 1: Summary of Parallel/Pipelined QRD-MVDR Algorithm
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4 A Novel MVDR Systolic Array Processor

In Figure 3, a single fully-pipelined MVDR systolic array processor for N sensors
and K constraints to receive the observed input vector and steering vector, and then
to instantaneously generate the updated residuals in parallel is given for the case of
N =4 and K = 2. The system needs two procedures which are the initialization
and the recursive updating. The initialization is further divided into two parts. First,
under the mode 1 operation, the 4 x4 observed input data X, and the 4 X2 zero matrix
are fed into the MVDR systolic array to compute the 4 x 4 upper triangular matrix R
stored in PE1 and PE2 processor elements. Second, under the mode 2 operation, the
2 x 4 steering vector and 2 x 2 identity matrix are sent into the processor to generate
the 4 x 2 matrix stored in PE3 processor elements. The upper triangular processor
carries out the QR decomposition under the mode 1 operation and under the mode 2
operation, it performs parallel multiplication and accumulation operation instead of
the forward substitution to generate a 4 x 2 matrix when a 2 x 2 identity matrix is
received, and the PE3s function as loading elements when 1’s are received. Finally,
during recursive updating, the residuals are obtained in parallel under the mode 1
operation. When a 1 x 4 observed input data vector and 1 x 2 zero vector are fed
into the processor array the updated residuals are obtained instantaneously at the
bottom of the array. Note that PFE4 processor elements perform the normalization.
The four processor elements are depicted in Figure 4. Compared to Figure 2,
McWhirter and Shepherds’ MVDR systolic array, the boundary cells send parameters
into the internal cells as well as the next boundary cell. However, the boundary
cells in Figure 4 only send parameters to internal cells. The mode 1 operation for
the MVDR systolic array for each processor element is described in Table 2, and
the mode 2 operation is presented in Table 3. The mode 1 operation is used to

carry out the QR decomposition and parallel multiplication in both initialization and
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PE1 PE? PE3 PE4

d

1 .
2Pz oy e —sBr e Touw — —3%7‘ + Ty € — %nﬂ
C recfr+s8'r 1 c—;—r + s*T;

Nowt < |T|* + Nin

Vs

—(
Br
d
T
4
r—d Sout — COin

Cout Séinr + €in

Table 2: The Operation for Mode 1

recursive updating. Under mode 1 operation, the processor element 1 generates the
rotation coefficients ¢ and s when zeroing out the observed input data. The processor
element 2 performs the rotation of the received input data according to the rotation
coefficients. The processor element 3 not only performs the loading operation but
also carries out the parallel multiplication and accumulation operation to compute
the non-normalized residuals. The processor element 4 performs the normalization to
generate the residuals. The mode 2 operation is employed to carry out the parallel
multiplication and accumulation operation to generate the 4 x 2 matrix and to store
them into PE3 processor elements. In the mode 2 operation, the processor element
1 is used to generate parameters while the processor element 2 is employed to carry
out the parallel multiplication and accumulation operation. The processor element 3
is simply used to store the matrix. It is illustrated in Figure 3 how the two different
modes described in Tables 2 and 3 are performed in the initialization. The recursive

updating for computing the residuals for n > N only requires mode 1 operation [6, 8.
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PEY  PE2 PE3 PE4

SH% Y ¢ CT — 8T Toyt ¢ Tin Cout < €in
c—1 of T — 1

then r «— sx

Table 3: The Operation for Mode 2

5 Fast Givens Based-M VDR Beamforming

The upper triangular matrix R(n) can be rewritten as
R(n) = D*(n)R(n) = Q(n)X (n) (46)

where D(n) is a N by N diagonal matrix with the form

di(t,) 0 -+ 0
0 dy(ty) -+ 0O
0 0 - dy(ta) |

and R(n) is an upper triangular matrix with the form

1 7“12(tn) 7‘13(tn) T 7’1N(tn)
0 1 7’23(%) ct 7"2N(tn)
0 0 1 o ran(ta)
0 0 0 ce 1

We can also factor the diagonal matrix D3 out of the orthogonalized desired vector

Z' as

;_i(n) = D%__z:;(n) (47)

18



For the initialization, the initial upper triangular is first computed as
Q(N)X(N) = D3 (N)R(N), (18)

and the initial vector z¢(N) is then computed as

Z(N)=R " (N). (49)

Updating the system is required for computing the residual. The following equation

shows how to update the whole system together,
BDY(n — )R(n—1) i 1D3(n—1)z'(n—1)
Q(n) 0 5 #
2’ (t,) : 0

= 0 # (50)
0 : 0
Finally,
ervor(ts) = L a?(n)D7'(n)E (n) for i=1,---, K. (51)

