
ABSTRACT

Title of thesis: MULTI-AGENT UUV VALIDATION VIA
ROLLING-HORIZON ROBUST GAMES

Kevin J. Quigley, Master of Science, 2019

Thesis directed by: Professor Steven Gabriel
Department of Mechanical Engineering

Autonomy in unmanned underwater vehicle (UUV) navigation is critical for

most applications due to inability of human operators to control, monitor or inter-

vene in underwater environments. To ensure safe autonomous navigation, verifica-

tion and validation (V&V) procedures are needed for various applications. This the-

sis proposes a game theory-based benchmark validation technique for trajectory opti-

mization for non-cooperative UUVs. A quadratically constrained nonlinear program

formulation is presented, and a “perfect-information reality” validation framework is

derived by finding a Nash equilibrium to various two-player pursuit-evasion games

(PEG). A Karush-Kuhn-Tucker (KKT) point to such a game represents a best-

case local optimum, given perfect information available to non-cooperative agents.

Rolling-horizon foresight with robust obstacles are incorporated to demonstrate in-

complete information and stochastic environmental conditions. A MATLAB-GAMS

interface is developed to model the rolling-horizon game, and is solved via a mixed

complementarity problem (MCP), and illustrative examples show how equilibrium

trajectories can serve as benchmarks for more practical real-time path planners.

MULTI-AGENT UNMANNED UNDERWATER VEHICLE
VALIDATION VIA ROLLING-HORIZON ROBUST GAMES

by

Kevin J. Quigley

Thesis submitted to the Faculty of the Graduate School of the
University of Maryland, College Park in partial fulfillment

of the requirements for the degree of
Master of Science

2019

Advisory Committee:
Professor Steven A. Gabriel, Chair/Advisor
Professor Shapour Azarm
Professor Michael Fu
Professor Jeffrey W. Hermmann

c© Copyright by
Kevin J. Quigley

2019

Acknowledgments

This thesis would not have been possible without the contributions, encour-

agement and insight from my professors and colleagues during my studies at the

University of Maryland.

To my advisor, Dr. Steven Gabriel, thank you for your consistent guidance,

wisdom and patience throughout the course of this research, and for giving me the

opportunity to learn and grow through this experience.

Thanks to the other members of the Lockheed Martin V&V challenge project

team, on which I was a research participant (grant MRA17001004), Dr. Shapour

Azarm, Tianchen Liu and Xiangxue Zhao, whose collaboration and recommenda-

tions were crucial to my research.

Thanks also to my committee members Dr. Michael Fu and Dr. Jeffrey

Herrmann for their invaluable advice to improve the language and clarity of this

document.

A special thanks goes to my wife Lauren, daughter Kenzie and son James for

their unwavering love, support and sacrifices.

Lastly, thank you to God for providing the opportunities, means and motiva-

tion to live a life of learning.

ii

Table of Contents

Acknowledgements ii

Table of Contents iii

List of Tables v

List of Figures v

List of Abbreviations vi

1 Introduction 1
1.1 Motivation . 1
1.2 Problem Description . 2
1.3 Focus of this Research . 3
1.4 Literature Review . 5

1.4.1 Path-Planning Methods for Unmanned Systems 5
1.4.2 Game Theory in Path-Planning 7
1.4.3 Uncertainty and Foresight in Underwater Navigation 8
1.4.4 Research Contributions . 9

2 Non-Convex Optimal Trajectory Problem 12
2.1 Problem Description . 12
2.2 Two-Dimensional Optimal Trajectory for a Single UUV 14

2.2.1 Goal Function . 14
2.2.2 Linear Dynamics . 15
2.2.3 State and Control Bounds . 17
2.2.4 Obstacle Avoidance . 17
2.2.5 Optimal Trajectory Problem 18

2.3 Game Theory Background . 20
2.3.1 Game Theory Overview . 21
2.3.2 Nash Equilibrium . 23
2.3.3 Karush-Kuhn-Tucker Conditions 23

3 Nash Equilibrium Solutions 25
3.1 Single-Vehicle Trajectory Equilibrium 25

3.1.1 Trajectory Problem in Expanded Vector Form 26
3.1.2 KKT Points Derivation . 29
3.1.3 Illustrative KKT Example . 31
3.1.4 Solving as a Mixed Complementarity Problem 35

3.2 Extension to the Pursuit-Evasion Game 37
3.2.1 Pursuit Function and Multi-Objective Equilibrium 38
3.2.2 Two-player Game KKT Conditions 42
3.2.3 Two-player Equilibrium Solution 43
3.2.4 Nonlinear Program Post-Check 49

iii

4 Rolling-Horizon Robust Equilibrium 50
4.1 Definition of Rolling-Horizon Foresight 50

4.1.1 Foresight and Safety . 53
4.1.2 Obstacle Detection . 55
4.1.3 Vehicle Detection . 56
4.1.4 Rolling-Horizon Equilibrium Problem 57

4.2 Incomplete Information . 59
4.2.1 Interval Robustness . 61
4.2.2 Robust Obstacles . 61

4.3 Rolling-Horizon Robust Equilibrium 64
4.3.1 Learning via Objective Weighting for Attacker P1 65
4.3.2 Learning via Robust Obstacles 68

5 Game Expansion and Simulations for V&V 71
5.1 Vehicle Platform . 71
5.2 Minimum-Energy Function . 72
5.3 Multiple-Defender, Single-Attacker Game 74

5.3.1 Attacker-Optimization Problem 75
5.3.2 Defender-Optimization Problem 76
5.3.3 Equilibrium Solution to a Multi-Defender, Single-Attacker Game 79

5.4 Verification of Effective Obstacles . 80
5.5 Numerical Verification of KKT Stationary Points 82
5.6 Game Theoretic Validation for UUV Trajectories 85

5.6.1 Simulations of Equilibrium vs. Iterative Optimization 86

6 Conclusions 91
6.1 Summary of Work . 91
6.2 Suggestions for Future Work . 91

6.2.1 Dealing with Non-convexity 92
6.2.2 Inevitable Collision States . 93
6.2.3 Software Interface . 94
6.2.4 Vehicle-based Rigid Body Dynamics 94

Bibliography 96

iv

List of Tables

1.1 Research Contributions . 10

3.1 Single Vehicle Illustration Parameters 32
3.2 Two-Player PEG Parameters . 43
3.3 Two-Player PEG Results via MCP 49

4.1 Learning Game Parameters . 67
4.2 Robust Navigation Parameters . 69

5.1 Bluefin-21 UUV Specifications . 72
5.2 Robust Obstacle Verification . 81
5.3 Random Variates for MCP vs. NLP Comparison 88
5.4 Attacker Performance in Simulated Pursuit-Evasion Games 89

List of Figures

1.1 Spatiotemporal System with General Variables [23] 3
1.2 Two-player Pursuit-Evasion Game . 4

2.1 UUV Workspace with Circular Obstacles 18

3.1 Single vehicle path with two time steps 36
3.2 Single vehicle path with 10 time steps 37
3.3 Pursuit-Evasion Game Scenario . 39
3.4 Effects of weighted sub-objectives (ωG = ωP) on Attacker P1 41
3.5 Pursuit-Evasion Game Trajectory with one Defenders, one Attacker . 48
3.6 Objective Values for one Defender, one Attacker PEG 48

4.1 Rolling-Horizon Sub-Problem Concept with Continuity Points 52
4.2 Rolling-Horizon Foresight with Obstacle Detection 54
4.3 Obstacle Detection Concept . 56
4.4 No Pursuit when rδ = 5 < ‖p[2]k0 − p

[1]
k0‖ 60

4.5 Defender P2 pursues P1 when rδ = 10 ≥ ‖p[2]k0 − p
[1]
k0‖ 60

4.6 Robust Obstacle Avoidance . 63
4.7 Balanced Objective, ωG = ωP = 0.5. Capture at t = 0.9 67
4.8 Evasion-weighted Objective, ωG = 0.25, ωP = 0.75. Capture at t = 3.4 68
4.9 Learning via Robust Obstacle Updates 70

5.1 Pursuit-Evasion Game with two Defenders, one Attacker 79
5.2 Objective Values for two Defender, one Attacker PEG 80
5.3 Verification of when KKT conditions hold 83
5.4 Success Rate of Two-player Game with no obstacles 85
5.5 Comparison of MCP vs. NLP Trajectories, Th = 60 sec 87
5.6 Workspace with randomly generated positions 88

v

List of Abbreviations

Abbreviations
GAMS General Algebraic Modeling System software
KKT Karush-Kuhn-Tucker
MATLAB Matrix Laboratory software
MCP mixed complementarity problem
NLP nonlinear program
PEG pursuit-evasion game
UUV unmanned underwater vehicle
V&V verification and validation

Nomenclature
amax maximum acceleration
A linear dynamics state matrix
b linear dynamics initial condition vector
B linear dynamics control matrix
cm center of obstacle m
dh displacement (distance traveled) in horizon h
fG, fP , fE goal, pursuit, energy sub-objective functions

J
[i]
h cost functional for vehicle i in horizon h

p
[i]
k,d position of vehicle i in dimension d at time step k
rh travel range in horizon h
rm radius of obstacle m
rδ detection radius

s
[i]
h strategy of vehicle i in horizon h
Th horizon length
∆t time step duration

u
[i]
k control (acceleration) of vehicle i at time step k

v
[i]
k,d velocity of vehicle i in dimension d at time step k
vmax maximum velocity

x
[i]
k state (position and velocity) of vehicle i at time step k
µ, σ, ν, λ Lagrangian multipliers
ωG, ωP , ωE multi-objective weighting parameters
γ, δ detection indicators
εG, εC termination tolerances

vi

Chapter 1

Introduction

1.1 Motivation

The expansion of new technologies in autonomous systems, particularly in

unmanned vehicles, provides opportunities for innovative improvements across in-

dustries, principally to improve upon time and energy efficiency, safety, and cost-

effectiveness of dangerous or monotonous tasks. With applications in oceanography,

deep sea exploration, offshore commercial infrastructure monitoring and maritime

defense, unmanned underwater vehicles (UUVs) have a wide range of mission sets,

characteristics and requirements [1]. Each mission set inherently requires advances

in autonomy, energy and propulsion, sensors and sensor processing, communica-

tions/navigation, and engagement/intervention [10]. While these components all

significantly impact the performance of UUVs, the research area of autonomy and

control is critically important due to its operating environment and presents the

greatest challenge. In such a complex and often restricted environment, UUVs re-

quire significantly more robust autonomy than do other unmanned systems due to

limited–and often lack of--communication with human controllers [10].

As the roles and capabilities of unmanned systems expand to improve au-

tonomous performance, the test, evaluation, verification and validation (TEVV)

becomes a critical factor in building confidence in autonomy. For adaptive and non-

1

deterministic systems, a new approach to TEVV is needed, especially considering

emergent behavior from interacting autonomous systems [9].

The rapid propagation of unmanned systems into various applications across

industries will presumably continue, and there is little doubt that unmanned under-

water vehicles will be at the forefront of maritime exploration, ocean engineering

and naval defense. Due to the inherent difficulty in maintaining a communication

link between human controllers and underwater vehicles, the autonomy required for

UUVs needs to be significantly more sophisticated than in other unmanned sys-

tems [10]. The need for reliable autonomy implies a demand for the verification and

validation (V&V) of UUVs across various mission sets and vehicle configurations.

1.2 Problem Description

This thesis outlines a game theory-based approach to validation for current

and future path-planning methods for unmanned underwater vehicles. There exist

many methods developed and improved upon over the past two decades in the realm

of path planning for autonomous systems, primarily in determining optimal paths

and ensuring collision avoidance for wheeled and aerial vehicles. Generally, the

behavior of these systems can be described as a function of time-varying decision

variables, state variables, and uncertain parameters.

For the purposes of this study, the term “agent” refers to a single UUV or

a team thereof, with unique objective(s) and constraints. Figure 1.1 describes the

spatio-temporal system considered in this thesis. The state variables x(t) refers

2

Figure 1.1: Spatiotemporal System with General Variables [23]

to the current vehicle position and velocity at each time step, while the decision

variables u(t) refers to thrust (in the form of acceleration) along an intended path.

Uncertain parameters p(t) refer to the external (exogenous) uncertain conditions in

the environment such as size and position of obstacles, water currents, etc. Uncer-

tainty can also arise from internal (endogenous) conditions due to learning. The

objectives of each agent (represented by performance y(t)) differ based on their role.

1.3 Focus of this Research

The goal of this research is to develop a scenario-driven benchmarking tech-

nique to validate current and future UUV trajectory-planning models as they inter-

act with other agents via rolling-horizon robust non-cooperative games. A particu-

lar two-player, pursuit-evasion game is presented for two rigid-body robotic systems

controlled by adversarial agents denoted as the “attacker” and “defender,” respec-

tively. Figure 1.2 provides a simple visual example of the pursuit-evasion game.

The red diamond represents the attacker UUV, which selects a path (red dashed

line) based on a multiple objectives to reach a target point (green triangle) while

3

Figure 1.2: Two-player Pursuit-Evasion Game

maximizing the distance from the defender UUV. The defender, represented by the

blue square, has an objective to intercept the attacker, and selects a path (blue

dashed line) that minimizes the distance between the two. These objectives, along

with common constraints will be described in depth in the following chapters.

This thesis combines the concepts of mixed complementarity problems (MCP),

rolling-horizon foresight with incomplete information, stochasticity, and an infinite

state space. While the majority of this thesis considers the specific application of

military UUVs, the formulations presented can be generally applied across vehicle

platforms and dimensions. For instance, the model presented could also be modified

to reproduce wildlife tracking and monitoring scenarios, open water search and

4

rescue, drug-traffic interdiction, or even life guarding.

1.4 Literature Review

This section identifies some of the methods and considerations in the current

literature, which help to set the conditions for the research upon which this thesis

is based.

1.4.1 Path-Planning Methods for Unmanned Systems

While validation of unmanned systems can refer to the control systems, struc-

tural design, material selection, or human-machine interface, the focus of this thesis

is path and trajectory planning. Chapter 2 presents a constrained nonlinear program

that models the trajectory for a single UUV, with non-convex obstacle avoidance,

whose quadratic objective it is to minimize the distance to a stationary target.

This thesis discretizes time into constant time steps and models motion using

direct collocation as defined in [20]. Continuous time, position, velocity and accel-

eration are mapped onto discrete vectors associated with times t0, t1, ..., tK called

collocation points. In trajectory planning, there is typically some continuous inte-

gral to be minimized in the objective function, which can be approximated via a

summation, made possible by these collocation points.

Even with discrete time steps, obstacles along a potential trajectory in an

infinite state-space present challenges in the form of non-convex feasibility con-

straints. Current trajectory optimization methods in continuous space generally use

5

a sequential convexification technique to address non-convex obstacle constraints.

These include [45], which describes an algorithm called Ascp for unmanned aerial

vehicles that leverages the existing A∗ (a best-first search heuristic based on Dijk-

stra’s algorithm) to compute an initial guess for its sequential convex programming

model. The authors find that Ascp globally converges to local optimum (specifically,

a Karush-Kuhn-Tucker point) at each time step, which is of particular interest for

finding an equilibrium point in path planning for multiple agents with opposing ob-

jectives. However, Ascp requires a mixed-integer program to be initialized, which is

not conducive to finding equilibrium solutions. A similar approach, SCvx [28], [25]

and [12] uses lossless successive convexification and trust regions to converge to op-

timal trajectories. To improve computation time of finding sequential solutions, [8]

presents the decoupled multi-agent iSCP technique. Other methods, namely the

optimization-based collision avoidance (OBCA) scheme [44], leverage second-order

cone programming and strong duality to enforce the non-convex obstacle avoidance

constraints.

While the non-convexity of obstacle avoidance constraints presents limitations,

the focus of this thesis is not to achieve guaranteed optimality, but to validate multi-

agent feasibility of UUV trajectory-planning methods when interaction among non-

cooperative agents influences decisions. Thus, the benchmark model retains non-

convexity, but demonstrates a good success rate using even elementary initialization.

6

1.4.2 Game Theory in Path-Planning

There exist both cooperative and non-cooperative game theoretic representa-

tions of unmanned system motion planning. For instance, the time-optimal multi-

stage open-loop game formulation presented in [39] offers a variant of the fast march-

ing method for shortest path problems to find safe-reachable paths in a pursuit-

evasion differential game. On the other hand, [18] leverages Voronoi partitioning to

generate a guaranteed capture decentralized control scheme for a multiple pursuer-

single evader game in the plane. Specific to UUVs, [13] presents a neural network-

based approach to finding an equilibrium solution via the Minimax algorithm to

an asymmetric skirmish between an autonomous underwater vehicle (AUV) and

a manned submarine. Meanwhile, [41] presents an open-loop Defender-Attacker-

Target Game and [24] describes a distributed cooperative game-theoretic control

algorithm for area coverage.

