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During the lifecycle of mega engineering projects such as: energy facilities, 
infrastructure projects, or data centers, executives in charge should consider the 
potential opportunities and threats that could affect the execution of such projects. 
These opportunities and threats can arise from different domains; including for 
example: geopolitical, economic or financial, and can have an impact on different 
entities, such as, countries, cities or companies. The goal of this research is to provide 
a new approach to identify and predict opportunities and threats using large and diverse 
data sets, and ensemble Long-Short Term Memory (LSTM) neural network models to 
inform domain specific foresights. In addition to predicting the opportunities and 
threats, this research proposes new techniques to help decision-makers for deduction 
and reasoning purposes. The proposed models and results provide structured output to 
inform the executive decision-making process concerning large engineering projects 
(LEPs). This research proposes new techniques that not only provide reliable time-
series predictions but uncertainty quantification to help make more informed decisions. 
The proposed ensemble framework consists of the following components: first, 
processed domain knowledge is used to extract a set of entity-domain features; second, 
structured learning based on Dynamic Time Warping (DTW), to learn similarity 
between sequences and Hierarchical Clustering Analysis (HCA), is used to determine 
which features are relevant for a given prediction problem; and finally, an automated 
decision based on the input and structured learning from the DTW-HCA is used to 
build a training data-set which is fed into a deep LSTM neural network for time-series 
predictions. A set of deeper ensemble programs are proposed such as Monte Carlo 
Simulations and Time Label Assignment to offer a controlled setting for assessing the 
impact of external shocks and a temporal alert system, respectively. The developed 
model can be used to inform decision makers about the set of opportunities and threats 
that their entities and assets face as a result of being engaged in an LEP accounting for 
epistemic uncertainty.  
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Chapter 1: Problem Statement 

1.1. Monitoring Opportunities and Threats  

Large engineering projects or LEPs, also known as mega-projects, are “endeavors 

characterized by large investment commitment, vast complexity, especially in 

organizational terms, and long-lasting impact on the economy, the environment, and 

society” (Brooks and Lokatelli 2015). Generally, projects requiring over $1 billion in 

financing are considered mega-projects. The main objective of LEPs is to create long-

term economic benefits for the societies and countries, in general. Nevertheless, as 

the number, complexity, and scope of LEPs increases worldwide, their vast stakes 

may endanger the survival of corporations and threaten the stability of countries that 

approach these projects unprepared (Millar et al. 2001). 

  The challenges facing LEPs stem from a number of sources; firstly, since 

typically several private and public entities are involved in LEPs, the failure of any 

these entities could lead to the failure of the project as a whole. For example, the 

failure of a big bank that finances LEPs or poor financial performance of counter-

parties vested in the project can make the project exposed (Hassan et al. 2013). 

Secondly, poor economic conditions, such as, high sovereign debt or pessimistic 

growth outlook, can disrupt public-private partnership (PPP) projects, especially in 

the oil and gas and power-grid sectors (Rao et al. 2014, Platon et al. 2014, Xing and 

Guan 2017). Similarly, political events, such as, terror attacks, government instability, 

coups, policy uncertainty, and rigid business regulations, can destabilize LEPs in the 

construction sector (Kosnik 2005, Deng et al. 2014, Larsen 2017, Coats 2017). 

Corruption is more likely to endanger LEPs that are unique and complex in nature 
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(Locatelli et al. 2017).   

  In order to face these challenges effectively, executives need to implement a 

risk management plan. Risk, in itself, is defined as the potential for events whose 

impacts and dynamic interactions result in outcomes that are different than the ones 

anticipated, noting that ISO 31000 defines risk as the effect of uncertainty on 

objectives. Risk is often described in probabilistic terms, whereas uncertainty applies 

to situations in which potential outcomes and causal forces are not fully understood 

(Ayyub 2010, Lessard and Miller 2001). Although threats, which are part of the 

risks, are out of our control, their consequences can be mitigated through 

implementing a risk management plan. Risk management is defined as the 

identification, assessment, and prioritization of risks followed by action to minimize, 

monitor, and control their impacts to maximize the realization of opportunities 

(Antunes and Gonzalez 2015, Hubbard 2009). However, since LEPs can have an 

impact on many entities; such as: governments, corporations, national or global 

populations; therefore, in order to implement a comprehensive risk management plan 

for LEPs, the different stakeholders and their risk perspectives should be 

accommodated. 

  In order to be able to understand the risks associated with LEPs, the sources of 

the threats and opportunities facing them need to be defined. The threats and 

opportunities associated with LEPs can be both internal, i.e., organization specific, or 

external, i.e., not directly related to the organization. Regarding the former, it is 

estimated that nine out of ten mega-projects go over budget (Flyvbjerg 2014); while 

an example of the latter is the metro systems in Salvador and Brazil which took a 
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dozen more years to be functional (Kennedy et al. 2014, UN Habitat 2013). On the 

other hand, there are also growing opportunities for LEPs. The world needs to spend 

about $57 trillion on infrastructure alone by 2030 to enable the anticipated levels of 

GDP growth globally (McKinsey 2015); and two-thirds of this investment will be 

required in developing economies, where there are rising middle classes, population 

growth, urbanization, and increased economic growth (Garemo et al. 2015). 

 At the same time, LEPs face a number of uncertainties during their lifecycle; 

the four primary sources of these uncertainties are: the mission of the project, political 

and social conditions, economic and financial conditions, and technical conditions 

related to untested technologies (Bertolini and Salet 2007). For instance, opting to use 

uncertain technologies will effectively negate the benefits of the solutions for cost 

overruns in mega-projects such as reference class forecasting (Flyvbjerg 2006, 

Flyvbjerg 2013) simply because there are too many unknowns (Sommer and Loch 

2004).  For example, the Dead Sea mega-project was encumbered by ample 

uncertainties. In the early coverage of the project, uncertainties were dominated by 

economic feasibility of the project and raised primarily by politicians; while more 

contemporarily, they were dominated by ecological uncertainties voiced by 

environmental non-governmental organizations. The strategies most often used to 

address uncertainties is still ‘uncertainty reduction’ and to a lesser degree ‘project 

cancellation’ (Fischhendler et al. 2013). Uncertainty management is key to the 

successful execution of mega-projects and are discussed in detail in Sections 1.3 and 

2.8.  
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 All the above uncertainties amplify the magnitude of the impacts of LEPs 

which can be felt across governments, non-governmental agencies, private 

corporations, and citizens or consumers; or a combination of all of these entities. 

Even for a country as large as China, analysts had warned that the economic 

ramifications of an individual mega-project, such as the Three Gorges Dam “could 

likely hinder the economic viability of the country as a whole” (Salazar 2000); while 

the nuclear tragedy at Fukushima in Japan impacted the national economy negatively, 

the cost of decommissioning the plant would rise from the US $690 million per year 

in the first five years to several billion US dollars per year in preceding years costing 

the Japanese taxpayers in excess of $100 billion, socio-political disruptions, indirect 

cost of increased imports of fossil fuels that resulted in deteriorating trade balance 

(METI 2016, ASME 2016, Nanto et al. 2011, NEA 2017, Ferris and Solís 2013, 

Harding 2016, McCurry 2017). LEPs can also be economically transformative. 

Consider the Panama Canal which accounts for a significant share of the country’s 

GDP; and Dubai’s international airport which accounts for 21 percent of Dubai’s 

employment and 27 percent of its GDP. Hong Kong would grind to a halt without its 

clean and speedy subway system, named the MTR, which has enabled the densely 

packed city to build beyond the downtown districts (McKinsey 2016). Furthermore, 

LEPs can have direct social impact by influencing the pattern of city growth and the 

lifestyle of the population. For example, projects such as Atlantic Yards in Brooklyn, 

New York City or the larger Thames Gateway in London; and Amsterdam South 

(Zuidas) will have significant impact on the evolution of these cities. 
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  The last risk component for LEP’s is accommodating different stakeholders 

and their risk perspectives. The stakeholders could be a CEO of a company, 

Department Director, Manager at multi-national corporations (MNC’s), executives at 

international banks, officials at government agencies, sub-contractors, or investment 

fund advisors. Of interest are the decisions facing executives such as whether to 

invest in a location (or country) or resource allocation decisions concerning 

protection of tangible (or intangible) assets from potential external threats. The 

different risk perspectives entail that the same shock to a mega-project will be viewed 

differently by different stakeholders. Decision-maker from lending institutions are 

concerned with impact on their banks’ financial performance, the government 

stakeholders are concerned with geopolitical threats and impact on economic and 

development outcomes, and executives at companies in proximity to the LEP care 

about the economic impact on their business. 

  As a result of the different risk components associated with LEPs, there are 

various domains of opportunities and threats – such as geopolitical, economic, 

financial, reputation, or climate, hereafter simply referred to as risks that influence the 

success or lead to the failure of mega-projects. These domain-specific risks impact 

entities that may include companies, countries, or cities. Departments at specific 

entities are collectively referred to as organizations. More specifically, these domain-

specific risks, also called external risks, are of interest rather than organization 

specific internal risks. Such potential external risks can be transferred between 

entities or mega-projects and play a critical role in assessing risks for mega-projects 

(Ayyub 2008, Modarres 2007).  
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  Decision-makers are interested to learn how to use monitoring technologies 

for risk management purposes, as executive-decision makers are confused about how 

to operate in an ever-more complex and uncertain global environment (WEF 2017, 

Diehl 2017). Moreover, the availability of large-scale data is adding more noise and 

complexity that may trigger unintended societal events, indecisiveness for executives, 

and potential failure to adopt to long-term risks (Strauß 2015, Kenny 2015). The 

complexities in domain knowledge, computational limits, knowledge fusion, and 

interdependencies among domains pose a challenge to design a flexible risk 

management framework. As a result, recent technological advances in machine 

learning (ML) and artificial intelligence (AI) are rapidly transforming business 

operations and how executives take decisions. Although, many executives are 

concerned how to best adopt these technologies to aid decision-making. 

Organizational culture, transparency, and trust are major concerns of the executives 

regarding these technologies; these new technologies also provide new opportunities 

to improve risk management and project-related executive decision-making. For 

example, it is anticipated that executives will have a broad view of new information 

that did not exist before and economic theory suggests that AI will substantially raise 

the value of human judgment (Agarwal et al. 2017). Judgment is the process of how 

we work out the benefits and costs of alternative decisions in different situations 

(Agarwal et al. 2017). It is expected that human judgment will increasingly specialize 

in weighing the costs and benefits of different decisions, and then that judgment will 

be combined with machine-generated predictions to make decisions.  Hence, cheaper 

predictions will generate more demand for decision-making to exercise human 
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judgment related to mass movements in finance, economies, political, or 

technological changes (Agarwal et al. 2017, Ransbotham et al. 2016). These mass 

movements denote large shifts in domain-specific trends, i.e., short or long-term 

directional change in market, population, or price movements. Consequently, CEOs 

and their boards, as examples, need to monitor these aspects very closely and promote 

use cases for practical applications and validation to enhance the decision-making 

process (Schrage 2017).  

 

1.2. Identification of Opportunities and Threats  

In the risk management framework, risk identification is the first step that 

organizations take. Traditionally, the process of risk identification requires the 

participation of the project team, risk management team, subject matter experts from 

other parts of the organization, customers, end users, stakeholders, and/or outside 

experts (Ayyub 2012). Conventionally, expert opinion is used for risk identification 

purposes that can lead to subjective and inaccurate results. In addition, there are a 

number of other shortcomings associated with this methodology including: the 

availability of experts from inter-disciplinary fields, the high costs of acquiring 

experts, and the timeliness associated with such methods to dynamically assess and 

mitigate the complexities of the global risk landscape. Therefore, this section will 

provide examples for domain-specific opportunities and threats that shape the risk 

profile of organizations and mega-projects. A data-driven approach is proposed to 

automate real-time signals for domain-specific opportunities and threats. The goal is 

to use multiple information sources to identify and predict opportunities and threats 
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impacting organizations that will provide important feedback to assess the viability of 

mega-projects. 

  
1.2.1. Opportunities 

There are several sources of domain-specific opportunities that can be recognized by 

the executives in charge of LEPs that could later help in their risk identification 

process. The advancement in information technology provides opportunities to inform 

decision-makers on mass-movements. Information technology is leading to a more 

rapid coalescence of herd behavior i.e. people making decisions “on the basis of their 

observations of other people's actions” and “people imitating each other’s behavior” 

(Ellis and Fender 2011). The knowledge of such mass movements is embodied in data 

about prices, political events, and macro-economic shifts that provide important prior 

information for project related decision-making. On one hand, for public sector 

decision-makers, these movements can signal allocating resources to high-risk natural 

disasters areas or counties endemic to poverty and depressed economic development 

outcomes. On the other hand, for private sector decision-makers, opportunities can 

involve the sale or lease of any product, service, equipment, business growth etc. 

based on location intelligence. The knowledge of threats can also be an important 

signal for opportunities. For example, foresight regarding the onset of a financial 

crisis would provide opportunities to hedge against risks; large engineering 

companies can receive government contracts in the after-math of natural or man-

made disasters. 

   Second, are geo-political opportunities that include new defense negotiations, 

bi-lateral trade agreements, cross-border business deals, and new partnerships 
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between multi-national corporations (MNC’s) and governments. Such geopolitical 

opportunities inform business and policy executives on the appropriate strategy for 

their respective countries as many new coalitions and partnerships can arise as a 

response to geopolitical tensions. Moreover, prior knowledge of geo-political threats 

provides an opportunity to protect assets and possible gains from the foresight. For 

example, China is seizing the geopolitical opportunities of the melting Arctic for 

resource-extraction; many investors are shifting assets to emerging markets (EM’s) in 

anticipation of a geo-political crisis in the USA. These signals provide important 

insights for sectoral projects’ feasibility and can help in identifying features, such as: 

countries, cities, or companies, for successful mega-projects.  

   The third source of domain-specific opportunities is the economic conditions, 

which is perhaps the most important source when assessing opportunities for mega-

projects. A country that is predicted to grow faster than expected will influence the 

expansion strategy i.e. which country to invest in. Similarly, knowledge of districts, 

counties and cities projected to grow faster will help inform within country location 

strategy. Many other economic features such as: fast growth in sectoral value-added, 

exports, real-estate prices, or new business growth in a city or country provides key 

signals for economic opportunities. For instance, one of the most important questions 

that a decision-maker faces during the planning phase include for example which 

district or city can they build a new project? Therefore, economic signals on 

predictions for city specific value-added growth in computer, and information 

services or employment growth in network engineers, for example, will help inform 

them about that decision related to a data-center project.   
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  Another important aspect of the economic opportunities is to accommodate 

the mass movements in economic production, which is referred to in economics as 

structural transformation. Such economic shifts inform executives about their 

country’s strategy in respect of which services, or goods, are performing better, or 

expected to; especially in emerging-markets (EM’s). Domain-specific knowledge to 

accommodate structural shifts in services, referred to as the globalization of services. 

Algorithms can be used to extract new features, such as complex products (or 

services) and macroeconomic competitiveness of countries will help inform 

executives about their projects’ strategy. For example, the business components that 

large-scale engineering projects require for their production plants are no longer 

solely manufacturing “hardware”, but also require a host of other “services” to 

materialize. Nowadays, many countries and companies are switching to sourcing their 

value creation from manufacturing “hardware” to a host of services. In order to 

capture such large economic shifts, domain-specific features such as diversity, 

sophistication, complexity-fitness etc. are necessary to view the set of new 

opportunities for countries and companies (Loungani et al. 2017, Mishra et al. 2017). 

   Finally, opportunities in the financial domain are perhaps the most important 

for model testing and real-world applications. Actions to inform trading strategies are 

simple binary, i.e. signal to either buy or sell. Financial market signals provide an 

opportunity to (a) assess a country’s risk, (b) inform profit-maximizing trading 

strategies, and (c) hedge against mass financial movements that can impact the 

stability of an organization and, in return, LEPs. 
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1.2.2. Threats  

LEPs face a heterogeneous set of external threats. For instance, although oil platforms 

are technically difficult and are socially desired because of the high revenues they 

bring to communities and countries, they typically face a number of institutional risks 

and production concentration risks. Hydroelectric-power plants projects tend to be 

moderately difficult in engineering terms, but very difficult in terms of social 

acceptability; nuclear-power plants pose high technical risks but still higher social 

and institutional risks. In a study conducted by Miller and Lessard (2001) and 

investigating 60 LEP’s across the world, managers were asked to identify and rank 

the risks they faced in the early front-end period of each project. The results showed 

that market related risks were the dominant type of risks with 41.7 percent of the 

mangers ranked them highest, followed by technical risks with 37.8 percent, and 

institutional/sovereign risks with 20.5 percent. The following sub-sections will 

discuss the various domains that act as sources for the threats facing LEPs.  

   First, as discussed earlier, political threats can determine the success or failure 

of large international projects. The increasingly global nature of markets, 

competition, and events make projects undertaken, investment portfolios constructed, 

and strategies enacted susceptible to political and country risks. The resulting 

complexity and interdependencies are intractable which necessitates the deployment 

of judgement and opinions in an analytical framework. The commonly used methods 

can be characterized by an index-based framework including Erb at al. (1996), Bank 

of America World Information Services, Control Risk Information Services (CRIS), 

Euromoney, Political Risk Services, International Country Risk Guide 
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(ICRG)/Coplin-O’Leary Rating System, and Moody’s Investor Services. For 

example, the ICRG provides an underlying framework that is based on the 

methodology developed by Coplin and O’Leary (1994). It provides a series of risk 

factors’ ratings to summarize the forecasts for each country based on the 17 risk 

components, broken down into 12 sub-components in the 18-month forecast and five 

sub-components in the 5-year forecast. 

 Like political threats, economic threats can have a disruptive impact on 

public-private partnership (PPP) projects and LEPs in general. Economic factors; 

such as: economic concentration, local infrastructure, and public debt are important 

signals to predict the success or failure of a mega project (Rao et al. 2014, Platon et 

al. 2014, Xing and Guan 2017). Another contributing factor to economic threats is the 

instability from commodity prices, in general, and energy prices, in particular. The 

hikes in oil prices in 1973-1974 affected an abundant array of commodity prices and 

posed serious challenges to countries and corporations. Nevertheless, the impact of 

oil price shock has declined due to better conduct of monetary policy with transport 

sector and energy subsidies explaining cross-country variations during 2010-15 (Choi 

et al. 2017).  

  Not only do political and economic threats impact an individual country, but 

such threats can also be transferred between countries. Catastrophic events, regardless 

of their source, can have massive impacts on regional economies of afflicted areas, 

and lead to adverse and sometimes favorable impacts on other adjacent or far 

economies through economic substitutions. Extreme losses can cause ripples through 

the interdependencies and globally integrated economy. Moreover, understanding the 
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process of economic recovery that is affected by the resilience of the infrastructure 

and economy is important in managing recovery efforts.  

  Such catastrophic events impact economies as well as destabilize financial 

markets and trigger economic crises in a manner that is not well understood due to 

complexity associated with individual, corporate, and government behavior and 

actions. For example, the credit crunch of 2008 has caused the biggest economic 

crises for at least 80 years. Although it started in the United States, the entire global 

economy was impacted and lost $15 trillion and 7 million jobs as a result (Treasury 

2012, Anderson 2012, Ball et al. 2013). Although approaches, such as behavioral 

economics and complexity science, suggest that business cycles, stock market 

volatility, and catastrophic collapse are inherent properties of the economy as a 

complex system (Ayyub 2012), most economists and macroeconomic models failed 

to predict that threat. This renewed the efforts to enhance modeling and crisis 

management in order to help financial risk managers and macroeconomic planners to 

assess the likelihood and severity of future downturns. 

   At the same time, the financial domain also acts as a source of threats to 

LEPs. Financial market volatility and predictability are important to assess countries’ 

risks (Hassan et al. 2013) as financial movements provide high frequency proxy for 

financial volatility (Fornarei et al. 2009, Zhang et al. 2010). And since infrastructure 

financing instruments and incentives are key for financing international engineering 

projects, diverse asset classes such as commodity futures, foreign exchange rates, and 

fixed income securities provide a strong signal for the sectoral developments. 

Moreover, private sector infrastructure finance hinges on sensible transfer of risks and 
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returns between various counter-parties (OECD 2015a, OECD 2015b). Furthermore, 

financial market signals can also inform new business opportunities for public 

companies; like trading strategies to outperform the market and the availability of 

large government contracts in the aftermath of natural disasters (Mutter 2015).   

  In addition, within the financial domain, several factors can impact the 

performance of LEPs. Interest rate is one of these factors. Interest rates can have a 

significant impact on the costs of financing for a project that, in return, impacts the 

corporate’s cash flows and asset values. For example, interest rates in the United 

States shot up in 1979 and peaked in 1981, followed by a gradual decline with some 

fluctuations until the credit crush of 2008 which led to a persistently shrinking 

economy with unemployment levels at their highest for several years afterwards 

(Ayyub 2012). The contemporary economic threat arises from the long-run effects of 

short-run developments and the inability of monetary policy to accomplish much 

more when interest rates have already reached their lower bound (Summers 2014). 

  Exchange rates is a similarly an important factor that affect LEPs. An example 

of exchange rate instability is when the value of the British pound plummeted against 

the Euro as news related to Brexit was announced. The Brexit has a direct impact on 

countries far away, such as Bangladesh, as the UK represents the third largest export 

destination for Bangladesh after the United States and Germany. The depreciation of 

the pound as well as the euro risks eroding the competitiveness of Bangladeshi 

exports to these markets (World Bank 2017). An important source for uncertainty in 

mega-projects is from their cost projections that generally involve multiple foreign 

investors. Long-term debt is the primary source of financing LEPs with inherent risk 
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of exchange rate fluctuations. For example, energy projects typically generate 

revenues in local currency, while there financing and fuel costs are denominated in 

U.S. dollars or other hard currencies. Such exchange rate fluctuations can skew 

revenue and cost projections for LEPs (Sovacool and Cooper 2013). 

  Furthermore, many projects depend on the availability of venture capital and 

the stock performance of public companies, thereby introducing another risk source 

related to stock market volatility. The stock market collapse in 2001 impacted many 

corporations’ cash flows and led to a failure of a number of LEPs. Finally, other 

sources of financial threats include the credit risk. These risks are associated with 

potential defaults on notes or bonds by corporations, including subcontractors; also, 

credit risks can be associated with market perceptions regarding the likelihood of a 

company defaulting. All the above could affect a corporation’s bonds’ rating and 

ability to raise money and maintain their projects and operations. Consequently, to 

assess the importance of this domain of threats, Erb et al. (1996) used regression and 

time series analysis to determine how financial risk measures do contain the most 

information about future equity returns and country risk measures and are highly 

correlated with country equity valuation measures. 

  In conclusion, the wide array of opportunities and threats that face LEPs and 

the high magnitude of their impacts, provide a major problem for decision makers 

when they try to identify the risks facing their projects and entities and decide 

whether to engage in that particular project or not. Therefore, with the current 

unreliable methodologies to identify these factors, the need for a new data-driven 
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prediction model is of paramount importance for executives, decision makers, and 

other stakeholders involved with LEPs. 

 

1.3. Uncertainty Quantification and Decision-Making 

The mis quantification and mis management of the uncertainties associated with 

mega-projects is the main reason why these projects fail. As a result, current 

management philosophy dictates that successful executives are moving away from a 

world where uncertainties are viewed from a static perspective. In other words, from, 

uncertainties’ assessments during the early project’s phases or its execution, to 

operating in a dynamic environment, where simultaneous management of 

uncertainties are identified as the successful trait of project managers (Laufer 1997). 

Moreover, successful project managers build buffers to incorporate redundancy, and 

isolate and reduce uncertainty in the project’s execution (Goldratt 1997). They are the 

ones who are aware of (a) what is happening in the location of their project; (b) what 

is happening in the country of their project; and (c) what is happening to the assets 

related to their project; and are constantly monitoring trends and uncertainties about 

the external environment which constitutes one-third of the reasons why mega-

projects fail (Laufer 1997). The management of these uncertainties is of interest since 

the goal of this research is to control or reduce the “out of our hand” uncertainty 

factors to be able to better manage the mega-projects.   

  In addition, uncertainty is closely tied to intelligence. Intelligence is broadly 

defined as the ability to perceive information, understand knowledge, analyze 

uncertainty, and make decisions under conditions of uncertainty and in dynamic 
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environments. The definition of intelligence is applicable to all living systems, and 

this ability of a living system or machine to make appropriate decisions can be taken 

as a measure of intelligence (Ayyub 2010). Nevertheless, this decision-making ability 

requires the processing of data and information, construction of knowledge, and 

assessment of associated uncertainties and risks. Uncertainty of forecast is of interest 

to this research, not just the uncertainty surrounding a particular event.  

  The Knightian distinction between risk and uncertainties is that risk applies to 

situations that can be measured but we do not know the outcome. In this view 

uncertainty applies to situations that we cannot know all the information we need in 

order to set accurate judgements in the first place (Knight 1917). A known risk is 

“easily converted into an effective certainty”, while “true uncertainty”, as Knight 

called it, is “not susceptible to measurement” (Knight 1917). For example, the known 

risk may be the prediction of economic performance indicator such as GDP growth 

which in a country, like Egypt, may be projected to be lower than the mean of the 

previous five years. Uncertainty are the various unaccounted-for factors that we are 

unaware of; such as: sovereign debt or fiscal policy management, geopolitical unrest, 

or financial performance of Egypt’s largest companies such as Alexandria National 

Iron and Steel or Orascom Telecom. All these factors (either positive or negative) 

may lead to bias in informing projected realities in Egypt.  

  However, the focus of this dissertation is on assessing and forecasting 

elements of opportunities or threats, and comprehensively assess uncertainty. Unlike, 

uncertainty, risk (opportunities or threats) is an outcome whose likelihood can be 

quantitatively estimated. Hence, this research focuses on assessing and predicting the 
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domain-specific knowledge at a future state accompanied with uncertainties 

quantification associated with that prediction.  If there was a way to blend the two 

approaches, e.g. by exploring the uncertainty surrounding the variables that might 

provide a substantive basis to assess future opportunities and threats surrounding a 

given entity-specific outcomes (or predictions). 

  In project management literature, the Project Management Body of 

Knowledge or PMBOK Guide Sixth edition (2017), defines Risk “an uncertain event 

or condition that, if it occurs, has a positive or negative effect on one or more project 

objectives; such as: scope, schedule, cost, and quality.” Essentially, an unexpected 

event is a risk and it can directly or indirectly impact the execution of the mega-

project. For example, a positive risk or an opportunity such as better country’s 

economic performance and better financial performance of the contractor may affect 

the project execution in a positive manner. On the other hand, negative risk or a threat 

such as pessimistic financial performance of the contractor and country economic 

performance may provide a negative signal for the project as a whole that could delay 

or halt the mega-project.  The uncertainty lies in the fact that any of the 

aforementioned outcomes is completely unknown for tomorrow or the next year as 

the information concerning the events is not traditionally measured or guessed. 

  In this wave of thinking, it is important to rely on system science to define the 

focused upon uncertainty’s type of interest. This dissertation provides systems 

construction for various purposes; such as: predicting and diagnosing the external 

environment. In every system there exists a relationship among different variables; 

for example, in order to predict the variable GDP growth for Egypt in the 
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macroeconomic system, there are important relations with the stock index, human 

capital, economic factors, institutions, etc. that are used to better inform the prediction 

system. The relation among these various variables can be used to determine the 

unknown state of a given variable by knowing the state of other variables. When the 

unknown states are determined uniquely, the systems are called deterministic; 

otherwise, they are called nondeterministic. However, it is a common observation that 

nondeterministic systems are far more prevalent than deterministic systems in 

complex dynamic environments of interest to this research. Each nondeterministic 

system inevitably involves some uncertainty which is associated with the purpose for 

which the system has been constructed. In each nondeterministic system, the relevant 

uncertainty must be properly incorporated into the formal description of the system 

(Ayyub 2010). 

 In engineering and scientific design, uncertainty is commonly defined as 

knowledge incompleteness due to inherent deficiencies in acquired knowledge 

(Ayyub 2010). It can also be used to characterize the state of a system as being settled 

or in doubt, such as uncertainty of the outcome. Uncertainty is an important 

dimension in the analysis of risks. In this case, uncertainty can be present in the 

definition of the hazard threats and threat scenarios, the asset vulnerabilities, and their 

magnitudes, failure consequence types and magnitudes, prediction models, 

underlying assumptions, effectiveness of countermeasures and consequence 

mitigation strategies, decision metrics, and appropriateness of the decision criteria 

(Ayyub 2010). Traditionally, uncertainty in risk analysis processes is classified as 

follows:  
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1- Aleatory uncertainty (or inherent randomness): Some events and modeling 

variables are perceived to be inherently random and are treated to be nondeterministic 

in nature. The uncertainty in this case is attributed to the physical world because it 

cannot be reduced or eliminated by enhancing the underlying knowledge base; for 

example, the public perception of the S&P500 market index. In the past, it was hard 

to capture such uncertainty; nonetheless, nowadays, it is possible to reduce this 

uncertainty by leveraging the characteristics of the social and public sentiments on the 

web for the given asset class.   

 

2- Epistemic uncertainty (or subjective uncertainty): In many situations uncertainty is 

also present as a result of lack of complete knowledge. In this case, the uncertainty 

magnitude could be reduced as a result of enhancing the state of knowledge by 

expending resources. However, sometimes, this uncertainty cannot be reduced due to 

resource limitations, technological infeasibility or sociopolitical constraints. This type 

of uncertainty is the most dominant type in risk analysis. For example, the prediction 

of a time series data like a stock price will be the point estimate of that variable; 

however, this value can be treated as a random variable bounded using probability 

intervals or percentile ranges. By enhancing our knowledge about this potential 

political, economic, or financial trend, these ranges can be updated.  

  In classical statistics, probability bounds can be viewed as a mix of probability 

theory and interval analysis (Ferson et al. 1999). They have similar bases as interval 

probabilities and concepts in probabilistic analysis using limited or incomplete 
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information. Probabilities in this case are uncertain, and hence represented by 

probability bounds. Of interest to this research are the prediction uncertainties; 

however, a key challenge has been uncertainty quantification in machine learning 

tasks. For example, lack of domain knowledge which impacts the selection of model 

structure, regularization, methods, and definition of the “best” model can be a leading 

cause of epistemic uncertainty in machine learning applications (Starcuzzi 2017). 

Nevertheless, it still remains very difficult to assess the model form uncertainty in 

machine learning models (Ling and Templeton 2015).  

 In order to enhance machine-aided decision-making processes, bringing 

awareness to epistemic uncertainty as well elements of aleatory uncertainty 

surrounding accurate and reliable predictions both are crucial. As seen from above 

discussion on uncertainties, our main focus will be on epistemic uncertainty. 

Nevertheless, the nature of this research in terms of its use of diverse data sets, and 

related unsupervised learning models also addresses some attributes of aleatory 

uncertainty that can inform critical factors in the external environment concerning a 

LEP. 
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Chapter 2: State of the Art Models 
 
This chapter provides a comprehensive review of the state-of-the-art models which 

can be useful to identify and predict opportunities and threats across many domains. 

The chapter begins by discussing the models’ attributes related to feature extraction 

and the associated algorithms for visualizing the time-dependent relationships 

between domains and entities including clustering. Second, details of machine 

learning and other statistical methods to convert stochastic random variables into 

label-based prediction problems are discussed. Third, the different architectures of 

neural networks are presented with specific attention to deep neural networks’ 

architectures; such as: RNN’s and a variant of RNN’s called Long-Shorter Term 

Memory (LSTM) neural networks. Lastly, a detailed assessment of state of the art 

methods for uncertainty quantification in deep neural networks is also presented.  

  Before examining all the available methods, it is important to define their two-

most important features i.e. complexity and classification. Regarding the former, the 

degree of computational complexity is a function of the time or space (memory) 

required to solve a problem by a given algorithm (Ayyub 2010). These requirements 

are expressed as a function f, of a single parameter, n, that represents the size of the 

problem. This function is called a time (or space) complexity function (Ayyub 2010). 

The main distinction between algorithms whose complexity function can be 

expressed in terms of a polynomial is as follows 

 

!(#) = 	'(#( +	'(*+#(*+ + ⋯+	'+# +	'-	 (2.1) 
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for some positive integer k, and algorithms for which f(n) is expressed by an 

exponential form, e.g. 2n, 10n, etc. where f(n) is an exponential function of n. 

Polynomial time algorithms are considered efficient (or tractable) while exponential 

time algorithms are considered inefficient (or intractable) (Garey and Johnson 1979). 

  Concerning the latter, Machine Learning can be supervised or unsupervised. 

Supervised Machine Learning methods include: regressions, classifications are used 

to find a rule, an ‘equation’ that can be used to predict a variable. For instance, a 

decision-maker may want to look for a momentum (trend following) signal that will 

have the best ability to predict future market performance by running advanced 

regression models, Unsupervised Machine Learning include: clustering, factor 

analyses uncovering the structure of data. Figure (2-1) shows a graphic summary and 

classification of different machine learning and artificial intelligence models. Given 

the many vastness, variants, complexity, and ever-evolving field of study, and the 

nature of these networks to be combined together in stack or layers to give better 

results than one network alone makes consolidating and classifying these shall and 

deep learning models difficult. Table (2-1) provides a summary of various models 

grouped by their uses and applications. Similarly, Figure (2-1) provides a graphic 

illustration of many machine learning and artificial intelligence models in one chart.  

  However, despite the fact that there are many applications of “shallow 

learning” methods in the domains of interest, only a handful of the systematic 

framework for using “deep learning” in domains of economics, finance, and 

geopolitics exist. These usually take the form of a neural network with few layers, 
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however, when they are stacked in multiple hidden layers or complex architecture, 

they can be called deep learning. Although all these models help in providing 

predictions for dynamic problems, the specific case of how these external domain 

opportunities and threats can be used to reduce the uncertainty related to the mega-

project’s management and decision-making is a new field that is not well studied in 

the literature. Hence, there is an imminent need for a prediction model that is capable 

of incorporating these opportunities and threats to provide a better prediction for the 

mega-projects and reduce the uncertainties associated with them. 

  Moreover, in spite of all the advancement and capabilities of the current state-

of-the-art models and techniques, it is necessary to ensemble a variety of these 

models to study and understand complex investment and policy decision-making 

related to the impact of external opportunities and threats on mega-projects. For 

instance, the dynamic time warping (DTW) algorithms can be used to learn the 

similarity of a threat; such as: recessions but cannot be used for sequence prediction 

of contracting economic growth, like the LSTM. Similarly, algorithms like z-

threshold peak detection might help to classify a peak or trough point of 

unemployment rate in a country, but hierarchical clustering will be able to group 

different countries together based on similar unemployment trends. Consequently, the 

use of these techniques in ensemble will help to tackle some pressing real-world 

challenges. In this vein, a critical component of the decision-making process is not 

just the knowledge of a point estimate forecast for a point in the future, but also the 

uncertainty bounds and confidence intervals concerning the prediction estimate. 
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  It is important to note that uncertainty quantification (UQ) in itself should be 

considered modular sub-component of analysis for decision-making.  The system 

control architecture should be modular to accommodate various data structures, 

models and visualizations can aid the best possible decision, since it is not one model 

or model reliability (MR) metrics including UQ, but together that can best aid policy 

or private investment decision-making. These issues raise other important elements 

such as human factors, computer graphics, information system monitoring, and 

control architecture that are referred to in Appendix B. In order to aid decision-

making concerning assets related to a mega-project, this work is focused on statistical 

model building attributes related to new data applications, multi-variate time series 

neural networks, MR and UQ to track the external environment including forecasts 

and related analysis concerning assets related to a mega-project. Figure (2-2) provides 

an abstraction for consolidating multiple data sources, models, and visualization 

toolkits.  
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Model Description Model Use Applications References 
C1 T2 L3 P4 S5   

K-Means 
 

k-means clustering aims to 
partition “n” observations 
into “k” clusters in which 
each observation belongs 
to the cluster with the 
nearest mean, serving as a 
prototype of the cluster. 

✓ 
 

   ✓ 
 

Vector 
quantization, 
Cluster analysis, 
feature learning. 

MacQueen, 1967; 
MacKay, 2003; Cai et al 
2016; Oyelade et al 2010. 

Dynamic Time 
Warping 
(DTW) 
 

DTW algorithms are used 
for measuring similarity 
between two temporal 
sequences. 

✓ 
 

    temporal 
sequences of 
video, audio, and 
graphics data, 
automatic speech 
recognition, 
speaker 
recognition, 
online signature 
recognition, 
shape matching 
application. 

Ratanamahatana and 
Keogh, 2008; Hayashi, 
Mizuhara, and Suematsu, 
2005.  

t-distributed 
stochastic 
neighbor 
embedding 
(t-SNE)  
 

t-SNE is a machine learning 
algorithm for 
dimensionality reduction. 
It is well-suited for 
embedding high-
dimensional data into a 
space of two or three 
dimensions for 
visualization purposes. 

✓ 
 

    computer 
security research, 
music analysis, 
facial expression 
recognition, 
cancer research, 
visualize high-
level 
representations 
learned by an 
artificial neural 
network. 

van der Maaten and 
Hinton, 2008 ;  van der 
Maaten, 2009 ;  van der 
Maaten and Hinton, 2012 
;   van der Maaten, 2014 ;  
Watternberg, 2016. 

Multi-
dimensional 
Scaling (MDS) 
 

MDS is a means of 
visualizing the similarity of 
individual data based on 
the distance matrix of the 
datasets. It is a form of 
non-linear dimensionality 
reduction.  It is well-suited 
for embedding low-
dimensional data into a 
higher dimensional space. 

✓ 
 

    Mix-marketing 
models, 
Psychometrics, 
Cognitive 
Psychology, 
Ecological 
analysis, physics, 
political science', 
biology. 

Takane, 2006 ; Cha, 2009 
; Borg and Groenen, 2005 
; Shoben, 1983 ; Young, 
1984. 

Hierarchical 
Clustering 
Analysis (HCA) 
 

HCA is a method of cluster 
analysis which seeks to 
build a hierarchy of 
clusters. 

✓ 
 

    Image 
recognition, 
Natural Language 
Programming 
(NLP), Robotics, 
Computer 

Jianbo Shi and Jitendra 
Malik, 2012; Cai et al, 
2014; Chipman, 2005; 
Balcan and Gupta, 2010. 
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Graphics, data 
compression, 
pattern 
recognition. 

Autoencoders 
(AE) 
 

AE is an artificial neural 
network used for 
unsupervised learning in 
feature learning. AE learns 
a representation 
(encoding) for a set of 
data, typically for the 
purpose of dimensionality 
reduction. AE is also used 
in learning generative 
models of data. 

✓ 
 

   ✓ 
 

Natural 
Language, 
Programming 
(NLP), 
Dimensionality 
Reduction, pre-
training deep 
Network, one-
class 
classification, de-
noising financial 
data. 

Le, 2015 ; Bao et al, 2017 
; Wang et al, 2012;  
Lopez-Martin et al, 2017. 

Z-threshold 
peak detection 
algorithm 
 

The algorithm takes 3 
inputs: lag = the lag of the 
moving window, threshold 
= the z-score at which the 
algorithm signals and 
influence = the influence 
(between 0 and 1) of new 
signals on the mean and 
standard deviation 

 ✓ 
 

   Online change-
point estimation, 
trajectory 
generation, peak 
and trough signal 
detection 

Open Source 

Bayesian 
Change-point 
Anomaly 
detection 
algorithm 
 

Bayesian change-point 
detection algorithm is 
used for online inference. 
It is a simple and exact 
method for calculating the 
posterior probability of the 
current run length. 

 ✓ 
 

   EEG analysis, 
DNA 
segmentation, 
econometrics, 
and disease 
demographics, 
nuclear magnetic 
response drilling 
of a well, stock 
prices, coal mine 
disaster 

Adams and MacKay, 2014 

Naïve Bayes 
Classifier (NBC) 
 

NBC are used for 
constructing classifiers: 
models that assign class 
labels to problem 
instances, represented as 
vectors of feature values, 
where the class labels are 
drawn from some finite 

 ✓ 
 

   review of a 
movie, book, or 
product on the 
web expresses 
the author’s 
sentiment 
toward the 
product, while an 

Bayes (1763); Mosteller 
and Wallace (1964), 
Russel and Norvig, 1995. 
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set. NBV is a family of 
algorithms based on a 
common principle. 

editorial or 
political text 
expresses 
sentiment 
toward a 
candidate or 
political action. 

Linear 
Regression 
 

Linear approach for 
modeling the relationship 
between a scalar 
dependent variable y and 
one or more explanatory 
variables (or independent 
variables) denoted x. The 
case of one explanatory 
variable is called simple 
linear regression. For more 
than one explanatory 
variable, the process is 
called multivariate linear 
regression. 

   ✓ 
 

 Trend line, 
epidemiology, 
economics, 
finance, 
environmental 
science 

Ubiquitous  

Logistics 
Regression 
(Logit) 
 

Logit model is a regression 
model where the 
dependent variable (DV) is 
categorical or just a binary 
output of 0 or 1. 

✓ 
 

  ✓ 
 

 Ubiquitous  Cox, 1948; Ubiquitous 

Support Vector 
Machines 
(SVM) 
 

SVM’s are supervised 
learning models that can 
be used for classification 
or regression analysis. In 
addition to performing 
linear classification, SVMs 
can efficiently perform a 
non-linear classification 
using what is called the 
kernel trick, implicitly 
mapping their inputs into 
high-dimensional feature 
spaces. 

 
 

 ✓ 
 

✓ 
 

 text and 
hypertext 
categorization, 
image 
segmentation, 
Gene Expression 

Cortes, 1995 ; Ben Hur, et 
al, 2001 ; Ubiquitous  

Ridge 
Regression and 
least absolute 
shrinkage and 
selection 

Ridge regressions are a 
technique for analyzing 
multiple regression data 
that suffer from 
multicollinearity.  performs 

   ✓ 
 

✓ 
 

Ridge regression 
are applied in 
various 
regression 
problems across 

Chan-Lau 2017; Hoerl 
1962; Tibshirani 1996; 
Brieman 1995;  
Marquardt 1975. 
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operator 
(LASSO) 
 

both variable selection and 
regularization in order to 
enhance the prediction 
accuracy and 
interpretability of the 
statistical model it 
produces 
 

discipline such as 
medial, finance, 
and computer 
LASSO is used for 
forecasting 
models when the 
number of 
potential 
covariates is 
large.  

Vector 
Autoregression 
(VAR) 
 

VAR is a stochastic process 
model used to capture the 
linear interdependencies 
among multiple time 
series. 

   ✓ 
 

✓ 
 

Macroeconomics, 
econometrics, 
time-series 
forecasting, 
control theory. 

Hamilton 1994; Zelner 
1962; Hacker and Hatemi 
2008, 2009; Canova and 
Ciccarelli 2015. 

Kalman Filters 
(KF) 
 

KF uses a series of 
measurements observed 
over time, containing 
statistical noise and other 
inaccuracies, and produces 
estimates of unknown 
variables that tend to be 
extremely accurate. 

✓ 
 

   ✓ 
 

guidance, 
navigation, and 
control of 
vehicles, 
particularly 
aircraft and 
spacecraft, 
trajectory 
optimization 

Kalman, 1960 ;  Zarkan, 
2000 ; Walpern, 2007 ;  
Andreasen, 2008. 
 
 

Particle Filter 
(PF) 
 

PF also known as 
Sequential Monte Carlo 
(SMC) methods are a set of 
genetic, Monte Carlo 
algorithms used to solve 
filtering problems arising 
in signal processing and 
Bayesian statistical 
inference. 

   ✓ 
 

✓ 
 

signal and image 
processing, 
Bayesian 
inference, 
machine 
learning, risk 
analysis and rare 
event sampling, 
engineering and 
robotics, artificial 
intelligence, 
bioinformatics, 
phylogenetics, 
computational 
science, 
molecular 
chemistry, 
computational 
physics, 
pharmacokinetic 

Del Moral 1996; Lliu and 
Chen 1998;  
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Monte Carlo 
Simulation 
(MCS) 
 

MCS is a computational 
algorithm that rely on 
repeated random sampling 
to obtain numerical 
results. Their essential idea 
is using randomness to 
solve problems that might 
be deterministic in 
principle. 

    ✓ 
 

optimization, 
numerical 
integration, and 
generating draws 
from a 
probability 
distribution. 

Kroese et al 2014; Hubbar 
et al 2009; Hastings 1970;  

Convolutional 
Neural 
Networks 
(CNN) 
 

CNN is a class of deep, 
feed-forward ANN that has 
successfully been applied 
to analyzing visual 
imagery.  A CNN consists 
of an input and an output 
layer, as well as multiple 
hidden layers. The hidden 
layers are either 
convolutional, pooling or 
fully connected. 

 
 

 ✓ 
 

 ✓ 
 

object 
recognition for 
ImageNet, image 
and video 
recognition, 
recommender 
systems and 
natural language 
processing. 
 

Zhang et al, 2017 ;  
Matusugu et al, 2013 ; 
LeCun, 2013 ; Zhang, 
1988 ;  van den Oord et 
al, 2013 ;  Collobert et al, 
2008 

Recurrent 
Neural 
Networks 
(RNN) 
 

RNN is a class of ANN 
where connections 
between units form a 
directed cycle. This allows 
RNN to exhibit dynamic 
temporal behavior. Unlike 
feedforward neural 
networks, RNNs can use 
their internal memory to 
process arbitrary 
sequences of inputs. 

 
 

 ✓ 
 

✓ 
 

 unsegmented, 
connected 
handwriting 
recognition, 
speech 
recognition, stock 
prices, keyword 
spotting 

Fernandes et al, 2007 ; 
Graves et al, 2009 ; Gal et 
al, 2015 ; Lipton, 2015 
Felix and  Schmidhuber, 
2000;  

Deep Belief 
Networks 
(DBN) 
 

DBN is a generative 
graphical model, or 
alternatively a class of 
deep neural network, 
composed of multiple 
layers of "hidden units" 
with connections between 
the layers but not between 
units within each layer. 

 
 

 ✓ 
 

✓ 
 

 natural language 
understanding, 
generating and 
recognizing 
images, video 
sequences, 
motion-capture 
data, non-linear 
dimensionality 
reduction 
 
 

Sarekas, Hinton, and 
Deoras, 2014 ;  Hinton, 
Osindero & Teh 2006, 
Ranzato et. al. 2007, 
Bengio et.al.. (2007). 
Sutskever and Hinton. 
(2007). Taylor et. al. 2007 
Hinton and 
Salakhutdinov,2006; 
Salakhutdinov and 
Hinton,2007 
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Long-Short 
Term Memory 
(LSTM) RNN  
 

LSTM is well-suited to 
classify, process and 
predict time series given 
time lags of unknown size 
and duration between 
important events. 