2" (n)D-"(n)z'(n)"~

The algorithm of the fast Givens MVDR with modifications from those of the
Givens MVDR is described in Tables 4. Similar to the Givens MVDR, we start with
setting the initial condition to be zero, i.e., D%(O)F(O) = 0 and Z'(0) = 0. In the
initialization for 0 < n < N, the diagonal matrix D%(N) and the upper triangular
matrix B(N) are obtained under the mode 1 operation, the QR decomposition, and
the parameter vector Z'(N) is then computed under the mode 2 operation, multi-
plication and accumulation operation [8]. In the recursive updating for n > N, the
diagonal matrix, the upper triangular matrix, and the parameter vector are updated

and the current residual can also be computed simultaneously under the mode 1 op-

eration. The fast Givens MVDR systolic array processors is illustrated in Figure 5.
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1. Initialize Conditions at n = 0 by setting

1

D3(0)R(0) =0 Z(0)=0

2. Initialization Procedure for 0 <n < N:

(a) QUN)X(N) = Dz(N)R(N) (Mode 1)
(b) Z(N) =B (V)¢ (Mode 2)
3. Recursive Procedure for n > N (Mode 1 only):
| BD}(n— )B(n —1) 1 [ prnBEm)
(a) Qn) 0 = 0
i 2" (1) ] U
(1Dt - 1F -1 | | Dimzm)
(b) Q(n) # = #
_ 0 | #
(¢) emvpr(tn) = Fwipimmig L=t Si%-1""" Qa0

Table 4: Suminary of Parallel/Pipelined Fast Givens-MVDR Algorithm

PE1 PE?2 PE3 PEA
de 2?2+ 68|z y— —sfr+cx Tou —8/137’ +cxy € ﬂz,f“
C — % recfr+s's 1 0%7’ + 5 T
2
3(——% Uout"‘_lldl_'{"nin
r e d 6out A Céin

K. Tt
Cout béin'j + Cin

Table 5: The Fast Operation of Mode 1
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PE1  PE2 PES PE4

5§ % Y — € — 8T Tout < Tin Cout ¢ €in
c 1 Zf xin“_l
then r — %

Table 6: The Fast Operation of Mode 2

The four processor elements of the fast Givens MVDR systolic array are depicted in
IFigure 6. In the fast Givens MVDR SAP, the boundary cell not only sends param-
eters to the internal cell but also to the next boundary cell for avoiding square root
computation. Their operations for mode 1, QR decomposition and parallel multi-
plication, and mode 2, the multiplication and accumulation operation, are stated in
Table 5 and 6. In Table 5, the mode 1 operation performs the fast Givens rotations
and parallel multiplication. In addition, under the mode 1 operation, the processor
element 1 is used to generate parameters without computing the square root, the
processor element 2 is operated to transform the input data by those parameters, and
the processor element 3 is employed not only to load the data but also to carry out the
accumulation and addition operation for obtaining the non-normalized residuals. The
processor element 4 performs as the normalization operation to compute the resid-
uals. In Table 6, the mode 2 operation functions as the parallel multiplication and
accumulation operation without the need for forward substitution. The functions of
the four processor elements in the fast MVDR systolic array processor are performed

in the same way as in the MVDR systolic array processor described in Section 4 [6, 8].



6 Conclusion

In this paper, we first point out the mistake in [4] and argue the problem by directly
applying the RLS algorithm for MVDR beamforming. Conceptually, we see that if
the desired data is set to zero in the RLS problem, it is no longer a .S minimization
problem since the solution is unique, that is, the optimal weight vector is uniquely
defined and the residuals should be eventually become zeros. Then a new approach
to design a single fully-pipelined systolic array processor for MVDR beamforming by
implementing Schreiber’s algorithm in [1] to compute the residual is proposed. The
square-root free implementation is also considered for the newly proposed architec-

ture.
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Appendix

To update the upper triangular matrix R(n — 1), we have

BR(n —1) R(n)
Q(n) 0 = o |, (52)
z7(t,,) 0

In order to obtain the elements of Q(n) which updates the upper triangular matrix
based on a new row vector, we start from a 2 x 2 to a 4 x 4 upper triangular matrices
and then generalize from them for a n xn case. For 2 x 2 upper triangular matrix and
a new row vector, Q(Z) can be obtained by the following steps and also be factored

into (J,Q);. First, (), can be carried out to zero xy, so that

67"11 /37“12 a0 ST /37‘11 Bria
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I
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Then, @), is applied to zero out x4, we have

1
11

Q2] 0 PBro
0

I3
T19

where ry, \/(57*22)2 + |22
Therefore, @(‘2) is obtained by the multiplication of ()2 and )y given by
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Similarly, Q(3) is given by
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Finally, by induction @(n) 1s given by

A An)  a(n)
Q)= | ,
b (n) 7(n)
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Figure 1: McWhirter’s RLS Systolic Array Processor
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Figure 2: McWhirter's MVDR Systolic Array Processors
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Figure 3: MVDR Systolic Array Processor

30




x
x

PE1 PE2

Y
%1% i %in "in ®in
PE3 PE4
—_— r —» C r
S
Eou’txouteou’t"out }
out

Figure 4: Processor Elements of MVDR Systolic Array
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Figure 5: Fast MVDR Systolic Array Processor
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