A brief overview of game theoretic concepts is presented in Chapter 2, while

Chapter 3 presents a solution to the non-linear program via Karush-Kuhn-Tucker

optimality conditions and presents a small multi-player example. In the pursuit-

evasion game (PEG) scenario described in Chapter 3, the “attacker” agent’s ob-

jective is to most efficiently reach its target destination while avoiding interception

by other vehicle(s). Meanwhile, the “defender” agent’s mission is to minimize the

distance to the nearest attacker vehicle.

This scenario of autonomous unmanned vessels swimming around indepen-

dently, identifying and engaging enemy assets is of particular interest to naval lead-

7

ers in studying anti-submarine warfare [1]. This problem can also be translated to

the “time critical strike” (TCS) naval mission set, though UUVs seem best suited

for delivering weapons caches rather than autonomous weapon launches due to in-

ternational man-in-the-loop launch control requirements [14].

1.4.3 Uncertainty and Foresight in Underwater Navigation

The nature of underwater systems sets them apart from other unmanned sys-

tems due primarily to the difficulties involved with human-machine interaction, as

well as other environmental complexities. Unlike unmanned aerial vehicles (UAVs)

or unmanned ground vehicles (UGVs), line-of-sight quickly becomes an operating

constraint on manual control and/or monitoring [34]. Due to inconsistent GPS re-

liability underwater, UUV navigation is particularly challenging, and depends on

dead reckoning (i.e., setting a heading from a known point to a destination and

traveling along a constant straight trajectory), inertial and gyroscopic sensors [34].

Additionally, sonar performance is a complex function of transmission loss, rever-

beration and noise levels [13]. These parameters can vary based on water salinity,

temperature, surface conditions, depth of the vehicle, and sea-bottom shape [13].

For these reasons, detection of obstacles and other vehicles can become difficult at

any range and highly unreliable at long ranges. Thus, in Chapter 4, rolling-horizon

foresight is presented in order to simulate periodic sonar updating and limited field

of view that exists underwater. Rolling-horizon foresight is not, in itself, a new

concept. Several current models [37], [17] consider similar receding horizons for

8

mixed-integer program path planners for multiple vehicles, while [38] uses reced-

ing horizons for online tube model predictive control (TMPC). Rolling horizons are

also often used in approximate dynamic programming (ADP) [33], which optimizes

near-term decisions for large state spaces while approximating the value of future

decisions.

Uncertainty can arise in many forms. Uncertainty in the vehicle dynamics can

be represented implicitly through symbolic bounds on velocity and acceleration [31],

while environmental uncertainty is often represented in the form of obstacles with

stochastic location, size or velocity. Much of the literature accounts for obstacle

avoidance by modeling a safe path via a “tube” around a nominal trajectory [27],

[38], or by inflating the obstacles to provide a buffer region [44], [32]. The model

presented attempts to find collision free trajectories with static obstacles, using the

latter approach to admit some uncertainty in the obstacles it perceives within a

specified interval. Thus, robust obstacles are also presented in Chapter 4, which

simulate the inherent error that propagates in water over long ranges, even utilizing

forward-looking sonar and video for obstacle avoidance.

1.4.4 Research Contributions

The concepts critical to this research are partly and independently examined

in the current literature, as described in Table 1.1. Path-planning and trajectory-

optimization have been investigated extensively in the literature, though as of yet,

none have been discovered that combine stochastic environmental conditions (ro-

9

Table 1.1: Research Contributions

Research Areas * Existing Literature
[30] [20] [31] [27] [38] [37] [45] [17] [40] [41]

Unmanned System V & V X X X
UUV Path Planning X X X
Continuous-Space Trajectory X X X X X
KKT Optimality X X X
Multi-Agent Model X X X X X
Non-cooperative Games X X X
Nash Equilibrium X X
Rolling-Horizon Foresight X X X X
Stochastic Obstacle Avoidance X X X

bust obstacles), rolling-horizon foresight (incomplete information) and adversarial

influences (non-cooperative games).

This thesis combines all these components in order to establish a game theory-

based trajectory benchmark tool. This tool can be implemented to check the func-

tional feasibility of practical path-planning tools using common parameters.

The model presented seeks to establish a multi-player, rolling-horizon, robust

equilibrium. For the purposes of validation, a solution to such a model can serve as

a “perfect-information reality” benchmark. Benchmarking in this sense provides a

lower bound best-case feasible trajectory strategy for each UUV, assuming all other

agents have perfect information of its action within each planning horizon. This

can be used to validate the feasibility of solutions from non-learning, independent

trajectory optimization models, specifically in non-cooperative scenarios.

Specifically, a simple two-player pursuit-evasion game (PEG) is built using

a General Algebraic Modeling System (GAMS)-MATLAB interface [6], [29], [11].

This simulation is run using a constrained nonlinear program formulation in various

two-dimensional environmental configurations to determine their respective accu-

10

racy with respect to a Karush-Kuhn-Tucker (KKT), or equilibrium, point at each

time step. The results of this simulation and conclusions drawn are presented.

Future work could generalize the approach to more complex multi-agent systems

and incorporate vehicle-based, rather than geocentric dynamics. In addition, the

non-convex obstacle constraint qualifications could be investigated analytically, or

improved upon by incorporating convexification techniques and reducing inevitable

collision states.

11

Chapter 2

Non-Convex Optimal Trajectory Problem

2.1 Problem Description

To solve a continuous-time, optimal control problem via optimization meth-

ods, we should first discretize the trajectory [28], giving us a finite set of decision

variables. To do so, we use direct collocation as in [20], mapping continuous position

p(t), velocity v(t) and acceleration u(t) (control) to their values at specific instances,

known as collocation points:

t→ t0, ..., tk, ..., tN , x(t)→ x0, ..., xk, ..., xN , u(t)→ u0, ..., uk, ..., uN .

Note that the notation → means “maps to” in this case. Though the problem can

be extended to three dimensions for practical use, we consider only two dimesions

(n = 2) in this thesis. Thus, the state vector xk represents both the position pk ∈ R2

and velocity vk ∈ R2 at the kth discrete time step, such that xk = (pTk , v
T
k)T . The

control vector uk ∈ R2 similarly represents vehicle acceleration at the kth time step.

12

So then

xk =

pk,1

pk,2

vk,1

vk,2

, uk =

 uk,1

uk,2

 ,

where pk,1 and pk,2 are the position in the horizontal and vertical dimensions, respec-

tively. Also, similar notation holds for the velocity vk and acceleration uk. Without

loss of generality, we can assume N , the last time period, is a fixed integer. Thus,

along the entire horizon Th = tN − t0, we can summarize these variables

x , (xT0 , ..., x
T
k , ..., x

T
N)T ∈ X ⊆ R4(N+1)

u , (uT0 , ..., u
T
k , ..., u

T
N−1)

T ∈ U ⊆ R2N

where X is the Cartesian product of Xk, and U is the Cartesian product of Uk.

This notation for the state and control vectors, (x, u), will also later be extended

to a rolling-horizon in Chapter 4, where a sub-problem state vector x(h) and control

vector u(h) are found in each planning horizon h. Note that the size of the state

vector x contains both the position and velocity for all time steps, so is slightly more

than twice the size of the control vector u, which contains only the acceleration terms

at each time step, except the final step kN . The state and control domains, Xk and

Uk, are assumed to be non-empty, convex and compact sets which include boundary

13

conditions [28]. For example, the initial conditions give X0 = xIC , where xIC is the

known starting position and velocity. The maximum acceleration (due to thrust,

drag, inherently due to thrust capacity, drag, bouyancy, etc.) is captured in Uk. It is

sufficient then to consider the discrete-time, finite-horizon, optimal control problem,

which we presently define for a specific case.

2.2 Two-Dimensional Optimal Trajectory for a Single UUV

2.2.1 Goal Function

Consider the simple path-planning problem for a single “attacker” vehicle rep-

resented as a point mass in two dimensions (n = 2), seeking an optimal trajectory

to a known target position pG(k) in an environment with obstacles that restrict

movement. Let W denote the workspace of our system, which contains all possible

vehicle configurations, X ⊆ W , in addition to a set of obstacles O ⊆ W , whose

locations and dimensions are subject to uncertainty. In Chapter 4, the obstacle

size and locations can vary from the expected configuration, which will necessitate

finding a robust feasible region.

Assuming that a path exists, our goal is to determine a state and control se-

quence (x, u) that ensures safe navigation from the initial state xIC to its target state

xG, while minimizing a cost functional J(x, u) =
∑N

k=0 fG(xk, uk), (2.1a), subject to

initial conditions xIC (2.1b), linear dynamics (2.1c), state and control bounds (2.1d)-

(2.1e), and avoiding collision with Nobs obstacles O(1), ...,O(m), ...,O(Nobs) ∈ O. We

14

define this cost function at the kth time step as

fG(xk, uk) =
1

2
‖pG(k)− pk‖2, (2.1a)

in which ‖ · ‖ is the L2-norm, and thus convex and continuously differentiable in

the decision variables. We call fG the “goal function”— the straight line distance

between the vehicle’s target pG(k) and its position pk.

2.2.2 Linear Dynamics

A feasible path needs to satisfy physical dynamics, as well as bounds on ve-

locity, vmax(k), and acceleration, amax(k), due to a combination of vehicle-platform

characteristics and environmental conditions. Though vehicle dynamics are typi-

cally nonlinear, they can be linearized via second-order Taylor expansion of positon

p(t) and first-order expansion of velocity v(t) with respect to time t [26]. Since we

assume the relationships of position, velocity and acceleration to be ṗ(t) = v(t) and

p̈(t) = v̇(t) = u(t), then the linear dynamics take the form

 pk+1,1

pk+1,2

 =

 pk,1

pk,2

+ ∆t

 vk,1

vk,2

+
1

2
∆t2

 uk,1

uk,2

 ,
 vk+1,1

vk+1,2

 =

 vk,1

vk,2

+ ∆t

 uk,1

uk,2

 ,

15

so combining these gives the state dynamics

xk+1 =

pk+1,1

pk+1,2

vk+1,1

vk+1,2

=

pk,1

pk,2

0

0

+

∆t

 vk,1

vk,2

 vk,1

vk,2

+

1
2
∆t2

 uk,1

uk,2

∆t

 uk,1

uk,2

=

1 0 ∆t 0

0 1 0 ∆t

0 0 1 0

0 0 0 1

pk,1

pk,2

vk,1

vk,2

+

1
2
∆t2 0

0 1
2
∆t2

∆t 0

0 ∆t

 uk,1

uk,2

= Axk +Buk (2.1c)

where as previously mentioned, pk, vk, uk ∈ R2 and ∆t represents our discrete time

step. in which

A =

1 0 ∆t 0

0 1 0 ∆t

0 0 1 0

0 0 0 1

, B =

1
2
∆t2 0

0 1
2
∆t2

∆t 0

0 ∆t

,

If extended to 3-d space (n = 3), the matrix dimensions would be A ∈ R6×6 and

Bk ∈ R6×3.

16

2.2.3 State and Control Bounds

We consider only convex sets of feasible controls and velocities, meaning that

there is no minimum absolute speed vmin or acceleration amin. Established methods

do exist for dealing with non-convex control constraints via “lossless convexification”

[27] [26], but these are beyond the scope of this thesis. Thus, the convex velocity

and acceleration bounds take the form

1

2

∥∥vk∥∥2 ≤ 1

2
vmax(k)2, (2.1d)

1

2
‖uk‖2 ≤

1

2
amax(k)2. (2.1e)

2.2.4 Obstacle Avoidance

While in reality obstacles may be non-convex, they can typically be approxi-

mated and/or decomposed as the union of convex obstacles [44]. Thus, we assume

that the obstacles O(m) are convex sets with non-empty relative interior, and can be

represented

O(m) = {p ∈ W : ||p− cm(k)|| ≤ rm(k)};

where cm(k) ∈ W and rm(k) are, respectively, the center and radius of obstacle m

at the kth time step, and ‖ · ‖ is the L2 Euclidean norm. This is a simplified circular

representation of an obstacle of general shape and size as described in [44]. By

modeling obstacles as balls rather than polygons, we can avoid the use of polytopic

17

constraints that are often dealt with via binary variables in mixed integer programs

[32]. As depicted in Figure 2.1, the obstacles O restrict subsets of the state space

X , introducing non-convexity via an obstacle-avoidance constraint

1

2

∥∥pk − cm(k)
∥∥2 ≥ 1

2
rm(k)2, (2.1f)

with a concave, left-hand side with respect to the vehicle position due to being

bounded below.

Figure 2.1: UUV Workspace with Circular Obstacles

2.2.5 Optimal Trajectory Problem

By combining our objective function, linear dynamics, state and control con-

straints, the discrete-time, finite-horizon, optimal control problem is given by the

18

constrained non-convex nonlinear program

min
u

J(x, u) ,
N∑
k=0

fG(xk, uk) =
1

2

N∑
k=0

‖pG(k)− pk‖2 (2.1a)

s.t.

x0 = xIC (2.1b)

xk+1 = Akxk +Bkuk ∀ k = 0, ..., N − 1 (2.1c)

1

2

∥∥vk∥∥2 ≤ 1

2
vmax(k)2 ∀ k ∈ K (2.1d)

1

2
‖uk‖2 ≤

1

2
amax(k)2 ∀ k = 0, ..., N − 1 (2.1e)

1

2

∥∥pk − cm(k)
∥∥2 ≥ 1

2
rm(k)2 ∀ k ∈ K,m ∈M (2.1f)

where the parameters vmax, amax, cm, and rm are subject to change over time, K =

{0, ..., N} and M = {1, ..., Nobs}. Changes in vmax and amax may be due to wa-

ter conditions (density, temperature, etc.) or imposed by a human operator, while

changes in obstacle size rm and position cm can be updated based on improvements

in resolution as the vehicle maps its environment. We address changes in the latter

parameters in Chapter 4, when we investigate robust obstacles. However, through-

out this chapter, we consider only stationary targets (i.e., pG(k) = pG,∀k), static

obstacles (i.e. cm(k) = cm,∀k and rm(k) = rm,∀k), and constant bounds on velocity

(vmax(k) = vmax,∀k) and acceleration (amax(k) = amax,∀k). Note that this formula-

tion differs slightly from the majority of the literature, in that it does not impose a

final state constraint xN = xF as is typically done in optimal control problems. This

is an important nuance, in that unlike the minimum-fuel problem fu(xk, uk) = ‖uk‖

19

or minimum-time problem fT (xk, uk) = 1 as in [25], there is no guarantee that the

vehicle reaches its destination state. For reference, fu determines an optimal solu-

tion with respect to energy consumption, while fT finds the shortest feasible travel

time tN to reach a final state xF .

In its current form (a quadratically-constrained, quadratic program), the op-

timal trajectory problem (2.1) can be solved by using many standard constrained

nonlinear program solvers such as fmincon in MATLAB, CPLEX in AIMMS, or

CONOPT in GAMS, though only necessarily to local optima, as has been covered

extensively in the current literature [44]. Furthermore, the quality and feasibility of

this solution is known to be highly dependent on an initial guess, which can some-

times be difficult to compute. While not ideal since it does not offer an obstacle-free

initial trajectory, we implement an elementary, yet efficient, “warm-start” by solving

(2.1) without the non-convex obstacle constraints (2.1f), which renders the problem

convex. Algorithm 1 describes the sequence by which the trajectory optimization

NLP (2.1) finds a trajectory from initial state xIC to its target pG. We now turn

our attention to game theory to find equilibrium solution(s) to the same problem,

which will allow us to consider multiple, non-cooperative players.

2.3 Game Theory Background

The focal area of this research is to generate a simulated “perfect-information

reality,” against which current UUV path-planning models can be validated. Game

theory is ideal for this concept, since it can be used to simulate multiple indepen-

20

Algorithm 1 Goal-Focused Trajectory NLP

Input: initial state xIC , target point pG, max velocity vmax, max acceleration amax,
obstacle data O, dynamics matrices A and B, step size ∆t, max steps N .

Output: x, u
1: while goal = 0 do
2: Solve (2.1) without obstacle constraint (2.1f)
3: (x, u)← (x̄, ū) . set initial guess
4: Solve full NLP (2.1) with obstacle avoidance
5: for k ← 0 to N do
6: if ‖p(k) − pG‖ < εG then
7: goal = 1, F = k
8: (x, u)← (xT0 , ..., x

T
F , u

T
0 , ..., u

T
F)T . Completion time step F ≤ N

9: else
10: N = N + 1 . Increase time steps and re-solve
11: end if
12: end for
13: end while

dently controlled vehicles, and whose decisions and rewards can be impacted by

current or previous decisions made by all other vehicles in the system, or a subset

thereof.

2.3.1 Game Theory Overview

We use game theory to model multiple agents, each acting in its own best

interest (i.e., non-cooperatively), subject to the dynamics, state and control con-

straints described above, but whose payoff and feasible region also depends on the

strategies taken by some or all of the other players. The terms “vehicle,” “agent,”

and “player” are used interchangeably throughout this thesis.

Prior to converting the UUV trajectory problem into a game, we need to

define players, strategies and outcomes. Players are individual decision makers

(individuals, teams, nations, or vehicles/vessels in this case) who can take action

21

based on a set of possible strategies. In this thesis, we denote the set of NI players

P = {P1, ...Pi, ...,PNI}

where each player has a set of possible strategies given by Si.

