
   

 
 
 
 
 
 
 
 

ABSTRACT 
 
 
 

 
Title of Document: THE INFLUENCE OF COLLECTIVE WORKING MEMORY 

STRATEGIES ON AGENT TEAMS   
  
 

Ransom Kershaw Winder, Doctor of Philosophy, 2007 
  
Directed By: Professor James A. Reggia 

Department of Computer Science 
 
 

Past self-organizing models of collectively moving “particles” (simulated bird flocks, fish 

schools, etc.) typically have been based on purely reflexive agents that have no 

significant memory of past movements or environmental obstacles. These agent 

collectives usually operate in abstract environments, but as these domains take on a 

greater realism, the collective requires behaviors use not only presently observed stimuli 

but also remembered information. It is hypothesized that the addition of a limited 

working memory of the environment, distributed among the collective’s individuals can 

improve efficiency in performing tasks. This is first approached in a more traditional 

particle system in an abstract environment. Then it is explored for a single agent, and 

finally a team of agents, operating in a simulated 3-dimensional environment of greater 

 



   

realism. In the abstract environment, a limited distributed working memory produced a 

significant improvement in travel between locations, in some cases improving 

performance over time, while in others surprisingly achieving an immediate benefit from 

the influence of memory. When strategies for accumulating and manipulating memory 

were subsequently explored for a more realistic single agent in the 3-dimensional 

environment, if the agent kept a local or a cumulative working memory, its performance 

improved on different tasks, both when navigating nearby obstacles and, in the case of 

cumulative memory, when covering previously traversed terrain. When investigating a 

team of these agents engaged in a pursuit scenario, it was determined that a 

communicating and coordinating team still benefited from a working memory of the 

environment distributed among the agents, even with limited memory capacity. This 

demonstrates that a limited distributed working memory in a multi-agent system 

improves performance on tasks in domains of increasing complexity. This is true even 

though individual agents know only a fraction of the collective’s entire memory, using 

this partial memory and interactions with others in the team to perform tasks. These 

results may prove useful in improving existing methodologies for control of collective 

movements for robotic teams, computer graphics, particle swarm optimization, and 

computer games, and in interpreting future experimental research on group movements in 

biological populations. 

 
 
 
 
 

 



   

 
 
 
 
 
 

THE INFLUENCE OF COLLECTIVE WORKING MEMORY STRATEGIES ON 
AGENT TEAMS    

 
 
 

By 
 
 

Ransom Kershaw Winder 
 
 
 
 
 

Dissertation submitted to the Faculty of the Graduate School of the  
University of Maryland, College Park, in partial fulfillment 

of the requirements for the degree of 
Doctor of Philosophy 

2007 
 
 
 
 
 
 
 
 
 
Advisory Committee: 
Professor James A. Reggia, Chair 
Professor David Jacobs 
Professor David M. Mount 
Professor Don Perlis 
Professor Lawrence C. Washington, Dean’s Representative 
 
 
 

 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

© Copyright by 
Ransom Kershaw Winder 

2007 
 
 

   



   

Acknowledgements 

 

I would like to express my gratitude to my advisor, Dr. James Reggia, both for his 

guidance over many years through changing projects and for his extraordinary 

commitment to helping me find funding for my education and research. I would not have 

come so far without him, and I am very fortunate to have had the opportunity to work 

under his advisement.  

I also thank each of the members of my defense committee for their valuable 

observations and insights on my dissertation work. I appreciate the time and effort they 

have spent to gain an understanding of what I did and its significance. 

For years of support and love, I profusely thank my family for their patience 

waiting for me to finish this degree. Also for her years of care and tutelage, I give my 

deepest thanks to Dr. Michelle Hugue, who has been there for me as a mentor and friend 

through both my undergraduate and graduate careers. 

I am also particularly grateful to my father and mother for their invaluable help in 

proofreading this massive document. Their clever eyes caught many poor turns of phrase 

and helped me make them far more eloquent and comprehensible.  

Finally, I give my special thanks to Timur Chabuk for his assistance in developing 

the agent’s 3-dimensional urban playground in this work. His expertise was invaluable in 

allowing me to design the agents, environments, and experiments that make up much of 

these results. 

 
 

ii  



   

Table of Contents 

Acknowledgements............................................................................................................. ii 
Table of Contents............................................................................................................... iii 
List of Tables ...................................................................................................................... v 
List of Figures .................................................................................................................... vi 
Chapter 1:  Introduction ...................................................................................................... 1 

1.1 Goal and Specific Aims ............................................................................................ 3 
1.2 Overview................................................................................................................... 5 

Chapter 2: Background ....................................................................................................... 9 
2.1 Artificial Life Multi-agent Systems .......................................................................... 9 
2.2 Swarm Intelligence and Collective Motion ............................................................ 12 
2.3 Biologically-inspired Cognitive Architectures and Neural Networks .................... 16 
2.4 Working Memory.................................................................................................... 21 

Chapter 3: Improving Self-Organized Collective Movement with Distributed Partial 
Memories .......................................................................................................................... 26 

3.1 Motivation............................................................................................................... 26 
3.2 Terrain and Tasks.................................................................................................... 27 
3.3 Agents ..................................................................................................................... 27 
3.4 Experimental Methods ............................................................................................ 33 
3.5 Results..................................................................................................................... 37 

3.5.1 Weights Governing Collective Movements..................................................... 37 
3.5.2 Strategic Selection of Memories...................................................................... 40 
3.5.3 Memory Management...................................................................................... 40 
3.5.4 Best Observed Results ..................................................................................... 41 
3.5.5 Improvement over Time .................................................................................. 44 
3.5.6 Memory Distribution ....................................................................................... 47 

3.6 Discussion ............................................................................................................... 48 
Chapter 4: Memory Management Strategies for an Agent in a Simulated World of 
Greater Realism ................................................................................................................ 50 

4.1 Motivation............................................................................................................... 50 
4.2 Structure of the Environment.................................................................................. 53 

4.2.1 Terrain Types, Buildings, and Districts. .......................................................... 55 
4.2.2 Environmental Objects..................................................................................... 55 

4.3 Agent in Environment............................................................................................. 56 
4.3.1 Nature of Time, Space, and Movement ........................................................... 56 
4.3.2 3D Environment............................................................................................... 56 

4.4 Structure of Agent Processing of Input and Output................................................ 59 
4.4.1 Visual Input: “Where” and “What” Pathways ................................................. 60 
4.4.2 Auditory Input.................................................................................................. 67 
4.4.3 The Executive Control ..................................................................................... 69 
4.4.4 Movement Adjustment..................................................................................... 71 
4.4.5 Spoken Output ................................................................................................. 72 
4.4.6 Details of Neural Network Architecture .......................................................... 73 

4.4.6.1 High-Level Description of Modular Structure.......................................... 73 
4.4.6.2 Network Dynamics ................................................................................... 76 

iii  



   

4.5. Higher-level Command-based Decisions .............................................................. 82 
4.5.1 Agent Understanding of the Environment ....................................................... 82 
4.5.2 No Memory Movement.................................................................................... 83 
4.5.3 Local Memory Movement ............................................................................... 85 
4.5.4 Cumulative Memory Movement...................................................................... 89 
4.5.5 Movement Mechanics...................................................................................... 91 

4.5.5.1 Mechanics of “Go” ................................................................................... 92 
4.5.5.2 Mechanics of “Go to” ............................................................................... 92 
4.5.5.3 Mechanics of “Patrol”............................................................................... 95 
4.5.5.4 Mechanics of “Evade” .............................................................................. 97 

4.6 Results..................................................................................................................... 98 
4.6.1 Experimental Methods ..................................................................................... 98 
4.6.2 Neural Network Results................................................................................. 100 
4.6.3 Going to a Location ....................................................................................... 102 
4.6.4 Looking for an Object in an Area .................................................................. 103 
4.6.5 Sequence of “Go to” Commands ................................................................... 104 
4.6.6 Cumulative Memory Tours of the Environment............................................ 106 

4.7 Discussion ............................................................................................................. 107 
Chapter 5: Memory Management Strategies for Communicating Agents in a Simulated 
Urban Pursuit Scenario ................................................................................................... 112 

5.1 Motivation............................................................................................................. 112 
5.2 Description of Pursuit Scenario ............................................................................ 114 
5.3 Pilot Study: 2-dimensional Pursuit Scenario Model............................................. 115 
5.4 More Realistic Pursuit Scenario Model ................................................................ 122 

5.4.1 Scenario Specification and Environmental Changes ..................................... 123 
5.4.2 Simplification of Visual and Verbal Inputs ................................................... 124 
5.4.3 Agent and Target Behaviors .......................................................................... 127 
5.4.4 Agent Strategies ............................................................................................. 128 

5.4.4.1 Agent Communication............................................................................ 129 
5.4.4.2 Local Memory vs. Cumulative Memory................................................. 129 
5.4.4.3 Agent Coordination................................................................................. 131 
5.4.4.4 Memory Limitation................................................................................. 133 

5.5 Results................................................................................................................... 134 
5.5.1 Experimental Methods ................................................................................... 134 
5.5.2 Single Agent: Patrolling an Area ................................................................... 135 
5.5.3 Single Agent: Sequence of “Go to” Command with Hostile Obstacles ........ 137 
5.5.4 Multiple Agents: The Pursuit Scenario.......................................................... 140 

5.6 Discussion ............................................................................................................. 148 
Chapter 6: Discussion ..................................................................................................... 152 

6.1 Summary and Limitations..................................................................................... 152 
6.2 Contributions......................................................................................................... 158 
6.3 Future Work .......................................................................................................... 160 

References....................................................................................................................... 164 
 

iv  



   

 
List of Tables 

 
Table 3.1 Default abstract model parameters ................................................................... 31 
Table 4.1 Neural network abbreviations and associated names ....................................... 65 
 
 
 

v  



   

List of Figures 

Figure 2.1:   Sample system of flocking “boids” .............................................................. 13 
Figure 2.2:   Example self-organizing map....................................................................... 19 
Figure 2.3:   Hierarchy of the range of human memory function ..................................... 22 
Figure 3.1:   Simple 8x8 grid sample abstract environment for a particle collective ....... 28 
Figure 3.2:   Agent with working memory and its interactions with the environment ..... 29 
Figure 3.3:   Algorithm for agent velocity and position updates ...................................... 30 
Figure 3.4:   Maps of the 128x128 abstract terrains ......................................................... 32 
Figure 3.5:   Results of different flocking parameters on six abstract maps..................... 36 
Figure 3.6:   Results of agents only remembering obstacle “edges” ................................ 39 
Figure 3.7:   Results for different memory update strategies............................................ 40 
Figure 3.8:   Best observed results for six abstract maps.................................................. 41 
Figure 3.9:   Improvement over time for agents with memory on six abstract maps ....... 43 
Figure 3.10: Collective memories of four abstract environments..................................... 45 
Figure 3.11: Progression of collective memories in an abstract environment.................. 46 
Figure 4.1:   Overhead representation of simulated urban environment........................... 54 
Figure 4.2:   Example agent view of the city .................................................................... 57 
Figure 4.3:   Another example agent view of the city....................................................... 58 
Figure 4.4:   High-level depiction of hierarchy of internal agent systems........................ 60 
Figure 4.5:   Representation of self-organizing map network for agent navigation ......... 62 
Figure 4.6:   Expanded view of agent’s sensorimotor network system ............................ 64 
Figure 4.7:   Depiction of agent estimation of object location from limited view............ 67 
Figure 4.8:   Expanded view of agent’s cognitive network system .................................. 68 
Figure 4.9:   Expanded view of agent’s executive control system.................................... 71 
Figure 4.10: Agent processing of limited view into different environmental features..... 84 
Figure 4.11: Representation of sample agent local memory map..................................... 87 
Figure 4.12: Representation of sample agent cumulative memory map........................... 90 
Figure 4.13: Sample representations of words and sentences in WA1 and WA2 .......... 101 
Figure 4.14: Results of command to “go to” a nearby location...................................... 102 
Figure 4.15: Results of commands to “patrol a district” and “find a van” ..................... 103 
Figure 4.16: Results of sequence of “go to” commands, grouped by command order... 105 
Figure 4.17: Results of sequence of “go to” commands, grouped by location............... 105 
Figure 4.18: Results of successive agent tours of the entire city .................................... 107 
Figure 5.1:   Sample pursuit scenario pilot-study environment ...................................... 115 
Figure 5.2:   Results of pursuit scenario pilot-study ....................................................... 120 
Figure 5.3:   Raw and processed images of an agent during pursuit scenario ................ 125 
Figure 5.4:   Results of command to “patrol the historic” district .................................. 136 
Figure 5.5:   Results of sequence of “go to” commands in environment with enemies . 138 
Figure 5.6:   Accuracy of agent environment interpretation during “go to” commands 139 
Figure 5.7:   Agent peril during “go to” commands in environment with enemies ........ 140 
Figure 5.8:   Agent communication and memory strategies’ results in pursuit scenario 142 
Figure 5.9:   Agent coordination strategies’ results in pursuit scenario.......................... 144 
Figure 5.10: Agent results in pursuit scenario for different memory capacity limits ..... 146 
Figure 5.11: Collective memories of the urban environment ......................................... 147 
 

vi  



   

 
Chapter 1:  

Introduction 

In recent years, there has been increasing interest in and research involving 

computational models of the self-organizing collective movements made by groups of 

locally interacting “particles.” Examples of these systems include models of bird flocks 

[Reynolds, 1987; Reynolds, 1999], fish schools [Huth, 1992; Tu, 1994; Reynolds, 2006], 

social insect swarms [Bonabeau, 1999], and self-assembling molecules [Edwards, 1998]. 

All of these systems, referred to here as particle systems, can be viewed as consisting of 

very simple but numerous autonomous entities, usually taking biological inspiration from 

the observed behavior of birds, fish, ants, molecules, etc. The collective movements of 

particles/agents in space are governed primarily by local forces exerted on them by other 

nearby particles/agents or objects in the environment. Methodologically-related 

approaches, such as particle swarms [Kennedy, 2001; Clerc, 2002] and bacterial 

chemotaxis algorithms [Muller, 2002], have generalized this idea to abstract, n-

dimensional cognitive spaces. These systems have proven to be very effective in past and 

recent applications, not only for modeling theories about group movements in biological 

populations, but also as methodologies in computer graphics [Ilmonen 2006; Reynolds, 

2006], numerical optimization [Kennedy, 2001; Pan, 2006], and robotic control 

[Hodgins, 1994; McCook, 2007].  

Even though each individual particle in these systems is effectively mindless and 

its movements are completely determined in a reflexive manner, the population or 

collective of the interacting particles has displayed remarkably interesting behaviors. 

These populations are said to exhibit self-organization because their global behavior 

1  



   

emerges from the numerous concurrent local interactions between particles. The 

collection of particles as a whole has the tendency to act like a “superorganism” that 

moves through space, progressing like a single entity of loosely connected parts. 

Past self-organizing collective movement systems have typically been based on 

very simple and purely reflexive particles having no significant individual intelligence. 

Few previous studies have directly developed and studied how these models can be 

extended so that the particle collective can autonomously pursue goals and solve 

problems [Rodriguez, 2004], although there is related robotics work [Jones, 2003]. Such 

a distributed team of semi-autonomous entities could ultimately have substantial practical 

value in controlling vehicle or robotic actions. For example, extrapolation of recent 

robotics advancements [Ayers, 2002] suggests a future in which teams of mobile semi-

autonomous physical machines will play an increasing role in search and rescue 

operations [Nourbakhsh, 2005], and reconnaissance or exploration in remote or hostile 

environments [Elfes, 2006]. Further, the general principles that may be uncovered by 

studying systems with intelligent particles may prove useful in the specific application 

areas others have previously addressed, such as combinatorial optimization, and 

computer graphics or games. They may also be interesting and of practical use to 

biologists who are increasingly interested in understanding self-organization in nature 

[Camazine, 2001]. 

Much of the work in past collective movement systems has taken place in more 

abstract simulation environments that do not easily translate into more real-world 

environments. As the environments, and the agents’ interaction with them, assume 

greater realism, the need for agents that act with a greater autonomy than reflexive 

2  



   

behavior becomes more pronounced. In particular, agents require not only knowledge 

about their environment and others in their collective, but also the ability to process the 

more complex data they receive. Such agents also require the ability to remember 

information regarding their environment and collective (as opposed to solely reactive 

behavior based on present conditions). The satisfaction of both requirements will likely 

prove crucial for the future success of these models. 

For instance, take the scenario of a collection of agents attempting to find a 

stationary location in an environment. Reactive agents might have no problem with this 

behavior. If a “force” exerts a pull on an agent toward the goal location when the agent 

discovers the location, then the changes in that agent’s movement act as an indirect 

communication to the other agents to move in that direction and approach the goal as 

well. However, when the environment includes obstacles that obstruct the view of the 

goal or the movement of other agents, or the goal is mobile and evasive, or the agent’s 

view radius is limited and its visual input difficult to interpret, then a greater agent 

complexity is required to allow the collective to navigate the environment more 

efficiently. Among the crucial elements required is the ability for the agents to maintain 

an individual working memory of experienced environmental information. The term 

working memory means a low capacity structure where information is temporarily stored 

and manipulated. 

 

1.1 Goal and Specific Aims 

The central goal of this research is to explore the effects and implications of 

adding a limited working memory to each particle/agent in a multi-agent system where 

3  



   

agents are mostly reactive and operating to collectively perform some task. More 

specifically, the issue is how the performance of an agent team is affected when each 

agent has only part of the relevant information (typically a small part), and more 

complete information is only available collectively, being distributed across the 

memories of the population of agents. In this context, the specific objectives of this 

research were: 

1. Extend basic particle collective methods so that individual particles are 

capable of retaining a limited working memory of the environmental features 

and obstacles that they encounter. This was intended to allow the exploration 

of the benefits and effects of enhancing these simple agents with individual 

and independent information, and to examine how their collective memory 

influenced task performance. 

2. Develop a more powerful agent operating with only limited visual input in a 

more realistic simulated 3-dimensional urban environment that, while still 

influenced by goal locations and observed environmental features, is capable 

of performing visual processing, understanding simple commands, and 

accumulating memories of the experienced environment. This was intended to 

explore the benefits and effects of a working memory, both local and 

cumulative, when granted to an agent that is trained to interpret visual 

information in the scene and incoming spoken input, allowing it to learn 

information about its environment either temporarily or permanently.  

3. Build a multi-agent system consisting of agents described in the previous 

specific aim that retain features of particle systems plus have the ability to 

4  



   

communicate and coordinate movement while retaining independent, limited 

memories. This was intended to examine the effects of memory and the 

different memory strategies in the more realistic environment of a team of 

agents operating in the pursuit domain with a common goal. 

 

1.2 Overview 

The rest of this dissertation is organized as follows. Chapter 2 discusses previous 

work that is significantly relevant to the topics examined in this dissertation. It is 

intended as background material.  

Chapter 3 describes a model of a simple self-organizing multi-agent system where 

agent capabilities are extended to include a very limited partial memory of their 

environment. This chapter examines through experimental scenarios the benefits of this 

limited distributed memory, and provides a discussion of the results. This work is in a 

particle system where agents are required to make repeated tours through several 

simulated “landscapes” featuring different terrain types that slow their progress. A 

limited distributed memory is added to each particle, giving it the ability to only retain a 

small number of locations in the environment that are occupied by features capable of 

slowing its progress. This list is continuously updated, with some small probability, 

allowing the agent to retain memories from a small number of locations all over the 

environment. This extension allows the movement of the individual agents to be 

determined by both their natural reactive behaviors and by partial individual memories of 

previously encountered environmental features. In this way, the agents exhibit an internal 

state that differentiates one agent from another, and the agents are not merely reacting to 

5  



   

present external stimuli. Additionally, this information is transmitted through the 

collective indirectly as other agents adjust their movements based on the actions of an 

agent operating with memory relevant to a specific situation, thereby allowing the 

opportunity for an increasing benefit over time for the touring agents as their collective 

learns the environment’s relevant features distributed among its individuals.  

While these initial results were interesting, the lack of realism of the environment 

raises the issue of whether they are relevant to more complex, practical situations. As a 

prelude to examining this issue, Chapter 4 presents an outline of a more complex agent 

operating in a more challenging environment and examines different strategies for 

memory manipulation in order to allow the agent to guide itself efficiently through the 

environment. Here the “forces” mediating collective behavior are supplemented or 

replaced by a discrete controller that is capable of maintaining the agent goals and 

knowledge of the environment, and the incoming information (a sequence of images seen 

by the agent as it moves) requires some interpretation by the agent. A hybrid hierarchical 

structure involving self-organizing maps, neural networks, and a high-level controller are 

used to achieve this behavior. Agents act on incoming and remembered information, the 

latter proving crucial to its success. Such memory further distances the agent from being 

reactive. Information can travel from its high-level control to its outputs, either in 

changing the agent’s movement or in producing an output statement. Responsible for 

interpreting the visual stimuli, the agent can translate a sequence of images into an 

internal representation, or map, of its environment that will allow it to navigate the 

obstacles quickly. The agent can therefore use a local memory strategy (where it only 

remembers its nearby surroundings) or a cumulative memory strategy (where it can 

6  



   

potentially remember the entire experienced environment). The basic behaviors of this 

agent are tested in the simulated urban environment for several different commands, 

issued by an outside source. These commands include instructions to go to a location or a 

region, find stationary objects in the environment when the agent does not know their 

exact location, patrol and map specific urban districts, and evade hostile objects by 

staying out of their line of sight. Several scenarios are examined in accord with the 

different memory strategies, and the results are presented and discussed. 

Chapter 5 extends the results of Chapter 4 to a multi-agent collective in the urban 

environment and presents and examines the benefits of memory in conjunction with other 

features. There are some scenarios that can only be addressed by a multi-agent system. 

One classic example that makes use of all the behaviors the agent control mechanism can 

perform is the pursuit scenario, where a collection of agents are attempting to surround 

and thereby capture a moving target. Agents can be told to patrol an area and locate and 

pursue the target, while the target is an agent separate from the collective and is assigned 

the behavior of evading its hunters. In this scenario, control is modified to create a hybrid 

architecture that operates while using particle system forces in conjunction with a control 

that makes decisions based on command priority, environmental stimuli, and the memory 

strategies. It also allows for new methods of coordination because the multi-agent system 

allows for a greater complexity of individual agent behavior than the traditional particle 

system. The agent control mechanism is not a global phenomenon though. It is localized 

within each agent, meaning an agent is responsible for its own information processing, its 

own executive control based on the commands, data, and its memory, and its own actions 

in the environment, even if those actions are influenced by the behavior of other agents. 

7  



   

The pursuit scenario provides a challenge that can demonstrate the different benefits 

granted by the memory manipulation strategies in conjunction with agent coordination 

and communication. Furthermore, this scenario enables the exploration of the potential 

benefit of even a limited memory in improving the efficiency of this more complex 

system, as it would in the much simpler particle system operating in an abstract 

environment. 

Finally, Chapter 6 is a general discussion of the dissertation’s findings and 

includes contributions, limitations, and topics for future work. 

8  



   

Chapter 2: 

Background 

 

The multidisciplinary nature of my research makes a variety of past work 

relevant. This chapter begins with an overview of multi-agent systems as they are studied 

in the field of artificial life. Following this is an examination of the related field of 

particle systems, with an emphasis on collective movement behavior. The third 

background section is an overview of past models of cognitive architectures and pertinent 

biologically-inspired cognitive methods in neural networks. Finally, I give a brief 

overview of working memory as relevant to the previously described fields.  

 

2.1 Artificial Life Multi-agent Systems 

The field of artificial life incorporates a broad range of studies that utilize 

computer simulation or robotics and biochemicals, to examine life processes, behaviors, 

and evolution. The goal here is to recreate phenomena in these domains that are 

observable in living systems [Bedau, 2003]. Among the wide range of topics that can be 

tied to the description of artificial life are self-replication [Smith, 2003; Griffith, 2005], 

self-assembly [Sahin, 2002; Klavins, 2002], and evolutionary computation [Banzhaf, 

1998; Spector, 2003], while techniques used to pursue computational artificial life range 

from cellular automata [Sipper, 1995; Dorin, 1998] to neural networks [Nolfi, 1997]. 

Though related to artificial intelligence, the difference in these approaches is that 

artificial life tends to have a bottom-up approach to the emergence of its behavior from 

9  



   

the base elements while artificial intelligence tends to work top-down, where the system 

overview is first defined and then refined in greater detail.  

For computer science efforts into the study of artificial life, multi-agent systems 

are often used to recreate these complex behaviors. Multi-agent systems are composed of 

several interacting agents. While autonomous, these agents are also interdependent, 

allowing them to be capable of collective behaviors that a single agent either has 

difficulty achieving or cannot achieve. While multi-agent systems are used outside 

artificial life, within that field there has been past research using such systems for a wide 

variety of topics, including models of ecology [Bousquet, 1999], the behavior of social 

insect colonies [Drogoul, 1992], and collective robotics [Baldassarre, 2003]. There have 

also been efforts for many years at using these systems for the generation of maps [Singh, 

1993; Howard, 2006a]. 

Of particular interest to this dissertation is the pursuit domain, which is sometimes 

also referred to as predator-prey systems. Predator-prey simulations can be defined in 

many different manners. For instance, the competition between populations of predators 

and prey (often foxes and rabbits, respectively) can be simulated with the Lotka-Volterra 

system of differential equations. Yet the domain is also quite suited to explore the 

benefits of a multi-agent system where predators (hunters or chasers) are attempting to 

capture prey (targets or chasees). In these models, the predators and prey can be explicitly 

modeled as individual agents, either cooperating or competing.  

In the original work where the predator-prey pursuit scenario was introduced 

[Benda, 1986], the scenario was established with four predator agents chasing a single, 

randomly moving, prey agent on a grid world. The goal of the predators was to capture 

10  



   

the prey by surrounding it on all four sides. While the predators could occupy the same 

cell in the environment, they were restricted to moving only one grid cell either vertically 

or horizontally at each time step. The target in this system was also restricted to 

orthogonal movement.  

The pursuit domain has many variations, and no theoretically-established optimal 

solution. Some scenario dependent variations include using a hexagonal grid, allowing or 

disallowing predators to occupy the same cell, extending the movement range to include 

diagonal movements for the either one or both of the competing groups, and changing the 

prey’s movement behavior. The domain’s environment can also be extended to 

accommodate multiple predators and multiple prey agents [Alcazar, 2004].  

The pursuit scenario has been used as a problem in many previous studies, where 

the purpose is usually to discover efficient cooperation strategies among the predators 

and successful predator configurations. Some solutions have been simple, such as one 

that involved adding attractive forces between the predators and their prey while adding 

repulsive forces between the predators themselves [Korf, 1992]. More complex strategies 

have been explored in other studies that employed finite state automata [Lenzitti, 2005], 

reinforcement learning [Zhao, 2005], genetic programming [Haynes, 1995; Luke, 1996], 

and co-evolution of predators and prey [Haynes, 1996].  

The results of this latter study found that prey exhibiting a simple linear 

movement strategy (that is, moving continually in a straight line) did especially well, 

better than random—and even evolved—behavior. This was because the linear 

movement avoided locality of movement, to which random prey behavior succumbs and 

evolved predators can exploit more easily. 

11  



   

These past environments are limited in that they all take place in very abstract 

universes, usually on a grid or lattice rather than a continuous space. When this is the 

case, there is an easy metric for determining a capture of the prey by the predators. Many 

of these environments feature only the predators and prey and no other obstacles to 

hinder their movement. Most significantly, these environments either assume or explicitly 

state that their agents have an overhead view of the environment, giving them complete 

knowledge of the area within a specified radius surrounding the agents. In the 2005 

Lenzitti paper, this is cleverly described as an overhead convex mirror which presents 

undistorted images to the agents on the ground below it. While this works in a controlled 

robotics environment [Hicks, 1999; Bonarini, 2000], it is more difficult to see this 

extended to a real-world scenario. The pursuit scenario presented in this dissertation faces 

a more complex domain, where the agents receive information about their 3-dimensional 

environment as a sequence of 2-dimensional, limited-view images as they move about. 

This has been explored before in the case of a lone predator interpreting an environment, 

such as a fish looking for prey of a particular color in a simulated underwater world 

[Terzopoulos, 1997]. In the following work, this type of vision is placed in an eye-level 

view of the environment, as opposed to an overhead view, and each agent is required to 

extract the environmental information from these images. 

 

2.2 Swarm Intelligence and Collective Motion 

The discipline of swarm intelligence can be viewed as an important part of the 

field of artificial life, taking inspiration from biology, in particular social animals. The 

key facet of swarm intelligence is the decentralized nature of the behavior, where self-

12  



   

organization arises from local interactions where the global picture is unavailable to the 

individual participants [Kennedy, 2001]. This is also often called emergent behavior. 

Unlike other decentralized techniques, such as neural networks and cellular automata, 

both of which can be included under the banner of artificial life, the “swarm,” or the 

collective of the individual particles, is moving through space, either discrete or 

continuous and typically 2 or 3-dimensional, but sometimes with higher dimensionality. 

Applications for this discipline range from computer graphics [Reynolds, 1987; 

Reynolds, 2007] to optimization techniques such as particle swarm optimization 

[Carlisle, 2000; Pan, 2006] and ant colony optimization [Dorigo, 1997; Di Caro, 1998]. 

 

Figure 2.1. Sample environment of “boids” flocking in three-dimensional space. This 
image is from [Reynolds, 1987]. 

 

Of particular interest to this research is past work in collective movement. The 

key properties of these collective movement models are typically that the actions of a 

particle are dependent on the states or actions of other particles and that the behavior of 

the entire system is governed by these interactions [Mataric, 1995]. Reynolds 

demonstrated some of the earliest work in this area, developing “bird-oid” particles, or 

13  



   

boids, as an elaboration on particle systems. These boids exhibited a collective motion 

determined by their own position relative to their neighbors’ positions and their 

neighbors’ angles, the goal being to simulate the behavior of flocking. Figure 2.1 is an 

example collective of these flocking particles in a 3-dimensional, computer-animated 

environment from Reynolds’s original paper [Reynolds, 1987]. 

Behavior in this original model was governed by three principal local influences 

between the agents. These behaviors in order of decreasing precedence are: 

1. Avoidance: the influence to avoid collisions with other nearby boids. 

2. Matching Velocity (or Alignment): the influence to match the average velocity 

of other nearby boids. 

3. Centering (or Cohesion): the influence to stay close to other nearby boids. 

When combined, these forces produced flock-like behaviors that looked realistic. 

There was no centralized control governing the swarm behavior, and the organic 

movement emerged from these local interactions of the particles.  

This work has since been extended in many areas. Robotics has found it useful, 

and behaviors other than flocking have been defined that can emerge from these sorts of 

local interactions between the robots. These include such behaviors as following, homing, 

dispersing, foraging, [Mataric, 1995] and shepherding [Bayazit, 2002]. An extension has 

also been made to the basic model where the system features “leaders,” i.e. particles with 

information regarding the location of food sources or what route to take. It was found that 

only a small proportion of leaders was needed to influence group movement, even though 

there was no explicit communication of this information [Couzin, 2005]. Another 

14  



   

scenario looked at simulated heterogeneous robot systems, where flocking agents 

included attackers, defenders, and those attacked or defended [McCook, 2007]. 

Other studies have explored the possibility of even greater control acting from a 

top-down direction on the collective motion systems. Often created as finite state 

automata, these controls allow different states of behavior for each particle depending on 

the situation of its current state, its position, the position and behavior of known 

neighboring particles, and the environment [Reynolds, 2000; Rodriguez, 2005]. One 

study has even shown that these collective motion teams, when provided with a goal-

driven control mechanism, can be extended to act as problem solvers, while still retaining 

their locally-based interactions. In fact, the cooperative behavior was shown to provide 

the agents with an advantage in engaging the problem domains, demonstrating the 

possibility of these agents being extended to more than models of biological collective 

movement [Rodriguez, 2005; Lapizco-Encinas, 2005].  

Yet most collective motion scenarios are limited in the following ways. While the 

particles’ local interactions give rise to interesting and useful behaviors, they are reacting 

to presently observable stimuli or forces pulling them to locations in the environment. 

They are not typically designed to learn the features of their environment, even in a 

limited fashion, and instead move reactively to their immediate surroundings rather than 

adjusting their movement for obstacles not yet encountered. The addition of even a 

limited ability to learn the environment can provide the system with a richer behavior in a 

more complex environment with only simple modifications that preserve the essential 

properties of the collective movement. It is this latter concept that guides the research in 

this dissertation. 

15  



   

 

2.3 Biologically-inspired Cognitive Architectures and Neural Networks 

In recent years, there has been growing interest in developing cognitive 

architectures that are inspired by the neurobiological basis of cognition. This has included 

work on large-scale modular neural networks, which consist of parts that carry out 

individual sub-tasks of the network’s global task. This approach differs from many 

traditional artificial neural networks in one crucial way: as in the biological brain, the 

neurons are sparsely connected when compared to full connectivity and are arranged in a 

clustered, hierarchical set of modules. The network’s modules can be either one of its 

substructures or its learning subprocedures, separately identifiable while adding to the 

global task. While the goal of these networks is not necessarily to simulate biological 

computation, modular neural networks may allow greater imitation of human thinking 

and handle complex problems traditional approaches cannot tackle [Auda, 1999; Caelli, 

1999]. Traditional artificial neural networks that have several layers, such as multiple 

hidden layers, are typically not modular because they are generally fully connected. A 

large-scale modular neural network differs from other modular neural networks only in 

the increased number of modules involved and in the increased complexity, though not 

density, of its connectivity. In many cases, these networks are intended to be high-level 

models of brain regions. 

There were initial forays into this field as early as 1987, including a modular 

neural network model of the vertebrate retina used to study the effects of lateral 

connectivity and a proposal that neural networks could be used as an architecture for 

multi-modular space systems [reviewed in Auda, 1999]. These two examples demonstrate 

16  



   

the early applicability of modular neural networks both for reverse engineering of a 

biological system and for providing an engineering model meant to handle computational 

problems.  

A wide range of previous models of biology have been tackled by using modular 

neural networks. For example, in one case, a modular neural network was used to explore 

why separate visual systems processed “what” and “where” information about visual 

stimuli [Rueckl, 1989]. A different modular model of dorsal and ventral paths of the 

visual cortex attempted to match both functional magnetic resonance imaging and 

electrophysiological data results [Corchs, 2002]. A third model looked at visual word 

recognition when the visual field is split between two hemisphere modules and was 

demonstrated to capture a greater range of reading behavior than previous models 

[Shillcock, 2000].  

The modularity of these kinds of networks tries to mimic biological neural 

networks in ways that traditional artificial neural networks do not. Among the 

biologically interesting features that these models capture are functional specialization, 

cooperation, competition, and extendibility [Auda, 1999]. Regarding functional 

specialization, distinct modules are able to process different attributes of the input, much 

as shape and position are handled by different regions in the human visual system. 

Regarding cooperation and competition, communication between the different modules 

potentially allows for more complex behavior from the network. Regarding extendibility, 

because of the relatively sparse connectivity, new modules can be added without 

affecting the behavior of present modules.  

17  



   

While these were designed to be models of biological systems, large-scale 

modular neural networks have also been employed in solving problems in different 

domains. Systems have been designed to tackle the problems of character recognition 

[Iwata, 1991], facial detection and recognition [El-Bakry, 2000; Melin, 2005], and 

syllable and word recognition [Chen, 1998; Lee, 1998]. Many of these tasks involve 

interpretation of very complicated or noisy data sets. There is less of an emphasis in these 

models in staying true to the structure of biological neural networks, and the concern is to 

solve real-world problems. This is in contrast to the models of biology where the goal is 

to engineer complexity to make observations and predictions regarding biological 

systems. 