 
 

 ✓ 
 

✓ 
 

 speech 
recognition, text-
to-speech 
synthesis, Google 
Android, Siri, 
Google Voice 
Search, machine 
translation, 
multilingual 
language 
processing 

Sak, Senior and  
Beaufays, 2014 ; Li and 
Wu, 2014 ; Fan et al, 
2015 ;  Schmidhuber, 
2015 ; Gilick et al, 2015 ; 
Felix, 2001 ;  

Gradient 
Boosting  
 

Tree boosting is a highly 
effective and widely used 
machine learning method. 
XGBoost is an open-source 
software library which 
provides the gradient 
boosting framework for 
Python 

   ✓ 
 

 boosting 
algorithms are 
used in many 
areas of machine 
learning and 
statistics beyond 
regression and 
classification. 

github.com/dmlc/xgboost 
; Chen et al 2016; 
Brieman 1997 

Gated 
Recurrent 
Units (GRU) 
 

GRU’s are a gating 
mechanism in RNN. They 
have fewer parameters 
than LSTM, as they lack an 
output gate. 

   ✓ 
 

 polyphonic music 
modeling, speech 
signal modeling, 
emotion 
classification in 
noisy speech, any 
sequence 
prediction 

Dey and Salem, 2017 ; 
Rana et al, 2016 ; Heck 
and Salem, 2017 

Bi-Directional 
LSTM 
 

Bidirectional LSTM is a 
variant of a Hopfield 
network store associative 
data as a vector. The bi-
directionality comes from 
passing information 
through a matrix and its 
transpose. 

   ✓ 
 

 Keyword 
spotting, time-
series analysis, 
speech 
recognition, 
handwritten 
recognition, 
protein structure 
prediction 

Schuster and Parival, 
1997 ; Graves and  
Schmidhuber, 2005 ; 
Fernandes et al, 2007 ;  
Liwicki et al, 2007 ; Baldi, 
1999 

Reinforcement 
Learning (RL) 
 

RL is concerned with how 
software agents ought to 
take actions in an 
environment so as to 
maximize some notion of 
cumulative reward. 

 
 

 ✓ 
 

✓ 
 

 the theory of 
optimal control, 
economics, 
game-theory, 
dynamic 
programming 
technique, 
operations 

van Otterlo and  Wiering, 
2012; Tokic and Palm 
2011; Watkins 1988; Ng 
and Russel 2000. 
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Table 2-1. Summary of model, description, model uses, applications, and references 

1: C – Clustering  
2: T – Transfer Random Variable to Classification Problem 
3: L – Classification Problem 
4: P – Time-Series Prediction Problem 
5: S – Inference Problem

research, 
information 
theory, 
simulation-based 
optimization, 
multi-agent 
systems, swarm 
intelligence, 
statistics and 
genetic 
algorithms 

Bayesian 
Neural 
Networks 
(BNNs) 

A Bayesian neural network 
is a neural network with a 
prior distribution on its 
weights with posterior 
inference.  Here standard 
NN training via 
optimization from a 
probabilistic perspective 
equivalent to maximum 
likelihood estimation 
(MLE) for the weights. 

  ✓ 
 

✓ 
 

✓ 
 

Gene Regulatory 
Networks, 
Medicine, 
Information 
Retrieval, Image 
Processing, Spam 
Filtering, System 
Biology 

Neal 2012, Gal 2015,  
Courville 2006, Bate et al. 
1998, Ghahramani 2016. 

Generative 
Adversarial 
Networks 
(GANs) 
 
 

GANs are a class of 
artificial intelligence 
algorithms used in 
unsupervised machine 
learning, implemented by 
a system of two neural 
networks contesting with 
each other in a zero-sum 
game framework. 
 

  ✓ 
 

 ✓ 
 
 

visualizing 
industrial design, 
shoes, bags and 
clothing items or 
items for 
computer games' 
scenes, Facebook 
Image 
Recognition 

Goodfellow et al 2014; 
Karpathy et al 2016;  
Schawinski 2017. 
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Figure 2-1. Different Machine Learning and Artificial Intelligence Models 
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Figure 2-2. A simple schematic of standardization of data, models, and visualizations for various data sources concerning the external 

environment and useful models 



 35  

2.1. Dimensionality Reduction and Clustering 
 
The growing availability of large-scale hi-frequency data has added complexity to 

analytical model building. This increasing computational demands led to what is 

termed as trans-computational problems capped by the Bremermann’s limit 

(Bremermann 1962). Large-scale data is also plagued with the curse of 

dimensionality: a phenomenon whereby an increase in the dimensionality of a data set 

results in exponentially more data being required to produce a representative sample 

of that data set. 

  However, there are many ways to process and analyze data for meaningful 

output and deal with these challenges, especially in high-dimensional space for the 

domains of interest. One of these ways is called feature extraction which transforms 

the original data set into a data set with fewer dimensions. As a subset of feature 

extraction, other processes; such as: dimensionality reduction, help in reducing the 

number of random variables under consideration via obtaining a set of principal 

variables.  

  Similarly, other approaches; such as: Clustering, help in grouping a set of 

objects in such a way that objects in the same group, called a cluster, are more similar 

to each other than to those in other clusters. There are a number of other unsupervised 

machine learning algorithms and methods used for similarity matching and clustering. 

The t-Distributed Stochastic Neighbor Embedding (t-SNE) algorithm is one such 

algorithm used for visualizing high-dimensional data in lower dimensional space (van 

der Maaten and Hinton 2008, van der Maaten and Hinton. (2012). van der Maaten 

2014). Multi-dimensional scaling (MDS) is also used for visualizing low-
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dimensional data into a high-dimensional space (Syrquin 1978, Machado and Mata 

2015). Autoencoders (AE), which are artificial neural network that learns a 

representation/encoding for a set of data, can be used for the purpose of 

dimensionality reduction (Gamboa 2017). 

  The main focus of this research is on time-series data. Amongst the many 

different dimensionality reduction and clustering techniques, only the ones that will 

be used in subsequent chapters are discussed more in details.  

 

2.1.1. Dynamic Time Warping (DTW)  
 
One of the main techniques used for time-series data is called Dynamic Time 

Warping (DTW). DTW is a valuable algorithm used for: learning of similarity based 

on distance between two sequences that may vary in speed and quantifying the time 

dependent similarity between any two pairs. In general, DTW is a machine learning 

algorithm that calculates an optimal match between two given sequences with certain 

restrictions. The sequences are “warped” non-linearly in the time dimension to 

determine a measure of their similarity independent of certain non-linear variations in 

the time dimension (Ratanamahatana and Koegh 2005). Figure (2-2) below shows the 

difference between calculating a Euclidian distance versus dynamic time warped 

distance. The Euclidean distance uses the distance between each pair of the time 

series and compares them using Euclidean distance. On the other hand, the DTW 

looks for the best alignment between the two-time series. Moreover, the graph shows 

that each point is used to compare the point with, not just its pair, but also with other 



 37  

points to create the best alignment between the two-time series based on a distance 

matrix.  

 
Figure 2-2. Difference between Dynamic Time Warping (DTW) distance and Euclidean 

distance (green lines represent mapping between points of time series T and S ). The former 
allows many-to-one point comparisons, while Euclidean point-to-point distance (or one-to-

one).  
Source: Cassisi et al. 2012. 

 

  Given its effectiveness, the DTW technique has been used in many 

applications including: speech recognition (Cassidy 2002), pattern recognition in 

equity markets (Coelho 2011), and as a similarity measure in finance (Tsinaslanidis et 

al. 2014). Furthermore, the DTW algorithm is used to measure similarity between two 

temporal sequences which may vary in speed. For instance, similarities in walking 

could be detected using DTW, even if one person was walking faster than the other, 

or if there were accelerations and decelerations during the course of an observation 

(Ratanamahatana and Keogh 2008). In addition, DTW has been applied to temporal 

sequences of video, audio, and graphics data …etc since it has the capability of 

finding the “optimal match between two sequences of feature vectors which allows 

for stretched and compressed sections of the sequence” (Sakoe and Chiba 2009).  
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   This sequence alignment method is often used in time series classification. For 

example, consider two sequences 

! =	$%, $',… , $), … , $* (2.2) 
 

ℬ =	0%, 0', … , 01, … , 02 (2.3) 
 
 
The objective of DTW is to compare two (time-dependent) sequences ! of length N 

∈ N and ℬ of length M ∈ N. These sequences may be discrete signals (time-series) or, 

more generally, feature sequences sampled at equidistant points in time. A feature 

space denoted by F; then !n,	ℬ m ∈ F for n ∈ [1 : N] and m ∈ [1 : M]. To compare 

the two different features !,ℬ ∈ F, one needs a local cost measure, sometimes also 

referred to as local distance measure, which is defined by the following function:  

5 ∶ ℱ	 × 	ℱ	 → ℝ;< (2.4) 

Typically, c(!,ℬ) is small (low cost) if ! and ℬ are similar to each other; otherwise 

c(!,ℬ) is large (high cost).  

  The two sequences can, also, be arranged on the sides of a grid, with one on 

the top and the other up the left-hand side. Both sequences start on the bottom left of 

the grid. 

  The distance between the two pairs is defined as: 

>(!,ℬ	) = 	 ?
∑ A(BC)	 ∙ E
F
CG%

∑ ECF
CG%

H (2.5) 

 
where A(BC) is the distance between is and js , and EC > 0 is the weighting 

coefficient. 
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Figure 2-3. Example of Two Time Sequence Dynamic Time Warp (DTW) Grid 

Source: Tsiporkova, E. Dynamic Time Warping Algorithm for Gene Expression Time Series. 
 

  To align these two sequences using DTW, first an n-by-m matrix is 

constructed where the (i-th, j-th) element of the matrix corresponds to the squared 

distance, A($)	01) = L$) − 01N
'
 which is the alignment between points $) and 01. To 

find the best match between these two sequences, the path through the matrix that 

minimizes the total cumulative distance between them is retrieved. In particular, the 

optimal path is the path that minimizes the warping cost. The best alignment path 

between ! and ℬ can be written as: 

 

O< = argmin
V

>(!,ℬ	) (2.6) 

 

 The number of possible warping paths through the grid is exponentially explosive. 

This warping path can be found using dynamic programming to evaluate the 

following recurrence. 
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X(Y, Z) 	= 	 A($)	01) +	min
{]()^%,1^%),]()^%,1),](),1^%)} (2.7) 

 

  where A(Y, Z)	is the distance found in the current cell, and X(Y, Z) is the 

cumulative distance of A(Y, Z) and the minimum cumulative distances from the three 

adjacent cells. 

  An (N, M )-warping path (or simply referred to as warping path if N and M are 

clear from the context) is a sequence p = (p1,...,pL) with pl = (nl,ml) ∈ [1 : N]×[1 : M] 

for l ∈ [1 : L] satisfying the following three conditions (Ratanamahatana and Keogh 

2008): 

1- Boundary Conditions: p1 = (1, 1) and pL = (N, M )� 

2- Continuity condition: no element in ! and ℬ can be omitted and there are 

no replications in the alignment (in the sense that all index pairs contained in a 

warping path p are pairwise distinct)  

3- Monotonic condition: n1 ≤ n2 ≤ ... ≤ nL and m1 ≤ m2 ≤ ... ≤ mL 

.   

Figure 2-4. DTW Conditions.  
Illustration of paths of index pairs some sequence X of length N = 9 and some sequence Y of 
length M = 7. (a) Admissible warping path satisfying the conditions, (b) Boundary condition 

is violated (c) Monotonicity condition is violated, and (d) Step size condition is violated. 
Source: Ratanamahatana and Keogh 2008. 
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2.1.2. Hierarchical Clustering Analysis (HCA)  
 
Although the distances measured in a manner like Euclidean or DTW provide a 

measure of similarity; nonetheless, in large scale data, it is important to make sense of 

the data and use a form of hierarchy to map similar information by groups, or by 

aggregation. Hence, Hierarchical Clustering Analysis (HCA), which is used to 

build a binary tree of the data merged in similar groups of points (Burgard et al. 2010, 

Ahlquist and Breunig 2009), can solve this problem. However, HCA is 

computationally expensive, even for medium-size datasets, due to the time 

complexity of a(bc) and the  a(b') memory requirement.  

 There are different types of HCA; however, the prominent type of 

Hierarchical clustering is called agglomerative clustering (Manning et al. 2008). The 

agglomerative clustering algorithm can be simply illustrated in the following form 

(Blei 2008): 

1. Place each data point into its own singleton group 

2. Repeat: iteratively merge the two closest groups 

3. Until: all the data are merged into a single cluster 

  Furthermore, agglomerative clustering is monotonic; therefore, the similarity 

between merged clusters is monotone and decreases with the level of the merge. In 

addition, each level of the resulting tree is a segmentation of the data and the 

algorithm results in a sequence of groupings; hence, it is up to the user to choose a 

“natural” clustering from this sequence. Given the distance measure between points, 

the user has many choices for how to define intergroup similarity The properties of 

intergroup similarity include: Single linkage which can produce “chaining” where a 
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sequence of close observations in different groups cause early merges of those 

groups; complete linkage which has the opposite problem in which it might not merge 

close groups because of outlier members that are far apart; and finally, group average 

which represents a natural compromise, but depends on the scale of the similarities as 

applying a monotone transformation to the similarities can change the results. The 

different clustering techniques are presented in Table (2-2).  

  Moreover, dendrogram plot merge at the (negative) similarity between the two 

merged groups and provides an interpretable visualization of the algorithm and data. 

This is a useful summarization tool and one of the reasons why hierarchical clustering 

is popular.  

  At the same time, there are caveats associated with Hierarchical clustering that 

should be treated with caution. For instance, different decisions about group 

similarities can lead to vastly different dendrograms. The algorithm imposes a 

hierarchical structure on the data, even data for which such structure is not 

appropriate (Rokach and Oded 2005; Blei 2008). Table (2-3) shows the various 

distance measures that can be used for building hierarchical clusters.  

Readers should not that the research shown in this research used the Dynamic Time 

Warping (DTW) distance measures. 

Table 2-2. Hierarchical Clustering Techniques 

Name Formula 
Maximum or complete-linkage clustering max{A($, 0): $	 ∈ f, 0	 ∈ g	} 

Minimum or single-linkage clustering min{A($, 0): $	 ∈ f, 0	 ∈ g	} 
Mean or average linkage clustering, or 
UPGMA  

1
|f||g|

	j j A($, 0)
k	∈lm	∈n
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Table 2-3. Distance Measures for Clustering 

Name Equation Interpretation 
Euclidean 
distance 

!(#, %) = !(%, #) = 	)(%* −	#*), + (%, −	#,), + ⋯+	(%/ −	#/), 
 

= 01(%2 −	#2),
/

23*

 

‖#‖ = 5#*
, + #,

, + ⋯+ #/, = )# ⋅ # 

Euclidean distance or Euclidean metric is the "ordinary" straight-line 
distance between two points in Euclidean space. A generalized term for 
the Euclidean norm is the L2 norm or L2 distance. 

Manhattan 
distance !*(#, %) = 	‖#2 − %2‖* = 	1|#2 − %2|

/

23*

 
The taxicab metric is also known as L1 distance or L1 norm, Manhattan 
distance. The latter name alludes to the grid layout of most streets on the 
island of Manhattan, which causes the shortest path a car could take 
between two intersections in the borough to have length equal to the 
intersections' distance. Hamming distance can be seen as Manhattan 
distance between bit vectors. 

Kullback–
Leibler 
divergence 
(KLD) 

89:(#, %) = 	1#(;)
<

log
#(;)
%(;)

 

 

KLD measures how one probability distribution diverges from a second 
expected probability distribution. KLD is the expectation of the 
logarithmic difference between the probabilities P and Q, where the 
expectation is taken using the probabilities P. The KLD is defined only if 
Q(i)=0 implies P(i)=0, for all i (absolute continuity). Whenever P(i) is 
zero the contribution of the i-th term is interpreted as zero because 

Chebyshev 
distance 

8@ABCDEABF(G||H) = 	max2
(|#2 − %2|) 

= 	 lim
/→N

O1|#2 − %2|,
/

23*

P

/

 

 

Chebyshev distance or L∞ metric is a metric defined on a vector space 
where the distance between two vectors is the greatest of their 
differences along any coordinate dimension 

Minkowski 
distance !(#, %) = 		 O1|#2 − %2|

/

23*

P

*/R

 

The Minkowski distance is a generalization of both the Euclidean 
distance and the Manhattan distance. For S ≥ 1, the Minkowski distance 
is a metric as a result of the Minkowski inequality. When	S < 1, the 
distance between (0,0) and (1,1) is 2*/R, but the point (0,1) is at a 
distance 1 from both of these points. Since this violates the triangle 
inequality, for X<1 it is not a metric. 
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2.2. Classification Problems 

In machine learning, many of the time series random variables are traditionally 

treated as regression problems; however, they can be also be converted into class 

label prediction problems. For example, in image recognition, machines might learn 

to identify images that contain cats by analyzing example images that have been 

manually labeled as “cat” or “no cat” and using the analytic results to identify cats in 

other images. Nevertheless, it is not clear how time-series variables, like GDP 

growth, can be converted to a label problem. One approach would be to classify any 

GDP growth event below 0 as label “contraction” which enables the treatment of the 

regression prediction problem as a classification problem.  

  For such classification problems, a set of algorithms can be employed to 

process the stochastic random variable and convert them into labels. The first and 

preferred method is called anomaly detection with Z-Score Peak-detection 

Algorithms. This method is a simple yet powerful algorithm that works very well for 

time series data to find periods of threshold crossing pre-defined by the analyst 

(Scholkmann 2012, Palshikar 2009, Ijima and Ohsumi 2010). The z-score method is 

based on the principle of dispersion, i.e. if a new value in a data stream is a given x 

number of standard deviations away from some moving mean, the algorithm signals 

(also called z-score) (Ijima and Ohsumi 2010)..  The second method is the Bayesian 

change-point anomaly detection algorithm. The probability distribution of the 

length of the current “run,” or time since the last change-point is computed using a 

simple message-passing algorithm (Adam and Mackay 2016). This algorithm is 

highly modular and designed for a variety of real-time applications. Finally, the third 
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method is used extensively in sentiment analysis and is called Naïve Bayes 

classifier (NBC). NBC is a simple probabilistic classifier based on applying Bayes' 

theorem with strong (naive) independence assumptions between the features (Stuart 

and Norvig 2010, Hand and Yu 2001, Rennie et al. 2003). NBC has played an 

important for role in marketing, measuring public sentiment in politics and financial 

market predictions (Jurafsky and Martin 2017). The coverage of these methods, their 

descriptions, uses, applications and references are presented in Table (2-1).
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Figure 2-5. Dimensionality reduction (t-SNE) and Z-threshold peak detection 
algorithm example for GDELT data 
Notes: Panel A shows the different event codes from GDELT based on a 500-day sample based on t-SNE. Similar 
events are closer together for Iceland, USA, and India, respectively. Panel B shows the Z-threshold peak detection 
algorithm for threshold crossing probability of event “Protests” for the same countries.  
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2.3. Model Accuracy 
 
The most common metrics used to measure the accuracy of models are the Mean 

Absolute Error (MAE) and the Root mean squared error (RMSE) which will be 

used throughout the rest of this research. The MAE is the average magnitude of errors 

in the test sample i.e. the absolute difference between the prediction and actual 

observation, where individual observations have equal weight. The RMSE is a 

quadratic scoring rule that additionally accommodates the average magnitude of the 

error (Holmes 1999).  

 

!"# =	
1

'
	()*+ − *-+)	

.

+/0

(2.8) 

 

6!7# = 	8
1

'
	(9*+ − *-+:

;
.

+/0

(2.9) 

 

where *+ represents the actual value of the continuous random variable and *-+ 

predicted by any of the unsupervised or supervised machine learning models 

presented. A RMSE or MAE closer to 0 indicates that the forecast model fits the 

actual data much better. A related measure is the Mean Squared Error (MSE) 

which is essentially the RMSE without the squared root.  

  Similarly, correlation, measured as a correlation coefficient, indicates the 

strength and direction of a linear relationship between two variables; for example, 
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model output and observed values. The Pearson correlation coefficient is obtained by 

dividing the covariance of the two variables by the product of their standard 

deviations. A correlation coefficient of +1 indicates perfect increasing linear 

relationship, while -1 indicates decreasing linear relationship; and a correlation 

coefficient of 0 means that there is no linear relationship between the variables. The 

square of the Pearson correlation coefficient (r2) describes how much of the variance 

between the two variables is described by the linear fit (NCME 2014). Take one 

dataset {x1,...,xn} containing n values and another dataset {y1,...,yn} containing n 

values, where =̅ and *? represent the sample mean, then the formula for r is: 

 

@ = 	
∑ (=B −	 =̅) ∙ 	(*B −	*?)
.
B/0 	

D	∑ (=B −	 =̅); 	 ∙ 	∑ (*B −	*?);
.
B/0

.
B/0

(2.10) 
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2.4. Regression Problems 

In addition to the above techniques, machine learning methods are used to analyze 

large and complex datasets providing significant developments in the field of pattern 

recognition and function approximation (uncovering relationship between variables) 

(Samuel 1959, Kohavi 1998). These analytical methods, called regression, are part of 

the broader disciplines of Statistics and Computer Science. First, computers are given 

an input (set of variables and datasets) and an output that is a consequence of the 

input variables. Then, the machine finds or “learns” a rule that links the input and 

output. There are a number of regression techniques used which will be detailed in 

the following sections. 

 

2.4.1. Linear Regression  

 

Linear regression is the classic regression technique and is considered the ‘work 

horse” of statistics (supervised) machine learning (Seal 1967, Murphy 2012).  

  The simple form where the response is a linear function of the inputs is 

written as follows 

*(=) = 	FG	= + 	I = 	(F+

J

+/0

=+ + 	I (2.11) 

where FG represents the inner or scalar product between the input vector x and the 

model’s weight vector w (or in economics and statistics referred to as b), and I is the 

residual error between our linear predictions and the true response (Seal 1967, 

Freedman 2009, Yan 2009, Rencher et al. 2012).  
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  It is often assumed that I has a Gaussian or normal distribution which is 

denoted by I	~	L	(M	, O;) where M is the mean and O is the variance. Plotting this 

distribution, we get the bell curve. 

  To make the connection between linear regression and Gaussian more 

explicit, the model can be rewritten in the following form  

 

P(*|=, R) = L9*)M(=),O;(=): (2.12) 

 

This makes it clear that the model is a conditional probability density. In the simplest 

case, it is assumed that M is a linear function of x, so M = FG=, and that the noise is 

fixed, O;(=) = O;. Then, R = (F, O;)are the parameters of the model. 

  This method, when augmented with kernel or other forms of basis function 

expansion, can model also non-linear relationships (Murphy 2012). by replacing the x 

with some non-linear function of input, f(x) and can be re-written as  

 

P(*|=, R) = L(*|FG	f(=), O;) (2.13) 

 

This is called the basis function expansion. Suppose that basis function has the 

following form where f(=) = [	1, =, =;, =U, … , =W];	this is known as polynomial 

regression. In fact, many popular machine learning methods; such as: support vector 

machines, neural networks, classification, regression trees etc. can be seen as 

different ways of estimating the basis function (Murphy 2012, Rencher et al. 2012).  
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2.4.2. Logistic Regression  
 
One can generalize linear regression to the (binary) classification setting, known as 

logistic regression, by making two changes (Cox 1958, Walker and Duncan 1967, 

Freedman 2009).   First, replace the Gaussian distribution for y with Bernoulli 

distribution, which is more appropriate for the case when response is binary, y I {0, 

1}, the following expression can be used  

 

P(*|=, F) = Z[@	9*)M(=): (2.14) 

where M(=) = 	]	[*	|^] = P(	* = 1	|=)	  

  Second, compute a linear combination of the inputs, as before, but when we 

pass this through a function that ensures 0	 ≤ 	M(=) ≤ 1 by defining 

M(=) = 	`abc	(FG	=	 + d) (2.15) 

 

where F	 ∈ 	ℝhi, d	 ∈ 	ℝ and `abc(j) refers to the sigmoid function, also known as 

the logistic or logit function defined as  

`abc	(j) ≜ 		
1

1 + [=P	(−j)
= 	

[l

[l + 1	
(2.16) 

The term “sigmoid” means S-shaped and is also known as a squashing function, 

since it maps the whole real line to [0, 1] which is necessary for the output to be 

interpreted as a probability (Walker and Duncan 1967). The graphical representation 
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of the sigmoid function is shown in figure (2-6).  

 

Figure 2-6. Sigmoid function 

Putting above two steps together yields 

P(*|=,F) = Z[@	(*|	`abc	(FG	=)	) (2.17)	

This	is	the	logistic regression due to its similarity to linear regression, although it is 

a form of classification and not a regression (Murphy 2012).  

  A simple example of logistic regression can be presented as follow  

P(*Bu = 1	|=Bu, F) 	= `abc	(Fv +		F0	=B) (2.18)	

assume here that =Bu is the Public Debt (% of GDP) of country i at time t and *Bu  is 

whether they passed a certain threshold like 100% of GDP to define “Risk - 1” or “No 

Risk - 0”. If we threshold the output probability at 100, we can induce a decision rule 

of the form 

*-	(=) = 1		 ⇔ 	P(* = 1	|=) 	> 100 (2.19) 

If x is given to us, we want to predict *-	. If we assume that	(FG	=	 + d) = y , then 

*- = 	`abc	(y),	 we know that `abc	(y), = 	 z{

z{|0	
. 
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  If z is too large a number then `abc	(y) = 1. If z is very small or a very large 

negative number then `abc	(y) ≈ 0. The idea is to learn parameters w and b so that *- 

becomes a good estimate of y.  

 

2.5. Artificial Neural Networks (ANNs)  
 
Inspired by biological neurons, neural networks were first proposed in 1944 by 

Warren McCullough and Walter Pitts (McCullough and Pitts 1944). In order to apply 

the brain’s biological processes to artificial intelligence led to finite automate (Kleene 

1956), computer calculators (Farley and Clark 1956), perceptions (Rosenblatt 1958).  

Neural networks were a major area of research in both neuroscience and computer 

science until 1969 when the computation limits of large neural networks were 

identified (Minskey and Papert 1969). Artificial Neural networks (ANN’s) systems 

learn (with progressively improving performance) to do tasks by considering 

examples, generally without task-specific programming.  

  A neural network is composed of a large number of highly interconnected 

processing elements (neurons) working in parallel to solve a specific problem 

(Anthony 2001, Maan et al. 2016, Hinton et al. 2015). An artificial neuron is a device 

with many inputs and one output. The neuron has two modes of operation: the 

training mode and the using mode. The neurons fire based on a set of flexible rules. 

Neural networks have similar structure as linear models. In supervised learning, back-

propagation requires a known, desired output for each input value, but it is also used 

in unsupervised networks such as auto-encoders as described earlier. Back-

propagation algorithms are used calculate the error contribution of each neuron after 
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a batch of data is processed (Werbose 1975, Rumelhart and McClelland 1986, 

Schmidhuber 1992). This is used by an enveloping optimization algorithm to adjust 

the weight of each neuron, completing the learning process for that case. Technically 

it calculates the gradient of the loss function. It is commonly used as the stochastic 

gradient descent (SGD) optimization algorithm, which is also called backward 

propagation of errors, because the error is calculated at the output and distributed 

back through the network layers (Ferguson 1982, LeCunn et al. 2012, Rumelhart et 

al. 1986). Neural networks always end up being an optimization problem. Over the 

last decade, the best-performing artificial-intelligence systems; such as: the speech 

recognizers on smartphones or Google’s latest automatic translator, have resulted 

from a technique called “deep learning.” Essentially deep learning is an iteration on 

traditional neural networks with more hidden layers. The different architectures of 

neural networks are discussed later in this section.  

  There are different types of ANN; Feed-forward ANNs allow signals to 

travel one way only, from input to output without feedback (loops). In this type, time 

has no role, there are no cycles or loops in the network. Based on the earlier 

introduced the logistic regression, feed-forward ANN’s have a similar structure as 

linear model. Here we have input xn linearly combined with weights summed up to a 

signal and then the signal passes through a threshold labeled ~. The model 

implements a general probability measure which has a probability error. In which we 

maximize the ouput (yn) based on the inputs xn. The goal being that h(x) is the 

identified function mapping relation of x and y. The bottom is a bounded regression 

problem. Similar to logistic regression, the only exception is (a) we do it multiple 
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times, and (b) involve backward calculation. A simple example of a two-layer neural 

network is presented in Figure (2-7).  

 
Figure 2-7. A Simple Neural Network 

	

The Perceptron  

Another parameter of the ANNs that can be used sub-categorize them is perceptron. 

The perceptron is a mathematical model of a biological neuron (Rosenblatt 1957, 

Freund and Schapire 1999). While in actual neurons the dendrite receives electrical 

signals from the axons of other neurons, in the perceptron these electrical signals are 

represented as numerical values. At the synapses between the dendrite and axons, 

electrical signals are modulated in various amounts (Hormuzdi et al. 2003). This is 

also modeled in the perceptron by multiplying each input value by a value called the 

weight. An actual neuron fires an output signal only when the total strength of the 

input signals exceeds a certain threshold. We model this phenomenon in a perceptron 

by calculating the weighted sum of the inputs to represent the total strength of the 

input signals and applying a step function on the sum to determine its output. As in 

biological neural networks, this output is fed to other perceptron. 

x0

x1

x1

xd

h(x)
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  The perceptron can be considered as the first important implementation of 

artificial neural networks. It was created in the fifties by Rosenblatt (1968, 1969). As 

its name indicates, the perceptron was designed to mimic or to model perceptual 

activities. The main goal was to associate binary configurations, i.e., patterns of [0,1] 

values, presented as inputs on an artificial retina with specific binary outputs. 

  Essentially, the perceptron is made of two layers: the input layer (i.e., the 

“retina"), and the output layer. The activation of the cells of the input layer is 

transmitted to the cells of the output layer through connections (“synapses”) which 

can change the intensity of the signal (by multiplying the incoming signal by a 

“weight" or “synaptic efficacy"). Figure (2-10) provides a simple visual explanation.  

The response of the perceptron is a function of both the stimulus applied to the cells 

of the input layer and of the weights of the connections. The cells of the output layer 

compute their state of activation as a function of the stimulation they receive through 

the synapses, and then give a binary response as a function of their state of activation. 

More formally, the response of the output cells depends upon their level of activation 

which is computed as the sum of the weights coming from active input cells. 

 

 
Figure 2-8. Biological neural and an artificial neuron (perceptron) 

Source: Willems 2017. 
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  Next, the response is then obtained by thresholding the activation which 

means that the cell will be in the active state only if its activation level is larger than a 

given threshold. 

  Specifically, the activation of the j-th output cell is computed as 

 

�+ = 	(=B

Ä

B

FB,+ (2.20) 

	

with:  

aj is the activation of the j-th output cell, xi is the state of the i-th cell of the retina (0 

or 1), and wi;j is the value of the weight connecting the i-th cell of the retina to the j-th 

output cell (Abdi 1994). 

  The output cells will then take either the active state (i.e., give the response 1) 

or the inactive state (i.e., give the response 0) if their level of activation is greater or 

less than their threshold noted Å+ (quite often Å+ is set to 0). Precisely, the response of 

the j-th output cell is given as: 

 

Ç+ = 	 É
0	ÑÇ@	�+ ≤ 	 Å+
1		ÑÇ@	�+ > 	 Å+	

		 (2.21) 

 
 
  Moreover, the threshold value Å+ can also be modified by learning the 

weights. The threshold can be implemented by setting an input cell always active (the 

0-th input cell) so that the wo,j  = - Å+. Essentially Å+ can be computed as wo,j  is 

“clamped” to the value -1. The following term is often called the response bias and a 

synonym for threshold. This can be now represented as:  
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Ç+ = 	É
0	ÑÇ@	�+ + Fv,+ 	≤ 	 Å+
1		ÑÇ@	�+ + 	Fv,+ > 	 Å+	

(2.22) 

 
The inputs are noted xi, the synaptic weights are noted wi;j , the total activation of the 

cell is noted aj , its response or output, noted oj , is equal to 0 if aj ≤ 0 and 1 if aj > 0. 

  Accordingly, the SLP (Single Layer perceptron) has a single hidden layer 

and is most commonly used as a Gaussian function. Every neuron has a center and a 

radius/spread; and the number of neurons in the hidden layer and weights are 

determined while training. On the other hand, MLP (Multi-Layer Perceptron) has 

multiple hidden layers designed in such a way that the input signal passes through 

each node of the network only once (Rosenblatt 1961, Rumelhart et al. 1986, 

Cybenko 1989). MLP takes a decision by approximating hyperplanes where the 

number of hidden layers and neurons in the hidden layers is set by the programmer. 

  With ANNs we have an input, xn, linearly combined with weights summed up 

to a signal and then the signal passes through a threshold labeled ~. The model 

implements a general probability measure which has a probability error to maximize 

the output (yn) based on the inputs xn. MLP is similar to logistic regression with the 

only exceptions been: (a) we do it multiple times; and (b) involves backward 

calculation. A simple example of a 2-layer neural network is presented in Figure (2-

7). The likelihood measure for logistic models is defined as 

ÖP(*.|=.) = 	ÖR	(*.F
G=.)	

h

./0

	

h

./0

	 (2.23) 
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Figure 2-9. The output cell of a perceptron. 

 

Combining Multiple Perceptrons 

Moreover, the activation function defines the output of a node in the ANN given an 

input or set of inputs. A standard computer chip circuit can be seen as a digital 

network of activation functions that can be "ON" (1) or "OFF" (0), depending on 

input. In its simplest form, the activation function is usually an abstraction 

representing the rate of action potential firing in the cell, as described earlier in the 

case of a perceptron. However, only nonlinear activation functions allow such 

networks to compute nontrivial problems using only a small number of nodes. In 

artificial neural networks this function is also called the transfer function. There are 

different activation functions with different functions: the sigmoid activation function 

is used for binary classification for the output layer; the tanh activation function 

squishes the output between -1 and 1; while the Rectified Linear Unit (ReLu) is 

increasingly the default function for activation function.  

  On the other hand, one major issue with neural networks and machine 
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learning is overfitting. The Variance-Bias Tradeoff states that an out of sample 

forecast will deteriorate because of three factors: in-sample forecast error i.e. model 

instability, model bias, and error due to our inability to forecast completely random 

events. Overfitting will likely result in much larger errors on out of sample batch of 

test data with increasing model complexity leading to higher instability. The ‘art’ is 

selecting the model that finds optimal balance between ‘model bias’, and ‘model 

variance’. There are some techniques to prevent overfitting; for example, dropout 

can be used to randomly drop units (along with their connections) from the neural 

network during training to prevent units from co-adapting too much (Srivastava et al. 

2014). Furthermore, Cross-validation can split the training set into two: a set of 

examples to train with, and a validation set. Prediction on the validation set is used to 

determine which model to use (Pool and Mackworth 2017, Russel and Norvig 2012). 

More details on aspects of empirical risk minimization and techniques to avoid 

overfitting are discussed in Appendix E. 

  The building block of multiple perceptron’s are simple Boolean logic gates 

AND or OR gates. The following two examples show (a) system returns 1 if and only 

if both are 1’s, (b) implement an OR gate if only one of them is 1.  

 
 

 
Figure 2-10. AND-OR GATES in Perceptrons 
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Table 2-4. Activation Functions 

Name Plot Equation Range Derivative 
Monotonic 

Linear or 
Identity 

 

!(#) = # (-∞, ∞) Yes 

Threshold or 
Binary Step 

 

!(#) = &
0 !()	# < 0
1 !()	#	 ≥ 0 

{0,1} No 

Logistic (or 
soft step 
function) 

 
 

!(#) = 	
1

1 +	/01
 

(0,1) No 

Sigmoid 

 

!	(#) ≜		= 	
/1

/1 + 1	
 

 

(0,1)  

TanH 

 

!(#) = tanh(#) =
2

1 +	/081
− 1 

(-1,1) No 

Rectified 
Linear Unit 
(ReLU) 

 

 

!(#) = 	 &
0			!()	# < 0
#			!()	#	 ≥ 0		 

[0,∞) Yes 
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Name Plot Equation Range Derivative 
Monotonic 

Softmax  
!;(#⃗) = 	

/1=

∑ /1?@
ABC

	!()	D = 1,… , G 
(0,1)  

Maxout  !;(#⃗) = max
;
#; (-∞,∞)  

Notes: The last two rows of the table lists activation functions that are not functions of a single fold x from the previous 
layer or layers:
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Deep Neural Networks 

Deep learning is a new name for an old approach to artificial neural networks. Deep learning 

(DL) is similar to neural networks but has many hidden layers; more specifically DL is a 

Machine Learning method that analyzes data in multiple layers of learning (hence ‘deep’). DL 

starts doing so by learning about simpler concepts and combining these simpler concepts to learn 

about more complex concepts and abstract notions. A simple illustration of an economic case of 

a neural network is presented in Figure (2-11). The input can be a sequence of variables such as 

current account balance, GDP growth, unemployment etc. over the history of sequence. There 

can be many hidden layers. The output would be a prediction of the consumer price inflation 

sequence in the testing set. The forecast errors can be measure deviations from the actual. 

Moreover, an illustration of a shallow - layer neural network and a deep neural network are 

provided in Figure (2-12). Modern neural networks have many additional layer types to deal with 

dropout, convolutional, pooling, and recurrent layers to deal with complex representations or 

automatic feature engineering for the layers (Hinton et al. 2006). 

  Furthermore, there are many different architectures of deep neural networks; 

nevertheless, in most of the time-sequence prediction problems, the many-to-one deep neural 

network architecture is used and will be discussed briefly in this section. Convolutional neural 

networks (CNN) makes spatial consistency and are deployed regularly in vision and image 

recognition tasks. CNNs are often used for classifying images as they extract data features by 

passing multiple filters over overlapping segments of the data (this is related to mathematical 

operation of convolution) (Zhang 1988, Zhang 1990, LeCunn 2013).   The focus of the 

following section will be on Recurrent Neural Networks (RNN) and its variants that make 

temporal consistencies for parameters (Hopfield 1982, Schmidhuber 1993, Miljanovic 2012).  
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Figure 2-11. A simple Neural Network architecture for economic cases of prediction and time series forecasting 

 
 

Figure 2-12. Shallow Neural Network (left) and Deep Neural Network with Many "hidden" layers (right) Source: Electronic Design 
2017. 
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Table 2-5. Neural Network Architectures: CNN, RNN, DBN, LSTM, GRU, BDLSTM 

 
 
 
 

Neural Network Model Description Applications References 

Convolutional Neural Networks (CNN) CNN is a class of deep, feed-forward ANN that has successfully 
been applied to analyzing visual imagery.  A CNN consists of an 
input and an output layer, as well as multiple hidden layers. The 
hidden layers are either convolutional, pooling or fully 
connected. 

object recognition for ImageNet, 
image and video recognition, 
recommender systems and natural 
language processing. 
 

Zhang et al, 2017 ;  Matusugu et al, 
2013 ; LeCun, 2013 ; Zhang, 1988 ;  
van den Oord et al, 2013 ;  Collobert 
et al, 2008 

Recurrent Neural Networks (RNN) RNN is a class of ANN where connections between units form a 
directed cycle. This allows RNN to exhibit dynamic temporal 
behavior. Unlike feedforward neural networks, RNNs can use 
their internal memory to process arbitrary sequences of inputs. 

unsegmented, connected 
handwriting recognition, speech 
recognition, stock prices, keyword 
spotting 

Fernandes et al, 2007 ; Graves et al, 
2009 ; Gal et al, 2015 ; Lipton, 2015 
Felix and  Schmidhuber, 2000;  

Deep Belief Networks (DBN) DBN is a generative graphical model, or alternatively a class of 
deep neural network, composed of multiple layers of "hidden 
units" with connections between the layers but not between 
units within each layer. 

natural language understanding, 
generating and recognizing images, 
video sequences, motion-capture 
data, non-linear dimensionality 
reduction 
 
 

Sarekas, Hinton, and Deoras, 2014 ;  
Hinton, Osindero & Teh 2006, 
Ranzato et. al. 2007, Bengio et.al.. 
(2007). Sutskever and Hinton. 
(2007). Taylor et. al. 2007 
Hinton & Salakhutdinov,2006; 
Salakhutdinov and Hinton,2007 
 

Long-Short Term Memory (LSTM) RNN LSTM is well-suited to classify, process and predict time series 
given time lags of unknown size and duration between important 
events.  

speech recognition, text-to-speech 
synthesis, Google Android, Siri, 
Google Voice Search, machine 
translation, multilingual language 
processing 
 

Sak, Senior and  Beaufays, 2014 ; Li 
and Wu, 2014 ; Fan et al, 2015 ;  
Schmidhuber, 2015 ; Gilick et al, 
2015 ; Felix, 2001 ;  

Gated Recurrent Units (GRU) GRU’s are a gating mechanism in RNN. They have fewer 
parameters than LSTM, as they lack an output gate. 

polyphonic music modeling, speech 
signal modeling, emotion 
classification in noisy speech, any 
sequence prediction 

Dey and Salem, 2017 ; Rana et al, 
2016 ; Heck and Salem, 2017 

Bi-Directional LSTM Bidirectional LSTM is a variant of a Hopfield network store 
associative data as a vector. The bi-directionality comes from 
passing information through a matrix and its transpose.  

Keyword spotting, time-series 
analysis, speech recognition, 
handwritten recognition,  protein 
structure prediction 

Schuster and Parival, 1997 ; Graves 
and  Schmidhuber, 2005 ; Fernandes 
et al, 2007 ;  Liwicki et al, 2007 ; 
Baldi, 1999 
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2.6. Recurrent Neural Networks (RNN) 

A recurrent neural network (RNN) is an extension of a conventional feedforward 

neural network, which is able to handle a variable-length sequence input. The two big 

limitations of vanilla neural networks are that (a) they accept fixed-sized vector input 

and output, and (b) traditionally models use a fixed number of computational steps 

(Karapathey 2015). The RNN handles the variable-length sequence by having a 

recurrent hidden state whose activation at each time is dependent on that of the 

previous time. However, in contrast to simple neural networks which map one input 

to one output, RNNs can have any of the one-to-many or many-to-many 

configurations as information can flow in both directions. Moreover, RNNs can use 

their internal memory to process arbitrary sequences of inputs and can incorporate 

delays based on certain trained parameters. Many variants of the RNN, especially 

LSTM and GRU are described briefly in the table (2-5). RNNs take different 

configurations as shown in figure (2-13). 

 
Figure 2-13. Vanilla Neural Networks and Forms of RNN's 

Source: Karpathy 2015. 
Notes: Each rectangle is a vector and arrows represent functions (e.g. matrix multiply). Input vectors are in red, output vectors are in blue and 

green vectors hold the RNN's state (more on this soon). From left to right: (1) Vanilla mode of processing without RNN, from fixed-sized input to 
fixed-sized output (e.g. image classification). (2) Sequence output (e.g. image captioning takes an image and outputs a sentence of words). (3) 

Sequence input (e.g. sentiment analysis where a given sentence is classified as expressing positive or negative sentiment). (4) Sequence input and 
sequence output (e.g. Machine Translation: an RNN reads a sentence in English and then outputs a sentence in French). (5) Synced sequence input 
and output (e.g. video classification where we wish to label each frame of the video). Notice that in every case are no pre-specified constraints on 

the lengths sequences because the recurrent transformation (green) is fixed and can be applied as many times as we like. 

Vanilla
Neural	

Networks
Recurrent

Neural	Networks
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 A large number of papers are published in the literature on RNN’s. The 

fundamentals of RNN and methods of training are discussed next, followed by 

discussion on variety of RNN architectures.  

  Similar to artificial neurons with recurrent cycles of feedback loops, RNN’s 

require training a set of input-output target pairs with the objective minimize the loss 

(difference between output and target pairs by optimizing the network’s weights 

(Hayken 1994, Mikolov 2010). Figure (2-14) shows a simple three-layer neural 

network with N inputs and a recurrent hidden layer. The importance of initialization 

and momentum of hidden units using small non-zero elements can help improve 

performance (Hinton et al. 2003, Salehinejad et al. 2018). The hidden layer defines 

the state space or “memory” of the system as (Salehinejad et al. 2018) 

 

ℎ" = 	 %&((") (2.24) 

 

  where  

(" = 	-.&/" +	-&&ℎ"12 +	34 (2.25) 

 

 where %&	(. ) is the hidden layer activation function, 34 is the bias vector of hidden 

unit, the connections of the RNN’s hidden layer are represented by matrix -.& which 

has M hidden units 	

ℎ" = (ℎ2, ℎ7, . . , ℎ8	) that are connected through time with recurrent connections to 

each other, and finally the hidden units are connected to the output layer with a 
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weighted connection -&9 . The output layer has P units :" = 	 (:2, :7, . . , :;	) 

computed as   

:" = 	 %9(-&9ℎ" +		3<) (2.26)	

 

where %9 is the activation function and 3< is the bias vector of the output layer. The 

above three steps are repeated consequently over time in a consistent non-linear state 

iteration through time (Salehinejad et al. 2018). The information over past states of 

the network over many timesteps and integrated information defines the nature of the 

network yielding accurate predictions in the output layer (Sutskever et al. 2011).   

 
Figure 2-14. A simple recurrent neural network (RNN) and its unfolded structure 

through time t. Each arrow shows a full connection of units between the 
layers. To keep the figure simple, biases are not shown. 

Source: Salehinejad et al. 2018. 
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 Nonlinear activation functions are more powerful than linear activation 

functions since they offer non-linear boundaries and non-linear connections between 

hidden layers of the RNN to learn input-target relationships (Bengio 2007). The 

activation functions can be chosen based on the problem of interest, readers can refer 

back to Table (2-4) for relevant activation functions. The ReLU activation function 

which is computationally cheaper leads to sparser gradients and greatly accelerates 

the convergence of stochastic gradient descent (SGD) compared to the “sigmoid” or 

“tanh” activation functions (Krizhevsky 2012).  

   The loss function evaluates the performance of the network by comparing the 

output :" with corresponding target >" (Salehinejad et al. 2018) which can be defined 

as  

ℒ(:, >) = 	@(:", >")

A

	"B2

(2.27) 

which is essentially the overall summation of losses in each timestep (Goodfellow 

2016). Now there are many options for hyper-parameters for loss function which 

depends on the problem of interest, loss functions include the ones referred to in 

Table (2-3) such as Euclidian distance, Hamming distance for real-values and using 

cross-entropy for probability distributions and classification problems (Williams and 

Zipser 1995).  

 Training RNN’s comes with its own quirks. Properly initializing the network, 

optimizing the parameters, hyper-parameter tuning, instability caused through hidden 

layer dependencies have all been identified as points to note (Bengio 1994, 
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Salehinejad et al. 2018). There has been growing literature on various techniques to 

train RNN’s better including extended Kalman Filter (EKF) (Puskorius and Feldkamp 

1994), hessian-free expectation maximization (EM) (Ma and Ji 1998), approximated 

Levenberg-Marquardt (Chan and Szeto 1999), and others (Ruder 2016).  

   

  For initialization of RNNs, gaussian draw with standard deviation between 

0.001 and 0.01 is considered a reasonable choice (Bengio 2007, Pascanu et al. 2013, 

Salehinejad et al. 2018). The bias is usually set to zero where the dimensionality of 

the input data is a highly dependent task for initialization (Sutskever et al. 2013) and 

setting initialization problem based on problem of interest has to be based on prior 

knowledge (Bengio 2007).  