The particular strategy taken by player Pi for a single horizon is denoted

s[i] ∈ Si. For the current trajectory optimization problem, the strategy for Pi is

defined by

s[i] := (x[i], u[i]),

where (x[i], u[i]) ∈ X × U represents the state and control vectors as defined previ-

ously. The set of joint strategies S =
∏

i∈I Si, where
∏

is the Cartesian product,

is a continuous set of possibilities. Given the infinite state space inherent to under-

water navigation, these sets of strategies become extremely large and impossible to

enumerate explicitly.

Modifying the notation from (2.1), the objective, or payoff, for player Pi is

now J [i](s) if s ∈ S is the joint strategy chosen by all players.

In a single-stage equilibrium, each independent agent, or player, knows exactly

the state and control sequence of not only itself, but of all other players that influence

its objective across the entire time horizon. This changes, however, when we consider

the rolling-horizon case in Chapter 4, in which players can exhibit learning behavior

through updated policies in their respective objective functions.

22

2.3.2 Nash Equilibrium

A set of joint strategies (s̄1, ..., s̄i, ..., s̄NI) ∈
∏

i∈I Si is said to be a Nash

Equilibrium (NE) if no player would find it beneficial to deviate provided that

all other players do not deviate from their strategies played at the NE outcome.

Formally, for every player Pi ∈ P , in which the cost functional J [i] is to be minimized,

J [i](s̄i, s̄−i) ≤ J [i](si, s̄−i) ∀si ∈ Si,

where s−i represents the strategies of all players other than Pi [16]. In other words,

s̄i ∈ Si is a Nash equilibrium if and only if, for every player i, s̄i ∈ Si is the best-

case strategy when s̄−i ∈ S−i [16]. We leverage the Karush-Kuhn-Tucker optimality

conditions for each player’s optimization problem to find such an equilibrium.

2.3.3 Karush-Kuhn-Tucker Conditions

To find equilibrium points across the planning horizon, we can first put the

problem in standard form

min
x

f(x) (2.2a)

s.t gi(x) ≤ 0 ∀i ∈ I = 1, ...,m (λi) (2.2b)

hj(x) = 0 ∀j ∈ J = 1, ..., p (µj) (2.2c)

where λi and µj are the Lagrange multipliers for the ith inequality constraint and

jth equality constraint, respectively [4]. A KKT point is a triple (x∗, λ∗, µ∗) where

23

x∗ ∈ Rn, λ∗ ∈ Rm and µ∗ ∈ Rp such that the following conditions hold

∇f(x∗) +
m∑
i

λ∗i∇gi(x∗) +

p∑
j

µ∗j∇hj(x∗) = 0 (2.3a)

gi(x
∗) ≤ 0, λ∗i ≥ 0, λ∗i gi(x

∗) = 0 ∀ i = 1, ...,m (2.3b)

hj(x
∗) = 0, µ∗j free ∀ j = 1, ..., p (2.3c)

The KKT conditions are necessary if a constraint qualification holds [2]. They are

sufficient, for example, if objective function f , given gi is convex, and hj is affine [2].

24

Chapter 3

Nash Equilibrium Solutions

3.1 Single-Vehicle Trajectory Equilibrium

Now we can apply the equilibrium methodology to the UUV formulation, first

by putting the problem in standard form as described in (2.3). Note that in our

original problem, (2.1a)-(2.1f) are intentionally squared and halved to simplify the

next steps in finding KKT points without loss of accuracy in the program due to the

norms being non-negative, monotonically increasing functions. In standard form,

the UUV formulation becomes

min
u

J(x, u) ,
N∑
k=0

fG(xk, uk) =
1

2

N∑
k=0

∥∥∥pG − pk∥∥∥2 (3.1a)

s.t.

h0(x0, u0) ,x0 − xIC = 0 (µ0) (3.1b)

hk(x, u) ,xk − Axk−1 −Buk−1 = 0 ∀ k = 1, ..., N (µk) (3.1c)

gvelk (xk) ,
1

2

(∥∥vk∥∥2 − v2max) ≤ 0 ∀ k ∈ K (σk) (3.1d)

gacck (uk) ,
1

2

(
‖uk‖2 − a2max

)
≤ 0 ∀ k = 0, ..., N − 1 (νk) (3.1e)

gobskm(xk) ,
1

2

(
r2m −

∥∥pk − cm∥∥2) ≤ 0 ∀ k ∈ K,m ∈M (λkm) (3.1f)

25

where the sets K and M represent the time and obstacle indices, respectively. The

Lagrange multipliers are represented by the Greek letters contained in (·) adjacent

to their corresponding primal constraints. The inequality multipliers are all one-

dimensional, but µk ∈ R4 is a vector of the same dimensions as the state vector

xk for the linear equality constraints. Meanwhile, since the cost functional J(x, u)

depends on both the state vector x and control vector u, the multipliers for (3.1a)

∀k ∈ K are xk ∈ R4 and uk ∈ R2.

3.1.1 Trajectory Problem in Expanded Vector Form

We can expand the squared norms found in (3.1) and retain the position and

velocity components from the state vector to most clearly illustrate the example to

follow.

26

fG(xk, uk) =
1

2

∥∥∥pG − xk∥∥∥2 =
1

2
(pG − pk)T (pG − pk)

=
1

2
[pTGpG − pTGpk − pTk pG + pTk pk]

= −pTGIpk +
1

2
(pTk Ipk + pTGIpG), (3.2a)

h(x, u) ,Ahx+ Bhu− b = 0 (3.2b)

gvelk (xk) =
1

2

(∥∥vk∥∥2 − v2max) =
1

2

(
vTk Ivk − v2max

)
(3.2c)

gacck (uk) =
1

2

(
‖uk‖2 − a2max

)
=

1

2

(
uTk Iuk − a2max

)
(3.2d)

gobskm(xk) =
1

2

(
r2m −

∥∥pk − cm∥∥2) =
1

2

(
r2m − (pk − cm)T I(pk − cm)

)
=

1

2

(
r2m − pTk Ipk + pTk Icm + cmIpk − cTmcm

)
=

1

2

(
r2m − cTmIcm − pTk Ipk

)
+ pTk Icm (3.2e)

where Ah is a square block-diagonal matrix of rank 2n(N + 1) that represents

the state coefficients from (3.1c), in which the identity matrix I4×4 is the implied

coefficient for xk, and Bh is a non-square 2n(N + 1) × n(N + 1) matrix providing

the control coefficients, where 04×2 is the implied coefficient for uk. Thus, Ah and

Bh take the form

27

Ah =

I4×4 04×4 · · · 04×4

−A I4×4
. . .

...

04×4
. 04×4

04×4 04×4 −A I4×4

, Bh =

04×2 04×2 · · · 04×2

−B 04×2
. . .

...

...
. 04×2

04×2 · · · −B 04×2

. (3.3)

where the submatrices −A and −B are the negatives of the 4 × 4 A and 4 × 2 B

matrices defined in Section 2.2. The vector b = [xTIC , 0, ..., 0]T includes the initial

condition from equation (3.1b), which fixes the initial state x0 to the known initial

position and velocity at k = 0. Given a function that has the form f(x) = 1
2
xTMx

whose matrix M = MT (symmetric), it can be shown that ∇f(x) = Mx. Also,

given the linear nature of the dynamic equations, we know that ∇xh = AT , while

∇uh = BT . Therefore our problem has the following KKT conditions:

∀ time steps k ∈ K :

∇kL(x, u) ,∇fG(xk, uk) +∇hk(xk, uk)µk + σk∇gvelk (xk, uk) (3.4a)

+ νk∇gacck (xk, uk) +
∑
m∈M

λkm∇gobskm(xk, uk) = 0 , xk, uk free

hk(x, u) = 0 , µk free . (3.4b)

gvelk (xk, uk) ≤ 0 ⊥ σk ≥ 0 (3.4c)

gacck (xk, uk) ≤ 0 ⊥ νk ≥ 0 (3.4d)

gobskm(xk, uk) ≤ 0 ⊥ λkm ≥ 0 ∀ m ∈M (3.4e)

28

Suppose we have a function f := f(xk, uk) that is continuous and differentiable with

respect to both xk and uk. Although some components of f may only explicitly be

a function of the state vector and others a function of the control, for uniformity

and clarity, we can define ∇f(xk, uk) to be the component-wise partial derivative

with respect to xk = (pTk , v
T
k)T and uk for each time step k

∇f :=

∇pkf(pk, vk, uk)

∇vkf(pk, vk, uk)

∇ukf(pk, vk, uk)

where ∇f ∈ X × U ⊆ R6. We will apply this to an illustrative example below.

3.1.2 KKT Points Derivation

To construct the Lagrangian derivative (3.4a), we now address each term. The

gradient of the “goal” objective function (3.2a) is

∇kfG =

 ∇xk [−pTGIpk + 1
2
(pTk Ipk + pTGIpG)]

∇uk [−pTGIpk + 1
2
(pTk Ipk + pTGIpG)]

 =

−pG + pk

0

0

 ∀k ∈ K, (3.5a)

so then the non-zero size of ∇kfG is of the same rank as pk ∈ R2. Now, the

gradients of the vehicle dynamics constraints (3.4b) need to be taken over the entire

time horizon since the variables of the previous time step k − 1 directly affect the

29

variables in time step k

∇h =

 ∇x[Ahx+ Bhu− b]

∇u[Ahx+ Bhu− b]

 =

 AT
h

BT
h

 ,

where we can parse out the sub-matrices AT and BT to identify the gradients at

each time step k. If we let Ah
T =

[
I4×4 −AT

]
, and Bh

T =

[
02×4 −BT

]
,

where only the blocks associated with time steps k and k + 1 are included in these

sub-matrices. Unlike the other Lagrange multipliers, µk ∈ R4 is a vector of the same

rank as xk, where we can identify the subcomponents µk = ((µpk)
T , (µvk)

T)T , while

∇hk ∈ R6×8. This gives us, ∀k = 0, ..., T − 1,

∇hkµk =

 I4×4 −AT

02×4 −BT

µpk

µvk

µpk+1

µvk+1

=

µpk − µ

p
k+1

µvk − µvk+1 −∆tµpk+1

−1
2
∆t2µpk+1 −∆tµvk+1

 (3.5b)

and for the last time step T , ∇hNµN = [(µpN)T , (µpN)T , 0]T .

The other constraints are more straight-forward, since there is no interaction

across time steps, and they are all scalars, rather than vectors. Thus, taking the

30

gradient of (3.2c) and (3.2d), respectively, we have

σk∇gvelk = σk

 ∇xk
1
2

(
vTk Ivk − v2max

)
∇uk

1
2

(
vTk Ivk − v2max

)
 = σk

0

vk

0

 ∀k ∈ K, (3.5c)

νk∇gacck = νk

 ∇xk
1
2

(
uTk Iuk − a2max

)
∇uk

1
2

(
uTk Iuk − a2max

)
 = νk

0

0

uk

 ∀k = 0, ..., T − 1. (3.5d)

Finally, taking the gradient of the obstacle constraint (3.2e) gives us

λkm∇gobsk = λkm

 ∇xk [1
2

(
r2m − cTmcm − pTk pk

)
+ pTk cm]

∇uk [1
2

(
r2m − cTmcm − pTk pk

)
+ pTk cm]

= λkm

cm − pk

0

0

 , ∀k ∈ K,m ∈M (3.5e)

So replacing (3.4a) with the sum of (3.5a)-(3.5e), and combining with the comple-

mentary constraints (3.4b)-(3.4e), we can now determine the KKT point(s) for a

small example.

3.1.3 Illustrative KKT Example

To illustrate this concept, we consider the two-dimensional (n = 2) problem

with one time step (T = 1) in the horizon for one vehicle and one static obstacle

31

(N = 1, Nobs = 1). The parameters for this system are defined in Table 3.1. The

obstacle information is condensed to O(m) = (cm,1, cm,2, rm)T for brevity.

Table 3.1: Single Vehicle Illustration Parameters

Parameter Value Units

t0 0 h
∆t 1 h
Th 1 h
xIC (0, 0, 0, 0)T km
xG (9, 3, 0, 0)T km
vmax 5 km/h
amax 20 km/h2

O(1) (4, 1, 2)T km

To show row-wise relationships within the Lagrangian derivative equation, we

temporarily separate the variable vectors into their physical dimensional compo-

nents, so the state vector xk = [(pk,1)
T , (pk,2)

T , (vk,1)
T , (vk,2)

T)]T , the control vec-

tor uk = [(uk,1)
T , (uk,2)

T]T , and the dynamics Lagrange multiplier is now µk =

[(µpk,1)
T , (µpk,2)

T , (µvk,1)
T)T , (µvk,2)

T]T Thus, the derivative of the Lagrangian ∇Lk at

32

each time step k is

∇L0 =

p0,1 − 9

p0,2 − 3

0

0

0

0

+

µp0,1 − µ
p
1,1

µp0,2 − µ
p
1,2

µv0,1 − µv1,1 −∆tµp1,1

µv0,2 − µv1,2 −∆tµp1,2

−1
2
∆t2µp1,1 −∆tµv1,1

−1
2
∆t2µp1,2 −∆tµv1,2

+ σ0

0

0

v0,1

v0,2

0

0

+ ν0

0

0

0

0

u0,1

u0,2

+ λ1

4− p0,1

1− p0,2

0

0

0

0

= 0

∇L1 =

p1,2 − 9

p1,2 − 3

0

0

0

0

+

µp1,1

µp1,2

µv1,1

µv1,2

0

0

+ σ1

0

0

v1,1

v1,2

0

0

+ ν1

0

0

0

0

u1,1

u1,2

+ λ1

4− p1,1

1− p1,2

0

0

0

0

= 0

The linear dynamics constraints hk(x, u)= xk − Axk−1 −Buk−1 − bk, each associ-

33

ated with a free dual variable vector µk for k = 0, 1 are

h0 =

p0,1

p0,2

v0,1

v0,1

−

pIC,1

pIC,2

vIC,1

vIC,2

= 0

h1 =

p1,1

p1,2

v1,1

v1,2

−

p0,1 + ∆tv0,1

p0,2 + ∆tv0,2

v0,1

v0,2

−

1
2
∆tu0,1

1
2
∆tu0,2

∆tu0,1

∆tu0,2

= 0

The velocity and acceleration bound complementarity equations are

1

2
σ0
[
(v0,1)

2 + (v0,2)
2 − 52

]
= 0

1

2
σ1
[
(v1,1)

2 + (v1,2)
2 − 52

]
= 0

1

2
ν0
[
(u0,1)

2 + (u0,2)
2 − 202

]
= 0

1

2
ν1
[
(u1,1)

2 + (u1,2)
2 − 202

]
= 0

Finally, the obstacle avoidance complementarity equations are

λ0

[
1

2

(
22 − (42 + 12)− (p0,1)

2 − (p0,2)
2
)

+ 4p0,1 + 1p0,2

]
= 0

λ1

[
1

2

(
22 − (42 + 12)− (p1,1)

2 − (p1,2)
2
)

+ 4p1,1 + 1p1,2

]
= 0

34

3.1.4 Solving as a Mixed Complementarity Problem

We can solve such problems, as laid out in Section 3.1.3, as mixed comple-

mentarity problems (MCP), which generalize a system of nonlinear equations de-

termined through a nonlinear function F : Rnx × Rny → Rnx × Rny with lower and

upper bounds on variables [3], where an MCP for x ∈ Rnx , y ∈ Rny has the structure

0 ≤ Fx(x, y) ⊥ x ≥ 0

0 = Fy(x, y) , y free.

Taking the notation from (2.3), the problem can be recast as an MCP of the form:

z =

x

λ

µ

 , F (z) =

∇f(x) + λ∇g(x) + µ∇h(x)

−g(x)

h(x)

 (3.6)

A key requirement to solving these types of problems to equilibrium as an MCP

is that the the problem is square (i.e., number of variables and number of equa-

tions matches). For instance, the data in the illustrative example above includes

eight state variables p0,1, p0,2, v0,1, v0,2, p1,1, p1,2, v1,1, v1,2 ⊆ x and four control vari-

ables u0,1, u0,2, u1,1, u1,2 ⊆ u with six inequality constraints (i.e. six multipliers) and

eight equality constraints (i.e. eight multipliers), for a total of 26 variables and 26

equations. We use the PATH solver in GAMS to solve these MCPs, in addition to

a MATLAB-GAMS interface.