Many methods have been developed for training neural networks [Rumelhart, 

1985; Kaelbling, 1995; Pearlmutter, 1995; Baldi, 1995; Girosi, 1995; Haykin, 1999; 

Gerstner, 2002; Serpen, 2002; Tang, 2003; Bosman, 2004]. In supervised learning 

(learning with a teacher), error signals (difference between correct and actual output) are 

used to adjust network weights to be closer to the correct response. The ultimate goal is 

for the network to emulate the teacher and eventually converge to a point where its 

responses would always match the teacher’s. Essentially, this means the error is a 

performance function of the parameters of the network, and the goal is to find the 

minimum over the error hypersurface. In reinforcement learning, the network is given no 

exact correct answer for any of its decisions, but instead a judgment (reinforcement 

signal) on how good its responses are provided by a critic rather than a teacher [Sutton, 

1998]. In unsupervised learning, or self-organized learning, there is not even a critic. 

Instead, the network is optimized to a task-independent measure of its representation of 

18  



   

the environment, essentially encoding its features. Examples of this kind of learning are 

Hebbian and competitive learning [Haykin, 1999; Andrecut, 2002].  

An artificial neural network subtype of key interest to this work are self-

organizing maps [Kohonen, 1990; Kangas, 1990; Kohonen, 2002]. These are neural 

networks that are trained with unsupervised methods and are commonly used for 

reducing high-dimensional data into low-dimensional spaces, often for visualization 

purposes, as the topological features of the data are frequently preserved. Typically, these 

are feedforward networks of a single layer where the network nodes are tuned to the input 

patterns, and either one node or a local group of nodes are activated by an input. Every 

input connects to every neuron, and each neuron is associated with a weight vector of the 

same dimensionality as the input. When trained on an input, the neuron with the closest 

weight vector is considered the winner. Its vector, along with that of its neighbors, moves 

closer to the input vector. An example of a two-dimensional, self-organizing map is in 

Figure 2.2.  

 

 

Figure 2.2. An example self-organizing map of phonemes common to Finnish speech 
based on features generated by an inner ear model performing frequency analysis. This 
image is from [Kohonen, 1990]. 

 

19  



   

By removing the limitation that there is only one winner in the map and allowing 

for multiple islands of simultaneous activity, the resulting network is closer to what is 

observed in cortical systems [Schulz, 2004]. Some have also been extended to allow the 

self-organizing map to regulate its size [Alahakoon, 2000]. Additionally, while traditional 

computational self-organizing maps feature one-shot training, i.e. they are trained on a 

single input, they can be further extended to accommodate a sequence of data and 

recurrent connections. A model relevant to this work demonstrated this for multi-winner 

maps [Weems, 2004]. The goal here was to follow the Wernicke-Lichtheim-Geschwind 

model and develop a computational model that reproduced human performance in the 

tasks of picture naming and word repetition. The visual input came in the form of small 

images, while auditory input for the individual words came in the form of a sequence of 

phoneme features. Either of these stimuli produced the simple response of a sequence of 

motor features, representing either a statement of the word associated with the image or 

the repetition of the heard word.  

This model used both self-organizing maps and neural networks trained with 

resilient error-backpropagation. The earlier areas of processing used multi-winner self-

organizing maps to produce unique representations for each stimulus. For the audio 

stimuli, the self-organizing map was recurrent and dependent not only on the next 

phoneme in the sequence, but the previous state as well. Once these patterns were 

developed, the final pattern in the self-organizing map was used as the input to networks 

trained via resilient error-backpropagation with recurrent connections to produce the 

sequence of phonemes defined by their motor features. This was found to successfully 

20  



   

name and repeat the different stimuli, and it was used to perform lesion studies to 

compare the model to various human aphasic syndromes. 

While successful, this past work was limited in scope because it dealt with 

phoneme sequences comprising only single words. If the system was able to encode 

single words, it could be extended to create representations of full sentences. 

Additionally, while the repetition and naming made for a good measure of success, it did 

not take the system to its full potential. When used in a larger hybrid system, its 

capability of creating simplified representations of a wide variety of stimuli could be used 

to interact with a simulated world with incoming audio and visual information. Instead of 

just repeating the results, such a network could be trained to produce new results based 

both on the external stimuli being processed and an internal controller capable of state 

changes and remembering past stimuli. 

 

2.4 Working Memory 

Also relevant to this dissertation is the past study of memory. The topic of 

memory encompasses a wide range of systems and functions. A hierarchical depiction of 

these functions is presented in Figure 2.3. Memory is often separated by dichotomies, 

where short-term memory is distinguished from long-term memory. Long-term memory 

can then be broken down into categories called implicit and explicit, and explicit memory 

can be split into categories called semantic and episodic [Mishkin, 1997]. The split 

between short-term and long-term is the most significant. The former operates on the 

order of seconds, while the latter is integrated with existing knowledge and can remain 

available for use up to years later [Baddeley, 1997].  

21  



   

Working memory is a term that is often synonymous with short-term memory, the 

distinguishing feature usually being that working memory also implies the information is 

being manipulated by cognitive processes. It is a necessary system for complex tasks 

such as learning, reasoning, and comprehension, with evidence of fractionation into 

separate supporting systems [Baddeley, 1998]. There are theories supporting different 

components of working memory that handle storage of information and executive 

behavior [Baddeley, 1992]. Other theories contend that the executive control of working 

memory involves the maintenance of a task’s goals and rules [Miller, 2001]. Working 

memory is also distinguished from other types of memory in that it has a much more 

limited capacity, which is particularly noticeable when rehearsal, semantic grouping, and 

access to supplemental long-term memory is reduced [Cowan, 2000]. Working memory 

is also believed to have a tendency to disappear quickly, on the order of seconds, whether 

due to decay or interference. In essence, it has low capacity, and patterns persist for a 

brief time. 

 

 

Figure 2.3. Hierarchical representation of the range of memory functions in human 
cognition. This is a typical representation of how modern neurospsychologists view the 
organization of human memory. From [Reggia, 2006]. 

 

22  



   

Working memory has been a topic of great interest in the computational modeling 

community, and a wide variety of models have been produced examining its features. 

Often the interest is in how working memory generates its persistent activity. Hypotheses 

here range from using activity that circulates in feed-forward loops called “synfire 

chains”—where there is no direct feedback between neuronal groups—to activity being 

maintained by membrane currents allowing cellular bistability. Most models, however, 

approach the topic through cell assemblies featuring strong recurrent excitatory 

connections [Durstewitz, 2000].  

In one case, a computational model tried to limit its complexity, while targeting 

the working memory system without the effects of rehearsal, chunking, and episodic 

long-term memory. Item representations in this model were connected with self-

excitation, which drives the retention of information, and lateral inhibition of their 

neighboring representations, which was used to induce the working memory capacity 

limitations. The model was found to make predictions that behavioral experiments 

confirmed [Haarmann, 2001]. 

Another model focused on the executive control system of working memory. 

Aiming for biological realism, it modeled the prefrontal cortex which maintained the 

sensory information being processed and the basal ganglia which used gating 

mechanisms to modulate the patterns that should be kept active in the working memory. 

This behavior is learned by the model with an actor-critic method and was found to 

compare well to other neural network learning methods. Unlike the previous model, there 

was no need for inhibition here to limit capacity [O’Reilly, 2006].   

23  



   

In addition to these models of working memory, I have contributed work to this 

field outside the scope of this dissertation. I designed a training method that determined 

unique interregional weight strengths for a model of the brain’s visual ventral pathway. 

The task here involved a working memory manipulation of stimuli presented, processed, 

and encoded in the earlier regions of the model. In the working memory, a circuit 

described in [Tagamets, 2000], patterns were maintained during a delay and then 

compared to successive stimuli to determine matches. The goal of the learning method 

was to preserve this behavior, while discovering the magnitude of the interregional 

connection strengths that would allow its simulated fMRI signals to match those observed 

in behavioral experiments on both healthy and schizophrenic patients [Winder, 2007].  

I developed other models of working memory outside this dissertation that more 

fully explored the retention ability and capacity of working memory, but without the need 

for inhibitory connections or gating mechanisms to limit capacity. The first of these used 

an energy minimization network featuring Hebbian learning. This network also 

experienced decay on the weight matrix being constructed during learning, where older 

connections had a tendency to diminish as newer stimuli were added. Unlike typical 

Hebbian neural networks, the decay caused dependence on the order of presentation of 

the stimuli and when recall was tested, a strong recency effect was observed as occurs in 

behavioral performance results [Weems, 2007]. I have also developed an oscillatory 

neural network that experiences a similar Hebbian training featuring decay. In a typical 

oscillatory network, the network state is no longer able to achieve a minimum due to the 

constant changes to the thresholds based on the network performance [Horn, 1991].  

24  



   

Memory has also proven to be useful in artificial intelligence methods outside of 

just computational modeling of biological systems. For example, in one algorithm, the 

addition of limited memory led to the ability to learn policies to solve problems that a 

similar algorithm without this capacity could not [Chong, 2006]. 

In the following dissertation, working memory is of interest because it is the 

problem-specific information that agents acquire during problem solving. While working 

memory is not being employed here to fit a computational model of a biological system, 

the goal will be to keep memory as simple as possible, but still have the system retain a 

significant improvement in tasks by accumulating and accessing it, even when it has a 

limited capacity and it remains distributed among the individual members of a collective.  

25  



   

Chapter 3: 

Improving Self-Organized Collective Movement with Distributed 

Partial Memories 

3.1 Motivation 

The goal of this chapter is to make a significant extension of current multi-agent 

models of self-organizing collective movements (particle systems, a type of swarm 

intelligence) to more “intelligent” particles by examining the effects of giving the entities 

used in such systems a limited memory of past events. Such particles with memories will 

be referred to in the following as agents to emphasize that, although they continue 

primarily to move passively/reactively in response to local external influences as in 

conventional particle systems, they may also alter their individual movements due to an 

internal state that differs from particle to particle.  

The agents move in environments with various types of terrains, containing 

regions that impede their forward movement. The memory of the collective is truly 

distributed, with each individual recalling only a tiny part of any environmental obstacles. 

For example, a single obstacle occupying a substantial portion of space is remembered as 

a pattern of memories spread across the agent team and not by any individual agent, a 

situation that is reminiscent of social knowledge in a population [Hutchins, 1995; 

Wegner, 1995]. Since these agents (or particles) still move collectively, the memories of 

each will influence not only its own movement, but also the movements of others. The 

basic questions being asked are: When agents (or particles) are repeatedly moving 

through various terrains as they proceed to target locations, does being able to recall and 

avoid previously observed environmental impediments to movement lead to significant 

26  



   

improvements in the times needed to achieve their goals? If so, how do different 

strategies of using a very limited memory influence the efficiency of their movements? It 

is hypothesized that teams of agents that keep a simple record, or limited-capacity 

“working memory,” of the positions of obstacles in the terrain they pass and who use it to 

influence their future movement will be able to perform better (i.e., arrive at sequential 

target goals faster) than particles who do not.  

 

3.2 Terrain and Tasks 

Agents having self-organized collective movements exist in a bounded two-

dimensional artificial world (see Figure 3.1). A sequence of goals (target destinations) 

scattered about the terrain is given to the agents and their task is to move collectively and 

sequentially from goal to goal in the shortest time possible. An implicit coordinate grid 

(not used by the agents) is conceptually superimposed on the otherwise continuous 

artificial world. While the agents move in a continuous, real-valued space, for 

convenience, mountain and swamp regions of the terrain that slow or hinder the agents 

are taken to occupy one or more contiguous unit cells of the coordinate grid. Generally, 

agents would only want to move across open terrain (i.e. regions that are not swamp or 

mountain), where they can reach their maximum velocity. 

 

3.3 Agents 

As in past particle systems, each agent j in the model is effectively represented by 

its real-valued coordinates xj and its velocity vector vj in the two-dimensional space. 

Figure 3.2 shows the basic organization of an agent and its relationship to the 

27  



   

environment. The velocity vector for each agent is applied at every time step to update its 

coordinates. The velocity vector is in turn updated at every time step by various external 

influences. These influences, which are often competing, include acceleration towards the 

center location of neighboring agents, away from swamp or mountain cells within view, 

etc., as introduced in [Reynolds, 1987; Reynolds, 1999]. There is also an acceleration 

directed toward the current goal, similar to the homing implemented in [Heppner, 1990]. 

 

Figure 3.1. A simple 8x8 grid example environment. The ten collectively-moving agents 
shown here are the clusters of small arrows indicating agent location and direction. The 
arrow shows the direction of their average velocity. Their current destination, or goal, is 
the solid black circle. Shaded cells labeled “M” and “S” are mountain and swamp, 
respectively. Blank areas are open areas. a. Agents move across the open cells heading 
toward the goal. b,c. Having detected obstacles (a swamp and a mountain), the agents 
move through the area below the swamp. d. Having bypassed the swamp, the agents have 
a clear path to their goal. 

28  



   

 

 

 

Figure 3.2. Representation of an agent and its interactions with the environment. The 
agent, illustrated by a small arrow in the environment that indicates its location and 
velocity, is aware of only its immediate surroundings (circle surrounding the arrow). As 
in past particle system models, local information within the radius of this circle 
determines the dynamics (i.e., acceleration) of the agent. What is new here is the 
inclusion of a memory of previously encountered local information (shown above the 
dashes in the upper “exploded view” of the agent), which is also used to influence 
movement dynamics. 
 

Figure 3.3 presents the algorithm used to update an agent’s velocity and position 

at every time step. Agents are all given the location and sequence of the goals in advance 

and, for the current goal, repeatedly compute adjustments to various velocity components 

(Part 1 of algorithm). The influence due to the current goal, vg, is stronger when the agent 

is close to the goal and weaker when further away. Vector va, for collision avoidance, 

causes an agent to accelerate in the opposite direction of any neighbor that is considered 

too close. Vector vmv causes an agent to accelerate to match the average velocity of its 

visible neighbors. Vector vc causes an agent to accelerate toward the center of mass of its 

29  



   

visible neighbors. These four velocity components are combined as a linear weighted 

sum to compute the new, resultant vj. Initial weights are chosen so that the agents tend to 

remain close to one another (weight values are given in Table 3.1). Additionally, kt is 0 if 

cell is open, 0.05 if cell is swamp, 0.2 if cell is mountain, 0.203 if cell is map boundary, 

and -0.17 if cell is current goal. ks is 0.5 if cell is swamp and about 0.03 if cell is 

mountain. The strongest weight is given to centering, and the weakest weight to collision 

avoidance. This is in contrast to some earlier models (e.g. [Reynolds, 1987]) where 

collision avoidance is given the strongest precedence. The effect is that the collectively 

moving particles rarely break apart, and all tend to arrive at each goal at about the same 

time.  

For agent j with current position xj and velocity vj
M = | {agents within radius rTC of agent j} |   % other agents too close to j 
N = | {agents within radius rV of agent j} |   % agents in view of j (rV > rTC) 
g = coordinates of current goal cell 

1) Compute Influences 
• vg = (g – xj) / | g – xj |     % influence of goal destination 
• va = k″ M-1 ∑i=1…M (xj – xi)     % collision avoidance 
• vmv = k′ N-1 ∑i=1…N vi     % match velocity of neighbors 
• vc = k (N-1 ∑i=1…N xi – xj)     % center of mass of neighbors 
• vj = vj + wg vg + wc vc + wmv vmv + wa va    % aggregate velocity for agent j 

2) For all cells containing obstacles visible to agent j 
• uview = unit vector from agent j towards closest edge of cell % direction of adjacent cell 
• vj = vj – kt uview      % veloc. considering adjacent cell 

For all obstacles in agent j’s memory and within radius rmem % rmem > rV

• umem = unit vector from agent j towards obstacle cell’s center % direction of obstacle from agent 
• vj = vj – dmem kt umem     % veloc. considering obstacle 

3) Update Agent Memory (see text) 
4) Adjust Velocity 
• if | vj | > vmax, then vj = vj * vmax / | vj |    % ensure velocity stays below vmax 
• newvmax = vmax * ks * 2 / ( 1 + 1 / e| Vj | - .5 * Vmax )   % slow if in a swamp/mountain cell 
• vj = vj * newvmax / | vj | 

5) Update Position 
• xj = xj + vj       % update position 

 
Figure 3.3. This algorithm updates an agent’s velocity vector and coordinates at each 
time step. Table 3.1 lists the values of the constant parameters. Vertical bars | … | 
indicate the size of enclosed entity. 
 

30  



   

Having computed a velocity update, the agent then considers local obstacles in 

neighboring cells within its vision radius (Part 2 of Figure 3.3). If any neighboring cell is 

a swamp, mountain, or boundary of the map, the agent accelerates away from that cell. It 

computes the unit vector uview indicating the direction of the nearest edge of the offending 

cell, and adjusts vj to move more in the opposite direction. 

Table 3.1. Table of the default parameters for the model. 
k 1 rTC 0.27 
k′ 1 rV 1 
k″ 1 vmax 0.25 
cmem 0.01 wg 0.1 
dmem 0.3 wc 0.76 
nmem 10 wmv 0.4 
rmem 3 wa 0.04 

 

In addition, and unlike past particle systems, each agent has a limited-capacity 

memory storing previously encountered swamp and mountain cells that is updated as the 

agent moves about the world (the upper part of Figure 3.2). This memory typically 

contains a small number (e.g. 10) of remembered obstacle cells, depending on a 

predetermined maximum. Each individual remembered obstacle cell location represents 

only a single non-empty grid cell, defined by that cell’s coordinates, the obstacle’s type 

(mountain or swamp), and a timestamp equal to the time step when that obstacle cell was 

added to the agent’s memory. A “memory” is thus typically only a small part of a 

swamp/mountain, with different agents remembering different cells, so the full 

representation of an obstacle is truly distributed across the agent collective. No single 

agent learns a substantial part of a complete obstacle. Each remembered obstacle cell’s 

influence is similar to the influence from obstacles in view. It differs in that the radius 

from the agent in which remembered obstacles (swamp, mountain) affect movement is 

31  



   

generally much larger than the vision radius, and the strength of the effect on the agent of 

the remembered obstacle need not be the same as the strength of the effect of obstacles in 

view. Newly encountered obstacles are stored in memory in Part 3 of the algorithm 

(details given below). 

The agent then adjusts its velocity so that the magnitude of vj does not exceed 

vmax, the maximum value. If the agent is in a swamp or a mountain cell, the maximum 

velocity is reduced and the agent’s velocity is then rescaled to this new maximum. In Part 

5 of the algorithm, the agent’s position is updated based on the final vj value. 

 

Figure 3.4. Maps of the 128x128 terrains used in the simulations. White areas are open 
regions, areas labeled “S” are swamps, areas labeled “M” are mountains, and circles are 
the locations of goals on the map. As a size reference region, M in Map 2 is 28 x 8 cells 
in size. In Maps 5 and 6, the areas outlined in black contain single cell mountains. These 
are regularly spaced in Map 5 and scattered in Map 6. 
 

32  



   

3.4 Experimental Methods 

To test the advantage (or lack thereof) of agents with memory, agents with 

memory are put into situations where memory is potentially useful and compared to 

equivalent “control” agents without memory (particles). Specifically, the simulations take 

agents on multiple tours through a sequence of goal destinations, so that they can learn 

the terrain and benefit from their memory record. 

Figure 3.4 shows maps of the six terrains used in the simulations, all of size 

128x128 cells. In Map 1, agents are directed to cycle through four goal locations 

counterclockwise. Ideally, they would be expected to move in the open terrain outside or 

between the swamp and mountain areas. In Map 2, agents alternate between two goals 

near a single obstacle. This is the simplest test of agents’ ability to avoid rough terrain. 

Map 3 combines the counterclockwise movement in Map 1 with four obstacles similar to 

the one in Map 2. Map 4 tests agent ability to avoid mountain cells separating the goals. 

Ideally, in this map, the agents moving counterclockwise from goal to goal would be 

most efficient if they came to move in just the open terrain. In Maps 5 and 6, the 

challenge is no longer just to acquire simple tours about obstacles because the goals are 

scattered across the map randomly, with thin open paths between mountain cells allowing 

more complex movements.  

In each experimental simulation, ten agents begin with random initial positions 

and velocity vectors within the same grid cell so they are all initially within one another’s 

vision radius. The number of agents was chosen to be ten so there would be a sufficient 

number of agents to exhibit collective behavior without excessive computational costs. 

Larger numbers of agents were tested unsystematically in a few cases and produced 

33  



   

qualitatively similar results except that the processing time was greater. The time 

(number of required time steps) it takes the ten agents to complete each consecutive tour 

made during a simulation is recorded. Agents can become trapped in a region of the map, 

so any simulation has an upper time limit of 60,000 time steps. Though it would be 

possible for a simulation to terminate after 60,000 time steps, it is also possible that a 

simulation could never terminate. Therefore, because the tasks set for the agents can be 

completed in far fewer time steps than 60,000, this number was made a simulation’s 

upper limit. A goal destination is considered to be reached when 90% of the agents reach 

it. At this time, the next target goal becomes the new “current goal” for the agents.  

Different experiments compared agents both with and without memory to test the 

hypothesis that agents with even a limited memory of terrain will find goals more quickly 

than if they merely know the goal locations. Four memory-related parameters were varied 

in these experiments: 

1) Memory size: the number of individual obstacle locations an agent can retain 

before old obstacles must be removed to make room for new ones (nmem, e.g. 10). 

2) Recording probability: probability of adding an encountered obstacle to an 

agent’s memory per time step (cmem, e.g. 0.01). 

3) Memory dampening: strength of influence of remembered obstacles relative to 

seen ones (dmem in Part 2 of algorithm, e.g. 0.3). 

4) Memory radius: Number of cells away that a remembered swamp or mountain can 

be from an agent and still influence the agent’s movement (rmem in Part 2 of 

algorithm, e.g. 3.0). 

34  



   

Upon determining the combination of velocity weights that gave the lowest 

number of required time steps without memory for each map, experiments were run with 

memory added where each parameter varied over a range of values. The memory size 

was tested over a range of 5 to 100. The recording probability was tested over a range of 

0.005 to 0.25. That range may seem low, but note that given a probability of 1, agents 

will constantly be adding memories of terrain cells nearby and forgetting them almost as 

soon as they move out of view. The memory dampening was tested over a range of 0.05 

to 2. The memory radius was tested over a range 1 to 30. However, the goal in this study 

was not to find optimal memory parameters. Thus, for the experiments in this work, 

values within these ranges were selected that gave reasonable performance (see Results 

section). 

When an agent’s memory becomes full, older remembered obstacles in the 

memory must be eliminated to make room for new ones. Several strategies for 

eliminating obstacles from memory were tested: remove the oldest, remove the newest, 

remove randomly, and remove the ith newest obstacle with probability (½)i. Random 

removal is the default. 

When an agent has entered a large area of swamp cells, it would be expected to 

slow down and potentially accumulate many memories of the interior cells of this area. It 

would thus appear to be more useful for agents just to remember the “edges” of such a 

region (i.e., mountain or swamp cells closer to open terrain) and not the cells deeper 

within the region. To see if this was true, a naive strategy was compared with a strategy 

where agents are limited to adding to their memory only when they have open terrain 

within their vision radius. The result is that only cells on or near the exteriors of large 

35  



   

obstacles could be added to an agent’s memory. This latter strategy works much better 

and is the default. 

 

 
Figure 3.5. a. Mean required time steps of simulations on six different test maps, without 
memory implemented, for different velocity weights <wc, wmv, wa >. Error bars here and 
in all following figures are standard deviations over 20 runs. Simulations with a mean of 
60,000 time steps have no standard deviations because they always hit the maximum. b. 
Mean required time steps of simulations on six different test maps, with memory 
implemented, for different velocity weights <wc, wmv, wa >. The memory parameters 
used were dmem = 0.3, rmem = 3, nmem = 10, cmem = .01. 

 

36  



   

Agents in open terrain have a maximum speed of 0.25, recalling that the cell size 

is of unit length. In swamp cells, the maximum velocity drops by a factor of 0.5, cutting 

an agent’s speed in half. In mountain cells, the maximum velocity drops by a factor of 

roughly 0.03, bringing an agent to a speed so slow that it is ineffective. The parameters 

listed in the algorithm (see Appendix A) were specifically chosen to give good results 

when there is no memory implemented, so the memory-less agents would be competitive 

with agents having memory. 

 

3.5 Results 

This section first examines how a number of weight variations and parameter 

variations influenced agent behavior, and then presents results showing that, with suitable 

parameter values, agent collectives with memories can substantially outperform those 

without memories. 

 

3.5.1 Weights Governing Collective Movements  

The first simulations examined the effects of varying the weights <wc,wmv,wa> 

that govern organizing collective movements, while holding all other parameters constant 

at their default values. These weights governed how the agents moved collectively. These 

consist of weights for moving to center of neighbors (wc), matching velocity of neighbors 

(wmv), and avoiding collisions (wa), as seen in Figure 3.3. A wide range of weights were 

examined, and representative examples are reported here. Figure 3.5a shows the mean 

required time steps for simulations using the six terrains where agents cannot generate 

memories, while Figure 3.5b shows the same results with memory implemented using the 

37  



   

example memory parameter values listed in Section 3.4. Each of the results shown is an 

average taken over twenty runs with ten agents on each map. Successful simulations were 

defined as those that terminate (i.e., agents reach all goals in the correct sequence) before 

the maximum 60,000 allowed time steps. Simulations requiring more time were classified 

as unsuccessful, and 60,000 was taken as their required time steps in computing the mean 

time steps in Figure 3.5.  Lower mean required time steps are considered superior to 

higher mean required time steps. 

It can be seen that some cases in Figures 3.5a and 3.5b have no successful runs. In 

these cases, both the medians and the means are 60,000. In some cases, there were both 

successful and unsuccessful runs. In those cases, the medians are especially informative. 

In Figure 3.5a, those cases are in Map 2 at column <0.76,0.4,0.04> with a median of 

5,871, in Map 5 at column <0.76,0.4,0.04> with a median of 60,000, and in Map 6 at 

column <0.04,0.2,0.4> with a median of 48,452. In Figure 3.5b, those cases are in Map 4 

at columns <0.2,0.2,0.4> and <0.04,0.4,0.4> with medians of 42,501 and 9,510, 

respectively, and in Map 6  at columns <0.04,0.2,0.4>, <0.04,0.2,0.8>, and 

<0.04,0.4,0.4> with medians of 60,000, 60,000 and 25,271, respectively. 

By comparing entries in Figure 3.5a to corresponding entries in Figure 3.5b, it is 

evident that there was a general tendency for agents with memory to do better or about 

the same as those without memory. Sometimes having memory led to a substantial 

improvement. Simulations where avoidance was the dominant influence and where 

centering influence had the least effect (e.g., <0.04,0.2,0.4>, <0.04,0.2,0.8>, and 

<0.2,0.2,0.4>) were largely unsuccessful on Maps 3 and 4, regardless of whether or not 

memory was implemented. In contrast, simulations where avoidance was equal in 

38  



   

influence to other factors (e.g., <0.04,0.4,0.4> and <0.4,0.4,0.4>) usually did well on all 

maps regardless of whether or not memory was implemented. When centering was 

dominant and avoidance had the least influence (e.g., <0.76,0.4,0.04>), simulations 

without memory were usually unsuccessful for Maps 3 through 6, but dramatically 

improved when memory was added. 

 

 
Figure 3.6. Mean required time steps of simulations where agents only update their 
memory when open terrain is in their view radius versus simulations where the memory 
update is unrestricted. Results are computed as a percentage of the mean required time 
steps of simulations where memory is not implemented. The chosen weights for the self-
organizing collective movement on each map gave the best observed results without 
memory. The chosen memory parameters gave the best observed results with memory 
implemented. These weights and parameters are 
for Map1, wc = 0.04, wmv = 0.2, wa = 0.4, dmem = 0.75, rmem = 2, nmem = 30, cmem = .25; 
for Map2, wc = 0.04, wmv = 0.4, wa = 0.4, dmem = 0.5, rmem = 5, nmem = 30, cmem = .02; 
for Map3, wc = 0.04, wmv = 0.4, wa = 0.4, dmem = 0.5, rmem = 20, nmem = 40, cmem = .01; 
for Map4, wc = 0.4, wmv = 0.4, wa = 0.4, dmem = 0.5, rmem = 2, nmem = 10, cmem = .05; 
for Map5, wc = 0.2, wmv = 0.2, wa = 0.4, dmem = 0.3, rmem = 3, nmem = 30, cmem = .03; and 
for Map6, wc = 0.4, wmv = 0.4, wa = 0.4, dmem = 1, rmem = 1, nmem = 30, cmem = .01; 
Other parameters use the default values in the Appendix. The Map 3 simulation with 
unrestricted memory had one successful run that took 386% of the time of the average 
run without memory. 
 

39  



   

3.5.2 Strategic Selection of Memories 

A strategy of allowing each agent to update its memory only when there was open 

terrain within its local view radius was compared to a naive strategy of allowing an agent 

to update its memory at any point. As Figure 3.6 shows, limiting the memory update to 

this situation did at least marginally better in all cases. This was seen most dramatically 

with Map 3 where only one simulation had a successful run using the naive memory 

strategy, and this run took nearly the maximum allowed number of time steps. With Maps 

4 and 5, the limited update strategy had only a small advantage. 

 
Figure 3.7. Mean required time steps of the various strategies for memory management 
as a percentage of the mean required time steps for each map without memory. The 
weights for the self-organizing collective movement are ones that gave the best observed 
results without memory on each map. The memory parameters chosen gave the best 
observed results with memory implemented and are described in the caption of Figure 
3.6. 
 

3.5.3 Memory Management 

The four methods tested for selecting a memory to delete when needed were: (1) 

randomly, (2) the ith newest memory with probability (½)i, (3) oldest, and (4) newest. 

40  



   

Figure 3.7 shows the results of using these different methods on the different maps, based 

on the best observed values of weights for the self-organizing collective movement and 

memory parameters. While the probabilistic random removal did better than the other 

methods on Map 1, it performs substantially worse than the simulations without memory 

on Maps 4 and 6. Overall, the random removal strategy appeared very effective; no other 

method consistently improved on it. The “remove oldest” and “remove newest” strategies 

did not show any substantial improvement for any single case over random removal. 

 
Figure 3.8. The best observed mean required time steps for simulations without memory, 
the mean required time steps for simulations with memory and the same weights, and the 
required time steps of the ideal path. The weights and parameters chosen are described in 
the caption of Figure 3.6. 
 

3.5.4 Best Observed Results 

In order to judge whether or not having a memory reduced the time needed for 

agents to find their goals in the different terrains, the best results observed in the 

simulations without memory for each individual terrain (those with a perfect success rate 

41  



   

and the lowest mean required time steps) were found first. Thus, with Map 3, for 

example, wc = 0.04, wmv = 0.4, and wa = 0.4 were used (see Figure 3.5a). These results 

were compared to the best observed required time steps with memory implemented under 

otherwise identical conditions (i.e., the same weights and other parameters). It was 

hypothesized that using a memory would progressively improve the performance of each 

simulation over time, so the agents were run through six tours through their goals. 

For comparative purposes, the required time steps of an “ideal path” at maximum 

velocity through the map were also computed. An ideal path is a path the agents could 

take that would give them the best possible required time steps, i.e. the shortest path 

avoiding obstacles. This path would be extremely difficult for a simulation to approach 

because, for example, agents would be required to move along the edges of obstacle cells 

in many cases. This condition would be contrary to the agents’ programmed aversion to 

such cells. Also, on the first tour of the goal destinations, the agents (remembering no 

past obstacles initially) were not expected to do better than agents without memories. 

Knowing the duration of an ideal path provided a metric with which to judge how much 

improvement was theoretically possible. 

Figure 3.8 displays the three following results: (1) the mean required time steps 

for each map of the best observed simulation without memory, (2) the matching 

simulation using the same weights and other parameters as the former but implementing 

memory with random replacement when memory becomes full, and (3) the theoretically 

ideal path. For every map, using memory was effective in reducing the required time 

steps to achieve all goals. 

42  



   

 
Figure 3.9. Change in the mean time steps of 20 simulations for individual maps over the 
course of six consecutive cycles. Both simulations with and without memories acquired 
between cycles are plotted (  and , respectively), as well as the ideal time steps for 
each cycle. The weights and parameters are the same as in Figure 3.6, except the memory 
parameters for Map 1, which are now: dmem = 2, rmem = 3, nmem = 30, cmem = .01 
 

43  



   

3.5.5 Improvement over Time 

It was hypothesized that most performance improvement due to remembered 

obstacles would occur following the first cycle that agents made through their goal 

destinations, with perhaps lesser improvements following subsequent cycles. To test this, 

the time taken with each terrain for agents to complete each consecutive tour was 

recorded. The self-organizing  collective movement weights chosen were the ones found 

to be optimal in the previous tests for simulations without memory. The memory 

parameters chosen were not ones that gave the highest overall improvement, but gave the 

highest improvement for the last two tours because it was the later tours that reflected the 

ability of the memory to improve the performance over the long term. In every case 

except Map 1, these turned out to be the parameters used in Figure 3.6. 

The results, shown in Figure 3.9, indicate that the simulations without memory 

did not radically improve or worsen over time, which was expected since the cycles were 

identical in terms of obstacles encountered and the agents’ lack of foreknowledge of the 

obstacles. The only exception is Map 5, which has an unusual spike in runtime on cycle 

5, a reflection of the map’s complex structure, in which small aberrations in the initial 

state and collective movements could easily cause agents to be delayed in local areas. 

While the results for simulations varied, in all cases, the addition of a limited 

memory improved performance. Maps 1, 2, 3, and 6 all support the theory that agents 

with memory will perform progressively better in later cycles, but sometimes (e.g., Map 

3) the improvements were more gradual than expected. The simulations began the first 

one or two cycles with mean time steps close to those of the simulations without 

memory—and exceeding it in the case of Map 1—but the mean time steps of subsequent 

44  



   

cycles dropped closer and closer to the ideal time steps. However, in Maps 4 and 5, there 

seemed to be no improvement over time, even though memory was significantly 

beneficial, even during the first cycle. 

 
Figure 3.10. Maps as seen by the agent collective at the beginning of the sixth tour. 
Compare these memory maps to the actual terrain maps shown in Figure 3.4. The squares 
about the terrain are cells currently in at least one agent’s memory. Hollow squares are in 
any agent’s memory, while filled squares are in a single randomly-chosen agent’s 
memory. Taken by itself, that single agent’s memory does not outline the terrain, but 
when viewed in terms of the collective’s distributed memory, the outlines of obstacle 
regions often become clearly defined. The weights and parameters used in these 
examples are the same as those in Figure 3.6. 
 

45  



   

 
Figure 3.11. An example simulation run on the terrain Map 2 from the agent collective’s 
perspective. Hollow squares are obstacle cells remembered by at least one agent. Filled 
squares are obstacle cells remembered by a single randomly-chosen agent. a. At the 
beginning of the simulation, agents have just encountered the obstacle for the first time. 
b. Agents have completed half of their first tour. c. Agents have completed their first 
tour. d. Agents have completed five tours through the terrain. 

 

The unexpected result that having a memory improved performance on the first 

cycle was initially puzzling. How could memory be improving agent performance during 

the first tour of the goals, before encountering remembered obstacles again on another 

tour? Inspection of agent behaviors during the first tour of simulations provided an 

explanation for this phenomenon. A remembered obstacle has an immediate effect on the 

movement of the agent collective, as follows. Sometimes the memory-less agent 

collective would become “trapped” or substantially delayed, such as when the agents 

were unable to find their way around a certain arrangement of obstacles. When this 

occurred to agents with memories, the remembered obstacles would influence the 

collection of agents to move away from the obstacles even when they were not in direct 

view, and thus increased the speed at which the agents circumvented the objects and 

reached their goal. Thus, memory often exerted two distinct beneficial effects on agent 

46  



   

behaviors: (1) an immediate avoidance of repeated visits to a just observed, interfering 

obstacle (Maps 4, 5), and (2) a delayed, long-term avoidance of repeat encounters with 

previously seen obstacles (Maps 1, 3). In some cases, both effects were observed (Maps 

2, 6). Notice that Maps 4 and 5, which displayed no improvement over time, also had the 

highest probability of learning a new memory per turn. They acquired memories so 

quickly that the memories only had immediate effects and were replaced before the 

agents could use them again and gain incremental improvement. Therefore, their 

performance did not improve over time.  