  Now optimization of the RNN can leverage the popular and simple method 

called Gradient Descent (GD). The essence of GD is that based on each member of 

weight matrices in the model, finding the error function derivatives with respect to the 

weights itself (Bengio 2007, Salehinejad et al. 2018). In order to minimize the loss, 

each weight is changed proportional to the derivative of the error with respect to the 

weight (given that the non-linear activation functions are differentiable) (Salehinejad 

et al. 2018). The instance of computing the gradient for the whole dataset in each 

optimization iteration to perform a single update is called batch GD. This update can 

be written as 

D"E2 = 	D" −	
G

H
	@

¶	ℒI
¶	D	

J

IB2

	 (2.28) 
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here U represents the size of training set, λ is the learning rate, and θ is set of 

parameters. This is a basic approach that is computationally expensive for extremely 

large datasets and not equipped for online training i.e. where the data is streaming and 

model updates in real-time (Salehinejad et al. 2018). 

  In order to accommodate temporal behaviors and memory for long or short 

during trends, the GD has to be extended through time to train the network, this is 

called backpropagation through time (BPTT) (Werbos 1990). There are many 

complexities involved with computing error-derivaties through time (Le et al. 2015), 

capturing dependencies and duration of dependencies (Bengio 2007). Long term 

temporal dependencies cannot be learnt in RNN’s (Bengio 2007), if the derivatives of 

the loss function with respect to the weights only consider the distance between the 

current output and the corresponding target, without using the history information for 

weights updating (P´erez-Ortiz et al. 2003, Salehinejad et al. 2018). Some of these 

challenges such as the vanishing gradient problem occurs due to the exponential 

decay of gradient is back-propagated through time. In another instance, the back-

propagated gradient can exponentially blow-up increasing the variance of the 

gradients leading to unstable learning situation, this is called the exploding gradient 

problem (Sutskever et al. 2011).  

2.7. Long-Short Term Memory (LSTM) RNN 
 
One of the main problems that RNNs suffer from is the vanishing gradient descent 

problem (Hochreiter 1991, Hochreiter et al. 2001). This problem occurs when the 

output is between 0 and 1, and since neurons generally have a sign or tanh function, 

and if, it keeps getting multiplied by a real small number, which ultimately reduces 



 

 

72 

72  

the learning rate of the network rendering the the network failing to learn long-term 

sequential dependencies in data. In order to overcome this problem, a variant of the 

RNN called Long-Short Term Memory (LSTM) are the most popular and efficient 

neural network architecture that includes feedback loops between elements and as the 

name suggests maintains long-term and short-term memory (Hochreiter and J. 

Schmidhuber 1999). LSTMs are a special kind of RNN, capable of learning long-term 

dependencies, where the standard neuron output is feedback into the input and can 

simulate memory by passing the previous signals through the same nodes (Le et al. 

2015). Furthermore, the hidden units now change from “sigmoid” or “tanh” to 

memory cells, where their inputs and outputs are controlled by gates that control the 

flow of information to hidden neurons and preserve extracted features from previous 

timesteps (Hochreiter and J. Schmidhuber 1999, Le et al. 2015, Zhu et al. 2015). 

LSTM neural networks are suitable for time series analysis because they can more 

effectively recognize patterns and regimes across different time scales.   

  LSTMs were introduced at the turn of the century (Hochreiter and 

Schmidhuber 1997) and later improved (Gers et al. 2000). They are used in various 

domains; such as: natural language question and answering for novels (Iyyer et al. 

2017), handwriting recognition (Graves et al. 2009), and commercial products such 

as: Google Translate (Wu et al. 2016, Metz 2016), Apple’s Siri (Smith 2016), and 

Amazon’s Alexa (Vogels 2016).  All RNNs have an architecture in the form of a chain 

of repeating modules of neural network. Nevertheless, in standard RNNs, this repeating 

module will have a very simple structure; such as: a single tanh layer; while in LSTMs  
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the repeating module has four layers interacting in a very special way instead of a single 

neural network layer (Hochreiter and Schmidhuber 1999, Zhu et al. 2015)  

LSTM can be extremely complex to understand since a typical LSTM has about four 

times more parameters than a simple RNN (Mikolov et al. 2014). Thereby in order to 

enhance learning, improve learning long-range dependencies, optimal scheme, many 

further variants of LSTM’s have also emerged that will be discussed briefly later in this 

subsequent chapter.  

  LSTM tries to solve the vanishing gradient problem by not imposing any bias 

towards recent observations, but it keeps constant error flowing back through time. It 

works essentially in the same way as the Elman Recurrent Neural Network (ERNN) 

architecture, with the difference that it implements a more elaborated internal 

processing unit called cell. To demonstrate this behavior, the first panel of Figure (2-

17) shows a gate of the LSTM neural network where the LSTM neuron is made of 

four LSTM neural network modules and the four functions are inside one gate. 

Traditionally one activation function uses the input and the output is spit out; 

however, in LSTM’s these neurons and pathways act as gates. The main idea is that 

the long line conveyer belt updates the module’s state which allows to keep long or 

short-term memory. These gates essentially take an input xt to decide how much of 

that input should be used to update the module state. The three sign gates and the tanh 

gate show how the input state determines the update, where a number “1” updates the 

whole module state and the numbers smaller than 1 updates the module state by 

respective increments. As explained, LSTMs are explicitly designed to avoid the long-

term dependency problem as remembering information for long periods of time is their 
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default behavior, not something they struggle to learn. It is worth noting that in figure 

(2-17), each line carries an entire vector, from the output of one node to the inputs of 

others. The pink circles represent pointwise operations, like vector addition, while the 

yellow boxes are learned neural network layers. Lines merging denote concatenation, 

while a line forking denotes its content being copied and the copies going to different 

locations.  

  LSTM has attracted a great attention for time series data recently and yielded 

significant improvement over RNNs. Since LSTMs take inputs in a sequence, like 

time series data, the temporal dynamics that connects the data is more important than 

the spatial content of each individual frame. Moreover, since the input and output are 

both variable, i.e. it can input a sequence of numbers, and the output is a sequence 

(many to many) similar to machine learning, the M2M does not have to be the same 

sequence.    

            

Figure 2-17. The repeating module in a standard RNN contains a single layer 
Source: Olah 2015. 
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Figure 2-18. The repeating module in an LSTM contains four interacting layers. 

 
 

Figure 2-19. Sign Denotation in LSTM RNN 
Source: Olah 2015. 

  LSTMs also have this chain like structure, but the repeating module has a 

different structure. Instead of having a single neural network layer, there are four, 

interacting in a very special manner. In the above diagram, each line carries an entire 

vector, from the output of one node to the inputs of others. The pink circles represent 

pointwise operations, like vector addition, while the yellow boxes are learned neural 

network layers. Lines merging denote concatenation, while a line forking denotes its 

content being copied and the copies going to different locations. 

 

The Conveyer Belt Model Data Flow 

The cell state is kind of like a conveyor belt. It runs straight down the entire chain, 

with only some minor linear interactions. It’s very easy for information to just flow 

along it unchanged. The LSTM does have the ability to remove or add information to 

the cell state, carefully regulated by structures called gates. Gates are a way to 
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optionally let information through. They are composed out of a sigmoid neural net 

layer and a pointwise multiplication operation. 

 

                       
 

Figure 2-20. Conveyer Belt and Gates 
Source: Olah 2015. 

 
 

  The sigm gates indicate how much of that input should be in module state, if it 

is 0 then no update, 1 then complete module update. Essentially update the module 

state and allows the module to keep a long-term memory of what is going on.  

 
  The memory cells for the hidden states are introduced formally The cell state 

is like a conveyor belt (Olah 2015); it runs straight down the entire chain, with only 

some minor linear interactions. It’s very easy for information to just flow along it 

unaltered as the LSTM has the ability to remove or add information to the cell state 

which are carefully regulated by structures called gates. Gates are a way to optionally 

let information through and composed out of a sigmoid neural net layer and a 

pointwise multiplication operation (Graves 2014, Bianchila et al. 2017). 

  The first step in this process is to split the training and test windows. In 

finance and economic time series the training window can be either 120, 200, 500 

days for daily data like Stock Prices predictions, or 5, 8, 12 for annual data. Similarly, 
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the test window can be 10, 20, 30 for daily data, or 2, 3, 5 for annual data. The 

training sample is split into n samples which iterates over consecutive test window 

samples in the training window.  

   (LSTM) cell architecture shown in Figure (2-21) uses purpose-built memory 

cells to store information which is better at finding and exploiting long range 

dependencies in the data. It is composed of input, forget, and ouput and cell activation 

components.  For the version of LSTM used in earlier papers (Sutskever et al. 2016, 

Azouni and Poujell 2017, Bao et al. 2017, Cohan 2015, Bernal et al. 2015, Dindi et al. 

2015, Salehinejad et al. 2018), the hidden layer function ℋ is implemented by the 

following composite functions: 

  The input gate M"N is defined as 

M"
N = 	O P-.QR/" +-&QRℎ"12 +	-QSQR	QTUV

S W"12 + 3QR		X 	 , (2.29) 

 

where O is the logistic sigmoid function, -.QR  is the weight matrix from the input 

layer to the input gate, -&QR	 is the weight matrix from the hidden state to the input 

gate, -QSQR	 is the weight matrix from the cell activation to the input gate, 3QR	is the 

bias of the input gate (Salehinejad et al. 2018).  

 The forget gate M"
Z is defined as 

M"
Z = 	O P-.Q[/" +-&Q[ℎ"12 +		-QSQ[	QTUV

S + 3Q[	X , (2.30) 

where O is the logistic sigmoid function, -.Q[  is the weight matrix from the input 

layer to the forget gate, -&Q[	 is the weight matrix from the hidden state to the forget 

gate, -QSQ[	 is the weight matrix from the cell activation to the forget gate, 3Q[	is the 
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bias of the forget gate (Salehinejad et al. 2018).  

  The cell gate M"^ is defined as 

M"
^ = 	M"

N	 	tanhc-.QS/" +-&QSℎ"12 + 3QS		d +	M"
Z	M"12

^	 	, (2.31) 

where tanh is the tanh activation function, -.QS is the weight matrix from the input 

layer to the cell gate, -&QS	 is the weight matrix from the hidden state to the cell gate, 

3QS	is the bias of the cell gate (Graves 2014, Bianchila et al. 2017). 

  The output gate M"< is defined as 

M"
< = 		Oc-.Qf/" +-&Qfℎ"12 +		-QSQf	QT

S + 3Qf		d, (2.34) 

where -.Qf is the weight matrix from the input layer to the output gate, -&Qf	 is the 

weight matrix from the hidden state to the output gate,	-QSQf	  is the the weight 

matrix from the cell activation to the output gate, 3QS	is the bias of the output gate 

(Graves 2014, Bianchila et al. 2017, Bao, et al. 2017, Salehinejad et al. 2018). 

  All the above are the same as the hidden vector h or the hidden state ℎ" 

computed as 

ℎ" = 	M"
< tanh(M"

^) . (2.32)	

  First there is a sigmoid function that decides what to forget and what to ignore 

by taking in the new input xt and the state of the previous output and deciding if it 

wants to create a memory and transfers to next cell. In the hidden state, there are both 

slopes and valleys in the stock price movement or political risk movements, non-

convex optimization; moreover, it is important to account for long term dependencies, 

for example the 2008-09 financial crisis period so the LSTM or GRU knows how the 

on-set sequence of the “bad” performance period.  

  Furthermore, as the previous state is running through the cell, three sigmoid 
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layers: for 1, in order for the info to go through, and 0 when you don’t want the 

information to go through. First sigmoid function decides to forget ignore or 

remember; second sigmoid layer, is a gate for state to update and decide what values 

to insert into the new update; third, sigmoid layer performs the actual forgetting and 

retaining memory. Finally, an output from the cell is produced whose state is the 

activation multiplied by the weights.  

 
Figure 2-21. The LSTM memory block with one cell. The dashed line represents 

time lag. 
Source: Salehinejad et al. 2018. 

Stacked LSTM  

The capacity of LSTM RNN can be increased by increasing the depth or stacking 

different hidden layers with LSTM cells (Graves et al. 2013, Kalchbrenner et al. 

2015). In a stack of L, a hidden layer l in this stack is defined as  

ℎ"
g = h&c-.&ℎ"

g12 +	-&&ℎ"12
g + 34

g d	, (2.33) 



 

 

80 

80  

where ℎ"g  is the hidden vector that is computed over time i = 	 (1,… , k) for l	 =

	(1,… , m), and the initial sequence of hidden vector is defined on the input sequence 

ℎn = 	 (/2,… , /A) (Graves et al. 2013).  

  In order for LSTM to maintain constant space and time embeddings of the 

stack content and in a controlled contracture, a stack pointer controller can push to 

and pop from the top of the stack to maintain temporal order (Yao et al. 2015, 

Ballesteros et al. 2015). The output of the stacked LSTM network is 

:" = 	h9(-&9ℎ"
o +	3n). (2.34) 

  Similar to machine learning, there are variants of LSTM and RNN such as 

Gated Recurrent Units (GRU) and Bi-directional (BRNN) which are very similar 

to LSTMs and are described briefly in Table (2-2) and subsequent sub-sections. The 

variations of RNN’s and LSTM’s are an active area of research in computer science 

and statistics. The GRU has performed as well as LSTMs and a comparative study is 

documented for short-term load forecasting (Bianchi et al. 2017). Moreover, original 

GRU RNN model have reduced the computational costs (Dey and Salem 2017, 

Lipton et al. 2015), by classifying emotions through speech recognition using 

smartphones (Rana et al. 2016) using different classes of state-of-the-art RNN’s.  

 

Gated Recurrent Unit (GRU) 

The gated recurrent units (GRU’s) capture the dependencies over different time scales 

by gating the units to modulate the flow of information inside the unit, without having 

memory cells like the LSTM (Chung et al. 2014). Unlike the LSTM, GRU exposes 

the whole state at each time step to compute a linear sum between the existing state 
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and the newly computed state (Cho et al. 2014). A simple block diagram 

representation of the GRU is presented in Figure (2-22). The linearly modeled 

activation in a GRU can be 

modeled as   

ℎ" = 	 (1 −	>")ℎ"12 +	>"ℎp", (2.35) 

 

where >" is the update gate controls the value of the activation which then defined as  

>" = O(-q	/" +	Hq	ℎ"12)	, (2.36)	 

where W and U are the weight matrices to be learnt (Cho et al. 2014, Chung et al. 

2014). The activation function is defined as  

ℎp" = irsℎ(-4	/" +	H4(t" 	⨀ ℎ"12)	)	, (2.37)

here t" is a set of rest gates defined as  

t" = O(-v	/" +	Hv	ℎ"12) (2.38) 

This allows the units in the network to forget to forget the first state by reading the 

first symbol of an input sequence. There are few studies with thorough comparison 

between LSTM and GRU’s (Chung et al. 2014). Nevertheless, all such models must 

be used in a systematic manner to learn from them and use the gained information in 

a useful manner to directly aid decision-making.  
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Figure 2-22. A gated recurrent unit (GRU). The update gate z decides if the hidden 
state is to be updated with a new hidden state h˜. The reset gate r controls if the 

previous hidden state needs to be ignored. 
Source: Salehinejad et al. 2018. 

 

Bidirectional LSTM (BLSTM) 

BLSTM neural networks were invented to increase the amount of input information 

when context is necessary (Schuster and Paliwa 1997). BRNN’s have been applied to 

protein structure prediction (Pollastari et al. 2005), translations (Sundermeyer 2014), 

and generating news headlines (Lopyrev 2015).  The reasoning behind BLSTM is that 

traditional RNN’s only incorporate historic information and not the future context 

(Graves et al. 2013). BLSTM considers all the past and future state to estimate the 

output vector (Schuster and Paliwal 1997). In this instance, there are different RNN’s 

at play, where one RNN goes forward in time from beginning to end, another RNN 

goes backwards in negative-time direction i.e. from end to beginning, with no 

interaction between the outputs of the two networks (Schuster and Paliwal 1997). If 

the forward and backward hidden sequences were denoted as ℎw⃗ " and ℎ⃖w" respectively, 

Figure (2-23) shows a depiction of unfolding through time of BLSTM.  
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Figure 2-23. Unfolded through time bi-directional recurrent neural network (BRNN). 

Source: Salehinejad et al. 2018. 
 
 

 Now there are many variants of LSTM models. Even though LSTM’s have 

proved versatile and efficient to deal with long-term sequential dependencies, it has 

been argued that the gating mechanism has no clear-cut method to discriminate 

between salient and non-salient information sequence (Veeriah et al. 2015). For 

example, vanilla LSTM’s do not capture spatio-temporal dynamics in robotics or 

action recognition (Veeriah et al. 2015). Differential recurrent neural networks 

(dRNNs) refer to detecting and capturing of important spatio-temporal sequences to 

learn dynamics of actions in input (Veeriah et al. 2015). Multi-dimensional LSTM 

(MDLSTM) uses interconnection from previous state of cell to extend the memory of 

LSTM along every N dimensions as compared to one-dimensional LSTM (Graves et 

al. 2007, Graves et al. 2009). Similarly, there are many other variants of the LSTM 

and RNN neural network family that are designed more specifically for a given 

domain.  
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 Another promising variant to LSTMs is the applications of Reinforcement 

learning (RL) where the goal is to choose a course of successive actions in order to 

maximize the final (or cumulative) reward. RL has only recently been applied to 

complex multi-agent problems involving stochastic games, deep machine learning 

solution to the portfolio management problem, and to inform real-time financial 

trading strategies (Jiang et al. 2017, Bertoluzzo and Corazza 2012, Hughes 2014). 

Another equally promising variant is the proliferation of Generative Adversarial 

Networks (GAN’s) in which two neural networks contest with each other in a zero-

sum game framework. GAN’s were introduced by Ian Goodfellow et al. (2014) and 

have also been applied to discover disentanglement in order to separate market 

behavior from specific stock’s movements (Hadad et al. 2017).   

 

L1 and L2 Regularizer  

Regularization refers to the process of controlling neural network capacity to help 

avoid overfitting issues. During training of RNN’s, a portion of data is considered as 

validation set which is used to watch the training procedure and prevent the network 

from underfitting or overfitting (Bishop 2006). Regularizors are used to successfully 

train RNNs (Srivastava 2013).  

  The m2	 and m7	regularization method adds a term to the loss function that 

penalizes certain parameter configurations to prevent the network from overfitting. 

The updated loss function with the regularization term is written as  

ℒ(:, >) = 	ℒ(:, >) + 	z‖D‖|
|	, (2.39) 
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where z  is the set of the neural network parameters (weights) and z controls the 

relative importance of the regularization parameter.  

  The network parameters can be abstracted as 

‖D‖| = 	}@~D�~
|

|Å|

�Bn

Ç

2 |⁄

(2.40) 

 

where p = 1 corresponds to the regularizer m2	 and p = 2 corresponds to the 

regularizer m7. The m2 is the sum of the weights, whereas the m7 is the sum of square 

of the weights. Readers can refer to Appendix E for more details.  

 

Dropout  

Dropout, as the name suggests omits a fraction of the connections between any two 

layers of the network during training. Dropout is used in many models in deep 

learning as a way to avoid over-fitting (Srivastava et al. 2014). Dropout for the hidden 

layer outputs in eq. (2-24) will yield  

ℎ" = Ñ	 ⊙	ℎ", (2.41) 

where k is the binary vector mask that can also apply withdrawal that follows a 

statistical pattern and ⊙ is the element wise product (Pham et al. 2014). Dropouts for 

RNN were introduced as a single dropout mask at the beginning of each training 

sequence is called RNNDrop (Moon et al. 2015).  This may be adjusted over the 

sequence allowing the network connections to remain constant over time. Other 

research has suggested that the RNNDrop can be applied by dropping previous 
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hidden states of the network, thereby masking samples at every input sequence per 

step (Semeniuta et al. 2016).  

 

 

2.8. LSTM Example 

A very simple example of recurring pattern is financial time-series data; specifically 

speaking, the most volatile are cryptocurrencies like Bitcoin, is used to show the 

above behavior. A traditional neural network will struggle to capture such dynamic 

stochastic movement, since it does not have the history to map the whole function. 

For the LSTM model, first, a split into training and test windows based on a window 

size of seven days can be set for this model. This means that the model will take 

every seven-days data iteratively to spit the t+1 i.e. the 8th day forecast, sliding with 

one each time. The last two panels in Figure (2-24) show this is what gets fed into the 

model, the network zooms into the window size to extrapolate next time sequence 

output given a set of windows. The training period mostly consists of periods when 

bitcoins were relatively cheaper. As such, the training data may not be representative 

of the test data, undermining the model's ability to generalize for the unseen data. The 

LSTM network is fed a total of 12 features that are depicted in the table (2-6) below 

the chart; these features include: closing price of bitcoin, total volume of bitcoin, total 

bitcoins, miners’ revenue, bitcoin exchange rate vs. USD, bitcoin average block size, 

bitcoin difficulty, bitcoin median transaction confirmation time, bitcoin hash rate, and 

number of transaction per block. Furthermore, the model’s data is arranged in order 
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of earliest to latest and the LSTM model will use previous data to predict the next 

day's closing price of bitcoin.  

  Data frames consisting of seven consecutive days of data, called windows, has 

been built, so the first window will consist of the 0-6th rows of the training set 

(Python is zero-indexed), the second will be the rows 1-7…etc. By picking a small 

window size means (more windows can be fed into the model) there may be a 

downside that the model may not have sufficient information to detect complex long-

term behaviors. Next, the built model’s functions construct an empty model, 

unimaginatively, called model (model = Sequential), to which an LSTM layer is 

added. That layer has been shaped to fit the inputs (n x m tables, where n and m 

represent the number of time points/rows and columns, respectively). In addition, the 

function includes more generic neural network features. To see how well the model 

performs, the performance on the training set is examined first (data before June 

2017) through the model's mean absolute error (MAE) on the training set after the 

80th training iteration (or epoch), which is represented by the number below the code.

   

  Another robust capability of the model is that it can access the source of its 

error and adjust itself accordingly; in fact, it is not hard to attain almost zero training 

errors. Furthermore, the Dropout is included in the built model’s function to mitigate 

this risk for a relatively small model. From the results, LSTM model seems to have 

performed well on the unseen test set as the predicted values regularly mirror the 

previous values (e.g. October). Finally, with the addition of more features can help 
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reduce the mean absolute error and this model will provide better prediction for the 

downward trend in the bitcoin.  

  The key attributes of cases in our domains of interest are non-linearities in 

time, non-homogenous sample, context dependencies of time-trends, memory of the 

past, long-term and short-term dependencies, highly dynamic and interconnected 

markets. For example, the memory of time-trend from the 2008 financial crisis may 

be important to remember, or the geopolitical or financial market trends from last 

week could have significant impact in the following days. In order to address various 

financial, economic, and geopolitical data and decision-making environments, a 

flexible framework for high-frequency, daily, weekly, or even annual data, LSTM 

and variants of RNN architectures are the appropriate choices for modeling time-

series predictions with time-varying dependencies; whereas DTW-HCA ensemble 

offer a meaningful way to cluster entities and domains based on extracting time-

dependent similarity.  
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Figure 2-24. LSTM Module architecture, and simple example of LSTM to predict 

Bitcoin prices 
 
 

Table 2-6. Features used for training LSTM model to predict Bitcoin prices 
Feature Description 
Closing Price Price at which a bitcoin is traded on a given 

trading day. 
Volume Sum of all the transactions. 
Total Bitcoins  The total number of bitcoins which have been 

mined. 
Miners Revenue ((number of bitcoins mined per day + 

transaction fees) * market price) 
Volume (BTC)  
Volume (USD)  
Weighted Price  
Average Block Size The Average block size in MB 
Difficulty Difficulty is a measure of how difficult it is to 

find a hash below a given target. 
Median Transaction Confirmation 
Time 

The Daily Median time take for transactions to 
be accepted into a block. 

Hash Rate The estimated number of giga hashes per 
second (billions of hashes per second) the 
bitcoin network is performing. 

Number of Transaction per Block The average number of transactions per block. 
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2.9. Uncertainty Quantification in Neural Networks 
 
Traditional neural networks are fraught with a big missing element: quantification of 

prediction uncertainty. The different types of uncertainty are of great importance in 

many fields; such as: AI safety (Amodei et al. 2016), and autonomous decision 

making, where the model’s epistemic uncertainty can be used to avoid making 

uninformed decisions with potentially life-threatening across domains, for example, 

diagnostic and prognostics in the healthcare industry (Krizhevsky et al. 2012, Long et 

al. 2014); autonomous driving vehicles to identify and detecting high level cognitive 

tasks such as sensory signal input (Bojarski et al. 2016) as well as low-level cognitive 

task analysis such as distinguish the white side of a turning trailer from a bright sky, 

which led to the first fatality of an assisted driving system (NHTSA 2017); post office 

sorting letters according to their zip code (LeCun and Cortes 1998, LeCun et al. 

1998); or nuclear power plant with a system responsible for critical infrastructure 

(Linda et al. 2009).  

  In economic and financial decision-making; such as: high frequency trading, 

computers could destabilize national or global financial market crisis (Gal 2015), the 

risks of not accounting for epistemic uncertainty could be catastrophic. In our 

domains of interest, human error can creep into a financial trading decision leading to 

an ill-judged one (Gal 2014). As systems get more automated, especially machine 

learning based systems, the variable degrees of automation (DOA) can override 

human expert decisions (Li 2017, Leaver and Reader 2014). Such automated systems 

can lead to sub-optimal real-world results when machines interact with humans; for 
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instance, even if the prediction is accurate on some days, it may be inaccurate on 

other days. Hence, the work on uncertainty and its applications should have a prime 

importance since decision makers need to know the uncertainty around the 

predictions to help make the best decisions. Nevertheless, most deep learning tools 

operate in a very different setting to the probabilistic models which possess this 

invaluable uncertainty information (Gal 2015). Moreover, uncertainty quantification 

in deep learning has focused primarily on the classification problem (Bertozzi 2017, 

Gal 2018, Lakshminarayanan 2016, Weidman 2016). For example, how sure is the 

model whether the image is that of a cat or a dog; however, when the model is given a 

new animal; such as: a polar bear, the uncertainty for the model’s prediction is not 

well studied. Furthermore, limited work has been conducted on time-series deep 

learning with uncertainty quantification; especially, in the domains of interest. 

Consequently, this section will discuss how to bring transparency to the decision-

making process concerning how and which algorithms can lead to a decision-maker’s 

awareness concerning forecast accuracy by incorporating uncertainty quantification.  

  Incorporating prediction interval (PI) estimation in domains of finance, 

economics, and geopolitics, using deep LSTM or RNN-variant algorithms would 

greatly benefit the decision makers by providing the reliability of the prediction. In 

relation to neural networks, the literature has been focused on image related problems 

pertaining CNN’s (Gal 2012, Gal 2013, Zhu et al. 2018, Tirpathy et al. 2018). RNN 

or LSTM models have also been used for uncertainty quantification but primarily in 

the context of text and sentiment analysis (Gal 2014, Gal 2015). Thus, opening up 

deep LSTM for such uncertainty quantification is a highly dynamic and new area of 
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research; nevertheless, reliable and accurate uncertainty quantification for time-series 

predictions remains critical.  

  The nascent yet growing body of literature has put forward many different 

approaches for confidence interval estimation in the confines of LSTM’s. There are 

different schools of thought including: Classical, Bayesian, Bootstrap methods, Delta 

method, Mean-Variance Estimation (MVE), and Quantile methods. A thorough 

assessment of various methods indicates that the Bootstrap method had the smallest 

width of confidence interval and are best in terms of low computation costs; however, 

Bayesian methods are best in terms of quality and repeatability (Khosravi et al. 2010; 

Saleum 2014) albeit being computationally expensive. Other methods such as the 

quantile recurrent forecasters (Wen et al. 2017) have tremendous versatility that does 

not have a comparison in the literature. In addition, the emerging and nascent 

literature examining the combination of Bayesian modeling and neural networks is 

also promising. In classical statistical modeling, probabilistic conjugation has been 

used in the past; however, only recently, attention has been garnered towards novel 

end-to-end Bayesian deep learning with LSTM (Zhu and Laptev 2017, Khosravi et al. 

2015, Gal 2015). Although deep neural networks, such as: LSTM, are being used 

extensively, related fields of representing model uncertainty is still at an early stage of 

development and has crucial importance for the future of the field (Krzywinski and 

Altman. (2013). Ghahramani, 2015). Bayesian uncertainty is rapidly shifting this field 

of deep learning (Herzog and Ostwald 2013, Trafimow and Marks 2015, Nuzzo 

2014). Standard deep learning for regression problems do not capture model 

uncertainty. As a result, the following section briefly reviews the key uncertainty 
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quantification measures and proposes a simpler, yet equally efficient, implementation 

of uncertainty quantification for deep neural networks.  

 

2.9.1. Classical Uncertainty Prediction 

It is often assumed that targets can be modeled by the following equation: 

 

iN = 	:N +	ÜN (2.42) 

 

where ti  is the i-th measured target, and ÜN is the noise, also called error, with a zero 

expectation. The error term moves the target away from its true regression mean, :N , 

toward the measured value, ti (Khosravi et al. 2010).  

  In all PI construction methods discussed in this research, it is assumed that 

errors are independently and identically distributed (Khosravi et al. 2010). In practice, 

an estimate of the true regression mean is obtained using a model, :áN leading to the 

following equation: 

 

iN −	:áN 	= 	 [:N − :áN	] +	ÜN (2.43) 

 

  Confidence Intervals (CIs) deal with the variance of the first term in the right-

hand side of (2.45). They quantify the uncertainty between the prediction, :áN , and the 

true regression, :N. CIs are based on the estimation of characteristics of the 

probability distribution ä(:N|:áN	). In contrast, PIs try to quantify the uncertainty 

associated with the difference between the measured values, iN, and the predicted 
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values, :áN	 (Khosravi et al. 2010). This relates to the probability distribution P(iN|:áN	). 

Accordingly, PIs will be wider than CIs and will enclose them. If the two terms in (2) 

are statistically independent, the total variance associated to the model outcome will 

become, 

 

ON
7 = 	O	ãáN

7 +	OåáN
7 (2.44)	

	

The	term	O	ãáN
7  originates from the model’s misspecification and parameter estimation 

errors, O	ãáN
7  is the measure of noise variance. Upon proper estimation of these values, 

PIs can be constructed for the outcomes of ANN models.  

  A comprehensive analysis of all the methods based on the quality of 

constructed PIs, repeatability of results, computational requirements, and the 

variability of PIs against the data’s uncertainty was conducted by Khosravi et al. 

(2010).  

  Furthermore, multi-step, long-horizon forecasts are usually needed in 

conjunction with precise prediction intervals in order to be able to quantify forecast 

uncertainties and the risks in the decision-making process (Wen et al. 2017). 

Therefore, many decision-making scenarios require richer information provided by a 

probabilistic forecast model which returns the full conditional distribution 

ë(:"EI|::"), rather than just a point forecast model that predicts the conditional mean 

ì(:"EI|::"). And for real-valued time series, this is traditionally achieved by 

assuming an error distribution, usually Gaussian, on the residual series Ü" = 	:" −	:á"  

(Wen et al. 2017). 
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  Based on the above, and by taking a trained neural network hîï (. ) where -ï  

are fitted parameters and new sample data /∗, the goal is then defined as the 

uncertainty of the model prediction 

 

:á∗ = 	hîï (/∗) (2.45) 

 

The approximate a-level prediction interval can be constructed like this  

 

[:á∗ −	>∝ 2z, 	:á∗ +	>∝ 2z,⁄ 	⁄ ] (2.46) 

 

with the quantification of z which is the prediction standard error (Zhu and Laptev 

2017).  

 
 
2.9.2. Mean-Variance Estimation (MVE) 

In the MVE method, the PI’s can be constructed if the mean and variance parameters 

are known and the errors are distributed around the target mean y(x) (Nix and 

Wiegend  1994). Figure (2-25) shows a schematic of the MVE method.  
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Figure 2-25. Abstraction of Mean Variance Estimation (MVE) for Uncertainty 

Quantification (UQ). Source: Khosravi et al. 2010) 
 
 

  By implementing an exponential activation function, a strictly positive 

variance estimates is guaranteed (Khosravi et al. 2010). Therefore, assuming that the 

NN provides accurate and reliable forecast point estimates for y(x), the approximation 

of PI with (1 - a)% confidence level can be constructed with  òã and  òô as the NN 

parameters to estimate :á and Oá7 respectively, and ON is apriori 

 

:á	c/,òãd ±	>21	a7	
õOá7(/, òô) (2.47)	

 

  Now assume a gaussian normal distribution around :N, the conditional 

distribution is then defined as:  

 

äciN~/N, úúã,úúôd = 	
1

ù2	ûOáN
7

	ü
1	
("R1	ãáR)

†

7ô°R
†	 	 (2.48) 
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  Consequently, the cost function is then defined by taking the natural logs of 

the above distribution while ignoring the constant terms to minimize all the samples 

 

¢£§• = 	
1

2
	@¶ln(ON

7) +	
(iN −	:áN)7

OáN
7 	®

©

NB2

(2.49) 

 
 
2.9.3. Bootstrap 
 
Bootstrap is one of the most common methods deployed for CI and PI using ANN’s. 

It has been proposed that an ensemble of NN’s will predict the target with lower bias 

than a single model (Giordano et al. 2007). The Bootstrap method captures the model 

misspecification, Oã7, through M different NN models as shown in figure (2-26) 

below.  

 

 

 
Figure 2-26. A schematic of M NN models used by Bootstrap method 

Source: Khosravi et al. 2010. 
 

  In the above figure, the true regression mean is estimated by averaging the 
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point forecasts of M models, with :áN8 is the prediction of i-th sample generated by m-

th bootstrap model which can be defined as:  

 

:áN = 	
1

™
@ :áN

8

£

8B2

(2.50) 

	

  The model misspecification variance OãáR
7  is then estimated using the variance 

of M model outcomes in the following manner:  

OãáR
7 = 	

1

™ − 1
	@(:áN

8 	−	:áN)

£

8B2

(2.51) 

 

  As a result, the CI can be constructed based on (Dybowski and Roberts 2000) 

to get an approximation of OãáR
7  and the PI’s can be estimated using the variance of the 

errors OåáN
7   

 

OåáN
7 ≃ ¨	[(i −	:áN)7] −	Oãá

7 (2.52)	

 

  Furthermore, based on (Tibshirani 1996, Hagan and Menhai 1994, Dybowski 

and Roberts 2000, Khosravi et al. 2010, Khosravi et al. 2010), the variance squared 

residual  tN7 are estimated, and these residuals are linked to form a new dataset ≠v† 

where a new NN model can be used to estimate the unknown values of OåáN
7  and 

maximize the probability of observing those sample in the new dataset ≠v†. This can 
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be represented as:  

 

tN
7 = 	 c(iN −	:á)7 −	OãáR

7 	,			0d (2.53) 

 

≠v† = 	 {/N, tN
7}NB2
© (2.54) 

 

  Finally, the training cost function is defined as ¢∞± where the minimization 

can be conducted in various ways including traditional gradient descent methods 

 

¢∞± = 	
1

2
	@¶lncOåáN

7 d +	
tN
7

OåáN
7 	®

©

NB2

(2.55) 

 

  Once the model has been trained offline, the online computation load for PI 

construction is only limited to 1 + M forecasts (Rivals and Personnaz 2000) which is 

less complex than the MVE or Bayesian methods which need to calculate matrices 

and derivates.   

 

2.9.4. Bayesian Method 
 
Bayesian Neural Networks (BNN’s) were introduced to measure uncertainty in deep 

learning models from a Bayesian perspective. Network parameters W are given a 

prior with the goal of finding the posterior distribution of W instead of point estimate 

(Zhu and Laptev 2017). However, there are still limitation to this method stemming 
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from (a) highly non-linear behavior, (b) non-conjugacy, and (c) traditional Bayesian 

inference does not scale to large set of parameters. Most recent studies have focused 

on lower-bound estimation using variational inference by utilizing different 

techniques; such as: probabilistic back-propagation or variational Bayes (Paisley et al. 

2012; Kingma and Welling 2014; Hernandez-Lobato and Adams 2015; Blundell et al. 

2015; Fortunato 2017). Moreover, new algorithms have extended the approximation 

framework to a-divergence optimization (Gal and Ghahramani 2016a; Gal and 

Ghahramani 2016b; Gal 2016; Li and Gal 2017). In addition, more recent studies, 

inspired by (Gal and Ghahramani 2016a; Gal 2016), using MC dropout framework 

that require no change to existing models, estimates the model’s uncertainty using 

sample variance of the model prediction and stochastic dropouts after each hidden 

layer form a random sample for the posterior distribution (Zhu and Laptev 2017; Gal 

2016). 

  As denoted earlier, neural networks as hîï (. ), where -ï are the model 

parameters and f is the network architecture. A gaussian prior is usually assumed 

(Zhu and Laptev 2017) for the weight parameters 

 

-	~	ú(0, ≥) (2.56) 

 

  In regression-based models, the data-generating distribution	ë(:|hî(/)	) is 

assumed as follows  

                                           											:	|	-	~	hî(/), O7	           (2.57) 

  Based on a pair of N observations of ¥ =	 {/2, … , /µ}, and ∂ = 	{:2,… , :µ} in 
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Bayesian inference, the optimal posterior distribution over model parameters 

ë(-|¥, ∂) is found with new estimates of /∗; and the prediction distribution is 

obtained by marginalizing the posterior distribution (Zhu and Laptev 2017) 

 

ë(:∗|/∗) = 	∑ ëc:∗~hî(/∗)d
î

ë(-|¥, ∂)	∏- (2.58) 

 

  The prediction uncertainty is quantified based on the variance of the 

prediction distribution that can be decomposed further using the law of total variance, 

yielding the following form (Zhu and Laptev 2017) 

πrt(:∗|/∗) = 	πrt[ì(:∗|-, /∗)] + 	ì	[πrt(:∗|-, /∗)]	 (2.59)	

	

		= 	πrt	chî(/∗)d +	O7 (2.60)	

where πrt(:∗|/∗) represents the ignorance of model parameters W i.e. the model 

uncertainty, O7 is the noise level during the data generation process i.e. inherent 

noise. Especially in the case of time-series data where the pattern over test data may 

not resemble the pattern during the training data, a complete measure of prediction 

uncertainty should account for model uncertainty, model misspecification, and 

inherent noise (Zhu and Laptev 2017). Eq. (2.62) can be decomposed in two terms, 

the model uncertainty and the inherent noise respectively.  

  Bayesian Neural Networks (BNNs) introduce uncertainty to deep learning 

models from a Bayesian perspective i.e. by assigning priors to the network parameters 

W, the network now finds the posterior distribution of W instead of the point estimate 

(Zhu and Laptev 2017, Gal 2015). The earliest references to BNNs signal that the 
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only statistical interpretation of neural network Euclidean loss is as maximum 

likelihood w.r.t. a Gaussian likelihood over the network outputs and that inference 

could theoretically be performed through the invocation of Bayes’ theorem (Tishby et 

al. 1989). As a way of model regularisation, modern approaches rely on a fully 

factorised approximation—the approximating distribution assumes independence of 

each weight scalar in each layer from all other weights (Hinton and Van Camp 1993).  

This is generally referred to as posterior inference, since exact inference is rarely 

possible, they are approximators.  

  Many new approximate inference methods have been put forward for BNNs 

that are based on the variational inference to optimize the lower bound (Zhu and 

Laptev 2017, Khosravi et al. 2015). For example, stochastic search (van Hinsbergen 

et al.  2009), variational Bayes (Khosravi et al. 2010), probabilistic backpropagation 

(Hwang and Ding 1997), Bayes by BackProp (Veaux et al. 1998) and its extension 

(MacKay 1992). Several algorithms further extend the approximation framework to 

α-divergence optimization (Nix and Weigend 1994, Efron 1979). Readers can refer to 

earlier studies for a more detailed review of modern BNNs (Heskes 1997, Neal 2012, 

Mullachery et al. 2018).  

 
 A critical point to note concerning all the BNN methods is that they require a 

completely new set of training methods, adjusting the loss function to the 

optimization problems, and training new batches, all this and more building a new 

BNN non-trivial. BNN’s are also slow and expensive to apply to large datasets. Many 

such inference approaches introduce many new hyper-parameters, and the 

management of a massive number of parameters. 



 

 

103 

103  

 
 

 

2.9.5. MC Dropout 
 
Recent studies have shown that dropout applied before every weight layer is 

mathematically equivalent to an approximation of the probabilistic deep Gaussian 

process (Damianou and Lawrence, 2013; Gal and Ghahramani 2016). This problem is 

very critical because while LSTM and other neural networks can be fine-tuned for 

specific time-series prediction problem, there are instances when it gets it right and 

ones that the model will not get it right. Hence, it is essential to quantify the 

uncertainty of the prediction point estimate; nonetheless, previous models have not 

uncertainty bounding for neural network models (Gal 2015). For example, an adverse 

exogenous factor may impact the GDP growth of countries or stock prices and it 

would be important to constantly monitor the uncertainty surrounding the prediction 

over time. 

  Achieving the same objective as a BNN without the computational 

complexity, recent work has shown that the neural network architecture can be 

directly applied to trained models. Monte Carlo dropout (MC) framework can be used 

in neural network architecture to provide uncertainty quantification for almost free 

(Gal 2015, Gal and Ghahramani 2015b, Gal and Ghahramani 2015c). Dropping some 

hidden connection will lead to a sampling procedure in neural networks by giving 

weights from the Bayesian network with the same affect. More specifically, 

stochastic dropouts are applied after each hidden layer, and the model output can be 

approximately viewed as a random sample generated from the posterior predictive 
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distribution where the model uncertainty is estimated by sample variance over 

iterations (Gal 2015).  

  In Bayesian inference, model uncertainty is estimated by obtaining the 

posterior distribution ë(-|¥, ∂).  The MC dropout solves for the critical challenges 

of non-conjugacy and non-linearities in neural networks (Gal 2015, Gal and Gadhot 

2015a, Gal and Ghahramani 2015b). The sample variance can approximate the model 

uncertainty as  

πrt∫ 	Phîï (/∗)X =	
1

ª
	@c:á(g)

∗ −	:á∗ººº	d
7

∞

ΩB2

(2.61) 

where /∗ is a new input, the neural network output with stochastic dropouts at each 

layer with probability p, this feedback is repeated B times to obtain æ:á(2)
∗ , … , :á(o)

∗ ø, 

and  :á∗ººº = 2

∞
	∑ :á(g)

∗∞
ΩB2 	 (Gal, Gron, Hron, and Kendall 2017; Zhu and Laptev 2017). 

 

  Assume we have a neural net model :∗ = h¡(/∗) where y* is the prediction 

provided W as parameters and x* as the input. To perform UQ on this model we apply 

the algorithm 1 mentioned below. The factors that we are going to consider for the 

uncertainty or standard prediction error are model uncertainty and inherent noise. MC 

Dropout requires an optimal probability value p usually considered to begin with 0.3 

to 0.5. this measure gives us how much fluctuation is present in the model (Gal 2015). 
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Algorithm 1: UQ for a regression task 

 
A neural network with some input /∗ the end point is the expected model output 

given the input i.e. ì(:∗) - the predictive mean, and how the model is confident in its 

prediction i.e. πrt(:∗) - the prediction variance (Gal 2015, Gal and Ghahramani 

2015a, Gal and Ghahramani 2015b). The dropout network is essentially a Gaussian 

process approximation (Gal and Ghahramani 2015b, Gal and Ghahramani 2015c). 

This implementation is essentially saying that over a RNN or LSTM, we are 

essentially putting a gaussian distribution on the weights, and mathematical 

gymnastic shows that doing gaussian weights same as multiple gaussian sampling 

over the dropout. Essentially going back into BNN to capture posterior for 

uncertainty, the recent work proves that sampling over LSTM with a dropout layer 

functionally the same as add tao parameter (¬).   It is not just adjusting the dropout 

value, sample on predictions leveraging expectation value and variance of prediction 

Input: prediction model h(·), dropout probability p, number of 
iterations B, test dataset x*, validation set /√ 
Output: uncertainty η  
1. for b = 1 to B do  
2.           :á(Ω)

∗ ← Dropout (h(x*), p)  
3. end for 
 // model uncertainty 
4. :∗ =ƒ :á(Ω)

∞

ΩB2
 

5. z27 ←  2
∞
@ c:á(Ω)

∗ − :∗d
7∞

ΩB2
 

// inherent noise 
6. for each ≈√ in validation set {≈∆√ , ≈«√ , … , ≈»√ } do 
7.          :(…)

√  ← ℎ(/√) 
8. end for 

9.  z77		← 2
§
@ c:á(…)

√ − :(…)
√ d

§

…B2
 

// The total uncertainty 
10. η = õη2

7 + η7
7 

11. return η 
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without changing the model or other parameters optimizing the hyperparameters of 

LSTM (Zhu and Laptev 2017, Wen et al. 2017). 

  In this approach, firs the prior length scale À captures the belief over a 

function, for example a high-frequency stock ticker indicator would correspond to a 

short length scale À and a low-frequency annual macroeconomic indicator would 

correspond to long-length scale. Mathematically the Gaussian process precision factor 

¬ can be defined as: 

 

¬7 = 	
À7ë
2úG

	 (2.62) 

Here the length scale À has been squared and is divided by the weight decay, p is the 

probability of the units not being dropped (Gal 2015).  

  A network output is simulated with input x* treating dropout during training 

time in a classic fashion i.e. do random dropout on the test set (Gal and Ghahramani 

2015b, Gal and Ghahramani 2017) This is repeated over T iterations where different 

units are dropped every time and the results for  {:á"∗(/∗)} are collected. This process 

resembles an empirical sampling procedure from the approximate posterior 

predictions (Srivastava et al. 2015, Gal 2015). The empirical estimator for predictive 

mean and predictive variance (or uncertainty) can be obtained from the sampling in 

the following manner  

 

ì(:∗) 	≈ 		
1

k
	@:°i

∗(/∗))
A

"B2

(2.63) 
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πrt(:∗) 	≈ 			 ¬12	ΙŒ + 	
1

k
	@:°i

∗(/∗)k:°i
∗

A

"B2

(/∗) − 	ì(:∗)Aì(:∗) (2.64) 

		 

 

Eq. (2.66) was introduced for averaging model to scale the weights at test time 

without dropout gives reasonable approximation (Srivastava et al. 2015). The second 

equation is the sample variance over T forward passes through the network plus the 

inverse model precision.  

  The MC dropout in neural network acts as an approximator to variational 

inference in gaussian distributions. The dropout neural network has been argued to be 

identical to variational inference in Gaussian process (Gal 2015, Gal and Ghahramani 

2015b, Gal and Ghahramani 2015c). Stochastic nature of dropout captures the 

variance in the long term direct correlation to uncertainty, through experimentation 

and mathematical rigour (Gal 2015, Gal and Ghahramani 2015b, Gal and Ghahramani 

2015c), the tao interpretation offers precision utilizing the wider distribution of 

sample from a gaussian process.  