35

Figure 3.1 shows the path taken by the vehicle in the problem with simple

parameters where acceleration is neglected (i.e., the control matrix B is removed

from the dynamics constraints). This example provides visual validation of the

KKT solution procedure presented in this section. Recall the most well-known

“Pythagorean triple,” a right triangle with edge lengths having a ratio of 3-4-5 (e.g.,

two legs of length 3 and 4, and hypotenuse of length 5) [43]. Given the initial point

p0 = (0, 0)T , target point pG = (9, 3)T and maximum velocity vmax = 5 m/s, with

the obstacle centered at c1 = (4, 1) and radius r1 = 2, the reader can employ the

“3-4-5 rule” to observe the shortest path with obstacle-avoidance at the collocation

points over two time steps is uniquely p0 = (0, 0)T , p1 = (4, 3)T , p2 = (9, 3)T . Note

Figure 3.1: Single vehicle path with two time steps

that the path violates the obstacle constraint between t = 0 and t = 1, which is

36

mitigated with shorter time steps (∆t = 0.1) and more evaluations, as shown in

Figure 3.2. However, this increase in the number of time steps can quickly make the

problem intractable since we add six primal variables and at least seven (depends on

number of obstacles) constraints for every time step. Now, this does not guarantee

Figure 3.2: Single vehicle path with 10 time steps

a unique solution, but rather a local optimum when solved for a single vehicle.

3.2 Extension to the Pursuit-Evasion Game

Now that we have the tools to solve equilibrium problems, we can investi-

gate a somewhat more complex problem in addressing multi-agent, non-cooperative

games. Prior to formally defining our equilibrium problem, some useful notation

and definitions must be introduced. Let A denote the set of attacker UUV(s), and

37

D denote the set of defender UUV(s). Thus, our player list is split such that

PA = {P1, ...Pi, ...,P|PA|}, PD = {P|PA|+1, ...Pi, ...,PNI}, PA,PD ⊆ P ,

PA ∩ PD = ∅, PA ∪ PD = P ,

where i = {1, ..., NI} is the vehicle index. For now, let |PA| = |PD| = 1, meaning

we only consider a two-player, non-cooperative game where PA = P1 and PD = P2.

This also requires an update in our variable and constraint notation, since both

agents are defined by states in the same space x
[1]
k , x

[2]
k ∈ Xk, and are controlled in

the same space u
[1]
k , u

[2]
k ∈ Uk for each time step k. Each vehicle is independently

subject to the same set of constraints described in (2.1). However, it is necessary to

modify their cost functions J [1](s) and J [2](s), where recall s = (s[1], s[2]) ∈ S is the

joint strategy chosen by all players.

3.2.1 Pursuit Function and Multi-Objective Equilibrium

The case study addressed in this thesis involves an attacker UUV P1 whose

mission it is to reach a stationary target position pG as quickly as possible, and a

defender UUV P2 whose mission it is to intercept said attacker before reaching the

target. This variant of the “pursuit-evasion game” (PEG) pictured in Figure 3.3

is inspired partially from the multi-pursuer game described in [42] and defender-

attacker-target game described in [41]. First, to account for multiple players simul-

taneously, the variable notation is updated so that Pi’s position at time step k in

dimension d is given by p
[i]
d,k, and likewise for its velocity v

[i]
d,k and acceleration u

[i]
d,k.

38

Figure 3.3: Pursuit-Evasion Game Scenario

We define the “pursuit function”, fP which serves as the defender P2’s objective

function for each time step k

fP (x
[1]
k , u

[1]
k , x

[2]
k , u

[2]
k) =

1

2
‖p[2]k − p

[1]
k ‖

2 (3.7a)

which the defender tries to minimize. The reader should note that this objective

function defines the defender more as a “surveillance asset” focused solely on the

attacker vehicle, rather than actually defending a particular point or area, as the

name implies. This results sometimes in the defender following behind the attacker

rather than taking the shortest path to intercept. Since the constraints are inde-

pendently enforced, the defender’s optimization problem minimizes (3.7a) subject

39

to (2.1b)-(2.1f), taking the form

min
u[2]

J [2](s) ,
N∑
k=0

fP (x
[1]
k , u

[1]
k , x

[2]
k , u

[2]
k) (3.7a)

s.t.

x
[2]
0 = x

[2]
IC (3.7b)

x
[2]
k+1 = Ax

[2]
k +Bu

[2]
k ∀ k = 0, ..., N − 1 (3.7c)

1

2

∥∥v[2]k ∥∥2 ≤ 1

2
vmax(k)2 ∀ k ∈ K (3.7d)

1

2
‖u[2]k ‖

2 ≤ 1

2
amax(k)2 ∀ k = 0, ..., N − 1 (3.7e)

1

2

∥∥p[2]k − cm(k)
∥∥2 ≥ 1

2
rm(k)2 ∀ k ∈ K,m ∈M (3.7f)

which is solved for the defender P2. Meanwhile, the attacker P1 now seeks to min-

imize a multi-objective optimization problem with weighted competing objectives.

P1 retains the objective to reach its target point pG using the goal function, restated

from (2.1a) with new notation

fG(x
[1]
k , u

[1]
k) =

1

2
‖pG − p[1]k ‖

2,

while it also simultaneously attempts to evade defender P1 (i.e., maximize the pur-

suit function fP). Thus, the cost functional over the entire horizon for the attacker

P1 is

min
u[1]

J [1](s) ,
N∑
k=0

[
ωGfG(x

[1]
k , u

[1]
k)− ωPfP (x

[1]
k , u

[1]
k , x

[2]
k , u

[2]
k)
]
, (3.8a)

40

where ωG, ωP ∈ [0, 1] are a weighting parameters and ωG + ωP = 1. The effects of

these two objectives on P1 are depicted visually in Figure 3.4. Note that the effects

Figure 3.4: Effects of weighted sub-objectives (ωG = ωP) on Attacker P1

of each sub-objective can be interpreted as vectors of magnitude |~vP | = 2
√
fP and

|~vG| = 2
√
fG, respectively. The direction of each are determined based on relative

position to the defender, v̂P =
p
[1]
k −p

[2]
k

‖p[1]k −p
[2]
k ‖

, and the target, v̂G =
pG−p

[1]
k

‖pG−p
[1]
k ‖

, respectively.

Thus, summing the two vectors with respective coefficients gives us the cumulative

effect and velocity for PA

~vA = ωP~vP + ωG~vG.

The weighting parameters should be tuned based on scenario conditions, which is a

topic of discussion in Chapter 4, when the attacker may prioritize the goal function

over evasion if it is closer to the target than any defenders. Again, the attacker’s

trajectory is subject to the same constraints as previously stated.

41

3.2.2 Two-player Game KKT Conditions

The KKT conditions for the two-player pursuit evasion game are constructed

similarly to the single-vehicle example (3.4), producing a larger system of equations

that encompasses both players simultaneously, such that:

∀ players Pi ∈ P , ∀ time steps k ∈ K :

∇kL
[i](s) ,∇kJ

[i](s) +∇hk(x[i]k , u
[i]
k)µ

[i]
k + σ

[i]
k ∇g

vel
k (x

[i]
k) (3.9a)

+ ν
[i]
k ∇g

acc
k (u

[i]
k) +

∑
m∈M

λ
[i]
km∇g

obs
km(x

[i]
k) = 0 , xk, uk free

hk(x
[i], u[i]) = 0 , µ

[i]
k free . (3.9b)

gvelk (x
[i]
k) ≤ 0 ⊥ σ

[i]
k ≥ 0 (3.9c)

gacck (u
[i]
k) ≤ 0 ⊥ ν

[i]
k ≥ 0 (3.9d)

gobskm(x
[i]
k) ≤ 0 ⊥ λ

[i]
km ≥ 0 ∀ m ∈M (3.9e)

where the cost functionals J [i] for P1 and P2 are the weighted multi-objective func-

tion (3.8a) and pursuit function (3.7a), respectively. The gradient of P1’s cost

functional is

∇kJ
[1] = ωG

p
[1]
k − pG

0

0

− ωP

p
[1]
k − p

[2]
k

0

0

 ∀k ∈ K, (3.10a)

42

while the the gradient of P2’s cost functional is

∇kJ
[2] =

p
[2]
k − p

[1]
k

0

0

 ∀k ∈ K. (3.10b)

The remaining terms in each player Pi’s Lagrangian gradient (3.9a) corresponding to

each constraint remain the same as described for the single-vehicle example (3.5b)-

(3.5e).

3.2.3 Two-player Equilibrium Solution

This system of equations is solved simultaneously for both players to find

an equilibrium solution. To illustrate this, we consider a two-player, four obstacle

scenario with the parameters shown in Table 4.1. To make the equilibrium solution

Table 3.2: Two-Player PEG Parameters

Parameter Value Units

t0 0 s
∆t 0.1 s
Th 5 s

x
[1]
IC (0, 0, 0, 0)T m

x
[2]
IC (0, 10, 0, 0)T m
xG (17, 9, 0, 0)T m
vmax 5 m/s
amax 20 m/s2

O(1) (4, 1, 2)T m
O(2) (8, 6, 3)T m
O(3) (9, 0, 2.5)T m
O(4) (14, 5, 3)T m

clear, we describe the full expanded system of equations for the initial time steps k =

43

0, 1, which can be extrapolated over the entire horizon. The Lagrangian derivatives

for each player are:

∇0L
[1] = ωG

p
[1]
0,1 − 17

p
[1]
0,2 − 9

0

0

0

0

− ωP

p
[1]
0,1 − p

[2]
0,1

p
[1]
0,2 − p

[2]
0,2

0

0

0

0

+

µp[1]
0,1 − µp[1]

1,1

µp[1]
0,2 − µp[1]

1,2

µv [1]
0,1 − µv [1]

1,1 −∆tµp[1]
1,1

µv [1]
0,2 − µv [1]

1,2 −∆tµp[1]
1,2

− 1
2∆t2µp[1]

1,1 −∆tµv [1]
1,1

− 1
2∆t2µp[1]

1,2 −∆tµv [1]
1,2

+ σ
[1]
0

0

0

v
[1]
0,1

v
[1]
0,2

0

0

+ ν
[1]
0

0

0

0

0

u
[1]
0,1

u
[1]
0,2

+ λ
[1]
0,1

4− p[1]0,1

1− p[1]0,2

0

0

0

0

+ λ
[1]
0,2

8− p[1]0,1

6− p[1]0,2

0

0

0

0

+ λ
[1]
0,3

9− p[1]0,1

0− p[1]0,2

0

0

0

0

+ λ
[1]
0,4

14− p[1]0,1

5− p[1]0,2

0

0

0

0

= 0

∇0L
[2] =

p
[2]
0,1 − p

[1]
0,1

p
[2]
0,2 − p

[1]
0,2

0

0

0

0

+

µp[2]
0,1 − µp[2]

1,1

µp[2]
0,2 − µp[2]

1,2

µv [2]
0,1 − µv [2]

1,1 −∆tµp[2]
1,1

µv [2]
0,2 − µv [2]

1,2 −∆tµp[2]
1,2

− 1
2∆t2µp[2]

1,1 −∆tµv [2]
1,1

− 1
2∆t2µp[2]

1,2 −∆tµv [2]
1,2

+ σ
[2]
0

0

0

v
[2]
0,1

v
[2]
0,2

0

0

+ ν
[2]
0

0

0

0

0

u
[2]
0,1

u
[2]
0,2

+ λ
[2]
0,1

4− p[2]0,1

1− p[2]0,2

0

0

0

0

+ λ
[2]
0,2

8− p[2]0,1

6− p[2]0,2

0

0

0

0

+ λ
[2]
0,3

9− p[2]0,1

0− p[2]0,2

0

0

0

0

+ λ
[2]
0,4

14− p[2]0,1

5− p[2]0,2

0

0

0

0

= 0

44

∇1L
[1] = ωG

p
[1]
1,1 − 17

p
[1]
1,2 − 9

0

0

0

0

− ωP

p
[1]
1,1 − p

[2]
1,1

p
[1]
1,2 − p

[2]
1,2

0

0

0

0

+

µp[1]
1,1 − µp[1]

2,1

µp[1]
1,2 − µp[1]

2,2

µv [1]
1,1 − µv [1]

2,1 −∆tµp[1]
2,1

µv [1]
1,2 − µv [1]

2,2 −∆tµp[1]
2,2

− 1
2∆t2µp[1]

2,1 −∆tµv [1]
2,1

− 1
2∆t2µp[1]

2,2 −∆tµv [1]
2,2

+ σ
[1]
1

0

0

v
[1]
1,1

v
[1]
1,2

0

0

+ ν
[1]
1

0

0

0

0

u
[1]
1,1

u
[1]
1,2

+ λ
[1]
1,1

4− p[1]1,1

1− p[1]1,2

0

0

0

0

+ λ
[1]
1,2

8− p[1]1,1

6− p[1]1,2

0

0

0

0

+ λ
[1]
1,3

9− p[1]1,1

0− p[1]1,2

0

0

0

0

+ λ
[1]
1,4

14− p[1]1,1

5− p[1]1,2

0

0

0

0

= 0

∇1L
[2] =

p
[2]
1,1 − p

[1]
1,1

p
[2]
1,2 − p

[1]
1,2

0

0

0

0

+

µp[2]
1,1 − µp[2]

2,1

µp[2]
1,2 − µp[2]

2,2

µv [2]
1,1 − µv [2]

2,1 −∆tµp[2]
2,1

µv [2]
1,2 − µv [2]

2,2 −∆tµp[2]
2,2

− 1
2∆t2µp[2]

2,1 −∆tµv [2]
2,1

− 1
2∆t2µp[2]

2,2 −∆tµv [2]
2,2

+ σ
[2]
0

0

0

v
[2]
1,1

v
[2]
1,2

0

0

+ ν
[2]
0

0

0

0

0

u
[2]
1,1

u
[2]
1,2

+ λ
[2]
1,1

4− p[2]1,1

1− p[2]1,2

0

0

0

0

+ λ
[2]
1,2

8− p[2]1,1

6− p[2]1,2

0

0

0

0

+ λ
[2]
1,3

9− p[2]1,1

0− p[2]1,2

0

0

0

0

+ λ
[2]
1,4

14− p[2]1,1

5− p[2]1,2

0

0

0

0

= 0

which are the first 24 rows of 612 Lagrangian equations (6 × 51 × 2) for this

scenario with N = 50 time steps and NI = 2 players. The linear dynamics equality

45

constraints for each player Pi , each associated with a free dual variable vector µ
[i]
0 ,

for k = 0, 1 are

h0(x
[i], u[i]) =

p
[i]
0,1

p
[i]
0,2

v
[i]
0,1

v
[i]
0,1

−

p
[i]
IC,1

p
[i]
IC,2

v
[i]
IC,1

v
[i]
IC,2

= 0

h1(x
[i], u[i]) =

p
[i]
1,1

p
[i]
1,2

v
[i]
1,1

v
[i]
1,2

−

p
[i]
0,1 + ∆tv

[i]
0,1

p
[i]
0,2 + ∆tv

[i]
0,2

v
[i]
0,1

v
[i]
0,2

−

1
2
∆tu

[i]
0,1

1
2
∆tu

[i]
0,2

∆tu
[i]
0,1

∆tu
[i]
0,2

= 0

The velocity and acceleration bound complementarity equations for each player Pi

are again

1

2
σ
[i]
0

[
(v

[i]
0,1)

2 + (v
[i]
0,2)

2 − 52
]

= 0

1

2
σ
[i]
1

[
(v

[i]
1,1)

2 + (v
[i]
1,2)

2 − 52
]

= 0

1

2
ν
[i]
0

[
(u

[i]
0,1)

2 + (u
[i]
0,2)

2 − 202
]

= 0

1

2
ν
[i]
1

[
(u

[i]
1,1)

2 + (u
[i]
1,2)

2 − 202
]

= 0

46

Finally, the obstacle avoidance complementarity equations for each player Pi for the

four obstacles are

λ
[i]
0,1

[
1

2

(
22 − (42 + 12)− (p

[i]
0,1)

2 − (p
[i]
0,2)

2
)

+ 4p
[i]
0,1 + 1p

[i]
0,2

]
= 0

λ
[i]
1,1

[
1

2

(
22 − (42 + 12)− (p

[i]
1,1)

2 − (p
[i]
1,2)

2
)

+ 4p
[i]
1,1 + 1p

[i]
1,2

]
= 0

λ
[i]
0,2

[
1

2

(
22 − (82 + 62)− (p

[i]
0,1)

2 − (p
[i]
0,2)

2
)

+ 8p
[i]
0,1 + 6p

[i]
0,2

]
= 0

λ
[i]
1,2

[
1

2

(
22 − (82 + 62)− (p

[i]
1,1)

2 − (p
[i]
1,2)

2
)

+ 8p
[i]
1,1 + 6p

[i]
1,2

]
= 0

λ
[i]
0,3

[
1

2

(
22 − (92 + 02)− (p

[i]
0,1)

2 − (p
[i]
0,2)

2
)

+ 9p
[i]
0,1 + 0p

[i]
0,2

]
= 0

λ
[i]
1,3

[
1

2

(
22 − (92 + 02)− (p

[i]
1,1)

2 − (p
[i]
1,2)

2
)

+ 9p
[i]
1,1 + 0p

[i]
1,2

]
= 0

λ
[i]
0,4

[
1

2

(
22 − (142 + 52)− (p

[i]
0,1)

2 − (p
[i]
0,2)

2
)

+ 14p
[i]
0,1 + 5p

[i]
0,2

]
= 0

λ
[i]
1,4

[
1

2

(
22 − (142 + 52)− (p

[i]
1,1)

2 − (p
[i]
1,2)

2
)

+ 14p
[i]
1,1 + 5p

[i]
1,2

]
= 0

The complete system of equations in this scenario includes 1614 equations and 1614

variables (both primal and Lagrangian multipliers). The equilibrium trajectory

solution to such a pursuit-evasion game is depicted in Figure 5.1, where the attacker

reaches its target at time step k = 40 (i.e., time tk = 4 s). Figure 5.2 shows the

evolution of each player’s payoff over time.