 

3.5.6 Memory Distribution 

The distribution of agent memories throughout the terrain over the course of a 

simulation depends on the memory parameters chosen, but certain features remain 

consistent among all runs. Due to the rule that agents only add memories when open 

terrain is in view, only cells at a maximum of unit distance from open terrain will be 

added to memory. Though the ten agents moving through the terrain encounter the same 

obstacles typically, they often encounter different parts of the obstacles and thus have 

very different individual memories. An individual agent will only know scattered 

obstacle cells, but as a whole, their memories tended to form an outline of the edges of 

the obstacles they encountered. Examples of this are shown for Maps 1, 3, 5, and 6 in 

Figure 3.10. The distributed collective memory becomes an entity far more complex than 

what any individual agent is capable of forming. Figure 3.11 shows the development of 

the collective memory over time for Map 2. By the end of the simulation, the obstacle in 

this simple case becomes clearly defined. 

47  



   

 

3.6 Discussion 

There are three main conclusions to emerge from the computational experiments 

described in this chapter. First, the results support the hypothesis that adding even a 

limited memory to collectively moving agents in particle systems can substantially 

improve their performance in repetitively seeking goal destinations scattered throughout 

an environment containing obstacles. This occurred with all six terrains used. Second, 

this improvement in collective movements was due to two phenomena: (1) the expected 

avoidance during later tours of obstacles seen in earlier tours, and (2) an unexpected 

ability that, even during the first tour, the agent collective could escape more quickly 

from substantial delays encountered with some obstacle configurations. Third, of the 

various memory replacement strategies tried, none outperformed simply randomly 

replacing arbitrary remembered obstacles when memory was full and a new obstacle was 

to be remembered. 

A question that remains is how to know what weights and parameters to choose 

for a particular map. Simply adding memory was no guarantee that performance would 

improve. Examining the memory parameters in the best simulations leads to the 

following observations. A dampening, or weighting, of the effects of recalled obstacles 

by 0.5 relative to viewed objects generally worked well, assuming that the radius of 

obstacle influences was larger than the direct visual radius, in enabling agents to avoid 

obstacles well before seeing them. A good value for the radius of obstacle influences 

varies depending on properties of the terrain. For terrains with smaller obstacles and 

small open paths that must be traversed, a radius of 4 or less generally works well. For 

48  



   

terrains with large, solitary or well-spaced objects, a radius of 5 generally works well. 

Keeping the chance of storing a new obstacle in memory low (under 0.05) generally 

works well as it tends to preserve older memories for recall on later cycles. A maximum 

number of memories in the range of 30 to 40 generally worked best, but smaller sizes 

could also work well. 

It is concluded that adding individual “rote learning” of obstacles encountered by 

collectively moving agents (particle systems) can significantly improve their efficiency in 

both avoiding obstacles and in limiting the delays the obstacles cause, even when first 

encountered. This information may prove useful in complementing recent advances in 

control methods in particle systems [Rodriguez, 2004], in improving existing 

methodologies for control of collective movements in computer graphics, robotic team 

control, computer games, particle swarm optimization, and other computational 

applications, and in interpreting the results of future experimental research on group 

movements in biological populations. 

49  



   

Chapter 4: 

Memory Management Strategies for an Agent in a Simulated World of 

Greater Realism 

4.1 Motivation 

In the previous chapter, particles that were extended to have a limited memory 

were examined as simple self-organizing collective entities. The addition of working 

memory allowed their natural reflexive movements, which were governed by basic 

flocking rules of acceleration, to be influenced by information outside their immediate 

senses. The environment and agents were both simple, raising the question of whether the 

principles employed and the questions asked can be extended to agents of greater 

complexity operating in more challenging and realistic environments. To answer such a 

question, we need to develop a more realistic agent that builds upon the basic reactive 

movement behaviors used in particle systems.  

With their ability to pursue goals and perform tasks without intervention from an 

outside controller, autonomous agents have been of particular interest in robotics. These 

agents have many uses, and potential uses, ranging from building maps using sonar 

[Pagac, 1998; Konolige, 2004] to being parts of multi-agent exploration teams on other 

planets [Atherton, 2006]. A wide variety of environmental processing or control methods 

has been used for these autonomous systems, including Markov localization [Wang, 

2006], reinforcement learning [Tan, 2002; Taniguchi, 2005], fuzzy logic [Tan, 2002], and 

artificial neural networks [Best, 2004]. A few past autonomous robots have used potential 

fields of attractive and repulsive forces to guide agents [Vail, 2003; Kurihara, 2005], yet 

environmental information is either usually already provided to the agent or is only used 

50  



   

while observed, rather than constructed by the agent over time in order to facilitate 

movement in an environment of unknown layout.  

In this chapter, I develop an agent with the capability of accumulating and 

utilizing memory in a more realistic environment than the previous chapter. This agent 

retains the basic particle system approach, but now also does much more. In the next 

chapter, the same questions about the impact of working memory considered in Chapter 3 

will be asked of a team of such agents operating in a simulated 3-dimensional 

environment representing a city. The agent will receive information about the urban 

environment from a sequence of eye-level images, and subsequently must interpret the 

image sequences it sees as it moves through the city. The agent will also be required to 

obey simple commands, as opposed to reacting solely on reflex and attraction to final 

goal locations. Taking further inspiration from biology, neural networks will be involved 

in achieving these behaviors for the agent, particularly in interpreting visual stimuli and 

incoming commands. Because of the added complexity this agent entails, this chapter 

focuses on creating and testing a single agent in the city environment as an initial step.  

While no existing machine intelligence has proved capable of matching general-

purpose human cognition, the pursuit of the creation of such an intelligence has not 

abated since the earliest inception of artificial intelligence. Part of the problem is that the 

disparate methods in AI, while capable of simulating human cognition in certain regards, 

are unable at the current state of the art to serve general purpose functions. Neural 

network methods, while successful in the areas such as pattern recognition and data 

visualization, are difficult to extend into other areas of cognition. Similarly, more 

symbolic methods of AI, while applicable to inference and knowledge representation, 

51  



   

have their own limitations. At present, it seems that a hybrid architecture would be a 

reasonable first step toward an optimal and attainable general purpose machine 

intelligence. This manner of architecture combines a variety of AI methods and allows 

the different AI methods that have been implemented effectively in the past to be applied 

to the areas where they achieve the most success, 

The following is a skeleton model of an agent operating in an urban environment, 

and represents only a small step toward such a hybrid architecture. The agent is trained to 

interact with environmental stimuli with neural networks, both in consuming and 

producing information. Within the agent’s executive control, a simple finite state 

automaton is used as a placeholder for ultimately more complex and intelligent behavior 

based on methods of symbolic artificial intelligence. Memory is present in all agents 

when it comes to commands issued or certain reflex behaviors (like fleeing a dangerous 

area), but variations of the agent considered in the following will have different memory 

strategies open to them when it comes to knowledge of the environment. 

The present scenario for the agent is as an operative moving about an urban 

environment, potentially containing both “friendlies” and “hostiles,” taking simple orders 

from a person in the form of spoken commands, reacting to visual stimuli, and 

communicating with “natural language” the relevant information discovered in its 

environment. 

The following questions are asked: Now that the agent must interpret visual input 

and a new set of movement dynamics needs to be defined, does the baseline reactive 

particle-like movement control create difficulties for the agent? Is it feasible to use 

simple neural networks to convert the images the agent “sees” as it moves into a 2-

52  



   

dimensional map of relevant parts of the city? When the agent is repeatedly touring the 

city heading to different target locations, does being able to recall and avoid previously 

observed environmental impediments to movement lead to significant improvements in 

the times needed to achieve its goals? If so, how do different strategies of using working 

memory influence the efficiency of their movements? Specifically, how does using only a 

local memory versus a cumulative memory covering a wider area affect results? It is 

hypothesized that an agent that converts the image data of the 3-dimensional scene into a 

2-dimensional chart, or map, of the area and makes use of this chart will have an easier 

time with movement. It is hypothesized that an agent keeping a map of the positions of 

obstacles in the terrain they pass and who use it to influence their future movement will 

be able to perform better (i.e. complete commands faster) than an agent who does not. At 

the same time, it is hypothesized that agents who are limited to only a local memory will 

experience more success than those with no memory whatsoever. Finally, it is 

hypothesized that an agent with local memory will be comparable, and perhaps more 

successful, than an agent using cumulative memory in cases where the agent is not 

covering the same terrain over and over. 

 

4.2 Structure of the Environment 

The agent exists in a bounded two-dimensional artificial world. The organization 

of this urban world is illustrated in Figure 4.1. It consists of a network of streets between 

buildings and surrounded on three sides by open, grassy areas and on the other by a body 

of water. An implicit coordinate grid is superimposed on the otherwise continuous 

artificial world. While the agent moves in a continuous, real-valued space, for 

53  



   

convenience, regions of the terrain that hinder the agents are taken to occupy one or more 

contiguous unit cells of the coordinate grid. Generally, agents would only want to move 

across open or street terrain (i.e. places not occupied by buildings or water). In addition to 

the agent and terrain features, the environment contains static objects that exist at points 

in the real-valued space. Agents do not know about this grid, and do not have access to 

the map depicted in Figure 4.1. An agent only sees a temporal sequence of 512 by 512 

pixels from which it must generate the influences that guide its movements. 

 

Figure 4.1. Overhead representation of an example city with the different types of terrain 
labeled. In the center is a collection of buildings (light-colored) separated by streets 
(dark-colored) which is taken to represent the city. Surrounding the city on the north, 
west, and south is a wide grassy area. Some streets extend into this area, representing 
paths outside the city. On the east is a large body of water. 

54  



   

 

4.2.1 Terrain Types, Buildings, and Districts. 

Each cell of the grid superimposed on the real-valued space contains a different 

type of terrain, much as was done in the previous chapter. The countryside outside the 

city consists of grassy fields or bodies of water. However, the environment where the 

agent mostly operates is the city. Here cells treated as streets separate cells defined as 

buildings. How the environment appears to the agent is described in Section 4.3.2. 

The city is divided into different districts, which are distinguished by differing 

probabilities of certain building types appearing there. For instance, the industrial district 

has a high percentage of factories, while a significant percentage of the downtown district 

will be occupied by office buildings. The nine districts implemented in the sample city 

are westside, southside, dock, industrial, historic, downtown, uptown, slum, and market. 

A city is generated by a pseudorandom algorithm that places buildings of certain 

types in specified fields that are one of the nine types of districts. Buildings either occupy 

1x1 cells or 3x3 cells, and cells between buildings are always occupied by streets. 

Surrounding terrain is placed using the same method of specifying an x-y range of that 

terrain, but with uniformity.  

 

4.2.2 Environmental Objects 

Objects do not occupy entire cells, but instead are centered at a real-valued point 

in the environment space. Each object also has an associated 3-dimensional shape that 

determines the object’s size. While not visible on the overhead map in Figure 4.1, these 

objects are visible at the level of the agent. In the sample scenario, objects are taken to be 

55  



   

people of various kinds, vehicles (cars, trucks, etc.) and other large objects (e.g. 

dumpsters). 

 

4.3 Agent in Environment 

4.3.1 Nature of Time, Space, and Movement 

Time is modeled simply as a counter that increases as the simulation progresses. 

During each discrete time step, the agent is able to process the visual scene before it, 

process any auditory input that is incoming, adjust its memory of the environment and 

received commands, make decisions based on stimuli and memory, update its angle of 

orientation, speak if necessary, and move incrementally if not blocked. 

The currently implemented agent in the environment is capable of either walking 

or flying depending on the preconditions set at runtime. This allows for two different 

tasks and perspectives and changes the interaction with the environment. While flying, 

agents do not necessarily have to avoid buildings, but can fly over them. While walking, 

agents cannot pass through buildings or over bodies of water and will experience 

slowdown when walking through forests. For comparability with the results in the 

previous chapter, the agent is assumed to be walking at ground level for the rest of the 

dissertation. 

 

4.3.2 3D Environment 

The walking agent operates along the continuous 2-dimensional surface of streets, 

grass, etc., but because certain terrain features in this environment have a height, the 

environment can be viewed as 3-dimensional. In fact, the agent sees a temporal sequence 

56  



   

of 2-dimensional images (512 by 512 pixels) of the 3-dimensional world, limited to a 

field of view determined by the angle and direction of its camera. Figures 4.2 and 4.3 are 

examples of the raw images processed by the agent. This eye level view of the agent must 

be generated from this environment, so we are able to synthesize what the agent would 

see given its position and orientation.  

 

Figure 4.2. 2-dimensional, 512 by 512 pixel image of the agent view’s of the city. The 
agent is looking down a street, with buildings and intersecting streets along the side. This 
shot contains two objects, a man and, in the distance down the street, a tank. The 
thumbnails under the 3D view image represent the objects that the agent has segmented 
from the scene (how this is done is described in the text). 
 

57  



   

 

Figure 4.3. Another 2-dimensional, 512 by 512 pixel image of the agent’s perspective. 
As in Figure 4.2, this image is part of a temporal stream of images the agent is required to 
process. In this shot, the three objects are a tank and two missile launchers. Once again, 
the thumbnails below represent the segmented objects. 

 

The 3D environment is constructed in Open-GL. Using the agent’s real-valued x 

and y position on the map and its angle of orientation, a camera (“eye”) is assumed 

present that generates a 512 by 512 pixel view of the environment. This is done at every 

time step, as the agent moves and/or changes its orientation, creating a steady and fluid 

58  



   

stream of images of what the agent sees as it explores the environment. The view angle is 

30 degrees, giving the agent a very limited range of vision at any given time step. 

Different textures were used for the grass, streets, and water. Three different 

textures are used for the various building types. It is important to note that this use of 

these artificial textures and colors makes the image processing required for the agent 

much easier. Image segmentation is an open problem, and the processing here is not an 

innovation of my work, but rather something that needed to be kept simple and 

manageable to allow the exploration of the dissertation topic of working memory in this 

environment. 

 

4.4 Structure of Agent Processing of Input and Output 

The internal network structure of the agent consumes environmental input via 

visual and auditory processors, makes decisions based on this information, its present 

state, and memories, and changes its movement behavior and makes appropriate 

comments for the situation (responding to commands issued previously). 

This structure and its connections to sensory input and output are depicted in 

Figure 4.4 at a high level. Visual input (the 3D image described above and close-up 

images of objects and buildings) and auditory input (a sequence of phonemes) are 

processed with separate neural networks modeled after those in [Weems, 2006]. 

Movement is updated as changes to the agent’s angle of orientation in the 2-dimensional 

ground plane. Simulated speech is generated from the command memories via a neural 

network into a sequence of phonemes. This happens at the appearance of relevant visual 

stimuli or under certain circumstances of the agent position in the environment. 

59  



   

 

 

Figure 4.4. High-level depiction of interaction between various internal systems (shown 
in black) and the environment (shown in gray). The agent’s sensorimotor systems 
connect it to the environment, allowing it to process visual and auditory information as 
well as speak and adjust its movement. The cognitive network encodes incoming visual 
and sequential verbal information and also constructs speech output sequences. The 
executive control governs agent behavior based on current and remembered stimuli and 
internal rules of movement and speech. 
 

4.4.1 Visual Input: “Where” and “What” Pathways 

In the human brain, vision is processed in two pathways, the dorsal and the 

ventral [Rueckl, 1989]. The dorsal is more responsible for recognition of the location of 

objects in the visual field and is considered a “where” pathway, while the ventral handles 

the identification of the particular objects in a scene, making it the “what” pathway. 

Inspired by this, these two pathways are separate in the agent, thereby simplifying the 

task of recognizing objects and knowing their location. 

The “where” pathway takes a 2-dimensional image of the 3-dimensional scene 

depicted in Figures 3.1 and 3.2 as its input. Features of interest in the scene are certain 

terrain features and objects. This visual field is available to the agent, so that it can avoid 

obstacles that are in its path and too close, specifically buildings and terrain that are either 

impassable or difficult.  

60  



   

The visual field is processed in several ways, but the remembered commands 

determine which will influence the agent’s movement. If there are no commands for the 

agent to patrol or go to a specific location and if there is no evasion command that is 

actively being followed (i.e. the agent has seen recently an object it was told to evade), 

then the agent operates using reflexive movement. Otherwise, the agent navigates by 

using waypoints it places in its understanding of the environment. 

Reflexive movement is based on analysis of the environment using seven 

different 1-dimensional self-organizing maps, each associated with a different patch of 

the environmental image available to the agent. These patches are spaced out along the 

bottom of the image, since that represents the part of the environment closest to the agent. 

The average color of each of these patches is determined. Then, from this average color, 

the agent makes a judgment that the patch holds either a street, grass, a building, water, or 

an object in the environment. Each judgment is in turn regarded as “the winner” of its 

self-organizing map. This list of “winners” is sent to the executive control, so it can 

determine the degree of the turn angle necessary to make in order to avoid the obstacles. 

Figure 4.5 shows the structure for a single navigation network. 

These self-organizing maps, where each node in a map is initialized to a random 

weight vector of length 3, learn on 2000 random 2-dimensional 512 by 512 pixel images 

of the 3-dimensional environment. When presented with one of these images, the average 

color in the patch associated with each map is computed. The winner in the associated 

map is the node with the closest weight vector to the average color (the values of the 

vector being degree of red, green, and blue). The winning node and its neighbors are all 

adjusted by some amount towards the average color of the patch. The number of 

61  



   

neighbors that change with the winner drops over the course of the learning (beginning 

with 3 neighbors in both directions, and dropping by 1 every 500 updates), and the rate at 

which the self-organizing maps adjust themselves drops by 5% every 50 updates.  

 

Figure 4.5. Representation of one of the navigation networks. The average color of a 
subregion of the visual field is calculated. From this, the closest cell in the self-organizing 
map is taken to be the winner. This winner then turns on one of the decision units, 
indicating whether the subregion depicts mostly a street, water, grass, a building, a 
sidewalk, or an object. 

 

After this process, the map is fixed, and the networks are trained to recognize 

what the patches represent in the environment. These features can be streets, buildings, 

grass, water, objects, or sidewalks. For another 2000 random images of the agent’s 

perspective, the networks are trained as follows. Every pixel in the patch is associated 

with proper environmental feature it represents. The environmental feature with the most 

number of pixels in a patch is associated with the corresponding winner in the self-

organizing map. If two different features ever become associated with the same winner, 

62  



   

the first one retains its association. These cases usually happen where there is ambiguity, 

for instance where a building and road are both present in a patch. 

Movement based on waypoints overrides the reflexive navigation in the cases 

where the agent is following a command to patrol or go to a specific district. This in turn 

is overridden by commands to evade when the object to evade is seen, an event which 

also uses a movement based on waypoints. Overall, the effect of the waypoints is that 

they guide the agent in the appropriate direction in the environment, either toward a goal 

state or away from a dangerous location. The positioning of the waypoints in the agent’s 

understanding of the environment in order to achieve the desired course is described 

below, but the operation of the agent based on the waypoint is simple. The waypoint 

exerts an attractive force on the agent. Thus the agent moves toward the waypoint, unless 

it is physically blocked by an object or building. However, the agent chooses waypoint 

locations such that a direct path to it features no obstructions. Should a waypoint be 

aberrantly placed and the agent be stuck at an obstruction for a few time steps, the agent 

will recognize that its waypoint is placed in error and must be deleted and set elsewhere. 

The agent uses similar information from the scene as the reflexive navigation, but 

instead of seven self-organizing maps of the closest visible locations, the agent processes 

the entire ground out to the horizon, dividing it into square cells of 32 by 32 pixels. As 

above, self-organizing maps determine the nature of each of these cells and classify them 

either as passable, impassable, or an object. The agent will only place waypoints in 

locations it believes passable. 

The “what” pathway’s input is generated from the 3D scene by using a simple 

object segmentation method. The grid that does this covers the entire 3D view, once 

63  



   

again each cell being equivalent to 32 by 32 pixels in the scene. The average color of 

each of these cells is then processed by a self-organizing map, similar to the one used in 

navigation. A different self-organizing map is used for each row of the grid. From these 

mappings of average color, the agent is trained to recognize which winners correspond to 

objects (i.e. have a majority of pixels that belong to objects) and which do not.  

 

Figure 4.6. Expanded view of the agent’s sensorimotor system. Here the agent acquires 
input information from external sources, either a sequence of phonemes (sequentially 
presented in A1) or visual information of a 3-dimensional scene in the environment. 
Visual information is segmented into a sequence of the individual objects in the 
environment and into a field that aids in reflex actions of the agent, such as avoiding a 
building or certain terrain when too close. These two visual paths roughly correspond to 
the “what” and “where” pathways in the brain, respectively. Here, the agent also 
produces motor information on movement through the environment and sequences of 
spoken phonemes (sequentially output to M1). 

 

After training, while the agent is operating and searching for objects in the 

environment, for every time step, the agent uses this grid to determine which 32 by 32 

64  



   

plots of pixels in the 3D view possibly contain objects. All contiguous cells are taken to 

be part of the same object. For each contiguous set of cells, pixels are randomly queried 

up to twenty times, since there are potentially some pixels that will not correspond to 

objects. A successful query of an object pixel will return a 50 by 50 pixel thumbnail 

image of the corresponding object (e.g. a car). For each object, these thumbnails are 

presented in succession to a region named V1 to inform the agent of what specific objects 

it is seeing. These images represent what the stimuli actually looks like, and the agent is 

required to identify them. 

 

Table 4.1. Regional names in the neural networks and what they represent. 

V1: Primary Visual Cortex 
IT: Inferotemporal Cortex 
AG: Anteriror Gyrus 
WA1: Wernicke’s Area 
WA2: Wernicke’s Area 
BA: Broca’s Area 
A1: Primary Auditory Cortex 
M1:  Primary Motor Cortex 

 

The neural network structure here, while not intended to model the human cortex, 

does take some inspiration from relevant brain regions, including suggestive names (see 

Table 4.1). Information travels from the input layer, named V1, via connections to a 

region named IT. These connections undergo unsupervised learning (generating a multi-

winner self-organizing map) on the possible visual stimuli that will be encountered, and 

thus IT generates a unique representation for each image. Information then passes to a 

hidden layer named AGv, and finally an output layer, where the final features of the item 

65  



   

(whether or not it is an enemy, whether or not it is friendly, etc.) are generated. The 

IT AGv Output connections are trained using resilient error-backpropagation.  

In addition to recognizing objects, the agent is required to estimate the location in 

the environment from the image, information that will be needed for certain scenarios. 

This is done by querying pixels along the base of the object, which are places where the 

object is close to the ground. Essentially, since the agent has a fixed height and a fixed 

angle of view in the z-dimension, it knows the distance of any row of pixels in the 

snapshot. Using this information and the distance from the central vertical line of the 

snapshot, the agent is able to estimate the location in the environment. 

When the agent wants to make this estimate, it begins by choosing a pixel in the 

camera image (at coordinates x and y) that represents a part of an object close to the 

ground (done by choosing a pixel from one of the lowest cells of the contiguous object in 

the segmented image). The distance outward in a straight line for each horizontal row of 

pixels to the horizon line is known. When a pixel is chosen, the distance straight ahead 

(dependent on y) is called dh. The camera dimension (512 in this case) is called c. The k is 

a constant depending on the screen size, and it is 955.6 for 512 by 512. The agent is at 

coordinates ax, ay and has angle α . The following equations show how the agent 

estimates the object’s coordinates in the environment from this information. 

 

( )( )

dao
dao

dd

d
d
k

dxc
d

yy

xx

h

h

lr

h
lr

)sin(
)cos(

)cos(

tan

2

1

φα
φα

φ

φ

++=
++=

=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

−
=

−

 

66  



   

The equations use the information about the environmental distance of the pixel’s 

row from the agent to compute dlr, which is the distance either to the left (positive) or 

right (negative). This is used to compute the angle of that position in the environment 

from the agent, Ø. The cosine of this angle is the adjacent (dh) over the hypotenuse (d), so 

d is computed next. Using this computed angle and distance, along with the orientation 

and position of the agent, the object’s location is estimated. When completed, coordinates 

ox, oy contain the approximate location represented by the pixel, assuming the pixel is on 

or close to the ground. Figure 4.7 shows an idealized example of the information taken 

from the picture (x and y) and the environment (dh).  

 

 

Figure 4.7. Depiction of how object’s locations are approximated from image 
information and knowledge of distances of the pixels in a straight line from the agent 
ahead through the environment. Boxes around the object represent 32 x 32 patches 
recognized as containing an object. 

 

4.4.2 Auditory Input 

While vision is processed at every time step, auditory stimuli only come once in a 

while. These take the form of a command from an outside person instructing the agent to 

perform a certain behavior. They are received as a sequence of phonemes, defined by 

67  



   

certain auditory features. They consist of multiple words, separated by /stop/ sounds. A 

command sentence is taken to have ended when there are two /stop/ sounds in succession.  

 

Figure 4.8. Expanded view of the agent’s cognitive network. Object images are 
processed, encoded, and converted into features here. Sequences of phoneme input are 
also processed and encoded, first word by word (in WA1) and then into multiple word 
representations (in WA2). This representation is then converted into features of the 
sentence as well. Both visual and auditory features are passed to the executive control to 
influence agent decisions. In the opposite direction, phonemes are also produced from a 
set of concepts the agent has decided to state and sent through BA to M1 to be spoken. 
S.F., A.E., and V.E. stand for speech features, verbal encoding, and visual encoding, 
respectively. 
 

The values of input region A1 change throughout the sequence of phonemes and 

stops constituting a command, moving from one phoneme to the next. It connects to a 

region called WA1, which produces a representation of a single word based on the 

present phoneme and the phonemes that preceded it. This learns with all the possible 

68  



   

commands as input, creating a multi-winner self-organizing map. When a /stop/ sound is 

encountered, information is then passed to a region called WA2, which produces a 

representation of the entire command sentence. Connections into WA2 are also trained 

using a multi-winner self-organizing map.  

This representation then acts as input into a hidden layer called AGa and an 

output layer encoding the significant features of the command (“was I told to find 

something?”, “was I told to patrol an area?”, etc.). As with the visual system, the 

WA2 AGa Output connections are trained with resilient error-backpropagation. 

Figure 4.8 depicts this pathway, as well as the visual pathway. 

 

4.4.3 The Executive Control 

This control mechanism operates under a set of simple rules depending on what 

commands have been issued, what it sees at present, what it remembers seeing, and its 

direction and velocity. At each time step, it performs the series of actions and state 

changes described below. In addition to memories and current stimuli, the agent also 

maintains an awareness of the general layout of the city in terms of its districts. That is to 

say, the agent knows where the different districts are located, and which district it is 

presently in, if it is in the city. 

First, the control mechanism reacts to the “where” pathway, reflexively turning in 

response to whatever obstacles are visible. Obstacles include objects, buildings, and 

water. If each of the judgments of what is in front of the agent are obstacles, then the 

agent makes a 30 degree turn to the left, but does not move forward, a response that 

prevents it from crashing headlong into the obstacle. It is consistent in the decision to 

69  



   

make a left turn. This means that it does not continually get stuck in a loop around a set 

of obstacles where at one point it will turn left and then change its mind in a sequence of 

turns and decide to turn right, gaining no improvement. If some of the judgments are 

areas free of obstacles, then the agent adjusts its angle of movement to an average of the 

locations that are not obstructed, to a maximum of 15 degrees either left or right.  

The agent then checks its command memories (including commands that are 

newly added) for any conditions that are met. The command verbs include “go…”, 

“patrol…”, “find…”, and “evade.” When told to go to a location, either a district or a 

terrain type, it will follow this command until it reaches that area. When that happens, it 

abandons that command. When told to patrol a location, the agent does essentially the 

same thing, except that it will then maintain the memory of the command and randomly 

move about the specified district or terrain type. In either of these commands (“go” and 

“patrol”), the agent uses waypoints, which override the navigation behavior. When told to 

find an object or a certain condition of objects (e.g. tanks without infantry), the agent will 

announce the object it sees whenever the conditions are met in its visual field. When told 

to evade an object and the object is visible, the agent will announce the object it sees, 

update its orientation angle or determine its path away from the offending object, and 

remember the object’s location for a period of time. When active, the evasive behavior 

overrides any other movement command. How the particular behaviors are determined is 

described in Section 4.5. 

The agent then will update its orientation angle to avoid the closest remembered 

object it was instructed to evade if the object is too close. If there are no such memories, 

70  



   

then the agent’s orientation angle remains unaffected. In this list of obstacle memories, 

old memories are removed if the capacity is full or, more commonly, after a time limit.  

Finally, the agent’s orientation angle is adjusted so that it will not take the agent 

outside the allowed bounds of the simulation.  

 

Figure 4.9. Expanded view of the agent’s executive control. The command memories are 
a list of all the auditory stimuli passed into the executive control via the cognitive 
network that have not become obsolete yet. Depending on these memories, along with 
current visual stimuli and obstacles present in the reflex vision, the behavioral rules 
determine both the movement of the agent, any spoken output the agent would make, and 
also which command memories are obsolete, or accomplished, and may be removed. 

 

4.4.4 Movement Adjustment 

Once the agent has finished updating its states according to its rules, it then moves 

and/or changes its angle of orientation. Its decision is based on what obstacles 

immediately impede it and what commands it has been issued. If each of the self-

organizing map networks that govern navigation return an obstacle (meaning the agent’s 

field of view is completely blocked), then the agent will only make a turn and will not 

71  



   

update its x and y position coordinates, so as to avoid running into an obstacle. If only 

some of these self-organizing map networks return an obstacle, then the agent will update 

its x and y position coordinates and make the appropriate turn. However, when agents are 

following commands, they place waypoints in their environment to guide their 

movement. The placement of these waypoints is based on vision and memory. At any 

point when the agent makes any updates to its internal state or interaction with the 

environment, it has access to the following information: 

1) Agent’s position in space 

2) Agent’s velocity vector 

3) Buildings and terrain features it sees presently 

4) Objects in the environment it sees presently 

5) Buildings, terrain features or objects it remembers seeing 

6) Locations of city districts (e.g. downtown district, industrial district, etc.) 

The agent may also have access to a working memory of the local area or the 

accumulated memories over the entire environment. These will be discussed below.  

 

4.4.5 Spoken Output 

When the agent is required to speak, it produces a vector of relevant features that 

define the desired output statement. These features represent the specific concept that 

needs to be stated. At present, since the agent is simply observing the environment, the 

concepts are very simple, either an object or a collection of objects or a building type.  

This vector acts as input to a region called BA, which in turn connects to an 

output region and has recurrent connections to itself. This is because the output is not 

72  



   

static, but instead is a sequence of phonemes and /stop/s (much like the auditory input, 

though described by production features rather than auditory features). BA’s self-

connections allow it to remember its previous state and therefore generate novel output as 

new phonemes are produced. Additionally, the output region connects back to BA. 

Individual words are separated by /stop/ phonemes. Production of phonemes continues 

until there are two /stop/ designators in succession, signifying the end of the multiple 

word phrase. The Input BA Output pathway is trained using resilient error-

backpropagation, and the self-connections in BA also experience this training.  

 

4.4.6 Details of Neural Network Architecture 

This section gives the details of how the neural networks of the agent are trained 

on the environment. First, there is a description of the structure of the different modules, 

or regions, of the network as well as a description of the features incoming commands 

and viewed objects are trained on. Following this is a description of the dynamics of the 

neural networks for each of the following paths: visual object input, verbal input, and 

spoken output. 

4.4.6.1 High-Level Description of Modular Structure 

The following is a bulleted description of the different neural network regions of 

the agent. Figures 4.6 and 4.8 display the connections between the following modules in 

the Cognitive and Sensorimotor systems. 

Verbal Input Pathway 

• A1: 34 phoneme features (e.g. liquid?, voiced?, etc.) 

73  



   

• WA1: multi-winner self-organizing map (accumulates input from A1 and self-

state until /stop/ phoneme received).  

• WA2: multi-winner self-organizing map (accumulates input from WA1 and self-

state until two /stop/ phonemes appear in succession in A1). 

• AGa: Hidden units trained with resilient error-backpropagation in 

WA2 AGa Audio Encoding 

• Audio Encoding: 34 on/off features of sentence input including the following 

categories 

o Verb: Go, Go to, Patrol, Find, Evade 

o Direction: North, South, East, West 

o Location: City, Market District, Uptown District, Downtown District, 

Slum District, Westside District, Southside District, Industrial District, 

Dock District, Historic District 

o Adjective: Our, Enemy 

o Object: Tanks, Infantry, Missile Launchers, Man, Woman, Car, Truck, 

Van, Bus, Dumpster 

o Absence of Object: Without Tanks, Without Infantry 

o Modifier: With Stingers 

Visual Object Input Pathway 

• V1: 50 x 50 pixel image 

• IT: multi-winner self-organizing map 

• AGv: Hidden units trained with resilient error-backpropagation in 

IT AGv Visual Encoding 

74  



   

• Visual Encoding: 16 on/off features of picture input including the following 

categories: 

o Alignment: Ours, Enemy, Neutral 

o People: People? 

 Type: Infantry, Man, Woman 

 Modifier: With Stingers  

o Vehicle: Vehicle? 

 Type: Tank, Car, Truck, Van, Bus 

o Other: Missile Launcher, Dumpster 

Spoken Output Pathway 

• Speech Features: 28 on/off speech features including the following categories: 

o Action: Location Arrival, Found Object, Evading Object 

o Locations: City, Market District, Uptown District, Downtown District, 

Slum District, Westside District, Southside District, Industrial District, 

Dock District, Historic District 

o Adjective: Our, Enemy 

o Object: Tanks, Infantry, Missile Launchers, Man, Woman, Car, Truck, 

Van, Bus, Dumpster 

o Absence of Object: Without Tanks, Without Infantry 

o Modifier: With Stingers 

• BA: Hidden units trained in the path Speech Features BA M1 with resilient 

error-backpropagation. It receives feedback from M1 and self-state information 

• M1: 20 output motor features for producing the desired phonemes. 

75  



   

 

4.4.6.2 Network Dynamics 

The following is a description of the dynamics of the agent’s neural networks and 

a description of how each pathway learns. Figures 4.5, 4.6, and 4.8 serve as guides for the 

neural network structure and paths. 

Visual Object Input: Architecture and Activity Dynamics 

V1/V2 [50x50] acts as the input region to the visual pathway of neural networks 

that interpret objects. A 50x50-pixel .jpg image is loaded into the region before the 

activation dynamics begin and the image is processed. 

IT [15x20 neural elements] receives activity from V1/V2, fully connected. IT 

nodes follow the activation rule: 

∑ ⋅= )(1 jiij winsum α  

where sum is the total input to node j of IT, in is the activation of a node of V1/V2, wji is 

the weight between nodes j and i, and gain parameter α1 is 2.4. 

The IT area forms a multi-winner self-organizing map. A winner within each 

region of connectivity (a 9x9 neighborhood) retains its value, and other “non-winner” 

nodes are assigned values as follows:  

)1(2773.0, 7960.1334)/0. - epoch/500(|innerneaerest w  todistance| eaa winnerj +=⋅= γγ  

The value awinner is the closest winner within a node’s connectivity range, and the 

gamma function represents the drop-off function that was dependent on the training 

epoch during training, but once training is complete becomes fixed to the following 

value: 

)1(2773.0 8367.0e+=γ  

76  



   

The AG [15x20] receives activity from IT in this path, fully connected. AG nodes 

follow the activation rule: 

)1(

1
))2.0(( kkjj biaswagk

e
a

+⋅⋅− ∑+
=  

where aj is the activation of node j in IT, biask is the bias value for AG node ak, and 

logistic function gain g is 4. 

The VE (visual encoding) region [1x16] receives activity from AG, fully 

connected. Similar to the AG, VE nodes follow the activation rule: 

)1(

1
))2.0(( mmkk biaswagm

e
a

+⋅⋅− ∑+
=  

where ak is the activation of node k in AG, biasm is the bias value for VE node am, and 

logistic function gain g is 4. 