 In addition to model uncertainty discussed, there are many elements to 

comprehensively capturing epistemic uncertainty including model misspecification 

and inherent noise. In some more complex architecture, encoder-decoder framework 

where the encoder extracts the representative features from a time-series and 

constructs the learned embedding, whereas the decoder reconstructs the time-series 

from the embedded space, and variational encoder is applied to the LSTM layer in the 
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encoder and regular dropout to the prediction network (Wen et al. 2017, Zhu and 

Laptev 2017). The encoder-decoder architecture can help capture the uncertainty 

when predicting unseen samples with very different patterns from the training data set 

i.e. model misspecification. These architectures can easily get extremely complex 

and perhaps not scalable across domains. Computing the noise level via the residual 

sum of squares, evaluated on an independent held-out validation set captured the 

inherent noise. This factor is always present in any form of mathematical model and 

it could only be minimized but not eliminated from a trained and tuned model.  

 
 

2.9.6. Quantile Methods 
 
 
Uncertainty in Deep Learning is still a nascent area of study, there are growing areas 

of research and many ways to obtain similar objectives. Here two recent yet novel 

applications of quantile methods in deep learning are discussed.  

 
 
2.9.6.1. Quantile Recurrent Forecaster (MQ-RNN) 
 
 
Quantiles of the forecast distribution are useful in making optimal decisions, both to 

quantify risks and minimize losses (e.g. risk management, power grid capacity 

optimization), leading to the use of Quantile Regression (QR) (Koenker and Gilbert, 

1978). QR predicts the conditional quantiles of the target distribution. Different 

multi-step strategies with neural networks, including the Direct Multi-Horizon 

strategy that avoids error accumulation, yet retains efficiency by parameters sharing 

for multiple horizons (Taieb and Atiya 2016). In QR, the conditional quantiles are 
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predicted i.e.  :"EI
(œ) |::" for the target distribution	ℙ P:"EI 	≤ 	:"EI

(œ) |::"X = “. QR is 

robust to parametric distributional assumptions, accurate forecasts, and serve as a 

post-processor for prediction calibration (Tayler 2000). The MQ-RNN was proposed 

to solve for multi-horizon quantile forecasts to solve large scale time-series regression 

problem (Wen et al. 2017). It can be presented as  

ë P:"EI,N , … , :"E2,N”::",N , /:",N
(4), /":,N

(Z), /N
(‘)X (2.65) 

where :.,N is the i-th time series to forecast, /:",N
(4) are the temporal covariates available 

in history, /":,N
(Z) is the knowledge about the future, and /N

(‘) are the static, time-

invariant features (Wen et al. 2017). In order to enable cross-series learning for items 

with limited history, each time-series is accounted for as a single sample which is 

then fed into a single RNN (Wen et al. 2017).  

 The QR models are trained to minimize the total Quantile Loss (QL) 

represented as 

 

ℒœ(:, :á) = “(: −	:á)E + (1 − “)	(:á − :)E (2.66) 

 

where (. )E = max	(0, . )  and q = 0.5, QL is the Mean Absolute Error (MAE), and the 

minimizer is the median of the prediction distribution. Now if we take K to be the 

number of horizons of forecast, Q be the number of quantiles of interest, then the K × 

Q matrix ∂÷ = 	 ◊:á"EI
(œ) ÿ

I,œ
	is the output of a parametric model M(::", /, D) which 

happens to be a RNN or LSTM in this case. The model parameters are trained to 
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minimize the total loss, ∑ ∑ ∑ mœI P:"EI”:"EI
(œ) X	œ"  where t iterates through all forecast 

creation times (FCTs) (Wen et al. 2017).  

 This is in similar view as work on Seq2Seq, where LSTM to encode all 

history into hidden states and adopts two MLP branches where encoder and decoder 

exchange information. (Cho et al, 2014).  The encoder LSTM output plus all future 

inputs into two contexts: a series of horizon-specific contexts for each future point of 

time capturing network structural awareness of temporal distance between forecasts, 

and a horizon-agnostic context capturing common information (Wen et al. 2017). 

This extension is computationally expensive.  

  

 

2.9.6.2. Tilt (Pinball) Loss Function 
 

In addition to MC dropout, one of the other key UQ’s used in this work will be the 

tilted loss function approach. Now this method has been used only for MLP’s so far, 

here one of the first use for UQ in RNN’s and LSTM’s is presented.  

  In this method we are aiming to predict the range of uncertainty quantile range 

for a specific time-series problem such as closing price prediction for tomorrow, GDP 

growth for next quarter, or the unemployment rate next year. One of the key 

advantages of the Quantile Regression Tilted Loss function is that it is 

computationally least expensive, especially compared to Bayesian RNNs and other 

algorithms. Furthermore, from a purely epistemic uncertainty perspective in decision 

making, most people actually require quantiles as opposed to true uncertainty in an 

estimate (Abeywardana and Ramos 2015). On the non-parametric inference of 
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quantiles also draws a variational Bayes approximation in a expectation maximization 

algorithm (Abeywardana and Ramos 2015).  

  The tile (pinball) loss function was introduced to penalize predictive quantiles 

at wrong locations (Koenker and Bassett Jr. ). The function is defined as 

 

																																			ℒ(ŸN|⁄) = ¤
					⁄ŸN																			‹h	ŸN ≥ 0
		(⁄ − 1)ŸN						‹h	ŸN < 0

				
	

                                  (2.66) 

The loss function is defined over the error ŸN	for a specified quantile ⁄	 ∈ 	 (0,1), and 

ŸN	 represents the error between the observation and the :N inferred quantile 	hN i.e. 

ŸN = 	:N − h(/N), h(/N) is the predicted (quantile) model and y is the observed value 

for the corresponding input x. The final overall loss function for a quantile model of 

the whole dataset is defined as  

 

ℒ(:, ‡|⁄) = 	
1

ú
@ℒ(:N − h(/N)|⁄)

µ

NB2

(2.67) 

 

  The negative exponential of the loss is presented below in Figure (2-27) that 

shows that if we were to find the area under the graph to the left of zero it would be 

alpha, the required quantile (Abeywardana and Ramos 2015).  
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Figure 2-27. Probability distribution function (PDF) of an Asymmetric Laplace 

distribution. 
Source: Abeywardana 2018. 

 
 
In terms of implementation, the parameters that require input are the quantiles, values 

that can be tuned i.e. the hidden layer, model network such as MLP, RNN, LSTM, or 

GRU, nodes, quantile range, sequence length, activation functions. Now traditionally 

this approach has only been applied to MLP and shallow neural networks. This is the 

first application of the tilted loss to LSTMs and related RNN architectures. Figure (2-

28) provides a simple class abstraction of the implementation  where the model is 

trained using a Vanilla RNN with 100 and 25 nodes in hidden layer 1 and 2 

respectively, the loss function is switched to Quantile Loss Function, optimizer is 

Adam (with learning rate of 0.02) and quantiles = 0.25 and 0.75, and finally values 

that can be tuned are the hidden layer.  
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Figure 2-28. Code Abstraction for a Vanilla RNN with Quantile Loss Function for 

Confidence Intervals 
 

  Now to summarize the uncertainty quantification for our decision-making 

cases, this research will use the MC dropout method for results shown across different 

research domains. The verdict on the optimal UQ method is still out; however, the 

literature has recently provided relevant comparisons. For example, when Bootstrap is 

compared to Classical and Bayesian methods, it had the smallest width of confidence 

interval which indicates that this method was more thorough and recommended 

(Solimum 2014). In addition, comprehensive review of delta, Bayesian, mean-

variance estimation, and bootstrap techniques showed that an ensemble of the UQ 

methods is the most reliable (Khosravi et al. 2015). Variational Inference Networks, 

MC dropout method, and the quantile loss method have become widely adopted due 

its efficiency and reliability, where extensions of this framework have also leveraged 

new neural network frameworks such as encoder-decoders at Amazon and Uber (Gal 

2015, Gal and Galambhri 2015b, Abeywardana and Ramos 2015, Wen et al. 2017, 

Zhu and Laptev 2017). The current state of the schools of thought for UQ in Deep 

Learning are summarized in Table (2-7).  
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Table 2-7. Schools of Thoughts References for Epistemic Uncertainty Quantification 
in Deep Learning 

Papers Methods Summary 

Gal, Y. and Z. Ghahramani, 
2015; 
Gal, Y. and Z. Ghahramani, 
2016a; 
Gal, Y. and Z. Ghahramani, 
2016b; 
Gal, Y, 2016 
 

Combining modern deep 
learning and Bayesian 
techniques for uncertainty 
quantification, variational 
inference, MC Dropout as a 
Bayesian approximator 

Bayesian method is 
computationally expensive, but 
MC dropout framework can 
estimated for almost free to 
obtain prediction intervals 

Wen, Torkkola, 
Narayanaswamy, 2017 
 

Multi-horizon Quantile 
Recurrent Forecaster  
(MQ-RNN), large-scale time-
series forecasting at Amazon 

Nonparametric nature of Quantile 
Regression and the efficiency of 
Direct Multi-Horizon Forecasting is 
scalable but computationally 
expensive in network framework 

Khosravi et al. 2014 Delta, Classical, MVE, Bootstrap, 
Bayesian methods comparisons, 
Genetic 
Algorithm for ensembling 
various UQ methods 

Comprehensive review and 
comparison, ensemble method is 
promising and important for 
system architecture UQ 
modularity 

Solimum 2014 Empirical comparison of 
Classical, Bayesian and 
Bootstrap methods for UQ 

Bootstrap method has the 
smallest width confidence 
interval, thereby more precise 
than Bayesian and Classical 
methods 

Zhu, L., and N. Laptev, 
2017  

Deep and Confident Prediction 
for Time Series at Uber, real-
time anomaly detection across 
millions of metrics, Bayesian 
deep LSTM for time-series 
prediction and uncertainty 

Computationally expensive and 
useful for anomaly detection, 
method is essentially the same as 
Gal 2015, Gal and Ghahramani 
2016, however, a computationally 
intensive encoder-decoder neural 
network framework 

Abeywardana 
 and Ramos 2015 

Quantile Regression Loss 
Function application MLP, our 
application applies to RNN and 
LSTMs 

Non-parametric method of 
inferring quantiles and derivation 
a novel Variational Bayesian (VB) 
approximation to the marginal 
likelihood, similar to Gal 2015, Gal 
and Ghahramani 2016, however 
using a tilt (pinball) loss function, 
easier implementation 
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Chapter 3: Gaps and Research Objectives 
 

 3.1. Gaps 

Despite the significant contributions of the existing research studies and practices, 

there are many opportunities to improve the state-of-the-art risk management 

practices as current studies: (1) are only based on one domain (ICRG 2017, Moody’s 

2017, IMF WEO 2017); (2) do not deploy high-dimensional real-time time-series 

information or leverage deep neural network (WEF 2017, Bloomberg 2017); (3) rely 

solely on expert opinion data with no information related to comparison of models 

(WEF 2017, World Bank 2013); and (4) do not provide transparency for decision-

makers to go beyond the black box (Sarlin 2015, Bao et al. 2017, KPMG 2016, 

McKinsey 2015).  

  From a decision-maker’s perspective, there are many practical needs that are 

missing in the current practices. Decision-makers want to have a more complete 

picture of the opportunities and threats in the world's poorest countries including low 

and middle-income countries. Moreover, some policymakers are concerned about the 

state of fragile and conflict-affected states (FCS), as well as, other domains such as: 

the impact of climate change. Most importantly, decision-makers care about granular 

and time foresights facing the world’s biggest cities.  

  At the same time, from a model-building perspective, there are many 

neglected attributes for domain-specific learning and predictions. First, it is not clear 

whether a structured logic approach may yield a higher accuracy at lower 

computational costs in the domains of interest. Second, it has not been established 
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whether and how the state-of-the-art techniques can be applied in the domains of 

interest. Third, there is no straightforward methodology on how to make black box 

models more transparent so decision-makers can get in-depth reasoning behind the 

forecasts. Fourth, it is not well understood how these signals can inform about project 

related risks. For simplicity, Table (3-1) establishes relationships between the existing 

research gaps, the research objectives, models and case studies. 
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Table 3-1. Research Gaps, Objectives, Models, and Case Studies 

 
 
 
 
  

 
 
 
 
 
 
 
 
 
 
 
 

Research Gaps Objectives Models Case Studies 
Domain Knowledge  Pre-process domain knowledge 

using algorithms  
Entropy, Sharpe Ratio, Vortex, 
Growth rate, Economic 
complexity etc. 

Economic, Finance, 
and Geo-political 

Large Scale Training 
or Structured Logic? 

Show structured logic to training 
data yield higher accuracy at 
lower computational cost and 
complexity 

Knowledge Abstraction Layer 
(KAL), Sequence Learning 
Gate (SLG), Decision Gate 

Economic, Finance, 
and Geo-political 

Do not deploy real-
time information or 
leverage deep neural 
network  
 

To generalized ensemble model 
architecture and framework  

Proposed ensemble models Theory 

Show a scalable framework, 
code ready to deploy 

Ensemble Long-Short Term 
Memory (LSTM) Recurrent 
Neural Network 

Economic, Finance, 
and Geo-political 

Model Comparisons Establish as a reliable model for 
domains 

Compare ensemble LSTM with 
Logit, Linear, SVM, different 
NN architecture  

Economic, Finance, 
and Geo-political 

Don’t go beyond 
Black  
 

Go beyond black box to provide 
structured output.  

Controlled Experiment:  Use 
MC simulation for stress-
testing. LSTM RNN, GRU, Bi-
directional LSTM 

Economic and 
Finance 

 Selected Memory: Preserve 
memory of past crisis to predict 
current time label and 
accommodate anomaly time 
LSTM, DTW, Logic 

Economic and 
Finance 
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3.1.1. Research Gap 1 – Domain-Knowledge and Large-Scale 
Training 
 

The first research gap arises from the lack of validation of the importance of large-

scale training. Traditionally, engineers use a “kitchen sink” approach if they do not 

have domain expertise as in the case of geopolitics, economics, and finance (Rahimi 

and Recht 2008, Falat et al. 2015, Herbrich et al. 1999). In these instances, the 

engineer used to build as big a training data-set as they can attain and then tunes the 

hyper-parameters to get the lowest error in the prediction model. However, there are 

significant computational costs associated with this approach, especially in new 

domains of applications where large training data is not readily available. Such large-

scale training could also lead to spurious relations, overfitting, and higher information 

uncertainty. Consequently, there is a trade-off between model complexity and 

overfitting. This trade-off is	not	defined	in	current	models; and it is not clear if an 

alternative approach to abstracting structured domain logic will help reduce the 

computational costs by optimizing the training data size as well as preserve this 

knowledge for deeper analysis. 

 Therefore, in this view of accommodating domain-specific knowledge, the 

abstraction and generalization of time-series forecasting problem is needed. Many 

researchers have worked on domain centric problems for specific aspects such as: 

political or economic failure (Wittman 1995, Bookstaber 2017). However, these 

studies do not provide a schematic for model predictions, including knowledge 

abstraction, to inform multi-variate time series sequence predictions.  More 

specifically a structured approach to abstract reasoning about domain knowledge may 

provide better results than the “kitchen-sink” approach where non-domain experts 
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dump all the data they have. Furthermore, a set up for a structured logic has not been 

explored for the particular domains of interest. The structured logic approach could 

preserve abstracted knowledge and help inform decision-makers beyond black box 

predictions.  

 

  3.1.2. Research Gap 2 – Real Time Information and Deep Neural 
 Networks 
 
The second challenge is how to incorporate daily and real-time data and deploy deep 

neural networks for domains of interest. Decision-makers need information for real-

time decision related to financial, economic, and political mass movements. It is not 

clear how the explosion in data and methods, such as deep neural networks, will 

impact human judgment and the decision-making process concerning LEPs. Hence, 

structured logic framework for time-series related problems is an important element 

that can inform the decision-making process. For example, to inform decision-makers 

how certain external domain risks may or may not impact their projects or assets, it 

will be important to extract the features of the project like: location, sector, assets, 

partners, size, etc. These project features will then have to be mapped with the entity 

and domain specific risk features. However, current available architecture and 

framework do not leverage large-scale open source data, or abstract relevant 

knowledge from multiple sources and models; thus, the use of ensemble deep neural 

networks, especially in our domains of interest will help address this gap.  
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3.1.3. Research Gap 3 – Model Comparisons 

Currently, there is a lack of proof, or disproof, that proposed models indeed perform 

better than traditional models and industry standards. In the literature and various 

communities of practice there is an on-going debate whether deep learning practices 

perform better than tried and tested models (Heaton et al. 2016, Kosner 2016, 

D’Acunto 2016, Smith 2017). More specifically, can a more structured logic 

approach be used to ensemble-models in a transparent manner and yield higher 

prediction accuracy?  

  The unsurpassed performance of LSTM’s has been well-documented in 

sequence prediction problems such as videos, digit rejection; nonetheless, and has 

been applied in limited capacity for our domains of interest. Hence, there is a research 

gap in the lack of understanding whether new ML/AI models perform more reliably 

in informing location-based opportunities and threats monitoring. The data flows and 

model architecture attributes in the domains of interest are also not well understood. 

 

3.1.4. Research Gap 4 – Do Not Go Beyond Black Box  
 
Decision-makers are wary of black box models. The black box can approximate any 

function but studying its structure will not give any insights on the structure of the 

function being approximated. A big concern decision-makers face is how to go 

beyond just predictions and have deduction and reasoning abilities to gain deeper 

insights into the problem (Knight 2017, Wolchover 2017, Shwartz-Ziv and Tishby 

2017). For instance, the policy and investment community can learn from 

interdisciplinary fields such as vision and pattern recognition; similarly, in the 
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computer science community, the treatment of videos as slices of images at each 

point of time. i.e. as a time-series problem, has delivered many breakthroughs. 

However, the challenge is how to convert these tasks in our domains of interest into a 

compatible model framework without compromising the simple insights that 

decision-makers need. Decision-makers are interested in stress-testing to understand 

the impact of an external shock on their forecasts; they may want to infer that the 

current time-pattern is similar to an anomalous, prior crisis, or normal pattern. Such 

deeper insights have not been represented in the current literature and state-of-the-art 

models. Furthermore, uncertainty quantification for our domains of interest 

leveraging deep neural networks is a nascent, yet growing body of literature (Gal 

2015, Wen et al. 2017). 

 
3.2. Research Objectives 

The main goal of this research study is to develop models that address the above gaps 

by providing structured output to inform the executive’s decision-making process 

concerning large engineering projects (LEPs). To achieve this goal, the following 

research objectives are identified. The first objective is to provide a methodology to 

convert geo-political, economic, and financial signals with pre-processed domain 

knowledge. Second, is to develop a generalized architecture for ensemble-models in 

sequence forecasting problems and compare the results of the ensemble-models with 

the traditional techniques to validate the model performance, accuracy and scalability. 

Third, a collection of ensemble-model architecture is proposed in order to go beyond 

the black box. Through achieving these objectives, a number of significant research 

questions will be answered.    
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3.2.1. Structure Domain Logic for Training Data 

This research objective is to optimize deep neural networks training based on domain 

knowledge. For example, in the domain of finance, predicting the stock price for 

Goldman Sachs versus Amazon would require different set of training features. In the 

domain of geo-politics predicting a protest event in Syria versus the United States, or 

in the economics domain predicting the GDP growth of Singapore versus Brazil will 

result in the same problem of appropriate training data. In such cases, domain 

knowledge must be extracted. Therefore, a decision-gate could help in selecting the 

relevant domain-specific training examples. This decision-gate will select similar 

features given the prediction problem and grouped clusters; like technical indicators’ 

cluster, entities’ cluster, domains’ and classes’ cluster.   

  In addition, this research objective will show that increasing the sample of 

training data to include unstructured features is not the right approach in the domains 

of interest. A structured logic approach preserves the entity-domain relations and 

achieves state-of-the-art accuracy.   

  By attaining this objective, the persistent research question of: which models 

can help in the identification and prediction of opportunities and threats, can be 

thoroughly answered.   

 
3.2.2. Establish Proposed Ensemble Model  

The second research objective is to establish the Long-Short Term Memory (LSTM) 

neural network as the state-of-the-art in sequence prediction problems in our domains 

of interest. The evidence should make the case that the proposed ensemble LSTM 
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model performs better than industry standards and other current models used in the 

domains. This ensemble model should have prior stored knowledge to make selective 

decisions regarding domain-specific predictions. Moreover, evidence will be provided 

to prove that the structured logic approach for domain-knowledge representation is 

important for executive decision-making. For example, an event in Syria may not 

impact the economic performance of the USA, but China’s export growth pattern may 

be significant for predicting US economic performance. Consequently, this research 

objective will provide an answer to an imminent research question, which is how to 

best inform the model from knowledge of other different models to get best accuracy 

and inform strategy?   

 
3.2.3. Go Beyond Black Box to Provide Structured Output 

The third objective of this research is to provide insights beyond a black box model 

without compromising the predictability power of the model. Decision-makers look 

for a structured output to inform them about their decisions. This structured output 

should spit out the prediction output accompanied with all relevant details. For 

example, a prediction of a country’s indicator like GDP growth should be 

accompanied with associated knowledge such as: (a) most similar countries, (b) most 

similar indicators, (c) a signal whether the current trend follow an anomaly or crisis 

pattern, (d) dynamic view of relevant moving factors, or (e) locations like cities or 

states with high or low growth.  

  A related area of research called Structured inference requires structured 

prediction to solve domain specific problems. Structured prediction models include 

Conditional Random Fields (CRF) or Max-margin Markov Networks (M3N). Recent 
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studies have shown that without understanding combinations of inference and 

learning that are appropriately compatible, learning performance under approximate 

inference cannot be guaranteed (Kulesza and Pereira 2007). Similarly, deep Markov 

models (DMM) for structured inference problem has also been proposed (Krishnan et 

al. 2016). Other researchers have also used Hidden Markov Models (HMM) for 

predicting social unrest in East Asian countries (Qiao et al. 2017). Recent 

developments to capture epistemic uncertainty (model, model misspecification, and 

inherent noise) in both time-series and classification problems has opened new doors 

to account for uncertainty quantification in our domains of interest (Gal 2015, Wen et 

al. 2017, Khosravi et al. 2014).  

  The recent developments provide some inspirations for going beyond the 

black box; however, an important element that is still missing is the incorporation of 

the interdependencies between and within domains and entities and having a more 

transparent view of prediction beyond the black box.  

  The realization of this research objective will help in answering the following 

research questions: (1) Does "black box" model architecture yield higher 

predictability power than standard models; (2) Is it possible to go beyond the "black 

box" models; and (3) How can these models provide deduction, reasoning, and 

uncertainty quantification to aid project-related decision-making.  
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Chapter 4: Proposed Methodology 

In order to achieve the previously-mentioned research objectives, the following 

methodology is proposed. The proposed methodology is based on a methodology 

architecture with three main components. The first component consists of algorithms 

for processing domain knowledge for technical feature clustering and training. 

Second, is a structured ensemble LSTM model for predicting opportunities and 

threats; and finally, the third consists of ensemble models to accommodate the 

dynamics of the system that aid inter-and-intra sectoral reallocation decision 

problems. 

  The model system architecture is illustrated in Figure (4-1). There are two 

meta-components to the overarching system including the Knowledge Base layer and 

the Intelligence Layer that are pipelined together. In the Knowledge Base layer, the 

various sources of information are fused together in a structured manner such that 

spatial-temporal tags for entities, risk domains, classes, indicators…etc. available in a 

single database repository. The pre-processing domain knowledge module uses 

domain specific algorithms and measurements to classify the data in a post-processed 

format that can be used for analytical model building. The intelligence layer is 

composed of two modules: the ensemble sequencing learning program and deeper 

ensemble programs. The ensemble sequence learning program is the proposed 

generalized ensemble framework that extract what features are relevant for a given 

prediction problem. It, also, consists of a collection of methods that provide a 

controlled environment for testing hypothesis, deduction, and reasoning purposes by 
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accommodating uncertainty quantification. This ensemble generates the time-series 

forecast output in period t+1 which is explained in section (4.2).  

  The next section discusses the attributes of pre-processing domain knowledge 

in geo-politics, economics, and finance; such as: entropy, economic complexity 

algorithm, and Sharpe ratio. 
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Figure 4-1. Proposed Model Architecture for Identification and Prediction of Opportunities and Threats
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4.1. Pre-processing Domain Knowledge 
 
The first analytical step in the proposed model is to process the data with state-of-the-

art-models used in assembling knowledge in domain specific circumstances. In each 

domain, there is an extensive list of algorithms; nonetheless, to simplify matters, only 

key measures for constructing these features will be discussed here, which are backed 

by both domain and measurement science literature. This processed domain-

knowledge data will be useful to construct features for training data and model 

building. 

  Pre-processing domain knowledge can also include generating technical 

features related to the system of interest. Examples of broad measures used in 

Economics, Finance, and Geo-political are described. First, summary tables for broad 

sub-domain measures are presented. For example, in order to measures economic 

disparity, many measures such as Gini coefficient, Atkinsons measure, or Shannon 

Entropy can be used, and within economic disparity, a main method like Shannon 

Entropy will be elaborated more in detail. Similarly, a sub-domain of economic 

domain is economic diversification, and a specific method for quantifying economic 

diversification called economic fitness-complexity is discussed. Reader should note 

this is only a non-exhaustive source of features, since many other features are 

incorporated.  

 

4.1.1.  Economics  

There are two family of important training features based on measurement science for 

economics are discussed in this sub-section. These measures can be applied to extract 
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meaning information about the system in question. Measurements to incorporate 

attributes of (a) economic disparity, and (b) economic competitiveness and 

diversification are discussed below. The main measures are first presented in tables, 

with specific attention given to one of the important measures from the host of 

measures presented.   

 
Economic Disparity: Entropy  

  Economic disparities can become a systemic risk and a root cause of 

economic and societal failure. Hence it becomes fundamental to assess inequality 

with its deficiencies. It is important to appropriately treat information (or the lack 

thereof) and conflict in the distribution as significant deficiencies, i.e., uncertainties 

or risks.  The measurement science related to economic disparity has remained silent 

on the role of information deficiency, degeneracy, and uncertainties in the 

development of models and metrics suitable for investment and policy decision 

making. Economists consider three sources to measure economic disparity: wealth 

inequality, income inequality, and consumption-based inequality. Economic disparity 

is usually measured by metric such as the Gini Index (Gini 1912), Thiel Index (Thiel 

1967, 1972), or Atkinsons measure (Atkinson 1970) (see Table 4-1). However, from 

an information science perspective, measurement science for economic disparity 

ignores the information deficiency associated with income distributions explicitly. 

The uncertainties measured as conflict in the probability density function (pdf) 

regarding the information and state of economic disparity might offer insights. Any 

gleaned knowledge on the relative order or for that matter disorder, i.e., the 

information or lack thereof encoded in the economic distribution, remain important 
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prior knowledge for important resource allocation problems. Below an information 

theory-based approach to quantify uncertainty and risks related to the state of 

economic disparity is discussed. 
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Table 4-1. Comparative Analysis of Models for Economic Disparity 
Model Equation Range Feature Reference 
Shannon 
Entropy ! = −$%&'()%&

*

&+,

 

Pi is the probability of the ith decile/percentile of income range. 
n is the number of population groups. 
 

[0,∞) As the value of Shannon Entropy increases, 
incomes or wealth becomes more equal. 
Maximum if all the outcomes are equally likely; 
“0” if only one outcome in certain. 

Shannon 
(1948) 

Gini 
index 

 

2 =
∑ ∑ 45& − 564

7
6+,

7
&+,

29∑ 5&
7
&+,

 

xi is the wealth or income of person i. N is the number of 
persons. 
 

[0,1] As the value of Gini index increases, incomes or 
wealth becomes more unequal. “1” expresses 
maximal disparity among incomes; “0” 
expresses perfect equality, where all incomes 
are the same. The value may be greater than 
“1” when some persons have negative incomes 
or wealth. 
 

Gini (1912); 
Pizetti and 
Salvemini 
(1955) 
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xi is the wealth or income of person i. N is the number of 
persons. < is the mean income. 
 

[0,lnN] As the value of Theil index increases, incomes 
or wealth becomes more unequal. Maximum if 
one person has all the income; “0” if everyone 
has the same income. 

Theil (1967) 

Atkinson 
index 
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xi is the wealth or income of person i. N is the number of 
persons. < is the mean income. 
 

[0,1] For  K = 0, (no aversion to inequality) it is 
assumed that no social utility is gained by the 
complete redistribution, and the Atkinson 
index is “0”. For K = ∞ (infinite aversion to 
inequality), it is assumed that infinite social 
utility is gained by the complete redistribution, 
and the Atkinson index is “1”. 

Atkinson 
(1970) 
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 Grouped data such as income distribution, CO2 emissions or export values of 

countries by themselves might not provide useful features for training data. Entropy 

can be used to classify various information sources to process features about domain 

knowledge in areas such as disparity in income, climate emission disparity, or trade 

diversification. Rather than using individual choice probabilities, entropy can be used 

for feature-training. For example, recent evidence provides applications of entropy to 

quantify risk and uncertainty in economic disparity for countries and cities (Mishra 

and Ayyub 2017a, Mishra and Ayyub 2017b). 

  Entropy is a notion associated with system or information disorder with 

implications for diverse range of problems involving information, uncertainty, and 

risk.  The most well-known Entropy measure was first introduced in the late 1940’s 

by an electrical engineer at Bell Labs called Claude Shannon. Shannon Entropy 

(1948) was further developed into a relative measure of entropy by Kullback and 

Leibler (1951). Shannon entropy has played a central role in the development of 

fields as diverse and far ranging as electrical engineering, statistics, mathematics, 

statistical physics, thermodynamics, etc. 

 The Shannon entropy measure S(p), for a probability distribution of a random 

variable with discrete values defined over !	 ∈ $, where X is a random variable with 

‘n’ possible outcomes and probability pi for the i-th outcome, 1 ≤ i ≤ n.  The entropy 

is thus defined as: 

%(') = 	−+', log0(',)
1

,23
(4.1) 
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This entropy measure takes on values larger than 0. Its value is zero if (',) = 1 for 

an	7	 ∈ 	 {1,2,… , <}, and is maximum for equally likely outcomes of pi = 1/n for all i. 

The Shannon entropy expression can be rewritten as:  

 

%(') = 	−	 1
ln	(2)+', ln(',)

1

,23
(4.2) 

 

  The logarithm in Eq. 4-2 may be taken to any base and it is customary to use 

base 2 in electrical engineering and computer science because of the binary character 

of digital logic circuitry.  The choice of the functional form in the definition of 

entropy is that it can be mathematically proved to be the unique function that satisfies 

intuitively sensible properties that a reasonable measure of information ought to 

satisfy.  For example, given the definition of entropy, it can be shown that the 

information content of two independent random variables must be equal to the sum of 

their individual information contents.  And as mentioned earlier, S(p) is maximized 

when all possible outcomes are equally likely, which accords well with intuition.  If X 

is completely predictable, then a specific outcome will happen with probability one 

and in that case, S(p) = 0.  This too makes intuitive sense because, an event with 

probability one is deterministic and the uncertainty content (entropy) of a 

deterministic variable is zero because nothing learned by observing it since the 

outcome is pre-determined.   

  Consider a simple experiment with ten sample groups.  Several income 

distributions are possible. For example, all ten people in a given sample can have the 

same level of income, or one person can capture 90 percent of the total group income 



 

 

134 

134  

etc. These hypothetical group distribution cases are illustrated as cumulative 

distribution functions (cdf) with their relative Shannon entropy values in Figure.  1. 

As the cdf approaches the line of equality i.e. income parity, the maximum entropy 

point associated with highest conflict and uncertainty is reached. The case of extreme 

low entropy denotes the case where 90 percent of total group income is captured by 

one person. The extreme low entropy case signals low information uncertainty but 

high-risk of social disorder. In other words, Shannon entropy becomes largest for 

elements that are equally likely i.e. there is highest conflict in the case for uniform 

distribution of resources. The information obtained from the distribution gives a 

signal on the value of information embedded in a given distribution.  

  Some cases characterizing high entropy include (a) period of relatively low 

accumulation of wealth and equal distirbution of income, or (b) rich socieites in 

Nordic countries (like Sweden, Norway, Iceland) that have low income inequality. 

The communist China in the 1970’s or socialist East European economies prior to 

1990 (such as Slovak Republic, Uzbekistan, Hungary, Romania, Ukraine, Czech 

Republic) are instances of low wealth accumulation-and-equal distribution of 

resources. In the communist or socialist model, optimality is maintained closer to 

societal preference of equal distribution of resources. Similarly, results indicate that 

happy countries tend to have higher entropy, for example in Nordic countries of 

Iceland, Norway, or Netherlands. This is an instance of high entropy and high wealth 

accumulation and is most desirable from a utilitarian point of view. High entropy 

instances indicate high conflict from given probability distribution, corresponding to 

greater equality and parity with higher information uncertainty.  
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  On the other end of the spectrum, low entropy cases are Brazil in the 1990’s 

or the United States and South Africa in modern times. Low entropy corresponds to 

higher inequality, greater disparity, high risk of social disorder with low uncertainty 

and conflict.  

  

Figure 4-2. Shannon Entropy Examples with Income distribution. 

Notes: The line of equality represents equal income distribution that is the 45-degree line. Such a 
uniform probability distribution function is one in which every person has the same income (or 
wealth). The lines for High Entropy Case (Eastern Europe in early 1990’s or China in early 1980’s) 
and Low Entropy Case (South Africa in 2015 or Brazil in the 1990’s) are extreme distributions in the 
global sample based on the fraction of total income held by deciles. The other countries lie in the area 
between the two cases.   
 
  

  Entropy has also been interpreted as a measure of diversity (Reardon and 

Firebaugh 2002, White 1986). If all individuals in a population are associated with 

the same group (e.g. racial classification or income level) there is no diversity in the 

population. On the other hand, if individuals are evenly distributed among two or 
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more mutually exclusive groups, there is maximum diversity (and maximum entropy 

or uncertainty) in the population.   

   Entropy has been widely applied in regional and urban science. In 

geographical studies, entropy has provided diverse insights on spatial decomposition, 

including: (1) entropy as expected information used to verify hypotheses about the 

spatial distribution of phenomena, (2) entropy as a measure of dispersion of random 

phenomena, and (3) entropy-maximizing models for the identification of the most 

probable spatial distribution and allocation of phenomena in a system. 

  In spatial analysis the notion of entropy has been applied since as early as the 

1960s. Berry and Schwind (1969) justify the use of entropy and information in spatial 

analysis in the following words: “Increasingly persuasive arguments are being 

advanced that many spatial regularities result from purely random processes, that is, 

that they represent most probable steady-states. These arguments continue that 

deviations from such regularities should therefore be worthy of more attention than 

the regularities themselves, because it is the deviations that reveal underlying 

organization and order. Information theory provides the means for formalizing these 

ideas. The statistically most probable state is equated with maximum entropy”.  

  The next figure provides a real-world interpretation for Shannon entropy and 

income distribution. Figure (4-3) provides an illustration of Shannon Entropy for US 

cities and hypothetical distributions sorted in ascending order. The vertical axis plots 

the value of Shannon entropy and horizontal axis various cases from hypothetical 

examples and city-level data for Washington, DC, San Francisco, Baltimore, and 

Detroit. The underlying income distributions are scaled to 9 groups. For city data, the 
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income groups are following: (1) 0, (2) $1-$9,999, (3) $10,000-$14,999, (4) $15,000-

$24,999, (5) $25,000-$34,999, (6) $35,000-$49,999, (7) $50,000-$64,999, (8) 

$65,000-$74,999, and (9) $75,000 and over. Higher information uncertainty is 

observed in San Francisco which is closest to a uniform distribution. Relatively lower 

entropy values are for Detroit, representing higher risk of social disorder. 
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Figure 4-3. Shannon Entropy for US Cities and Hypothetical Distributions (sorted in ascending order). 

The chart plots Shannon Entropy S(p) on the vertical cases with many different distribution cases on the horizontal axes that are sorted from low to high entropy 
values. Entropy values are for hypothetical scenarios and city data from US Census Bureau. The individual bar charts show vertical axis as fraction of household 
incomes and the horizontal axis as income range bins. The cases references Example 1-7 are hypothetical cases. Cases with relatively lower entropy signals low 
level of uncertainty and conflict based on the information provided. This corresponds to higher inequality, greater disparity, and high risk of social and economic 
disorder. The cases with relatively higher entropy corresponds to greater equality and parity as well as lower risk of social disorder.  
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Competitiveness and Diversification: Fitness-Complexity algorithm 
 
 

Similar to pre-processing domain knowledge using entropy for economic 

disparity economic opportunities and threats at a macro or micro level can provide 

valuable processed information using algorithms for quantifying economic 

diversification. A growing body of economic literature has shown that export 

diversification is the appropriate strategy. Diversification, both geographically and 

product-wise, is found to expand revenues and enhance growth (Hummels and 

Klenow 2005, Pham and Martin 2007, Brenton and Newfarmer 2007). More 

specifically, the accounting for economic diversification or concentration can be 

conducted with micro-economic data for cities, but here are elaborated for export 

earnings to assess external macroeconomic competitiveness and diversification. 

Countries and regions that are dependent on a narrow export basket often suffer from 

export instability arising from unstable global demand (Anand et al. 2015). 

Diversification of exports and destinations helps in stabilizing export earnings in the 

longer run, with benefits analogous to the portfolio effect in finance (Ghosh and Ostry 

1994).  

  Furthermore, the only sources of detailed raw data is available export-import 

values of a country. These export earnings figure capture “hidden” capabilities of 

competitiveness that are encoded in the specialization pattern of countries.  

  The variety of methods for measuring export diversification are presented in 

Table 4-2. For many of these measures the results are based on a newly created 

database that combine detailed data on goods as well as service exports to construct a 

universal matrix of world trade (Mishra et al 2018a, Mishra et al 2018b).  
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These various elements of country and item features can be incorporated for 

macroeconomic predictions. Of particular interest is the introduction in recent papers 

that have laid the foundation of non-monetary metrics used to assess the 

competitiveness of countries by measuring intangible assets or the strength of an 

economic system, measure of economic complexity (Hausman et al. 2016, Tachella et 

al. 2016, Pietranero et al. 2014).  

  Economic Complexity approach are data-driven and interdisciplinary, 

borrowing from diverse fields such as dynamical systems, complex networks, and big 

data analysis methods such as machine learning algorithms. The spirit is similar to the 

Google PageRank approach, in the sense that we are interested to optimize both large 

data analysis and algorithms to enhance our capability to extract information and 

maximize the signal to noise ratio. The idea is the following. Each country has some 

capabilities, which represent its social, cultural, and technological structure (Dosi et 

al., 2000). These capabilities permit to produce and export products, so products and 

their complexities are linked to the fitness of each country; in particular, the 

complexity of a product increases with the number and the quality of the capabilities 

needed in order to produce it, and the fitness is a measure of the complexity and the 

number of the exported products. This algorithm is discussed more in detail in the 

next sub-section.  
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Table 4-2. Measures of export diversification (concentration) 
 

Method Definition and Use Cases 
Herfindahl Index (HI) Herfindahl Index (HI) is the most commonly used 

measure of export diversification. It lies between 0 
and 1 where being close to 0 indicates well 
diversified exports.  There is a non-monotonic 
relationship between sectoral diversification and 
development, as economic activity tends to re-
concentrate at later stages of development, after 
diversifying during much of that process (IMF 2014, 
Imbs and Wacziarg 2003). 

Revealed Comparative 
Advantage (RCA) 

Revealed Comparative Advantage (RCA) 
calculates the relative advantage or disadvantage of a 
country in a certain class of goods or services as 
evidenced by trade flows (Balassa 1963). 

Export Quality (EQ) Export Quality (EQ) measures export quality by 
using unit value adjusted for differences in 
production costs and for the selection bias stemming 
from relative distance (Spatafora et al 2014). 

Export Sophistication (EXPY) Export Sophistication (EXPY) measures the 
similarity of a country’s exports to the structure of 
advanced economy exports. The concept is based on 
the notion that what matters for growth is not how 
much you export but what you export (Hausmann, 
Hwang and Rodrik. (2007). herein referred to as 
(HHR)). Goods and services exports with high 
productivity and sophistication contribute more to 
overall economic growth (Hausmann et al 2007, 
Mishra et al 2011). 

Economic Complexity Index 
(ECI) 

The Economic Complexity Index (ECI) is an 
extension of the sophistication measure, and suggests 
that the large income gaps between rich and poor 
nations are an expression of the vast differences in 
productive knowledge amassed by different nations. 
The ECI, developed by Hausmann et al (2011), 
approximates the productive knowledge in a country 
and helps explain differences in the level of income 
of countries.  

Fitness-Complexity (FC) Similar in spirit to the ECI approach, recent methods 
of the Fitness-Complexity (FC) algorithm use a non-
monetary metrics for country competitiveness 
(fitness) allows for quantifying the hidden growth 
potential of countries by the means of the comparison 
of this measure for intangible assets with monetary 
figures, such as GDP per capita (Tacehlla et al 2013, 
Pietranero et al 2014). 

Product Space (PS) Product Space (PS) approach presents a variety of 
statistical measures that facilitate an understanding 
why a country that exports a certain set of products 
was able to diversify in another set of new exports. 
The changes in the RCA are governed by the pattern 
of relatedness of products at the global level (Hidalgo 
et al, 2007). As countries change their export mix, 
there is a strong tendency to move towards goods that 
are more closely related to ones already being 
produced rather than to goods that are less closely 
related. 
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Fitness-Complexity 

  The algorithm uses detailed novel data on world trade in goods and services to 

extract information on diversity of a country and ubiquity of a given activity. In the 

next steps, the matrixes of products are notated as (P), services as (S) and the 

universal matrix that incorporate both goods and services as (U).  

  First, export specialization is defined. The Revealed Comparative Advantage 

(RCA) is a fundamental concept introduced by Balassa (1965). RCA informs whether 

a country’s share of an item in world market, is larger or smaller than the items’ share 

of the entire world market. RCA is a measure of relative specialization of a country in 

a given item.  

  Mathematically, the RCA of a country (another feature variable) is measured 

by the relative weight of a percent of total exports of a given item from the U matrix 

proportional to the percent of world export in that given item. Formally, if !", u 

represents the export values from universe u of exports by country c. The RCA that a 

country c has in item u from the universal trade matrix is defined as:  

 

	$%&	',) =
!',) ∑ ,',)	'⁄

∑ !',). ∑ ∑ ,',			).'⁄ 	
(4.3) 

   

  The information from RCA is used to construct a country-item binary 

universal matrix for various years. This is a 3-dimensional matrix of countries, items 

and years. It is important to note that the final results are highly sensitive to the set 

RCA threshold value.  The entries of the country-product-services provide a binary 

matrix M that describes country specialization pattern over time based on the 
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universal matrix of world trade. The universal matrix M is related to the 

corresponding RCA index. For consistency, the Mc,u entry of the adjacency matrix is 

described as: 

 

4',)	 = 	 5
6,			789	:,;	<		6	
=,			>?@ABCD.A

		E (4.4) 

 

  A country is considered to be specialized in an item if it has an Mc,u = 1 for the 

country-item pair. Therefore, diversity d for country c is defined as the number of 

activities that a country is specialized in. More formally, F' (country diversity) is 

equal to the sum of items the country is specialized in i.e. ∑ 4')
G;
)H6  for all goods and 

services N. Similarly, an item from the U matrix is considered to be ubiquitous if 

many countries are specialized in the export of that activity. Therefore, ubiquity k for 

activity u from the U matrix is based on the number of countries that are specialized 

in that activity. More formally, I) is the sum of countries specialized in a given good 

or service from the u- matrix i.e. ∑ 4')
'
'	H6 . 

   A nonlinear iterative algorithm is applied to construct these new features, such 

as competitiveness of a country by a single number called Fitness, and the level of 

technology and advancement required to export a product (or service) by its 

associated Complexity. Fitness of a country Fc is proportional to the sum of the 

products or services exported by that country, weighted by their complexity, 

∑ 4')J)) , where Qu is the complexity of an item in the universal matrix (goods or 

services). On the other hand, the complexity itself is inversely proportional to the 

number of countries which export that product, and directly proportional to how fit 
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those countries are, or as this algorithm says, inversely proportional to the inverse of 

the fitness. All these are mathematically summarized in the iteration of Equations 4-5. 

 

⎩
⎪
⎨
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(Q)〉'

					J)
(Q) =

JT)
(Q)

〈JT)
(Q)〉)

		 (4.5) 

  

  This iterative method is composed of two steps at each iteration: first compute 

the intermediate variables 	OP'
(Q) and JTA

(Q) using the fitness and complexity resulted 

from the previous iteration of the algorithm (or the assumed initial values for the very 

first iteration) and then normalize them such that the average of the fitness for all 

countries and the average of complexity for all products have a value of 1. The initial 

conditions are	JT)
(=) = 1	∀[ and	OT'

(=) = 1	∀" (i.e. we started out by assuming that all 

countries are equally fit and all products are equally complex). However, it is noted 

that the algorithm converges to the “fixed points” of the map, meaning that no matter 

what the initial guess is it always converges (or supposed to converge) to the same 

values (Tachella et al. 2012, Cristelli et al. 2015).  
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4.1.2.  Finance  

There are many technical features that are used specific to asset classes to inform 

trading strategies. This section provides specific features for equity prices as a sub-

domain of finance.  

  In finance, technical features, also referred to as technical analysis is the about 

forecasting the price direction and patterns based on historic information, such as 

price and volume to inform active risk management in trading practices (Kirkpatrick 

and Dahlquist 2006). The focus here is on equity markets for stocks. Generally, prices 

related to Open, High, Low, Close (OHLC), and Volume are available for either stock 

tickers (like GOOG for Google, or AMZN for Amazon), from composite indices such 

as the S&P500 for different time frequencies. The technical features can be extracted 

for either individual tickers or composite market indices. For daily focused financial 

time series prediction, a list of non-exhaustive technical features is presented in Table 

4-3. These technical features are extremely powerful and provide a foundation to 

obtain meaning features of the historic time series patterns. Given the variety and 

different degrees of complexity for stock price technical features, the following 

discussion is focused on the fundamental Sharpe Ratio.   
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Table 4-3. Technical Features for Equity Prices, some examples 
Model Equation 
Sharpe Ratio 

\ = 	
]( .̂ −	 ^̀ )

abc^( .̂ − 	 ^̀ )
 

.̂- asset return 
^̀  – risk free-rate 

Rolling Sharpe Ratio 
\? = 	√I

]e .̂,?Sf −	 ^̀ ,?Sfg

hbc^e .̂,?Sf −	 ^̀ ,?Sfg

 

.̂,?Sf	- the previous k truncated strategy returns  
 

Annualized Return 
(AR) &$ = (1 + "[j[kclmno	^ol[^p)

(
qrs

tuv.@Awt) − 1 

Maximum 
Drawdown (MDD) 4x	(y) =

(z − {)

z
 

 
P- Peak value before largest drop 
L – Lowest value before new high established 

Normalized Mean 
Square Error 
(NMSE) 
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Annualized Volatility 
(AV) 
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~
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DH6
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Ü
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Bollinger Band Bollinger Bands denoted (20,2) means the Period and 

Standard Deviation are set to 20 and 2, respectively. 

The indicator is calculated using the following formula. 
First calculate the Middle Band, then calculate the Upper 
and Lower Bands.Middle Band = 20-day simple moving 
average (SMA). Upper Band = 20-day SMA + (20-day 
standard deviation of price x 2). Lower Band = 20-day 
SMA – (20-day standard deviation of price x 2), where 



 

 

147 

147  

SMA = the sum of closing prices over n periods is divided 
by n. 