The attacker is represented by the red diamond starting at (0, 0), while the

blue square represents the defender starting at (0, 10), with the target represented

by a green triangle at (17, 9), and circular obstacles throughout the work space. If

the defender fails to intercept the attacker directly, its objective function levels off

47

Figure 3.5: Pursuit-Evasion Game Trajectory with one Defenders, one Attacker

Figure 3.6: Objective Values for one Defender, one Attacker PEG

48

when the pursuer starts to follow the same path as the attacker since all vehicles

have the same max speed vmax in this scenario.

3.2.4 Nonlinear Program Post-Check

An important validation step in accepting the MCP solution is performing a

NLP post-check. The concept is to simply solve the same problem for each player

while holding the other player’s actions stationary as solved in the MCP. Thus, for

P1’s optimization problem, the state vector x[2] and control vector u[2] for P2 become

fixed, and vice-versa. The results of this post-check are shown in Table 3.3. The

Table 3.3: Two-Player PEG Results via MCP

Cost Value MCP Solution NLP Post-check

FG 2851.06 2851.06
FP 371.53 371.53
Result Goal Goal
tF 4 4

columns match exactly, as they should, since the solution generated by the MCP

seems to satisfy KKT optimality conditions, implying at least a local optimum to

the NLP for each player, provided that the actions of the other player don’t change.

49

Chapter 4

Rolling-Horizon Robust Equilibrium

4.1 Definition of Rolling-Horizon Foresight

An alternative approach to solving the pursuit-evasion game as one large,

deterministic equilibrium problem is to use a rolling horizon, in which each vehicle

only has limited local information about the state space. The benefits to such an

approach are two-fold; in that computational costs per vehicle Pi are subject only

to the information it has available at the start of the planning horizon rather than

the entire workspace, and that our model more closely resembles actual operations

in which no agent is omniscient. Recall that each vehicle acts independently, and

so we continue to use the terms “player” and “vehicle” interchangeably.

Therefore, a master problem MP can be split into sub-problems SP1,...,

SPh,..., SPH , each of the form presented in Chapter 2. We split the time series

K into subsets of time indices defined as Kh = {k0(h), ..., kN(h)} ∈ K, where the

initial time step k0(h) = (h − 1)N and final step kN(h) = hN . This assumes an

equal number of time steps per horizon, and ensures that each planning horizon h

50

includes exactly N + 1 collocation points, i.e.,

h = 1 : K1 = {0, ..., N}

h = 2 : K2 = {N, ..., 2N}

...

h = H : KH = {(H − 1)N, ..., HN}

where H is a finite maximum number of planning horizons to consider, and N

is the number of time steps in each horizon. Since each sub-problem is solved

independently, it is necessary to first define the sub-path trajectory vector x
[i]
(h) and

sub-path control vector u
[i]
(h) (where i is the vehicle index for Pi) for each time horizon

h:

x
[i]
(h) , (x

[i]T
k0 , ..., x

[i]T
k , ..., x

[i]T
kN)T ∈ X ⊆ R4(N+1),

u
[i]
(h) , (u

[i]T
k0 , ..., u

[i]T
k , ..., u

[i]T
kN−1)

T ∈ U ⊆ R2N ,

and now, we can define Pi’s strategy for horizon h, s
[i]
h = (x

[i]
(h), u

[i]
(h)), as well as the

joint set of strategies sh = (s
[i]
h ,∀i ∈ P) ∈ S(h)⊆ S. For bookkeeping purposes, we

also define a global trajectory X [i] and global control vector U [i] which denote the

51

combined paths and control decisions for player Pi across all horizons

X [i] , (x
[i]T
(1) , x

[i]T
(2) , ..., x

[i]T
(h) , ..., x

[i]T
(H))

T ,

U [i] , (u
[i]T
(1) , u

[i]T
(2) , ..., u

[i]T
(h) , ..., u

[i]T
(H))

T .

The transitions between planning horizons serve as continuity points, such that

the time index kN and state vector x
[i]
kN

at the end of one planning horizon are saved

as the initial conditions k0 and state vector x
[i]
k0

in the next planning horizon (e.g.,

x
[i]
kN
|h = x

[i]
k0
|h+1). This concept is depicted visually in Figure 4.1, where N = 10 and

H = 5.

Figure 4.1: Rolling-Horizon Sub-Problem Concept with Continuity Points

Recall that the pursuit-evasion game presented in this thesis includes a distinct

set of attacker UUVs PA and another distinct set of defender UUVs PD; where in

the current chapter PA = {P1} and PD = {P2}. Also, the notation Pi, when used,

refers generally to any player in the system. For the purpose of this thesis, we

consider a scenario in which the attacker vehicle P1 has global information about

its own states x
[1]
k and target position pG, while the defender vehicle P2 has global

information only about its own states x
[2]
k .

52

However, both vehicles only have “local” information about obstacles and

their adversaries. Here “local” is interpreted in terms of Euclidean distance from

the vehicle Pi’s position at the start of each rolling horizon, p
[i]
k0

. This leads us to

define a detection radius r
[i]
δ for each vehicle Pi, inside of which objects become local

information, and outside of which objects can be completely unknown or nominally

mapped as robust obstacles, which is presented in Section 4.2.1.

Note that with a rolling-horizon foresight, a vehicle Pi is prone to finding a

sub-path x
[i]
h that is locally optimal in the current horizon h, but that may result in

a globally sub-optimal path X [i] and control vector U [i] due to unforeseen obstacles

and adversaries outside its detection range.

4.1.1 Foresight and Safety

We assume in this case that the detection radius r
[i]
δ is always greater than the

travel range rh in each time horizon h, where rh is an implicit parameter defined

by the maximum velocity vmax and time horizon tN , such that rh = tNvmax. The

travel range is the maximum distance the vehicle can travel during a single planning

horizon h if it is already traveling at max speed (i.e., ‖vk0‖ = vmax), and does not

change direction. To demonstrate this, we introduce a displacement function

d
[i]
h (x

[i]
(h), u

[i]
(h)) =

kN−1∑
k=k0

‖p[i]k+1 − p
[i]
k ‖, ∀ h = 1, ..., H (4.1)

which determines a linear approximation of the physical sub-path length of x
[i]
(h),

or distance traveled, from the initial position x
[i]
k0

to the final position x
[i]
kN

. These

53

assumptions are also stated below in Assumption 4.1.

Assumption 4.1 (Sufficient Foresight) All vehicles Pi have a sufficient detec-

tion radius r
[i]
δ strictly greater than the travel range r

[i]
h , which, in turn, is always

equal or greater than the vehicle’s displacement d
[i]
h .

r
[i]
δ > r

[i]
h = tNv

[i]
max ≥ d

[i]
h .

which keeps the vehicle Pi from traveling beyond a range that it can detect obstacles

or other vehicles in any single planning horizon h. The relationship between rh and

r
[i]
δ is shown in Figure 4.2.

Figure 4.2: Rolling-Horizon Foresight with Obstacle Detection

The space between the detection radius (orange circle) and travel range (gray

circle) can be considered a safety buffer. The larger this region, the better foresight

the vehicle has beyond its physical travel capabilities. Note in the figure that the

54

sub-path x(h) does not consider the undetected obstacle outside rδ, and so the vehicle

has to adjust course in the next sub-path x(h+1).

4.1.2 Obstacle Detection

Given the definition for local information and detection above, we can define

an obstacle detection function

δ
[i]
(m) , 1{‖p[i]k0 − cm‖ ≤ rm + r

[i]
δ }, (4.2)

where 1{·} is an indicator function that “activates” the conditional obstacle avoid-

ance constraint for vehicle Pi and obstacle O(m) only if that obstacle boundary falls

within the detection radius (i.e., δ
[i]
(m) = 1). Thus, obstacles described in Section

2.2.4 become visible to player Pi via

O[i]
(m) , {δ

[i]
(m)p ∈ W : ||p− cm(k)|| ≤ rm}, (4.3)

which generates conditional obstacle avoidance constraint, gobskm(x
[i]
k), ∀k ∈ Kh,m ∈

M [i] in Pi’s optimization in the same form as (3.1f) only if δ
[i]
(m) = 1. The diagram

shown in Figure 4.3 describes how this is implemented. Note that the nearest point

on the surface of the first obstacle (top) is outside the detection area (i.e., beyond the

detection radius rδ from Pi’s initial position pk0), so that obstacle O(1) is undetected,

while O(2) (bottom) is detected in the current horizon.

The conditional constraint is included/excluded prior to the problem reach-

55

Figure 4.3: Obstacle Detection Concept

ing the GAMS PATH solver, so that discrete binary variables can be avoided in

the MCP. Also, this algorithm implicitly induces a sort of “memorylessness” prop-

erty in our system, since vehicles do not store obstacle locations after they have

passed them. Although current vehicle platforms are capable of mapping and stor-

ing this type of information, doing so only induces unnecessary obstacle-avoidance

constraints in our model since vehicles tend not to backtrack in a shortest path to

a fixed target.

4.1.3 Vehicle Detection

Similarly, while obstacle detection impacts the number of constraints consid-

ered, vehicle detection affects the objective function, in that the pursuit function

f
[i]
Pk should only be an active sub-objective for player Pi in horizon h if player Pj’s

56

position (i 6= j) is within r
[i]
δ at time step k0. Formally, this is stated as:

γ
[i]
j = 1{‖p[i]k0 − p

[j]
k0
‖ ≤ r

[i]
δ }, ∀i, j ∈ {1, ..., |P|}, i 6= j, (4.4)

which conditionally includes the pursuit function from (3.7a) in Pi’s objective, such

that

f
[i]
P = γ

[i]
j

1

2
‖p[j]k − p

[i]
k ‖

2 (4.5)

Since each vehicle presumably has its own unique detection radius, r
[i]
δ based on

vehicle-platform, it is possible that Pi detects Pj before Pj detects Pi if r
[i]
δ < r

[j]
δ .

In this thesis, we assume all vehicles have the same detection radius r
[1]
δ = r

[2]
δ = rδ.

Assumption 4.2 (Detection Equity) All vehicles have the same detection ra-

dius rδ, and thus γ
[i]
j = γ

[j]
i ∀i 6= j, so no advantage of information exists.

4.1.4 Rolling-Horizon Equilibrium Problem

By implementing vehicle and obstacle detection into the attacker vehicle P1’s

optimization problem (3.8a), we arrive at a new formulation in which P1 wants to

57

minimize the cost functional J
[1]
h (sh) for every planning horizon h ∈ {1, ..., H}:

min
u
[1]
(h)

J
[1]
h (sh) ,

1

2

kN∑
k=0

[
ωG‖pG − p[1]k ‖

2 − ωPγ[1]2 ‖p
[2]
k − p

[1]
k ‖

2
]

(4.6a)

s.t.

x
[1]
0 = x

[1]
IC (4.6b)

x
[1]
k+1 = Ax

[1]
k +Bu

[1]
k ∀ k = k0, ..., kN − 1 (4.6c)

1

2

∥∥v[1]k ∥∥2 ≤ 1

2
v2max ∀ k ∈ Kh (4.6d)

1

2
‖u[1]k ‖

2 ≤ 1

2
a2max ∀ k = k0, ..., kN − 1 (4.6e)

1

2

∥∥p[1]k − cm∥∥2 ≥ 1

2
r2m ∀ k ∈ Kh,m ∈M [1] (4.6f)

where M [1] is the set of obstacles currently detected by player P1,

M [1] , {m : δ
[1]
(m) = 1} ⊆M,

and is updated each planning horizon.

Likewise, the defender P2 wants to minimize the cost functional J
[2]
h (sh) in

each horizon h ∈ {1, ..., H}, which includes only the pursuit functions f
[2]
Pk, resulting

58

in:

min
u
[2]
(h)

J
[2]
h (sh) , γ

[2]
1

1

2

kN∑
k=k0

‖p[2]k − p
[1]
k ‖

2 (4.7a)

s.t.

x
[2]
0 = x

[2]
IC (4.7b)

x
[2]
k+1 = Ax

[2]
k +Bu

[2]
k ∀ k = k0, ..., kN − 1 (4.7c)

1

2

∥∥v[2]k ∥∥2 ≤ 1

2
v2max ∀ k ∈ Kh (4.7d)

1

2
‖u[2]k ‖

2 ≤ 1

2
a2max ∀ k = 0, ..., kN − 1 (4.7e)

1

2

∥∥p[2]k − cm∥∥2 ≥ 1

2
r2m ∀ k ∈ Kh,m ∈M [2] (4.7f)

where M [2] ⊆ M is the set of obstacles currently detected by player P2. Note that

if γ
[1]
2 = γ

[2]
1 = 0, then player P1 minimizes J

[1]
h in (4.6) by simply moving towards

its target pG and player P2 minimizes J
[2]
h = 0 in (4.7) by remaining stationary.

This is visually demonstrated in Figure 4.4 in which rδ < ‖p[2]k0 − p
[1]
k0
‖, so P1 takes

a direct route from its initial position (0, 10) to its target (10, 0) and P2 remains at

(0, 0). However, if the detection radius is increased to rδ = 10 then the defender

P2 pursues P1, while the attacker P1 attempts to evade, resulting in capture just

before reaching the target, shown in Figure 4.5.

4.2 Incomplete Information

In underwater path planning, agents make decisions with incomplete infor-

mation. Thus, there are many extensions that could be further explored with the

59

(a) Trajectories for 2-Player PEG (b) Cost Functions over Time

Figure 4.4: No Pursuit when rδ = 5 < ‖p[2]k0 − p
[1]
k0‖

rolling-horizon approach. For instance, a vehicle could only have partial information

about the size and location of obstacles, its target location and even its own posi-

tion due to the nature of its environment, where the GPS signal is either reduced

or unavailable [34]. For now, we maintain the following assumption:

Assumption 4.3 (Perfect Self-Awareness) Player Pi retains perfect current knowl-

edge of its own state x
[i]
k at time step k, but only possesses nominal information, ĉ

[i]
m

and r̂
[i]
m, about obstacles observed at the start of each horizon.

(a) Trajectories for 2-Player PEG (b) Cost Functions over Time

Figure 4.5: Defender P2 pursues P1 when rδ = 10 ≥ ‖p[2]k0 − p
[1]
k0‖

60

This assumption supposes that vehicles know their own position and velocity, but

may only possess partial information about obstacles (exogenous uncertainty) and/or

the effect of internal control on their vehicle dynamics (endogenous).

4.2.1 Interval Robustness

We now introduce the concept of robustness to our equilibrium model, which

can be interpreted to have a number of meanings. We first introduce a sensor

confidence parameter ρ[i] ∈ [0, 1] that defines the level of certainty vehicle Pi has

about its environment. So when ρ[i] = 0 the vehicle has no certainty about the actual

size and location of obstacles that it detects, while when ρ[i] = 1 it can navigate

with deterministic certainty. We then observe how the circular obstacles O can be

modified in the state space to efficiently account for interval robustness [22] in their

location and size parameters. This means that the centers and radii of obstacles can

fall within a permissible range around a nominal value. Then we incorporate this

concept with a rolling-horizon foresight.

4.2.2 Robust Obstacles

Robust obstacles are approached in a worst-case representation, where obstacle

attributes are stochastic, in that player Pi detects a nominal center ĉ
[i]
m and nominal

radii r̂
[i]
m that may vary from the actual values for each obstacle. The observed

nominal center ĉ
[i]
m and radius r̂

[i]
m reported by the vehicle sensor are known to vehicle

Pi, but the actual center realization cm may vary from the observed center within

61

±∆cmax, and the actual obstacle radius rm may also vary by ±∆rmax, which are

defined:

∆c[i]max , (1− ρ[i])

(
‖cm − p[i]k0‖ − rm

)2
2r

[i]
δ

, (4.8a)

∆r[i]max , (1− ρ[i]) rm

‖cm − p[i]k0‖
(4.8b)

where the numerator in (4.8a) reflects the distance from the vehicle’s sensor to the

surface of the obstacle. Dividing by twice the vehicle’s sensor range reduces the un-

certainty within the detection range. This function is closely related to the obstacle

avoidance constraint (3.7f). In (4.8b) the uncertainty is inversely proportional to

its proximity to the center cm, meaning that , for obstacles with large radii rm, the

closer it is to the obstacle, the wider the radius might vary. This gives the players

the definitions of their nominal obstacles

ĉ[i]m ,= cm + ∆c[i] =

 cm,1 + ∆c
[i]
1

cm,2 + ∆c
[i]
2

 , |∆c[i]1 |, |∆c
[i]
2 | ≤ ∆c[i]max (4.8c)

r̂[i]m , rm + ∆r[i]m, |∆r[i]m| ≤ ∆r[i]max, (4.8d)

which vary depending on each player’s confidence parameter ρ[i] and their respective

distances from each obstacle. The uncertainty can be mitigated using a finite num-

ber of scenarios to capture an infinite number of scenarios within these robustness

bounds. This is achieved by representing the obstacles as shown in Figure 4.6, where

62

a larger effective radius r′m is generated around the outermost obstacle realizations

given the definitions of ĉm and r̂m

r′[i]m , r̂[i]m + max{
√

2∆c[i]max,∆r
[i]
max}, (4.9)

where r̂
[i]
m is the observed nominal radius, and the second term represents the max-

imum change if either: a) both center coordinates shift maximally, ∆c1 = ∆c2 =

∆cmax (note: the coefficient
√

2 is the hypotenuse of a right triangle with legs of

length 1), or b) the radius shifts maximally, ∆r = ∆rmax. By replacing the infinite

number of potential realizations of obstacles within an acceptable range, this tech-

nique effectively and efficiently converts a stochastic problem into a deterministic

equivalent problem. This provides a robust path for player Pi via

Figure 4.6: Robust Obstacle Avoidance

grobkm(x
[i]
k) ,

1

2

(
r′[i]m

2 −
∥∥p[i]k − ĉ[i]m∥∥2) ≤ 0 ∀ k ∈ Kh,m ∈M [i] (λ

[i]
km), (4.10)

63

given that obstacles are sparsely distributed in the state-space, necessitating the

following assumption.