Visual Object Input: Learning Phase I 

The learning rule for IT afferent connections is: 

ijji inaw ⋅⋅=∆ µ  

where µ = .5 and the other variables are as defined above. All incoming weight vectors to 

neural elements in IT are normalized after each learning step. 

Visual Object Input: Learning Phase II 

All connection weights throughout the path other than those learned during Phase 

I are randomly initialized between 0 and 1. 

Learning from IT via AG to VE occurs through RPROP (resilient error-

backpropagation) with delta-values as follows: 

77  



   

( )∑ ⋅⋅−⋅=

−⋅−⋅=

mkmkkk

m
ett

mmmm

waa
aaaa

δδ

δ

)1(
)()1( arg

 

The measure of its correctness is the proximity of an element in VE to its target 

after information has propagated through the entire network.  

Verbal Input: Architecture and Activity Dynamics 

A1 [1x34] acts as the input region to the verbal input processing pathway of 

neural networks. Each of the 34 input nodes represents a feature of a phoneme, either 

present or absent. These phoneme values change over the course of a single input, 

representing a string of incoming phonemes and /stop/ values (where there are no 

phoneme features present). When two /stop/ values occur in a row, the input stream has 

terminated. This amounts to inputs consisting of several words. 

WA1 [15x20] receives activity from A1, fully connected. WA1 nodes follow the 

activation rule: 

∑∑ ⋅+⋅= )()( 21 jh
stored
hjiij wawinsum αα  

where sum is the total input to node j of WA1, in is the activation of a node of A1, wji is 

the weight between nodes j and i, wjh is the weight between nodes i and h in WA1, and 

gain parameters α1 and α2 are both 0.8. The stored a is the previous value held in that 

node. 

As with the IT area, WA1 forms a multi-winner self-organizing map. A winner 

within each region of connectivity (a 9x9 neighborhood) retains its value, and other “non-

winner” nodes are assigned values as follows:  

)1(2773.0, 7960.1334)/0. - epoch/1000(|innerneaerest w  todistance| eaa winnerj +=⋅= γγ  

78  



   

The value awinner is the closest winner within a node’s connectivity range, and the 

gamma function represents the drop-off function that was dependent on the training 

epoch during training, but once training is complete becomes fixed to the following 

value: 

)1(2773.0 4196.0−+= eγ  

If the input is a /stop/ (i.e. an input where all features are 0), then WA2 will then 

be updated based on the values in WA1.  

WA2 [25x30] receives activity from WA1, fully connected. WA2 nodes follow 

the activation rule: 

∑∑ ⋅+⋅= )()( 21 kh
stored
hkjjk wawaa αα  

where ak and ah are nodes of WA2, aj is a node of WA1, wkj is the weight between ak and 

aj, wkh is the weight between ak and ah, and gain parameters α1 and α2 are both 0.8. The 

stored a is the previous value held in that node.  

As with WA1, WA2 forms a multi-winner self-organizing map. Its rules and 

settings are the same as WA1’s. WA2 will pass on its data to the AG when two /stop/ 

phonemes have occurred in succession. 

The AG receives activity from WA2 in this path, fully connected. AG nodes 

follow the activation rule: 

)1(

1
))2.0(( mmkk biaswagm

e
a

+⋅⋅− ∑+
=  

where ak is the activation of node k in WA2, biasm is the bias value for AG node am, and 

logistic function gain g is 4. 

79  



   

The AE (audio encoding) region [1x34] receives activity from AG, fully 

connected. Similar to the AG, AE nodes follow the activation rule: 

)1(

1
))2.0(( nnmm biaswagn

e
a

+⋅⋅− ∑+
=  

where am is the activation of node m in AG, biasn is the bias value for AE node an, and 

logistic function gain g is 4. 

Verbal Input: Learning Phase I 

The learning rule for WA1 afferent connections is: 

( )
( )0217.0/)8561.01000/(

0213.0/)4747.01000/(

11

16307.0
13225.0

)(

−

−

−−

+=

+=

−⋅⋅=∆

⋅⋅=∆

epoch

epoch

t
j

t
j

t
hjh

ijji

e
e

aaaw

inaw

η

µ

η

µ

 

where all other terms are as defined above. The variable t is the current phoneme number 

in the input sequence (for the first phoneme,  is 0). All incoming weight vectors to 

neural elements in WA1 are normalized after each learning step. 

0
ja

Verbal Input: Learning Phase II  

The learning rule for WA2 afferent connections is: 

( )
( )0217.0/)8561.01000/(

0213.0/)4747.01000/(

11

16307.0
13225.0

)(

−

−

−−

+=

+=

−⋅⋅=∆

⋅⋅=∆

epoch

epoch

t
k

t
k

t
hkh

jkkj

e
e

aaaw

aaw

η

µ

η

µ

 

where all other terms are as defined above. The variable t is the current phoneme number 

in the input sequence (for the first phoneme,  is 0). All incoming weight vectors to 

neural elements in WA2 are normalized after each learning step. 

0
ka

80  



   

Verbal Input: Learning Phase III 

All connection weights throughout the path other than those learned during 

Phases I and II are randomly initialized between 0 and 1. 

Learning from WA2 via AG to AE occurs through RPROP with delta-values as 

follows: 

( )∑ ⋅⋅−⋅=

−⋅−⋅=

nmnmmm

n
ett

nnnn

waa
aaaa

δδ

δ

)1(
)()1( arg

 

The measure of its correctness is the proximity of an element in AE to its target 

after information has propagated through the entire network. 

Spoken Output: Architecture and Activity Dynamics 

The SF (speech features) region [1x28] acts as the input region to the spoken 

output pathway of the neural networks. Each of the 28 input nodes represents a feature of 

the concept to be expressed in output as a string of phonemes and /stop/ values 

amounting to a multi-word statement, concluding with two /stop/ values.  

BA [15x15] received activity from SF, fully connected. BA nodes follow the 

activation rules: 

∑∑
∑∑∑

⋅+⋅

+⋅+⋅+⋅=
−

−

)()(

)()()(
1

54

3
1

21

jn
t
nm

kjh
t
hjiij

waexca

inhawawinsum

αα

ααα
 

)1(

1
))(( jj biassumgj

e
a

+− ∑+
=  

where aj is the activation of node j in BA, biasj is the bias value for BA node am, and 

logistic function gain g is 4. Parameters α1, α2, α3, α4, α5 are .5, .2, .3, .3, and .2, 

respectively, while exc and inh are 0.2 and -0.4, respectively. 

81  



   

The phoneme output region [1x20] receives activity from BA, fully connected. 

M1 nodes follow the activation rule: 

)1(

1
))(( nnjj biaswagn

e
a

+⋅− ∑+
=  

where aj is the activation of node j in BA, biasn is the bias value for M1 node an. and 

logistic function gain g is 4. 

When two /stop/ phonemes are produced in a row, then the network ceases 

production. 

 

4.5. Higher-level Command-based Decisions 

4.5.1 Agent Understanding of the Environment 

The agent exists in a three-dimensional environment. It is given commands and 

has knowledge of its global position, as well as the global outlines of the city and its 

districts, but the only information it receives from this environment comes from its vision 

window. The agent knows nothing initially of the layout of the streets, the buildings or 

what objects it will encounter, and has to judge that information by processing and 

segmenting the view snapshot of the 3D environment. This leaves the agent with several 

options of how to use the sequence of snapshots of the environment to navigate most 

efficiently. These options cover a spectrum of how much processing is done with the 

image sequences and how much memory the agent employs in its reactions to them. 

In the rest of the chapter, three different variations of the agent are compared. In 

each case, the agent has a different amount or type of working memory, as follows. The 

82  



   

three basic categories of movement behavior memory are termed: no memory (NM), 

local memory (LM), and cumulative memory (CM).  

 

4.5.2 No Memory Movement 

This movement strategy is named “no memory” movement because it only makes 

use of the 2-dimensional image of the present time step. It does not remember the 

previous images or their information, and it will not remember this image by the next 

time step. However, the agent still retains memories of commands, goal locations, 

dangerous positions, and waypoints. “No memory” here simply refers to the information 

the agent acquires about the structure of its environment through experience.  

NM movement takes the information provided by a single 2-dimensional image of 

the 3-dimensional scene at any given time step and uses it to potentially generate a 

waypoint. It does this by using self-organizing maps to locate all the 32 by 32 pixel cells 

in the image considered to be streets. It then discards any of the street locations as 

aberrant if they are not contiguous with the lowest central cells, which are usually street 

cells. An agent will maintain and approach the waypoint until it is unable to move, or it is 

in the square of size 0.2 centered at the waypoint. 

The agent has the option either to go straight ahead or to make a turn. If the angle 

of the agent’s location relative to where the agent wants to go is less than 0.01 away from 

0 degrees, then the agent moves straight ahead. The waypoint is thus placed in the 

furthest street position in a straight line in front of the agent. Otherwise, if the angle is 

negative, the agent decides to make a right turn, and if the angle is positive, the agent 

decides to make a left turn. In either case, the agent looks for the street cell that is closest 

83  



   

to the agent, but farthest in the direction (right or left) that the agent decides to go, where 

there is at least one intervening impassable cell between this street cell and the bottom of 

the screen. This implies a street is available at that point for the agent to turn onto and 

change its direction. Figure 4.10 demonstrates an example of this.   

 

Figure 4.10. Agent’s processing of the environmental view. Most cells that overlay areas 
of the screen correctly identify them (e.g. cells over streets are determined to be streets). 
Contiguous blocks of cells identified as the same have been outlined in white and labeled. 
There are scattered areas that remain unidentified and some that are misidentified. Street 
cells that are not contiguous with the cells are marked with an X, and are taken to be 
aberrations. Indeed, these tend to occur on buildings. Should the agent wish to make a 
right turn, the filled cell (marked by a black circle) would be where it would drop its 
waypoint according to the behavior rules. 

 

84  



   

Once a cell is chosen to be the location of a waypoint, the agent estimates its 

location in the environment. Using the same method of computing the location of objects 

described above, the agent is able to estimate the location in the environment of the 

central pixel of the cell and can establish a waypoint at that location. 

Waypoints are not generated under certain circumstances. Should no street cells 

that fit the desired movement pattern be discovered in the processing, generating a 

waypoint is delayed until a later time step, and the movement at this time step will be 

purely reactive. Additionally, if a waypoint is already present, then the agent will not 

produce a new one. Finally, if the agent has achieved its goal (the evasion behavior has 

expired or the agent has reached or patrolled the desired region), then no waypoint is 

generated for that command. 

 

4.5.3 Local Memory Movement 

The advantage of the NM movement is that it requires no extra manipulation of 

the image data or any memory of what was seen at previous time steps. However, 

because of this, it frequently delays placing waypoints or places them in aberrant 

locations. Additionally, the estimation of locations in space from the viewpoint snapshot 

is not completely accurate, a condition which increases the problems of placing 

waypoints using this method. Many of these problems can be addressed by adding a 

memory of what is seen in the surrounding environment and converting some of the 

information into retained knowledge of the surrounding space for navigation. The LM 

movement strategy performs this function. 

85  



   

In addition to using the knowledge of the environment from the view window at 

every time step, when using this movement type, the agent also keeps a local memory 

(LM) of the area immediately surrounding it. This is a five by five two-dimensional 

overhead map designed as a cellular space, that is built by the agent as it moves. It is 

centered on the agent, but aligned with the global grid. Each cell is given a different value 

depending on what the agent has estimated exists in that area from the visual information.  

As in creating waypoints in the NM movement, some conversion of snapshot 

information to a 2-dimensional area map is required. Pixel cells and their locations in the 

environment are computed the same way as in the NM method, but what is done with the 

information is different. For each pixel cell along the terrain level (approximately the 

lower half of the snapshot view), the location of the cell is determined relative to the 

agent. If this estimated location falls in a cell of the agent’s LM, then it contributes to 

generating a memory of the environment surrounding the agent. A sample local map is 

depicted in Figure 4.11. 

The LM cells are determined by the agent to be one of four possible categories. If 

a cell has not been seen yet, then it is labeled “unknown.” If an agent is in the cell—or 

was in a location within the cell at a previous time step—then the location is set to “been 

there.” Otherwise, the agent determines whether the cell is “passable” or “impassable,” 

depending on the number of pixel cells it has seen corresponding to the LM cell that are 

determined to be streets or objects (signifying an area is passable) or that are determined 

to be buildings or water (signifying an area is impassable). 

The counts of the number of pixel cells associated with the LM cell that are 

considered streets, objects, or buildings are accrued over many time steps. If the number 

86  



   

of building pixel cells seen exceeds the number of object and street pixel cells for a 

particular LM cell, then that cell is considered impassable. If the number of street pixel 

cells exceeds the number of building pixel cells, then the corresponding LM cell is 

considered passable, and a waypoint can be placed there. However, if the agent has been 

in the location previously, then the LM cell will be set to “been there.” These counts and 

determinations shift as well, as the agent moves along the grid. In this way, when an 

agent moves into a cell it has recognized as “passable” in its LM (i.e. when it becomes a 

“been there” region), then all the information shifts to the appropriate LM cells, while 

some old information is lost to the LM for cells no longer in range, and new “unknown” 

areas appear in LM cells that are now close enough. 

 

 

Figure 4.11. Representation of an example local memory map produced by an agent in 
the simulated environment, taking up a five by five grid. The agent is represented by the 
circle with a directional arrow in the central cell. Black cells are places estimated by the 
agent to be streets. Gray cells are places estimated by the agent to be buildings. White 
cells are unknown, meaning the agent has not acquired information about them. Black 
cells marked with an asterisk are areas the agent remembers passing through. As the 
agent moves, the center of its local memory map moves with it. 

 

87  



   

The 3-dimensional environment is not flat. Also, the process that converts the 

pixel of the snapshot of the 3D scene to an estimated 2-dimensional point on the map 

assumes that the point in the view is on the ground (an assumption that is made because 

there is no accurate and trivial way to judge the position and height of buildings). As a 

result, the agent will sometimes mistake “passable” areas as “impassable,” if a building is 

obstructing the view of the passable area. However, because there is a bias toward areas 

being passable in the summation of the pixel cells for their LM cells, the agent is able to 

correct the misjudgment as it draws closer to the cell and sees more of the cell in 

question. 

With this information, the process of creating waypoints is somewhat easier. 

Because the LM tells us exactly which locations in the environment are “passable” and 

which are not, we can position a waypoint in the middle of an adjacent passable LM cell 

with reasonable certainty that the agent can head to it. An exception to this case is when 

an area has mistakenly been judged passable, which is a rare occurrence given that the 

accumulated sums of pixel cells over time tends to make the judgments with regard to 

streets fairly accurate. Another exception occurs when the waypoint is too close to an 

object. In this latter case, if there is an object known to be in the cell where we wish to 

put the waypoint, we simply drop the waypoint in the cell at some distance away from the 

object, so it will not interfere. 

The different possibilities of the cell states of the LM allow for an order of 

preference in determining which direction to take in the case of multiple options. An 

agent will tend to opt for a “passable” area first. If none is available, it checks possible 

“unknown” adjacent cells to see if any of them are in fact “passable.” If it has no other 

88  



   

options, it will choose a “been there” cell. This gives the agent the impetus to explore 

areas it has not seen, a tendency that is useful for acquiring information about the 

environment. 

 

4.5.4 Cumulative Memory Movement 

CM movement makes use of the same techniques that appear in the LM 

movement, but it adds the ability for the agent to use a global map it can construct from 

its cumulative LM states over the course of a simulation to generate a sequence of 

planned movements from its present location all the way to the final goal. This method 

makes use of much more information than both the previous methods.  

Like the LM, the global map is a cellular space aligned with the world’s grid. 

Unlike the LM, it is calibrated to be the same size as the world. Also, it is not centered on 

the agent, but the agent moves through it. This means the agent, which knows its own 

global position, is able to compute the appropriate global map grid cell from any LM cell. 

As LM is adjusted from “unknown” to estimated states, the corresponding positions on 

the global map are also updated. The global map only tracks positions as “unknown,” 

“passable,” “impassable,” “dangerous,” and “dangerous & passable,” which is set when 

the agent estimates a hostile object in a certain position. An example map built by the 

agent is depicted in Figure 4.12. 

When the agent follows a command that requires movement, an appropriate 

movement is plotted out as a queue of waypoints across the map, in both known and 

unknown areas. This queue is computed using an A* search algorithm where the search 

space is the agent’s grid map, the start is the agent’s current cell, and the goal is either a 

89  



   

specific cell or any cell in a specified location. Areas known to be impassable are 

considered invalid, and known passable areas do not get priority over unknown areas, 

because there may be more direct routes that pass through unknown territory. Therefore, 

the agent is not willing to discount paths through such territory. 

 

Figure 4.12. Representation of an example cumulative memory map produced by an 
agent after touring parts of the simulated environment. Black cells are places estimated 
by the agent to be streets. Gray cells are places estimated by the agent to be buildings. 
White cells are unknown, meaning the agent has not acquired information about them. 
The map also includes lines denoting the district boundaries of the city, which are known 
to the agent. 
 

This queue of waypoints is never completely fixed. If the agent discovers an 

obstruction in an area that was previously unknown, it will adjust the waypoint strategy 

to fit the new knowledge of the map. Additionally, if a hostile object has emerged in a 

previously passable territory, the corresponding global map cell will be set to 

90  



   

“dangerous.” If the waypoint path goes through this cell, it will be adjusted to give it a 

safe berth, depending on the sort of danger the object poses. Cells in the chart between 

the obstacle’s computed location and the agent are set to a type called “dangerous & 

passable,” since they are cells in the line of sight of the dangerous obstacle. In this case, 

there are no obstructions, but there is a risk passing through those locations.  

One caveat that bears mentioning is that the cellular space in the chart happens to 

line up with the environment. This was done for the sake of simplification, but it is 

certainly possible to have a much finer grain cellular space chart that allows for a richer 

environment where buildings and streets are not aligned with the cellular space, but can 

still be closely and accurately outlined in the agent’s local and cumulative memories. 

 

4.5.5 Movement Mechanics 

Each of the command types that influences movement (go, go to, patrol, and 

evade) requires a different set of rules for operation, and most of these commands require 

a further differentiated set of rules depending on which of the movement behaviors with 

their varying degrees of environmental memory are implemented. The command “go” is 

the same for every strategy set, since it only requires a general momentum in a particular 

direction. For “go to” and “patrol,” however, knowledge of the environment is more 

useful as recognizing specific turns becomes key to succeeding. Similarly, this is also 

true for the “evade” command where a greater knowledge of the environment will allow 

the agent to more successfully sidestep hostile entities with greater success. 

91  



   

 

4.5.5.1 Mechanics of “Go” 

When an agent is following a “go” command that specifies a direction rather than 

a region (e.g. “go west”), it moves following the standard rules of reflexive navigation 

described above by using the self-organizing maps that recognize obstacles in the closest 

visible regions. Yet, it is given an additional acceleration in the direction specified in the 

command. This results in an agent that will tend to move in that direction, when there are 

no intervening obstructions. This command has the same mechanics regardless of the 

movement behavior employed, since the command is essentially independent of the 

environment, whereas the other commands are all relative to some environmental feature. 

 

4.5.5.2 Mechanics of “Go to” 

Unlike the simpler “go” commands, a command to “go to” a specific district does 

vary depending on which movement behavior is implemented. These commands direct an 

agent to head to a specific location on the map. In this case, the agent already possesses 

both knowledge of its global position and the location in space where it needs to head. 

Because of how the commands are received, some global knowledge has to be assumed, 

even in the case where the agent does not preserve memories of what it has seen in 

previous time steps. 

For the NM movement, the agent follows a system of waypoints it generates with 

the ultimate destination being the specified region, and when it reaches that region, it 

states it has accomplished the command. If a waypoint is present, an agent is drawn 

towards it, ignoring any reflexive navigation and stopping only if obstructed physically. 

92  



   

When it is sufficiently close (described above) to the waypoint, the waypoint is removed 

and the agent will turn in an angle that will point it in the direction of the ultimate goal. 

This helps to align the agent in the environment, so it can more accurately judge where to 

set waypoints. 

If a waypoint is not present, then there is potential for a new one to be added. The 

angle of the agent’s view vector relative to the desired goal position is compared. If the 

angle is very close to zero, then the agent is heading in the correct direction toward the 

position it needs to go, and a waypoint is placed at the furthest recognized passable 

position in view that is straight ahead. If the angle is sufficiently greater than zero, the 

agent needs to make a left turn. If the angle is greater than 90 degrees, then the agent will 

simply make a left turn in the environment, since its goal area is behind it. Otherwise, it 

will attempt to find a valid waypoint position for a left turn as described above. If the 

angle is less than zero, then a similar set of rules apply, but just for right turns as opposed 

to left turns. 

For the LM movement, the agent will again generate waypoints one at a time. The 

choice of waypoint position now depends on the agent’s local memory, as opposed to just 

what it is looking at presently. Again, if a waypoint is present, the agent will approach it 

until it is sufficiently close, and it will turn toward its goal area when the waypoint is 

reached.  

When a waypoint is absent, a new one will be generated based on what the agent 

remembers seeing around itself. The agent has an order of preference that it always 

follows. Its first choice is always in a direction that leads toward the goal area. If the 

adjacent local memory cell in that direction is labeled “passable,” then it will set a 

93  



   

waypoint in the center of the cell in that direction. If the direction is labeled “unknown,” 

the agent sets a waypoint in the direction of that cell, but right next to itself. This allows 

the agent to turn toward the unknown cell and gain information about it for the next time 

step, when it will likely be able to make a judgment as to whether it is “passable” or 

“impassable.” Should the agent remember having been in the cell or the cell be labeled 

“impassable,” the agent then will opt for a second or third choice. These choices will not 

directly approach the goal area, but neither do they back away. Instead, they act in a side-

stepping manner, a tactic useful when the agent is obstructed by a building or a passable 

area containing too many or dangerous objects. Again, known “passable” areas are given 

priority, and if there are none, the agent will check “unknown” memory cells. If none of 

these options are available, the agent will select the cell where it has been (labeled “been 

there”) that has the highest preference for a waypoint. This means the agent has a strong 

inclination against backtracking. In the rare case where none of these strategies have 

produced a successful waypoint, the agent will then be allowed to wander reflexively, so 

it can find a way out of being stuck. 

For CM movement, the agent produces a sequence of waypoints, one per map 

cell, in the shortest, safe and unobstructed path to the goal area. Waypoints are also 

potentially placed in areas “unknown” on the map if the shortest path requires this, but a 

known “passable” path of equal length will be equally considered. As the agent moves 

from waypoint to waypoint, its local memory may revise the map if it misjudged an area 

earlier (e.g. believed a “passable” area was “impassable”). This potential revision could 

lead to the waypoint sequence being updated, should it produce a shorter path. 

Additionally, if unknown dangerous objects along the path are discovered, the agent will 

94  



   

adjust its path through the map to avoid them as it sees them. Finally, if the agent 

discovers “unknown” areas feature obstructions, the path is altered to accommodate this 

new knowledge. As before, the waypoints are eliminated when the agent is sufficiently 

close and the next waypoint at the head of the queue is the agent’s new target, until it has 

exhausted waypoints and is in the desired region. Unknown and passable cells are given 

equal costs when computing a path, while cells that are dangerous and passable cost six 

times as much (to deter the agent from taking that path if a safer one is available). 

In some cases for the CM and LM strategies, when the goal region is a single cell, 

the agent will misinterpret the territory for that cell from a distance and believe it to be 

impassable. This can cause problems when searching for a path or making a decision to 

turn into the region. Thus the goal region, if it is a single cell in the environment, is 

always assumed to be passable. 

 

4.5.5.3 Mechanics of “Patrol” 

Unlike the “go” commands, patrol requires some map-memory at every level to 

function at all. The implication of the command is that an agent can travel or see as much 

of the specified region as possible. The metric used here is the number of environmental 

cells the agent either has been in, or has been in the agent’s field of vision up to a 

distance of 2 environmental cells away. This means that it would be nearly impossible, 

without maintaining some larger memory of what it has seen, to complete this task 

successfully. Therefore, an agent, when using the NM or LM strategies, does have access 

to a larger map that it is converting from “unknown” to various known states. However, 

95  



   

we continue to limit its knowledge of the environment as before when it comes to making 

choices for navigation with these strategies.  

In the NM movement strategy for the “patrol” command, there are two possible 

behaviors depending on agent position. If the agent is not in the desired region, then 

waypoints are generated much in the same way that the “go to” command generates them 

for this strategy. If the agent is in the desired region, then the agent is allowed to explore 

using nothing more than reflexive movement. Unable to remember what it has seen, the 

agent will move more or less randomly, albeit determined in part by the obstacles that 

appear in its view. If it happens to wander outside the desired region, then waypoints 

once again direct it back to the region.  

In the LM movement strategy for the “patrol” command, there are again two 

possible behaviors. If the agent is not in the desired region, then waypoints are generated 

to direct it to the region, as in the “go to” command. If the agent is in the desired region, 

then the agent follows a set of rules that determine which of the places preserved in its 

local memory it will move toward. It has a preference for placing its next waypoint in the 

direction it is facing, but if it has been there, if it is impassable, or if it is blocked by a 

dangerous object, then the agent will seek another path. First priority is assigned to 

“passable” or “unknown” regions to the right or left; second priority is assigned to the 

area behind the agent. If there are no “passable” or “unknown” regions in those 

directions, then the agent sets a waypoint in the most preferred area which is denoted as 

“been there.” 

In the CM movement strategy for the “patrol” command, waypoints are generated 

much as they are in the “go to” command, and the goal state changes much as it does in 

96  



   

the NM movement. As long as there are still unknown cells in the area to patrol, the agent 

will compute a path of waypoints to the closest unknown cell. The patrol terminates, 

when there is no longer any unknown cells left in that area. 

 

4.5.5.4 Mechanics of “Evade” 

The agent responses to the “evade” command and corresponding visual stimuli 

vary greatly depending on its memory of the environment. As in some previous 

commands, some memory is required in all cases for success. In this case, the agent 

invariably has at least temporary access to the estimated location in the city of the viewed 

object to be evaded. Additionally, the agent has a special “fear” behavior that is activated 

temporarily as well, in which all other commands for movement are put on hold, while it 

attempts to escape or side-step the object it saw. The agent will evade a visible or 

remembered obstacle as long as it is sufficiently close to it, but the radius for proximity is 

typically quite high (i.e. 20 cells). Obstacles are assumed to be dangerous as long as they 

remain in line of sight and not too far away. 

In the NM movement strategy, the agent simply moves in a velocity vector that 

takes it in a direction opposite to the direction of the evaded object, provided that the 

object is in the range considered close enough to be dangerous. The agent continues to 

move in this direction, allowing for reflexive navigation when obstructed, until the time 

limit for the memory is reached.  

In the LM movement strategy, the agent has access to a memory of its immediate 

surroundings, so it is able to achieve a more complicated behavior. This again involves 

setting waypoints based on preference. The agent’s first choice is to side-step the path 

97  



   

with the dangerous object. If those directions are “impassable” or “been there,” then the 

agent will opt for the direction that will backtrack. Lowest preference is given the areas 

that will take it closer to the dangerous object. If none of these areas are “unknown” or 

“passable,” then the agent will select the most favored direction labeled “been there” to 

set its waypoint. Once the time limit is reached for the “fear” behavior and the obstacle 

memory, the agent again moves normally, having moved to a potentially new path. 

In the CM movement strategy, the agent has access to a memory of the entire 

map. Therefore, it has a more accurate picture of the environment surrounding it. From 

this map, the agent creates a smaller map of the area immediately surrounding it, and it 

uses this information to create waypoints in order to evade the obstacle. This strategy 

functions much as the LM movement strategy for “evade,” but makes use of the chart 

information rather than the less comprehensive local memory. 

 

4.6 Results 

4.6.1 Experimental Methods 

In the following results, the training of the agent’s neural network architecture is 

examined first. The network’s self-organizing maps for interpreting an image sequence is 

trained on 2000 random images of the environment. For the verbal input, the multi-

winner self-organizing maps are trained 100 iterations for each of the first two phases 

(the encoding of words and the encoding of sentences). The third phase of the verbal 

input is trained for 1000 iterations using resilient error-backpropagation [Riedmiller, 

1993]. For the visual object input, the multi-winner self-organizing maps of the first 

phase are trained for 100 iterations. The second phase of the visual input is trained for 

98  



   

1000 iterations using resilient error-backpropagation. For the spoken output, the networks 

are trained for 1000 iterations using resilient error-backpropagation. 

What follows this is a series of scenarios where the success and speed of the agent 

using the different working memory strategies (NM, LM, and CM) are collected, 

measured, and compared. For each memory strategy, the agent is given several different 

tasks or scenarios. The different scenarios examined include three cases: (1) a case where 

the agent is told to go to a single location, (2) a case where an agent is told to go to a 

district and look for an object there and then return to a home base, and (3) a case where 

an agent is told to go to multiple different locations.  

The above scenarios are run twenty times for each memory strategy. Mean 

completion times, along with standard deviations and t-tests for significance, are 

computed for the scenarios. Though individual runs within a set of twenty could have 

different initial conditions, the same set of twenty was used to compare each of the 

memory strategies. 

For the case where the agent is told to go to a single location, the initial conditions 

for all twenty runs are the same. The maximum time limit is 1000 time steps for this 

scenario. For the case where the agent is told to find an object while patrolling a district, 

the initial position is different for each individual run. The maximum time limit of this 

scenario is 8000 time steps. For the case where the agent is told to go to a sequence of 

locations, the initial position is consistent for all runs, but the order of the locations to be 

visited is different for each individual run. The maximum time limit of this scenario is 

20,000 time steps. 

99  



   

The maximum time steps were chosen for these scenarios so they would have a 

sufficient amount of time to complete the scenarios, which could have very different 

lengths from one another, but also prevent them from running too long since individual 

runs take a long time to complete. 

In addition to the above scenarios, the improvement due to creating a map of the 

environment in the CM strategy is examined in a scenario where the agent is required to 

repeatedly tour a series of goal locations throughout the city. This scenario is comparable 

to the type of scenario used in the previous chapter.  

 

4.6.2 Neural Network Results 

Each of the network paths are trained separately, and in different numbers of 

phases. The visual input path has two components. First, it involves processing of the raw 

image, breaking it down into patches, individually recognized as buildings, roads, or 

objects. The success of the learning along this path is examined in the scenarios 

following this section. In these, information taken from the sequence of first-person 

perspective images can be used to build the working memory of the agent and influence 

its behavior in the environment. The other visual input path is for object recognition. The 

first phase of learning produces a unique representation for each of the different images. 

This means that there is now a unique pattern for each object to be used as input for the 

second phase. After 1000 iterations of error-backpropagation, these unqiue patterns are 

trained on their associated features, and the root mean squared error for the learned 

output to their target is 7.77 x 10-17. 

100  



   

The verbal path has three phases of learning. The first phase produces a unique 

representation for each word in the agent vocabulary with multi-winner self-organizing 

maps. The second phase uses a sequence of these to produce a unique representation of a 

sentence using another multi-winner self-organizing map. Figure 4.13 depicts a typical 

encoding for different words (the self-organizing map WA1) and for a sentence 

consisting of those words (the self-organizing map WA2). The unique patterns produced 

for WA2 are used as input and trained on their associated features. The root mean 

squared error for the learned output to their target is 0.0236.  

 

Figure 4.13. Depiction of typical unique patterns created during the first phase of verbal 
input training for region WA1. These are used to produce a unique sentence pattern for 
region WA2 in a second phase of learning with a multi-winner self-organizing map. 

 

For the spoken output path, the features of the desired sentence are each trained to 

produce a different sequence of phonemes (forming a sentence of words broken by /stop/ 

markers) for 1000 iterations using resilient error-backpropagation. When these sequences 

of motor features are matched to the closest phonemes, the fraction of erroneous 

phonemes produced by the network over all sentences is 0.0169. 

 

101  



   

4.6.3 Going to a Location 

In this scenario, the agent is assigned the relatively simple task of going to a 

specific location that is nearby. This scenario is performed twenty times for each strategy 

under identical initial conditions. The only feature varied is the memory movement 

strategy the agent uses (either NM, LM, or CM). Because the scenario is not guaranteed 

to terminate, the maximum time limit of 1000 time steps is imposed for this task. 

Figure 4.14 displays the mean time taken to complete the task for each memory 

strategy. Note that CM and LM take a comparable amount of time on average. NM 

requires several times as many time steps. Additionally, the number of time steps the 

agent was “stuck” was recorded. An agent is considered stuck when it cannot move 

because its next intended step forward is blocked by an environmental obstacle. This 

value was 0 for CM and LM agents, but the NM strategy has a mean time steps where an 

agent is “stuck” of 36.15.  

0

100

200

300

400

500

600

700

800

NM LM CM

Memory Strategies

M
ea

n 
C

om
pl

et
io

n 
Ti

m
e

 

Figure 4.14. Results for the command of an agent instructed to go to a specific nearby 
location. The error bars represent a 95% confidence interval. This interval is very small 
for the LM and CM strategies. 

 

102  



   

4.6.4 Looking for an Object in an Area 

In this scenario, the agent’s starting location, or “home base,” is situated at an 

arbitrary position outside, but not necessarily close to, the Historic District. It is then 

given the commands “Patrol the Historic District” and then “Find a van.” If the agent 

eventually sees the van in the Historic District, it informs its commander, who then tells 

the agent to return to its home base. Because the scenario is not guaranteed to terminate, 

the agent has a maximum of 8000 time steps to complete the tasks. This number is 

increased from the previous scenario due to the added distances and complexity. These 

tests are run twenty times for each memory strategy. 

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

Time to Historic
District

Time to Find Van Time Back

Memory Strategy

M
ea

n 
C

om
pl

et
io

n 
Ti

m
e

NM
LM
CM

 

Figure 4.15. Results for the scenario when the agent is commanded to “Patrol the historic 
district” and “Find a van.” The error bars here represent a 95% confidence interval. 

 

Figure 4.15 shows the times for this scenario. NM fails the task in 90% of the 

trials (though it always found its way to the historic district). The maximum time limit of 

8000 time steps is factored into its results. A paired t-test reported P < 0.05 for the LM 

103  



   

and CM strategies for both the “go to” and “find” commands. Thus the average time to 

the historic district is significantly lower in the LM strategy than the CM strategy, but the 

CM does significantly better when finding the van.  

 

4.6.5 Sequence of “Go to” Commands 

In this scenario, the agent begins in a location on a street that leads into the city. 

This position is its home base for the scenario. The agent then receives a sequence of five 

commands telling it to go to various locations on the map. These commands are issued in 

an arbitrary order, and the agent only receives a new command when it successfully 

completes its present one. Between the commands, the agent is told to return to home 

base. Due to the distances involved, the maximum time limit for this scenario is increased 

to 20,000 time steps. The order of these “go to” commands were varied for each of the 

twenty tests run to acquire these averages. The locations of the coordinates for each 

district and the location of the home base were not varied. 

Figures 4.16 and 4.17 show the results for each of the different memory strategies. 

The only strategy to show improvement is the CM, which is not surprising, since it is the 

only strategy that makes use of the map the agent constructs in its movement. For CM, 

there is a significant improvement (a paired t-test reporting P < 0.05), in all commands 

when compared to the first when the agent has no knowledge of the environment. Figure 

4.16, shows the time taken varied wildly for the NM strategy, but remained fairly 

consistent for the LM strategy. NM was the only strategy to have any failure in 

completing commands in the time limit, failing to finish all five commands in 35% of 

cases. For Figures 4.16 and 4.17, the commands not completed were not factored in. 

104  



   

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

1st Command 2nd Command 3rd Command 4th Command 5th Command

Command Order

M
ea

n 
C

om
pl

et
io

n 
Ti

m
e

NM
LM
CM

 
Figure 4.16. This chart shows the average performance of each strategy for the 
commands by order given. Times here include time to location and time back to base. A 
full command is considered to be both arrival at the specified destination and the return to 
home base. The error bars here represent a 95% confidence interval. 
 