Vortex Indicator (VI) Vortex indicators require a three-step process. VI is 
essentially an oscillation between uptrend (VI+) and 
downtrend (VI-). It is composed of three steps: Uptrend 
and downtrend movement, second calculating the true 
range, and third, normalize uptrend and downtrend. 
(Botes and Siepman 2010). 

Relative strength 
index (RSI) 

The RSI is a momentum oscillator between zero and 100 
that measures the speed and change of price movements 
(Wilder, 1978). Traditionally the RSI is considered 
overbought when above 70 and oversold when below 30.  

Accumulation/Distri
bution ROC 

1. 4ápoÄ	Okáà	4[klmâkmo^ = 	 {(8Sã)S(åS8)}
(åSã)

  
 
C- Close  
L- Low  
H- High 
 
2. Money Flow Volume =  
Money Flow Multiplier x Volume for the Period 
 
3. ADL =  
Previous ADL + Current Period's Money Flow Volume 

Moving average 
convergence 
divergence (MACD), 
MACD Signal and 
MACD difference 

MACD is a momentum indicator that shows the 
relationship between two moving averages of prices. The 
MACD is calculated by subtracting the 26-day 
exponential moving average (EMA) from the 12-day 
EMA.  
 
 

Average Directional 
Indicator 

The Average Directional Index (ADX) is a three-line 
indicator that includes the ADX line, Minus Directional 
Indicator (-DI) and Plus Directional Indicator (+DI).  
 

On Balance Volume 
(OBV) 

Cumulative measure of positive and negative volume 
flow. OBV adds a period's total volume when the close is 
up and subtracts it when the close is down. 
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Sharpe Ratio 
 
In finance, Sharpe Ratio is a measure for calculating risk-adjusted return. It was 

developed by Nobel laureate William F. Sharpe. The Sharpe ratio is the average 

return earned in excess of the risk-free rate per unit of volatility or total risk. 

Subtracting the risk-free rate from the mean return, the performance associated with 

risk-taking activities can be isolated. One intuition of this calculation is that a 

portfolio engaging in “zero risk” investment, such as the purchase of U.S. Treasury 

bills (for which the expected return is the risk-free rate), has a Sharpe ratio of exactly 

zero. Generally, the greater the value of the Sharpe ratio, the more attractive the risk-

adjusted return. 

  The Sharp ratio also tends to fail when analyzing portfolios with significant 

non-linear risks, such as options or warrants. Alternative risk-adjusted return 

methodologies have emerged over the years, including the Sortino Ratio, Return Over 

Maximum Drawdown (RoMaD), and the Treynor Ratio. These features are used for 

training data in addition to Sharpe Ratio. 

  The Sharpe Ratio is formally defined as follows 

 

\ = 	
^̅è −	 ê̂
~è

	 (4.6) 

 

\			Sharpe	ratio		

^̅   Mean portfolio return  

ê̂  Risk-free rate 

~è Standard deviation of portfolio return 
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  The Sharpe ratio is often used to compare the change in a portfolio's overall 

risk-return characteristics when a new asset or asset class is added to it. If the addition 

of the new investment lowered the Sharpe ratio, it should not be added to the 

portfolio. The Sharpe ratio can also help explain whether a portfolio's excess returns 

are due to smart investment decisions or a result of too much risk. The greater a 

portfolio's Sharpe ratio, the better its risk-adjusted performance has been. A negative 

Sharpe ratio indicates that a risk-less asset would perform better than the security 

being analyzed. 

  

4.1.3.  Geopolitics  

There are two type of technical features that are obtained from geopolitical 

information from GDELT database (discussed later in Chapter 5.3): 

• Geolocation data from GDELT GEO API. This contains two most important 

features i.e. the label of cameo code and latitude and longitude.  This data is 

mainly used for visualization of real-time events. 

• Events related data are also obtained from GDELT that provides a dataframe 

structure with 62 features. Out of them, the main ones of interest are the 

following: NumMentions, QuadClass, GoldsteinScale, AvgTone for 

prediction. Their definitions are the following:  

NumMentions (NM): This is the total number of mentions of any event 

across all source documents. 

EventRootCode: This is collection of CAMEO codes to classify events in 

categories. 
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QuadClass: The entire CAMEO event taxonomy is ultimately organized 

under four primary classifications. The numeric codes in this field map to the 

Quad Classes as follows: 1=Verbal Cooperation, 2=Material Cooperation, 

3=Verbal Conflict, 4=Material Conflict. 

GoldsteinScale: Each CAMEO event code is assigned a numeric score from  

-10 to +10, capturing the theoretical potential impact that type of event will 

have on the stability of a country. 

AvgTone: This is the average “tone” of all documents containing one or more 

mentions of any particular event. The score ranges from -100 (extremely 

negative) to +100 (extremely positive).  Common values range between -10 

and +10, with 0 indicating neutral.  

 

 This sub-section documented the key algorithms and methods for pre-

processing domain knowledge. Entropy was proposed for various data with prior 

probability available, economic complexity for global trade or technology fitness 

attributes, and indicators such as Sharpe ratio and others technical indicators in 

finance domain. The next sub-sections delve deeper into the model architecture after 

the obtaining the post-processed domain knowledge data. The two main methods are 

discussed are (a) ensemble sequence learning programs, and (b) deeper ensemble 

learning programs for complex behavior mapping. 
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4.2. Structured Ensemble Learning Models for Sequence Prediction 

The general sequence ensemble layer of the proposed model is based on two modules. 

The first module can be called the Knowledge Abstraction Layer (KAL) which 

processes the global input data. This input data is split into domain-specific clusters 

such as: technical indicators clusters, country clusters, or domain clusters. The KAL 

module first runs the Dynamic Time Warping (DTW) algorithm, which is based on 

Euclidian distance for individual domain-clusters; then visualization techniques, like 

Hierarchical Clustering Analysis (HCA), group the global dataset based on the 

clusters they belong to. The resulting output from the KAL module saves the different 

clusters formed through the HCA and offers conditional computation where training 

sets are active based on the input prediction problem. In theory, this proposed 

approach may dramatically increase the model’s predictability at lower computational 

costs than traditional methods because it performs training on the relevant data. Users 

should take note that the DTW-HCA can be a computationally long process; hence, it 

is recommended to conduct the KAL at certain time-intervals; such as: weekly or 

monthly. 

  Next, based on the input parameter and the output from the KAL, the second 

module, which includes a logic-based decision-gate, determines the training examples 

to use. The selected training dataset is then fed into the Sequence Learning Gate 

(SLG). The SLG is a deep LSTM neural network that has a dropout operation 

(threshold 0.2) to reduce the losses on the training data. Other similar sequence 

learning models can be adopted. The final output of this component is a time-series 

output forecast as shown in figure (4-4). To illustrate how this component works, 
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assume the following hypothetical example. The input data is number of mentions for 

protests for the USA from GDELT database. The KAL module stored the relevant 

variables in three groups: technical cluster (Goldstein score, tone), country clusters 

(UK, Brazil), and sub-domain cluster (mass violence and fight). The decision is made 

since these variables are in the same group as the input variable i.e. number of 

mentions for “USA” and domain “protests”. Separate LSTM models are trained for 

different cluster groups. The output is a weighted ensemble of the different models. 

The final output is the forecast for US Protests in t+1 based on domain-knowledge of 

similar features. In a similar manner, the ensemble learning model can be looped for 

different entities and domains of interest to monitor them on a daily or real-time 

basis.  
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Figure 4-4. Generalized Architecture for Sequence Prediction Problems
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4.3. Ensemble Models for Structured Output 

Building on top of the sequence prediction architecture which was achieved through 

the previous model’s component, there are potentially four approaches to build deeper 

ensemble programs for structured inference are illustrated in Figure (4-5). The 

forecast output from the SLG is fed into three separate models whose results are 

combined together to provide more details and a structured output based on the 

predictions.  

   The first approach in ensembling models can help get obtain high correlation 

and low error final results. The second approach is the Monte Carlo Simulations 

(MCS) that can be used to build a more controlled environment for stress-testing the 

prediction results. The third approach is the class label problem or, as formally 

defined here, the Time Label Assignment (TLA). In the TLA, selected memory is 

added to the time series model, where the output provides a daily prediction of 

similarity in most recent pattern with saved memory.  Last but not least, the 

uncertainty quantification (UQ) module can leverage state of the art UQ techniques 

given the ensemble model. 
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Figure 4-5. Generalized Module Architecture for Post-Sequence Prediction and Going Beyond Black Box 
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4.3.1. Monte Carlo Simulations (MCS) Approach 

Perhaps the most useful and simple approach to untangle the deep network is using 

MC simulation to do stress-testing within the confines of the generalized ensemble 

models. In the controlled experiment setting, there are two model outputs, as 

illustrated in figure (4-6): (a) the ensemble prediction based on the ground-truth 

training data-set i.e. the control group; and (b) a model simulated training dataset to 

have the same forecast i.e. the experimental group. The experimental group with 

simulated training data can help uncover the sensitivity of forecast outputs to specific 

training data. This approach will help go beyond black box by treating the model in a 

controlled experiment setting. In a controlled experiment, an independent variable is 

the only factor that is allowed to be adjusted, with the dependent variable as the factor 

that the independent variable will affect. This, in return, will provide a deeper 

engagement with decision-makers to address the impact of movement in one feature 

impacts the predicted output. 

  There are two powerful applications of this approach. First is the case of 

predicting quarterly GDP growth. The control group yields the forecasts from ground-

truth data, while the experimental group will simulate two new data points for the 

latest period to update training data for GDP growth prediction. Furthermore, as an 

example the experimental group will inform that an x-percentage point change in 

public debt yields the lowest drop in GDP growth forecast compared to other features 

in the training data.  

  The second application is a more sophisticated prediction and inference 

approach. Take that the decision-maker is interested in a separate variable, for 



 

 

157 

157  

example the government bond yield, and more specifically, the 10-year maturity US 

T-bill yield. Now assume that the T-Bill yield is found to be most sensitive to 

fluctuations in GDP growth. The control group in this setting is predictions based on 

the ground-truth for T-Bill yield; whereas the experimental group in the second model 

takes the new information of GDP growth forecast from the control group of the first 

model. Consequently, adding the forecast from the first model in the second model’s 

experimental group i.e. training the data-set using updated GDP growth forecast will 

yield an updated forecast of T-Bill yield, based on new information.  

  Neural networks are highly non-linear where the different layers and nodes 

capture these interdependencies between entities, domains, and risk-classes. 

However, decoupling these non-linear dynamics has not been transparent so far and 

remained a black box. In this regard, the MC simulation approach provides a simple 

yet powerful way to untangle the black box for deeper insights to inform decision-

making in domains of interest to us.   

 
 

Figure 4-6. Controlled Experiment Setting for Stress-Testing 
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4.3.2. Time Label Assignment (TLA) Approach 

Using class labels, the TLA approach can convert the problem into label predictions. 

The idea is similar to the one used in several previous studies in image recognitions 

that aim to identify entities and dynamics of entities in a given image, using various 

ways to have labels including based on joint image/label embedding, label co-

occurrence dependency, and pixel-level labeling (Wang et al. 2016, Pinheiro and 

Collobert 2015). A big drawback in time-series random variables of interest to us is 

that labels are largely missing. There are two new innovations proposed here: the 

labels for specific time-periods will be treated in a special manner; and, use 

algorithmic approaches to convert random time-series variables into meaningful 

labels.  

   To illustrate this special treatment, the case of daily sample data of S&P 500 

stock prices is used (Figure 4-7) where the selected memory variable is “Recession”. 

Therefore, assuming the period between 12-09-2008 and 09-10-2010 is labeled as 

category 1, the daily temporal features of each company as well as the common 

pattern between companies can be extracted for the pre, during and post Category 1 

crisis period. Moreover, category Label 2 can represent common pattern between 

companies to define an anomaly pattern i.e. a pattern dissimilar to historic series. The 

output will be a switch that is updated every-day to give an output of either 0, 1 or 2; 

where “0” represents dissimilar pattern to earlier crisis period, “1” represents 

common stock market pattern as period prior to 2008-10, and “2” represents an 

anomalous common pattern that is dissimilar to any point of time in history.  
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  In addition, this model approach adds selected memory to treat certain time-

periods in a special label; for example, the 2001 crisis can be a new category 4. This 

method can also be scalable in domains of missing labels. The data from various 

sources can be filtered using the z-threshold peak detection algorithm or Bayesian 

anomaly change point algorithm to create labels; then a special treatment of time 

labels based on the added selected memory. For example, specific days of big mass 

violence or economic crisis like asset bubbles can be added to the selected memory; 

and the resulting output will be binary or categorical labels to match the high-

frequency forecast with historic patterns obtained from selected memory.  

  

 
Figure 4-7. Example of Selected Memory for Time Label Assignment Prediction  
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Chapter 5: Case Studies 

This chapter provides case studies for the proposed methodology. The cases presented 

covers a number of domains; including: (a) Economic Domain: the case will 

demonstrate a state-of-the-art prediction of economic growth and real-effective 

exchange rate (REER) that yields substantially higher accuracy than current industry 

standard IMF GDP growth forecasts. Further, a test-example of MC simulations 

shows that there is enough sensitivity of GDP growth output forecast to changes in 

the training data, (b) Financial Domain: This case will explore the structured logic 

approach in depth for the ensemble-model prediction for closing day stock price; and 

(c) Geo-political Domain: These cases will present results for the geopolitical 

environment.  

  International organizations have to monitor multiple assets around the world. 

For example, the Department of Defense (DoD) or Department of Homeland Security 

(DHS) manages a global real property portfolio of more than 562,000 facilities 

(Department of Defense 2017, Homeland Security 2017). Corporations like Bechtel 

or Lockheed Martin (LM) have finished over 23000 engineering projects worldwide 

(Lockheed Martin 2017, Bechtel 2017). Similarly, many other multinational 

corporations (MNCs) across industrial sectors have multiple assets (or projects) in a 

given country. Executives at MNCs and international governments receive frequent 

updates on the state of global risks to make decisions that help them make judgments 

to protect their assets (Federal Reserve Board of Governors 2017, International 

Monetary Fund 2017, World Economic Forum 2017, United Nations 2017, Accenture 

2008).  
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Many of these organizations use quarterly or annual updates that are 

considered a static form of risk communication. At the same time, in the instance 

where organizations use short-time scale dynamic monitoring methods, they use 

proprietary data and models.   

The case studies present opportunities to standardize data, models, and 

visualizations that can aid-executive decision-making. In the following sub-sections, 

economic, financial, and geo-political domains are discussed. The case studies 

provide validation of the proposed model for domain-specific sequence learning 

predictions. The case studies also provide a framework to track disruptive mass 

movements such as protests to inform policy-making concerning asset protection. The 

other case studies provide how emerging technologies can help track economic 

recessions and opportunities for economic development. First, the dataset used for the 

specific domain is described. Second, the ensemble sequence model framework is 

presented. The following chapter presents the data and model framework.   

5.1. Economic Opportunities and Threats  
 
GDP growth and government bond yield are two key macro-economic signals that 

decision-makers care for in countries. Economic growth is the increase in the 

inflation-adjusted market value of the goods and services produced by an economy 

over time. It is conventionally measured as the percent rate of increase in real gross 

domestic product, or real GDP. Government bond yields is the interest that the 

government pays to borrow money for different lengths of time.  

   Beyond macro-economic signals, micro-economic signals are equally 

important for identifying opportunities and threats in mega-projects. For example, 
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take the case of a large-data center project. The decision-maker would find it valuable 

to know the value-added growth in computer services, talent pool i.e. job growth in 

higher in computer network engineer professions, aggregate economic-shifts across 

cities to inform their business strategy. The next section provides details on the 

economic dataset. 

 

5.1.1. Dataset 
 
Here the organization and retrieval of economic data from Bank of International 

Settlements (BIS), International Monetary Fund (IMF), and World Bank Global 

Economic Monitor (WGEM) is briefly discussed.  

 The basic idea, architecture and software used are similar to as described in the 

control architecture section and knowledge base layer in Annex 2. Essentially two 

models are available “Databases” and “Datasets”. The “Database” model stores the 

data of the QUANDL database that are being accessed. The Database contains all the 

different indicators and time-series that are necessary to be acquired. The “Dataset” 

model contains the actual time-series data for a specific indicator. These models are 

defined using Django ORM and the data can be easily accessed using the same. Some 

details about the fields used in the above-mentioned model are as given below. 

  The database has following attributes: name, code (Unique code provided by 

Quandl), API url (for metadata about the database e.g. description), codes url (for all 

the possible dataset codes under that database).  The dataset has the following 

attributes: Name, code, database (foreign key), start date, end date, frequency, data (the 

actual time-series), description. Data is also collected from World Bank Global 
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Economic Monitor. “NY.GDP.MKTP.PP.KD” is one of the indicators used. The 

particular variable for example is “GDP, PPP (constant 2011 international $)”. The 

broad list of macro-indicators can also be made available.  

  There are some preprocessing data cleanup attributes. For example, countries 

only with a valid ISO 1366_3 code are considered. Countries with all NaNs are 

dropped. Prediction level abstraction and inclusion of WGEM, BIS, or IMF database 

into Postgresql.  

  Now with just a few lines of code any frequency, indicator and country from 

the WGEM data can be accessed. All of the preprocessing and sorting is handled 

internally. An example code snippet is given below. 

 

 
 

5.1.2. Economic Model Architecture  
 
The macroeconomic system is designed in the following manner. The various data 

sources are integrated accompanying domain pre-processing, such as calculating 

natural log difference for GDP growth and change variables. The integrated data is 

extracted using Euclidian distance measure to produce a MDS image and (or) 

Hierarchical Clustering image. This step is conducted very infrequently, for example 

once a quarter for the case of macro features. These clusters are saved and then fed in 

the LSTM RNN model. These results provide a time series output forecast. An 

alternative sample can be obtained by switching the training data set with alternative 
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numbers using MC simulation to provide an adjusted output after shock variable. 

Figure (5-1) illustrates the model architecture.  

  An alternative presentation for class labeling problems can also be generated 

using the z-threshold or Bayesian change-point algorithm described in earlier 

sections.   

 
Figure 5-1. General Architecture for Macroeconomic System Model 
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5.2. Financial Opportunities and Threats  
 
Large engineering companies like Lockheed Martin, Bechtel, as well as governments 

and international organizations have a treasury department. In larger firms, Treasury 

may include trading in bonds, currencies, financial derivatives and the associated 

financial risk management. These organizations manage global assets with a 

diversified portfolio in international capital markets. The Treasury management helps 

to manage the organizations liquidity and mitigate operational, financial and 

reputational risks. In addition to Treasuries, hedge-funds, investment banking 

industry closely monitor various asset classes, such as a Fixed Income or Money 

Market – buy and sell interest bearing securities, Foreign exchange or "FX" - buy and 

sell currencies, Capital Markets or Equities desk – buy and sell shares listed on the 

stock market. There are a host of derivate such as ETF and leveraged indexes that can 

be high yield but volatile. The model and results presented here provide valuable 

insights for trading strategies with a focus on equity market strategy.  

  Many banks such as JP Morgan or Goldman Sachs are central lending 

institutions for LEP’s. The performance specific-asset classes provide important 

signals for other investors. The mass-movement of the stock market can also inform 

important attributes of country of the project.  

  Mega-projects are capital-intensive and require complex financing 

arrangements due to the large-scale nature of highway, building, transportation 

systems. Project financing requires consortium of investors, lenders and other 

participants to undertake infrastructure projects that would be too large for individual 

investors to underwrite. the Trans-Alaskan pipeline and exploration and exploitation 
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of the North Sea oil fields provide interesting examples of financing structures. The 

identification of instruments, sectors, and market prediction can help inform overall 

market risk that can inform project risk.  

  High frequency financial data can be insightful for many important country 

and project decisions. For example, after a disaster, companies vested in housing, 

transport, or infrastructure from that location would have a lot at stake. Many public 

companies can use the disaster signal to gain large government contracts and bump 

up their prices. Such financial opportunities and threats also be important economic 

shifts. For example, a banking crisis or asset bubble burst could lead to catastrophic 

financial melt-down. The assets of an enterprise in the given location could be frozen 

or lose value. Broadly  

  Such signals have also been used in domains beyond finance including 

national security. Projects such as MARKINT and others studies use complex credit 

default swaps (CDS) and other complex derivate behavior to inform on national 

security threats. Large-scale events that take place in short run frequency such as 

tomorrow or the following weeks can be predicted using hi-frequency financial data.   

5.2.1. Dataset  
 
 The source of all data is Quandl. Crunchbase (CB) is used for mapping 

companies to their headquarter location and extract spatial features of a given 

company.  CB data integration will also be useful for standardization visualizations to 

spatial-temporal coordinate space. There are broadly two divisions of indicators from 

the database technical indicator cluster and company clusters. 
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  The technical indicators cluster contains only Ticker related data. The  sole 

purpose is to see what predictions are given when only Ticker related features are 

used. For example, for GS (Goldman Sachs), Indicators such as Open, Low, High, 

Close along with Momentum, Vortex, Sharpe Ratio, etc. will be used to make 

predictions. 

  The company clusters has a set of indicators to capture moment of market for 

particular type of company. For example, from SP500 companies a cluster in 

extracted which contains set of companies. These clusters are based on DTW-

Hierarchical Clustering for companies in same cluster that have shown similar time-

sequence trend. The company clusters can give a broader output which are based on 

movement of different stocks in market. 

5.2.2. Financial Model Architecture 
 
The financial system architecture is presented succinctly below. The system consists 

of two main sub-systems. First, the clustering System, and second, the prediction 

system as shown in Figure (5-2).  

  The illustration of the ensemble prediction component i.e. the third component 

is presented for finance domain is presented in Figure (5-3). This illustration shows 

the specific case of Goldman Sachs prediction system where the input is Goldman 

Sachs closing day’s price. The pre-processed domain knowledge can have multiple 

clusters; however, for simplicity, technical indicators (Sharpe ratio, Vortex indicator), 

company cluster (Charles Schwab, Berkshire Hathway, JP Morgan), and macro 

clusters (T-bill maturity yield) are the processed domain knowledge. Based on the 

decision-gate, dissimilar features to the prediction problem are dropped. Separate 
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ensemble LSTM model based on each cluster training provide predictions based on 

each training set. A weighted sum of ensemble models provide the final forecast.  

 

 

 

Figure 5-2. Clustering and Prediction System for Stock Price data 
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Figure 5-3. Prediction System Architecture, Example Goldman Sachs Stock Price
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5.3. Geopolitical Opportunities and Threats  
 
The main source of data for geopolitical movements is from the Global Database of 

Events, Language, and Tone (GDELT) which are aggregated through millions of real 

time news article, translations, search queries, herd-traffic behavior on the web. 

However, it is important to be cognizant of the availability of heuristics with such 

data. The classic example is that of newspaper reporting a plane crash versus a car 

crash. In reality, there is a higher probability of occurrence for car crash, and it 

happens all the time but we do not hear about it because reports are published, 

mainly, on extreme events, such as plane crashes, or hijacks, when there is much 

greater risk of many people being killed. Nonetheless, due to availability heuristics, 

people may gain a false impression that car crashes are not a major event.  Moreover, 

there are uncertainties associated with such estimates. There is a growing body of 

literature that has shown that many such communication technologies like Twitter are 

used by elites in the political sphere; hence, creating a bias to collect national 

sentiment. (Stier 2016). Similarly, media can be biased towards certain topics. In 

some instances, this information may not capture the gravity of the situation or miss 

some data. For example, the hurricanes in Puerto Rico in 2017 was not well covered 

by newspapers; and hence, would not show a big movement in the GDELT database. 

Furthermore, in 2016 there were total 47 records of port strikes – with 47 percent (22 

records) with correct location, 9 percent (4 records) port strikes with incorrect 

location (NIKNEJAD et al. 2017). 



 

 

171 

171  

Going beyond these statistical uncertainties, GDELT provides valuable real-time 

geopolitical activity that are classified in details, and the “number of mentions” 

variable provides a good proxy of how the global public sphere reacts to geopolitical 

movements; such as: big policy shifts, national leaders, military action, and social 

movements.  

5.3.1. Dataset  
 
The GDELT data “monitors the world's broadcast, print, and web news from nearly 

every corner of every country in over 100 languages and identifies the people, 

locations, organizations, counts, themes, sources, emotions, counts, quotes and 

events” (Leetaru and Schrodt 2013). The events data records over 300 categories of 

manmade events from protests and violence to diplomatic exchanges. The Global 

Knowledge Graph (GKG) contains data on mentions of organizations, themes, 

locations, people, tone of language, dates, counts, etc. in the news. 

  Consequently, there are many defense, intelligence, and private sector risk 

mapping examples that have used GDELT database. For example, GDELT has been 

used for mapping the action of geopolitical actors, monitoring big events; such as: the 

Arab Spring or protests or mass movements like the refugee crisis. The data is now 

available and is updated every minute with the results, in subsequent, are focused on 

daily data. GDELT uses Google bigquery to organize, process and provide real-time 

data, with one-minute updates by latest revisions. Visualizations of the GDETL 

events database and the global knowledge graph are presented in Figure (5-4). 
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Figure 5-4. Visualizing GDELT Events Database and Global Knowledge Graph 
Source: GDELT 2016. 

 

5.3.2. Geopolitical Model Architecture  
 
Domain knowledge for GDELT is processed by extracting several technical features 

based on the help of listed features, that include the average of Number of Mentions, 

AvgTone and  GoldsteinScale (described in Chapter 4.1.3) in the lag day range. The 

percentage contribution of Number of Mentions (herein referred to as NM) in overall 

event on same day is also taken as a feature. Other mathematical operations; such as: 

standard deviation, skewness, kurtosis for NM as well as composite measure using all 

event counts to measure entropy are accommodated as features. Ensembling all the 

features proves to be a powerful set of input for the algorithms that will be discussed 

in the latter sections.  

 The clusters are extracted by using the following two general methods: First, 

DTW distances between number of mentions for the event code of interest for varied 

data-groups are computed, and then clustering; such as: K-means, Hierarchical, are 

applied to build optimal training data-sets that is important for the dependent variable 

prediction.  

  As an example, raw data from GDELT is presented is presented in figure (5-

5). The figure shows the NM variable for the United States daily frequency for risk 
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indicator protests. The special dates of known protests are highlighted between 

December-2013 - September, 2018. These similar variables will be used for 

prediction problem in geopolitical environment.  

 

 
Figure 5-5. Distribution of Number of Mention of Event (14 for Protest) for country 

US. 

 

5.4. Training Across Domains 
 
Now using stacks of features meaninglessly will clearly lead to overfitting. It is to be 

noted that adding a large number of training sample (n) will always not lead to 

overfitting. However, a large number of features (p) can cause overfitting issues in 

neural networks. Thereby, in order to address selection and contextualization of 

training data in our domains of interest such as economics, finance, or geopolitics, it 

is important to abstract groups of features for training data for a given prediction 

problem. The goal is to abstract out, have flexibility and modularity to use different 

methods, however in the following fashion.  

Baltimore	
Protests

Milwaukee
riots

Dakota
access	
pipeline
protests
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 The generic abstraction layer for data training groups for a given entity-

domain for different domains is presented in figure (5-6). The DTW-HCA tiered 

approach to similarity and clustering assessment for static and longitudinal data is 

valuable to incorporate non-linearities in time and a time-dependent framework for 

trend-matching across multiple sources.  Nevertheless, DTW struggles with 

longitudinal data that is of highly disparate ranges.  Some standard tricks that have 

been used are the following. First, bin data by length of operations - < 6 months, 1-3 

years, 3 – 10 years, 10 years or more and then perform DTW on each one to assess 

their similarity. Second, ignore data that has less than 1 year of data in the similarity 

assessment. Third, leverage pattern of life identification and extract features from the 

data, without having to time warp is an extended option.  This provides trend, 

seasonality, and other cyclical features that can be compared and assessed for 

similarity as opposed to direct comparison with DTW. 

  In addition, this framework can be extended once the set of features for the 

longitudinal data has been extracted, this data can be combined with other features 

(sector, location, etc.) and then a cosine similarity assessment can be done.  This is 

straightforward and looks a lot like the Euclidean and Ward distance measures 

without having to scale/normalize features, and it can deal with categorical data.  

Most importantly, using cosine distance as a metric for Hierarchical Agglomerative 

Clustering (HAC), we know naturally the cutoff point for the number of clusters.  As 

clusters cannot be more similar or dissimilar than 1, we can determine the number of 

clusters automatically.  With other techniques, the cutoff point for clusters is ill-

defined.  



 

 

175 

175  

 

 
Figure 5-6. Different Groups of Training Data Set, Example for Domains 
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Chapter 6: Results 

This chapter presented the results for experiments across economics, finance, and 

geopolitics domains. To the extent possible, a standard structure is followed across 

domains, nevertheless, given complexities and uniqueness of data sets, availability of 

training features, there is heterogeneity in model building and parameter tuning across 

domains.  To this affect, the research project aims to build standardized data 

harvesting, model, and visualization class objects to have a pipeline that is replicable, 

scalable, and flexible.  

  There are commonalties across the pipelines from different domains. For 

example, technical features generation could be domain specific to generate useful 

training features; DTW-HCA clustering could be used to define training groups; RNN 

variant models used for time-series forecasting; MC dropout method for uncertainty 

quantification, and so forth. However, there are many idiosyncrasies associated iwth 

managing and analyzing each asset-specific prediction problem. Consider the 

dependencies between the different training features raising important questions 

concerning dependencies, causality, and endogeneity; however, the focus up till now 

has been to use some of the knowledge on these attributes in a structured manner with 

the goal of improving prediction models by accommodating domain knowledge.  

   There are few different options considered in this work to ensemble models. 

Ensembling models are considered “meta-algorithms” to decrease variance (bagging), 

bias (boosting), or improve predictions (stacking) (Smolyakov 2017). In context of 

bagging, the same approaches as k-means or hierarchical clustering can be conducted 

to classify the different models’ accuracy.  A weighting mechanism based on the 
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analysts’ understanding of the model results is the simplest option that is discussed 

for specific experiments. The point is that there will be overfitting and underfitting 

models for the same prediction using different training data or different models. This 

information can be used to build a stronger model that fits the ground-truth data just 

right. At the same time, there are other options as well, including using parametric 

models to learn the optimal parameters. Many of these attributes are mechanical but 

also about the art of doing machine learning.  

  The results shown in this chapter will use different methods to ensemble for 

different domains. For example, bagging is used for the exchange rate predictions, 

weighted average ensembling are used for stock prices and geopolitical data on 

protests, and voting classifier for macroeconomic experiments for country level GDP 

growth predictions.  
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6.1. Results for Economic Domain 
 
Based on the GDP and relevant features from WDI and WGEM data, the predictions 

for US GDP growth are presented here. The following is a list of selected indicators 

from which country training features are selected: 

 
  The prediction models are built both for quarterly and annual series, however, 

only annual forecasts are shown here. After clustering and all following indicators 

were selected. An ensemble of GRU and LSTM models are presented. 

  First, the results from the DTW-Hierarchical Clustering are presented. Many 

advanced economies are clustered together and developing countries that are resource 

rich, versus in the middle-income stage are clustered together. This informs an 

important attribute of which countries are closer to each other and useful information 

for future generalized training samples for unique prediction cases. The world cluster 

map is presented in Figure (6-1) identifying similar clusters by their color.  

  Similarly, clustering can also be conducted for testing similarity between 

indicators for a given country. Figure (6-2) shows a hierarchical cluster of key macro-

economic variables for the United States based on the DTW distance. The full 

spectrum of data and localized abstraction are presented. This shows that reserves, 

unemployment, and liquidity variables are in the same cluster, whereas financial 
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indicators like stock prices and export patterns in a different cluster together. A non-

exhaustive list of training features for country-time macroeconomic feature are 

presented in table (6-1). 

  Finally, Figure (6-3) shows the summarized prediction results for US GDP 

growth using various deep neural network models including LSTM, GRU, as well as 

gradient boosting algorithms. This simple chart shows that while LSTM and GRU are 

good fit for catching the trough points, gradient boosting methods are better for 

capturing the trend in recent period. Each model captures non-linear dependencies in 

its own way with benefits and deficiencies. The prediction results provide interesting 

insights. The model results with UQ and comparisons with IMF estimates are 

reported next. 
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Figure 6-1. Hierarchical Clustering Map of the World based on GDP time-trend 
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Table 6-1. Selected List of Country Features for country GDP growth prediction 

 
 

 
 

Figure 6-2. Clustering macro-economic indicators to GDP 
 

 
Figure 6-3. LSTM, GRU and Gradient Boosting Model Results for US GDP Growth prediction, 

1980-2017 
 

Macro Structural Features Macro Financial Features External Accounts Social and Public Finance
Agriculture, value added (% of GDP) Central government debt, total (% of GDP) Current account balance (% of GDP) Final consumption expenditure, etc. (% of GDP)
Coal rents (% of GDP) Claims on other sectors of the domestic economy (% of GDP) Exports of goods and services (% of GDP) Revenue, excluding grants (% of GDP)
Discrepancy in expenditure estimate of GDP (current LCU) Claims on central government, etc. (% GDP) External balance on goods and services (% of GDP) Research and development expenditure (% of GDP)
Forest rents (% of GDP) Domestic credit provided by financial sector (% of GDP) Merchandise trade (% of GDP) Tax revenue (% of GDP)
GDP (constant 2010 US$) Domestic credit to private sector by banks (% of GDP) Trade (% of GDP)
GDP growth (annual %) Foreign direct investment, net inflows (% of GDP) Imports of goods and services (% of GDP)
Industry, value added (% of GDP) Foreign direct investment, net outflows (% of GDP)
Manufacturing, value added (% of GDP) Net acquisition of financial assets (% of GDP)
Military expenditure (% of GDP) Net incurrence of liabilities, total (% of GDP)
Mineral rents (% of GDP) Net investment in nonfinancial assets (% of GDP)
Natural gas rents (% of GDP) Net lending (+) / net borrowing (-) (% of GDP)
Services, etc., value added (% of GDP) Stocks traded, total value (% of GDP)
Total natural resources rents (% of GDP) Market capitalization of listed domestic companies (% of GDP)
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  Figure (6-4) compares the ensemble model results with the industry standard IMF GDP 

growth forecasts. The chart shows that the results yields substantial improvement in forecasting 

macro-economic indicators like growth than current methods. Further, the deep ensemble 

architecture has been generalized so many other indicators can be predicted at scale. Figure (6-5) 

presents the model reliability matrix (MRM) providing a simple visual signal on assessing model 

performance. In the instance of GDP growth, voting classifier for LSTM, GRU, XGboost is used 

to ensemble overall improve the overall model accuracy. 

 
  Both the base LSTM and GRU starts converging around 300 and 150 epochs respectively 

with of rmse of 0.65 and 0.51 respectively. The train-test split on LSTM, GRU, XGBoost and 

Actual Data for USA is 80-20. The LSTM and GRU perform better in short run, but XGBoost 

out-performs them in long run.  The predictions for 2017 are not finalized yet by countries or 

international institutions, so the latest actual data-point is up to 2016, and our predictions are up 

to 2017. For details concerning the base model parameters, readers can refer to table (6-2). 

Briefly, the reason for parameter choices include 128 neurons as depth for each neuron for time 

series with lots of feature vectors/parameter. Due to irregularity, dropout is 0.1 and activation 

given yearly time-series for consistency is ‘linear’. A lot of trial and error went into choosing the 

epochs and batchsize based on the choice of data and algorithms.  

  The model reliability matrix in figure (6-5) confirm that the ensemble model has smaller 

rmse and higher r2 and explained variance (EV) score, collectively implying closer to accurate 

prediction. The Uncertainty Quantification (UQ) chart is finally presented in figure (6-6) to not 

only obtain point estimates but range of the prediction estimates. The quantified uncertainty error 

is 0.4544.  



 

 

183 

183  

   This base format for US GDP growth prediction showed how to make a simple pipeline 

for multiple countries clustered by economic development and well-being. The clusters for GPD 

growth rate, both between countries, and between features within a country provided powerful 

unsupervised ensemble methods to abstract knowledge such as similarity to form optimal 

training group. The analysis shows details on model parameters that can be tuned for specific 

cases, such as advanced economies that display smaller deviation from GDP percent change need 

less tarining time i.e less number of epochs and less batch size (to be more precise). Emerging 

markets (EM’s) and low-income countries (LIC’s_ need more training time as their GDP change 

varies at a much higher rate and more batch_size (for generalised convergence).  

 

 
Figure 6-4. Ensemble Model based on Voting Classifier comparison with IMF 

GDP growth forecasts 
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Figure 6-5. Model Reliability matrix for comparison across performance metrics 

 

 
Figure 6-6. US GDP growth forecast with uncertainty quantification (UQ) using 

MC dropout 
 

Table 6-2. Base Model Parameters, US GDP Growth, annual 

 

 

M
AE

M
SE

RM
SE

R2
EV

Model Neurons Dropouts Activation Epochs BatchSize Metrics Optimiser Max-depth Estimators

LSTM
128,4x1

0.1, 3x1 Linear 600 64
mean 

squared 
error

RMSProp

GRU 128,4x1 0.1, 3x1 Linear 64 400
mean 

squared 
error

RMSProp

[5,10,15] [50,100,150]
XGBOOST             
(using grid search)
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6.1.1. Abstraction of Prediction layer 
 
The design of the prediction layer API is inspired from sklearn and keras API, thus being very 

familiar and easy to understand. An example snippet to access the prediction mechanism is given 

below. 

 

 
 
 
 

6.1.2. Exchange Rates 
 
Effective exchange rates (EER) are useful for gauging whether a currency has appreciated 

overall relative to trading partners; and, also, used to assess the relative competitiveness of 

countries. For example, if the local currency of a country is expected to appreciate in the coming 

five years from a substantial margin, this would provide a strong signal to invest in that country. 

In addition, EER can provide more valuable information; for example, in 2015 the Chinese RMB 

depreciated about 8 percent against the US dollar; however, the US dollar appreciated against 

other Asian and European currencies and with China’s growing trade with Asia and Europe the 

net effect was that once weighted by trade shares the value of the Chinese currency actually 

appreciated approximately 10 percent relative to its trading partners (Smitka and Ruggles 2015).  
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  Such exchange rate fluctuations can affect project costs if the funding is through global 

capital markets and international investors. A case in point is the Australian projects, where 

appreciation of the local currency against the US dollar has been a contributing factor to project 

cost escalations in the oil and gas sector (Ernst and Young 2014). 

  The Bank of International Statistics (BIS) provide effective exchange rate (EER) indices 

that cover 61 economies. The most recent weights are based on trade in the 2011-13 period, with 

2010 as the indices’ base year. Previous studies have concluded that a Vector Autoregression 

(VAR) which is a standard in macro-econometrics, generates the most accurate forecasts during 

a 1-month horizon, while the ARIMA is the more suitable model during a 3-month horizon of 

EER (Varenius 2017). Here, a simple test case for quarterly US nominal exchange rate is 

presented to showcase the versatility of the model performance across different time ranges and 

domains. In this light, other aspects of interest rate parity, and cross-currency basis may also 

provide important signals for the countries’ financial and economic stability.   

  The EER data is integrated with various other sources of BIS data, including the BIS 

Central Bank Policy Rates, Credit gap, BIS long series on total credit, BIS Debt service ratio 

BIS Effective Exchange, Exchange rates series, Locational Banking Statistics, BIS derivatives 

statistics, global liquidity indicators…etc. These other features may be important for training the 

data-set and help in making the model scalable. Figure (6-7) shows the nominal EER trend of the 

USA from 1964Q1 to 2017Q4. The data is split into training and test sets, with training data size 

including the first 192 quarters, and the test data set is the next 24 quarters.  
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Figure 6-7. Nominal Effective Exchange Rate for the USA, based on Broad measurement from 

61 countries, in quarters.  
Source: Bank of International Statistics, 2018. 

 
 
  Figure (6-8) shows the DTW heat-maps for (a) all features available in BIS, and (b) 

country similarity based on EER. As an alternative to hierarchical clustering, MDS is used to 

cluster and group the different pair-wise distance measures. A sample graph for country 

similarity grouped in three clusters is provided in Figure (6-9).  
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Figure 6-8. Dynamic Time Warp (DTW) for all country features from USA based on BIS data, 

and DTW for country similarity based on EER 
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Figure 6-9. Three Clusters of countries based on Multi-dimensional Scaling (MDS) for Effective 

Exchange Rate 
 
 
 
  The data slice used for the experiment is the USD/EUR daily exchange rate from BIS 

database, using Quandl API. The start date used is 2010-01-01 and the split date used is 2014-01-

01. The test set for the experiment span till the latest available entry in the dataset.  Three models 

are used for this experiment including LSTM, deep LSTM, and bagging model for ensembling. 

The following pages contains a summary of the models. 

  In the figure (6-10) below, the black line represents the actual value of the US dollar and 

EUR daily nominal exchange rate. Classical LSTM model with a single layer of 128 LSTM cells 

no dropouts or recurrent dropouts. The model is trained for 10 epochs using various regression 

metrics. The model overfits due to lack of training features and lack of dropouts. 
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Figure 6-10. Vanilla LSTM model - USD/EUR daily exchange rate movement, black line is the 

actual, blue is the training set, and green is the testing set.  
 

  Second, a deep LSTM model is deployed and the result is shown figure (6-11). This is a 

deeper LSTM in a manner of speaking, because this model has more hidden layers in proportion 

with 6 hidden layers of 128 neurons each. This model was trained on various regression metrics 

for 20 epochs. This is slightly better than the vanilla LSTM model due to dropouts and recurrent 

dropout. This fares better in terms of the metrics but still overfits.  

 

 

Figure 6-11. Deep LSTM model - USD/EUR daily exchange rate movement, black line is the 
actual, blue is the training set, and green is the testing set.  
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  Finally, an ensemble model using bagging is presented in figure (6-12). This is an 

Ensemble of 7 LSTMs with three hidden layers each. This model is trained on various splits of 

train data. Each LSTM is trained on each split of train data and the results from each model are 

combined using equal weight average method (the result of each model is averaged to acquire the 

result). The model is trained on various regression metrics for 10 epochs on each model. These 

metrics are better than the vanilla LSTM model, easier to train but take a long time to train and 

predict on the data. Even still this model is not as complex as deep LSTM, some amount of 

overfitting is avoided in this model. 

 
Figure 6-12. Ensemble Deep LSTM model - USD/EUR daily exchange rate movement, black 

line is the actual, blue is the training set, and green is the testing set.  
 

Finally, the result for the ensemble UQ model is presented in figure (6-13). The UQ method 

used for this experiment is the Monte Carlo Dropout (MC dropout). Currently the implementation 

is only able to quantify the model misspecification and the inherent noise. This model contains a 

confidence interval function for estimating the prediction bounds. The blue region is for the train 

data prediction of the bagging model and the grey region is for the test data prediction of the 

bagging model on a confidence value of 90% the graph is as above and the range of the values on 

average is 0.6.  
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Figure 6-13. Ensemble Deep LSTM model with MC dropout UQ - USD/EUR daily exchange 

rate movement, black line is the actual, blue is the training set, and green is the testing set. 
 
 

  In order to assess model reliability, different performance metrics are used and presented 

in figure (6-14). R2 score for the train data is smaller in the case of the ensemble model whereas 

the deep LSTM in terms of testing data performs better than the ensemble model. Ensembling the 

model yields marginally better result. The variation in the metrics is least in the ensemble model 

with the results presented so far. The model parameters details are presented in table (6-3). 
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Figure 6-14. Model Reliability Matrix Visualizations for USD/EUR exchange rates 

 

Table 6-3. Models parameters for different USD/EUR exchange rates 

 

 

Model
Input 
shape

LSTM cells Dropouts
Recurrent 
Dropouts

Epochs BatchSize Metrics Optimiser
# rounds of 
random 
samples

Vanilla 
LSTM

(28, 1) [128] [0] [0] 10 100
mean 
squared 
error

RMSProp

Deep 
LSTM

(28, 1)
[128, 128, 
128, 128, 
128]

[0, 0.2, 0.3, 
0.4, 0.5]

[0.3, 0.3, 
0.3, 0.3, 
0.3]

20 100
mean 
squared 
error

RMSProp

MC drop 
UQ 100

mean 
squared 
error

RMSProp

Ensemble 
LSTM 

(bagging)    
7 

(28, 1)
[128, 128, 
128]

[0, 0.2, 0.5]
[ 0.3, 0.3, 
0.3]

10 100
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  Throughout this research, the effort has been made to build standards of data, models, 

and visualization for the time series data by building an abstraction for the various source code. 

From an application standpoint, the Abstraction internally converts the data into json formats for 

easy manipulation by the JavaScript engine. Similarly, there are abstractions, for example 

calculating the model metrics for a regression problem and the functions are as follows 
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6.2. Results for Finance Domain  
 
In this section, the prediction of stock market ticker are formulating using a backtesting 

mechanism. Here forecasting models are created using python and deployed using Django. Many 

different methods have been used to increase the efficiency of the forecast using ensemble 

learning. There is also emphasis on representing the predictions and prediction related indicators 

in more suitable visualization which uses Mapbox and other libraries available in python. 

Custom reusable libraries are also made that can be used to derive data that is not available but 

are essential in predictions. 

 

Pre-processing Domain Knowledge – Financial Technical Indicator Extraction 

Initial stock data were extracted using Quandl API. These contained Open, Low, High, Close, 

and Volume of each Ticker. These data were furthermore used to extract following technical 

indicators such as Rolling Sharpe Ratio, Relative Strength Index(RSI), 

Accumulation/Distribution ROC, Accumulation/Distribution Index, MACD, MACD Signal and 

MACD difference, Average directional movement index (Pos,Neg), Vortex Indicator (Pos,Neg). 

Selectively technical indicators can be chosen to train the model by using custom library, an 

example of technical_indicator_generator.py 
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Dynamic Time Warping based Hierarchical Clustering 
 
The cluster extraction module extracts the relevant features. The cluster extraction techniques 

used are the following. First, Dynamic Time Warp (DTW) is used to measure the distance 

between different asset prices. In this particular case, the focus will be on closing day stock 

prices form the S&P 500. Second, clustering techniques are used such as K-means and 

Hierarchical clustering. The DTW finds an optimal match between two sequences of feature 

vectors which allows for stretched and compressed sections of the sequence. The research paper 

on dynamic programming algorithm optimization for spoken word recognition can be very useful 

(Sakoe and Chiba 1978)  

  The DTW algorithm was used to find distance between stocks. Initially tests were 

conducted based on Normalized Closing Prices, but Sharpe Ratio are also used. This gives us a 

distance matrix of stock tickers. By using this distance matrix in Hierarchical Clustering clusters 

were created for all stocks in Figure (6-15). The chart of hierarchical clustered DTW heat map 

for a specific group of companies is zoomed in. In the sub-sample heat-map below, there are 63 

companies from SP500 clustered with significant number of trading period under 5 clusters. The 

clustering here is based on the time trend of Sharpe Ratio over 500 days. 
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Figure 6-15. DTW distance after applying Hierarchical Clustering. 