Assumption 4.4 (Sparse Obstacles) Separation between obstacles is greater than

each of their respective radii , and no set of obstacles are configured such that more

than half of any vehicle’s detection area is restricted. Thus, no two obstacles overlap

and are sparsely distributed.

However, since this is a highly conservative approach, the paths might become

sub-optimal relative to the path that would be selected given only the nominal

obstacles if uncertainty bounds stretch potential obstacles outside the radius of the

nominal obstacle. Also, modeling obstacles in this manner introduces potential for

artificial infeasibility, meaning that even if a feasible path exists through actual

obstacle realizations, the vehicle may fail to find it due to overlapping conservative

estimates.

4.3 Rolling-Horizon Robust Equilibrium

Combining the two concepts of rolling-horizon foresight and robust obstacles

produces a model that can represent a multi-player system with incomplete infor-

mation and learning, which is of value in the verification and validation of UUV

mission-planning algorithms and software. The KKT conditions for the rolling-

64

horizon robust game for each horizon h now become:

∀ players Pi ∈ P , ∀ time steps k ∈ Kh :

∇kL
[i]
h (s) ,∇kJ

[i]
h (s) +∇hk(x[i](h), u

[i]
(h))µ

[i]
k + σ

[i]
k ∇g

vel
k (x

[i]
k) (4.11a)

+ ν
[i]
k ∇g

acc
k (u

[i]
k) +

∑
m∈M

λ
[i]
km∇g

rob
km(x

[i]
k) = 0 , xk, uk free

hk(x
[i]
(h), u

[i]
(h)) = 0 , µ

[i]
k free . (4.11b)

gvelk (x
[i]
k) ≤ 0 ⊥ σ

[i]
k ≥ 0 (4.11c)

gacck (u
[i]
k) ≤ 0 ⊥ ν

[i]
k ≥ 0 (4.11d)

grobkm(x
[i]
k) ≤ 0 ⊥ λ

[i]
km ≥ 0 ∀ m ∈M [i] (4.11e)

where the cost functional J
[i]
h (s), dynamics hk(x

[i]
(h), u

[i]
(h)) and bound constraints

gvelk (x
[i]
k), gacck (u

[i]
k) are defined by (4.6a)-(4.6e) for P1 and by (4.7a)-(4.7e) for P2,

while robust obstacle avoidance constraints grobkm(x
[i]
k) for each player Pi are defined

by (4.10). The procedure for finding the rolling-horizon robust equilibrium solution

for the two-player pursuit evasion game is summarized in Algorithm 2

4.3.1 Learning via Objective Weighting for Attacker P1

Learning behavior can be challenging to understand, let alone model in a

mathematical construct. However, using a rolling-horizon approach, we can imple-

ment an iterative learning mechanism. This is done for the attacker P1 by tuning

the objective weighting parameters for the goal function ωG and pursuit function

ωP based on proximity and relative position to the target and defender P2. If, for

65

Algorithm 2 Rolling-Horizon Robust Equilibrium

Input: P1 data (x
[1]
IC ,pG,vmax,amax,ωG), P2 data (x

[2]
IC ,vmax,amax), obstacle data O,

confidence level ρ, detection range rδ, dynamics matrices A and B, step size ∆t,
horizon length Th, max horizons H

Output: X [i], U [i] ∀i = 1, 2, result, residual
1: for h← 1 to H do
2: Find KKT solution via (4.11) without obstacle constraints grobk (4.11e).

3: (x
[i]
(h), u

[i]
(h))← (x̄

[i]
(h), ū

[i]
(h)) ∀i = 1, 2 . set initial guess

4: O[i]
(m) ← (ĉ

[i]
m
T , r[i]′m) via (4.2),(4.8c),(4.9) . update robust obstacles

5: Find full KKT solution via (4.11).
6: for k ← k0 to kN do . check termination criteria
7: if ‖p[1]k − pG‖ < εG then
8: result = 1, kN ← k . attacker reached target
9: return

10: end if
11: if ‖p[2]k − p

[1]
k ‖ < εC then

12: result = 2, kN ← k . defender intercepted attacker
13: return
14: end if
15: end for
16: end for

instance, P1 is positioned between the target pG and defender P2 at the start of a

planning horizon, and no other defenders are present, then the most appropriate

objective weights would be ωG = 1, ωP = 0, or to maximize the goal function fG.

Recall P1’s explicit objective to reach the target pG as quickly as possible without

being intercepted by P2, so this adjustment makes sense as long as no obstacles are

present between P1’s starting position p
[1]
k0

and its target pG.

While the full goal function weight works when P1 has a clear path to pG,

there are other scenarios in which the pursuit function outweighs the goal function

(ωP > ωG) provides better opportunity to P1. Consider the game with the follow-

ing parameters which generates the scenario pictured in Figure 4.7. Note that P2

captures P1 at t = 0.9 when P1’s objective is equally weighted with ωG = ωP = 0.5.

66

Table 4.1: Learning Game Parameters

Parameter Value Units Description

t0 0 h start time
∆t 0.1 h time step
Th 2 h horizon length

x
[1]
IC (0, 0, 0, 0)T km P1 initial state

x
[2]
IC (3, 4, 0, 0)T km P2 initial state
xG (10, 0, 0, 0)T km target point
vmax 5 km/h max speed
amax 20 km/h2 max acceleration
O(1) (5,−1, 2)T km obstacle data
ωG 0.5 goal obj weight

(a) Trajectories for 2-Player PEG (b) Cost Functions over Time

Figure 4.7: Balanced Objective, ωG = ωP = 0.5. Capture at t = 0.9

In the same scenario, since P1 is closer to P2 than the target pG, if its objective

is heavily weighted towards evasion (i.e., maximizing the pursuit function fP), it puts

itself in a position to reach its goal state pG during the first of two sub-paths, as

shown in in Figure 4.8. However, maintaining these objective weights in the second

horizon starting at the terminal point denoted by the small red circle between the

obstacle and the target in Figure 4.8a , P1 overshoots the target pG and is instead

captured at t = 3.4. This shows why the attacker might want to modify its objective

67

(a) Trajectories for 2-Player PEG (b) Cost Functions over Time

Figure 4.8: Evasion-weighted Objective, ωG = 0.25, ωP = 0.75. Capture at t = 3.4

weights (i.e., learn) between planning horizons based on the scenario.

4.3.2 Learning via Robust Obstacles

By our definition of local information, only obstacles that player Pi can see

should be represented by their nominal values ĉm and r̂m. However, we can give

the vehicles some information about future obstacles in the form of robust obsta-

cles, and update the uncertainty bounds as it gets closer (e.g., as it gathers some

information about the environment). In practice, this might look like the effective

radii r[i]′m of obstacles shrink as Pi approaches them, which is how we want it to

conservatively conduct its path planning to maximize chances of a feasible strategy

(X,U). The information about the robust-effective obstacles update each planning

horizon, although the actual obstacles remain static. The effective radii r[i]′m , as

defined by (4.9), provide a buffer around obstacles, the size of which is a function of

the vehicle’s proximity to the actual obstacle. An illustrative example in which the

vehicle navigates around the effective obstacles which as shown in Figure 4.9, with

68

Table 4.2: Robust Navigation Parameters

Parameter Value Units Description

t0 0 s start time
∆t 0.2 s time step
Th 10 s horizon length

x
[1]
IC (5, 20, 0, 0)T m P1 initial state
xG (55, 10, 0, 0)T m target point
vmax 2 m/s max speed
amax 10 m/s2 max acceleration

r
[1]
δ 30 m detection range
ρ 0.7 confidence level
O(1) (12, 20, 4)T m obstacle data
O(2) (22, 15, 2)T m obstacle data
O(3) (45, 15, 5)T m obstacle data
O(4) (30, 25, 1)T m obstacle data

relevant parameters listed in Table 4.2. In Figure 4.9, the green circles represent

the actual obstacles O(m), while the red filled areas represent the detected nominal

obstacles Ô[1]
(m), and the outer red rings represent the robust effective radius r[1]′m

around each nominal obstacle that the vehicle implements in its obstacle avoidance

constraints. Note that in Sub-figure 4.9b, the furthest obstacle O4 is undetected,

while the effective radii for near obstacles is close to their nominal radii (resolution

is inversely proportional to proximity). Later, in Sub-figure 4.9c, the effective radius

for O1 becomes larger since it is near the edge of the vehicle’s detection range.

69

(a) Detected Obstacles in horizon h = 1 (b) Detected Obstacles in horizon h = 2

(c) Detected Obstacles in horizon h = 3

(d) Navigation through actual obstacles

Figure 4.9: Learning via Robust Obstacle Updates

70

Chapter 5

Game Expansion and Simulations for V&V

The previous chapters laid the foundation for equilibrium solutions to a two-

player, pursuit-evasion game with robust obstacle avoidance and a stationary target.

This provides a valuable benchmarking method of unmanned underwater vehicle

(UUV) trajectory- and mission-planning. While the two-player model can be useful

in safe trajectory validation, we can also modify this framework to model larger

systems of UUVs for the validation of decoupled multi-vehicle mission plans (i.e.,

war-gaming) for current and future real-world applications.

In this chapter, we: 1) improve upon the current model by adding a minimum

energy function to each player’s cost functional, 2) introduce a system with multiple

defenders, 3) explore the robustness of the current equilibrium model via Monte

Carlo simulation, 4) compare to the non-linear programming time-optimal trajectory

with deterministic obstacles and dynamics in single- and rolling-horizon scenarios,

5) discuss validation through equilibrium solutions.

5.1 Vehicle Platform

For the remaining simulations in this thesis, we utilize vehicle parameters from

the Bluefin-21 Battlespace Preparation Autonomous Underwater Vehicle (BPAUV)

[36], with the following relevant specifications. This platform is designed specifically

71

Table 5.1: Bluefin-21 UUV Specifications

Parameter Value Units Description

Thmax 18 h endurance @ 3 kts
vmax 2 m/s (approx. 4 kts) max speed
rδ 150 m sensor range (low resolution)

for U.S. Navy mine countermeasures (MCM) in shallow water, though has applica-

tions in anti-submarine warfare (ASW), which is most closely related to this study.

The Bluefin-21 UUV serves as the basis for the Navy’s Knifefish and Black Pearl

UUVs currently being used and developed for research in both MCM and ASW.

5.2 Minimum-Energy Function

Upon introducing the vehicle detection concept in Chapter 4, it was discovered

that the defender P2 consistently sought to find the origin at (0, 0) when P1 was not

within detection range r
[2]
δ . Without the conditional pursuit sub-objective in the

cost functional for P2’s optimization, the mixed complementarity problem (MCP)

solution forced P2 to approach the origin. To mitigate the issue of unnecessary

travel, we introduce a variant of the minimum-fuel objective commonly used in

optimal control programs [35], that we define as the energy function:

fE(x
[i]
k , u

[i]
k) =

1

2
‖u[i]k ‖

2 ∀ k = 1, ..., N − 1, (5.1)

which is applied to each player’s cost functional with an objective weighting pa-

rameter ωE, which should be kept small (order of 10−3). Combining this with the

72

sub-functions from attacker vehicle P1’s cost functional now a weighted sum of three

sub-objectives, defined as:

J
[1]
h (sh) ,

1

2

kN∑
k=0

[
ωG‖pG − p[1]k ‖

2 − ωPγ[1]2 ‖p
[2]
k − p

[1]
k ‖

2 + ωE‖u[1]k ‖
2
]
, (5.2)

while the objective function for the defender P2 is defined:

J
[2]
h (sh) ,

1

2

kN∑
k=0

[
γ
[2]
1 ‖p

[2]
k − p

[1]
k ‖

2 + ωE‖u[2]k ‖
2
]
, (5.3)

The constraints remain the same, so this addition to the cost functional for each

player only affects the MCP solution in the Lagrangian derivative with respect to

the control variables as originally described in (3.5). The first two terms of the cost

functional remain unchanged, while the last term is added in the rows pertaining to

control variables u
[i]
k in horizon h, so the gradient of the cost functional (3.5a) for

player P1 now becomes:

∇kJ
[1]
h = ωG

p
[1]
k − pG

0

0

− ωP

p
[1]
k − p

[2]
k

0

0

+ ωE

0

0

u
[1]
k

 ∀k ∈ K, (5.4)

where the first term is the gradient with respect to P1’s state at each time step x
[1]
k

of the goal function, ∇
x
[1]
k
fG; the second term is the gradient of the pursuit (evasion)

function, ∇
x
[1]
k

(−fP); and the final term is the gradient with respect to control at

each time step u
[1]
k of the energy function, ∇

u
[1]
k
fE.

73

Similarly for player P2, the pursuit function term of the cost functional does

not change, but the minimal control sub-function is added. Now the gradient of the

cost functional for player P2 is defined:

∇kJ
[1]
h =

p
[2]
k − p

[1]
k

0

0

+ ωE

0

0

u
[1]
k

 ∀k ∈ K, (5.5)

where the first term is the gradient with respect to P2’s state at each time step x
[2]
k

of the pursuit function, ∇
x
[2]
k
fP ; and the second term is the gradient with respect to

control at each time step u
[2]
k of the energy function, ∇

u
[2]
k
fE.

5.3 Multiple-Defender, Single-Attacker Game

Building on the concepts presented in Section 3.2, we can extend the pursuit-

evasion game to a system with more than one defender. So now let the number of

attackers |PA| = 1 and the number of defenders |PD| ≥ 1, meaning we now consider

a (1+ |PD|)-player, non-cooperative game where the set of attackers PA = {P1} and

the set of defenders PD = {P2, ...Pj, ...,PNI}. This allows us to investigate much

larger, more complex problems, but we need to modify the attacker cost functional

J
[1]
h (s(h)), while also adjusting the rolling-horizon detection variables δ

[j]
1 |j∈D for each

defender to allow decoupled detection and control. In addition, since there are now

teams of defenders (though still non-cooperative), a new friendly collision avoidance

constraint (5.8f) needs to be added to the defenders’ optimization problems.

74

The updated scenario involves an attacker UUV P1 whose mission it is to reach

a stationary target position pG as quickly as possible, but now a team of defender

UUVs PD whose mission it is to intercept said attacker before reaching the target.

Recall the pursuit function from (4.5) for any pair of players Pi and Pj at each time

step k that is restated below:

f
[i]
P = γ

[i]
j

1

2
‖p[j]k − p

[i]
k ‖

2, (5.6)

which is again enforced only if vehicle detection is true, i.e. γ
[1]
j = γ

[j]
1 = 1, where

the detection equity assumption (4.2) still holds.

5.3.1 Attacker-Optimization Problem

With the addition of defenders, the evasion sub-objective in the attacker P1’s

optimization problem needs to be normalized so that the total evasion weight re-

mains equal to ωP . To do so, we introduce the term ND, which represents the

number of defenders Pj∈D detected by the attacker P1. Thus, the second term of

P1’s cost functional considers the weighted average of the evasion functions for P1

as it interacts with each of the defenders Pj∈D. This results in the modified cost

75

functional for P1 in each planning horizon now:

min
u
[1]
(h)

J
[1]
h (s) ,

kN∑
k=k0

[
ωGfG(x

[1]
k)− ωP

ND

ND∑
j=1

fP (x
[1]
k , x

[j]
k) + ωEfE(u

[1]
k)

]
(5.7a)

=
1

2

kN∑
k=k0

[
ωG‖pG − p[1]k ‖

2− ωP
ND

ND∑
j=1

γ
[1]
j ‖p

[j]
k − p

[1]
k ‖

2 + ωE‖u[1]k ‖
2

]

s.t.

h(s
[1]
h) ,Ahx

[1]
(h) + Bhu

[1]
(h) − b

[1]
h = 0 (~µh

[1]) (5.7b)

gvelk (x
[1]
k) ,

1

2

(∥∥v[1]k ∥∥2 − v[1]max2) ≤ 0 ∀ k ∈ K (σ
[1]
k) (5.7c)

gacck (u
[1]
k) ,

1

2

(
‖u[1]k ‖

2 − a[1]max2
)
≤ 0 ∀ k = 0, ..., N − 1 (ν

[1]
k) (5.7d)

grobkm(x
[1]
k) ,

1

2

(
r′[1]m

2 −
∥∥p[1]k − ĉ[1]m∥∥2) ≤ 0 ∀ k ∈ K,m ∈M [1] (λ

[1]
km) (5.7e)

where the state and control dynamics matrices A and B are as defined in (3.3), and

the Greek symbols in (·) are the Lagrange multipliers for each constraint for P1. This

is a weighted multi-objective quadratic program subject to quadratic constraints.