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

Uptown District Industry District Dock District Historic District Market District

"Go to" Location

M
ea

n 
C

om
pl

et
io

n 
Ti

m
e

NM
LM
CM

 
Figure 4.17. Chart for the same scenario as Figure 4.16, but separated by the location 
specified for the agent to reach. Times here include time to location and time back to the 
base. The locations are labeled by district names, but they are each only specific 1x1 cells 
for the purposes of the scenario. The error bars here represent a 95% confidence interval. 

105  



   

 
4.6.6 Cumulative Memory Tours of the Environment 

The final scenarios examine a long tour of the entire city, with particular locations 

specified along the way. These scenarios are limited to the CM memory strategy, since 

the comparison between the three strategies has already been made in the case where 

terrain is covered multiple times. Because this strategy is the only one to benefit 

substantially from a map, it is the only one that has the opportunity to experience 

improvement due to memory. Two scenarios are looked at, one without enemies and one 

with nine enemy obstacles located in places the agent is likely to travel. The same home 

base and goal positions in the city are used in both scenarios. 

These scenarios take the agent to a location in every district of the city in 

succession, and then return to its home base before making the next circuit. There are a 

total of ten tours it makes through the city. Each loop affords it a new opportunity to 

refine its knowledge of the location of buildings, streets, and (in the case where there are 

enemies) dangerous locations in the city.  

Figure 4.18 displays the time taken to perform each of the ten tours of the city in 

both scenarios. There is improvement in both cases. The dramatic improvement in the 

case with enemies is due to the agent making a poor decision to follow a street that leads 

away from the city before returning. During the last five tours of the city, the agent 

follows the same path, having found a path in both scenarios that takes close to the same 

amount of time. Because the initial conditions and goal locations are the same in runs of 

this scenario, the cumulative memory strategy will always make the same decisions each 

time it is run. The process of making ten complete tours of the city is very 

computationally expensive, so it was only run once for each strategy to graphically 

106  



   

demonstrate the improvement over time that cumulative memory allows. This behavior is 

confirmed, and the improvement is shown to be significant (a paired t-test reporting P < 

0.05), in the multiple trials of the scenarios in Section 4.6.5. 

Agent Touring the City

6500

7000

7500

8000

8500

9000

9500

10000

10500

11000

11500

1 2 3 4 5 6 7 8 9 10

Tour # Through the City 

Ti
m

e 
St

ep
s

No Enemies
With Enemies

 
Figure 4.18. Results for the CM scenarios where the agent tours the entire city, for a case 
with enemies and a case without enemies. 

 

4.7 Discussion 

This chapter presented an agent architecture with a qualitatively more advanced 

behavior and a model urban environment with greater complexity than in Chapter 3. The 

architecture consisted of neural networks trained with various strategies (e.g. self-

organizing maps, error-backpropagation) to process the incoming external visual and 

auditory information, while the high-level control was managed by finite-state automata 

and the influence of verbal and visual memories. This allows the agent a richer variety of 

107  



   

behaviors to engage in. The environment has been enhanced to be a 3-dimensional model 

of a city, with streets and buildings with various textures. Perhaps the most crucial 

difference was changing the agent’s perspective from complete overhead knowledge of 

the area within a certain radius surrounding it at any given time step to a limited angle of 

vision and a more realistic first-person perspective where the agent can see much further, 

but has a visual input that can be obstructed by buildings and obstacles.  

There are three main conclusions to emerge from the computational experiments 

described in this chapter. First, the results support the hypotheses that the conversion of 

the data in the image of the 3-dimensional scene into a 2-dimensional map, either local or 

cumulative, will increase the efficacy and efficiency of the agent in the environment. 

Second, when the agent covers the same ground in the environment multiple times, there 

is a significant benefit over time to maintaining a cumulative memory map of the 

environment. Third, while both local and cumulative memory strategies are efficient, 

local memory strategies tend to produce agents with more flexible behavior and 

cumulative memory strategies tend to produce agents that prefer the same paths again and 

again.  

As the results demonstrate, the agent completed its tasks far more quickly and 

with greater reliability when the visual information taken from the environment is kept in 

working memory, even if only locally and for a short period of time. The agent also 

performed more quickly and reliably when the visual information is transformed into an 

overhead map to allow the agent to navigate. The simplest demonstration of this is the 

fact that the frequency of collisions in the environment due to particle-like movement 

control and the length of time required for the NM agent to complete even the simplest 

108  



   

task is far worse than in either the LM or CM strategy. The LM and CM strategies 

experience no collisions with the environment due to the accumulation of information, 

which allows them to more accurately judge where and when turns are appropriate and 

estimate the location of waypoints. What makes this particularly difficult for the NM 

strategy is that its limited view angle easily tells it what is in front of it, but when it is too 

close to an obstacle, it has difficulty judging proximity when such a limited perspective is 

combined with an inability to remember what is below it, let alone to the right or left of 

it. When a building or obstacle is sufficiently close, it fills the entire view and the agent 

with the NM strategy gains no relative information on which to base a judgment of 

proximity. The addition of memory and converting that memory into a 2-dimensional 

map (either just the immediate area or the entire environment), where the agent knows its 

position and can estimate the position of obstacles after acquiring visual information in 

successive time steps, helps to alleviate this context problem.  

As expected, when an agent is covering the same ground over and over, this 

ability to retain visual information and convert it into 2-dimensional maps improves the 

performance. In particular, the CM performs much better than either of the other 

strategies when the task requires remembering what area has been covered (such as a 

patrol, where it is helpful to have seen or traveled as much of a district as possible). The 

CM performs better when attempting to find an object in the environment. This is 

because it systematically eliminates areas that it has seen as not containing the object and 

moves on to other regions, whereas the LM and the NM have a greater inclination to 

return to ground covered earlier. 

109  



   

The LM strategy in turn has a greater success rate than the NM, because even a 

limited local memory allows it to know that it prefers an adjacent area it has not visited to 

one that it has passed through. The NM has no such knowledge, and thus spends much of 

the time covering the same ground over and over again when making repeated tours 

between locations. Additionally, when the agent is simply passing through familiar areas 

more than once, the CM performs better, and the final set of results indicates that this is 

an improvement gained over time until the agent finds a path that is unobstructed and 

completely familiar.  

Though a working memory makes the agent more resistant to mistakes in judging 

the environment, it is not completely immune to error. This is indicated by the better 

performance of the LM strategy when the agent is told to go to a location of which it has 

no foreknowledge. Because the agent is more apt to misjudge locations in the distance, 

plotting a complete course to the goal sometimes will make the agent’s route needlessly 

longer, usually because it misjudged a street as being blocked by a building or, in the 

final scenario, misjudged a hostile obstacle. The strategy to take the most immediately 

expedient path employed by the agent with the LM strategy is resistant to these problems 

because misjudged areas further away on the map are apt to be corrected as the agent 

draws closer. This is also why the agent with the LM strategy in some scenarios has a 

higher accuracy (demonstrated in Figure 5.6 in the following chapter). It tends to 

approach areas that it has misjudged, and corrects them. In scenarios where the same 

ground is covered multiple times, it has a better chance of seeing terrain from different 

perspectives, a factor which also can increase accuracy. This gives a certain flexibility to 

the LM strategy. This is in contrast to the CM strategy, which tends to avoid areas it 

110  



   

considers blocked for known clear paths and thus has a tendency to take the same route 

again and again, if it is proven to be clear.  

111  



   

Chapter 5: 

Memory Management Strategies for Communicating Agents in a 

Simulated Urban Pursuit Scenario 

5.1 Motivation 

In Chapter 3, the effect and benefits of working memory were examined when 

added to a simple particle system in an abstract environment. In the previous chapter, the 

architecture of an agent operating in a simulated city with a first-person perspective (a 2-

dimensional image of a 3-dimensional scene) was described and the results of different 

memory management strategies were examined for multiple scenarios that made use of 

the agent’s various potential actions. It was demonstrated that while both the local 

memory (LM) strategy and the cumulative memory (CM) strategy improved upon a 

strategy with minimum memory (NM) needed to complete the tasks, various tradeoffs 

existed between these two successful methods.  

In this chapter, I use a similar urban environment but now with multiple 

interacting agents, each having a capability and range of behavior comparable to the 

agent in Chapter 4. The goal here is to extend the results of Chapter 3 in three ways. First, 

the work here involves a more complex agent capable of more complex interactions with 

its neighbors. Second, agents are placed in an environment of greater realism to provide 

them more of a challenge than the abstract environment. Third, the task is enhanced from 

simple point-to-point movement to a task that can encompass the new agents’ possible 

behaviors. To take advantage of the different and more sophisticated actions available to 

the agents, a more challenging pursuit scenario is employed where a team of agents chase 

and seek to capture a moving target with capabilities on par with theirs. This classic 

112  



   

scenario is of interest because it requires multiple agents to accomplish. As defined 

below, no lone agent would be able to capture the target. Further, it potentially can be 

facilitated through communication between agents, coordination of behavior, and 

experiential knowledge (working memory) of the environment.  

The following questions are asked in this chapter: Given the urban pursuit 

scenario, the limitation of agent behaviors and the potential for interaction with one 

another and the environment, can improvement in the task be gained from such 

interactions? Can acquired knowledge of the environment improve performance, even 

when limited as in Chapter 3? Will different strategies of using working memory 

influence the efficiency of their movements? And finally, what combinations of these 

strategies will be optimal? 

It is hypothesized that communication is crucial for the agents’ efficacy, just as in 

the simple world of Chapter 3 where simpler agents communicated their position and 

velocity locally to one another, while coordination of agent behaviors and experiential 

knowledge (i.e. working memory) will both provide significant improvements in the 

ability of the team to capture the target. It is further hypothesized that, when the agents 

coordinate their behavior based on local information of one another’s positions and 

planned paths, even a limited memory can yield significant improvement in agent 

behavior, as demonstrated in the simpler situation of Chapter 3. Additionally, based on 

the results of Chapter 4, it is hypothesized that while both cumulative and local memory 

strategies will prove successful for this scenario, local memory strategies will be more 

helpful in situations requiring flexibility, such as the agents’ searching the environment 

for the unknown moving target. In contrast, cumulative memory behavior is expected to 

113  



   

be more successful in cases where the agents are required to coordinate their movements 

with one another, with the position of the target, and with the remembered features of the 

environment, such as when agents are attempting to surround the target. 

 

5.2 Description of Pursuit Scenario 

The pursuit scenario, also known as the “pursuit domain” and the “predator-prey 

domain,” is a highly studied multi-agent system that is particularly of interest in the study 

of cooperative behavior between agents (see Section 2.1). It can be used with a variety of 

intelligent agents and in different environments. It usually features multiple predators 

(traditionally colored blue) and one prey (traditionally colored red), respectively called 

agents and targets later in this work. In the original formulation, these agents exist on a 

grid. The predators are able to move only one cell vertically or horizontally at any time 

step, while the prey has the same limitation, but moves randomly [Benda, 1986]. Most of 

the interest tied to this domain has been in discovering optimal configurations of 

predators or cooperation strategies [Korf, 1992; Lenzitti, 2005; Zhao, 2005].  

This chapter describes two implementations of the pursuit scenario. The first is a 

pilot study developed in a 2-dimensional environment where agents exist as cells on a 

grid. This was done so features of the scenario could be explored in a computationally 

fast environment before extending them to the more complex agent and environment of 

Chapter 4. The second is in an urban environment similar to that described in the 

previous chapter, where agents and the target move in continuous space and have the 

same first-person view of a simulated environment as the agents in Chapter 4 have.  

 

114  



   

5.3 Pilot Study: 2-dimensional Pursuit Scenario Model  

 

Figure 5.1. Sample pilot-study environment. The light-filled circle represents the target, 
the dark-filled circles represent the agents seeking to capture it, gray cells represent 
buildings (environmental obstacles that obstruct agent vision), and black cells represent 
streets. 
 

This first model was developed to explore the effect of coordination and map 

knowledge in a simple and computationally fast environment where many repeated trials 

are possible for different parameter settings. This was done for the express purpose of 

discovering what behaviors might be useful for the more advanced agents and 

environment through initial testing in a simpler setting that captures the structure and 

115  



   

relationships of the more complex setting. A sample environment is depicted in Figure 

5.1. The environment is a discrete grid space measuring 64 by 64 cells. A discrete space 

was chosen because it allowed for a convenient method of determining a captured state 

for the target (i.e. when the target is surrounded vertically and horizontally by either 

agents or buildings) while preserving the structure of a grid which is superimposed over 

the continuous space in the more complex environment.  

Cells in the pilot study are occupied by one of the following: street, building, 

agent or target. These four cell types have the following properties. Street cells (black) 

are the open spaces in the environment. The target and agents can move freely onto street 

cells. They also have open visibility, meaning that the target and the agents can see across 

these cells for some distance unobstructed. Building cells (gray) are the obstacles in the 

environment. These obstruct the vision of agents and are impassable.  

In this cellular environment, there are five agents (dark-filled circles) and a single 

target (light-filled circle). At each time step, they choose to move onto a valid cell. The 

only valid cells in the environment are vertically or horizontally adjacent street cells. 

Agents are not allowed to share the same cell as one another, and they may not share the 

same cell as the target. Both the agents and the target can see as far as 20 cells, provided 

there are no obstructions (buildings or other agents). This view can be in all vertical or 

horizontal directions, or it may be limited to only the direction in which the agent is 

moving.  

The target moves before the agents and exhibits a simple evasive behavior where 

it chooses a velocity vector that is away from the average position of all observed agents. 

It then reduces this vector to the closest valid movement cell.  

116  



   

The goal of the five agents is to trap the target by surrounding it such that it has 

no valid movements. When this happens the scenario ends. This condition includes 

situations where the target may be surrounded by both agents and buildings. So long as 

there is no valid movement available to the target, the scenario ends with the agents’ 

success. There are no dead ends in the environment. Thus, at least two agents are required 

to capture the target, and it is impossible for a single agent to capture the target alone. If a 

simulation has run longer than 10,000 time steps, the scenario ends with the agents’ 

failure.  

The agents have the ability to communicate locally (within a radius of 20) with 

each other information about the target’s position when it is observed, coordinate their 

movements given the proximity of their positions, and use knowledge and memory of the 

environment. Initially, in the scenario, there may be no communication, if the target is not 

in the line of sight of any of the agents. Once the target becomes visible to an agent, it 

communicates the target’s location and velocity vector to all other agents within its 

broadcast range, a radius of 20 cells.  

The coordination of agent movement is affected by various influences. An agent 

may choose its course based on what is visible, the known locations of other agents, the 

broadcast location of the target, and the predicted path the target will take. Agents have 

the potential to exhibit collective movement using the forces described in Chapter 3 

(avoidance, matching velocity, and centering). These allow the agents to coordinate their 

movements based on one another’s position and direction.  

Additionally, because agents can locally broadcast the target’s position and 

direction when they see the target and because the target moves in a simple evasive 

117  



   

behavior attempting to avoid its pursuers, the agents have the ability to make predictions 

about the target behavior. When this capacity is used in the scenarios, the agents will 

predict the target’s movement patterns up to 15 cells away, based on the target position 

and velocity broadcast by an agent who has the target in view. Agents predict the target 

will move in a straight line until obstructed by an obstacle in the environment. At that 

point, the target could potentially turn one of two ways, and the agent chooses a 

prediction randomly. If there are many obstacles, the prediction may be inaccurate, but 

because the path is not too long, the agent will at least be heading in the correct direction, 

and may update predictions depending on what future broadcasts it receives regarding the 

target’s location. After creating a predicted path, an agent can then find the closest 

location along the path that it can reach before the target arrives there. The agent then can 

set its own velocity vector in that direction. If such a position does not exist, the agent 

then chooses a direction vector toward the target’s last known location. If the target is in 

view, the agent ignores the coordination behavior and only moves based on the target’s 

position. The following equation shows how the desired vector of movement is computed 

for agent j. 

jjjj

jj

i

ii

Py

jj

M

i
ij

a
N

i
i

mv
N

i
ji

c
j

tcpbfcv

xgt

gyxyg

gyxygyxy
p

xpp

xx
M
wv

N
wxx

N
wf

)())()(1(

)(

||||,

||||),()(
minarg

)(

))()()((
111

++−=

−=

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

⎪⎩

⎪
⎨
⎧

−>−

−≤−−−−
=′

−′=

−++−=

∈

===
∑∑∑

 

In these equations, N is the number of neighboring agents within communication 

range of agent j. M is the number of neighbors considered to be too close to agent j. The 

118  



   

w values are the weights for the centering (c), matching velocity (mv), and avoidance (a). 

P is the path agent j predicts the target will take given knowledge of its location and 

direction, g is the last known location of the target. b is 0 when agent j is not receiving a 

broadcast of the target’s position and velocity and 1 when it is receiving a broadcast. 

Finally, c is 0 when the target is not visible and 1 when agent j sees the target. 

In the above equations, f is the sum of all the forces due to centering, matching 

velocity, and avoidance. p' is the coordinates of cell y on agent j’s prediction for the 

target’s path P that is closest to j. If the agents are not allowed to make predictions about 

the target’s movement, then p' = g always. p is the vector between p' and j’s position, 

while t is the vector between g and j’s position. v is the velocity vector for agent j based 

on the presence or absence of the target in the agent’s view, the agent’s knowledge of the 

target’s location, and the agent’s prediction about the target’s movement.  

Once the velocity vector is computed, the agent must convert it into a valid 

orthogonal move in the environment. It chooses the closest orthogonal movement to the 

vector and updates its position in that direction. 

The agents can also be given a further vision limitation, stipulating that they may 

only see along the direction they last moved. This limitation forces the agents to operate 

under conditions more similar to the agent presented in Chapter 4, in which the agent 

only has a window of visibility that looks ahead and has no peripheral vision. Both this 

method and a method where agents can see in all orthogonal directions are implemented. 

Agents were also given varying degrees of knowledge of the environment in the 

scenarios. Agents could be given full knowledge of the map at the outset of a scenario, or 

119  



   

they could acquire memory as they explored the map, adding knowledge of obstacles to 

their individual maps when they were within a range of 1 cell of the agent’s position. 

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

No Prediction Limited View &
No Prediction

Prediction Limited View &
Prediction

Agent Strategies

M
ea

n 
C

om
pl

et
io

n 
Ti

m
e

No Flocking
wa = 0.1
wmv = 0.1
wc = 0.1
Best Combination

 

Figure 5.2. Results for the different strategies employed by the agents in the pilot study 
pursuit scenario where the agents do not initially have any knowledge of the map, but 
may acquire it. In the strategies described here, the agents can either predict or not predict 
the path of a target when they hear a broadcast of its location. Additionally, agents can 
either see in all unobstructed vertical and horizontal directions, or they can be limited to 
seeing in the direction they are moving (i.e. limited view). wc, wmv, and wa refer to the 
flocking forces of centering, matching velocity, and avoidance, respectively. While the 
overall time increases significantly for agents with a limited view, there is also a 
significant worsening when the flocking parameters of wc are used. In the case of a 
limited view, wmv also has an enormous detrimental effect. In all other cases, there is no 
significant difference between scenarios featuring the flocking parameters and those that 
do not. The error bars in this figure represent 95% confidence intervals. The best 
observed combination of the flocking parameters, although better for the case of no 
prediction, was significantly worse (P < 0.05) in the cases where the agents had limited 
views. 

 

Figure 5.2 displays the mean task completion times for the agents over 1000 trials 

for different coordination parameters in cases where agents were either limited to a view 

120  



   

along their direction of movement or could see in all orthogonal directions and either 

could predict the target’s future position or lacked the ability. This demonstrated that 

while the problem was significantly more difficult in the domain with a limited agent 

view, the strategies that employed the use of coordination by traditional flocking forces 

either had no significant impact or had a significant detrimental effect. This is probably 

due to the cramped nature of the environmental obstacles. These forces are usually 

employed where agents have a great deal of room to maneuver and see other agents, 

whether or not they exist in discrete or continuous space. When extending this scenario to 

the more complex agents, there is an added difficulty in that these collective influences 

could clash with the subgoal-driven behavior of the waypoint sequences produced in the 

cumulative memory. Instead of these influences, a method for coordinating agent paths 

will be necessary for the more complex agents in order to achieve the desired effect.  

Although in most scenarios the prediction of the target behavior produces a 

significant improvement, this too will not necessarily be compatible with the scenario of 

agents in the more realistic environment. The target in this environment has a behavior 

that is much easier to predict when it is in view. Its behavior is to move as far away from 

the pursuing agents as possible. When there is only one pursuer, this means the agent will 

likely only move in a straight line away until obstructed. In this scenario, while the agent 

may make inaccurate predictions, the points where it deviates from the actual target’s 

path are only at obstacles. In the more realistic environment, the target has a greater 

tendency to turn when being followed in an attempt to confound and lose its pursuers. 

This makes accurate prediction much more difficult for any agents receiving broadcasts 

121  



   

of the target position. Yet with a new method for coordinating agents and the ability to 

remember the environment as they are exposed to it, significant improvement is possible.  

Among the main results of this pilot study, it was learned that when restricted to a 

grid environment with many obstacles, agents did not significantly benefit from using the 

traditional coordination as employed in Chapter 3. This became even more pronounced 

when the agents were given a limited line of sight (akin to the limits the agents who 

receive 2-dimensional images of the 3-dimensional environment experience). In some 

cases certain influences (those of centering and matching velocity) worsened the 

performance. This indicates when dealing with a multi-agent system of more complex 

agents in the more realistic environment that some of these forces are not relevant for this 

task and new methods for coordinating agents are required. 

 

5.4 More Realistic Pursuit Scenario Model 

In order to accommodate the multiple agents in the scenario and have them 

accomplish the new desired goals, some alterations to the model environment and agent 

structure described in Chapter 4 had to be implemented for the sake of computational 

efficiency. Some of the features that follow have been simplified in consideration of time 

and memory constraints in some cases, but the parts that have been changed were 

intended from the beginning to be either adjustable or modular pieces. Any of the 

simplified features could be retained, and implemented again, if running many trials in a 

reasonable amount of time were not an issue. In contrast, other features, such as inter-

agent communication and coordination, have been added because they only apply to 

scenarios where there are multiple cooperating agents and also opponent agents.  

122  



   

 

5.4.1 Scenario Specification and Environmental Changes 

The pursuit scenario when implemented in this model has the majority of the 

same features seen in the previous section. Again, there are five agents and a single 

target. They move in real-valued space, but as in Chapters 3 and 4, there is a grid of 

environmental features overlaid on this space. This is a 32 by 32 grid. Because agents 

exist in both real-valued space and grid space, they can potentially occupy the same cell 

as one another, but they are restricted from passing through one another since each agent 

has mass in the environment. The scenario ends when one of two criteria is met. If the 

time counter has reached 5000 time steps, the scenario ends in failure for the agents and 

success for the target. At any point before that, if the agents manage to surround the 

target such that there is either a building or agent within one cell north, south, east, and 

west of it, then the target is said to be captured and the scenario ends with success for the 

agents and failure for the target. 

In the environment of the previous chapter, the city was made up of different 

types of buildings separated by roads and surrounded by a wide-open grassy countryside 

on three sides and a body of water on the other. This scenario requires a more contained 

setting in order to limit the run time of the scenario. Additionally, it means that the target 

cannot escape the world, and must evade the agents throughout the scenario. Only 

buildings and roads are used, and the city perimeter consists of an unbroken wall of 

buildings. As in previous scenarios, buildings are impassable and roads are passable. As a 

natural result of using a first person perspective for each agent, agents cannot see through 

123  



   

buildings but can potentially see any distance along the road, limited here only by their 

ability to recognize an object. Figure 5.3 displays a snapshot of the new environment. 

 

5.4.2 Simplification of Visual and Verbal Inputs 

Several changes were necessary to the model to make it run more quickly and 

efficiently in the case with multiple agents. This was necessary for two major reasons. 

First, because there were now five agents (plus a target agent) running concurrently in the 

environment, this meant that the image creation from the camera, which took the longest 

time of any operation at any time step, would take several times longer. For an agent in 

Chapter 4, a typical time step takes about 500 ms. This would approximately require 3 

seconds per time step for the new scenario. Second, the task to be performed here for the 

agents has a high termination maximum (5000 time steps in this model) and there could 

potentially be a lot of variance in performance because agents are pursuing a moving, and 

evasive, target. Sometimes they might make a capture quickly by chance, and other times 

take a long time or have no success. Thus, many trials may be needed to get accurate 

means for the different strategies explored.  

The image resolution produced by the camera for each agent in the environment 

has been reduced from 512 by 512 pixels to 128 by 128 pixels. This means that the image 

processing for each agent will be much faster, and the total real time devoted to a 

scenario time step would be reduced. A typical time step for the entire system, the target 

and all agents, takes about 470 ms, on the order of the system in Chapter 4. This 

reduction does not have a very detrimental effect on the agents’ ability to segment the 

images either, as the resolution of the scene-segmenting grid (visible in Figure 5.3b) is 

124  



   

reduced from 32 by 32 to 8 by 8. Since each cell is based on the average pixel values 

within it, these values do not experience much change in the reduction of the image, and 

the agents can still effectively detect which areas in the image are streets, buildings, and 

objects. 

 

 
a.     b. 

Figure 5.3. Sample snapshots of the pursuit environment from the perspective of an 
agent. The agent receives the raw image shown in (a) and processes the image using its 
trained self-organizing maps to segment the scene into buildings (labeled “B”), roads 
(labeled “R”), and the target object (labeled “O”). Contiguous blocks of cells of the same 
type have been outlined in white. 

 

The complexity of passing verbal and visual information through many networks 

also consumes a great deal of time in this model. For the purposes of running these tests, 

many of the modules that handled this were simplified to allow information to enter and 

exit the agents more quickly. The accuracy can be trained to be very high for these tasks 

using neural networks. Trained networks similar to those that appear in the previous 

chapter could be retained and trained to do the processing of vision and commands. The 

visual simplification, which is possible in this model environment, involved allowing the 

agent to detect whether an object was another agent or the target from just unique color 

information, as opposed to processing a “close-up” thumbnail to reach the same result. 

Agents are a slightly different color than the target, and the agents in this scenario are 

125  



   

allowed to immediately recognize the difference. The verbal simplification allowed 

agents to directly convert command sentences received into the appropriate concept 

memories and behaviors. It also allowed them to transmit information directly to one 

another, which, while not a feature in the model of the previous chapter, relates to their 

spoken output. Agents will be communicating a good deal of information to one another, 

so this would be very time consuming to model with neural networks over many trials. 

The agent environmental step sizes per time step in the model described in the 

Chapter 4 were fairly small (0.05 in the real space). Increasing this value, allows the 

agents to move much more quickly, while still being able to accurately interpret their 

environment. Agents now use step sizes of 0.25, while the target moves slightly faster 

with step sizes of 0.26.   

There were also some changes needed so that the model could function. In the 

environment of Chapter 4, there was only one agent and thus no need to model it 

physically in the space because the agent would never see itself. However, in this model, 

it becomes crucial that agents have a physical form, not just so they do not pass through 

one another, but so that they are able to see one another in their first-person perspective 

images and are able to recognize the identity and location of the other mobile objects. 

The agents and the target were given forms which are placed in the environment, 

centered at the location specified by their coordinates and oriented in the appropriate 

direction (Figure 5.3a shows a target from the point of view of an agent, and the outline 

of this object is labeled “O” in Figure 5.3b). As the agent or target position or angle is 

updated in each time step, the corresponding object in the environment is updated as well. 

 

126  



   

5.4.3 Agent and Target Behaviors 

The agents and target have behaviors dictated by the commands issued to each of 

them at the beginning of a scenario. The agents are each issued two commands. They are 

told to patrol the city and to find and pursue the target. Patrolling the city functions as 

described in Chapter 4, but which memory strategy is employed determines the specific 

movement of the agents. Finding the target once again causes the agent to announce it has 

seen the target when the target is visible, but there is an added set of behaviors that occur 

when this happens, including pursuit.  

If agents are given the ability to communicate, then when an agent sees a target, it 

broadcasts the target’s location to all other agents within a broadcast range (15 

environmental cells in these scenarios). It will also adjust its normal patrol behavior. 

When an agent sees the target, it will follow the target in a manner depending on what 

memory strategy is in use (described below). The agent also remembers seeing the target, 

so if the target should turn onto a side street, the agent will continue to the last estimated 

location where he saw the target and then turn to match the last remembered angle of the 

target. If this succeeds in returning the target to view, the agent will continue the process 

over again. If it fails, then the agent returns to a regular patrol of the environment, 

looking for the target it lost, unless it receives a broadcast from another nearby agent 

about the target’s current location.  

When an agent receives a broadcast of the target’s location, as long as the agent 

receiving the broadcast does not also see the target, he will not behave as described 

above. Instead, the agent treats this as a command to go to the broadcast location to assist 

in trapping the target. It will then move depending on the agent memory strategy in use 

127  



   

for this scenario. The planned movement of other agents and remembered portions of the 

environment’s layout may also affect how the agent moves. 

The target is pre-programmed to follow two basic commands, which determine its 

behavior for the entire scenario. It is essentially told to patrol the city and evade the 

agents. The target is oblivious to the communication between agents and cannot 

communicate with them. Essentially, the target is playing the scenario as the solitary 

agent in the previous chapter, albeit with moving enemy units. Unlike the agents, the 

target behavior rules are the same across all tests, which allow for a baseline in 

determining how the changes in communication, coordination, and memory affect the 

agent team. Whereas some memory strategies for the agents below will give them limited 

chart memories, the target has an unlimited memory, although its memory of obstacles is 

temporary since agents rarely will stay in the place the target saw them for long. These 

two commands in concert ensure the target is always moving and attempting to get out of 

sight of its pursuers. 

 

5.4.4 Agent Strategies 

The agents have different strategies that they can use to work together or improve 

their performance in capturing the target. These include an ability to communicate 

information to one another, such as the position of the target. They also can coordinate 

their movements in the environments when attempting to surround the target, making a 

capture more likely. In addition to working together, they can have advantages given by 

different strategies of managing memories, such as the successful local and cumulative 

memory management strategies described in the previous chapter.   

128  



   

 

5.4.4.1 Agent Communication 

Basic agent communication consists of broadcasting the location of a target when 

the target is visible to all other agents within its broadcast radius. This broadcast location 

is computed from the first-person perspective image pixels as the approximate location of 

the object in the environment as described in the previous chapter (though the k in the 

equation is adjusted to 238.9 for the smaller resolution in this scenario). While not a 

completely accurate position of the target, it is usually quite close when the agent is close 

to the target. If the agent is far away, the accuracy is reduced, but this broadcast position 

can still point ignorant agents in broadcast range toward the correct general area, giving 

them a greater chance of finding the target and making their own broadcast. 

The other forms of communication that constitute coordination are described 

below. 

 

5.4.4.2 Local Memory vs. Cumulative Memory  

Agents retain the ability to use local and cumulative memory strategies to help 

them navigate the environment smoothly, with very few or no collisions with the 

buildings. This potentially has the added bonus of giving the agents the ability to plan 

routes using their acquired knowledge of the map in the case of the cumulative memory 

strategy. 

When the agent is using a strategy of local memory, the method of pursuit is fairly 

simple. If the agent has the target in view, it computes the direction of the target and 

places a single waypoint in a position that will get it closest to the target. If the agent 

129  



   

recently saw the target and remembers its last known location and direction, the agent 

will continue in the process of generating and approaching waypoints toward that 

location until it gets close enough (less than half a cell away). When it reaches the last 

known location of the target, it matches the target’s last known direction angle. The agent 

does this because this operation gives it the best chance to see if the target is still visible 

and continuing on the same heading that the agent last remembers seeing the target 

choose.  

If the agent does not see or remember the target, but hears a broadcast of its 

current location, the agent treats this situation as a command to go to that location. The 

agent drops a waypoint in the closest adjacent cell that is valid and takes it to the 

broadcast target location. As the target’s position updates in the broadcast, assuming 

another agent is in pursuit of it, then the agent hearing the broadcast will continue to 

move toward waypoints that are approaching closer to the changing target location until it 

either sees the target or moves out of range of the broadcast. If the broadcasts cease, but 

the agent remembers a broadcast target location, it will continue to approach that location 

until a new broadcast is issued, or until it sees the target.  

At this point, a small change was made to the range of local memory around the 

agent, reducing it from five by five to three by three. This was done to facilitate the 

pursuit of the target. When there is a smaller window, memories are only added when 

they are most necessary and more accurate, that is, when they are closer to the agent. 

When the agent is using a strategy of cumulative memory, the method of pursuit 

is different. If the agent has the target in view, it computes a path of waypoints to the 

target’s position using the method described in the previous chapter and follows them. If 

130  



   

the agent recently saw the target and remembers its last known location and direction, the 

agent generates a path of waypoints to that location. When the agent reaches the last seen 

position of the target, it matches its last known direction angle.  

If the agent does not see or remember the target, but hears a broadcast of its 

current location, the agent generates a path of waypoints to that location that it will 

follow. Because the broadcast target location the agent receives will potentially update as 

an announcing agent tracks it through the environment, the waypoint paths generated by 

the agents relying on the broadcast information also are permitted to update. Again, if the 

broadcasts cease, but the agent remembers a broadcast target location, it will continue to 

that location until a new broadcast is issued or the target is visible. 

 

5.4.4.3 Agent Coordination 

While the agent’s computation of its next waypoint and paths of waypoints is not 

altered in the previous sections from what was described in the previous chapter, because 

there are now multiple agents in the environment, they can coordinate their movement. In 

Chapter 3, this coordination was achieved through accelerations that allowed the agents 

to move in a flock together. However, because of the cramped nature of the current city 

environment, where agents are less apt to share the same roads as the other agents, this 

coordination is less likely to prove beneficial. This is particularly the case with the very 

limited view angle of each agent. This view angle, when coupled with the many building 

obstacles, essentially means that the agent can only see straight ahead. The results of the 

pilot study, particularly when agents have their view limited to straight ahead in that 

domain, support this. 

131  



   

Nevertheless, the avoidance acceleration could prove useful in this scenario, 

particularly in cases where the agents might collide and have difficulty navigating around 

one another. It could also help to separate them, allowing them to spread out more and 

cover more of the environment. The radius of this avoidance influence is typically kept 

quite low. If too high, it can cause agents to divert unnecessarily. Because this could 

interfere with the pursuit of a target, the avoidance influence is only factored in when the 

agent does not see the target and is not approaching the last place it remembered seeing 

the target. If the agent is close enough to another agent to experience this influence, then 

it alters its course to a waypoint that is in a valid adjacent cell that is closest to its 

avoidance vector. The avoidance vector is computed in the same manner as is described 

in Chapter 3, with the exception that the agent only avoids the closest agent in its 

avoidance radius. 

In addition to this influence, there is another method of agent coordination that 

can be implemented in the case of a cumulative memory strategy. Whereas the influences 

described in Chapter 3 cannot be applied to agents that are computing paths, the agents 

can attempt to coordinate their paths so that they can better capture the target. The 

chances of a successful outcome are increased if the agents are approaching the target 

from different directions. Put another way, the agents are able to do better if they do not 

take the same paths toward the agent when they hear a broadcast. If the paths can be 

coordinated so they cross as little as possible, then the agents’ performance should 

improve. This can be achieved by having an agent broadcast its planned path when the 

agent has planned a path to the target’s location, whether it was seen, remembered, or 

heard through a broadcast. Agents in range can then take into account the paths of other 

132  



   

agents when planning their own paths. When planning a path, the cost value of waypoints 

increases when a location is on another agent’s path as well. Instead of the base cost 

value of 1, location costs 6 to add to the agent’s path, making it more likely the agent will 

attempt to find another direction from which to approach the target. Additionally, the cost 

of any cell at the end of another agent’s path that is adjacent to the broadcast target’s 

current location has a cost of 16, increasing the chances that agents will look for valid 

paths that approach the target from another direction, even if they are substantially 

longer. 