 
 
  In this view, of dependencies of a given measure to other domains will be highly 

valuable. For example recent studies showed that there was “high correlation between the value 

of the stock market and the unemployment rate in U.S. data since 1929” (Farmer 2012). The 

crash in the stock market has been labelled as one key reason behind the great financial crisis of 

2008. The results presented on prediction system can prove valuable monitoring capabilities for 

decision-makers, even in other domains and assessing project prospects. For example, if a 

construction company in a developing country is the contractor to a mega-project. This company 

is a publicly listed company, and the low-error predictions indicate that the price of the company 

will crash. This would be an important indication for risks associated with a given project.  
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  After DTW, the clusters are saved to extract them when required. Because it can be very 

time consuming sometimes to calculate DTW distance between the stocks sometimes, especially 

on a daily basis.  These clusters can be accessed by using the following custom function. 

 

 
  Specific clusters are visualized in Figure (6-16). This shows Cluster 2, 4, and 5, where it 

is evident that companies in similar sectors are in the same cluster. For example, financial 

companies like Goldman Sachs (GS), Berkshire Hathway (BRK_B), Charles Schwab (SCHW), 

JP Morgan (JPM), USB (USB) are all in Cluster 5. The whole network can be visualized using 

hierarchical clustering to map the similarity of companies in Figure (6-16). The chart is rather 

extensive with 500 companies but provides the reader a perspective of different computations. 

Similarly, other models for similarity of technical features are also conducted for stock tickers. 

For composite market indices such as NASDAQ, Dow Jones, London Stock Exchange, or 

Bombay Stock Exchange a similar set of macroeconomic features are also extracted. These 

training features are particularly valuable, however the results delved into here will be for 

composite S&P500 index. For composite indices, the group of similar countries may not be as 

meaningful as similar other composite indices. In this instance, the major composite indices are 

included.  
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Cluster 2: 

['ACN', 'ATVI', 'ADBE', 'GOOGL', 'AMZN', 'AIZ', 'CINF', 'DLR', 'EA', 'NDAQ'] 

 
Cluster 4: 

['AFL', 'ADS', 'AIG', 'ADP', 'AVB', 'BLK', 'HRB', 'BXP', 'T', 'COF', 'CBG', 'CME', 'CTSH', 'CCI', 
'DRE', 'HIG', 'WFC', 'XL'] 

 
Cluster 5: 

 
['GS', 'AMD', 'APH', 'AON', 'AAPL', 'AJG', 'BAC', 'BRK_B', 'SCHW', 'ETFC', 'FITB', 'HBAN', 
'JPM', 'KEY', 'LNC', 'MTB', 'MMC', 'NTRS', 'PNC', 'PFG', 'PRU', 'STI', 'USB'] 

 
Figure 6-16. Cluster 2, 4, and 5 for selected companies, stock tickers are identified 

Insightful information can be processed by observing the similarity between companies 
belonging to same clusters.  
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Figure 6-17. Hierarchical Clustering of S&P 500 Stock Tickers 
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  Next the results for ensembling models in the finance domain are presented. Several 

categories of deep learning models with different complexity have been deployed. In this 

instance, the full list of models presented in table (6-4). First, the results for a specific ticker, as 

Goldman Sachs from the S&P 500 is presented, and second, the composite S&P500 daily index 

price results are presented.  

Table 6-4. Different deep learning models used for stock price prediction 

Model Description 
LSTM Long-Short Term Memory 

Bi directional LSTM Bi-directional LSTM 
RNN Recurrent Neural Networks 

GRU Gated Recurrent Unit 

GRADIENT BOOSING REGRESSOR Gradient boosting regressors are a type of 
inductively generated tree ensemble 
model. At each step, a new tree is trained 
against the negative gradient of the loss 
function, which is analogous to (or 
identical to, in the case of least-squares 
error) the residual error. 

ENSEMBLE Ensemble learning is the process by 
which multiple models, such as 
classifiers or experts, are strategically 
generated and combined to solve a 
particular computational intelligence 
problem. 
 

 

  The summary results for Goldman Sachs are presented in figure (6-18). The first graph 

shows comparison of different deep learning architecture model resluts. The dataset is based on 

technical indicators, the sequence length is 25 days, and the training days is 1000, and testing 

days is 100. The second graph shows the stock price of GS (Goldman Sachs) being predicted 
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over 100 testing days. As it can be seen the performance of XGBOOSTING REGRESSOR and 

LSTM and RNN are comparable and are good approximators. Even other models have been able 

to retain the trend but with a lag. XGBR and LSTM/RNN for making our ensemble model seem 

the right ensemble choices. The automated hyper-parameter tuning programs are utilized in this 

instance (Panel B table). This step is essential to find a trade-off between time and increasing the 

accuracy of the model. Since, most of the algorithms are using more than 1 Hidden layer and 

have larger number of indicators, it takes a very long time to train a model. So it is better to first 

get the perfect tuned parameters and then deploy similar models with same parameters. It can be 

inferred that a training set of ~1000 Days and a sequence length of 25 days will give the most 

optimum solution for all the models.  

  Here, there are two proposed ensemble methods: (a) between subdomains of 

technical/stock indicators, and (b) between models based on technical indicators and S&P 500 

indicators. LSTM models can have the overfitting problem with such time-series information. A 

weightage scheme for example - .33 .33 .33 for assembling different models is chosen as a 

starting points. The literature giving higher weights to the poorer models helps avoid overfitting. 

A dropout of 0.20 i.e. 20 percent of neurons in each layers are inactive.  Here, ensemble models 

between LSTM and XGBR are used to train using technical indicators. The results show that 

ensemble deep learning helps in overcoming overfitting issues. In this instance, the weight 

distribution between XGBR and LSTM is 0.8 : 0.2. One rule of thumb applied is to give more 

weight to the weaker model. But with fine tuning the weights a more robust ensemble model can 

be achieved.  

  The ensemble model performance and the comparison between different models based on 

the wealth generated are also present. The agent starts with $10,000. The lines represent how 



 

 

203 

203  

much money the agent would make based on following the strategy provided by different 

models. The model outperforms the annual returns of the S&P 500 which is approximately 67 

percent for this time-period. The balance of wealth after 100 days for different models and 

datasets are succinctly presented in the last table.  

 
Figure 6-18. Goldman Sachs Prediction Summary. 

 
  The results for S&P 500 stock price index using the different deep neural network models 

are presented next in Figure (6-19). The charts compare RNNs, LSTMs, and variants such as 

GRU here. Many other models were also tested but are not shown since the accuracy is 

substantially higher for these deep learning models. The results show that both RNN, and 
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LSTM’s have lower error as shown in the model reliability matrix in figure (6-20). This also 

raises the prospects of how information from these different models can be processed in a final 

prediction that provides the best fit. Finally, the MC dropout based UQ for ensemble model for 

S&P500 are presented in figure (6-21).  

 

 
Figure 6-19. Different Deep Learning Models for S&P500 Index Price Prediction 

 

 
Figure 6-20. Model Reliability matrix for S&P500 stock prices 
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Figure 6-21. MC dropout based uncertainty quantification for ensemble LSTM model, S&P 500 

composite index, daily, closing price 
 

 
  The ensemble model is quite scalable and shows promising results for international 

equity prices as well as composite stock indices. The results for specific tickers from S&P 500 

such as Goldman Sachs, as well as, composite index S&P500 show promising results. 

Furthermore, model-based wealth generation back-tested results are provided in Appendix K for 

international stock indices are presented in figure. The back-tested ensemble deep learning 

models are used with a simple logic function. If the stock price is predicted to rise by a sharpe-

ratio of greater than 2 for the next day, the decision is buy the stock; however, when the sharpe 

ratio is predicted to go below 2 for the next day, the decision is to sell the stock; otherwise, the 

agent holds the stock. Readers can find results for diverse companies such as Advanced Micro 

Devices Inc. (AMD). AMD has been considered not as a good stock during this time period. The 

returns vary but in long run it has been able to generate more profit compared to normal buy-

hold or buy-sell strategy. Similarly, the results for Amazon (AMZN) stock prices are also shown. 

The results show considerable amount of profits. Moreover, other composite indices like the 

Bombay Stock Exchange and Nikkei are also presented in Appendix K.  
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6.3. Results for Geopolitical Domain 
 

Consider the GDELT geopolitical information available in time-series format and ready for 

analysis. The forecasting models are created using the machine learning and deep learning 

algorithms used earlier. There are different approaches to increase the efficiency of forecast by 

ensembling different models. Similarly, visualization of events based on cameo codes is done on 

map-based visualization which can help monitor real-time events over the globe based on 

geolocation data provided by GDELT (results now shown).  

  Here a specific instance of predicting protests in the United States is presented. The 

reader should note that the dependent variable is NM, which is considered a proxy for actual 

protests, and a direct measure of how much public perception and media will mention protests 

and matters related to protests. There are broadly three groups of training data that is assembled 

using machine learning techniques to make this prediction. First, there may be a relationship 

between various other events in the country; thus, comparing the dependent variable in context 

of all other events in the country is necessary. Second, geopolitical networks are crucial to global 

production networks with diverse processes that range from labor struggles to inter-state 

competition and even war have a direct impact (Glassman 2011). For example, protests in one 

country may be linked to other countries through information networks such as the case of the 

Arab Spring (Dupont and Passy 2011). Similarly, geographical proximity may feed similar 

cultures while it is possible to be different, there are indeed countries more similar to each other 

and others that are not (Walton 2007). Hence, accounting for similar protest trends in other 

countries could also be valuable. Third, it is important to incorporate domain features, and 

statistical features related to the key dependent variable.  
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 The DTW algorithm is used to find an optimal match between two sequences of feature 

vectors which allows for stretched and compressed sections of the sequence. Figure (6-22) shows 

the DTW heat-maps for NM feature based on the distance matrix. The distance based on the 

DTW matrix is used to show the similarity between time-series trend in protests in USA with all 

other countries in Panel A, could be done for any other particular event, and between all events 

in the USA in Panel B, could be done for any other particular country. This matrix can be used as 

input for clustering similar countries and similar events. Panel A shows that the trend of protests 

in USA is quite distinct as represented by a high DTW with all the pairs, and panel B shows that 

the trend of protests in the USA is also similar to other geopolitical movements in the 500-day 

sample.  

  Afterwards, the DTW distance measure can be used to cluster these different events. For 

example, for clustering countries and events, both k-means and hierarchical clustering 

approaches were tried; and the hierarchical clustering gave more significant results. The results 

clustered all 20 cameo codes into 5 clusters. Based on the DTW matrix from NM feature of all 

cameo codes, it is found that cameo codes 1 to 16 in a cluster where 14 is also present are in the 

same cluster. In a similar fashion as the last charts, the results for DTW based clustering are 

presented in Figure (6-23) Panel A and Panel B. 
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Panel B. Heat map for similar countries for “Protests”, code ‘14’, only 15 countries are taken for 

clear visualization. 
 

 
Panel B. Heat map for similar events in the USA 

Figure 6-22.  Dynamic Time Warp Similarity between for Protests in the USA, 500-daily sample 
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Panel A. Heat map based on hierarchical clustering for similar countries for Protests, code 14. 

 
 

 
Panel B. Heat map based on hierarchical clustering for similar events for USA 

 
Figure 6-23.  Dynamic Time Warp distance based Hierarchical Clustering for Protests in the 

USA, 500-daily sample 
 

  To compare more simple models to predicting highly-noisy stochastic random variables 

such as the Number of mentions (NM) variable, the results of linear regression and support 

vector regressions are presented in Table (6-5). The linear regression model with training on 
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technical feature (NM, GoldsteinScale, AvgTone) for lag days (6, 13, 20) with target variable as 

NM of event on 7th, 14th, 21st day is presented below. The Support Vector Regression(SVR) 

model with technical feature (NM, GoldsteinScale, AvgTone) for lag days (6, 13, 20) and target 

variable as NM of event on 7th, 14th, 21st day is also presented. The prediction sequence is 

presented in Figure (6-24), where green is actual data and red is predicted data. The results 

highlight that traditional models fail when trying to predict based on linear regressions and 

support vector regressions. These models are not good fit to identify the rise and fall patterns in 

highly dynamic environments such as global geopolitical internet and news movements. 

 

Table 6-5. Linear Regression and Support Vector Regression for Protests in the USA, daily data 

 

 
Figure 6-24. Linear Regression and Support Vector Regression for Protests in the USA. Note: 

Green is the actual trend, and red is the predicted. 
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 Now in order to predict highly stochastic and dynamic random variable such as number 

of mentions, it is clear that traditional models do not cut it. Now deep RNN and LSTM models 

are used for training and testing the Protest trends in the USA from GDELT.  The plot on test 

data (‘US’, 14 = Protests) based on LSTM is shown in Figure (6-25). Results on test data are 

reasonable, and at least are able to capture a nice pattern as expected by the noisy data. The 

models can recognize rise and fall patterns very well on training as well as test data. The data 

slice used for the experiment is the average and total number of mentions of cameo code 14, US 

from GDELT database, using GDELT API. The start date used is 2015-02-18 and the split date 

used is 2017-06-01. The test set for the experiment span till the latest entry in the dataset.  

  For this experiment, the dependent variable chosen are (a) total number of mentions, and 

(b) average number of mentions. The difference between the interpretation of these two variable 

makes a difference for decision-making. The total number of mentions in our interpretation is a 

good proxy for real-world protest event, however, more specifically the total number of 

popularity of mentions across news articles, web media, and so forth. The average number of 

mentions, can be interpreted as the average popularity of protests being mentioned on article on a 

specific day. Thereby in order to incorporate the different risk perspectives associated with a 

mega-project, the total number of mentions may be more relevant for policy makers to get a 

sense of aggregate protest movement, whereas public relations and news media agencies may be 

more interested in average number of mentions since it measures the average popularity in the 

new media for a given topic.   

  The training model accommodates three groups of features; including (a) similar events 

in the USA, (b) similar protest trends in other countries, and (c) technical features of the protest 

trend in the USA. The similar events time-trend as protests in USA are fed to the LSTM model. 
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The noise in other events across USA, this model does not perform very well. Based on training 

on similar countries, the model performs better but still do not cut it (results not shown).  The 

uniqueness of USA in the time-trend of protests, this grouping may be more relevant for other 

countries with similar protests; nevertheless, these results are informative for ensembling the 

models later in this chapter. Lastly, the LSTM model’s results based on training with the 

technical features are presented yield the most important training features. The input technical 

features for this data structre from GDELT include how many other mentions of this article 

(ToNumMentions), average number of mentions (avgNumMentions), the average tone around 

the article (avgAvgTone), standard deviation (stand_dev), and other mathematical operations 

such as kurtosis, skewness, etc. of the dependent variable.  The output is the total number of 

mentions or the average number of mentions as per the prediction problem 

  The results show that vanilla LSTM model with a three layer of 128 LSTM cells with 

dropouts [0, 0.3, 0.5] and recurrent dropouts [0.3,0.3,0.3]. The model is trained for 50 epochs 

using various regression metrics. Similarly, the vanilla LSTM for the average number of 

mentions also has three layer of 128 LSTM cells with dropouts [0, 0.3, 0.5] and recurrent 

dropouts [0.3,0.3,0.3]. The model is trained for 50 epochs using various regression metrics. 

Figure (6-26) summarizes the different model performance metrics succinctly in the model 

reliability matrix. The parameters of the models for the experiment performed are as follows in 

table (6-6). 

The uncertainty quantification method used for this experiment is the Monte Carlo 

Dropout. Currently the implementation is only able to quantify the model misspecification and the 

inherent noise. This also contains a confidence interval function for estimating the prediction 

bounds based on a confidence interval. The UQ implementation is present in the appendices 
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section for reference the following scores are the result of applying the models for different 

domains. 

 
Figure 6-25. LSTM models for Protests (number of mentions) in the USA 

 
 
 

Table 6-6. Model Parameters, Protests, USA, daily 

 
 
 
 

Model
LSTM              

(total number of 
mentions)

LSTM         
(average number 

of mentions)
Input 
shape (10, 6)

(10, 6)

LSTM cells [128, 128, 128] [128, 128, 128]

Dropouts [0, 0.3, 0.5] [0, 0.3, 0.5]
Recurrent 
Dropouts

[0.3, 0.3, 0,3] [0.3, 0.3, 0,3]

Epochs 50 50
BatchSize 100 100

Metrics mean squared error mean squared error
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Figure 6-26. Model Reliability Matrix for US Protests, daily trends. ATNM – Average number 

of mentions, and TNM – Total number of mentions 
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 Finally, the ensemble model using a simple weighted average for total number of 

mentions in USA protests is presented. A weighted sum of all the different prediction model is 

done to generate some randomness in prediction and control for overfitting. The weightage 

assignment chosen is the following: (a) similar events – 10 percent, (b) similar countries – 10 

percent, (c) technical features – 75 percent. The final model results for protests in the USA in the 

testing set are presented below in figure (6-27).  

 

 
 

Figure 6-27. Ensemble Weighted deep LSTM for Protests in the USA 
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6.4. Monte Carlo (MC) Simulation in LSTM Networks  
 
The last section validated the ensemble LSTM neural networks architecture as powerful and 

reliable tools for economic prediction problems. This sub-section provides a basis to go beyond 

the black box models to illustrate treatment of stress-testing problems in the confines of deep 

learning architecture. Decision-makers are keen on issues such as endogeneity and causality 

that help them reason and make important deductions about a given situation. They seek 

explanations, uncertainty bounds, and causal dynamics of the forecasts. The simulations 

approach may help decoupling the interdependence amongst training features.  

  Based on the results presented earlier for GDP growth for USA, a Monte Carlo 

simulation was conducted. The simulation was done by randomly choosing walks from a normal 

distribution to check the response of the model. At the testing stage, replaced the actual test data 

of the ‘value’ variable with the random walks. Following results were obtained. Panel A shows 

the updated simulations of new training data set, and Panel B shows the GDP growth predictions 

by shocking the various training data sequences. The results show the sensitivity of GDP growth 

prediction based on the experimental group. More specific cases will be shown. For example, 

identifying the which feature shock in Panel A yields fastest growth and (or) contract.  Similarly, 

the ground truth forecast in presented in figure (6-28) for GDP growth will be used to update the 

training data for the second Control Experiment Model for another prediction problem say T-Bill 

yield prediction.  
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Figure 6-28. Example of shocking features and predicted result. Panel A. Random Walks in the 
Testing Dataset with MC Simulation, Panel B. Predicted change in output (GDP growth) for 

ensemble-LSTM model with simulated training dataset 

 
  The MC simulation cases can also be valuable in time-series information for “What-IF” 

analysis, and question and answering. For example, “which feature is most important for growth 

to decline in coming 2 years in the USA?”, or “which feature shall we focus on that will yield 

highest per capita income growth?”. This may not get to the heart of causality but provide 

inferences with their errors by decoupling interdependence.  

  One approach is to do simulations inside the confines of LSTM networks, that uses the 

capabilities of deep neural networks to gain more insights about the workings of the hidden layer 

and go beyond the black box. A concrete example is provided for per capita GDP growth in USA 

from 2015-17.  

  The model is set up in the following manner. Annual data for the USA is used with 

various features between 1960-2012. The testing set is for 2013-16 and the output is prediction 

for 2017. The actual value for 2017 are available. In order to make an insightful simulation 
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original forecast are shown to have very low error with per capita GDP growth prediction in 

figure (6-29). Simulation of features in the test set for 2013-16 shock only the last 2 years i.e. 

2015 and 2016 data with equivalent increments and decrements in each feature. The results are 

shown in table (6-7) and (6-8) for a 1 percent increment and decrement, respectively.  

  The results show that capital formation, domestic credit to the private sector, and exports 

are a key ingredient that could have raised per capita GDP growth in 2017. Similarly, a negative 

shock to reserves, exports, or domestic credit would hurt per capita GDP growth. These results 

provide a basis to untangle the black box of deep neural networks for deeper causal reasoning 

and evidence based reliable simulations that can directly aid decision-making. For example, an 

executive might be aware that there will be a protest tomorrow and knows the relationship 

between the protest and a given stock price ticker. This information can be used to simulate the 

impact on concerned prices based on reliable forecast estimate from another domain.   

  Deciding the optimal shock in itself is a very important question and within the confines 

of the model environment. There are various aspects related to the size of training features, batch 

size, window size, etc. that need to be consideration. For example, experiments were done 

increasing the size of annual training features by a massive quantity. The results showed that 

sensitivity increased substantially faster for the dependent variable as the training size increased. 

This was contrary to the pre-existing hypothesis that there would be more sensitivity to small 

data since the error was higher and degrees of freedom lower. Nevertheless, the attribute of 

simulation for understanding shocks in complex dynamic systems could be useful inference tool 

for decision-makers.  
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Table 6-7. Simulation 1 with change 1% increment 
Changed Feature Change in GDP per capita growth 
Inflation, consumer prices (annual %) 0.62% 
Merchandise imports (current US$) 2.72% 
Merchandise exports (current US$) 3.96% 
Total reserves (includes gold, current US$) 4.30% 
Foreign direct investment, net (BoP, current 
US$) 

4.50% 

Population growth (annual %) 4.57% 
Gross capital formation (% of GDP) 4.72% 
Exports of goods and services (% of GDP) 4.73% 
Domestic credit to private sector (% of GDP) 4.71% 
CO2 emissions (metric tons per capita) 4.67% 
Population density (people per sq. km of land 
area) 

4.65% 

 
 
 
 

Table 6-8. Simulation 2 with change 1% decrement 
Changed Feature Change in GDP per capita growth 
Inflation, consumer prices (annual %) -0.22% 
Merchandise imports (current US$) -0.78% 
Merchandise exports (current US$) -0.95% 
Total reserves (includes gold, current US$) -1.00% 
Foreign direct investment, net (BoP, current 
US$) 

-0.88% 

Population growth (annual %) -0.78% 
Gross capital formation (% of GDP) -0.92% 
Exports of goods and services (% of GDP) -1.05% 
Domestic credit to private sector (% of GDP) -1.15% 
CO2 emissions (metric tons per capita) -1.08% 
Population density (people per sq. km of land 
area) 

-1.05% 
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Figure 6-29. Visualization of 1 p.p. increment to Given Variables and impact on USA GDP per 

capita growth 



 

 

221 

221  

 

6.5. Time Label Assignment (TLA) – Alert System 
 
This section is shows a toy example of an Alert System that can be developed for dynamic 

monitoring of time-series information. As an example of this selected memory, simple labels for 

NBER Recession months are taken with movements in S&P500.  

  The US recession is a binary label that represent the official recession months for the US 

economy between 1st of January 1971 to 1st of February 2017. For better accuracy of the system, 

a larger dataset of training features can be selected but to show the test case, only S&P 500 stock 

indices are selected. 

  The input values are defined as “x”, i.e. the input variables passed to the RNN, and “y” 

represents the values across which the RNN will be trained. Since only on feature is used, a 

single LSTM is used to keep account of the previous set of values. For a higher accuracy, the 

number of features from various other datasets can be increased and complexity of the LSTM 

required shape and size can be made. 

  The output “y” values is the categorical variable i.e. the prediction 0 if there is no 

recession and 1 if there is a recession.  The model is trained after verifying the data is correctly 

structured. For validation i.e. to check the accuracy of the model, values from the test data is 

used. Here the rolling window is 10 months. This is a sequential RNN model that will allow to 

add layers on top of the model. The shape of the data is defined by using embedding’s to provide 

the shape. Dropout is added it to the model which allows for faster and more accurate training of 

the model. The LSTM model is used to recognize patterns in the data where softmax is the 

LSTM's activation with 2 hidden layers. The loss function is used to increase the accuracy where 

a neural network is rewarded the output is right. If the network is wrong in the output it is 
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provided with no rewards. Categorical cross entropy is used for the loss function.  Now the 

training values in the model that were used training earlier are used to define the batch size 

(Number of inputs that a neural network such as RNN takes at one time and trains on it) and set 

up the epochs (Number of times a network is trained on the same set of values received from the 

batch size). To find the score and accuracy of the network the validation set is given. The system 

will pass some inputs to score the output by scoring which outputs it got correct and which it got 

wrong.  

  This approach can function as an alert system. The LSTM network is used to predict 

recession giving output as '0' or a '1' (0: represents no recession in that year. 1: represents 

recession in that year). A liner regression is used to predict the required set of values for sample 

forecasts. According to the predicted values the RNN predicts the incoming recessions. The 

network is trained for a time period of 1st of January 1971 to 1st of February 2017 of the 

American market. Features are the values which represent the data along which the prediction 

will be made. Many technical features such and macroeconomic features are accommodated. 

This is used to create the training and testing data use cross validation process that validate and 

test the system for its accuracy. A linear regression as one sample of a simulation and another 

with actual data. The results for the inaccuracy of the model are presented in month in figure (6-

30). The alarm could go off at a certain threshold where the decision-maker set, for example, 

anything month that provides an inaccuracy of greater than 80 percent could trigger the alarm.  

  There are plenty of opportunities to accommodate many new features, and the test alarm 

system on other class label data. In many real-world cases, one will note that the cases of failure 

are less recorded and there are only few training samples for such tipping-points in the instances. 
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This section has provided a simple basis to accommodate using time as a label and predicting the 

current or simulated time-period in similar labels.  

 

 
Figure 6-32. Alert System Example: Inaccuracy of “Recession” Label Prediction based on 

S&P500, over months 
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Chapter 7: Executive Decision-Making in Mega-Project Management  

Accurate and reliable forecasts can aid the executive decision-making process related to 

managing engineering mega-projects by bringing awareness to uncertainties associated with 

potential external opportunities and threats. The previous chapter presented the results of using 

ensemble deep learning-model approach and the capabilities of simulation-based reasoning tasks. 

These forecasting capabilities and collective forecasts provide a basis for monitoring 

technologies that can be deployed for managers to monitor the state of key indicators and 

prognostics for the system of their interest. According to Georgoff and Murdick (1986), the holy 

grail for all professions, from financial trading activities to management science, is the constant 

monitoring of forecasting for the external environment has been identified as key to successful 

executive decision-making. Therefore, applying the resulted predictions, with transparency to 

their error provided together for multiple domains, will help make these problems of uncertainty-

management more manageable. For example, in an energy mega-project that is being planned for 

across the nation, it will be significantly beneficial if the executives engaged, across multiple 

organizations, in the project had access to a common-pool of knowledge that provided them with 

forecasts for different time-horizons and for various pertinent domains. These forecasts could 

include financial performance of contractors, governance, economic growth, jobs related to the 

energy sector, trade, social and economic development related to the districts and the nation. 

Furthermore, the application of the prediction models will be of greater value to executive-

decision making when integrating different domain-forecasts related to the country and 

geolocations of the given mega-project and assets related to the project. In this manner, cross-

domain forecast feedbacks can be monitored for different time-frequencies simultaneously. This 

has opened a new area of systems research that encompasses what can be called “high-
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dimensional multi-variate time-series ensemble deep learning” or HMT ensemble deep learning. 

Layers of complexity are added in the information architecture as preference matching and 

mapping HMT ensemble deep learning to the mega-project. 

  There are few success cases for such monitoring technologies, a good example is 

applications in global climate policy.  Organizations such as National Oceanic and Atmospheric 

Administration (NOAA), United States Geological Survey (USGS), or National Aeronautics and 

Space Administration (NASA), as well as defense laboratories such as Sandia Labs or Applied 

Physics Lab (APL) are leading innovative new work to directly aid various catastrophic risk 

management techniques using monitoring technologies for climate policy-related decision-

making. Moreover, monitoring technologies are also used in engineering systems; such as: off-

shore wind-farms, large-power plants, industrial robotics, and for maintenance and prognostics 

of varied large-scale complex engineering systems. However, the application of such monitoring 

technologies for complex and dynamic decision-making concerning international business and 

policy strategy is at a nascent stage of study, especially in context of high-level executive 

decision-making (Schrage 2017, Aggarwal et al. 2017). Therefore, in this chapter the 

applications of the monitoring methods that can aid executives in managing LEP’s will be 

presented.  

  In the modern-day business environment, executives have to perform important and 

dynamic functions for mega-project management including fostering new partnerships and 

orchestrating large-teams and various stakeholders. They also need to be cognizant of potential 

tipping points, risks and opportunities, from the perspective of multiple stakeholder. 

Increasingly, executives have to operate in an even-more dynamic and uncertain global 

environment; hence, the best executives are made of certain traits and qualities, that include 



 

 

226 

226  

incorporating monitoring feedback systems to inform uncertainty-adjusted decision-making 

throughout the life-cycle of the project (Laufer 1997).   

  This chapter will start with discussing the application of incorporating foresight 

monitoring technologies in project management, to better plan and be informed about the 

potential external threats and opportunities. Then, an assessment of mega-project success and 

failure from an empirical lens will be conducted; and, finally, the applications of foresight 

monitoring will be discussed in the last section. Nevertheless, given the complexity of the 

massive data, model computation, forecast integration across domains, deployment strategies, 

and the varied choices for visualizations, this study provides a basis towards a systematic 

framework that will be valuable for decision-makers in the future.    

 

7.1. Incorporating Foresight Monitoring Technologies in Project Management 
 

There is a truism that “Forecasting would be a subset of prediction.”, and “all forecasts are 

predictions, but not all predictions are forecasts.” (Snowberg et al. 2012). In similar vein, there is 

a psychology construct called “foresights” that embodies forecasts and is very useful concept for 

planning and strategy development (EPAS 2017, UNDP 2011, Wiklinson and Koopers 2013). 

Therefore, the awareness of in-coming opportunities or threats can provide valuable foresights to 

aid uncertainty-adjusted decision-making.   

  Foresights include forecasts but are not dependent on forecasts alone. Foresight includes 

both cross-disciplinary forecasting, and the process of getting the forecast into the decision-

making process. Lot of attention has been given to the former since the 1980’s but little attention 

has been paid to the latter (Grant 1988). Hence, an important element to foresight is to anticipate 

the different risk perspectives of the multiple stakeholders engaged in the mega-project. For 
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example, a country manager needs to be aware of broad macroeconomic trends like economic 

growth, inflation, or real-effective exchange rate prospects; an investment bankers or trader may 

be interested more in the stock performance of companies on new deal assignment, interest-rate 

parity, or cross-currency basis; governments’ interest may be more on the potential political 

threats, uncertainty concerning geopolitical tensions, central bank policy moves, and strategies to 

diversify their sources of income by economic diversification; and, finally, local population i.e. 

the beneficiaries of the mega-project, may have concerns about the impact of these projects on 

jobs, social, and economic development in the city. Consequently, visualizing, anticipating, 

foreseeing and perceiving these different factors from different risk perspectives becomes crucial 

for successful managers.  

 In addition, foresights can aid important decisions-making throughout the lifecycle of the 

project. Foresights should be generated particularly at the inception of the project cycle, but also 

during and after the project. As demonstrated by figure (7-1), the impact of the executives’ 

decisions on the project’s cost performance declines dramatically as the project progresses and 

the maximum potential for influencing the project’s cost occurs in the conceptual and definition 

phase (HBR 2016, Laufer 2012). Moreover, it is important to note that more than one third of the 

reasons why projects fail is out of the manager’s hand (Laufer 1997). There are the external 

threats and opportunities that are unaccounted for; thus, this research can help in reducing this 

“out of hand” uncertainty.   

  A simple example of how foresights can aid decision-making on mega-projects can be 

the following case. Consider, that a reliable forecast for variables that could include household-

income, growth in software-engineers and network scientists’ occupations, living costs…etc. of 

different districts and cities in a given country, will aid the decision-maker during the planning 
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stage as to where to set up the mega-project like a data-center. The executive could understand 

the cases by running simulations of the potential opportunities and threats in that city or country 

based on foresights of various measures of interest. Similarly, such foresight monitoring 

technologies should be used during the life-cycle of the project and assets related to the project, 

as new data is received to improve the short, medium, and long-run foresight capabilities.  

 

 
Figure 7-1. Ability to Influence Project Costs 

Source: Alexander Laufer 1997. 
 
 

7.2. Assessment of Mega-Project Success and Failure 
 

  There is a paucity of detailed data concerning mega-projects. Most companies and 

governments keep this information as a proprietary. The only source of reliable, global and 

cross-sector mega-projects information are publicly available from the World Bank Group 

Projects database. This database contains detailed information concerning over 17,000 large 

global projects executed between 1947 – 2017; ranging in size between $1 million with largest 

individual projects approaching $4 billion in over 173 countries. These projects range across 
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sectors such as: agriculture, forestry fishing, education, energy and extractives, finance, 

information and communication technologies, transportation, infrastructure, and water and 

sanitation.  Furthermore, the database contains a list of active and pipeline projects for the 

coming decade. Consequently, the World Bank database will be utilized to extract data about 

mega-projects which will then be used to demonstrate the application of the developed models 

and assess their accuracy. In order to demonstrate the application of the developed models, this 

section will, first, give a brief description about the World Bank Group’s projects’ structure; 

second, the specifics of the World Bank projects database, and the key trends are highlighted. 

This will be followed by leveraging machine learning classification models to assess the 

accuracy of predicting mega-project that were closed (success) or dropped (failure).    

  There are two types of World Bank projects: one, that have succeeded in the prosperity of 

a nation, and another where mega-projects leave many negative externalities as well as 

associated with many social and economic failures. Given the very complex nature of the global 

portfolio, on the ground realities in developing countries, multiple stakeholders, paucity of data, 

assessing the core response of these projects in a more comprehensive manner to address 

sustainability and positive spillovers such as long-term social and economic impacts is very 

difficult. Furthermore, isolating the causality, dependency, or endogeneity factor is harder. 

Ideally, this would require a massive simulation of various of these geo-locations, cities, 

districts, states, and countries, across tens of thousands of measures related to entities associated 

with these locations of the mega-project. In this view, there are simple lessons of how integrating 

mega-project analysis with foresights concerning uncertainties across various domains. This can 

play an instrumental role to enhance the executive decision-making process in a systematic 

manner.  
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 In addition to the projects’ classification, it is important to understand the project 

lifecycle for the World Bank which consists of six stages: 

 

1. Identification: The World Bank, in coordination with other organizational units; such as: 

the International Finance Corporation (IFC) and Multi-lateral investment Guarentee 

Agency (MIGA) produce a strategy, called Country Partnership Framework (CPF), to 

identify the country’s highest priorities for economic development.  

 

2. Preparation: This stage is used to assess the capacity of the borrower to follow through on 

the project, they include conformity with World Bank’s Safeguard Policies, Environment 

Assessment Report, Environment Action Plan, and other external threats reported such as 

Indigenous Peoples Plan.  

 

3. Appraisal: This stage provides the stakeholders an opportunity to review the details of the 

project’s design and resolve any outstanding concerns.  

 

4. Negotiation/Approval: In this stage, the project appraisal document is prepared along 

with other financial and legal documents.  

 

5. Implementation/Support: In this phase, the World Bank’s role is  to ensure adequate 

fiduciary controls, and adjust them in case of any restructuring of finance is necessary 

given local and external environmental conditions.  
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6. Completion/Evaluation: An implementation and completion report is compiled from the 

implementing government agency, and the various stakeholders. The Independent 

Evaluation Group (IEG) assesses the performance of the project on objectives such as 

sustainability and economic development, which is filed in the Impact Evaluation Report.  

  

  Next, the data for the projects’ database is discussed briefly. The data is used from open 

source library World Bank projects database (http://projects.worldbank.org/). This data contains 

more than 17,000 projects with different categories like “Commitment Amount”, “Country”, 

“Status” and “Approval Date”. Different types of data for the largest number of financed projects 

can be extracted from this database, but, first, to be able to interpret this data the regional codes 

used by the World Bank are shown in Table (7-1): 

 
Table 7-1. 3-digit Regional Codes 

Region name Region 
code 

Africa                                              AFR 

East Asia and Pacific                      EAP 

South Asia                                      SA 

Europe and Central Asia                ECA 

Latin America and Caribbean        LAC 

Middle East and North Africa        MENA 

Other                                              Other 

 
  Figure (7-2) gives a sample of the data that can be extracted from the database. The bar 

graphs in figure (7-2) Panel A and B show the top 25 countries’ total number of projects and 

total project amounts for different regions, respectively.  Panel B shows the success rate i.e. the 

proportion of closed project divided by total number of projects in a given region, the error bars 

are graphical representations of the variability of data and used on graphs to indicate the error or 
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uncertainty in a reported measurement. Panel C displays the different project status for the whole 

database, while Panel D highlights the shares of each status variable. This indicates that 

approximately 78 percent of projects are closed followed by “Active”, “Dropped” and 

“Pipelined” projects.  

 

 
Figure 7-2. Summary of World Bank Projects Database 

 
    
  Nonetheless, the World Bank has no formal definition of the mega-projects and this 

definition is dependent on the preference of the analyst or the decision-maker. Thus, for 

conformity, this study defines the projects according to the following main project categories: 
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“Small”, “Big”, “Large”, and “Mega”. These project categories are defined based on the lending 

amount; hence, different mega-project distinctions are provided in Tables (7-2) & (7-3) below.  

 
Table 7-2. Defining International Bank for Reconstruction and Development (IBRD) mega-

project by project amount 
Project code Project category   Budget Range ($) 
0 Big 0.1 Millions  -  10  Millions 
1 Large 10 Millions  -  1 Billions 
2 Mega 1 Billions  -  100 Billions 
3 Small 0   -   0.1 Millions 

 
Table 7-3. Defining International Development Assistance (IDA) mega-project by project 

amount 
Project code Project category   Budget Range ($) 
0 Big 0.1 Million   -   10 Millions 
1 Large 10 Million  -  200 Millions 
2 Mega 200 million   -   100 Billions 
3 Small 0  -   0.1 Millions 

 
  To further classify these projects into success or failure, the Independent Evaluation 

Group (IEG), which is a department at the Bank that does post-project evaluations created the 

dependent binary variable and the binary classification of project success or failure is presented 

in Table (7-4) below:  

Table 7-4. Binarization of IEG Project Performance Categories 

IEG Project Performance 
Categories 

Binary 
Class 

Satisfactory 1 
Moderately Satisfactory 1 

Highly Satisfactory 1 
Unsatisfactory 0 

Moderately Unsatisfactory 0 
Highly Unsatisfactory 0 

Not Rated 0 
Not Available 0 

Not Applicable 0 
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  Finally, the next charts show an empirical view of project success and failure. Figure (7-

3) Panel A shows the count of “Dropped” and “Closed” projects, whereas Panel B shows the 

regional distribution of project success rate. Panels C and D show the IBRD and IDA project 

success rates respectively, showing that smaller projects are generally less successful than mega-

projects.  

  After providing a brief overview about the World Bank’s database, the simple 

classification model’s results are presented here to predict the performance of the projects as 

either satisfactory or non-satisfactory, which will then be compared to the predictions resulting 

from the current World Bank practices. In order to perform this task, the first step is to divide the 

data into training and test data, 20 percent test data and 80 percent training data. Second, for the 

test data, the columns representing the status of the projects are removed and the data is pre-

processed where encoding is done, and unnecessary features are dropped. Furthermore, the 

World Bank IEG data that rates the ex-post performance of “Closed” projects are merged based 

on the project id. Finally, the data is trained on Status: “Closed” projects based on the IEG 

binarized performance criteria; and the results indicate that given certain project features in 

Table (7-4), the likelihood of either a “Satisfactory” or “Non-Satisfactory” project evaluation 

rating differs.  Panels E and F show the prediction of whether “Active” and “Pipeline” projects 

will be satisfactory or non-satisfactory.  
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Figure 7-3. Aggregating Project Success/Failure rate
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  Similarly, classification models can also be developed to predict whether a 

project will fail (i.e. be dropped) or succeed (i.e. closed) based on the project and 

country features. The different classification model results accuracy rate is presented 

in the following table (7-5). Many other methods were also tested, but decision tree 

classifier seemed to be most accurate with small data. A visualization of the decision-

tree for the test set is provided in figure (7-4). It is important to note that these 

models’ results are useful priori information to assess the success or failure of the 

project; however, the domain and location specific intelligence, and many external 

features are not yet incorporated in these instances. This result provides the decision-

maker a project-by-project basis to get a crude and base level classification given the 

project features; such as: the total lending amount, sector, the environment for doing 

business, macroeconomic, environmental and political features of the country. This is 

incomplete, since there are many local features in proximity to the project location, 

such as district or city specific monitoring for potential opportunities and threats are 

not incorporated here.   

       In spite of its robust accuracy when compared to the current practices, this 

stand-alone information can be improved by merging data from different domains 

related to the location and country of the project and foresight monitoring. However, 

integrating forecasts from various domains is a highly complex task. Nevertheless, 

this research has opened the door for a new array of research related to system design 

and reliability to accommodate complex computation in dynamic environments.  

Information monitoring and forecasting have to be built into the decision to provide 
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continuous testing, against actual events, of the expectations that underlie the 

decisions. 

 
Table 7-5. Results of the Classification Models for dropping project 

Classification models Accuracy of 
classification model  

lightGBM 0.94 
Naïve Bayes 0.93 
Decision Tree 0.99 

 
 

 
Panel A. Predicting Status of Project to be “dropped”, 5.9 percent in global test set 

 

 
Panel B. Predicting Status of Project to be “closed”, 5.9 percent in global test set 

Figure 7-4. Decision Tree Visualization of Probability of dropping a project 
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  Therefore, to help the executive decision-makers of LEPs, this research will 

contribute in bringing awareness to external opportunities and threats to inform 

timely uncertainty adjusted decision-making rather than assessing the failure or the 

success of the project beforehand. The importance of the above models and results 

highlighted in earlier chapters is to train the decision-maker to practice value of 

planning and monitoring constantly.  

  Now the cross-domain features of importance given the project features can 

be forecasted and provided to the decision-maker to monitor these external 

opportunities and threats. The decision-maker must make his, or her, own judgement 

related to the forecast features, errors associated with the forecasts to plan to get 

either new information, communicate the findings with the stakeholders, and take 

action. It is important to take into account the external opportunities and threats and 

bring visibility to these foresights for greater awareness of the decision-maker. In 

some circumstances, predictions for country features; such as: a contracting economy, 

rising unemployment, or higher than expected rise in central government troubles as 

witnessed through increase in public debt, and financial constraints to do business, 

would help inform tactics to plan and prepare to successfully deliver the project. In 

other instances, the country features may not be that insightful; however, city and 

district-specific local features predictions for housing, income, labor markets, or 

environment, can help prepare the executives to deal better with the in-coming threats 

and opportunities. In few cases, purely the technical design of the project, engineering 

constraints, and mismatch between the engineering details could be the root cause of 
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the failure. However, the latter case of such internal engineering project failures is not 

the focus of this research and not pertinent to the applications.   

  Nevertheless, the information-system attributes of this problem entail many 

complexities. The information system would require the following attributes: (a) a 

systematic framework to integrate massive volumes of data, both at high-frequency as 

well as historic that is already organized to various spatial and temporal coordinates 

as discussed in Annex 2 on system architecture; (b) a system that would have 

computational capacity to make varied forecasts across various domains and different 

time horizons constantly, this requires massive computational capacity and new 

methods to address the computation of LSTM models for hundreds of thousands if 

not tens of millions of records on a frequent basis; (c) accommodate micro geospatial 

information from each government sources such as the Census, Survey of Industries, 

unit level household surveys…etc. to get estimates of districts and cities in close 

proximity to the project which are  currently, not readily available across countries; 

and (d) a matching-system that maps the parameters of decision-making given project 

features to the country, state, and district/city level most that is most relevant to the 

external opportunities and threats features specific to that project. This would allow 

decision-makers to monitor or run simulations as provided in section 6.5 for 

monitoring and experimentation of the decision-making, that could especially be 

valuable for various scenario planning, testing at early stages of the project cycle, as 

well as, live on-going monitoring of “active” or “pipeline” projects. Some of these 

elements highlight the complexity of scaling this approaches that can directly aid 

executive decision-making. Consequently, as demonstrated above, this research has 
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put forward a foundation for this new and highly specialized area of research, which 

is highly interdisciplinary and requires knowledge of different social sciences fields; 

such as: economics, finance, sociology, political science; in addition to engineering 

fields; such as: reliability engineering, systems engineering, computer science, 

scalable artificial intelligence and big data sciences; as well as understanding the 

perspectives from business and policy fields related to resource allocation and 

decision-making fields.  

  Moreover, this research has laid the foundation for many deeper work across 

these disciplines. Figure (7-5) provides a simple graphic illustration of integrating the 

data, model, and visualization capacity from forecast of features from various 

domains. The red circle represents prediction system for various features from a given 

domain, or data source, such as: finance, which would contain stock prices, foreign 

exchange rates, cross-currency basis; sentiments, such as: twitter or google search 

trends, and related sentiment classification of positive, negative, or neutral 

sentiments; microeconomy: 3-5 year forecasts of state, district or city features such as 

household income, labor markets, environment; macroeconomy: economic growth, 

central government finances, fiscal balances of central and state government; 

geopolitics: GDELT forecasts for protests, mass violence, or refugee events, and 

political stability rankings; satellite imagery to obtain more high frequency features of 

the project’s location and extract features related to the environment, as well as 

monthly monitoring of the project’s location through updated images. These forecasts 

for various countries, states, districts, and cities should be automated and occurring at 

scale. Given the parameters of the mega project like the location, amount, 
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sector…etc., the available spatial data for these domains are identified. Similarly, if 

entities such as companies or organizations are identified in the project preference, 

the geolocation of those entities as well as the locations related to those entities; such 

as: the headquarters’ location of the entity, can be used to compute these domain 

specific features. Lastly, forecasts for different time horizons; such as: short, medium, 

and long-term, are computed and can be displayed for monitoring purposes. The time-

horizon of forecasts can also be automated based on: (a) taking high frequency data; 

for example, stock prices which can be available daily, and aggregated to monthly or 

annual frequency, and (b) based on the data, for example if GDP growth data is only 

available at best quarterly, only quarterly predictions will be available for that given 

feature.  

 
Figure 7-5. Graphic Illustration of Integrating multiple-streams of information from 

different domains related to mega-project location co-ordinates and multiple-time 
horizons 
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7.3. Mega-Project Application using Foresight Monitoring  
 

Based on the above ideas of foresight monitoring for mega-project management, the 

findings of this research will be discussed in light of a specific case: The Luhri hydro 

electric dam project. The Luhri project was initiated by the World Bank in 2010 and 

dropped in 2015. The project was estimated to be $1.150 billion of which the World 

Bank committed $650 million. The project involved multiple stakeholders, including 

the Asian Development Bank (ADB), and SJVN Ltd was the main contractor for this 

project, the USAID commissioned review the environment and social impacts. 

Furthermore, from the government’s perspective the project included stakeholders 

such as central government, prime minister’s office, as well as various ministries and 

public-private entities; such as: the Power Corporation of India, and State government 

entities including the Chief Minister’s Office, and state level regulatory bodies for 

Power ministry.  

  The hydro dam project was around the Sutlej river which is a glacial river 

originating from the Kailash Mansoravar in Tibet traversing through the Himalayas 

and Punjab plains in India, meeting the Indus river in Pakistan. The project was 

initially planned for a hydro dam project that involved the construction of an 86 m 

high concrete gravity dam that generated 775MW of power which involved building 

38-kilometer long twin tunnels (9 m in diameter) that was estimated to be longest 

tunnel in the world, in the Indian state of Himachal Pradesh.  