5.3.2 Defender-Optimization Problem

Now with multiple defenders, two items need to be addressed with respect

to their optimization problems within the game scenario. First, we restate the

definition for the detection indicator function

γ
[i]
j = 1{‖p[i]k0 − p

[j]
k0
‖ ≤ r

[i]
δ }, ∀i, j ∈ {1, ..., |P|}, i 6= j, (4.4)

76

which is now generalized across all players Pi and Pj, i 6= j. Each player updates its

detection variable for all other players, and we assume in this study that defenders

do not share information about the attacker’s state.

Assumption 5.1 (Decoupled Detection) Defenders that detect an attacker do

not share information about the attacker’s state with the other defenders, i.e., δ
[i]
1 = 1

does not imply δ
[j]
1 = 1 ∀j 6= i ∈ D.

Though underwater communication capabilities for cooperative teams of robots ex-

ist, the latency (time delay) of acoustic signals for data transfer present compli-

cations in real-time information sharing [1], necessitating the current research in

decoupled/decentralized control [7].

Now, the defenders also need to ensure friendly collision avoidance with one-

another, which requires the definition of a safety distance parameter dsafe, which

can be interpreted as a circle around each defender [44]. Formally, this introduces

an additional constraint per detected friendly player:

g
col[i]
jk = γ

[i]
j

1

2

[
d2s − ‖p

[i]
k − p

[j]‖2
]
≤ 0 ∀ k ∈ K, i, j ∈ D, i 6= j, (5.8f)

where both Pi and Pj are defender vehicles in this case, and γ
[i]
j again is defined as

in (4.4), so the constraint is only enforced if the players detect one-another.

This results in the updated optimization for each defender Pj∈D as given below:

77

min
u
[j]
(h)

J
[j]
h (sh) ,

N∑
k=0

fP (x
[1]
k , x

[j]
k) + ωEfE(u

[j]
k) (5.8a)

=
1

2

kN∑
k=k0

γ
[j]
1 ‖p

[j]
k − p

[1]
k ‖

2 + ωE‖u[j]k ‖
2

s.t.

h(s
[j]
h) ,Ahx

[j]
(h) + Bhu

[j]
(h) − b

[j]
h = 0 (~µh

[j]) (5.8b)

gvelk (x
[j]
k) ,

1

2

(∥∥v[j]k ∥∥2 − v[j]max2) ≤ 0 ∀ k ∈ K (σ
[j]
k) (5.8c)

gacck (u
[j]
k) ,

1

2

(
‖u[j]k ‖

2 − a[j]max2
)
≤ 0 ∀ k = 0, ..., N − 1 (ν

[j]
k) (5.8d)

grobkm(x
[j]
k) ,

1

2

(
r′[j]m

2 −
∥∥p[j]k − ĉ[j]m∥∥2) ≤ 0 ∀ k ∈ K,m ∈M [j] (λ

[j]
km) (5.8e)

gcolik (x
[i]
k , x

[j]
k) =γ

[j]
i

1

2

[
d2s − ‖p

[i]
k − p

[j]
k ‖

2
]
≤ 0 ∀ k ∈ K, i 6= j ∈ D (ψ

[j]
ik) (5.8f)

where each defender Pj∈D pursues the attacker P1 while avoiding both obstacles

and other defenders Pi∈D within its detection range r
[j]
δ . The cost functional (5.8a)

includes the pursuit function if γ
[j]
1 = 1 and minimum fuel sub-function as de-

scribed by (5.3). The linear dynamics constraints, velocity and acceleration bounds

(5.8b)-(5.8d) remain unchanged and generalize to all defenders. Both the obstacle

avoidance (5.8e) and friendly collision avoidance constraints (5.8f) are conditional,

in that (5.8e) is enforced if m ∈M [j] and (5.8f) is enforced relative to Pi if γ
[j]
i = 1.

78

5.3.3 Equilibrium Solution to a Multi-Defender, Single-Attacker Game

The equilibrium trajectory solution to a two-defender, single-attacker pursuit-

evasion game is depicted in Figure 5.1, where the attacker reaches its target at time

tk = 20.8 s). Figure 5.2 shows the evolution of each player’s relevant sub-objectives

over time.

Figure 5.1: Pursuit-Evasion Game with two Defenders, one Attacker

The defenders’ pursuit functions level off when the pursuers follow the same

path as the attacker since all vehicles have the same max speed vmax in this scenario.

Important to note in this formulation is that each individual vehicle operates in its

own best interest, meaning that even if there are two defenders with the same

objective to intercept an attacker, they operate independently.

79

Figure 5.2: Objective Values for two Defender, one Attacker PEG

5.4 Verification of Effective Obstacles

The robust effective obstacle representation described in Chapter 4 is conser-

vative, but still requires verification that the vehicles select feasible paths regardless

of how the obstacles appear as nominal detected obstacles. This means that the ef-

fective obstacles must account for an infinite number of potential detected obstacles

with nominal center ĉm and radius r̂m within the intervals for ∆cm and ∆rm that are

expected based on actual obstacle realizations. To verify that the vehicles choose

a safe path via the robust effective radii r′m about detected centers ĉm, we imple-

ment a Monte Carlo simulation of a vehicle attempting to reach a stationary target

pG by navigating around 100 potential orientations of a single obstacle. We define

success as the vehicle reaching the target without violating the obstacle avoidance

constraint. Running the simulation for rm = 10, 20, and 30 m with horizon lengths

80

Th = 60, 45, and 30 seconds, we can observe what configurations cause errors in the

robust obstacle approach. These errors are measured by the residual values gener-

ated by the GAMS PATH solver, which are on orders smaller than 10−6 when a safe

trajectory is found, but reflect numbers larger than 1 when the resulting trajectory

is infeasible. Table 5.2 describes the results.

Table 5.2: Robust Obstacle Verification

Obs. radius
rm (m)

Horizon
Th (sec)

Success rate*
%

10
60 100%
45 99.5%
30 100%

20
60 99.7%
45 96.4%
30 94.5%

30
60 98.1%
45 95.3%
30 47.2%

*KKT point (i.e., viable solution)

It becomes clear that even using the robust obstacle approach, vehicles can

encounter situations where they struggle to choose a direction around an obstacle,

particularly when they are close to the surface of an obstacle and their target lies

directly on the opposite side. When the vehicle’s starting position, the obstacle

center and target lie on the same line, the vehicle does not prioritize either direction

and collides with the obstacle. This scenario seems to be most common when

the planning horizon is short (say Th = 30 sec) and a horizon terminal point xkN

lands directly in front of the obstacle. In practice, this scenario is highly unlikely

with random obstacles, and even incremental shifts from the line allow significant

81

improvement in performance (moving the obstacle down 0.5 meters in the case where

rm = 30, Th = 30 in this example improves the success rate to 89%).

5.5 Numerical Verification of KKT Stationary Points

Another aspect of this model that is important to verify is under what condi-

tions the model fails to generate a solution. There are potential situations in which

the MCP is insufficient for the current formulation, specifically when the KKT op-

timality conditions do not hold. These scenarios have been seen to arise when the

cost functional for the attacker P1 becomes non-convex, which we investigate via

simulation. Using independent random initial conditions x
[1]
IC , x

[2]
IC and targets pG,

we identify the effect of objective weights, specifically the goal weight ωG on the

success rate (i.e., relative frequency of generating a viable solution) of the game. By

removing obstacles and simulating a two-player game over 1000 replications, while

only varying ωG, a trend emerges that sheds light on the cost functional J [1] for

the attacker P1, which for two players is given by (5.2). This cost functional is a

convex-concave combination which P1 seeks to minimize. Figure 5.3 illustrates the

relationship between the attacker’s cost functional J [1] and ωG, where the box plots

represent the quartiles for J [1] at each weight, and each red “+” is considered an

outlier. The gray shaded region (J [1] < 0) depicts when a KKT point is unlikely to

be found.

Recall that the pursuit function weight ωP = 1 − ωG, so the negative values

of J [1] when ωG ≤ 0.4 is actually intuitive since the concave pursuit function is

82

Figure 5.3: Verification of when KKT conditions hold

more heavily weighted in these scenarios, causing the overall cost functional to

become concave. Thus, we identify a limitation in the formulation that the convex

components of each player’s cost functional (e.g., fG, fE) must outweigh the concave

components (e.g. fP for P1) such that J [i](s) ≥ 0 ∀i ∈ I in order for the KKT

conditions to hold. Further inspection of the attacker P1’s cost functional for the

two-player pursuit-evasion game

J
[1]
h (s) =

1

2

N∑
k=0

(
ωG‖pG − p[1]k ‖

2 − ωPγ[1]2 ‖p
[2]
k − p

[1]
k ‖

2 + ωE‖u[1]k ‖
2
)

can concretely describe how the pursuit function affects the reliability of KKT op-

timality. For instance, the Hessian matrix of second derivatives of J
[1]
h for this game

83

with simple horizon where N = 1(k = 0, 1) is:

H =

ωG − ωPγ[1]2 0 0 0 ωPγ
[1]
2 0

0 ωG − ωPγ[1]2 0 0 0 ωPγ
[1]
2

0 0 ωE 0 0 0

0 0 0 ωE 0 0

ωPγ
[1]
2 0 0 0 −ωPγ[1]2 0

0 ωPγ
[1]
2 0 0 0 −ωPγ[1]2

, (5.9)

whose eigenvalues are

λH =

ωE

ωE

ωG/2− ωPγ[1]2 − 1
2

√
ω2
G + 4(ωPγ

[1]
2)2

ωG/2− ωPγ[1]2 − 1
2

√
ω2
G + 4(ωPγ

[1]
2)2

ωG/2− ωPγ[1]2 + 1
2

√
ω2
G + 4(ωPγ

[1]
2)2

ωG/2− ωPγ[1]2 + 1
2

√
ω2
G + 4(ωPγ

[1]
2)2

. (5.10)

It can be determined that no combination of ωG and ωP (except when ωG = 1,

ωP = 0) exist such that all eigenvalues are non-negative, so we cannot claim the

KKT conditions are sufficient for this cost functional. However, the simulated results

imply that they are often necessary to find stationary equilibrium points, especially

when ωG ≥ ωP . Figure 5.4 shows the success rate (i.e., equilibrium point being

found) for 2000 independent simulations varying ωG ∈ [0.1, 1] and ωE = 0.001, 0.005.

84

Note that the numerically derived success rate for ωG ≥ 0.5 is 100%. From these

Figure 5.4: Success Rate of Two-player Game with no obstacles

simulations, we observe a positive correlation between KKT point being found (i.e.

residuals < 10−6) and a non-negative attacker cost functional J [1]. However, there

exist scenarios (5% of a 2000-simulation sample set) for which a stationary point

can be found despite a negative cost functional. This relates to the fact that KKT

conditions are not sufficient for this convex-concave cost functional.

5.6 Game Theoretic Validation for UUV Trajectories

The model presented in this thesis generates a solution to a pursuit-evasion

game with a closed-loop information pattern with rolling-horizon foresight. Closed-

loop information provides the “perfect-information reality” for game theoretic vali-

dation, in that each player Pi∈I can simultaneously adjust its strategy for the current

85

horizon based on the state of the rest of the system [19].

Observing the equilibrium solutions to these non-cooperative games where

each player has access to closed-loop information about other players within detec-

tion range gives valuable insight towards UUV trajectory and mission planning, as

it represents a sort of instantaneous online trajectory optimization for each player.

Meanwhile, implementing the rolling-horizon robust obstacle avoidance for each ve-

hicle creates a collision-free feasible game as long as the sparse obstacle assumption

(4.4) holds.

5.6.1 Simulations of Equilibrium vs. Iterative Optimization

A common approach to modeling systems of non-cooperative unmanned vehi-

cles is via open-loop iterative games, where the players make decisions based only on

the initial conditions of other players, but with no information about other players’

current decisions [19], [39]. For demonstration, we establish a test model as a two-

player (NI = 2) Stackelberg-type game, where the attacker P1 selects a trajectory

based on the target position pG and the defender P2’s initial state x
[2]
k0

, while the

defender P2 selects its paths with full knowledge of P1’s moves.

In the “asymmetric NLP” approach, the solution sequence for each planning

horizon h is as follows: 1) Solve the attacker NLP (5.7) where the defender’s state

is fixed (i.e. x
[2]
k = x

[2]
k0
∀k ∈ Kh), and save the attacker solution (x

[1]
(h), u

[1]
(h)). 2)

Solve the defender NLP (5.8) given the solution to P1’s NLP. This is repeated for

each horizon until termination criteria (capture or goal) is met. In contrast, our

86

(a) MCP with perfect info (b) NLP with Asymmetric Info

Figure 5.5: Comparison of MCP vs. NLP Trajectories, Th = 60 sec

MCP-derived equilibrium, which solves simultaneously, allows each player to act

with perfect knowledge of other players’ actions throughout the planning horizon,

rather than only the initial conditions. The attacker P1’s trajectory becomes highly

dependent on the length of the planning horizon, since its knowledge of the defender

P2’s state updates only at the beginning of each horizon. Thus, as depicted in Figure

5.5, the attacker may take a far less direct path, increasing the likelihood of capture

if the planning horizon Th is relatively large.

To compare the MCP solution to the iterative optimization approach, we con-

duct a simulation with input random variates (RVs) X
[1]
IC , X

[2]
IC , XG, Y and Z, repre-

senting the initial positions p
[i]
IC for each player, the target location pG, the actual

obstacle center cm and radius rm, as well as the detection error of obstacle center

∆c[i] and radius ∆r[i] in each replication, respectively. These RVs are summarized

in Table 5.3.

The uniform probability distributions used in the simulation were selected to

keep initial conditions arrayed to limit the number of trivial solutions where the

87

Table 5.3: Random Variates for MCP vs. NLP Comparison

Parameter Random Variate Description

p
[1]
IC X

[1]
IC ∼ [U(0, 100),U(0, 200)]T P1 initial position

p
[2]
IC X

[2]
IC ∼ [U(100, 200),U(0, 200)]T P2 initial position

pG XG ∼ [U(0, 200),U(0, 300)]T target location
O1 Y ∼ [U(0, 100),U(0, 200),U(0, 50)]T actual obstacle attributes
∆O1 Z ∼ [U(0, 1),U(0, 2)]T detected obstacle deviation

attacker can reach its target without influence from the defender or the obstacle. A

visual representation of this simulation setup is shown in Figure 5.6. While varying

Figure 5.6: Workspace with randomly generated positions

the planning horizon length Th, four performance measures are tracked for both

solution types. These performance measures include the energy consumption for

the attacker P1 over the entire path FE, overall attacker path length FD, capture

rate (%Capture) and clock time. We define FE =
∑H

h=1

∑
k∈Kh

fE as the cumu-

lative sum of all energy function values fE (5.1) over all horizons h. The energy

consumption seems to be slightly greater in the MCP solution than in nonlinear pro-

gram approach, because the MCP solution makes incremental changes in direction

88

(accelerations) at each time step across the entire horizon, while the asymmetric

NLP solution for the attacker only accelerates once per horizon based on P2’s initial

conditions. In reality, energy is also expended as a function of propulsion to compete

with external forces like drag and buoyancy, even at constant speed. Thus, we also

investigate the expected value of the overall path length for the attacker P1 FD,

which is defined as the cumulative sum of the displacement function d
[1]
h (4.1) over

all horizons h.

Using common random numbers (CRNs), an equilibrium solution is found

using the MCP method and performance measures stored for each simulation. The

same CRNs are used to find a solution to the test model (asymmetric NLP sequence

previously described). The results of this simulation are shown in Table 5.4 where

Table 5.4: Attacker Performance in Simulated Pursuit-Evasion Games

Solution
Type

Horizon
Th (sec)

%
Capture

E(FE) σ(FE) E(FD) σ(FD)

MCP

30 28.6% 0.822 0.798 1694 284
45 40.3% 0.917 0.529 1769 194
60 51.5% 0.690 0.428 1798 347
75 53.1% 0.869 0.552 1835 130

NLP

30 20.1% 0.078 0.011 1269 151
45 48.4% 0.192 0.169 2073 69
60 70.9% 0.264 0.018 2731 100
75 77.9% 0.274 0.023 3042 103

Th is the finite designated horizon length for each rolling horizon h, E(FE) is the

total energy consumption (represented in acceleration units - m/s2) and E(FD) is the

overall path length. The E(·) and σ(·) represent the mean and standard deviation of

the simulation sample performance measures, respectively. These results are also

89

Figure 5.7: Performance Measures vs. Planning Horizon Length, Th

illustrated graphically in Figure 5.7, where it can be seen that the MCP solution

tends to provide a lower bound in both capture rate and path length. The simulation

also sheds light on the approximate planning horizon range (30 ≤ Th ≤ 40 seconds)

where the gap in performance between the two models is minimal.