 

5.4.4.4 Memory Limitation 

In addition to the strategies intended to improve the performance of the agents, a 

memory capacity limit from Chapter 3 can be examined here as well. In Chapter 4, and so 

far in this description, an agent with a cumulative memory is able to remember 

everything it has seen, and an agent with a local memory is able to remember only things 

that are at most one cell distant from it. Agents can also be given a limited memory that 

randomly eliminates memories from the cumulative map storage over time as it updates 

with new memories. This resembles the behavior of the agents of Chapter 3 that were 

able to experience improvement with even a small, limited working memory. The 

hypothesis is that given the ability to make the cumulative memory plans of waypoint 

paths, the agents with a limited memory can do as well as one that remembers the entire 

map. Further, it is hypothesized that a significant improvement will be found due to 

memory and not just the coordination described in the previous section. 

 

133  



   

5.5 Results  

5.5.1 Experimental Methods 

The following section describes the results for three scenarios. The first two 

scenarios are single agent scenarios meant to explore the agent behavior for two key 

commands in the pursuit scenario. These were run using a single agent in the 

environment as described in Chapter 4. Unlike the agents in the pursuit scenario, the 

single agent in each of these still operates using the modular neural network to govern 

incoming commands and visual information, and the image resolution is 512 by 512.  

The first scenario is a case where the agent is told to patrol a district, and the three 

possible memory strategies (NM, LM, and CM) are tested. There are twenty runs for 

each. The initial position is varied for each individual run, but always remains a position 

on the district’s perimeter. The same set of initial positions are used for sets of runs for 

each memory strategy. The maximum time limit of this scenario is 5000 time steps. 

The second scenario is similar to the scenario in Chapter 4 where the agent is told 

to go to different locations, returning to a home base between commands. The difference 

is that in this scenario there are hostile obstacles blocking certain paths. Agents using 

each memory strategy experience twenty different runs. The initial position is consistent 

for all runs of this scenario, but the sequence of locations to be visited varies across the 

twenty runs. The sets of runs where different memory strategies are applied are identical, 

and the maximum time limit to this scenario is 15,000 time steps. 

The third scenario is the multi-agent pursuit scenario. This features the scaled-

down agents described in Section 5.4.2. Each agent receives a sequence images at a 

resolution of 128 by 128 pixels. Each set of trials consists of 100 separate runs of the 

134  



   

scenario (each with an allowed maximum of 5000 time steps). While the setup for 

individual runs differs from one another, the same set of trials is used for each of the 

agent teams tested. Additionally, the agents and the target are not placed completely 

randomly in the environment. The target always begins in the center of the map, and one 

agent is always placed so that it can see the target from the beginning. This eliminates the 

need for the agents to find the target from the beginning. This scenario can vary greatly in 

how long it would take, though in scenarios it frequently happens that the agents lose the 

target and have to find it again. This is done for the purpose of making the scenario run 

more quickly. The other four agents are each placed randomly within the four different 

quadrants of the city, allowing them to be spread out from the beginning. None of these 

other agents begin the scenario seeing the target. 

 

5.5.2 Single Agent: Patrolling an Area 

In this scenario, a single agent begins at an arbitrary position near the periphery of 

the Historic District of the city. It is then instructed to “Patrol the Historic District.” The 

agent interprets this command as it should cover as much area in the district as possible, 

and, if possible, all reachable locations of the district. This scenario is performed twenty 

times for each strategy under identical initial conditions. The only difference is the 

strategy the agent employs and the memory of the environment available to it. Because 

the scenario is not always guaranteed to terminate for some strategies, a maximum time 

limit of 5000 time steps is imposed.  

Figure 5.4a displays the fraction of the Historic District’s area that was patrolled 

within the time limit. Along with this, an accuracy measure is also computed. This 

135  



   

measure is accumulated from the visual information available to the agent, in a manner 

identical to the way the CM agent constructs its map. At the end of the scenario, it 

represents a picture of an overhead view of the environment at the resolution of cellular 

space. This is identical to the CM agent’s chart. This “picture,” though collected from the 

visual information of all agents, is not available to the LM or NM agents to affect their 

movement strategy, but is instead used for the purpose of external assessment of what the 

agent thought it saw. This accuracy is a measure of the percentage of area in the Historic 

District that was identified correctly (such that cells marked streets are streets in the 

environment, and those marked buildings are buildings). From this measure, the chart 

also displays the relative error. This is an error computed with the following equation: 

a
aa )( ′−  

where a is the number of cells mapped (i.e. no longer labeled unknown) and a' is the 

number of cells correctly mapped. This allows us to see how accurate the strategy was 

regardless of how much area was mapped. 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

NM LM CM

Memory Strategy

M
ea

n 
Fr

ac
tio

n 
of

 A
re

a 
Pa

tr
ol

le
d

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

NM LM CM

Memory Strategy

M
ea

n 
R

el
at

iv
e 

Er
ro

r

 
a.     b. 

Figure 5.4. Results for the command of an agent instructed to “Patrol the Historic 
District.” a. Displays the mean fraction of area in the historic district patrolled with each 
of the strategies. The map accuracies of the different strategies (not shown) are very close 
to these values. The error bars here represent a 95% confidence interval. b. Displays the 
relative error of the different strategies for this scenario.  
 

136  



   

The CM strategy was the only strategy to finish within the time limit, and ended 

with close to 100% accuracy and 100% of the relevant area patrolled. The cells missed 

are interiors of larger buildings of which the agent has seen the entire outside skin and, 

thus, cannot find a path to the cell. On average, this strategy took 2611 time steps. The 

LM strategy covered less, and the NM did much worse than either of them in both area 

patrolled and accuracy. The NM agent’s relative error is also a power of ten higher. This 

high error is related to the NM agent’s tendency to collide with buildings. During 

collisions, the agent’s view is blocked by a building and the agent can mistakenly judge 

more distant locations as buildings when they are in fact passable and just not visible.  

It should be noted that this scenario is naturally inclined to be best suited for the 

agent able to map the environment (using the CM strategy), because this is the only 

strategy guaranteed to terminate. It is possible, though increasingly unlikely as time goes 

on, that the LM agent would never complete the task. Because of its total lack of 

memory, it is highly likely that the NM agent would never complete the task. The NM 

agent often just covers the same corridor of the district over and over again because it has 

no memory of being in locations it has even recently left. The low fraction of area 

covered by the NM strategy indicates it is a poor choice for this command when 

compared to either the LM or the CM strategies. The other two strategies however, will 

be examined in the pursuit scenario.  

 

5.5.3 Single Agent: Sequence of “Go to” Command with Hostile Obstacles 

This scenario operates much the same as the scenario in 4.6.5, but the crucial 

difference is that three stationary “hostile” obstacles, or “enemies,” have been placed at 

137  



   

points in the environment likely to be in the agent’s path. A sequence of commands is 

issued, along with instructions to return to the home base between each command, but the 

agent is also instructed to evade the hostile obstacles. The number of locations where the 

agent must visit has been reduced to three in this scenario, and the maximum time limit 

has been dropped to 15,000 time steps. The order of the “go to” commands was varied for 

each of the twenty tests run to acquire these averages. The locations of the coordinates for 

each district and the location of the home base were not varied. 

0

1000

2000

3000

4000

5000

6000

1st Command 2nd Command 3rd Command

Command Order

M
ea

n 
C

om
pl

et
io

n 
Ti

m
e

NM
LM
CM

 

Figure 5.5. This chart shows the scenario where the agent has been given “go to” 
commands similar to the two previous figures’ scenario, but the agent is also required to 
“evade enemy tanks.” The error bars represent a 95% confidence interval. 

 

Figure 5.5 displays the results for the three different movement strategies for the 

successive commands to three locations. The CM strategy shows significant 

improvement from one command to the next as it learns the map. The NM fails to 

138  



   

complete all three commands within the time limit in 55% of its trials. Only the 

successful trials are included in the figure’s data. 

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

No enemies With enemies

Scenario Type

M
ap

 E
rr

or NM
LM
CM

 

Figure 5.6. This figure shows the error rates of the maps produced in each of the three 
memory strategies for the “go to” command sets, with and without enemies to evade. An 
error is when the agent maps a location incorrectly (i.e. maps a building where a road 
should be). 

 

In both this scenario and the related scenario from Chapter 4 without hostile 

objects, we can compare how well the agents did at interpreting the environment, using 

the same picture collected during the patrol scenarios. Again, in these cases, though this 

chart of the environment was being produced from visual information, the LM and NM 

strategies did not have access to the information to influence their movement. Figure 5.6 

shows the relative errors (computed as in Section 5.5.2) for the different strategies in the 

two scenarios. In both cases, the LM shows the lowest error, while the NM shows a much 

higher error. 

Finally, Figure 5.7 displays the measure of peril the agents faced from the hostile 

obstacles. The obstacles are considered to be dangerous if the agent is in their line of 

sight within a range of 20 cells. The obstacles in this scenario were taken to be tanks, 

139  



   

which would be dangerous from a great distance. In these results for this scenario, the 

NM strategy varies wildly, the CM strategy shows significant improvement, and the LM 

strategy has the worst mean. Note that the higher the value, the more frequently the agent 

is in view of the hostile obstacles. This tells us that the target providing the most 

challenge in evasive behavior will use a cumulative memory strategy for that command. 

0

100

200

300

400

500

600

700

800

900

1st Command 2nd Command 3rd Command

Command Order

M
ea

n 
Ti

m
e 

St
ep

s 
A

ge
nt

 in
 H

os
til

e'
s 

LO
S

NM
LM
CM

 

Figure 5.7. This shows the average number of time steps the agent was in the line of 
sight of a tank, ordered by the commands given. The error bars represent a 95% 
confidence interval.  

 

5.5.4 Multiple Agents: The Pursuit Scenario 

For the agents receiving a sequence of images of the more realistic environment 

as input, various pursuit strategies were employed to test how well the agents would 

perform in their environment. These were meant so show a gradual improvement in 

performance as certain features were included. These features were communication 

between the agents, changing the memory strategies used, and adding coordination. 

140  



   

While these features were varied between the agents, the target remained the same in all 

cases, following the behavior detailed previously.  

While the strategies for the agent team varied, the target’s behavior is consistent 

across all trials. The target will evade agents using a cumulative memory strategy. As the 

results demonstrated in Section 5.5.3, this method is more effective for staying out of 

view than the local memory strategy. However, for its patrol behavior, the goal of which 

is to give the target some semi-random movement through the environment when not 

pursued, the target uses a local memory strategy. This gives its movement more 

flexibility since it is not trying to chart the city and does not care about backtracking over 

observed territory. 

The baseline scenario featured five completely independent agents that were 

assigned the goal to find and capture the target while patrolling the city. There is no 

communication between agents in this scenario. Therefore, there is no coordination of 

agent positions or paths. Agents may visually perceive one another in the environment, 

but it does not influence their behavior. The agents use a local memory strategy for their 

patrol and for their pursuit behaviors. Given the scenario limit of 5000 time steps to 

complete the task, the agents were able to capture the target in 70% of the trials. The 

mean completion time for this set is 2904 time steps. This indicates that while agents can 

solve the problem if each is given an individual goal, there is still room for improvement. 

The first addition made to the agents, hypothesized to be crucial for their efficacy, 

is communication. Once enabled, agents that see the target can broadcast the location and 

agents that hear it have some knowledge of where to intercept the target. This is the only 

difference between this scenario and the previous one, and the results here were much 

141  



   

improved, with the agents experiencing a 97% success rate and a mean completion time 

of 804 time steps, which is a significant improvement (a paired t-test reporting P < 0.05) 

over the original mean of 2904. A slight improvement in the mean completion time is 

also gained when a small agent avoidance influence of radius 1 is included in this 

scenario. The accuracy rises to 98%, and the mean completion time becomes 744. 

0 500 1000 1500 2000 2500 3000 3500

Mean Completion Times

No Communication, LM Strategy
Communication, LM Strategy
Communication, LM Strategy, & Avoidance
Communication, CM Strategy
Communication, LM Patrol, CM Pursuit

 

Figure 5.8. Chart of the mean completion times for agent teams using several different 
strategies. The worst features no communication between agents (70% success rate). 
There is significant improvement when agents adopt communication. There is further 
improvement when the agents adopt a cumulative memory strategy for either all their 
behaviors or just the pursuit behavior. The error bars here represent 95% confidence 
intervals. 

 

The scenarios described so far have been using local memory strategies for both 

the patrol behavior and the pursuit behavior when an agent either sees the target or knows 

of the target position. Either or both of these strategies can be changed to using a 

142  



   

cumulative memory strategy. While a cumulative memory strategy is not predicted to 

help the patrol much, it should improve the performance of the pursuit, because agents in 

this behavior are actively trying to get somewhere as quickly as possible, as opposed to 

simply exploring. When the cumulative memory strategy is applied to both patrol and 

pursuit behaviors, the accuracy increases to 99% and its mean completion time decreases 

to 491 time steps. When the cumulative memory strategy is applied to only the pursuit 

behavior, all trials successfully complete before the time limit, and the mean completion 

time is 556 time steps. Both of these mean completion times are a significant 

improvement over the local memory strategy, but do not have a significant difference 

from one another. As expected, given what was learned in Chapter 4, a cumulative 

memory strategy was able to improve upon a strategy where agents were able to acquire 

less information. However, it is apparent that this is also useful in a scenario where 

multiple agents are performing a task together. Figure 5.8 shows these compared results. 

The question remains as to whether coordination is a useful feature for the agents, 

so the scenarios that used cumulative memory were also tested to see what improvement 

could be gained from using an avoidance influence and from allowing agents to broadcast 

their paths so that they could coordinate in an attempt to surround the target. Figure 5.9 

shows the results for these influences on these scenarios. 

The results here differ greatly depending on the memory strategy used. In the 

scenarios where cumulative memory is used for both of the two major behaviors of the 

agents, adding these coordination methods, either had no effect (as with the path 

coordination) or made the performance significantly worse (as in those cases with an 

avoidance influence). However, when a local memory strategy is used for the patrolling 

143  



   

behavior, both coordination methods and their combined use yield a significant 

improvement. The benefit of these coordination methods appears to be mitigated when 

using a cumulative memory patrol. For the path coordination, this is likely due to the 

interference between patrol paths and pursuit paths, which influence each other though 

they themselves do not benefit from the interaction. The avoidance influence also 

evidently interferes with the patrol behavior, probably because the agents create distant 

goals for themselves when patrolling using cumulative memory. When paths cross, it is 

more difficult for two agents with different goals to reconcile them with just this 

influence. This situation is less likely to occur when agents are in pursuit of the target, 

because if they are in close proximity to one another, they are likely heading in the same 

direction and do not have conflicting paths. 

0

100

200

300

400

500

600

700

800

900

1000

No Coordination Avoidance Influence Path Coordination Both

Coordination Method

M
ea

n 
C

om
pl

et
io

n 
Ti

m
e

CM Pursuit, CM Patrol CM Pursuit, LM Patrol

 

Figure 5.9. This figure shows the mean completion times for the different coordination 
methods in scenarios with different memory strategies involving cumulative memory. 
The first columns feature no coordination of the agents apart from communication, the 
second columns add an avoidance influence, while the third columns adds the ability to 
generate paths dependent on other agents’ paths and positions. The fourth column set is 
for scenarios where both coordination methods are employed. The first column in each 
set features cumulative memory pursuit with local memory patrolling, while both 
behaviors use cumulative memory in the second column in each set. 100% of these 
results completed the task within the time limit except for the cumulative memory pursuit 
and patrol strategy with only the avoidance influence, where 99% of the tasks were 
completed. The error bars here represent 95% confidence intervals. 

144  



   

 

The above results demonstrate that there is an enormous benefit to 

communication and significant benefit to coordinating the agent behavior and to using a 

memory strategy with more information. This upholds the advantages of agents with a 

greater memory capacity observed in Chapters 3 and 4. Yet some questions still remain. 

First, while the avoidance influence is independent of the effects of individual memories 

since it is based on the proximity of agents to one another, path coordination is much 

more inclined to rely on these memories, which help determine the shape of the paths 

taken. The question that remains is whether the benefit seen with that coordination is due 

only to the coordination, or whether the inherent presence of memories, influencing the 

paths, adds to the improvement. This can be tested by running a scenario that features the 

minimum amount of memory necessary for the agents, which includes four cells (i.e. 

knowing their location and the three cells in front of them), against scenarios with 

increasing memory capacities, all of which use the path coordination. 

A scenario was tested in which agents used local memory strategies for patrolling 

and cumulative memory strategies with path coordination for pursuit, but with a 

requirement that a random old memory be removed when adding new a memory to the 

agent map based on the visual data if the memory capacity is exceeded. This effectively 

kept a limit on the size of the agent memory, though the contents could change and be 

updated as the agent moved through the environment. During this test, as the capacity 

was increased by a factor of two, the mean dropped. By the time the threshold for 

removing old memories is 32, there was a significant improvement (a paired t-test 

reporting P < 0.05) over the scenario with the minimum memory and no significant 

145  



   

difference between its performance and that of the scenario with unlimited cumulative 

memory. These results, depicted in Figure 5.10, uphold what was observed in Chapter 3, 

that a limited, incomplete memory of the environment could improve performance.  

0 200 400 600 800

Mean Completion Time

4 memories
8 memories
16 memories
32 memories
Unlimited memories

 

Figure 5.10. Results of the scenarios featuring limited memory. These results improve as 
the agent memory capacity is increased, allowing the agent to remember more cells. Once 
the agents can remember 32 cells, it is performing on the same level as the agents with 
unlimited memory. All trials of these scenarios completed within the given time limits. 
Not included in this chart are the results where the agent has a limit of no memory cells. 
These agents perform much worse, with below 100% accuracy and a mean completion 
time in the thousands. The error bars here represent 95% confidence intervals. 
 

Figure 5.11 displays a sample composite map showing a single time step of the 

remembered cells of agents with limited memories, which cover a portion of the 

environment around them. Even though agents do not tend to remember distant locations 

given the frequent updates of memory, the collective memory has an impact because the 

agents are often trying to find ways to effectively spread out and surround an area they 

have recently explored and where they are told the target is estimated to be located. 

146  



   

Knowing more than a few features is very useful for this, and shows that a memory 

strategy located somewhere between what I have termed local and cumulative, which 

resembles the simple memory of Chapter 3, is just as effective as the CM strategy. 

 

 

Figure 5.11. This is a composite depiction of the maps constructed by each of the agents 
in the environment. The memory limit is 24 in this case. The target’s memory, which is 
always unlimited, is not displayed. Black areas are streets remembered by at least one 
agent, gray areas are buildings remembered by at least one agent, and white areas are 
unknown to anyone. Some areas that are in between the normal shades of black and gray 
are places where the agents have differing memories of what is there. Agents are 
indicated by numbered boxes outlined in white. The box numbered 0 is the target. The 
agent numbered 2 is pursuing the target, and agents 1, 4, and 5 are in its broadcast range. 

147  



   

 

5.6 Discussion 

There are three main conclusions to emerge from the computational experiments 

of this chapter. First, the results support the hypothesis that adding an individual working 

memory of the obstacles encountered by an agent team can significantly improve both its 

success and efficiency in accomplishing the pursuit scenario, even when extended to this 

environment of greater realism and for a team of agents with environmental information 

limited to a sequence of 2-dimensional images of the 3-dimensional scene. This was 

found to be the case even when the agent team was already benefiting from 

communication and coordination. Second, the results also support the hypothesis that 

even when the size of this individual working memory is limited, the agent team still 

experiences a significant improvement in its efficacy and efficiency. Third, the results 

indicate that a different memory strategy for different tasks works best for the agent team. 

Local memory is found to be better for the patrol behavior, while cumulative memory 

strategy is found to be better for the pursuit behavior. 

This chapter presented a pursuit scenario for two models that combined features 

presented in the earlier chapters to show how they would work together when applied to a 

scenario requiring multiple agents. The first model is a simple discrete space 2-

dimensional model and was used to do preliminary testing for what might or might not 

work in the more complex model. These included features such as communication, agent 

coordination, and path prediction. While communication was extendible to the more 

realistic model, most coordination influences and prediction could not be extended, given 

148  



   

the limitations on agents’ knowledge of the environment and the difficulty in tracking the 

more evasive target in the more realistic model.  

The bulk of the chapter was concerned with the more challenging environment 

viewed in a sequence of images, an extension of the previous chapter’s model. First, the 

efficiency of the strategies was examined for some key behaviors in the pursuit scenario. 

It was determined that the cumulative memory strategy was most effective at covering an 

area during a patrol, but that the local memory strategy, although it could not remember 

all places it visited, also covered a wide area. Yet with no memory, the agent was unable 

to effectively patrol much of the environment except for the same corridor again and 

again. This indicated that the local and cumulative strategies had potential to be very 

useful in the pursuit scenario, while the strategy with no memory would have little 

success. 

The cumulative memory strategy was also demonstrated to have a substantial 

advantage when it came to remaining out of the line of sight of hostile obstacles in the 

environment. This is because it remembered the location of these obstacles even after it 

has seen and successfully evaded them. In the case of “no memory” and “local memory” 

strategies, these objects are evaded and then forgotten. They can potentially return to a 

road where they are seen without seeing the hostile obstacle and remain in its line of sight 

without realizing it. Yet the agent with a cumulative memory strategy is able to recall the 

positions of the obstacles when they are distant, and it can evade them even without 

seeing them again. While some forgetting is required for the strategy when the obstacles 

are not stationary, this feature can be added to the cumulative memory, whereas the other 

149  



   

strategies still forget too quickly, and the cumulative memory was chosen as the memory 

strategy for the target’s evasive behavior in the following pursuit scenario. 

The model was extended to multiple agents operating in the more realistic city 

environment, attempting to capture an evasive target. They were given a variety of 

methods to improve their performance. As expected, a local communication radius, 

where agents are able to broadcast the estimated location of the target, improved 

performance greatly, allowing agents to converge on the target more easily.  

The scenario also further demonstrated the advantages of the cumulative memory 

strategy for pursuit over a local memory. Again, this is not surprising given the agent is 

following a moving target and clearly can find advantages in knowing the environment if 

it has to retrace its steps at any point. These strategies can be linked conceptually to the 

observations described in Chapter 3, if one considers that the local memory allows for the 

immediate effects of memory observed there, while cumulative memory allows for both 

the immediate effects and an impact in the long run when the agent needs to pass through 

previously visited territory. Even more interesting than the advantages of the cumulative 

over the local memory strategy is the fact that a combination of strategies tended to work 

quite well. In cases with coordination, it worked much better for the pursuing agents, 

where they would patrol using a local memory strategy, but pursue the target with a 

cumulative memory strategy. This gave them flexibility in their searching, while allowing 

them to make decisions, potentially informed by memories, when trying to quickly reach 

the target’s location upon hearing a broadcast. 

Two types of coordination were examined in the model, path coordination and an 

avoidance influence between agents with a radius of 1. While not consistent in improving 

150  



   

the performance, they did make significant improvements in the cases where two 

different memory strategies were used for the pursuit and the patrol. While this is not 

surprising with the path coordination, which was designed so the agents would tend to 

surround the target, it is surprising that the avoidance influence had such a significant 

impact. It should be noted that when the radius of this influence is increased, the effect is 

detrimental, so it proved effective mostly as a means of ensuring agents did not get stuck 

when they collided in the environment.  

Finally, it was shown that even a limited memory of the environment could give 

the agents a significant improvement, even when improvements were already present due 

to communication, path generation, and coordination. More surprisingly, the memory is 

not required to be very large. A significant improvement was gained when each agent 

was limited to remembering only a square root of the number of cells in the environment. 

There is perhaps a tradeoff in the benefits of using a complete map in that agents do not 

create maps with 100% accuracy. This can lead to agents being forced to take less 

efficient paths when better ones are available in the environment. Yet when memory is 

limited, erroneous locations stored in an agent’s chart have a greater possibility of being 

eliminated, thereby giving agents greater flexibility. Balanced with the decreased 

knowledge of the environment, this could explain why the results are not significantly 

different. Another more likely explanation for the similarity of the results is that agents 

only need to have a few memories of the environment and the rest are redundant. The 

improvement witnessed here supports Chapter 3 and extends it to a model of greater 

complexity, demonstrating that a simple, limited memory of its environment distributed 

among the agents is still relevant.  

151  



   

Chapter 6: 

Discussion 

6.1 Summary and Limitations 

Traditional particle systems are not only difficult to control and direct in 

performing specific tasks, but they are also limited to rather simple conditions, rules, and 

environments [Reynolds, 1987; Huth, 1994; Reynolds, 1999]. Extending these relatively 

simple systems to allow for behaviors beyond mere reflex responses to presently 

observed stimuli is an important step toward developing a significant collective 

intelligence. There has been initial work looking into adding a top-down control of 

behavior to the systems [Reynolds, 2000; Rodriguez, 2000] and there have been efforts to 

extend particle swarm systems with local interactions to perform problem solving 

behavior both in simulation [Rodriguez, 2005; Lapizco-Encinas, 2005] and robotics 

[Jones, 2003]. However, while the particles’ local interactions give rise to interesting and 

useful behaviors, they are not typically designed to learn the initially unknown features of 

their environment or to remember them. Instead, they react to presently observable 

stimuli or forces pulling them to locations in the environment, and in some recent 

instances, a high-level controller. Yet, granting each individual a limited-capacity 

working memory of environmental features offers the potential to preserve the dynamics 

of the particle system’s local interactions, while improving the efficiency of the system 

when exhibiting goal-driven behavior as the particles acquire information about their 

world.  

The self-organizing collective behavior of particle systems frequently studied in 

abstract environments has also been extended to work in robotics and other more real-

152  



   

world settings [Hosokawa, 1998; Jones, 2003]. The ability for agents to maintain and 

move in these settings based on an individual working memory also may be extended to 

agents of greater complexity in scenarios and domains of greater realism. Map formation 

with autonomous robots has been an area of interest in recent years. One study looked at 

coordination techniques to reduce the time required to create maps [Burgard, 2000]. 

Another study examined robot system where robots built and integrated a map of the 

environment. They were subsequently used to locate an object in the map and guard it in 

fixed positions [Konolige, 2004]. A recent study used a centralized algorithm for 

integrating maps created in a multi-robot system, using manifold representations of the 

maps rather than planar representations to facilitate this process [Howard, 2006b]. The 

goal in these systems is usually map construction and synthesis. They do not examine the 

influence of these maps as a working memory on the system and the way the collective 

can gain improvement through memory that remains distributed in tasks unrelated to map 

making that require travel through the environment. The systems also frequently rely on 

centralized processing, which is not true in this dissertation.  

Methods in robotics for acquiring information for building environmental maps 

can vary from using sonar [Mataric, 1990; Konolige, 2004] to laser range-finders 

[Burgard, 2000; Howard, 2006a]. However, the agents of interest in this dissertation are 

restricted to observing their environment via a sequence of camera images. In this case, 

building and maintaining the individual working memory remains beneficial for 

efficiency and becomes important for efficacy.  

In this dissertation, I have proposed and demonstrated that extending particle 

systems to have a limited memory distributed among its members leads to significant 

153  



   

benefits in performing simple tasks, while preserving all of the basic behaviors of a 

particle system. I then defined and designed a more complex agent that takes the agent 

from the abstract 2-dimensional universe and places it in a more realistic environment, 

where the agent receives a sequence of 2-dimensional images of a 3-dimensional urban 

environment, forcing the agent to be responsible for gathering information about the 

environment relevant to its behavior from this sequence. Here and in a final system of 

multiple agents of this kind, certain benefits of working memory became crucial to the 

system. Strategies that preserved a local or cumulative memory were required to increase 

the success rate of commands, as well as improve the efficiency. The benefits due to 

memory witnessed in the particle system, where the improvement in efficiency was 

observed to be both gradual and immediate, remained relevant in the multi-agent system. 

In a particle system, it was hypothesized that memory would provide a significant 

benefit to agent behavior in scenarios where agents were making multiple tours of an 

environment wherein obstacles were scattered. The expectation was that performance 

would improve gradually as the collective traveled the environment, was exposed to 

obstacles, and remembered them during future tours of the same area. It was discovered 

through experimental trials that the agents did indeed gain a significant improvement in 

many scenarios.  

A surprising result was the discovery that the collective could also gain an 

immediate benefit from the addition of memory. This meant that memory not only could 

improve the behavior over time, but could provide a benefit immediately as well. This 

was due to the added influences the memory would immediately exert on an individual as 

soon as it was added, which, in influencing the individual’s movement, indirectly 

154  



   

influenced the movement of the entire collective, other members of which did not 

necessarily share the memory. This helped minimize the time spent by the collective 

trapped in “blind alleys” as it tried to pursue its goals. 

It was also observed that as the agents made more and more tours of the 

environment, their collective was generating a rough map of the environment, essentially 

an outline of the relevant parts of the terrain obstacles (see Figures 3.10 and 3.11, for 

example). While no individual agent knew the entire map and each only had a scattered 

knowledge of the locations of a few obstacles throughout the environment, they 

collectively did have an internal picture of what the environment looked like. In 

particular, the combined map of the agent collective demonstrated those features of the 

environment that were pertinent to the tours, that is, the places where agents were likely 

to be obstructed on their journey through the simulated world. 

In addition to the visually interesting nature of the map generated by the particle 

swarm’s superorganism, though the map was distributed among its individual parts, each 

memory had the potential to affect the behavior of each particle, either directly (if an 

individual agent had the memory) or indirectly (if an individual agent updated its 

movement based on the position and velocity of a neighbor, either with the memory, or 

itself influenced by the memory). This remained true even in the case of the multi-agent 

system in the urban environment, where agents maintained cumulative memories and 

coordinated their paths. Though no agent necessarily knew the entire map, the knowledge 

of other agents’ paths could influence their movements. Should a neighboring agent 

choose a particular path influenced by its memories, if the paths were coordinated, 

another agent’s decisions would be affected. Therefore, though memories were individual 

155  



   

to the members of the collective system, they could exert an influence on the entire 

collective. 

Additionally, the results from both the particle system scenarios and the multi-

agent pursuit scenario indicated that complete knowledge of all environmental features is 

not necessary for success. Agents limited to accumulated environmental observations, 

and even those limited to a constantly updating memory that could hold only a few 

locations out of the entire observed environment, still gained a significant benefit from 

the capability. This demonstrates that while even a simple limited memory could improve 

the efficiency of a simple particle system, it remained relevant even when applied to a 

complex multi-agent system, where control and coordination were more complicated than 

the simple interactions of the particle swarm. 

Having some capacity for memory was also shown to be crucial for efficiency in 

this pursuit scenario multi-agent system. Simple reactive behavior between agents was no 

longer able to efficiently guide the agents through an environment cramped with 

obstacles having thin paths between them, where the agent had only a very limited view 

of its environment at any given time step. Because each image at a time step provides no 

outside context for what surrounds the agent and in some cases makes even gauging 

distances difficult when an agent is close to an obstacle, the ability to accumulate 

information to form a map of the environment, much as internal maps are built in the 

particle system scenarios, allows these more realistic agents to move based on these 

individual internal maps.  

The different strategies of local and cumulative memories also reinforce the 

results seen in the particle system that memory can have both an immediate and a gradual 

156  



   

effect. The local memory taken alone shows the immediate benefit granted to the more 

complex agents as the accumulated memories allow the agents to avoid collisions with 

obstacles and traverse the environment more efficiently. Yet, this has no gradual effect as 

the map of these surroundings is forgotten by the time the agent has moved on to a new 

area. When returning there would be no added benefit over what was immediate. On the 

other hand, the cumulative memory, which does preserve this information, receives the 

immediate benefits witnessed in the local memory, as well as the gradual improvement, 

when it is required to plot a path across an area it has previously charted. This 

demonstrates that this result, noticed in the abstract particle system domain, appears in 

the scenarios of the more complex multi-agent systems too. Even when the complexity of 

the environment—and consequently the agent behavior—is increased, the importance and 

impact of memory either remains intact or grows even more significant.  

Despite the successes of these agents in their environments, there are some 

limitations that were necessary in order to quickly and efficiently test the behavior in 

Chapter 5. The communication interpretation and production for this multi-agent system 

was simplified so that processing time did not have to be devoted to the constant stream 

of information that would have to be processed at every time step by the neural networks 

as agents communicated both the observed location of the target in the environment and 

their own planned paths. This information in turn would likely require much larger 

networks because information being passed would include a wide variety of possible 

numbers for coordinates in the environment. The amount of information that would need 

to travel in this manner would slow the agents, so it was simplified to a straightforward 

transfer of coordinates and paths between agents in range of one another.  

157  



   

The other key limitations of the simulated environment were those of the object 

segmentation and identification and the movement detection. Object recognition was 

simplified for this agent model in such a way that the agent was able to recognize an 

object from the background, but required a contrived method of distinguishing them from 

one another by using thumbnails representing the objects at “close range.” This 

simplification was used because of the difficulty of object segmentation, an open problem 

that is not a central issue of this dissertation. For similar reasons and because of the quick 

movement steps taken by the agents and the target in the environment, movement 

detection was simplified so that the agent could know by observing the target, the angle 

of its velocity. 

 

6.2 Contributions 

By extending simple particle systems with a limited distributed memory capacity 

and by building upon and applying these techniques to a more complex multi-agent 

system, this work made the following general contributions: 

• I demonstrated the immediate and gradual benefits of adding a limited 

distributed working memory to a self-organizing particle system with goal-

driven behavior. In this way, agents given memory are able to influence one 

another’s movement via their own avoidance of obstacles and their 

coordinated accelerations. This simple addition gave a significant 

improvement to the efficiency of agents moving in the environment, making 

tours of various goal states, both in long-term effects as the agents 

remembered previously seen obstacles at a distance and in immediate effects 

158  



   

of indirectly communicating to the entire system observed memories through 

changes in movement. It was also demonstrated that the collective was able to 

obtain a rough picture of the relevant environment, even though no individual 

knew the entire map. 

• I created a new agent using self-organizing maps and other neural network 

methods that can process a sequence of 2-dimensional images as it moves to 

acquire visual information from a simulated 3-dimensional environment, 

interpret sentence-length commands, and produce sentence-length 

observations. Using self-organizing maps and neural networks, the agent was 

trained to recognize environmental features and objects. Neural networks were 

also trained to recognize sequences of phonemes constituting full sentence 

commands. This involved generating unique representations for the words and 

then the complete sentence with multi-winner self-organizing maps and 

ultimately using these to encode the sentences into their features. Networks 

were also trained to produce sequences of phonemes constituting full sentence 

observations. This then required the design of specific behaviors in the agent 

at a higher level to achieve appropriate reactions to manifold incoming 

stimuli, as well as the design of memory management techniques to keep track 

of its knowledge of the environment. 

• I demonstrated through experimental simulations that the more realistic agent 

with a working memory was capable of performing tasks in the urban 

environment efficiently. I established the advantages given to the agent when 

operating in the environment while using its working memory of the observed 

159  



   

locations of obstacles and objects over a method using no environmental 

memory. Using memory prevented collisions with environmental features, a 

greater success rate for the different commands, and improved efficiency in 

executing them. I determined that in addition to an improvement given by a 

cumulative memory of all environmental features observed, the agent’s 

performance could even be helped by a local memory of recently observed 

stimuli. 

• I developed a system of multiple agents, capable of communicating with one 

another, coordinating their movement behavior, and utilizing the memory 

strategies developed in a simulated urban environment. In a pursuit scenario 

making use of the different behaviors these agents could perform, this work 

established through experimental simulations that a combination of different 

memory strategies for different tasks proved most efficient and that a limited 

memory of the environment distributed among the agents could produce 

significant improvement in the efficiency of the agent collective, even 

independent of the benefits of communication and coordination. Additionally, 

I demonstrated that of the strategies developed for the management of the 

agents’ memory, a combination of local and cumulative memory ultimately 

proved to provide the most benefit. 

 

6.3 Future Work 

This dissertation has explored the effect of adding working memory to agents of 

increasing complexity. The main purpose here has been to demonstrate that these effects 

160  



   

remain significant even in more challenging environments. However, there is still a great 

deal of room for future work and exploration of this topic for these and other agents.  