  There are many factors that led to the failure of this project including: the lack 

of environmental and social impact planning, lack of foresight, and lack of 

accommodating potential external threats. There was an under-assessment of land 
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requirements, for example, forest land area was underestimated by hundred hectares, 

and most importantly the impact on the perception of local population.  The project 

would have impacted residents of at least 78 villages of Kullu, Mandi and Shimla 

district (Environmental Justice Atlas 2017) and its 38 kilometer long tunnel would 

have impacted the livelihoods of these villages. Protests from local villagers were 

growing, that led local protestors meet with investors and officials and made the 

World Bank withdraw from the project.  

  Environmentalists were worried that building the project will lead to major 

environmental crises like drying of river and loss of vegetation, this was supported by 

local communities due to the fear of loss of their “lands” and “homes”. In hindsight, 

the cumulative impacts would have disseminated the only stretch of free-flowing 

river Sutlej, flooding disaster with the vulnerability of the hilly region being exposed 

due to hydropower development, environmental impacts, local people’s claims. Other 

issues included air pollution, soil erosion, surface water pollution, groundwater 

pollution or depletion, large-scale disturbance of hydro and geological systems, 

reduced ecological / hydrological connectivity, food insecurity (crop damage), loss of 

landscape/aesthetic degradation, so on and so-forth.  

  The project was dropped but is currently still undergoing changes in design 

and capacity. In particular, the tunnel component that would have affected three 

districts of Kullu, Mandi and Shimla was dropped later (HIM DHARA 2011). 

Similarly, other technical changes; such as: single tunnel was made and its capacity 

reduced from 7775MW to around 600MW. 
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  Nevertheless, executives on the project could have made better decisions and 

anticipated many of these threats based on foresight monitoring methods. Figure (7-6) 

shows a spatial aggregation of the project i.e. country, state, district of the project. 

Associated table of relevant predicted features for this time period of these different 

spatial aggregations are presented alongside the maps. In a similar fashion, executives 

can be presented daily or high-frequency monitors for factors associated with the 

project’s location, and locations associated with assets related to the project.  

  The project’s model predicted that the probability of the project being 

“dropped” was 1. This result with high accuracy implies that there are was some 

missing elements in the project and country features that may have led this project to 

be dropped.   

  On the external opportunities and threats concerning domains such as 

economics, finance and geopolitics, the tables presented next to the map provide back 

tested forecasts. Now reader should note that acquiring country, state, and district 

level reliable time-series information for the various domains is possible but quite 

extensive. The complexity of each domain and entity specific model would require 

fine-tuning based on the proposed approaches. Hence, for illustration purposes the 

graph attempts to show a practical approach to monitor different time-horizon 

foresights.  

  At the country level, in the aftermath of the global financial crisis, the models 

showed that India would continue to have volatile economic growth in the year 2011, 

below 6 percent versus its expectation of 8 percent. Similarly, forecasts for public 

debt and exchange rate would have shown unstable macroeconomic conditions.  
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  Another important factor that should have been monitored is the state of other 

stakeholders, for example the contractor. The back tested forecasts for SJVN stock 

prices would have shown, either in daily or monthly terms, that the financial 

performance of the SJVN would be dull for the coming years of 2011-13 which 

should raise alert flags in the executive decision-maker.  

  Similarly, state and district features can be incorporated to add information 

and reduce uncertainty. State level forecasts for state gross domestic product 

predicted that growth would be much slower in Himachal Pradesh than the previous 

years. GSDP growth in mid-2000’s in Himachal Pradesh was over 12 percent and 

expected to decline below 12 percent; similarly district specific features, including the 

population projections, were pointing towards a push factor of greater density and 

worsening economic climate. Last, but not least, using the geopolitics database from 

GDELT, it would have shown that the likelihood of protests in Himachal Pradesh and 

specifically those districts would have been much higher than expected. In 

conclusion, all these back tested forecasts collectively would have provided the 

executives engaged with the project a good sense of vulnerabilities in the external 

domains of economics, finance, and geopolitics to better pre-empt threats related to 

the Luhri dam project and plan better to address the root causes of failure.  
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Figure 7-6. Luhri hydro electric mega-project, foresight monitoring example for 

timely uncertainty adjusted decision-making in dynamic environments 
Notes: The reader should note that integrating and acquiring the various spatial-temporal domain 
specific information is highly complex. The chart above is an illustration with approximations from the 
publicly available raw data.  
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Chapter 8: Conclusion 

Megaprojects’ executive managers are busy orchestrating and managing many 

project-related tasks. They are too busy to pay attention to external opportunities and 

threats that may impact their project or how their operations may impact the local, 

national, or global economy. Given their lack of attention, many state-of-the-art 

methods can be automated for accurate and reliable analysis of economics, finance, 

and geopolitical domains that can be used for quickly monitoring updates, errors, 

vulnerabilities in the spatio-temporal space as it relates to the mega-project or assets 

related to the mega-project. However, there is an important element of how relevant 

features concerning a decision-makers’ domain, entity, or features of interest can be 

incorporated in their decision-making process. Therefore, this research presented this 

element and showed how the different features can be incorporated. This research 

provided an ensemble deep learning framework for analyzing external opportunities 

and threats. Furthermore, the research shows how integrating forecasts or foresights 

related to a specific asset or a large investment plan can bring value by bringing 

greater awareness to external environment for uncertainty-adjusted decision-making. 

The predictions in themselves do not say much, but systematic monitoring of the 

error, uncertainty, disorder, and variability in prediction should be given more 

importance for executives who wants to be successful at managing large projects by 

monitoring economic, financial, or geo-political mass-movements.  

  This study presented a novel deep learning framework where Dynamic Time 

Warping (DTW), Hierarchical Clustering Analysis (HCA) and long-short term 

memory (LSTM) are combined for application in new domains; such as: economics, 
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finance, and geopolitics. The proposed ensemble model framework consists of a 

number of steps: first, processed domain knowledge is used to extract a set of 

technical features including dependent variable and domain-specific’s measurement 

science to accommodate the training data; second, structured learning based on 

Dynamic Time Warping (DTW), to learn similarity between sequences and 

Hierarchical Clustering Analysis (HCA), is used to determine which features are 

relevant for a given prediction problem. Third, this step is used to automate a decision 

based on the input and structured learning from the DTW-HCA training data-set 

which is fed into a deep LSTM neural network for time-series predictions. The 

developed model can be used to inform decision makers on t+1 (daily, monthly, 

quarterly, annual) predictions with great reliability. The model outperforms other 

similar models in its predictive accuracy. Furthermore, the study accounts for 

potential model-based uncertainties which provides a more robust and reliable 

framework for quantifying and managing uncertainty for time-series predictions. 

  Moreover, the model is scalable, modular and yields higher accuracy at lower 

computational costs compared to other methods. The elements of processing domain 

knowledge and structuring domain logic using machine learning techniques can be 

relatively computationally expensive but in the developed model they work well to 

understand knowledge. The time-warped distance provides valuable insights for 

aggregating and clustering. This approach of using machine learning to build an 

appropriate training data-set provides a scalable framework. For example, in order to 

predict the GDP growth for the USA, a totally different set of features will be 

required, versus predicting the GDP growth of India. Similarly, as people, we do not 
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know whether there is co-relation or similarity between some random events, like the 

“sale of bubble-gum” and the price of a large financial institution. While it will 

remain impossible to predict, small, unseen, rare events; however, provided the data, 

the proposed approach helps to cluster and use machine learning methods to build 

appropriate training data-set to be fed into a model designed to cross-chaotic, 

dynamic feed-back loops retaining long and short-term memory such as the LSTM. 

Indeed, there are numerous methods that can be used to achieve similar results, and 

this framework falls in line with other frameworks that are being used.  

  In addition to this domain-knowledge based prediction framework, there are 

four other methodological innovations that were presented in this research. First, 

aspects related to dependencies, causality, and question of separability of different 

features, are dealt with MC simulations which provides the ability to learn the 

sensitivity factor of training features and study potential impact of shocking features. 

Second, ensembling methods were proposed to accommodate the information and 

knowledge and/or ignorance from different models. Third, methods similar to LSTM 

networks and ensemble models were presented to build a time-based alert system that 

monitors if the time-sequence forecast is crossing a threshold defined by the decision-

maker. Fourth, the application of uncertainty quantification methods like MC dropout 

and quantile loss function provides novel approach to better handle epistemic 

uncertainty.   

 The results from different domains showed great success. The economic 

domain showed results for predicting GDP growth of the USA, as well as effective 

exchange rates with a low error and high accuracy. Similarly, detailed results from 
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stock price indices and individual tickers were shown for day ahead predictions, and 

predictions for protests in the USA from the geopolitical domain were presented. The 

results showed a new approach to use the information from different models to take 

advantage of over-fitting and under-fitting models to create a crude, yet useful, 

approach to build good fitting models for highly noisy and stochastically random 

variables. The MC simulation showed promising results, there is small but enough 

variation in results, and examples for factors like capital formation and exports 

importance for US economic growth provided simple, yet practical cases.  Similarly, 

a toy algorithm based on LSTM model to use a single time-series information to build 

a classifier to predict the label of time-period was developed. In this instance, the 

monthly labels for the US recession years showed that such monitoring and alert 

systems can have practical implications for decision-makers.  

  The application of the models is particularly valuable when different forecasts 

can be integrated together to be displayed on a single page, which are also referred to 

as foresights. There are a variety of applications for such foresight monitoring 

technologies. The conducted research showed a specific case of integration of 

foresights for the Luhri hydro electric dam project. There were many facets of the 

economic climate in the country, state and district level signals on environmental 

factors such as the deforestation, or economic predictions for income, and political 

threats such as protests could have provided the decision-maker awareness of 

opportunities and threats related to the project. Furthermore, the computational 

capacity to deliver large-scale foresights for planning related to an asset, which only 

requires less than a minute to view, can greatly improve the awareness of project 
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managers to better understand the different risk perspectives of the counter-parties 

engaged in the mega-project. By incorporating multiple-time horizons and multiple 

time-series foresights, decision makers can be better equipped to plan and constantly 

monitor mega-projects.  The applications have also raised important questions 

concerning how to display large volumes of complex, yet valuable information, and 

computational capacity to run multiple automated deep learning algorithms for 

different time periods, locations, features, and entities.  

 

8.1. Research Contributions 

  The conducted research contributed to the state of knowledge within and 

across multiple domains, including reliability engineering, systems engineering, 

computer science, economics, finance, geopolitics, project management, and 

decision-making. The general contribution of this research has been to provide a new 

ensemble deep learning model framework that can be used as monitoring 

technologies. The specific contribution was the applications of the ensemble deep 

learning framework across different domains of economics, finance, and geo-political 

forecasting to aid the executive decision-making process concerning risk management 

of mega-projects.  The multi-disciplinary framework provided the following new 

contributions to the current state of knowledge:  

 

1- This research showed promising new application of deep learning to new 

domains such as economics, finance, and geopolitics. The research has the 

stage for operationalizing the findings for the investment and policy related 
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decision-making community. The methods and results presented a reliable 

data-driven approach for monitoring and forecasting at scale for numerous 

components in a complex dynamic system; and had the ability to eliminate 

signal from the noise in big data by accommodating domain knowledge.  

 

2- The structured logic approach is close to the optimal choice for training data 

and yields higher accuracy at relatively low computational costs and reduced 

complexity. The results show superior performance of abstracting domain-

knowledge and prediction accuracy when compared to traditional statistical 

practices and industry standards, when available.  

 

3- The model architectures have significance in variety of other domains that 

deal with real-time signal about complex systems; for example, reliability 

engineering and other engineering domains using SCADA. The modularity 

and flexibility of the model’s approaches offer many variant possibilities, 

especially with ensembling different models using an ensemble weighting 

scheme as a simple powerful method to use knowledge gained from different 

models.  

 

4- The novel controlled experiment scenario for neural networks, provided a 

framework to go beyond just black box. For example, MC simulation cases 

provided an experimental setting to have more controlled setting for deep 

LSTM networks. Similarly, the TLA approach showed simple cases for 
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building alert systems for time-series information based on decision-makers’ 

threshold preference. The insightful foresights and approaches to integrate 

accurate forecasts will re-enforce the use on such decision-making methods 

for investment and policy related resource-allocation problems.  

  

5- Approaches to standardizations of data and models for geopolitical, economic, 

and financial domain-knowledge extraction were provided. The data-model 

system has applications in many other domains where time-series information 

about various components of a system are available. 

 
6- Novel application of uncertainty quantification (UQ) and model reliability 

(MR) matrices directly aid decision-making capabilities across communities 

of practice including financial trading, economic policy, financial 

management, risk management, and resource-allocation related to executive 

decision-making in LEP’s. The modular nature of the system control 

architecture should provide ability use state of the art UQ and MR methods in 

a scalable manner.  

 

7- Application of what it called foresight monitoring technologies i.e. integrating 

of predictions from different domains and time-horizons were examined 

which showed how planning and real-time foresight monitoring of mega-

projects can help bring executive decision-makers greater awareness of 

external opportunities and threats.  
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8.2. Limitations and Suggestions for Future Research 

  In spite of the major contributions of the conducted research, there are still 

some limitations and boundary conditions to this research that provide opportunities 

for future research. First, the future forecasts deduced from this research are 

dependent on past information; hence, if there are any inaccuracies in the latter data, 

the forecasts’ quality will be affected. Second, this research discussed briefly the 

attributes related to separability, dependencies, causality, in the training data-set 

through the MC simulations case; thus, examining these attributes in-depth might 

impact the quality of the forecasts and to disentangle causal factors in a more 

controlled setting in neural networks.  Third, measurement errors of the raw data are 

out of the scope of this research. The focus of this research has been on reliable data 

that may have uncertainties associated. Fourth, this research showed a generally 

applicable and reliable t+1 (that could be either daily, monthly, quarterly or annual) 

forecasts while longer time-sequence predictions would require other ensembling 

options. Fifth, the probability of unseen small probability events that are not captured 

in the data are not in the scope of this research focus.   

  At the same time, this research has opened the door for many new areas of 

research. First, there are many deeper applications within the domains discussed in 

the research. In particular, a richer framework can be developed on evaluating the 

domain-specific validity of different ensembling methods. These applications could 

include parametric models, reinforcement learning, voting classifier etc. Second, 

more insightful examples on appropriate and reliable thresholds can be incorporated 

in the MC simulation to provide meaningful results related to the most important 
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feature that pushes or pulls the dependent variable and studies on ranking feature 

sensitivity factor could be promising. A deeper study is required for an experimental 

study simulation in the confines of neural networks. Third, questions related to data 

reliability, such as do we trust some measures from countries like Afghanistan, or 

other measures from a given country are open questions. In the discipline of big data 

architecture, indeed the research has raised questions on standards for a level of trust, 

validity of “good” data versus “inaccurate” data. Fourth, scaling the database through 

a study on spatio-temporal knowledge base based on micro and macro statistical 

knowledge with open-source architecture could have a big public impact. Fifth, there 

is scope to improve the standardization of the model’s architecture and data. In this 

light, aspects of computer graphic visualizations incorporating the cognitive 

capabilities of human beings to best inform their decision making concerning large 

investments, assets, and projects are high-value research projects to pursue. For 

example, how could vast amounts of complex data and predictions from spatio-

temporal be automated for easy access on one page is a big challenge. In this thought, 

attributes of Natural Language Processing (NLP) can also be used for converting such 

information to questions and answers systems. Most importantly this research has 

also raised deeper questions on system architecture to run such computation on-line 

that integrating multiple forecasts in real-time, from multiple geolocations, entities, 

domains, and time periods. The deployment strategy for such a system architecture 

requires deeper study.  

  In addition, from the perspective of multiple stakeholders, it would be good to 

understand how these monitoring technologies can directly aid their decision-making 
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process. This could be explored in the future research with an experimental design 

setting to incorporate feedback from executives’ expert opinion to design an interface 

for human-machine interaction. Moreover, future research can explore how 

Convolutional Neural Networks (CNNs) approach can be used in exploring the idea 

of whether entities; like countries, can be monitored based on building a standard 

daily image, or heat-map, and then extract features of this daily-moving country 

image. In this approach, CNN’s can be used in the same manner as used for scene 

mapping in video and image recognition tasks.  Another area of future research is 

going beyond t+1 predictions to longer time sequence predictions. Many new models 

can be explored for ensembling or stand-alone, such as GAN’s and Reinforcement 

learning for important feature extraction, to improve prospects for long term sequence 

predictions.  

  Attributes of aleatory uncertainty also requires a special focus in these 

domains of interest. For example, private sector executives and policymakers 

associated with a mega-project are interested in potential local or national economic 

or political events uncertainties that could impact the execution of the project. The 

DTW-HCA ensemble allows a mechanical case-specific basis to cluster similarity of 

trends and provide potential recommendations of related asset forecasts. However, a 

structured approach to combine aleatory uncertainty and epistemic uncertainty in our 

domains and decision-making cases of interest are areas of future research.  

  There are also many important issues concerning causality that require deeper 

analysis. For example, the interaction between classes in different clusters, can be 

separated to provide a better fit to ground-truth data. In traditional machine learning, 



 

 

257 

257  

such domain knowledge is neither processed in a structured manner nor provided 

unsupervised methods in machine learning are used to build an appropriately 

“similar” training data-set for the prediction or classification problem based on the 

variable of interest. However, the provided methods for structuring knowledge could 

be useful for building causal reasoning models and this knowledge could also be used 

to provide recommendations for given policy and investment challenges but requires 

deeper study.  Nevertheless,  this research has set the stage for standardization of 

data, models, and visualization libraries for economic, finance, and geopolitical 

domains of interest. Furthermore, it has presented the findings that can make a direct 

impact on decision-making concerning mega-project management, as well as policy, 

and investment decision. 

  The study also provides interesting new research areas to avoid human error in 

financial trading and economic policy related decision-making. In this context, there 

is a gap in the human-computer interaction (HCI) and human reliability analysis 

(HRA) literature as to how human errors can manifest with the proliferation of 

accurate and reliable artificial intelligence (AI) based predictions. Forecasts clearly 

have an explicit psychological impact on the observer (or operator), thereby, well-

founded psychology theories including inductive reasoning, anchor heuristics, 

reinforcement expectancy theory, and cognitive dissonance could have significant 

impact to enhance prognostic decision-making. Many of the semi-automated and 

inductive reasoning tasks are transferred from human cognitive load to the machine 

conducting pattern matching, similarity, clustering, reliability, uncertainty etc. After 

thorough testing in a laboratory setting with decision-makers, standards and 
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guidelines could be developed to better track human-error with real-time computer 

systems and optimize resource allocation decisions.  

  Finally, in the wave of thinking from the concepts such as Black Swan and 

Chaos Theory, resilient systems thrive greater disorder and idiosyncrasies, fragile 

systems break under stress. From a mathematical perspective, it is impossible to come 

up with probability of rare (or unseen) small event, especially in the fat tail domain 

(known as the problem of induction). In Arabic, predictions are called “prophecies”, 

and indeed, forecasting is like prophesying which has many psychological aspects. 

Any economic number from oil prices to GDP growth forecasts from most forecasters 

have been incorrect; however, people still pay attention to it. The methods, results, 

and applications offered in this research could either end up adding or reducing 

redundancy to the system, where technology itself should be a domain of risk. There 

are heuristics and simple solutions that have implications for human judgement that 

require a system for orchestration of information and knowledge between man and 

machine, and vice-versa, “externalities” that this research has identified.   
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Appendix A. Definitions 
 
Information can be defined as sensed objects, things, places, processes, and 

information and knowledge communicated by language and multimedia. Information 

can be viewed as preprocessed input to our intellect system of cognition, and 

knowledge acquisition and creation. Information can lead to knowledge through 

investigation, study and reflection.  

Knowledge is defined in the context of humankind, evolution, language, and 

communication methods, as well as social and economic dialectical processes; 

knowledge cannot be removed from them. As a result, knowledge always reflects the 

imperfect and evolutionary nature of humans, which can be attributed to their reliance 

on their sense for information acquisition; their dialectical processes; and their mind 

for extrapolation, creativity, reflection, and imagination, with associated biases as a 

result of preconceived notions due to time asymmetry, specialization, and other 

factors. An important dimension in defining the state of knowledge and truth about a 

system is nonknowledge or knowledge deficiency or ignorance due to many factors 

and reasons including information deficiency, that is, uncertainty.  

Risk is a measure of the potential loss occurred due to natural or human 

activities. Potential losses are the adverse consequences of such activities in form of 

loss of human life, adverse health effects, loss of property, and damage to the natural 

environment (Ayyub 2008, Modarres 2017). Risk is defined as a consequence of 

action taken in spite of uncertainty. In 2009, the ISO provided a broadly applicable 

definition of risk in its standard (ISO 2009a) as the “effect of uncertainty on 

objectives” in order to cover following considerations as noted in the standard:  
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• An effect is a deviation from the expected that can be positive and/or negative 

effect 

• Objectives can be different aspects such as financial, health and safety, and 

environmental goals, and can apply at different levels, such as strategic, 

organization-wide, project, product, and process. 

• Risk is often expressed in terms of a combination of consequences of an 

event, including changes in circumstances, and the associated likelihood of 

occurrence as provided in the commonly used definition. 

Risk analysis is the process of characterizing, managing and informing others 

about existence, nature, magnitude, prevalence, contributing factors, and uncertainties 

of the potential losses. In engineering systems, the loss may be external to the system, 

caused by the system to one or more recipients (e.g., human, organization, economic 

assets, and environment). The loss may be internal to the system i.e. only damaging 

the system itself. In a nuclear power plant the loss can be damage to the plant due to 

partial melting of the reactor core, or it can be release of radioactivity into the 

environment by the power plant. The former case is a risk internal to the system, and 

the latter case represents a loss caused by the system (the nuclear plant) to the 

environment. 

  Risk communication is the activity of transferring, exchanging or sharing 

data, information and knowledge about risk, risk assessment results and risk 

management approach between the decision makers, analysts and the rest of 

stakeholders. The information can relate to the existence, form, likelihood, frequency, 

severity, acceptability, controllability, or other aspects of risk. Communicating the 
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nature of the risk and the nature of the benefits is important in risk communication.     

  Uncertainty in engineering and design is commonly defined as knowledge 

incompleteness due to inherence deficiencies in acquired knowledge. IT can also be 

used to characterize the state of a system as being unsettled or in doubt, such as the 

uncertainty of the outcome. Uncertainty is an important dimension in the analysis of 

risks. In this case, uncertainty can be present in the definition of the hazard threats 

and threat scenarios, the asset vulnerabilities, and their magnitudes, failure 

consequence types and magnitudes, prediction models, underlying assumptions, 

effectiveness of counter measures and consequence mitigation strategies, decision 

metrics, and appropriateness of the decision criteria. Uncertainty is defined as 

potential, unpredictable, and uncontrollable outcome. 

  Risk Management involves the coordinated activities to direct and control an 

organization with regard to risk. Risk management is a process by which system 

operators, managers, and owners make safety decisions and regulatory changes, and 

choose different system configurations based on the data generated in the risk 

assessment. Risk management involves using information from the risk assessment 

stage to make educated decisions about system safety.  Risk treatment and control to 

risk assessment defines risk management. Risk treatment and control include risk 

prevention, avoidance, transfer, countermeasures, consequence mitigation, and so on. 

The objective of risk management is to assure uncertainty does not deflect the 

endeavor from the business goals (Antunes and Gonzalez 2015).  

  Resilience is “the ability to prepare for and adapt to changing conditions and 

withstand and recover rapidly from disruptions. Resilience includes the ability to 
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withstand and recover from deliberate attacks, accidents, or naturally occurring 

threats or incidents” (PPD-21 2013, Ayyub 2014). 

  Cognition can be defined as the mental processes of receiving and processing 

information for knowledge creation and behavioral actions. Cognitive science is the 

interdisciplinary study of mind and intelligence (Stillings 1995). Cognitive science 

deals with many disciplines including philosophy, psychology, artificial intelligence, 

neuroscience, linguistics, and anthropology. The intellectual origins of cognitive 

science started in the mid-1950’s when researchers in several fields began to develop 

theories on how the mind works based on complex representations and computational 

procedures. Cognitive science is based on a central hypothesis that thinking can best 

be understood in terms of representational structures in the mind and computational 

procedures that operate on those structures (Johnson-Laird 1988). 

  Awareness is the ability to directly know and perceive, to feel, or to be 

cognizant of events. More broadly, it is the state of being conscious of something. 

  Consciousness is the state or quality of awareness, or, of being aware of an 

external object or something within oneself (Webster Dictionary, van Gulick 2004). It 

has been defined variously in terms of sentience, awareness, qualia, subjectivity, the 

ability to experience or to feel, wakefulness, having a sense of selfhood or soul, the 

fact that there is something "that it is like" to "have" or "be" it, and the executive 

control system of the mind (Farthing 1992). 

  Threat is the potential intent to cause harm or damage on, with, or through a 

system by exploiting its vulnerabilities. Threats can be associated with intentional 

human actions as provided in table below, that lists examples under several threat 
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types including chemical, biological, cyber, etc… Threat is the potential intent to 

cause harm or damage on, with, or through a system by exploiting its vulnerabilities 

(Ayyub 2002).  

Opportunities has been defined as "a process to identify business and 

community development opportunities that could be implemented to sustain or 

improve the local economy" (Opportunity Management Facilitators Guide 2012). 

Opportunity management is a collaborative approach for economic and business 

development. The process focuses on tangible outcomes (Hilson and Murray-Webster 

2004).  

  System is defined as “a regularly interacting or interdependent group of 

items forming a unified whole”, such as solar system, school system, financial system 

or system of highways. It follows from this definition that the term system stands in 

general for a set of things and a relation among the things.  

  Metasystems are used for the purpose of describing changes within a given 

support set. The metasystem consists of a set of systems defined at some lower 

knowledge level and some support-independent relation. Referred to as a replacement 

procedure, this relation defines the changes in the lower-level systems.  

  Ontology is a formal naming and definition of the types, properties, and 

interrelationships of the entities that really or fundamentally exist for a particular 

domain of discourse. It is thus a practical application of philosophical ontology, with 

a taxonomy. A knowledge base is an object model (often called an ontology in 

artificial intelligence literature) with classes, subclasses, and instances. An ontology 

compartmentalizes the variables needed for some set of computations and establishes 
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the relationships between them. 

  Complex systems is a system composed of many components which may 

interact with each other. In many cases it is useful to represent such a system as a 

network where the nodes represent the components and the links their interactions. 

Examples of complex systems are Earth's global climate, organisms, the human brain, 

social and economic organizations (like cities), an ecosystem, a living cell, and 

ultimately the entire universe. 

  Dynamic complex systems have distinct properties that arise from these 

relationships, such as nonlinearity, emergence, spontaneous order, adaptation, and 

feedback loops, among others. Dynamical systems theory is an area of mathematics 

used to describe the behavior of the complex dynamical systems, usually by 

employing differential equations or difference equations. When differential equations 

are employed, the theory is called continuous dynamical systems. 

  Project management is the planning, organizing and controlling of a firm's 

resources to achieve reasonably short-term goals that have been established to 

complete specific targets and objectives (Field and Keller 1998). It is usually 

management driven and focuses on setting targets, problem solving and obtaining 

results. The purpose of project management is to act as a change agent, delivering a 

change to the status quo of a project, and achieving this in a controlled and managed 

way (Hillson 2004). 

  Operational risks are associated with several sources including out-of-

control operations risks that could occur when a corporate branch undertakes 

significant risk exposure that is not accounted for by corporate headquarters, leading 
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potentially to its collapse, for example, the British Barings Bank, which collapsed in 

1995 primarily as a result of its failure to control the market exposure create within a 

small overseas branch of the bank. Another risk source in this category is liquidity 

risk, in which a corporation requires more funding than it can arrange. Also, such 

risks could include, money transfer risks and agreement breaches. Operational risks 

include model risks, which are associated with the models and underlying 

assumptions used to value financial instruments and cash flows incorrectly. 

  Reputation Risks are the loss of business attributable to a decline in a 

corporation’s reputation can pose another risk source. This risk source can affect a 

company’s credit rating, ability to maintain clients, workforce, and so on. This risk 

source usually occurs at a slow attrition rate. It can be an outcome of poor 

management decisions, business practices, and high-profile failures or accidents.  

System Functional Component Definitions 

Entities are the individual units or modules how risk can be transferred. The risks 

facing a decision-maker can be influenced by various entities.  For the purpose of this 

proposal, the entities are defined as - countries, companies, megacities, or actors. 

Figure A2 shows a simple entity map – how they influence each other in a spatial 

context. The losses facing an entity can be transferred between entities and (or) 

domains. For example, a “too big to fail” entity like a company such as “Lehman 

Brothers” could trigger a country-wide or global catastrophe in time-stamp 

“September, 2008”. An aspect of the complexity is the multi-dimensional nature of 

risks faced by different entities. There are both systemic and idiosyncratic rare events 

that constitute the risk profile of a country, company, or a project. Figure (A-1) 
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illustrates the relation between entities and different spatial scales of aggregation. 

  Risk domains are the aggregate data source where the signal of risk for a 

given entity comes from. The risks facing entities are multi-dimensional in nature. 

These risks can be organized in a hierarchical cluster, labeled by experts or in more 

complex forms. For simplicity, the architecture defines risk domains as aggregate 

sectors such as economic or political as depicted in Figure (A-3). More specifically, 

in the object model (or ontology) with risk domains refer to the aggregate classes. 

  Risk classes are dis-aggregated risk domains that are aggregated by a 

collection of risk indicators. Risk class are dis-aggregated clusters of topics such as 

asset price bubble under the risk domain economic and market risks. Figure (A-4) 

depicts the relationship between risk domains, classes, and indicators. Risk classes are 

the subclasses of risk domains.  

  Risk indicators Within each risk class, there are indicators such as GDP 

growth in macroeconomic (risk class) under the macro-economic and market (risk 

domain). For example, at a country level the loss can be macroeconomic or 

geopolitical, for companies the loss could be stock prices or brand/reputation equity, 

and for cities it could be a bankruptcy crisis or high-income inequality. Many aspects 

of ontology and global schema discuss details of risk domains. Risk indicator provide 

instances at a given point of time for a given risk class. 

  Ensemble Models are predictive modeling and other types of data analytics 

techniques that provide a single model based on one data sample. These models can 

have biases, high variability or inaccuracies that affect the reliability of analytical 

findings. In statistics and machine learning, ensemble methods use multiple learning 
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algorithms to obtain better predictive performance than could be obtained from any of 

the constituent learning algorithms alone (Opitz and Maclin 1999, Polikar 2006, 

Rokach 2010).  One common example of ensemble modeling is a random forest 

model. This approach to data mining leverages multiple decision trees, a type of 

analytical model that's designed to predict outcomes based on different variables and 

rules. Ensemble forecasting is a specific method used in numerical weather 

prediction. Instead of making a single forecast of the most likely weather, a set (or 

ensemble) of forecasts are produced. This set of forecasts aims to give an indication 

of the range of possible future states of the atmosphere. Ensemble forecasting is a 

form of Monte Carlo analysis. Ensemble models comprise a finite set of diverse 

predictive models whose combined output is expected to yield an improved predictive 

performance as compared to an individual model. 

  System of Ensemble Models is the process by which multiple models, such 

as classifiers or experts, are strategically generated and combined to solve a particular 

computational intelligence problem. Ensemble learning is primarily used to improve 

the (classification, prediction, function approximation, etc.) performance of a model, 

or reduce the likelihood of an unfortunate selection of a poor one. There are new 

method for learning ensembles of process-based modeling paradigm employing 

domain-specific knowledge to automatically learn models of dynamic systems from 

time-series observational data (Simidjievski et al. 2015). For example, the Global 

Ensemble Forecast System (GEFS), previously known as the GFS Global Ensemble 

(GENS), is a weather forecast model made up of 21 separate forecasts, or ensemble 

members. The National Centers for Environmental Prediction (NCEP) started the 
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GEFS to address the nature of uncertainty in weather observations, which is used to 

initialize weather forecast models.  

  Planning Horizon is the time horizon of prediction (or forecast) that a 

decision maker is interested in. The planning horizon provides a system of forecasts 

for individual entities-risk indicators based on the planning horizon of the decision-

maker: short, medium, or long term. For example, stock prices for Goldman Sachs 

can be predicted for a closing day price strategy every day or every month, or long-

term international investor would be interested in the GDP growth forecast for a 

country in the next 5 years and factors influencing a given outcome. Organization are 

interested to monitor both short term and long-term fluctuations. Many organizations 

monitor global risks on a daily basis –  while others are interested in 3-5 year or 

longer planning horizon. Figure (A-3) shows an abstraction of different time-

horizons.  

  Mega-projects occur in various sectors such as infrastructure, energy, 

aerospace, disaster clean up, space etc. Mega-projects can include data management 

and storage of large-scale websites such as Google or Amazon. Mega-projects can 

also be scientific projects such as software and big data components of the CERN 

Large Hadron Collider (LHC) or the International Space Station (ISS).
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Figure A-1. Spatial Aggregation and Entities (Countries, Cities, Companies, Actors) 

 
 

 
Figure A-2. Risk Domains, Risk Classes (Sub-Classes), and Risk Indicators 
(Instance)  
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Figure A-3. Prediction and Planning Horizons. 

 ∆"#: time-series sequence of training examples; ∆"$: warning time; ∆"%: prediction 
sequence. Note that t is current time. Short-Medium-Long Planning Horizon are 
determined by prediction sequence window. 

 
 

 
Figure A-4. Common Definitions of Entities, Risk Domains, Risk Classes, and 

Planning Horizons 
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Appendix B. System Control Architecture 
 
 The rest of this sub-section presents the abstraction of the problem in a high-

level. The problems that are of interest are extremely complex in nature. The rest of 

this section provides some neat engineering abstractions for viewing the complexity 

of model-building at scale in domains of interest such as geopolitics, finance or 

economics. This sub-section offers ways to simplify the complexity view of model-

building.   

 

Knowledge Base Layer 

 

Knowledge bases (KB) store millions of facts about the world, such as information 

about people, places and things (generically referred to as entities). Many large-scale 

KBs have been constructed. Prominent academic projects include YAGO (Suchanek 

et al. 2004), NELL (Carlson et al. 2010), DBpedia (Auer et al. 2007), and 

Elementary/ DeepDive (Niu et al. 2012). Commercial projects include Microsoft 

(AKBC-WEKEX 2012), Google (Angeli and Manning 2012), Facebook (Auer et al. 

2007), Walmart (Deshpande et al, 2013), and others. The state-of-the-art formalism in 

knowledge representation is currently the Web Ontology Language OWL (Staab and 

Studer 2004). Its most expressive variant, OWL-full, can express properties of 

relations, but is undecidable. The weaker variants of OWL, OWLlite and OWL-DL, 

cannot express relations between facts. 

  YAGO ontology provides an interesting case. The YAGO model uses the 
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same knowledge representation as RDFS: All objects (e.g. cities, people, even URLs) 

are represented as entities in the YAGO model. Two entities can stand in a relation. 

(Suchanek et al. 2004). An Informal description for things such as Numbers, dates, 

strings and other literals are represented as entities as well. This means that they can 

stand in relations to other entities, Words are entities. Classes are also entities. 

Relations are entities as well. 

 
Rwanda EXPERIENCED Banking Crisis 
Rwanda EXPERIENCED Currency Crisis in 1991 
US MEANS United States 
China TYPE Country 
Country SUBCLASSOF region 
Protest SUBCLASSOF Politics 
GDPgrowth SUBCLASSOF Macroconomics 
 

  Knowledge Vault (KV) is an interesting project worth mentioning. KV was a 

Google Project that contained three major components. First, system that extract 

triples from a huge number of Web sources. Each extractor assigns a confidence score 

to an extracted triple, representing uncertainty about the identity of the relation and its 

corresponding arguments. The second, system learn the graph based prior 

probability of each possible triple, based on triples stored in an existing KB. The third 

system does knowledge fusion. This system computes the probability of a triple 

being true, based on agreement between different extractors and priors (Dong et al. 

2014). 

  In both cases of KV and YAGO, and many other they are based on natural 

language programming (NLP) related entity extractions. In this manuscript, the 

instance of concern are continuous random variables at various time-series types and 
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complex hierarchical structure.  

  There is essentially a three-step process for the KB construction. Raw data 

from various information sources are ingest using Django-Docker Container. The 

Django-Docker environment provides a standardization of data ingestion in the 

source tables. The source tables are the raw data extraction at scale from various 

sources such as GDELT, IMF, USGS etc. The source table from individual sources 

are taken as an input to create secondary tables.  The secondary tables integrate the 

individual source using a global schema, ontology, and data dictionary.  The 

secondary tables provide a single end-point for accessing the multiple information 

sources through a single import based on analysts’ data preferences. Figure (B-1) and 

(B-2) provide an abstraction of the 3d data-frame. 

 
 

 

 
Figure B-1. 3d Database 

 
 
 



 

 

276 

276  

 
 
 
 
 
 

 
Figure B-2. Abstraction of entity, time, and features 

 
 

Intelligence Layer  
 
In order to develop a control system for cognition of aggregate location activity, this 

activity has to be suitably defined depending on its nature and methods of control 

using a hierarchical control system (Abraham et al. 1989, Ayyub and Hassan 1992, 

1992b, 1992c). The hierarchical system classification enables the decomposition of 

risk domains into risk classes and risk instances for structured analysis. System of 

countries, cities, and companies exhibit patterns of organized complexity. Organized 

complexity can be observed in a system that involves non-linear differential 

equations with a lot of interactions among a large number of components and 

variables that define the system (Weaver 1948). 
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 Organized complexity in nature another interest aspect of complexity in that it 

can be decomposed into an underlying repeated unit (Flake 1998). For example, 

economic markets they defy prediction, the pattern recognition capabilities of any of 

the vertebrates, the human immune system’s response to viral and bacterial attack, 

and the evolution of life on our planet are emergent in that they contain simple units 

that, when combined for a more complex whole. They are examples of the whole of 

the system being greater than the sum of greater parts, which is a fair definition of 

holism – the very opposite of reductionism. They are similar to an ant colony. 

Although a single ant exhibits a simple behavior that includes a small of task, 

depending its case, such as foraging for food, caring for the queen’s brood, tending to 

the upkeep of the nest, defending against enemies, or, in the case of the queen, lay 

eggs, the behavior of the ant colony as a whole is very complex. The ant colony 

includes millions of workers that can sweep whole regions clean of animal life, and 

the fungus-growing ants that collect vegetable matter as food for symbiotic fungi and 

then harvest a portion of the fungi as food for the colony. The physical structure of 

the colony that ants build often contains thousands of passageways and appears 

mazelike to human eyes but are easily navigated by inhabitants. The point herein is 

that an ant colony is more than just a bunch of ants. An organized complexity exists 

that is challenging to scientists. Knowing how each case in an ant species behaves 

would not enable a scientist to magically infer that ant colonies possess so many 

sophisticated patterns of behavior.  

Another dimension of this complexity is that agents that exist on one level of 

understanding are very different from agents on another level; for example, cells are 
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not organs, organs are not animals, animals are not species. The interaction on one 

level of understanding are often very similar to the interaction on other levels. Self-

similarity might enhance our understanding of complexity and might help us to 

unravel complexities associated with predicting the stock market and the weather. 

The complexity is also self-organization, such as the collectives of ant colonies, 

human brains, and economic markets self-organizing to create enormously complex 

behavior that is much richer than the behavior of the individual component units. The 

complexity also exhibits evolution, learning and the adaption found in social systems.  

  The following system control architecture is inspired cognitive elements of 

state of the art research and development in Robotics and driverless cars space. In 

particular, the automotive industry defined a scale of autonomy from Levels 0 to 5, 

with Level 0 meaning complete manual control of the vehicle and Level 5 meaning 

that no human driver need be in the vehicle at all. Levels 1 and 2 the vehicle has 

various automated functions. Of interest is recently proposed Level 6 autonomy 

vehicle that has two “minds”: an internal Mind 1 capable of Level 5 autonomy 

without external help, and an external Mind 2 which will allow the vehicle to have 

greater cognition and functionality module (Ayyub et al. 2017). In the ISO26262 

functional safety standard a definition of functional architecture is presented (ISO 

26262:2011). The standard defines a functional concept as, “specification of the 

intended functions and their interactions necessary to achieve the desired behavior”. 

A functional architecture refers to logical decomposition of the system into 

components and subcomponents, as well as the data-flows between them. It does so 

without reference or prejudice to the actual technical implementation of the 
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architectural elements in terms of hardware and software. An analogous term to 

functional architecture is ‘functional view’ of the architecture description. This term 

is recommended by ISO 42010 (ISO 42010:2011) and pertain to the architectural 

description of software intensive systems, from a functional viewpoint. The 

combination is often referred to as functional architecture view (FAV). The FAV 

closely corresponds to the functional. view of the system software architecture, since 

autonomous systems are highly software intensive. In the simplest of senses, an 

autonomous driving system may be thought of as a “cognitive driving intelligence” 

layered on top of a basic “vehicle platform”. The cognitive intelligence is responsible 

for perceiving the environment, generating a feasible motion trajectory through the 

environment, and manipulating the vehicle platform in order to achieve the desired 

motion. In this view, the FAV motion control of driverless are split into three 

attributes: perception of external environment, decision and control of vehicle motion, 

and finally vehicle platform manipulation (Behere and Törngren 2015). 

  In similar notion, the autonomous opportunity and threat functional 

components can be organized in the following manner. The first module is the 

Perception. Sensing means gathering data on physical variables using sensors, while 

perception refers to the semantics (interpretation and “understanding”) of that data in 

terms of high level concepts relevant to the task being undertaken. As such, sensing is 

just one part of an overall perception system. Data fusion component perform a task 

known as map matching, wherein data objects such as entities are referenced to the 

map’s coordinate system. Localization component is responsible for determining the 

location of individual risk instance with respect to a global map of earlier instances, 
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with needed accuracy. The clustering and distance measures going forward are used 

for mapping similarity on time-sequence as a ‘semantic’ embedding. This practice is 

not common in for time-series information readily. Lastly, the world model 

component holds the state of the global environment as perceived by the ego. A 

graphic illustration is provided in figure (B-3). 

  Decision and control module provide trajectory generation and prediction for 

various time-series sequence, adding the knowledge of ensemble learning, followed 

by diagnostic and fault management as part of any standard model. Reactive control 

components are used for immediate (or “reflex”) responses to unanticipated stimuli 

from the environment. For example, simulating the impact of infrastructure building 

on poverty reduction, or other shock-stress testing variables within the confines of the 

decision and control hierarchy of ensemble models. The actions of the agent can be 

defined by the agent manipulation module.  

 

 
Figure B-3. Autonomous Opportunity and Threat System Functional Components 

Source: Inspired by Behere and Törngren 2015. 

  A multilevel structure, starting with programs to business units to subsidiaries 

to the entire enterprise as a system with self-similarity, ensures consistency and 

permits risk aggregation and segregation for examining risk profiles by program, unit, 
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subsidiary, and the entire enterprise using several formats necessary to inform 

decision makers at various levels. Designing for self-similarity as illustrated in figure 

(B-4) would drive consistency, offer simplicity in representing a complex framework, 

and enhance acceptance and embracement of a change of an organizational culture. 

Such an organization-wide undertaking might require structural changes to the 

enterprise’s organization, such as the formation of a risk management executive 

committee, appointing a chief risk officer, and creating risk function at appropriate 

organizational levels.  

 

 
Figure B-4. Self-similarity in structuring enterprise risk (Ayyub 2010) 

  Another inspiration for control architecture for complex dynamic systems is 

learning from tried and tested techniques in Robotics motion. Robots use a nested 

logic to make sense and make movements. Illustration of this nested logic model 

framework is provided in figure (B-5). For example, there are different actuators, 



 

 

282 

282  

sensors on each finger. Each of these finger modules have various ensemble models 

running and project an action for the robot to take. The robot will move a finger or 

different fingers based on a nested logic, where individual fingers model is a part of 

the wrist, and the model of the wrist is part of the hand module and so on (Ayyub et 

al. 1997). Spatio-temporal interest points (Laptev 2005, Willems et al. 2008) and flow 

in video volumes, or represent short actions by stacks of silhouettes (Blank et al. 

2005, Yilmaz and Shah 2005). Approaches to more complex, longer actions employ 

parametric approaches, such as Hidden Markov Models (Kale et al. 2004), Linear 

Dynamical Systems (Saisan 2001) or Non-linear Dynamical Systems (Chaudhry et al. 

2007), which are defined on extracted features. Active tracking and segmentation 

method that monitors the changes in appearance and topological structure of the 

manipulated object are then used in visual semantic graph (VSG) procedure applied 

to the time sequence of the monitored object to recognize the action consequence 

(Aloimonos et al. 2014, 2015). In similar sentiment, illustrations for how different 

risk instances and classes can be controlled and aggregated in a modular 

architecture is shown below.  
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Figure B-5. Abstraction of Robotic Arm Control with Control System in Models for 
Identification and Prediction of Opportunities and Threats 
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Box 1. Data System Specification 
 
The real-time risk monitoring uses following components for large-scale data storage and retrieval: 
 

• Open Source Data  
• Geospatial, Entity, Domain Features Tags 
• Entities, Time, and Dimensions 

- The agent organizes and indexes multiple information sources to entities (Countries, Cities, Companies, Actors), 
time (annual, quarterly, monthly, daily), and dimension, classes and instances (such as earthquake magnitude, stock 
market prices, unemployment etc. with associated meta-data) and events in this high dimensional space. 

• Signal detection using multiple sensor fusion  
- For example, real-time natural calamity data is accessed (USGS), economic facts (QUANDL, World Bank, IMF, 

Stock Market, Bitcoin, and hundreds of macroeconomic and microeconomic statistics), behavioral fluctuations and 
social movements (classifying Twitter data, Search Engine Trends), political-military movements and risks 
(GDELT), involuntary migration (UN migration databases) and so on. 

• Large Scale Data Pipeline 
- The data pipeline converts data from various sources csv, xls, docs etc. to store data in a postgresSQL source tables. 
- Django-Docker Containers for ingesting data in postgresSQL 
- End-point will convert to schema-less MongoDB database 

o Data Storage and Processing 
The critical operational risk is maximizing resources from cloud services, and other third-party service providers to store 
and process the data at scale and cost-effectively. However, for processing GPU scaled learning, computational capacity 
may rely on multiple decentralized server clusters.  
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Appendix C. Unsupervised Methods 

 
The curse of dimensionality is the phenomena whereby an increase in the 

dimensionality of a data set results in exponentially more data being required to 

produce a representative sample of that data set. To combat the curse of 

dimensionality, numerous linear and non-linear dimensionality reduction techniques 

have been developed. These techniques aim to reduce the number of dimensions 

(variables) in a data set through either feature selection or feature extraction without 

significant loss of information. A graphical illustration for the curse of dimensionality 

is provided in figure (C-1). 

  Feature extraction is the process of transforming the original data set into a 

data set with fewer dimensions. Two well known, and closely related, feature 

extraction techniques are Principal Component Analysis (PCA) and Self 

Organizing Maps (SOM). One can think of dimensionality reduction like a system 

of aqueducts to make sense of a river of data. 

 
Figure C-1. The Curse of Dimensionality. 