90

Chapter 6

Conclusions

6.1 Summary of Work

This thesis presents a formulation and an algorithm for modeling single- and

multi-agent game theory-based trajectory planning with rolling-horizon foresight

and robust obstacles in two-dimensional space. Chapter 2 discusses a nonlinear

trajectory optimization program is presented, along with fundamental game theo-

retic concepts. This trajectory optimization is solved via a mixed complementarity

problem (MCP) formulation using the Karush-Kuhn-Tucker (KKT) optimality con-

ditions in Chapter 3, followed by the introduction of a pursuit-evasion game (PEG)

scenario for a single attacker, single defender and stationary target. Rolling-horizon

foresight and robust obstacles are incorporated into the model in Chapter 4, both

of which improve model performance in determining feasible solutions. In Chap-

ter 5, several improvements are made to the algorithm and simulation results are

presented.

6.2 Suggestions for Future Work

There is enormous potential yet to be investigated in the use of robust games

for spatio-temporal system validation. The mixed complementarity problem (MCP)

91

is a powerful tool in the analysis of mechanical systems, and provides valuable insight

if used for benchmarking purposes. This study just skims the surface of robust,

game-driven trajectory planning, and can potentially be extended in the following

directions:

6.2.1 Dealing with Non-convexity

The non-convex obstacle avoidance constraints (2.1f) imposed on each player

in this thesis can result in a scenario that is unsolvable via MCP. There exist several

iterative schemes that convexify these constraints for a single vehicle trajectory opti-

mization problem via lossless convexification known generally as Sequential Convex

Programming [28], [12], [44]. While these might be extended to the larger system

of vehicles presented in this thesis, the obstacle constraints could also be addressed

via linear norms (e.g., L∞ and L1 norms), though these require the introduction of

additional variables in as penalty sub-functions in the objective.

The L∞ norm seems to be the most straight-forward approach to dealing with

the concave quadratic constraint associated with obstacle avoidance (2.1f). The L∞

norm can be used to replace the non-convex obstacle avoidance constraint with

gobskm(xk) = rm − zm ≤ 0 ∀ k ∈ (1, .., K), m ∈ (1, ...,M) (λkm) (6.1a)

y+km + y−km ≤ zm ∀ k ∈ (1, .., K), j ∈ (1, ...,M) (αkm) (6.1b)

y+km − y
−
km = pk − cm ∀ k ∈ (1, .., K), m ∈ (1, ...,M) (βkm) (6.1c)

92

where rm is the obstacle radius, and ykm is the difference between the vehicle position

pk and obstacle center cm at each time step k, and zm is the maximum value of all

the difference variables ykm for each obstacle m. This also requires zm be added to

the cost functional J(s) as a penalty function.

In any case, the KKT conditions should be further investigated in future work

by determining if and when the Mangasarian-Fromovitz constraint qualification

(MFCQ) holds for any given scenario.

6.2.2 Inevitable Collision States

Though solving our system iteratively over rolling horizons improves computa-

tional efficiency and overall performance, there are inherent risks that this method

could possibly select a trajectory with an unsafe terminal state in horizon h that

leads to a collision in horizon h+ 1, called an inevitable collision state [15], [5], [21].

In practice, this situation arises when a vehicle travels toward its target, but pro-

vided a finite horizon, does not consider the obstacle directly in front of it when it

reaches its terminal state xkN . Thus on the subsequent horizon, its velocity causes

it to collide with an obstacle in the next horizon, resulting in an infeasible solution.

While the algorithm presented in this thesis does not directly address this issue

and guarantee avoidance from inevitable collision, the adaptive, robust obstacles

presented in Chapter 4 mitigate this risk almost entirely due to how the effective

obstacles update (e.g., shrink or shift) between horizons.

93

6.2.3 Software Interface

The MATLAB-GAMS software interface chosen to implement this model car-

ries with it several limitations, but provide quite a bit of flexibility once overcome.

First of all, neither are open source platforms. For academic research, this is no

serious problem since MATLAB is provided through the university and the GAMS

license required to run the PATH solver can be requested directly from the GAMS

sales team. Second, the GAMS sets and variable declaration requirements add a

great deal of complexity and require an entire MATLAB script to prepare. However,

once this step is complete, the solve speed and accuracy are exceptional. Contin-

ued development on the interface between these two packages would be beneficial

to continued research on spatio-temporal games, as would a game theory-focused

general validation package.

6.2.4 Vehicle-based Rigid Body Dynamics

To improve our formulation further, we can implement vehicle-based dynamics

by shifting from the Cartesian “earth-fixed” workspace perspective to a vehicle-

centric polar coordinate perspective. The vehicle state tuple would become x =

(p1, p2, θ, v), where θ denotes the vehicle orientation and v represents vehicle speed,

94

while the control tuple is now u = (uv, uθ). Thus, the dynamics are defined

ẋ =

ṗ1

ṗ2

θ̇

v̇

=

v cos θ

v sin θ

uθ

uv

. (6.2)

This approach introduces significant non-convexity due to the trigonometric func-

tions, but is a natural transition to relating this research to optimal control with

greater degrees of freedom.

95

Bibliography

[1] Yannick Allard and Elisa Shahbazian. Unmanned Underwater Vehicle (UUV)
Information Study. page 78, 2014.

[2] Mokhtar S. Bazaraa, Hanif D. Sherali, and C. M. Shetty. Nonlinear Program-
ming Theory and Algorithms. 2009.

[3] Stephen C. Billups and Steven P. Dirkse. A Comparison of Algorithms for Large
Scale Mixed Complementarity Problem Solvers. Computational Optimization
and, 23:1–23, 1995.

[4] Stephen P Boyd. Convex Optimization Theory, volume 25. 2010.

[5] Nicholas Chan, James Kuffner, and Matthew Zucker. Improved Motion Plan-
ning Speed and Safety using Regions of Inevitable Collision. 17th CISM-
IFToMM Symposium on Robot Design, Dynamics, and Control, pages 103–114,
2008.

[6] GAMS Development Corporation. General Algebraic Modeling System
(GAMS) Release 24.2.1. Washington, DC, USA, 2013.

[7] Lockheed Martin Corporation. Unmanned Underwater Vehicle Collaborative
Missions A Decentralized Approach to Operating UUV Teams. (September),
2017.

[8] Mark Cutler, Jonathan P How Decoupled, Automation Icra May, Washington
State, Yufan Chen, Mark Cutler, and Jonathan P How. Decoupled Multiagent
Path Planning via Incremental Sequential Convex Programming. In Proc. of
the Intl. Conf. on Robot. and Autom., pages 5954–5961, 2016.

[9] Department of Defense. Unmanned Systems Integrated Roadmap 2017-2042.
Technical Report August, 2016.

[10] Department of the Navy. The Navy Unmanned Undersea Vehicle (UUV) Master
Plan. (November):127, 2004.

[11] Johannes Dorfner. GAMS and how to use it from MATLAB. https:

//gams-matlab.readthedocs.io/en/latest/, 2018.

[12] Daniel Dueri, Yuanqi Mao, Zohaib Mian, and Jerry Ding. Trajectory Opti-
mization with Inter-sample Obstacle Avoidance via Successive Convexification.
(Cdc):1150–1156, 2017.

[13] Bartomiej Jzef Dzieńkowski, Christopher Strode, and Urszula Markowska-
Kaczmar. Employing Game Theory and Computational Intelligence to Find
the Optimal Strategy of an Autonomous Underwater Vehicle against a Subma-
rine. Proceedings of the 2016 Federated Conference on Computer Science and
Information Systems, 8:31–40, 2016.

96

https://gams-matlab.readthedocs.io/en/latest/
https://gams-matlab.readthedocs.io/en/latest/

[14] Antonio Evangelio. Combined Joint Operations from the Sea Centre of Excel-
lence. (July), 2012.

[15] Thierry Fraichard and Hajime Asama. Inevitable Collision States - A Step To-
wards Safer Robots ? IEEE/RSJ Int. Conf. on Intelligent Robots and Systems
October, 18(10):2–9, 2008.

[16] Giacomo Bonanno. Game Theory. 2nd edition, 2018.

[17] L. Giovanini, J. Balderud, and R. Katebi. Autonomous and Decentralized
Mission Planning for Clusters of UUVs. International Journal of Control,
80(7):1169–1179, 2007.

[18] Haomiao Huang, Wei Zhang, Jerry Ding, Duan M. Stipanović, and Claire J.
Tomlin. Guaranteed decentralized pursuit-evasion in the plane with multiple
pursuers. Proceedings of the IEEE Conference on Decision and Control, pages
4835–4840, 2011.

[19] Sertac Karaman. Principles of Autonomy and Decision Making; Lecture 25:
Differential Games. 2010.

[20] Matthew Kelly. An Introduction to Trajectory Optimization: How to Do Your
Own Direct Collocation. SIAM Review, 59(4):849–904, 2017.

[21] Steven Lavalle. Planning Algorithms. 1999.

[22] Mian Li, Steven A. Gabriel, Yohan Shim, and Shapour Azarm. Inter-
val Uncertainty-Based Robust Optimization for Convex and Non-Convex
Quadratic Programs with Applications in Network Infrastructure Planning.
Networks and Spatial Economics, 11(1):159–191, 2011.

[23] Tianchen Liu, Kevin Quigley, Shapour Azarm, and Steven Gabriel. Towards
V&V of Autonomous Systems via Robust Optimization and Games. Lockheed
Martin TIM Presentations, 2018.

[24] Yimeng Lu. A Game-theoretical Approach for Distributed Cooperative Control
of Autonomous Underwater Vehicles. 2018.

[25] Yuanqi Mao, Daniel Dueri, Michael Szmuk, and Behet Açkmeşe. Successive
Convexification of Non-Convex Optimal Control Problems with State Con-
straints. IFAC-PapersOnLine, 50(1):4063–4069, 2017.

[26] Yuanqi Mao, Michael Szmuk, and Behcet Acikmese. Successive Convexification
of Non-Convex Optimal Control Problems and Its Convergence Properties. In
2016 IEEE 55th Conference on Decision and Control, CDC 2016, pages 3636–
3641, 2016.

[27] Yuanqi Mao, Michael Szmuk, and Behcet Açikmeşe. A Tutorial on Real-time
Convex Optimization Based Guidance and Control for Aerospace Applications.
Proceedings of the American Control Conference, 2018-June:2410–2416, 2018.

97

[28] Yuanqi Mao, Michael Szmuk, and Behcet Acikmese. Successive Convexifica-
tion: A Superlinearly Convergent Algorithm for Non-convex Optimal Control
Problems. pages 1–35, 2018.

[29] MATLAB. Version 9.5 (R2018b). The MathWorks Inc., Natick, Massachusetts,
2018.

[30] Jerome Milgram, Christopher Von Alt, and Timothy Prestero. Verification of
a Six-Degree of Freedom Simulation Model for the REMUS100 AUV. 2001.

[31] Stefan Mitsch, Khalil Ghorbal, David Vogelbacher, and Andr Platzer. Formal
Verification of Obstacle Avoidance and Navigation of Ground Robots. Inter-
national Journal of Robotics Research, 36(12):1312–1340, 2017.

[32] Rushen B. Patel and Paul J. Goulart. Trajectory Generation for Aircraft Avoid-
ance Maneuvers Using Online Optimization. Journal of Guidance, Control, and
Dynamics, 34(1):218–230, 2010.

[33] Warren B. Powell. Perspectives of Approximate Dynamic Programming. Annals
of Operations Research, 241(1-2):319–356, 2016.

[34] Angel Rabasa, Peter Chalk, Kim Cragin, Sara A. Daly, Heather S. Gregg,
Theodore W. Karasik, Kevin A. OBrien, and William Rosenau. A Survey of
Missions for Unmanned Undersea Vehicles. Technical report, Santa Monica,
CA, 2010.

[35] Arthur Richards, Tom Schouwenaars, Jonathan P. How, and Eric Feron. Space-
craft Trajectory Planning with Avoidance Constraints Using Mixed-Integer Lin-
ear Programming. Journal of Guidance, Control, and Dynamics, 25(4):755–764,
2008.

[36] Bluefin Robotics. Bluefin-21 BPAUV Product Sheet, 2010.

[37] Tom Schouwenaars, Bart De Moor, Eric Feron, and Jonathan How. Mixed
Integer Programming for Multi-Vehicle Path Planning. (3):2603–2608, 2001.

[38] Sumeet Singh, Anirudha Majumdar, Jean-Jacques Slotine, and Marco Pavone.
Robust Online Motion Planning via Contraction Theory and Convex Optimiza-
tion. pages 5883–5890, 2017.

[39] Ryo Takei, Haomiao Huang, Jerry Ding, and Claire J. Tomlin. Time-optimal
multi-stage motion planning with guaranteed collision avoidance via an open-
loop game formulation. In 2012 IEEE International Conference on Robotics
and Automation, pages 323–329. IEEE, 5 2012.

[40] Ryo Takei, Richard Tsai, Zhengyuan Zhoux, and Yanina Landa. An Efficient
Algorithm for a Visibility-Based Surveillance-Evasion Game. Communications
in Mathematical Sciences, 12(7):1303–1327, 2014.

98

[41] Vladimir Turetsky and Valery Y. Glizer. Defender-Attacker-Target Game:
Open-Loop Solution. 2018.

[42] Alexander Von Moll, David Casbeer, Eloy Garcia, Dejan Milutinović, and Meir
Pachter. The Multi-pursuer Single-Evader Game. Journal of Intelligent &
Robotic Systems, (January), 2019.

[43] Eric W. Weisstein. “Pythagorean Triple” Mathworld–A Wolfram Web Re-
source. http://mathworld.wolfram.com/PythagoreanTriple.html, 2017.

[44] Xiaojing Zhang, Alexander Liniger, and Francesco Borrelli. Optimization-
Based Collision Avoidance. pages 1–27, 2017.

[45] Zhe Zhang, Jianxun Li, and Jun Wang. Sequential Convex Programming for
Nonlinear Optimal Control Problems in UAV Path Planning. Aerospace Science
and Technology, 76:280–290, 2018.

99

http://mathworld.wolfram.com/PythagoreanTriple.html

	Acknowledgements
	Table of Contents
	List of Tables
	List of Figures
	List of Abbreviations
	Introduction
	Motivation
	Problem Description
	Focus of this Research
	Literature Review
	Path-Planning Methods for Unmanned Systems
	Game Theory in Path-Planning
	Uncertainty and Foresight in Underwater Navigation
	Research Contributions

	Non-Convex Optimal Trajectory Problem
	Problem Description
	Two-Dimensional Optimal Trajectory for a Single UUV
	Goal Function
	Linear Dynamics
	State and Control Bounds
	Obstacle Avoidance
	Optimal Trajectory Problem

	Game Theory Background
	Game Theory Overview
	Nash Equilibrium
	Karush-Kuhn-Tucker Conditions

	Nash Equilibrium Solutions
	Single-Vehicle Trajectory Equilibrium
	Trajectory Problem in Expanded Vector Form
	KKT Points Derivation
	Illustrative KKT Example
	Solving as a Mixed Complementarity Problem

	Extension to the Pursuit-Evasion Game
	Pursuit Function and Multi-Objective Equilibrium
	Two-player Game KKT Conditions
	Two-player Equilibrium Solution
	Nonlinear Program Post-Check

	Rolling-Horizon Robust Equilibrium
	Definition of Rolling-Horizon Foresight
	Foresight and Safety
	Obstacle Detection
	Vehicle Detection
	Rolling-Horizon Equilibrium Problem

	Incomplete Information
	Interval Robustness
	Robust Obstacles

	Rolling-Horizon Robust Equilibrium
	Learning via Objective Weighting for Attacker P1
	Learning via Robust Obstacles

	Game Expansion and Simulations for V&V
	Vehicle Platform
	Minimum-Energy Function
	Multiple-Defender, Single-Attacker Game
	Attacker-Optimization Problem
	Defender-Optimization Problem
	Equilibrium Solution to a Multi-Defender, Single-Attacker Game

	Verification of Effective Obstacles
	Numerical Verification of KKT Stationary Points
	Game Theoretic Validation for UUV Trajectories
	Simulations of Equilibrium vs. Iterative Optimization

	Conclusions
	Summary of Work
	Suggestions for Future Work
	Dealing with Non-convexity
	Inevitable Collision States
	Software Interface
	Vehicle-based Rigid Body Dynamics

	Bibliography