At present, memory in the agent system plays a direct role in influencing the 

behavior, but it does not change the nature of the behavior of the agent which is trained 

beforehand to recognize the environmental features. Allowing an agent to learn on-line as 

it experiences the environment and acquires memories would make the agent more 

adaptable to scenarios where it is necessary to enter an environment with as few 

expectations as possible. In these situations, memory has the potential to be even more 

crucial as the agent can use relevant examples experienced in a scenario to train and 

determine its behavior for later. In this case, memory would no longer be limited to 

knowing a specific feature of the environment at a location, but previous experience 

could be used to extrapolate a judgment on an observation at a new location based on the 

similarity to what has been stored in memory. If, for example, an agent has determined 

that an area was an obstacle, and if an image via the camera appears bearing resemblance 

to the remembered location, the same determination could be made here. This allows 

working memory to be extended to more than just recollections of specific environmental 

features observed and commands issued. Memory could now consist of features 

independent of some context where the agent is able to apply them to novel 

circumstances in order to make decisions. To make this sort of extension of the agent 

more successful, the processing of the sequences of input images may require 

improvement, using more sophisticated methods of image segmentation apart from neural 

networks, such as clustering or histogram-based methods. Finally, how the agent plans its 

long term movements could adapt other algorithms, for instance probabilistic roadmaps 

161  



   

[Kavraki, 1996; Nissoux, 1999; Bayazit, 2002]. Though these typically assume 

environmental information, they could be adapted to fit the limits of an agent’s visual 

information and environmental memories.  

In addition to giving the agent a greater ability to adapt its behavior, other features 

for the particular scenario could be explored. At present, agents using the sequence of 

images have limited environmental information at any given time step. They can 

essentially only see straight ahead. In a task where searching for a moving target is 

required and spreading out to locate it is beneficial, the maximum coverage of the space 

is very different here than in an abstract 2-dimensional environment where agents have a 

complete view all around them limited only by some set radius. The distance agents see 

with their first-person perspective is limited only by the ability of their self-organizing 

maps to recognize objects at any position in the image, regardless of distance. Instead of 

the traditional methods of having agents try to spread out their positions to search, it 

makes more sense for agents to spread out their visual space with a minimum amount of 

crossover. In this way, agents that are looking down the same stretch of space would be 

considered more in need of influencing one another’s movement away from each other 

than agents who were close in position but looking at two totally different angles of the 

environment.  

Another method for coordination that adjusts the behavior of the simpler models 

for more complex agents planning their paths through the environment is to change the 

nature of what is being coordinated. Instead of having agents update their acceleration for 

the next time step based on the position and velocity of neighbors, which no longer 

applies when agents are planning paths, the paths themselves could be treated as particle 

162  



   

systems. With this approach, the goal would be to create a minimum amount of overlap, 

while preserving the endpoints of the starting location and the goal and a consistent path 

of waypoints between them. Alternately, other methods, such as probabilistic road maps, 

are viable for work in concert with agent desires for a minimum path to the goal, a 

limited knowledge of environmental obstacles, and a limited knowledge of neighboring 

paths, which could also be treated as obstacles.  

Finally, the neural networks that controlled and processed the visual and verbal 

information, removed for computational efficiency in the final pursuit scenario, could be 

integrated back into the more realistic agents for the multi-agent system. While this 

increases the cost and complexity of the system substantially, it also means that the agent 

system would be more adaptable to be trained for other scenarios. The agents here can be 

viewed as a step toward a hybrid architecture, where neural networks and self-organizing 

maps process and extract features from the environmental data and transmit this to a 

higher level system to make decisions based on the information presently available and 

information maintained in memory. This sort of architecture has been shown to be 

successful in several scenarios here, and its hierarchical nature suggests it can be applied 

to any manner of scenario requiring one or more communicating agents, where complete 

knowledge of the environment is not available to individuals but is approximated by the 

collective.   

163  



   

References 

[1] Alahakoon, D., and Halgamuge, S. “Dynamic self-organizing maps with 
controlled growth for knowledge discovery,” IEEE Transactions on 
Neural Networks. 11 (3), 601-614, 2000.  

[2] Alcazar, J. “A simple approach to the multi-predator multi-prey domain,” 
International Conference on Complex Systems. 2004. 

[3] Andrecut, M., and Ali, M. “Competitive learning of fuzzy models,” 
International Journal of Modern Physics B. 16 (30), 4621-4639, 2002. 

[4] Atherton, J., Hardin, B., and Goodrich, M. “Coordinating a multi-agent team 
using a multiple perspective interface paradigm,” Proceedings of the 
AAAI. 2006. 

[5] Auda, G.,  and Kamel, M. “Modular neural networks: a survey,” International 
Journal of Neural Systems. 9 (2), 129-151, April, 1999. 

[6] Ayers, J., Davis, J., and Rudolph, A. (eds.), Neurotechnology for Biomimetic 
Robots. Cambridge, MA: MIT Press, 2002. 

[7] Baddeley, A. “Recent developments in working memory,” Current Opinion in 
Neurobiology. 8, 234-238, 1998. 

[8] Baddeley, A. “Working Memory,” Science. 255, 556-559, 1992. 

[9] Baddeley, A. Human Memory: Theory and Practice, Psychology Press, 1997. 

[10] Baldassarre, G., Nolfi, S., and Parisi, D. “Evolving mobile robots able to 
display collective behaviors,” Artificial Life. 9, 255-267, 2003.  

[11] Baldi, P. and Hornik, K. “Learning in linear neural networks: a survey,” IEEE 
Transactions on Neural Networks. 6 (4), 837-858, July, 1995. 

[12] Banzhaf, W., Nordin, P., Keller, R., and Francone, F. Genetic Programming: 
An Introduction. San Fransisco, CA: Morgan Kaufman Publishers, 1998. 

[13] Bayazit, O., Lien, J-M., and Amato, N. “Roadmap-based flocking for complex 
environments,” 10th Pacific Conference on Computer Graphics and 
Applications. 104-113, 2002. 

[14] Bedau, M. “Artificial life: organization, adaptation and complexity from the 
bottom up,” TRENDS in Cognitive Sciences. 7 (11), 505-512, Nov. 2003. 

[15] Benda, M., Jagannathan, V. and Dodhiawalla, R. “On optimal cooperation of 
knowledge sources,” Technical Report, Boeing Advanced Technology 
Center, Boeing Computer Services, Seattle WA, 1986.  

164  



   

[16] Best, S., and Cox, P. “Programming an autonomous robot controller by 
demonstration using artificial neural networks,” Proceedings of the 2004 
IEEE Symposium on Visual Languages and Human Centric Computing. 
157-159, 2004. 

[17] Bonabeau, E., Dorigo, M. and Theraulz, G., Swarm Intelligence. New York: 
Oxford Univ. Press, 1999. 

[18] Bonarini, A., Aliverti, P., and Lucioni, M. “An omnidirectional vision sensor 
for fast tracking for mobile robots,” IEEE Transactions on 
Instrumentation and Measurement. 49 (3), 509-512, June 2000. 

[19] Bosman, R., van Leeuwen, W., and Wemmenhove, B. “Combining Hebbian 
and reinforcement learning in a minibrain model,” Neural Networks. 17, 
29-36, 2004. 

[20] Bousquet, F., Barreteau, O., Le Page, C., Mullon, C., and Weber, J. “An 
environmental modelling approach: the use of multi-agent simulations,” in 
Advances in Environmental and Ecological Modelling. Blasco F. (ed). 
Elsevier, Paris, 113-122, 1999. 

[21] Burgard, W., Fox, D., Moors, M., et al. “Collaborative multi-robot 
exploration,” Proceedings of IEEE International Conference on Robotics 
and Automation. 1, 476-481, 2000. 

[22] Caelli, T., Guan, L., and Wen, W. “Modularity in neural computing,” 
Proceedings of the IEEE. 87 (9), 1497-1518, Sept. 1999. 

[23] Camazine, S., Deneuboug, J., Franks, N., et al. Self-Organization in 
Biological Systems. Princeton: Princeton University Press, 2001. 

[24] Carlisle, A., and Dozier, G. “Adapting particle swarm optimization to 
dynamic environments,” Proceedings of International Conference on 
Artificial Intelligence. Las Vegas, NV, 429-434, 2000. 

[25] Chen, S-H. “Modular recurrent neural networks for Mandarin syllable 
recognition,” IEEE Transactions on Neural Networks. 9 (6), 1430-1441, 
Nov. 1998. 

[26] Chong, W. “Reflective reasoning.” Diss. University of Maryland, 2006. 

[27] Clerc M., and Kennedy, J. “The particle swarm,” IEEE Transactions in 
Evolutionary Computation. 6, 58-73, 2002. 

[28] Corchs, S., and Deco, G. “Large-scale neural model for visual attention: 
integration of experimental single-cell and fMRI data,” Cerebral Cortex. 
12, 339-348, April, 2002. 

165  



   

[29] Couzin, I., Krause, J., Franks, N., and Levin, S. “Effective leadership and 
decision-making in animal groups on the move,” Nature. 433, 513-516, 
2005. 

[30] Cowan, N. “The magical number 4 in short-term memory: a reconsideration 
of mental storage capacity,” Behavioral and Brain Sciences. 24 (1), 87-
114, 2001. 

[31] Di Caro, G., and Dorigo, M. “AntNet: distributed stigmergic control for 
communications networks,” Journal of Artificial Intelligence Research. 9, 
317-365, 1998. 

[32] Dorigo, M. “Ant colony system: a cooperative learning approach to the 
traveling salesman problem,” IEEE Transactions on Evolutionary 
Computation. 1 (1), 53-66, 1997. 

[33] Dorin, A. “Physically based self-organizing cellular automata,” in Multi-Agent 
Systems—Theories, Languages and Applications. Zhang, C., Lukose, D. 
(eds), Lecture Notes in Artificial Intelligence 1544, Springer-Verlag, 74-
87, 1998. 

[34] Drogoul, A., and Ferber, J. “Multi-agent simulation as a tool for modeling 
societies: application to social differentiation in ant colonies,” MAAMAW 
’92. 3-23. 

[35] Durstewitz, D., Seamans, J., and Sejnowski, T. “Neurocomputational models 
of working memory,” Nature Neuroscience. 3, 1184-1191, 2000.  

[36] Edwards, L., Peng, Y., and Reggia, J.. “Computational models for the 
formation of protocell structures,” Artificial Life, 4, 61-77, 1998.  

[37] El-Bakry, H., Abo-Elsoud, M., and Kamel, M. “Fast modular neural nets for 
human face detection,” Proceedings of the IEEE-INNS-ENNS 
International Joint Conference on Neural Networks. 3, 320-324, 2000. 

[38] Elfes, A., Dolan, J., Podnar, D., Mau, S., and Bergerman, M. “Safe and 
efficient robotic space exploration with tele-supervised autonomous 
robots.” Proceedings of the AAAI Spring Symposium. 104-113, 2006. 

[39] Gerstner, W. and Kistler, W. “Mathematical formulations of Hebbian 
learning,” Biological Cybernetics. 87, 404-415, 2002. 

[40] Girosi, F., Jones, M., and Poggio, T. “Regularization theory and neural 
networks architecture,” Neural Computation. 7, 219-269, 1995. 

[41] Griffith, S., Goldwater, D., and Jacobson, J. “Self-replication from random 
parts,” Nature. 437, 636, September 2005. 

166  



   

[42] Haarmann, H., and Usher, M. “Maintenance of semantic information in 
capacity-limited short-term memory,” Psychonomic Bulletin. 8 (3), 568-
578, 2001. 

[43] Haykin, S. Neural networks: a comprehensive foundation, 2nd edition. 
Prentice Hall, New Jersey, 1999. 

[44] Haynes, T., and Sen, S. “Evolving Behavioral Strategies in Predators and 
Prey,” IJCAI-95 Workshop on Adaptation and Learning in Multiagent 
Systems. 1996.  

[45] Haynes, T., Wainwright, R., Sen, S., and Schoenefeld, D. “Strongly typed 
genetic programming in evolving cooperation strategies,” In Larry 
Eshelman, editor, Proceedings of the Sixth International Conference on 
Genetic Algorithms. 271-278, San Francisco, CA, 1995. Morgan 
Kaufmann Publishers, Inc. 

[46] Heppner, F., and Grenander, U. “A stochastic nonlinear model for coordinated 
bird flocks,” The Ubiquity of Chaos. S. Krasner (ed.), Washington DC: 
AAAS, 1990, 233-238. 

[47] Hicks, R., and Bajcsy, “Reflective surfaces as computational sensors,” 
CVPR99, Workshop on Perception for Mobile Agents. 1999. 

[48] Hodgins, J. and Brogan, D., “Robot herds,” Artificial Life IV. R. Brooks & P. 
Maes (eds.), MIT Press, , 319-324, 1994.  

[49] Horn, D., and Usher, M. “Parallel activation of memories in an oscillatory 
neural network,” Neural Computation. 3, 31-43, 1991. 

[50] Hosokawa, K., Tsujimori, T., Fujii, T., et al. “Self-organizing collective robots 
with morphogenesis in a vertical plane,” Proceedings of the 1998 IEEE 
International Conference on Robotics and Automation. Leuven, Belgium, 
May, 1998. 

[51] Howard, A. “Multi-robot simultaneous localization and mapping using 
particle filters.” The International Journal of Robotics Research. 25 (12), 
1243-1256, 2006. 

[52] Howard, A., Sukhatme, G., and Matarić, M. “Multi-Robot Mapping using 
Manifold Representations,” Proceedings of the IEEE - Special Issue on 
Multi-robot Systems. 94 (7) , 1360-1369, 2006. 

[53] Hutchins, E., Cognition in the Wild, Cambridge, MA: MIT Press, 1995. 

[54] Huth, A., and Wiesel, C. “The simulation of the movement of fish schools,” 
Journal of Theoretical Biology. 156, 365-385, 1992. 

167  



   

[55] Ilmonen, T., Takala, T., and Laitinen, J. “Soft edges and burning things: 
enchanced real-time rendering of particle systems.” The 14th International 
Conference in Central Europe on Computer Graphics, Visualization and 
Computer Vision '2006. Plzen, Czech Republic, 33-38, 2006 

[56] Iwata, A., Kawajiri, H., Suzumura, N. “Classification of hand-written digits 
by a large scale neural network ‘CombNET-II’,” IEEE International Joint 
Conference on Neural Networks. 1021-1026, Nov. 1991. 

[57] Jennings, A. The Invisible Matrix: The Evolution of Altruism, Culture, Human 
Behavior, and the Memory Network. Veritas Books, Mountain View, CA, 
2006. 

[58] Jim, K., and Giles, C. “Talking helps: evolving communicating agents for the 
predator-prey pursuit problem,” Artificial Life. 6 (3), 237-254, 2000. 

[59] Jones, C., and Mataric, M. “Adaptive division of labor in large-scale 
minimalist multi-robot systems,” Proceedings of the IEEE Internet 
Conference on Intelligent Robots and Systems. 1969-1974, 2003. 

[60] Kaelbling, L., Littman, M., and Moore, A. “Reinforcement learning: a 
survey,” Journal of Artificial Intelligence Research. 4, 237-285, 1995. 

[61] Kangas, J., Kohonen, T., and Laaksonen, J. “Variants of self-organizing 
maps,” IEEE Transactions on Neural Networks. 1 (1), 93-99, 1990. 

[62] Kavraki, L., Svestka, P., Latombe, J., and Overmars, M.. “Probabilistic 
roadmaps for path planning in high-dimensional configuration spaces,” 
IEEE Transactions on Robotics and Automaton. 12 (4), 566-580, 1996.  

[63] Kennedy, J. “The particle swarm: social adaptation of knowledge,” IEEE 
International Conference on Evolutionary Computation. 303-308, 1997. 

[64] Kennedy, J., Eberhart, R., and Shi, Y. Swarm Intelligence. San Diego, CA: 
Academic, 2001. 

[65] Kim, D. “Self-organization for multi-agent groups,” International Journal of 
Control, Automation, and Systems. 2 (3), 333-342, September 2004. 

[66] Klavins, E. “Automatic synthesis for controllers for distributed assembly and 
formation forming,” Proceedings of the 2002 International Conference on 
Robotics and Automation. 3, 3296-3302, 2002. 

[67] Kohonen, T. “The self-organizing map,” Proceedings of the IEEE. 78 (9), 
1464-1480, 1990. 

[68] Kohonen, T., and Somervuo, P. “How to make large self-organizing maps for 
nonvectorial data,” Neural Networks. 15, 945-952, 2002. 

168  



   

[69] Konolige, K., Fox, D., Ortiz, C., et al. “Centibots: very large scale distributed 
robotic teams.” 9th International Symposium on Experimental Robotics 
(ISER-04). Singapore, June 2004. 

[70] Korf., R. “A simple solution to pursuit games,” Proceedings of the 11th 
International Workshop on Distributed Artificial Intelligence. Glen Arbor, 
MI, Feb, 1992. 

[71] Kurihara, K., Nishiuchi, N., Hasegawa, J., and Masuda, K. “Mobile robots 
path planning method with the existence of moving obstacles,” 10th IEEE 
Conference on Emerging Technologies and Factory Automaton, 2005. 1, 
195-202, 2005. 

[72] Lapizco-Encinas, G., and Reggia, J. “Diagnostic problem solving using swarm 
intelligence,” Swarm Intelligence Symposium. 365-372, 2005. 

[73] Lee, T., Ching, P., and Chan L-W. “Isolated word recognition using modular 
recurrent neural networks,” Pattern Recognition. 31 (6), 751-760, 1998. 

[74] Lenzitti, B., Tegolo, D., and Valenti, C. “Prey-predator strategies in a 
multiagent system,” Proceedings of the Seventh International Workshop 
on Computer Architecture for Machine Perception. 184-189, July 2005. 

[75] Luke, S., and Spector, L. “Evolving teamwork and coordination with genetic 
programming,” Genetic Programming 1996: Proceedings of the First 
Annual Conference. Stanford, July 1996. 

[76] Mataric, M. “Environment learning using a distributed representation.” 
Proceedings of the 1990 IEEE International Conference on Robotics and 
Automation. 1, 402-406, 1990. 

[77] Mataric, M. “Issues and approaches in the design of collective autonomous 
agents,” Robotics and Autonomous Systems. 16, 321-331, 1995. 

[78] McCook, C., and Esposito, J. “Flocking for heterogeneous robot swarms: a 
military convoy scenario.” 39th Southeastern Symposium on System 
Theory. Macon, GA, 2007.  

[79] Melin, P., Gonzalez, C., Gonzales, F., and Castillo, O. “Face recognition using 
modular neural networks and fuzzy Sugeno integral for response 
integration,” Proceedings of the 2005 IEEE International Joint 
Conference on Neural Networks. 1, 349-354, Aug. 2005.  

[80] Miller, E., and Cohen, J. “An integrative theory of prefrontal cortex function,” 
Annual Review of Neuroscience. 24, 167-202, 2001. 

169  



   

[81] Mishkin, M., Suzuki, W., Vargha-Khadem, F., and Gadian, D. “Hierarchical 
organization of cognitive memory.” Philosophical Transactions: 
Biological Sciences. 352 (1360), 1461-1467, 1997. 

[82] Muller, S., Marchetto, J., Airaghi, S., and Kourmoutsakos, P. “Optimization 
based on bacterial chemotaxis,” IEEE Transactions on Evolutionary 
Computation. 6, 16-29, 2002. 

[83] Nissoux, C., Simeon, T., and Laumond, J.-P. “Visibility based probabilistic 
roadmaps,” Proceedings of the International Conference on Intelligent 
Robots and Systems. 1316-1321, 1999. 

[84] Nolfi, S., and Parisi, D. “Neural networks in an artificial life perspective,” 
International Conference on Artificial Neural Networks. 733-737, 1997. 

[85] Nourbakhsh, I., Sycara, K., Koes, M., Young, M., et al. “Human-robot 
teaming for search and rescue.” IEEE Pervasive Computing, 72-78, 2005. 

[86] O’Reilly, R., and Frank, M. “Making working memory work: a computational 
model of learning in the prefrontal cortex and basal ganglia,” Neural 
Computation. 18, 283-328, 2006. 

[87] Pagac, D., Nebot, E., and Durrant-Whyte, H. “An evidential approach to map-
building for autonomous vehicles,” IEEE Transactions on Robotics and 
Automation. 14 (4), 623-629, 1998. 

[88] Pan, G., Dou, Q., and Liu, X. “Performance of two improved particle swarm 
optimization in dynamic optimization environments.” Proceedings of the 
6th International Conference on Intelligent Systems Design and 
Applications. 1024-1028, 2006. 

[89] Pearlmutter, B. “Gradient calculatons for dynamic recurrent neural networks: 
a survey,” IEEE Transactions on Neural Networks. 6 (5) , 1212-1228, 
1995. 

[90] Reggia, J., Tagamets, M, Contreras-Vidal, J., et al. “Development of a large-
scale neurocognitive architecture. Part 1: a conceptual framework,” TR-
CS-4814, UMIACS-TR-2006-33. University of Maryland. June, 2006.  

[91] Reynolds, C. “Big fast crowds on PS3.” Proceedings of Sandbox. Boston, 
MA, July, 2006. 

[92] Reynolds, C. “Flocks, herds and schools,” Computer Graphics. 21, 25-34, 
1987. 

[93] Reynolds, C. “Interactions with groups of autonomous characters,” 
Proceedings of Game Developers Conference. 2000.  

170  



   

[94] Reynolds, C. “Steering behaviors for autonomous characters,” Proceedings of 
Game Developers Conference. 763-782, 1999. 

[95] Riedmiller, M. “A direct adaptive method for faster backpropagation learning: 
the RPROP algorithm.” Proceedings of the IEEE International 
Conference on Neural Networks. 586-591, San Francisco, CA, 1993. 

[96] Rodriguez, A. and Reggia, J. “Extending self-organizing particle systems to 
problem solving,” Artificial Life. 10, 379-395, 2004. 

[97] Rodriguez, A., and Reggia, J. “Collective-movement teams for cooperative 
problem solving,” Integrated Computer Aided Engineering. 12, 217-235, 
2005. 

[98] Rueckl, J., Cave, K., and Koslyn, S. “Why are ‘what’ and ‘where’ processed 
by separate cortical visual systems? A computational investigation,” 
Journal of Cognitive Neuroscience. 1, (2), 171-186, 1989. 

[99] Rumelhart, D., and Zipser, D. “Feature discovery by competitive learning,” 
Cognitive Science. 9, 75-112, 1985. 

[100] Sahin, E., Labella, T., Trianni, V., et al. “SWARM-BOT: pattern formation in 
a swarm of self-assembling mobile robots,” 2002 IEEE International 
Conference on Systems, Man, and Cybernetics. 4, October 2002. 

[101] Schulz, R., and Reggia, J. “Temporally asymmetric learning supports 
sequence processing in multi-winner self-organizing maps,” Neural 
Computation. 16, 535-561, 2004. 

[102] Serpen, G., and Corra, J. “Training simultaneous recurrent neural network 
with resilient propagation for static optimization,” International Journal of 
Neural Systems. 12 (3&4), 203-218, 2002. 

[103] Shillcock, R., Ellison, T., and Monaghan, P. “Eye-fixation behavior, lexical 
storage, and visual word recognition in a split processing model,” 
Psychological Review. 107 (4), 824-851, 2000. 

[104] Singh, K, and Fujimara, K. “Map making by cooperating mobile robots.” 
Proceedings of the IEEE International Conference on Robotics and 
Automation. 254-259, Atlanta, GA, 1993. 

[105] Sipper, M. “Studying artificial life using a simple, general cellular model,” 
Artificial Life. 2 (1), 1-35, 1995. 

[106] Smith, A., and Turney, P. “Self-replicating machines in continuous space with 
virtual physics,” Artificial Life. 9, 21-40, 2003. 

171  



   

[107] Spector, L., Klein, J., Perry, C., and Feinstein, M. “Emergence of collective 
behavior in evolving populations of flying agents,” Genetic and 
Evolutionary Computation Conference. 61-73, 2003. 

[108] Sutton, R. and Barto, A. Reinforcement Learning. The MIT Press, Cambridge, 
MA, 1998. 

[109] Tagamets, M., and Horwitz, B. “A model of working memory: bridging the 
gap between electrophysiology and human brain imaging,” Neural 
Networks. 13 (Special Issue), 941-952, 2000. 

[110] Tan, K.C., Tan, K.K., Lee, T., Zhao, S., and Chen, Y. “Autonomous robot 
navigation based on fuzzy sensor fusion and reinforcement learning,” 
Proceedings of the 2002 IEEE International Symposium on Intelligent 
Control. Vancouver, Canada, Oct. 27-30, 2002. 

[111] Tang, Z., Wang, X., Tamura, H., and Ishii, M. “An algorithm of supervised 
learning for multilayer neural networks,” Neural Computation. 15, 1125-
1142, 2003. 

[112] Taniguchi, T., and Sawaragi, T. “Adaptive organization of generalized 
behavioral concepts for autonomous robots: schema-based modular 
reinforcement learning,” Proceedings 2005 IEEE International 
Symposium on Computational Intelligence in Robotics and Automation. 
Espoo, Finland, June 27-30, 2005. 

[113] Terzopoulos, D. and Rabie, T. “Animat vision: active vision in artificial 
animals.” Videre: Journal of Computer Vision Research. 1 (1), 2-19, 1997.  

[114] Tu, X. and Terzopoulos, D. “Artificial fishes: physics, locomotion, perception, 
behavior,” SIGGRAPH, 1994.  

[115] Vail, D., and Veloso, M. “Multi-robot dynamic role assignment and 
coordination through shared potential fields,” Multi-Robot Systems. 87-98, 
2003. 

[116] Wang, Q., Liu, L., Xie, G., and Wang, L. “Learning from human cognition: 
collaborative localization for vision-based autonomous robots,” 
Proceedings of the 2006 IEEE/RSJ International Conference on Intelligent 
Robots and Systems. Beijing, China, Oct. 9-15, 2006. 

[117] Weems, S. and Reggia, J. “Simulating single word processing in the classic 
aphasia syndromes based on the Wernicke-Lichtheim-Geschwin model,” 
Brain and Language. 98 (3), 291-309, Sept. 2006. 

[118] Weems, S., Winder, R., Bunting, M., and Reggia, J. “Running memory span: 
a comparison of behavioral capacity limited with those of an attractor 
neural network,” Submitted. 

172  



   

[119] Wegner, D. “A computer network model of human transactive memory,” 
Social Cognition. 13, 319-339, 1995. 

[120] Weiss, G., and Dillenbourg, P. “What is ‘multi’ in multi-agent learning?” in 
Collaborative-learning: Cognitive and Computational Approaches. P. 
Dillenbourg (ed.), Oxford : Elsevier, 1999. 

[121] Winder, R., Cortes, C., Reggia, J., and Tagaments, M. “Functional 
connectivity in fMRI: a modeling approach for estimation and for relating 
to local circuits,” NeuroImage. 34, 1093-1107, 2007.  

[122] Zhao, D., and Jin, W. “The study of coorperative behavior in predator-prey 
problem of multi-agent systems,” Autonomous Decentralized Systems, 
2005. ISADS 2005. Proceedings. 90-96, April 2005. 

 
 

173  

http://ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=9846
http://ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=9846

	ABSTRACT
	Title of Document:
	THE INFLUENCE OF COLLECTIVE WORKING MEMORY STRATEGIES ON AGE
	Ransom Kershaw Winder, Doctor of Philosophy, 2007

	Directed By:
	Professor James A. Reggia
	Department of Computer Science
	Past self-organizing models of collectively moving “particle
	THE INFLUENCE OF COLLECTIVE WORKING MEMORY STRATEGIES ON AGE
	By
	Ransom Kershaw Winder
	Dissertation submitted to the Faculty of the Graduate School
	University of Maryland, College Park, in partial fulfillment
	of the requirements for the degree of
	Doctor of Philosophy
	2007
	Advisory Committee:
	Professor James A. Reggia, Chair
	Professor David Jacobs
	Professor David M. Mount
	Professor Don Perlis
	Professor Lawrence C. Washington, Dean’s Representative
	© Copyright by
	Ransom Kershaw Winder
	2007
	Acknowledgements
	I would like to express my gratitude to my advisor, Dr. Jame
	I also thank each of the members of my defense committee for
	For years of support and love, I profusely thank my family f
	I am also particularly grateful to my father and mother for 
	Finally, I give my special thanks to Timur Chabuk for his as
	Table of Contents
	Acknowledgements ii
	Table of Contents iii
	List of Tables v
	List of Figures vi
	Chapter 1:  Introduction 1
	1.1 Goal and Specific Aims 3
	1.2 Overview 5
	Chapter 2: Background 9
	2.1 Artificial Life Multi-agent Systems 9
	2.2 Swarm Intelligence and Collective Motion 12
	2.3 Biologically-inspired Cognitive Architectures and Neural
	2.4 Working Memory 21
	Chapter 3: Improving Self-Organized Collective Movement with
	3.1 Motivation 26
	3.2 Terrain and Tasks 27
	3.3 Agents 27
	3.4 Experimental Methods 33
	3.5 Results 37
	3.5.1 Weights Governing Collective Movements 37
	3.5.2 Strategic Selection of Memories 40
	3.5.3 Memory Management 40
	3.5.4 Best Observed Results 41
	3.5.5 Improvement over Time 44
	3.5.6 Memory Distribution 47
	3.6 Discussion 48
	Chapter 4: Memory Management Strategies for an Agent in a Si
	4.1 Motivation 50
	4.2 Structure of the Environment 53
	4.2.1 Terrain Types, Buildings, and Districts. 55
	4.2.2 Environmental Objects 55
	4.3 Agent in Environment 56
	4.3.1 Nature of Time, Space, and Movement 56
	4.3.2 3D Environment 56
	4.4 Structure of Agent Processing of Input and Output 59
	4.4.1 Visual Input: “Where” and “What” Pathways 60
	4.4.2 Auditory Input 67
	4.4.3 The Executive Control 69
	4.4.4 Movement Adjustment 71
	4.4.5 Spoken Output 72
	4.4.6 Details of Neural Network Architecture 73
	4.4.6.1 High-Level Description of Modular Structure 73
	4.4.6.2 Network Dynamics 76
	4.5. Higher-level Command-based Decisions 82
	4.5.1 Agent Understanding of the Environment 82
	4.5.2 No Memory Movement 83
	4.5.3 Local Memory Movement 85
	4.5.4 Cumulative Memory Movement 89
	4.5.5 Movement Mechanics 91
	4.5.5.1 Mechanics of “Go” 92
	4.5.5.2 Mechanics of “Go to” 92
	4.5.5.3 Mechanics of “Patrol” 95
	4.5.5.4 Mechanics of “Evade” 97
	4.6 Results 98
	4.6.1 Experimental Methods 98
	4.6.2 Neural Network Results 100
	4.6.3 Going to a Location 102
	4.6.4 Looking for an Object in an Area 103
	4.6.5 Sequence of “Go to” Commands 104
	4.6.6 Cumulative Memory Tours of the Environment 106
	4.7 Discussion 107
	Chapter 5: Memory Management Strategies for Communicating Ag
	5.1 Motivation 112
	5.2 Description of Pursuit Scenario 114
	5.3 Pilot Study: 2-dimensional Pursuit Scenario Model 115
	5.4 More Realistic Pursuit Scenario Model 122
	5.4.1 Scenario Specification and Environmental Changes 123
	5.4.2 Simplification of Visual and Verbal Inputs 124
	5.4.3 Agent and Target Behaviors 127
	5.4.4 Agent Strategies 128
	5.4.4.1 Agent Communication 129
	5.4.4.2 Local Memory vs. Cumulative Memory 129
	5.4.4.3 Agent Coordination 131
	5.4.4.4 Memory Limitation 133
	5.5 Results 134
	5.5.1 Experimental Methods 134
	5.5.2 Single Agent: Patrolling an Area 135
	5.5.3 Single Agent: Sequence of “Go to” Command with Hostile
	5.5.4 Multiple Agents: The Pursuit Scenario 140
	5.6 Discussion 148
	Chapter 6: Discussion 152
	6.1 Summary and Limitations 152
	6.2 Contributions 158
	6.3 Future Work 160
	References 164
	List of Tables
	Table 3.1 Default abstract model parameters 31
	Table 4.1 Neural network abbreviations and associated names 
	List of Figures
	Figure 2.1:   Sample system of flocking “boids” 13
	Figure 2.2:   Example self-organizing map 19
	Figure 2.3:   Hierarchy of the range of human memory functio
	Figure 3.1:   Simple 8x8 grid sample abstract environment fo
	Figure 3.2:   Agent with working memory and its interactions
	Figure 3.3:   Algorithm for agent velocity and position upda
	Figure 3.4:   Maps of the 128x128 abstract terrains 32
	Figure 3.5:   Results of different flocking parameters on si
	Figure 3.6:   Results of agents only remembering obstacle “e
	Figure 3.7:   Results for different memory update strategies
	Figure 3.8:   Best observed results for six abstract maps 41
	Figure 3.9:   Improvement over time for agents with memory o
	Figure 3.10: Collective memories of four abstract environmen
	Figure 3.11: Progression of collective memories in an abstra
	Figure 4.1:   Overhead representation of simulated urban env
	Figure 4.2:   Example agent view of the city 57
	Figure 4.3:   Another example agent view of the city 58
	Figure 4.4:   High-level depiction of hierarchy of internal 
	Figure 4.5:   Representation of self-organizing map network 
	Figure 4.6:   Expanded view of agent’s sensorimotor network 
	Figure 4.7:   Depiction of agent estimation of object locati
	Figure 4.8:   Expanded view of agent’s cognitive network sys
	Figure 4.9:   Expanded view of agent’s executive control sys
	Figure 4.10: Agent processing of limited view into different
	Figure 4.11: Representation of sample agent local memory map
	Figure 4.12: Representation of sample agent cumulative memor
	Figure 4.13: Sample representations of words and sentences i
	Figure 4.14: Results of command to “go to” a nearby location
	Figure 4.15: Results of commands to “patrol a district” and 
	Figure 4.16: Results of sequence of “go to” commands, groupe
	Figure 4.17: Results of sequence of “go to” commands, groupe
	Figure 4.18: Results of successive agent tours of the entire
	Figure 5.1:   Sample pursuit scenario pilot-study environmen
	Figure 5.2:   Results of pursuit scenario pilot-study 120
	Figure 5.3:   Raw and processed images of an agent during pu
	Figure 5.4:   Results of command to “patrol the historic” di
	Figure 5.5:   Results of sequence of “go to” commands in env
	Figure 5.6:   Accuracy of agent environment interpretation d
	Figure 5.7:   Agent peril during “go to” commands in environ
	Figure 5.8:   Agent communication and memory strategies’ res
	Figure 5.9:   Agent coordination strategies’ results in purs
	Figure 5.10: Agent results in pursuit scenario for different
	Figure 5.11: Collective memories of the urban environment 14
	Chapter 1: �Introduction
	In recent years, there has been increasing interest in and r
	Even though each individual particle in these systems is eff
	Past self-organizing collective movement systems have typica
	Much of the work in past collective movement systems has tak
	For instance, take the scenario of a collection of agents at
	1.1 Goal and Specific Aims
	The central goal of this research is to explore the effects 
	Extend basic particle collective methods so that individual 
	Develop a more powerful agent operating with only limited vi
	Build a multi-agent system consisting of agents described in
	1.2 Overview
	The rest of this dissertation is organized as follows. Chapt
	Chapter 3 describes a model of a simple self-organizing mult
	While these initial results were interesting, the lack of re
	Chapter 5 extends the results of Chapter 4 to a multi-agent 
	Finally, Chapter 6 is a general discussion of the dissertati
	Chapter 2:�Background
	The multidisciplinary nature of my research makes a variety 
	2.1 Artificial Life Multi-agent Systems
	The field of artificial life incorporates a broad range of s
	For computer science efforts into the study of artificial li
	Of particular interest to this dissertation is the pursuit d
	In the original work where the predator-prey pursuit scenari
	The pursuit domain has many variations, and no theoretically
	The pursuit scenario has been used as a problem in many prev
	The results of this latter study found that prey exhibiting 
	These past environments are limited in that they all take pl
	2.2 Swarm Intelligence and Collective Motion
	The discipline of swarm intelligence can be viewed as an imp
	Figure 2.1. Sample environment of “boids” flocking in three-
	Of particular interest to this research is past work in coll
	Behavior in this original model was governed by three princi
	Avoidance: the influence to avoid collisions with other near
	Matching Velocity (or Alignment): the influence to match the
	Centering (or Cohesion): the influence to stay close to othe
	When combined, these forces produced flock-like behaviors th
	This work has since been extended in many areas. Robotics ha
	Other studies have explored the possibility of even greater 
	Yet most collective motion scenarios are limited in the foll
	2.3 Biologically-inspired Cognitive Architectures and Neural
	In recent years, there has been growing interest in developi
	There were initial forays into this field as early as 1987, 
	A wide range of previous models of biology have been tackled
	The modularity of these kinds of networks tries to mimic bio
	While these were designed to be models of biological systems
	Many methods have been developed for training neural network
	An artificial neural network subtype of key interest to this
	Figure 2.2. An example self-organizing map of phonemes commo
	By removing the limitation that there is only one winner in 
	This model used both self-organizing maps and neural network
	While successful, this past work was limited in scope becaus
	2.4 Working Memory
	Also relevant to this dissertation is the past study of memo
	Working memory is a term that is often synonymous with short
	Figure 2.3. Hierarchical representation of the range of memo
	Working memory has been a topic of great interest in the com
	In one case, a computational model tried to limit its comple
	Another model focused on the executive control system of wor
	In addition to these models of working memory, I have contri
	I developed other models of working memory outside this diss
	Memory has also proven to be useful in artificial intelligen
	In the following dissertation, working memory is of interest
	Chapter 3:�Improving Self-Organized Collective Movement with
	3.1 Motivation
	The goal of this chapter is to make a significant extension 
	The agents move in environments with various types of terrai
	3.2 Terrain and Tasks
	Agents having self-organized collective movements exist in a
	3.3 Agents
	As in past particle systems, each agent j in the model is ef
	Figure 3.1. A simple 8x8 grid example environment. The ten c
	Figure 3.2. Representation of an agent and its interactions 
	Figure 3.3 presents the algorithm used to update an agent’s 
	For agent j with current position xj and velocity vj
	M = | {agents within radius rTC of agent j} |   % other agen
	N = | {agents within radius rV of agent j} |   % agents in v
	g = coordinates of current goal cell
	Compute Influences
	vg = (g – xj) / | g – xj |     % influence of goal destinati
	va = k? M-1 \(i=1…M \(xj – xi\)     % �
	vmv = k' N-1 \(i=1…N vi     % match veloc
	vc = k \(N-1 \(i=1…N xi – xj\)     % c�
	vj = vj + wg vg + wc vc + wmv vmv + wa va    % aggregate vel
	For all cells containing obstacles visible to agent j
	uview = unit vector from agent j towards closest edge of cel
	vj = vj – kt uview      % veloc. considering adjacent cell
	For all obstacles in agent j’s memory and within radius rmem
	umem = unit vector from agent j towards obstacle cell’s cent
	vj = vj – dmem kt umem     % veloc. considering obstacle
	Update Agent Memory (see text)
	Adjust Velocity
	if | vj | > vmax, then vj = vj * vmax / | vj |    % ensure v
	newvmax = vmax * ks * 2 / ( 1 + 1 / e| Vj | - .5 * Vmax )   
	vj = vj * newvmax / | vj |
	Update Position
	xj = xj + vj       % update position
	Figure 3.3. This algorithm updates an agent’s velocity vecto
	Having computed a velocity update, the agent then considers 
	Table 3.1. Table of the default parameters for the model.
	k
	1
	rTC
	0.27
	k′
	1
	rV
	1
	k″
	1
	vmax
	0.25
	cmem
	0.01
	wg
	0.1
	dmem
	0.3
	wc
	0.76
	nmem
	10
	wmv
	0.4
	rmem
	3
	wa
	0.04
	In addition, and unlike past particle systems, each agent ha
	The agent then adjusts its velocity so that the magnitude of
	Figure 3.4. Maps of the 128x128 terrains used in the simulat
	3.4 Experimental Methods
	To test the advantage (or lack thereof) of agents with memor
	Figure 3.4 shows maps of the six terrains used in the simula
	In each experimental simulation, ten agents begin with rando
	Different experiments compared agents both with and without 
	Memory size: the number of individual obstacle locations an 
	Recording probability: probability of adding an encountered 
	Memory dampening: strength of influence of remembered obstac
	Memory radius: Number of cells away that a remembered swamp 
	Upon determining the combination of velocity weights that ga
	When an agent’s memory becomes full, older remembered obstac
	When an agent has entered a large area of swamp cells, it wo
	Figure 3.5. a. Mean required time steps of simulations on si
	Agents in open terrain have a maximum speed of 0.25, recalli
	3.5 Results
	This section first examines how a number of weight variation
	3.5.1 Weights Governing Collective Movements