Source: BigSnarf 2013. Notation text from Turing Finance. 
Notes: With one dimension (top left) there are only 10 possible positions therefore 10 datum are required to create a 

representative sample which 'covers' the problem space. With two dimensions, there are 10^2 = 100 possible positions therefore 
100 datum are required to create a representative sample which 'covers' the problem space. With just three dimensions there are 

now 10^3 = 1000 possible positions therefore 1000 datum are required to create a representative sample which 'covers' the 
problem space. 
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  A large number of nonlinear dimensionality reduction techniques that aim to 

preserve the local structure of data have been proposed, many of which are reviewed 

by Lee and Verleysen (2007). There are many other dimensionality reduction 

techniques including: (1) Sammon mapping (Sammon 1969), (2) curvilinear 

components analysis (Demartines and Herault 1997), (3) Stochastic Neighbor 

Embedding (Hinton and Roweis, 2002), (4) Isomap (Tenenbaum et al. 2000), (5) 

Maximum Variance Unfolding (Weinberger et al., 2004), (6) Locally Linear 

Embedding (Roweis and Saul 2000), and (7) Laplacian Eigenmaps (Belkin and Niyog 

2002). Despite the strong performance of these techniques on artificial data sets, they 

are often not very successful at visualizing real, high-dimensional data. In particular, 

most of the techniques are not capable of retaining both the local and the global 

structure of the data in a single map. For instance, a recent study reveals that even a 

semi-supervised variant of MVU is not capable of separating handwritten digits into 

their natural clusters (Song et al. 2007). 

  The Dynamic Time Warp (DTW) was discussed in the main text. Other key 

alogirthms that are discussed here include clustering algorithms such as t-SNE 

algorithm, multi-dimensional scaling, or autoencoder. Table (C-1) shows a summary 

table explanation for these measures.  
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Table C-1. Summary Table of Dimensionality Reduction and Clustering Algorithms 

 
 
 
 

Model Definition Applications References 
Dynamic Time 
Warping (DTW) 

DTW algorithms are used 
for measuring similarity 
between two temporal 
sequences. 

temporal sequences of 
video, audio, and graphics 
data, automatic speech 
recognition, speaker 
recognition, 
online signature 
recognition, shape 
matching application. 

Ratanamahatana and 
Keogh, 2008 ;  Hayashi, 
Mizuhara, and 
Suematsu, 2005.  

t-distributed 
stochastic neighbor 
embedding (t-SNE)  
 

t-SNE is a machine 
learning algorithm 
for dimensionality 
reduction 
a nonlinear 
dimensionality 
reduction technique. It is 
well-suited for embedding 
high-dimensional data 
into a space of two or 
three dimensions for 
visualization purposes. 

computer 
security research, music 
analysis, facial expression 
recognition, cancer 
research bioinformatics, 
biomedical signal 
processing, visualize high-
level representations 
learned by an artificial 
neural network. 

van der Maaten and 
Hinton, 2008 ;  van der 
Maaten, 2009 ;  van der 
Maaten and Hinton, 
2012 ;   van der 
Maaten, 2014 ;  
Watternberg, 2016. 

Multi-dimensional 
Scaling (MDS) 

MDS is a means of 
visualizing the similarity of 
individual data based on 
the distance matrix cases 
of the datasets. It is a 
form of non-linear 
dimensionality 
reduction.  It is well-
suited for embedding low-
dimensional data into a 
higher dimensional space.  

Mix-marketing models, 
Psychometrics, Cognitive 
Psychology, Ecological 
analysis, physics, political 
science', biology. 

Takane, 2006 ; Cha, 
2009 ; Borg and 
Groenen, 2005 ; 
Shoben, 1983 ; Young, 
1984. 

Hierarchical 
Clustering Analysis 
(HCA) 

HCA is a method of cluster 
analysis which seeks to 
build a hierarchy of 
clusters.  

Image recognition, Natural 
Language Programming 
(NLP), Robotics, Computer 
Graphics, data 
compression, pattern 
recognition. 

Jianbo Shi and Jitendra 
Malik, 2012 ; Cai et al, 
2014 ; Chipman, 2005 ; 
Balcan and Gupta, 
2010. 
 

Autoencoders (AE) AE is an artificial neural 
network used 
for unsupervised 
learning in feature 
learning. AE learns a 
representation (encoding) 
for a set of data, typically 
for the purpose 
of dimensionality 
reduction. AE is also used 
in learning generative 
models of data. 

Natural Language, 
Programming (NLP), 
Dimensionality Reduction, 
pretraining deep Network, 
one-class classification, 
denoising financial data. 

Le, 2015 ; Bao et al, 
2017 ; Wang et al, 
2012;  Lopez-Martin et 
al, 2017.  
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t-SNE 

t-SNE is capable of capturing much of the local structure of the high-dimensional 

data very well, while also revealing global structure such as the presence of clusters at 

several scales (Matten and Hinton 2008).  t-SNE is a nonlinear dimensionality 

reduction technique that is particularly well-suited for embedding high-dimensional 

data into a space of two or three dimensions, which can then be visualized in a scatter 

plot.  

  The t-SNE algorithm comprises two main stages. First, t-SNE constructs a 

probability distribution over pairs of high-dimensional objects in such a way that 

similar objects have a high probability of being picked, whilst dissimilar points have 

an extremely small probability of being picked. Second, t-SNE defines a similar 

probability distribution over the points in the low-dimensional map, and it minimizes 

the Kullback–Leibler divergence between the two distributions with respect to the 

locations of the points in the map. Note that whilst the original algorithm uses the 

Euclidean distance between objects as the base of its similarity metric, this should be 

changed as appropriate (Matten and Hinton 2008, Matten and Hinton, 2014).  

 

Multi-dimensional Scaling (MDS)  

t-SNE is a technique for visualizing low-dimensional data into a higher-dimensional 

space. Multi-dimensional Scaling (MDS) is a technique for information 

visualization to project high-dimensional data into a low-dimensional space.  

  MDS is a family of different algorithms, each designed to arrive at optimal 

low-dimensional configuration (p = 2 or 3). MDS methods include (1) Classical 
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MDS, (2) Metric MDS, (3) Non-metric MDS. The goal of MDS is following, given 

pairwise dissimilarities, reconstruct a map that preserves distances (Jung 2013).  

  MDS is a form of dimensionality reduction and refers to a set of related 

ordination techniques used in information visualization. It displays the information 

contained in a distance matrix.  

  An MDS algorithm aims to place each object in N-dimensional space such 

that the between-object distances are preserved as well as possible. Each object is 

then assigned coordinates in each of the N-dimensions. The number of dimensions of 

an MDS plot N can exceed 2 and is specified a priori. Choosing N=2 optimizes the 

object locations for a two-dimensional scatterplot (Borg 2005). Researchers have 

studied the perception of color in human vision using MDS (Ekman 1954).  
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Appendix D. Classification Problems 
 
Random time-series data are traditionally used for regression-based problem. This 

Appendix shows possible ways to use methods to convert such time-series 

information to class labels. They also Following this, classification problem 

algorithms such as peak signal detection – z-threshold algorithm and the Bayesian 

change-point estimation techniques are briefly discussed.  

 

Z-Threshold Peak Detection Algorithm  

The foundation for building reasoning and structured inference requires a 

probabilistic perspective to define tipping-points and anomalous events. The 

probability density for a given label’s time-series features provides avenue to define 

probability crossings for given thresholds. In this manner, the inputs for machine 

learning and AI models can also be based converting regression problems into risk 

and success classification problems. A simple illustration for this case is the random 

variable for the Price to Earnings (PE) ratio time-series information for Goldman 

Sachs in figure (D-1). This shows that zooming into the tails of the distribution may 

provide a different distribution that can be considered thresholds. From a time-series 

perspective, decision-makers are interested of crossing this threshold in subsequent 

periods or to label such relatively rarer events in a systematic manner.  

  Anomaly Detection with Z-Score Threshold Algorithms is an algorithm that 

works very well for time series trends. This is available open-source on the web. It is 

based on the principle of dispersion: if a new data point is a given x number of 

standard deviations away from some moving mean, the algorithm signals (also called 
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z-score). The algorithm is very robust because it constructs a separate moving mean 

and deviation, such that signals do not corrupt the threshold. The author of the 

algorithm state that “Future signals are therefore identified with approximately the 

same accuracy, regardless of the number of previous signals. The algorithm takes 3 

inputs: lag = the lag of the moving window, threshold = the z-score at which the 

algorithm signals and influence = the influence (between 0 and 1) of new signals on 

the mean and standard deviation.” For example, a lag of 5 will use the last 5 

observations to smooth the data. A threshold of 3.5 will signal if a data point is 3.5 

standard deviations away from the moving mean. And an influence of 0.5 gives 

signals half of the influence that normal data points have. Likewise, an influence of 0 

ignores signals completely for recalculating the new threshold: an influence of 0 is 

therefore the most robust option; 1 is the least. The pseudocode for the peak signal 

detection algorithm is presented in Box 2.  

  These peak and trough signals can also be very useful in labelling data. This 

will be useful as well see to also extend such sequence time series information into 

labelling classification. For example, if we wish to ask the system simply binary 

based results for whether GDP will contract, unemployment will increase, or stock 

price will go up tomorrow. Similarly, more detailed probabilistic measures of the risk 

of a GDP contraction, or the probability of unemployment increasing can also be 

computed.  

  It is essential to manually label by expert opinions the risk label classification. 

For example, if GDP growth goes negative it is a risk, but if unemployment goes up it 

is labelled a risk. The manual input for these classifications provide the interpretation 
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of peak and troughs for a given indicator. The tipping points can be defined as 

failures and labelled more precisely by grouping various risk indicators into risk 

classes. 

  From a system perspective, the following parametrizations are used as 

standard. For annual data, the lag=2, for quarterly data lag=8, for daily data lag=60. 

Examples for political threat and risk classification for Protests are presented in 

Chapter 2 using the z-score algorithm for daily data from GDELT. 

  A simple case of sensitivity of time-series data to change in parameters is 

presented below in Figure (D-2). The variable is the percent change in unemployment 

rate with earlier period. The first graph has the following parameters: lag = 4, 

threshold = 3, and influence = 0.2. There is a large increase in the unemployment 

from previous years (in 1st subplot) during the early 1990s, the early 2000s and the 

2008 economic crisis. These sudden peaks are detected by the algorithm and 

appropriately indexed in the 2nd subplot. By changing the lag value to 5 and keeping 

other parameters same, some of the peaks are lost, and all of the troughs, but retain 

the 3 major periods of risk (with a shortened risk period for the early 1990s). It is 

necessary to find a way to tune the lag properly, across indicators, or just assume a 

standard (which may not work as well). 



 

 

293 

293  

 

 
 

Box 2. Pseudocode example for Z-threshold Peak Detection 
algorithm  
 
# Let y be a vector of timeseries data of at least length lag+2 
# Let mean() be a function that calculates the mean 
# Let std() be a function that calculates the standard deviaton 
# Let absolute() be the absolute value function 
 
# Settings (the ones below are examples: choose what is best for your data) 
set lag to 5;          # lag 5 for the smoothing functions 
set threshold to 3.5;  # 3.5 standard deviations for signal 
set influence to 0.5;  # between 0 and 1, where 1 is normal influence, 0.5 is half 
 
# Initialise variables 
set signals to vector 0,...,0 of length of y;   # Initialise signal results 
set filteredY to y(1),...,y(lag)                # Initialise filtered series 
set avgFilter to null;                          # Initialise average filter 
set stdFilter to null;                          # Initialise std. filter 
set avgFilter(lag) to mean(y(1),...,y(lag));    # Initialise first value 
set stdFilter(lag) to std(y(1),...,y(lag));     # Initialise first value 
 
for i=lag+1,...,t do 
  if absolute(y(i) - avgFilter(i-1)) > threshold*stdFilter(i-1) then 
    if y(i) > avgFilter(i-1) then 
      set signals(i) to +1;                     # Positive signal 
    else 
      set signals(i) to -1;                     # Negative signal 
    end 
    # Make influence lower 
    set filteredY(i) to influence*y(i) + (1-influence)*filteredY(i-1); 
  else 
    set signals(i) to 0;                        # No signal 
    set filteredY(i) to y(i); 
  end 
  # Adjust the filters 
  set avgFilter(i) to mean(filteredY(i-lag),...,filteredY(i)); 
  set stdFilter(i) to std(filteredY(i-lag),...,filteredY(i)); 
end 
Source: Open-source, Stackoverflow.  
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Figure D-1. Example of Threshold Crossing Probability (Static Example) - Risk 

Label Propagation 
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Parameter lag = 4 

 
Parameter lag = 5 

 
Parameter lag = 2 

 
Figure D-2. Z-threshold peak detection algorithm applied to unemployment rate in 

the USA. The case of changing the lag parameters is shown above. 
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Bayesian Change-point Anomaly Detection  
 
A new online algorithm for exact inference of the most recent changepoint is 

provided where model parameters before and after the changepoint are independent 

(Adam and MacKay 2007).  The probability distribution of the length of the current 

“run,” or time since the last changepoint is computed using a simple message-passing 

algorithm. The provided by Adam and Mackay is highly modular so that the 

algorithm may be applied to a variety of types of data, including climate change.  

 

Naïve Bayes Classifier 

Common text categorization task, sentiment analysis, the positive or negative 

orientation that a writer expresses toward some object. Many examples are present for 

example, review of a movie, book, or product on the web expresses the author’s 

sentiment toward the product, while an editorial or political text expresses sentiment 

toward a candidate or political action. Automatically extracting consumer sentiment 

is important for marketing of any sort of product, while measuring public sentiment is 

important for politics and also for market prediction (Jurafsky and Martin 2017). 

They are useful in various applications such as spam detection and authorship 

attribution.  

  The simplest version of sentiment analysis is a binary classification task, and 

the words of the review provide excellent cues. Consider, for example, the following 

phrases extracted from positive and negative reviews of movies and restaurants. 

Words like great, richly, awesome, and pathetic, and awful and ridiculously are very 

informative cues.  
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  In such contexts, there is also a need for large human corpus of labelled data. 

Analysts may have to build a large enough training set of labelled data from humans. 

For the rest of the manuscript, most examples that will be used will be focused on 

extracting and labelling real-time sentiment data from platforms such as Twitter. The 

goal of human annotation or classifying sentiments from Twitter is purely to gain 

more aggregate information about events, organizations, political actors, or classes of 

risks.  

  The classification of Twitter data into meaningful aggregation can also be an 

important signal for monitoring reputation equity risks (Rust et al. 2017). For 

example, monitoring obsolete components or companies’ global sentiments (or by 

locations and countries) can provide valuable signals for marketing, product launches, 

and product performance. These information feeds can be another input signal source 

for monitoring targeted opportunity and risk monitoring.  

  The goal of classification is to take a single observation, extract some useful 

features, and thereby classify the observation into one of a set of discrete classes.  
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Appendix E. Empirical Risk Minimization and Optimization 
 

Since frequentist decision theory does not provide any automatic way to choose the 

best estimator, we need to come up with other heuristic selection principles. In 

frequentist statistics, a parameter estimate &' is computed by applying an estimator  ( 

to some data ), so &' = 	(()). The parameter is viewed as fixed and the data as 

random, which is the exact opposite of the Bayesian approach (Murphy 2012). The 

uncertainty in the parameter estimate can be measured by computing the sample 

distribution of the estimator. To understand this concept better, imagine sampling 

many different data sets )(/) from some true model, p(. |θ ∗), i.e. let  

4(5) = 	 678
(5)9

8:;

<
		

  where =>
(?)	~	A(. |& ∗), and &* is the true parameter. Here s = 1: S indexes the 

sampled data set, and N is the size of each such dataset. Now apply the estimate &'(. ) 

to each )(?) to get a set of estimates, C&'()(?))D.  

 An estimator is said to be consistent if it eventually recovers the true 

parameters that generated the data as the sample size goes to infinity, i.e. &'()) 	→ 	&* 

as |)| 	→ 	∞ (where the arrow indicates convergence in probability).  

  Frequentist decision theory suffers from the fundamental problem that one 

cannot actually compute the risk function, since it relies on knowing the true data 

distribution (Russel and Norvig 2010). By contrast the Bayesian posterior expected 

loss can always be computed since it conditions on the data rather than conditioning 

on &*. However, there is one setting which avoids this problem, and that is where the 

task is to predict observable quantities as opposed to estimating hidden variables or 
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parameters. That is, instead of looking at loss functions of the form G	HI, J(4)K, 

where I is the true but unknown parameter, and (())is our estimator. 

  Supervised learning can usually be seen as picking one function f from a set of 

possible functions F. An obvious question is, how can we tell a good function f from 

a bad one? These notes introduce a general framework that applies for many of the 

methods for classification and regression that follow (Russel and Norvig 2010, 

Murphy 2012). First, we introduce the concept of a loss function L. Given some 

particular pair of inputs x and outputs y, 

L	(M(7), M(N)) 

   tells us how much it “hurts” to make the prediction f(x) when the true output 

is y. Now, let us define the (true) risk 

OPQRS(M) = 	TU	[M(7), N] = 	XU	(7, N)	L(M(7), N)	Y7YN 

  Here p is the true distribution over the inputs x and y. The risk measures how 

much, on average, it hurts to use f as our prediction algorithm.  

This can all be made clear by considering an example. Suppose we want to fit a 

function for predicting if there will be a macroeconomic contraction period i.e. low 

GDP growth event or very high public debt (% of GDP) event. The input x will be the 

GDP growth: Extremely Low (GDP Growth<0), Low (3<GDP Growth<0), or High 

(GDP Growth>3), The output y will be either, CONTRACTION  (when it is 

extremely LOW) or NOPE (when the country experiences no contraction). The loss 

function is now a function L : {CONTRACTION, NOPE} 2 → ℜ.  

  What loss function is appropriate? It is important to realize that this cannot be 

answered by math. The loss function depends on the priorities of the policymaker or 
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investment decision-maker. For example, if you are an investor who really hates 

being in a financial crisis but doesn’t particularly mind being ready for a crisis 

environment, you might use a different loss function. 

 

Logistic Regression Cost Function   

Traditionally, the loss error function is defined as 

[	(\], N) = 	;^ (\] − 	N)
^ 

  But in logistic regression we don’t generally do this. This optimization 

problem that has not only local minima and so gradient descent may not find the local 

optima. This function L loss function describes how good y hat is compared to actual 

value. SGD solves the convex optimization. If we use squared error we want the 

squared error to be as small as possible. More specifically for logit regression the 

following loss function is more reliable 

[	(\], N) = 	 (N	`ab	Nc + (; − N)`ab	(; − 	Nc))  

 

The cost function provides a basis to say how well the model performs on the entire 

training set. The cost function J has the following form  

 

e	(f, g) = 	 ;h	i[	H\(j)k , 	N(8)K
h

8:;
	

 

=	−	 ;h	iH\(>)	`ab	N(l)k + H; − \(>)K`ab	(; − 	N(l)k )K
h

8:;
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The loss function is applied to a single training example, and the cost function is the 

cost of the parameters. Therefore, in training a logistic regression problem, we will 

try to w and b that will minimize the overall cost function J.  

  The problem of training a neural network into an optimization problem. Let us 

set & a set of all parameters in the model, these are all the parameters in connection 

matrices as well as the bias vectors, w and b matrices for all the different layers. We 

also know =(m) as a training example t-th training example in some set of training 

examples we already have. =(m) is a vector and t-th input vector in the training set. \(m) 

is the t-th prediction example output corresponding to =(m).  So =(m) can be the name of 

the country, and \(m) the associated characteristics associated with that country.  

nop	min
t
1
v	iw(x(=(m);	

m
	&), \(m)) + 	zΩ(&) 

w(x(=(m); 	&), \(m)) is the loss function 

Ω(&) is a regularization that penalizes certain values of & 

  In empirical risk minimization, the problem of learning or training the model is 

about finding the parameters (&) of the objective function that minimizes the objective 

function (Murphy 2010). The objective function has two parts. The first part is the 

average of the loss function l that compares the output of the NN with the expect correct 

answer \(m). L is the loss function that compares the output with the label. The term 

Ω	is a regularizer which penalizes certain value that will not work on new examples of 

the data. The parameter z	is the hyperpatremter that controls the balance between 

optimization the average loss and optimizing the regularization. Ideally we want to 
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minimize the percentage of error we obtain on the training set. However, this function 

is not a smooth function, if we want to optimize the number is the right class of the 

model, the number of time the most likely class output by the neural network is wrong, 

this function is not smooth. It looks a binary step function, providing a hard function to 

optimize. Instead, we use loss function that is surrogate for the range that are truly 

trying to optimize (eg. Upper bound).  

Stochastic Gradient Descent   

Since the above section casts the neural network as an optimization problem, one 

common algorithm is the Stochastic Gradient Descent (SGD) algorithm. First, SDG 

initializes the parameters, connection and biases. For some duration N we will iterate 

over our training set, for each pair =(m) and \(m) , to figure out a direction (∆). for 

updating the parameters, it is equal to the opposite direction of the gradient.  

  In addition to ∆, another parameter learning rate a - a hyper parameter 

multiplied by the direction of updating the parameters. The SGD takes a step in the 

direction locally that is going to decrease the sum of loss and regularizer, and repeat 

the whole loop N times or training epochs over all the training examples 

  A gradient descent minimizes an error function, minimizes respect to w – the in 

sample error. In order to capture the error or the gradient of the descent one needs to 

evaluate the hypothesis at every point in the sample (Russel and Norvig 2010). The 

equation provides whether error or the direction is in the good direction.  GD minimizes

  

|>}(f) = 	
1
~	i�(ℎ(=}), \}		)

Å

}:Ç
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  In the case of a logistic regression you can get the gradient with respect to that 

vector, where �(ℎ(=}), \}		) = wÉ	H1 +	�ÑÖÜ$áàÜK.   

  Now iterative steps, where one step is a full epoch (when you have considered 

all the examples at once) and instead of movement of all in the w space based on all 

the examples, we are going to try and do it based on one example at a time. This is what 

makes Stochastic Gradient Descent (SGD). So the standard GD takes a batch of all the 

examples and does a move at once.   

by iterative steps along    −∇ |>}:  

∆f = 	−	ã∇	|>}(f)	 

   ∇	|>}	is based on all examples (=}, \}) 

 

  The stochastic aspect is as follows. Pick one example at a time (randomly) and 

apply GD on that point only. Now think of the average direction where you will 

descend along. If you take the gradient of the error measure that you are going to 

minimize. In this case, one example, and the expected value from the entire training 

set can be easily evaluated. So every step the agent is going alone is accounted for 

plus the noise. Interestingly, this is identical minus the gradient of the total in-sample 

error. In expected value we are actually going along the direction we want, except 

that we involve one example in the computation which is a big advantage and we 

have a stochastic aspect to the game. And as you repeat, you always get an expected 

value in that direction and different noises depending on which example. After doing 

this iteratively after many times, the noise will actually be going along the ideal 
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direction.  

  Pick one (=}, \}) at a time. Apply GD to �(ℎ(=}), \}) 

Average direction: 

 T}[−	∇	�(ℎ(=}), \})] = 	
Ç
Å	∑ −	∇	�(ℎ(=}), \}		) = 	−	∇	|>}Å

}:Ç 	 

  This is the randomized gradient descent often referred to as the stochastic 

gradient descent (SGD). SGD are cheap computation and doing this for each point or 

a batch GD, the expected value is attractive. There is an aspect of randomization that 

makes optimization more powerful.  

  In real world financial, economic, social and political data one is faced with 

many hills and valleys. One may start at different points of time with different local 

minima’s. In order to at least avoid shallow valleys that the optimization does not get 

stuck in local minima’s. The idea is that because you are not going in the direction 

that is not deterministic and a random path, with a slight chance that you escape from 

the local minima. SGD at least helps escaping some silly local minima trap.  

  One rule of thumb that is useful in practical applications. The learning rate 

which tells us how far you go, if it is too big then you lose the linear approximation. 

If it is too small then you are moving too slowly. The exact answer depends on the 

case and scaling the error up or down. From a practical point of view, a normal error 

function to start it off could be ã = 1. 

 

Gradient Descent in Logistic Models  

The cost function J measures how well the parameters w and b are doing in the 

training set. Or in other words, find w and b  that minimize J(w, b). Note that  
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J(w, b) is convex (Murphy 2012).  

  Generally, you initialize to 0 but random initialization could also work. Since 

the function is convex, we should roughly end up at the same point. GD starts at an 

initial point and then takes a step in the steepest downhill direction or quickly as 

possible – in one iteration and then several iterations later converge to the global 

optima.  For example, for a one-dimensional case of finding w,  

 

Repeat { 

w ∶= 	w	−	∝ 	êë(f)êf  

    } 

Repeatedly do the above till the algorithm converges 

 

 where ∝ is the learning rate and controls how big a step to take at each iteration 

(Russel and Norvig 2010). The derivate signals the update to the parameter w. In 

order to find the J(w, b), we can write  

w ∶= 	w	−	∝ 	êë(f, í)êf  

b ∶= 	b	−	∝ 	êë(f, í)êí  

 

  Training is a minimization problem, by using the negative log-likelihood for 

the y-th element of the output layer. This is also referred to as cross-entropy. By 

comparing two vectors and one hot encoded vector corresponds to the distance between 

two variable is cross entropy (Murphy 2012).  
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L1 and L2 Error Function and Regularizer   

L1-norm loss function is also known as least absolute deviations (LAD), least absolute 

errors (LAE) (Russel and Norvig 2010). It is basically minimizing the sum of the 

absolute differences (S) between the target value (Yi) and the estimated values (f(xi)): 

î = 	i|	\> 	− 		x(=>)	|
}

>:Ç
 

  L2-norm loss function is also known as least squares error (LSE). It is basically 

minimizing the sum of the square of the differences (S) between the target value (Yi) 

and the estimated values f(xi): 

î = 	iH	\> 	− 		x(=>)K
ï

}

>:Ç
 

  The differences of L1-norm and L2-norm as a loss function can be promptly 

summarized as follows: 

 

  Regularization is a very important technique in machine learning to prevent 

overfitting. Mathematically speaking, it adds a regularization term in order to prevent 

the coefficients to fit so perfectly to overfit. The difference between the L1 and L2 is 

just that L2 is the sum of the square of the weights, while L1 is just the sum of the 
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weights (Murphy 2012, Russel and Norvig 2010).  L1 regularization on least squares 

can be written as: 

f∗ = argmin
$

iô"	H=öK −		if>
>

	ℎ>	(=ö)õ
ï

	+ 	z
ö

	i|f>|
ú

>:Ç
 

L2 regularization on least squares:  

 

f∗ = argmin
$

iô"	H=öK −		if>
>

	ℎ>	(=ö)õ
ï

	+ 	z
ö

	if>ï
ú

>:Ç
 

Notice the only difference is in the last term. The difference between their properties 

can be promptly summarized as follows: 
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Appendix H. Overfitting 
 
In machine learning and statistics, one common task is to fit a “model” to a set of 

training data, with the goal of making reliable predictions on unseen test data. 

Overfitting describes a statistical model that captures random error or noise instead 

of the underlying relationship that we are trying to predict. Overfitting generally 

occurs as model become more complex with relatively more hyper-parameters than 

number of observations. Overfitted models have poor predictability power and yield 

spurious results. Analysts need to be careful to not overfit the data, that is, we should 

avoid trying to model every minor variation in the input, since this is more likely to 

be noise rather than true signal.  

  When we have a variety of models of different complexity (E.g. linear or 

logistic regression models with different degree polynomials, or neural networks), 

how to pick the right one?  

  A natural approach is to compute the misclassification rate on the training set 

for each method. This is defined as follows 

�oo	(	x	, )	) = 	 1~	iù	(	x	(=>) ≠ 	\>
Å

>:Ç
 

where f (x) is our classifier or prediction model.  

  What analysts should really care about is generalization error, which is the 

expected value of misclassification or prediction rate when averaged over future data. 

This can be approximated by computing the misclassification rate on a large 

independent test set, not used during model training.  

  One epoch consists of one full training cycle on the training set. Once every 
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sample in the set is seen, you start again - marking the beginning of the 2nd epoch. 

Loss function is usually a function defined on a data point, your prediction and label, 

and measures the penalty. Cost function is usually a big more general object, it might 

for example be a sum of loss functions over your training set plus some model 

complexity penalty (regularization). By plotting the test error over different epochs, 

the analyst can easily interpret whether the model overfits or underfits. If the plot of 

the error rate vs training sets or epochs shows that error is increasing over the training 

set, then we are over-smoothing. 

  Unfortunately, when training the model, we do not have access to the test set 

(by assumption), so we cannot use the test set to pick the model of the right 

complexity. In academic settings, we usually do have access to the test set, but we 

should not use it for model fitting or model selection, otherwise we will get an 

unrealistically optimistic estimate of performance of our methods. This is one of the 

“golden rules” of machine learning research.  

  However, we can create a test set by partitioning the training set into two: the 

part used for training the model, and a second part, called the validation set, used for 

selecting the model complexity. We then fit all the models on the training set, and 

evaluate their performance on the validation set, and pick the best. Once we have 

picked the best, we can refit it to all the available data. If we have a separate test set, 

we can evaluate performance on this, in order to estimate the accuracy of our method. 

Often, 80% of the data is used for the training set, and 20% for the validation set.  
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Cross Validation 

A simple but popular solution to this is to use cross validation (CV). The idea is 

simple: split the training data in to K folds; then for each fold k  {1, …, K}, we train 

on all the folds but the k’th and test on the k’th, in a round-robin fashion (Murphy 

2012, Russel and Norvig 2010). 

  Cross-validation is primarily a way of measuring the predictive performance 

of a statistical model. Every statistician knows that the model fit statistics are not a 

good guide to how well a model will predict: high R2 does not necessarily mean a 

good model. It is easy to over-fit the data by including too many degrees of freedom 

and so inflate R2 and other fit statistics. For example, in a simple polynomial 

regression one can just keep adding higher order terms and so get better and better fits 

to the data. But the predictions from the model on new data will usually get worse as 

higher order terms are added. 

  One way to measure the predictive ability of a model is to test it on a set of 

data not used in estimation. Based on the “test set” and the data used for estimation is 

the “training set”. For example, the predictive accuracy of a model can be measured 

by the mean squared error on the test set (Murphy 2012). This will generally be larger 

than the MSE on the training set because the test data were not used for estimation. 

However, there is often not enough data to allow some of it to be kept back for 

testing. A more sophisticated version of training/test sets is leave-one-out cross-

validation (LOOCV) in which the accuracy measures are obtained as follows.  

Suppose there are n independent observations, y1,…,yn. 
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1. Let observation i form the test set, and fit the model using the remaining data. 

Then compute the error (�>∗ = 	\> −	\]>) for the omitted observation. This is 

sometimes called a “predicted residual” to distinguish it from an ordinary 

residual. 

2. Repeat step 1 for i=1,…,n. 

3. Compute the MSE from �Ç∗, �ï∗,… , �}∗ . This is called the CV. 

  This is a much more efficient use of the available data, as you only omit one 

observation at each step. However, it can be very time consuming to implement 

(except for linear models). Other statistics (e.g., the MAE) can be computed similarly. 

A related measure is the PRESS statistic (predicted residual sum of squares) equal 

to n×MSE (Russel and Norvig 2010). 

  Variations on cross-validation include leave-k-out cross-validation (in which 

k observations are left out at each step) and k-fold cross-validation (where the 

original sample is randomly partitioned into k subsamples and one is left out in each 

iteration). Another popular variant is the .632+bootstrap of Efron & Tibshirani 

(1997) which has better properties but is more complicated to implement. 

   Minimizing a CV statistic is a useful way to do model selection such as 

choosing variables in a regression or choosing the degrees of freedom of a 

nonparametric smoother. It is certainly far better than procedures based on statistical 

tests and provides a nearly unbiased measure of the true MSE on new observations. 

   However, as with any variable selection procedure, it can be misused. Beware 

of looking at statistical tests after selecting variables using cross-validation — the 

tests do not take account of the variable selection that has taken place and so the p-
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values can mislead (Murphy 2012). 

Cross-validation for linear models 

While cross-validation can be computationally expensive in general, it is very easy 

and fast to compute LOOCV for linear models (Murphy 2012, Russel and Norvig 

2010). A linear model can be written as 

† = =° + �	

then  

°¢ = 	 (£§£)ÑÇ£§† 

  the fitted values can be calculated using 

†' = 	£°¢ = 	 (£§£)ÑÇ£§† = •† 

where • = 	 (£§£)ÑÇ£§ is known as the ‘hat matrix’ because it is used to compute the 

Y hat -	†'.  If the diagonal values of H are denoted by h1,…,hn then the cross-

validation statistic can be computed using 

¶ß =	 1É	i[�> (1 − ℎ>)ï⁄ ]
}

>:Ç
 

  where ei is the residual obtained from fitting the model to all n observations. It 

is not necessary to actually fit n separate models when computing the CV statistic for 

linear models (Murphy 2012). This remarkable result allows cross-validation to be 

used while only fitting the model once to all available observations (Arlot and Celisse 

2010). 

Cross-validation for time series 

When the data are not independent cross-validation becomes more difficult as leaving 

out an observation does not remove all the associated information due to the 
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correlations with other observations (Russel and Norvig 2010). For time series 

forecasting, a cross-validation statistic is obtained as follows 

1. Fit the model to the data y1,…,yt and let \]m©Ç = denote the forecast of the next 

observation. Then compute the �m©Ç∗ = 	 (\m©Ç − 	\]m©Ç	)for the forecast 

observation. 

2. Repeat step 1 for t=m,…,n−1 where m is the minimum number of 

observations needed for fitting the model. 

3. Compute the MSE from  �™©Ç∗ , … , �}∗  

Dropout 

A critical issue concerning neural networks is the over-fitting problem. It can be 

attributed to the fact that a neural network captures not only useful information 

contained in the given data, but also unwanted noise. This usually leads to a poor of 

generalization (Xiong et al. 2011, Salakhutdinov and Mnih 2008). Deep neural nets 

with a large number of parameters are powerful machine learning systems. However, 

overfitting is a serious problem in such networks. Large networks are also slow to 

use, making it difficult to deal with overfitting by combining the predictions of many 

different large neural nets at test time (Srivastava et al. 2014).  

   Dropout is a technique for addressing this problem. The key idea is to 

randomly drop units (along with their connections) from the neural network during 

training. This prevents units from co-adapting too much. During training, dropout 

samples from an exponential number of different “thinned” networks. At test time, it 

is easy to approximate the effect of averaging the predictions of all these thinned 

networks by simply using a single un-thinned network that has smaller weights. This 
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significantly reduces overfitting and gives major improvements over other 

regularization methods.  

   With limited training data, many complicated relationships will be the result 

of sampling noise, so they will exist in the training set but not in real test data even if 

it is drawn from the same distribution. This leads to overfitting and many methods 

have been developed for reducing it. These include stopping the training as soon as 

performance on a validation set starts to get worse, introducing weight penalties of 

various kinds such as L1 and L2 regularization and soft weight sharing (Nowlan and 

Hinton, 1992). 

  The term “dropout” refers to dropping out units (hidden and visible) in a 

neural network. By dropping a unit out, we mean temporarily removing it from the 

network, along with all its incoming and outgoing connections, as shown in the first 

Figure (E-1) below. The choice of which units to drop is random. In the simplest case, 

each unit is retained with a fixed probability p independent of other units, where p can 

be chosen using a validation set or can simply be set at 0.5, which seems to be close 

to optimal for a wide range of networks and tasks ((Nowlan and Hinton 1992, 

Srivastava et al. 2014). For the input units, however, the optimal probability of 

retention is usually closer to 1 than to 0.5 (Srivastava et al. 2014). 

  Each hidden unit in a neural network trained with dropout must learn to work 

with a randomly chosen sample of other units. This should make each hidden unit 

more robust and drive it towards creating useful features on its own without relying 

on other hidden units to correct its mistakes. However, the hidden units within a layer 

will still learn to do different things from each other.  
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  The dropout neural network model is described as follows. Consider a neural 

network with L hidden layers. Let l ∈ {1, . . . , L} index the hidden layers of the 

network. Let z(l) denote the vector of inputs into layer l, y(l) denote the vector of 

outputs from layer l (y(0) = x is the input) (Srivastava et al. 2014). W(l) and b(l) are the 

weights and biases at layer l. The feed-forward operation of a standard neural network 

in Figure (E-2a) can be described as (for l ∈ {0, . . . , L − 1} and any hidden unit i) 

¨>
(≠©Ç) = 	f>

(≠©Ç)\≠ + í>
(≠©Ç) 

\>
(≠©Ç) = x	Æ¨>

(≠©Ç)Ø 

 where f is any activation function, for example, f(x) = 1/ (1 + exp(−x). Furthermore, 

with dropout, the feed-forward operation becomes as presented in Figure (2-b).  

oö
(≠)~∞�oÉ±≤ww≥(A) 

\¥>
(≠) = o(≠) 	 ∗ 	\(≠)	

¨>
(≠©Ç) = 	f>

(≠©Ç)\¥≠ + í>
(≠©Ç)	

\>
(≠©Ç) = x	Æ¨>

(≠©Ç)Ø 

  Here ∗ denotes an element-wise product. For any layer l, o(≠) is a vector of 

independent Bernoulli random variables each of which has probability p of being 1 

(Srivastava et al. 2014). This vector is sampled and multiplied element-wise with the 

outputs of that layer, \(≠), to create the thinned outputs \¥>
(≠). The thinned outputs are 

then used as input to the next layer. This process is applied at each layer. This 

amounts to sampling a sub-network from a larger network. For learning, the 

derivatives of the loss function are backpropagated through the sub-network. At test 
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time, the weights are scaled as µm∂?m
(≠) = Aµ(≠). The resulting neural network is used 

without dropout (Srivastava, et al 2014). 

 

 
 

Figure E-1.  Dropout Neural Net Model. Left: A standard neural net with 2 hidden 
layers. Right: An example of a thinned net produced by applying dropout to the 
network on the left. Crossed units have been dropped. 
Source: Srivastava et al. 2014. 

 
Figure. E-2 Comparison of the basic operations of a standard and dropout network 

   Source: Srivastava et al. 2014. 
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Appendix J. Uncertainty Quantification Class Abstraction 
 
The UQ class implementation uses a monte carlo implementation class and is 
abstracted into the MC_Dropout.py file. The code is following: 
 
class MC_dropout(): 
 
    def __init__(self, model, x_val, y_val, B=100): 
        ''' 
        param model: model on which uncertainity quantification needs 
to be performed 
        param data: data 
        param B: number of iterations MC_dropout is performed 
        return: 
        ''' 
        self.model = model 
        self.x_val = x_val 
        self.y_val = y_val 
        self.B = B 
 
    def computeUncertainity(self): 
    # we use mc dropout approach as directed by the paper from uber. 
    # This calculates model misspecification and model uncertainity. 
        MC_output = K.function([self.model.layers[0].input, 
K.learning_phase()], [self.model.layers[-1].output]) 
        learning_phase = True  # use dropout at test time 
        #perform MC_dropout and collect MC_samples 
        MC_samples = [MC_output([self.x_val, learning_phase])[0] for _ 
in range(self.B)] 
        MC_samples = np.array(MC_samples) 
        # calculate Mean Squared error for MC_samples 
        #model misspecification and model uncertainity  
        eta1 = np.mean((MC_samples - (np.mean(MC_samples)))**2) 
        #inherent noise 
        eta2 = mean_squared_error(self.y_val, 
self.model.predict(self.x_val)) 
        #final variables available for the access 
        self.final = np.sqrt(eta1+eta2) 
        self.model_uncertainity = eta1 
        self.inherent_noise = eta2 
        # final variable can be used for calling the combined 
uncertainity 
        pass 
 
    def confidence_bounds(self, predictions, con_per): 
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        ''' 
        param predictions: the predictions on which confidence 
intervals need to be built 
        param con_per: the confidence interval for the predcitions in 
percentage 
        return: returns High value of the predictions and Low value 
predicitons 
        ''' 
        # the error value based on the normal distribution 
        Merror = ((st.norm.ppf((1+(con_per/100))/2)) * self.final) 
        # high and low bounds of the predictions 
        mH = np.array([predictions + 
Merror]).reshape((len(predictions), 1)) 
        mL = np.array([predictions - 
Merror]).reshape((len(predictions), 1)) 
        return mH, mL  
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Appendix K. Additional Figures and Tables  

 
Figure K-1. Trading Strategies based on Ensemble Deep Learning Model. Y axis is 

starting investment at $100,000 
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Table K-1. Company and Sector Labels for S&P500 

Symbol Name Sector Sectors 
0 MMM 3M Company Industrials 
1 ABT Abbott Laboratories Health Care 
2 ABBV AbbVie Health Care 
3 ACN Accenture plc Information Technology 
4 ATVI Activision Blizzard Information Technology 
5 AYI Acuity Brands Inc Industrials 
6 ADBE Adobe Systems Inc Information Technology 
7 AAP Advance Auto Parts Consumer Discretionary 
8 AES AES Corp Utilities 
9 AET Aetna Inc Health Care 
10 AMG Affiliated Managers Group Inc Financials 
11 AFL AFLAC Inc Financials 
12 A Agilent Technologies Inc Health Care 
13 APD Air Products & Chemicals Inc Materials 
14 AKAM Akamai Technologies Inc Information Technology 
15 ALK Alaska Air Group Inc Industrials 
16 ALB Albemarle Corp Materials 
17 ALXN Alexion Pharmaceuticals Health Care 
18 ALLE Allegion Industrials 
19 AGN Allergan, Plc Health Care 
20 ADS Alliance Data Systems Information Technology 
21 LNT Alliant Energy Corp Utilities 
22 ALL Allstate Corp Financials 
23 GOOG

L Alphabet Inc Class A Information Technology 

24 GOOG Alphabet Inc Class C Information Technology 
25 MO Altria Group Inc Consumer Staples 
26 AMZN Amazon.com Inc Consumer Discretionary 
27 AEE Ameren Corp Utilities 
28 AAL American Airlines Group Industrials 
29 AEP American Electric Power Utilities 
... ... ... ... 
475 V Visa Inc. Information Technology 
476 VNO Vornado Realty Trust Real Estate 
477 VMC Vulcan Materials Materials 
478 WMT Wal-Mart Stores Consumer Staples 
479 WBA Walgreens Boots Alliance Consumer Staples 
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480 WM Waste Management Inc. Industrials 
481 WAT Waters Corporation Health Care 
482 WEC Wec Energy Group Inc Utilities 
483 WFC Wells Fargo Financials 
484 HCN Welltower Inc. Real Estate 
485 WDC Western Digital Information Technology 
486 WU Western Union Co Information Technology 
487 WRK WestRock Company Materials 
488 WY Weyerhaeuser Corp. Real Estate 
489 WHR Whirlpool Corp. Consumer Discretionary 
490 WFM Whole Foods Market Consumer Staples 
491 WMB Williams Cos. Energy 
492 WLTW Willis Towers Watson Financials 
493 WYN Wyndham Worldwide Consumer Discretionary 
494 WYNN Wynn Resorts Ltd Consumer Discretionary 
495 XEL Xcel Energy Inc Utilities 
496 XRX Xerox Corp. Information Technology 
497 XLNX Xilinx Inc Information Technology 
498 XL XL Capital Financials 
499 XYL Xylem Inc. Industrials 
500 YHOO Yahoo Inc. Information Technology 
501 YUM Yum! Brands Inc Consumer Discretionary 
502 ZBH Zimmer Biomet Holdings Health Care 
503 ZION Zions Bancorp Financials 
504 ZTS Zoetis Health Care 

 



 

 

322 

322  

Symbol Name Sector Cluster  
0 MMM 3M Company Industrials Cluster 8 
1 ABT Abbott Laboratories Health Care Cluster 13 
2 ABBV AbbVie Health Care Cluster 13 
3 ACN Accenture plc Information Technology Cluster 10 
4 ATVI Activision Blizzard Information Technology Cluster 8 
5 AYI Acuity Brands Inc Industrials Cluster 11 
6 ADBE Adobe Systems Inc Information Technology Cluster 9 
7 AAP Advance Auto Parts Consumer Discretionary Cluster 11 
8 AES AES Corp Utilities Cluster 6 
9 AET Aetna Inc Health Care Cluster 0 
10 AMG Affiliated Managers Group Inc Financials Cluster 10 
11 AFL AFLAC Inc Financials Cluster 10 
12 A Agilent Technologies Inc Health Care Cluster 0 
13 APD Air Products & Chemicals Inc Materials Cluster 5 
14 AKAM Akamai Technologies Inc Information Technology Cluster 6 
15 ALK Alaska Air Group Inc Industrials Cluster 14 
16 ALB Albemarle Corp Materials Cluster 0 
17 ALXN Alexion Pharmaceuticals Health Care Cluster 5 
18 ALLE Allegion Industrials Cluster 10 
19 AGN Allergan, Plc Health Care Cluster 12 
20 ADS Alliance Data Systems Information Technology Cluster 5 
21 LNT Alliant Energy Corp Utilities Cluster 4 
22 ALL Allstate Corp Financials Cluster 9 
23 GOOG

L Alphabet Inc Class A Information Technology Cluster 10 

24 GOOG Alphabet Inc Class C Information Technology Cluster 13 
25 MO Altria Group Inc Consumer Staples Cluster 3 
26 AMZN Amazon.com Inc Consumer Discretionary Cluster 10 
27 AEE Ameren Corp Utilities Cluster 13 
28 AAL American Airlines Group Industrials Cluster 4 
29 AEP American Electric Power Utilities Cluster 4 
... ... ... ... ... 
475 V Visa Inc. Information Technology Cluster 0 
476 VNO Vornado Realty Trust Real Estate Cluster 2 
477 VMC Vulcan Materials Materials Cluster 3 
478 WMT Wal-Mart Stores Consumer Staples Cluster 4 
479 WBA Walgreens Boots Alliance Consumer Staples Cluster 12 
480 WM Waste Management Inc. Industrials Cluster 0 
481 WAT Waters Corporation Health Care Cluster 10 
482 WEC Wec Energy Group Inc Utilities Cluster 14 
483 WFC Wells Fargo Financials Cluster 14 
484 HCN Welltower Inc. Real Estate Cluster 6 
485 WDC Western Digital Information Technology Cluster 8 
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486 WU Western Union Co Information Technology Cluster 6 
487 WRK WestRock Company Materials Cluster 10 
488 WY Weyerhaeuser Corp. Real Estate Cluster 5 
489 WHR Whirlpool Corp. Consumer Discretionary Cluster 3 
490 WFM Whole Foods Market Consumer Staples Cluster 10 
491 WMB Williams Cos. Energy Cluster 3 
492 WLTW Willis Towers Watson Financials Cluster 13 
493 WYN Wyndham Worldwide Consumer Discretionary Cluster 0 
494 WYNN Wynn Resorts Ltd Consumer Discretionary Cluster 13 
495 XEL Xcel Energy Inc Utilities Cluster 10 
496 XRX Xerox Corp. Information Technology Cluster 4 
497 XLNX Xilinx Inc Information Technology Cluster 10 
498 XL XL Capital Financials Cluster 10 
499 XYL Xylem Inc. Industrials Cluster 13 
500 YHOO Yahoo Inc. Information Technology None 
501 YUM Yum! Brands Inc Consumer Discretionary Cluster 6 
502 ZBH Zimmer Biomet Holdings Health Care Cluster 6 
503 ZION Zions Bancorp Financials Cluster 8 
504 ZTS Zoetis Health Care Cluster 13 
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