	The first simulations examined the effects of varying the we
	It can be seen that some cases in Figures 3.5a and 3.5b have
	By comparing entries in Figure 3.5a to corresponding entries
	Figure 3.6. Mean required time steps of simulations where ag
	for Map1, wc = 0.04, wmv = 0.2, wa = 0.4, dmem = 0.75, rmem 
	for Map2, wc = 0.04, wmv = 0.4, wa = 0.4, dmem = 0.5, rmem =
	for Map3, wc = 0.04, wmv = 0.4, wa = 0.4, dmem = 0.5, rmem =
	for Map4, wc = 0.4, wmv = 0.4, wa = 0.4, dmem = 0.5, rmem = 
	for Map5, wc = 0.2, wmv = 0.2, wa = 0.4, dmem = 0.3, rmem = 
	for Map6, wc = 0.4, wmv = 0.4, wa = 0.4, dmem = 1, rmem = 1,
	Other parameters use the default values in the Appendix. The
	3.5.2 Strategic Selection of Memories

	A strategy of allowing each agent to update its memory only 
	Figure 3.7. Mean required time steps of the various strategi
	3.5.3 Memory Management

	The four methods tested for selecting a memory to delete whe
	Figure 3.8. The best observed mean required time steps for s
	3.5.4 Best Observed Results

	In order to judge whether or not having a memory reduced the
	For comparative purposes, the required time steps of an “ide
	Figure 3.8 displays the three following results: (1) the mea
	Figure 3.9. Change in the mean time steps of 20 simulations for individual maps over the course of six consecutive cycles. Both simulations with and without memories acquired betwe
	3.5.5 Improvement over Time

	It was hypothesized that most performance improvement due to
	The results, shown in Figure 3.9, indicate that the simulati
	While the results for simulations varied, in all cases, the 
	Figure 3.10. Maps as seen by the agent collective at the beg
	Figure 3.11. An example simulation run on the terrain Map 2 
	The unexpected result that having a memory improved performa
	3.5.6 Memory Distribution

	The distribution of agent memories throughout the terrain ov
	3.6 Discussion
	There are three main conclusions to emerge from the computat
	A question that remains is how to know what weights and para
	It is concluded that adding individual “rote learning” of ob
	Chapter 4:�Memory Management Strategies for an Agent in a Si
	4.1 Motivation
	In the previous chapter, particles that were extended to hav
	With their ability to pursue goals and perform tasks without
	In this chapter, I develop an agent with the capability of a
	While no existing machine intelligence has proved capable of
	The following is a skeleton model of an agent operating in a
	The present scenario for the agent is as an operative moving
	The following questions are asked: Now that the agent must i
	4.2 Structure of the Environment
	The agent exists in a bounded two-dimensional artificial wor
	Figure 4.1. Overhead representation of an example city with 
	4.2.1 Terrain Types, Buildings, and Districts.

	Each cell of the grid superimposed on the real-valued space 
	The city is divided into different districts, which are dist
	A city is generated by a pseudorandom algorithm that places 
	4.2.2 Environmental Objects

	Objects do not occupy entire cells, but instead are centered
	4.3 Agent in Environment
	4.3.1 Nature of Time, Space, and Movement

	Time is modeled simply as a counter that increases as the si
	The currently implemented agent in the environment is capabl
	4.3.2 3D Environment

	The walking agent operates along the continuous 2-dimensiona
	Figure 4.2. 2-dimensional, 512 by 512 pixel image of the age
	Figure 4.3. Another 2-dimensional, 512 by 512 pixel image of
	The 3D environment is constructed in Open-GL. Using the agen
	Different textures were used for the grass, streets, and wat
	4.4 Structure of Agent Processing of Input and Output
	The internal network structure of the agent consumes environ
	This structure and its connections to sensory input and outp
	Figure 4.4. High-level depiction of interaction between vari
	4.4.1 Visual Input: “Where” and “What” Pathways

	In the human brain, vision is processed in two pathways, the
	The “where” pathway takes a 2-dimensional image of the 3-dim
	The visual field is processed in several ways, but the remem
	Reflexive movement is based on analysis of the environment u
	These self-organizing maps, where each node in a map is init
	Figure 4.5. Representation of one of the navigation networks
	After this process, the map is fixed, and the networks are t
	Movement based on waypoints overrides the reflexive navigati
	The agent uses similar information from the scene as the ref
	The “what” pathway’s input is generated from the 3D scene by
	Figure 4.6. Expanded view of the agent’s sensorimotor system
	After training, while the agent is operating and searching f
	Table 4.1. Regional names in the neural networks and what th
	V1: Primary Visual Cortex
	IT: Inferotemporal Cortex
	AG: Anteriror Gyrus
	WA1: Wernicke’s Area
	WA2: Wernicke’s Area
	BA: Broca’s Area
	A1: Primary Auditory Cortex
	M1:  Primary Motor Cortex
	The neural network structure here, while not intended to model the human cortex, does take some inspiration from relevant brain regions, including suggestive names (see Table 4.1).
	In addition to recognizing objects, the agent is required to
	When the agent wants to make this estimate, it begins by cho
	The equations use the information about the environmental di
	Figure 4.7. Depiction of how object’s locations are approxim
	4.4.2 Auditory Input

	While vision is processed at every time step, auditory stimu
	Figure 4.8. Expanded view of the agent’s cognitive network. 
	The values of input region A1 change throughout the sequence
	This representation then acts as input in�
	4.4.3 The Executive Control

	This control mechanism operates under a set of simple rules 
	First, the control mechanism reacts to the “where” pathway, 
	The agent then checks its command memories (including comman
	The agent then will update its orientation angle to avoid th
	Finally, the agent’s orientation angle is adjusted so that i
	Figure 4.9. Expanded view of the agent’s executive control. 
	4.4.4 Movement Adjustment

	Once the agent has finished updating its states according to
	Agent’s position in space
	Agent’s velocity vector
	Buildings and terrain features it sees presently
	Objects in the environment it sees presently
	Buildings, terrain features or objects it remembers seeing
	Locations of city districts (e.g. downtown district, industr
	The agent may also have access to a working memory of the lo
	4.4.5 Spoken Output

	When the agent is required to speak, it produces a vector of
	This vector acts as input to a region called BA, which in turn connects to an output region and has recurrent connections to itself. This is because the output is not static, but i
	4.4.6 Details of Neural Network Architecture

	This section gives the details of how the neural networks of
	4.4.6.1 High-Level Description of Modular Structure

	The following is a bulleted description of the different neu
	Verbal Input Pathway
	A1: 34 phoneme features (e.g. liquid?, voiced?, etc.)
	WA1: multi-winner self-organizing map (accumulates input fro
	WA2: multi-winner self-organizing map (accumulates input fro
	AGa: Hidden units trained with resilient error-backpropagation in WA2(AGa(Audio Encoding
	Audio Encoding: 34 on/off features of sentence input includi
	Verb: Go, Go to, Patrol, Find, Evade
	Direction: North, South, East, West
	Location: City, Market District, Uptown District, Downtown D
	Adjective: Our, Enemy
	Object: Tanks, Infantry, Missile Launchers, Man, Woman, Car,
	Absence of Object: Without Tanks, Without Infantry
	Modifier: With Stingers
	Visual Object Input Pathway
	V1: 50 x 50 pixel image
	IT: multi-winner self-organizing map
	AGv: Hidden units trained with resilient error-backpropagation in IT(AGv(Visual Encoding
	Visual Encoding: 16 on/off features of picture input includi
	Alignment: Ours, Enemy, Neutral
	People: People?
	Type: Infantry, Man, Woman
	Modifier: With Stingers
	Vehicle: Vehicle?
	Type: Tank, Car, Truck, Van, Bus
	Other: Missile Launcher, Dumpster
	Spoken Output Pathway
	Speech Features: 28 on/off speech features including the fol
	Action: Location Arrival, Found Object, Evading Object
	Locations: City, Market District, Uptown District, Downtown 
	Adjective: Our, Enemy
	Object: Tanks, Infantry, Missile Launchers, Man, Woman, Car,
	Absence of Object: Without Tanks, Without Infantry
	Modifier: With Stingers
	BA: Hidden units trained in the path Speech Features(BA(M1 with resilient error-backpropagation. It receives feedback from M1 and self-state information
	M1: 20 output motor features for producing the desired phone
	4.4.6.2 Network Dynamics

	The following is a description of the dynamics of the agent’
	Visual Object Input: Architecture and Activity Dynamics
	V1/V2 [50x50] acts as the input region to the visual pathway
	IT [15x20 neural elements] receives activity from V1/V2, ful
	where sum is the total input to node j of IT, in is the acti
	The IT area forms a multi-winner self-organizing map. A winn
	The value awinner is the closest winner within a node’s conn
	The AG [15x20] receives activity from IT in this path, fully
	where aj is the activation of node j in IT, biask is the bia
	The VE (visual encoding) region [1x16] receives activity fro
	where ak is the activation of node k in AG, biasm is the bia
	Visual Object Input: Learning Phase I
	The learning rule for IT afferent connections is:
	where μ = .5 and the other variables are as defined above. A
	Visual Object Input: Learning Phase II
	All connection weights throughout the path other than those 
	Learning from IT via AG to VE occurs through RPROP (resilien
	The measure of its correctness is the proximity of an elemen
	Verbal Input: Architecture and Activity Dynamics
	A1 [1x34] acts as the input region to the verbal input proce
	WA1 [15x20] receives activity from A1, fully connected. WA1 
	where sum is the total input to node j of WA1, in is the act
	As with the IT area, WA1 forms a multi-winner self-organizin
	The value awinner is the closest winner within a node’s conn
	If the input is a /stop/ (i.e. an input where all features a
	WA2 [25x30] receives activity from WA1, fully connected. WA2
	where ak and ah are nodes of WA2, aj is a node of WA1, wkj i
	As with WA1, WA2 forms a multi-winner self-organizing map. I
	The AG receives activity from WA2 in this path, fully connec
	where ak is the activation of node k in WA2, biasm is the bi
	The AE (audio encoding) region [1x34] receives activity from
	where am is the activation of node m in AG, biasn is the bia
	Verbal Input: Learning Phase I
	The learning rule for WA1 afferent connections is:
	where all other terms are as defined above. The variable t i
	Verbal Input: Learning Phase II
	The learning rule for WA2 afferent connections is:
	where all other terms are as defined above. The variable t i
	Verbal Input: Learning Phase III
	All connection weights throughout the path other than those 
	Learning from WA2 via AG to AE occurs through RPROP with del
	The measure of its correctness is the proximity of an elemen
	Spoken Output: Architecture and Activity Dynamics
	The SF (speech features) region [1x28] acts as the input reg
	BA [15x15] received activity from SF, fully connected. BA no
	where aj is the activation of node j in BA, biasj is the bia
	The phoneme output region [1x20] receives activity from BA, 
	where aj is the activation of node j in BA, biasn is the bia
	When two /stop/ phonemes are produced in a row, then the net
	4.5. Higher-level Command-based Decisions
	4.5.1 Agent Understanding of the Environment

	The agent exists in a three-dimensional environment. It is g
	In the rest of the chapter, three different variations of th
	4.5.2 No Memory Movement

	This movement strategy is named “no memory” movement because
	NM movement takes the information provided by a single 2-dim
	The agent has the option either to go straight ahead or to m
	Figure 4.10. Agent’s processing of the environmental view. M
	Once a cell is chosen to be the location of a waypoint, the 
	Waypoints are not generated under certain circumstances. Sho
	4.5.3 Local Memory Movement

	The advantage of the NM movement is that it requires no extr
	In addition to using the knowledge of the environment from t
	As in creating waypoints in the NM movement, some conversion
	The LM cells are determined by the agent to be one of four p
	The counts of the number of pixel cells associated with the 
	Figure 4.11. Representation of an example local memory map p
	The 3-dimensional environment is not flat. Also, the process
	With this information, the process of creating waypoints is 
	The different possibilities of the cell states of the LM all
	4.5.4 Cumulative Memory Movement

	CM movement makes use of the same techniques that appear in 
	Like the LM, the global map is a cellular space aligned with
	When the agent follows a command that requires movement, an 
	Figure 4.12. Representation of an example cumulative memory 
	This queue of waypoints is never completely fixed. If the ag
	One caveat that bears mentioning is that the cellular space 
	4.5.5 Movement Mechanics

	Each of the command types that influences movement (go, go t
	4.5.5.1 Mechanics of “Go”

	When an agent is following a “go” command that specifies a d
	4.5.5.2 Mechanics of “Go to”

	Unlike the simpler “go” commands, a command to “go to” a spe
	For the NM movement, the agent follows a system of waypoints
	If a waypoint is not present, then there is potential for a 
	For the LM movement, the agent will again generate waypoints
	When a waypoint is absent, a new one will be generated based
	For CM movement, the agent produces a sequence of waypoints,
	In some cases for the CM and LM strategies, when the goal re
	4.5.5.3 Mechanics of “Patrol”

	Unlike the “go” commands, patrol requires some map-memory at
	In the NM movement strategy for the “patrol” command, there 
	In the LM movement strategy for the “patrol” command, there 
	In the CM movement strategy for the “patrol” command, waypoi
	4.5.5.4 Mechanics of “Evade”

	The agent responses to the “evade” command and corresponding
	In the NM movement strategy, the agent simply moves in a vel
	In the LM movement strategy, the agent has access to a memor
	In the CM movement strategy, the agent has access to a memor
	4.6 Results
	4.6.1 Experimental Methods

	In the following results, the training of the agent’s neural
	What follows this is a series of scenarios where the success
	The above scenarios are run twenty times for each memory str
	For the case where the agent is told to go to a single locat
	The maximum time steps were chosen for these scenarios so th
	In addition to the above scenarios, the improvement due to c
	4.6.2 Neural Network Results

	Each of the network paths are trained separately, and in dif
	The verbal path has three phases of learning. The first phas
	Figure 4.13. Depiction of typical unique patterns created du
	For the spoken output path, the features of the desired sent
	4.6.3 Going to a Location

	In this scenario, the agent is assigned the relatively simpl
	Figure 4.14 displays the mean time taken to complete the tas
	Figure 4.14. Results for the command of an agent instructed 
	4.6.4 Looking for an Object in an Area

	In this scenario, the agent’s starting location, or “home ba
	Figure 4.15. Results for the scenario when the agent is comm
	Figure 4.15 shows the times for this scenario. NM fails the 
	4.6.5 Sequence of “Go to” Commands

	In this scenario, the agent begins in a location on a street
	Figures 4.16 and 4.17 show the results for each of the diffe
	Figure 4.16. This chart shows the average performance of eac
	Figure 4.17. Chart for the same scenario as Figure 4.16, but
	4.6.6 Cumulative Memory Tours of the Environment

	The final scenarios examine a long tour of the entire city, 
	These scenarios take the agent to a location in every distri
	Figure 4.18 displays the time taken to perform each of the t
	Figure 4.18. Results for the CM scenarios where the agent to
	4.7 Discussion
	This chapter presented an agent architecture with a qualitat
	There are three main conclusions to emerge from the computat
	As the results demonstrate, the agent completed its tasks fa
	As expected, when an agent is covering the same ground over 
	The LM strategy in turn has a greater success rate than the 
	Though a working memory makes the agent more resistant to mi
	Chapter 5:�Memory Management Strategies for Communicating Ag
	5.1 Motivation
	In Chapter 3, the effect and benefits of working memory were
	In this chapter, I use a similar urban environment but now w
	The following questions are asked in this chapter: Given the
	It is hypothesized that communication is crucial for the age
	5.2 Description of Pursuit Scenario
	The pursuit scenario, also known as the “pursuit domain” and
	This chapter describes two implementations of the pursuit sc
	5.3 Pilot Study: 2-dimensional Pursuit Scenario Model
	Figure 5.1. Sample pilot-study environment. The light-filled
	This first model was developed to explore the effect of coor
	Cells in the pilot study are occupied by one of the followin
	In this cellular environment, there are five agents (dark-fi
	The target moves before the agents and exhibits a simple eva
	The goal of the five agents is to trap the target by surroun
	The agents have the ability to communicate locally (within a
	The coordination of agent movement is affected by various in
	Additionally, because agents can locally broadcast the targe
	In these equations, N is the number of neighboring agents wi
	In the above equations, f is the sum of all the forces due t
	Once the velocity vector is computed, the agent must convert
	The agents can also be given a further vision limitation, st
	Agents were also given varying degrees of knowledge of the e
	Figure 5.2. Results for the different strategies employed by
	Figure 5.2 displays the mean task completion times for the a
	Although in most scenarios the prediction of the target beha
	Among the main results of this pilot study, it was learned t
	5.4 More Realistic Pursuit Scenario Model
	In order to accommodate the multiple agents in the scenario 
	5.4.1 Scenario Specification and Environmental Changes

	The pursuit scenario when implemented in this model has the 
	In the environment of the previous chapter, the city was mad
	5.4.2 Simplification of Visual and Verbal Inputs

	Several changes were necessary to the model to make it run m
	The image resolution produced by the camera for each agent i
	a.     b.
	Figure 5.3. Sample snapshots of the pursuit environment from
	The complexity of passing verbal and visual information thro
	The agent environmental step sizes per time step in the mode
	There were also some changes needed so that the model could 
	5.4.3 Agent and Target Behaviors

	The agents and target have behaviors dictated by the command
	If agents are given the ability to communicate, then when an
	When an agent receives a broadcast of the target’s location,
	The target is pre-programmed to follow two basic commands, w
	5.4.4 Agent Strategies

	The agents have different strategies that they can use to wo
	5.4.4.1 Agent Communication

	Basic agent communication consists of broadcasting the locat
	The other forms of communication that constitute coordinatio
	5.4.4.2 Local Memory vs. Cumulative Memory

	Agents retain the ability to use local and cumulative memory
	When the agent is using a strategy of local memory, the meth
	If the agent does not see or remember the target, but hears 
	At this point, a small change was made to the range of local
	When the agent is using a strategy of cumulative memory, the
	If the agent does not see or remember the target, but hears 
	5.4.4.3 Agent Coordination

	While the agent’s computation of its next waypoint and paths
	Nevertheless, the avoidance acceleration could prove useful 
	In addition to this influence, there is another method of ag
	5.4.4.4 Memory Limitation

	In addition to the strategies intended to improve the perfor
	5.5 Results
	5.5.1 Experimental Methods

	The following section describes the results for three scenar
	The first scenario is a case where the agent is told to patr
	The second scenario is similar to the scenario in Chapter 4 
	The third scenario is the multi-agent pursuit scenario. This
	5.5.2 Single Agent: Patrolling an Area

	In this scenario, a single agent begins at an arbitrary posi
	Figure 5.4a displays the fraction of the Historic District’s
	where a is the number of cells mapped (i.e. no longer labele
	a.     b.
	Figure 5.4. Results for the command of an agent instructed t
	The CM strategy was the only strategy to finish within the t
	It should be noted that this scenario is naturally inclined 
	5.5.3 Single Agent: Sequence of “Go to” Command with Hostile

	This scenario operates much the same as the scenario in 4.6.
	Figure 5.5. This chart shows the scenario where the agent ha
	Figure 5.5 displays the results for the three different move
	Figure 5.6. This figure shows the error rates of the maps pr
	In both this scenario and the related scenario from Chapter 
	Finally, Figure 5.7 displays the measure of peril the agents
	Figure 5.7. This shows the average number of time steps the 
	5.5.4 Multiple Agents: The Pursuit Scenario

	For the agents receiving a sequence of images of the more re
	While the strategies for the agent team varied, the target’s
	The baseline scenario featured five completely independent a
	The first addition made to the agents, hypothesized to be cr
	Figure 5.8. Chart of the mean completion times for agent tea
	The scenarios described so far have been using local memory 
	The question remains as to whether coordination is a useful 
	The results here differ greatly depending on the memory stra
	Figure 5.9. This figure shows the mean completion times for 
	The above results demonstrate that there is an enormous bene
	A scenario was tested in which agents used local memory stra
	Figure 5.10. Results of the scenarios featuring limited memo
	Figure 5.11 displays a sample composite map showing a single
	Figure 5.11. This is a composite depiction of the maps const
	5.6 Discussion
	There are three main conclusions to emerge from the computat
	This chapter presented a pursuit scenario for two models tha
	The bulk of the chapter was concerned with the more challeng
	The cumulative memory strategy was also demonstrated to have
	The model was extended to multiple agents operating in the m
	The scenario also further demonstrated the advantages of the
	Two types of coordination were examined in the model, path c
	Finally, it was shown that even a limited memory of the envi
	Chapter 6:�Discussion
	6.1 Summary and Limitations
	Traditional particle systems are not only difficult to contr
	The self-organizing collective behavior of particle systems 
	Methods in robotics for acquiring information for building e
	In this dissertation, I have proposed and demonstrated that 
	In a particle system, it was hypothesized that memory would 
	A surprising result was the discovery that the collective co
	It was also observed that as the agents made more and more t
	In addition to the visually interesting nature of the map ge
	Additionally, the results from both the particle system scen
	Having some capacity for memory was also shown to be crucial
	The different strategies of local and cumulative memories al
	Despite the successes of these agents in their environments,
	The other key limitations of the simulated environment were 
	6.2 Contributions
	By extending simple particle systems with a limited distribu
	I demonstrated the immediate and gradual benefits of adding 
	I created a new agent using self-organizing maps and other n
	I demonstrated through experimental simulations that the mor
	I developed a system of multiple agents, capable of communic
	6.3 Future Work
	This dissertation has explored the effect of adding working 
	At present, memory in the agent system plays a direct role i
	In addition to giving the agent a greater ability to adapt i
	Another method for coordination that adjusts the behavior of
	Finally, the neural networks that controlled and processed t
	References
	Alahakoon, D., and Halgamuge, S. “Dynamic self-organizing ma
	Alcazar, J. “A simple approach to the multi-predator multi-p
	Andrecut, M., and Ali, M. “Competitive learning of fuzzy mod
	Atherton, J., Hardin, B., and Goodrich, M. “Coordinating a m
	Auda, G.,  and Kamel, M. “Modular neural networks: a survey,
	Ayers, J., Davis, J., and Rudolph, A. (eds.), Neurotechnolog
	Baddeley, A. “Recent developments in working memory,” Curren
	Baddeley, A. “Working Memory,” Science. 255, 556-559, 1992.
	Baddeley, A. Human Memory: Theory and Practice, Psychology P
	Baldassarre, G., Nolfi, S., and Parisi, D. “Evolving mobile 
	Baldi, P. and Hornik, K. “Learning in linear neural networks
	Banzhaf, W., Nordin, P., Keller, R., and Francone, F. Geneti
	Bayazit, O., Lien, J-M., and Amato, N. “Roadmap-based flocki
	Bedau, M. “Artificial life: organization, adaptation and com
	Benda, M., Jagannathan, V. and Dodhiawalla, R. “On optimal c
	Best, S., and Cox, P. “Programming an autonomous robot contr
	Bonabeau, E., Dorigo, M. and Theraulz, G., Swarm Intelligenc
	Bonarini, A., Aliverti, P., and Lucioni, M. “An omnidirectio
	Bosman, R., van Leeuwen, W., and Wemmenhove, B. “Combining H
	Bousquet, F., Barreteau, O., Le Page, C., Mullon, C., and We
	Burgard, W., Fox, D., Moors, M., et al. “Collaborative multi
	Caelli, T., Guan, L., and Wen, W. “Modularity in neural comp
	Camazine, S., Deneuboug, J., Franks, N., et al. Self-Organiz
	Carlisle, A., and Dozier, G. “Adapting particle swarm optimi
	Chen, S-H. “Modular recurrent neural networks for Mandarin s
	Chong, W. “Reflective reasoning.” Diss. University of Maryla
	Clerc M., and Kennedy, J. “The particle swarm,” IEEE Transac
	Corchs, S., and Deco, G. “Large-scale neural model for visua
	Couzin, I., Krause, J., Franks, N., and Levin, S. “Effective
	Cowan, N. “The magical number 4 in short-term memory: a reco
	Di Caro, G., and Dorigo, M. “AntNet: distributed stigmergic 
	Dorigo, M. “Ant colony system: a cooperative learning approa
	Dorin, A. “Physically based self-organizing cellular automat
	Drogoul, A., and Ferber, J. “Multi-agent simulation as a too
	Durstewitz, D., Seamans, J., and Sejnowski, T. “Neurocomputa
	Edwards, L., Peng, Y., and Reggia, J.. “Computational models
	El-Bakry, H., Abo-Elsoud, M., and Kamel, M. “Fast modular ne
	Elfes, A., Dolan, J., Podnar, D., Mau, S., and Bergerman, M.
	Gerstner, W. and Kistler, W. “Mathematical formulations of H
	Girosi, F., Jones, M., and Poggio, T. “Regularization theory
	Griffith, S., Goldwater, D., and Jacobson, J. “Self-replicat
	Haarmann, H., and Usher, M. “Maintenance of semantic informa
	Haykin, S. Neural networks: a comprehensive foundation, 2nd 
	Haynes, T., and Sen, S. “Evolving Behavioral Strategies in P
	Haynes, T., Wainwright, R., Sen, S., and Schoenefeld, D. “St
	Heppner, F., and Grenander, U. “A stochastic nonlinear model
	Hicks, R., and Bajcsy, “Reflective surfaces as computational
	Hodgins, J. and Brogan, D., “Robot herds,” Artificial Life I
	Horn, D., and Usher, M. “Parallel activation of memories in 
	Hosokawa, K., Tsujimori, T., Fujii, T., et al. “Self-organiz
	Howard, A. “Multi-robot simultaneous localization and mappin
	Howard, A., Sukhatme, G., and Matarić, M. “Multi-Robot Mappi
	Hutchins, E., Cognition in the Wild, Cambridge, MA: MIT Pres
	Huth, A., and Wiesel, C. “The simulation of the movement of 
	Ilmonen, T., Takala, T., and Laitinen, J. “Soft edges and bu
	Iwata, A., Kawajiri, H., Suzumura, N. “Classification of han
	Jennings, A. The Invisible Matrix: The Evolution of Altruism
	Jim, K., and Giles, C. “Talking helps: evolving communicatin
	Jones, C., and Mataric, M. “Adaptive division of labor in la
	Kaelbling, L., Littman, M., and Moore, A. “Reinforcement lea
	Kangas, J., Kohonen, T., and Laaksonen, J. “Variants of self
	Kavraki, L., Svestka, P., Latombe, J., and Overmars, M.. “Pr
	Kennedy, J. “The particle swarm: social adaptation of knowle
	Kennedy, J., Eberhart, R., and Shi, Y. Swarm Intelligence. S
	Kim, D. “Self-organization for multi-agent groups,” Internat
	Klavins, E. “Automatic synthesis for controllers for distrib
	Kohonen, T. “The self-organizing map,” Proceedings of the IE
	Kohonen, T., and Somervuo, P. “How to make large self-organi
	Konolige, K., Fox, D., Ortiz, C., et al. “Centibots: very la
	Korf., R. “A simple solution to pursuit games,” Proceedings 
	Kurihara, K., Nishiuchi, N., Hasegawa, J., and Masuda, K. “M
	Lapizco-Encinas, G., and Reggia, J. “Diagnostic problem solv
	Lee, T., Ching, P., and Chan L-W. “Isolated word recognition
	Lenzitti, B., Tegolo, D., and Valenti, C. “Prey-predator str
	Luke, S., and Spector, L. “Evolving teamwork and coordinatio
	Mataric, M. “Environment learning using a distributed repres
	Mataric, M. “Issues and approaches in the design of collecti
	McCook, C., and Esposito, J. “Flocking for heterogeneous rob
	Melin, P., Gonzalez, C., Gonzales, F., and Castillo, O. “Fac
	Miller, E., and Cohen, J. “An integrative theory of prefront
	Mishkin, M., Suzuki, W., Vargha-Khadem, F., and Gadian, D. “
	Muller, S., Marchetto, J., Airaghi, S., and Kourmoutsakos, P
	Nissoux, C., Simeon, T., and Laumond, J.-P. “Visibility base
	Nolfi, S., and Parisi, D. “Neural networks in an artificial 
	Nourbakhsh, I., Sycara, K., Koes, M., Young, M., et al. “Hum
	O’Reilly, R., and Frank, M. “Making working memory work: a c
	Pagac, D., Nebot, E., and Durrant-Whyte, H. “An evidential a
	Pan, G., Dou, Q., and Liu, X. “Performance of two improved p
	Pearlmutter, B. “Gradient calculatons for dynamic recurrent 
	Reggia, J., Tagamets, M, Contreras-Vidal, J., et al. “Develo
	Reynolds, C. “Big fast crowds on PS3.” Proceedings of Sandbo
	Reynolds, C. “Flocks, herds and schools,” Computer Graphics.
	Reynolds, C. “Interactions with groups of autonomous charact
	Reynolds, C. “Steering behaviors for autonomous characters,”
	Riedmiller, M. “A direct adaptive method for faster backprop
	Rodriguez, A. and Reggia, J. “Extending self-organizing part
	Rodriguez, A., and Reggia, J. “Collective-movement teams for
	Rueckl, J., Cave, K., and Koslyn, S. “Why are ‘what’ and ‘wh
	Rumelhart, D., and Zipser, D. “Feature discovery by competit
	Sahin, E., Labella, T., Trianni, V., et al. “SWARM-BOT: patt
	Schulz, R., and Reggia, J. “Temporally asymmetric learning s
	Serpen, G., and Corra, J. “Training simultaneous recurrent n
	Shillcock, R., Ellison, T., and Monaghan, P. “Eye-fixation b
	Singh, K, and Fujimara, K. “Map making by cooperating mobile
	Sipper, M. “Studying artificial life using a simple, general
	Smith, A., and Turney, P. “Self-replicating machines in cont
	Spector, L., Klein, J., Perry, C., and Feinstein, M. “Emerge
	Sutton, R. and Barto, A. Reinforcement Learning. The MIT Pre
	Tagamets, M., and Horwitz, B. “A model of working memory: br
	Tan, K.C., Tan, K.K., Lee, T., Zhao, S., and Chen, Y. “Auton
	Tang, Z., Wang, X., Tamura, H., and Ishii, M. “An algorithm 
	Taniguchi, T., and Sawaragi, T. “Adaptive organization of ge
	Terzopoulos, D. and Rabie, T. “Animat vision: active vision 
	Tu, X. and Terzopoulos, D. “Artificial fishes: physics, loco
	Vail, D., and Veloso, M. “Multi-robot dynamic role assignmen
	Wang, Q., Liu, L., Xie, G., and Wang, L. “Learning from huma
	Weems, S. and Reggia, J. “Simulating single word processing 
	Weems, S., Winder, R., Bunting, M., and Reggia, J. “Running 
	Wegner, D. “A computer network model of human transactive me
	Weiss, G., and Dillenbourg, P. “What is ‘multi’ in multi-age
	Winder, R., Cortes, C., Reggia, J., and Tagaments, M. “Funct
	Zhao, D., and Jin, W. “The study of coorperative behavior in

