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A parametric investigation into flapping flight is presented. For a Reynolds 

number of 75, harmonically forced flapping dynamics is studied. A wing section is 

modeled as two rigid links connected by a hinge with a torsion spring-damper 

combination. This section is wrapped in a smooth aerodynamic surface for immersion in 

the fluid domain. An immersed boundary method is employed on a two-dimensional 

structured Cartesian grid to solve the incompressible form of the Navier-Stokes equations 

for low Reynolds numbers by using a finite difference method. Fully coupled fluid-

structure interactions are considered. Performance metrics, which include cycle-averaged 

lift, drag, power, and their ratios, are used to characterize the effects of different 

parameters and kinematics. Principal components of flow-field structures are quantified, 

and the system’s response is correlated to performance. The thesis findings can serve as a 

basis to understand and identify flapping frequencies that provide high performance.  
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I. Nomenclature, Acronyms, and Abbreviations 

 

A  Normalized leading link length as percentage of chord length LC 

Ax  Amplitude of horizontal translation for harmonic kinematics 

Aθ  Amplitude of rotation for harmonic kinematics 

CD  Coefficient of drag 

CL  Coefficient of lift 

CM  Coefficient of moment 

CP  Coefficient of power 

CT  Coefficient of total thrust 

CTx  Coefficient of horizontal thrust 

DNS  Direct Numerical Simulation 

/LF L    Lift force per unit span of the wing 

FSI  Fluid-Structure Interaction 

IA, IB Mass moments of inertia of leading link (A) and free link (B), respectively 

k  Torsion spring constant 

LC  Chord length of un-deformed structure 

LES  Large Eddy Simulation 

lA  Length of  leading link (A) as proportion of L 

mA, mB  Mass of  leading link (A) and mass of free link (B), respectively 

PCA  Principal Component Analysis 

Prot  Power associated with rotational inertia and fluid moments 

Ptr  Power associated with translational inertia and fluid forces 
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p  Pressure field of  fluid 

fluidp    Linear momentum of the fluid 

Qα  Generalized force from fluid acting on structure 

Rx  Translational forces required to drive the kinematics 

R  Moment required to drive the kinematics 

Re  Reynolds number  (max(|v(t)|)
fluid LC / μ) 

fluid    Density of the fluid 

SVD  Singular Value Decomposition 

T  Period of flapping, in seconds s 

t  Time, in seconds s 

v  Velocity vector field with components (u, v) 

u  Horizontal component of fluid velocity  

UVLM  Unsteady Vortex Lattice Method 

v  Vertical component of fluid velocity  

x  Position vector (x, y) 

x  Horizontal position coordinate 

y  Vertical position coordinate 

W  Inverse of forcing frequency to natural frequency ratio: W = /n f   

W#A## Case identifier for inverse frequency ratio # and leading link percentage of 

normalized length ##. Example: W2A10 corresponds to /f n    1/2 and 

leading link length of 0.10LC 

α  Angle between leading and free links of the structure, in radians rad 

γ  Phase shift  in  angle of attack kinematics, in radians rad 
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μ  Dynamic viscosity of the fluid 

  Kinematic viscosity of the fluid 

θ  Angular orientation of  leading link (A) of  structure, in radians rad  
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1. Introduction 

Over the past decade in particular, flapping flight has become an increasingly 

popular field of investigation with multi-disciplinary approaches taken by diverse groups 

of researchers, including groups in aerospace and mechanical engineering, robotics, fluid 

physics, scientific computation, mathematics, and experimental and computational 

biology. While the aerodynamics and performance of high Reynolds  (Re) number flows 

over fixed airfoils is relatively well understood and has been extensively treated for over 

a century,  significantly more complicated phenomena associated with unsteady mobile 

wings in flapping flight and transient periodic flow, have only recently been given 

consideration. These studies of the physics of flapping flight, commonly at lower Re 

numbers, include experimental investigations (e.g., Ellington et al., 1996; Dickinson et 

al., 1999) and computational modeling and simulation (e.g., Liu and Kawachi, 1998; Sun 

and Tang, 2002; Ramamurti and Sandberg, 2002; Ramamurti and Sandberg, 2006; 

Vanella et al., 2009; Wang, 2000a; Wang, 2000b; Wang et al., 2004). The classical 

omission of the detailed study of flapping flight is largely due to the complexity of the 

physics in the context of continuum fluids and flexible solids, complex geometries, 

interactions between fluid and mechanical structures, and time dependence. Studies of 

three-dimensional fluid dynamics and structural interactions associated with unsteady 

flapping flight face significantly complex and difficult challenges, which cannot be 

addressed by analytical methods.  Furthermore, the size and time scales to be resolved 

have been beyond the capabilities of scientific computing systems until recently. 

Developments during the past few decades have led to the availability of accurate high-

speed cameras and sensors, and developments in computational power, numerical 
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methods, and computer architectures for detailed reproduction, measurement, and 

simulation have allowed for experimental investigations and numerical simulation with 

sufficient resolution and accuracy.  These developments have helped gain a better 

understanding of the physics of flapping flight.  

Conventional fixed-wing aircraft separate propulsion, lift, and the use of 

directional control in distinct controllable systems are well understood under many 

diverse conditions to date (e.g., Anderson, 2007; Clancy, 1975; Katz, 1991; White, 1974). 

Flapping wings as a mechanism for flight can combine the capabilities of propulsion, lift, 

and maneuvering in one composite system at the expense of design and control 

complexity (Sane and Dickinson, 2001). While evolution has enabled and inspired the 

development of myriad designs, kinematics, and expert control of flapping systems 

across many scales of biology, current methods can do little to decipher commonly 

observed flapping flight phenomena. Early conceptual models to understand the multiple 

simultaneous functions of flapping wings were proposed by Weis-Fogh, who described a 

general process of delayed stall, wake capture, rotational lift, and the added mass effect 

(Weis-Fogh, 1965). An increasing interest in computational treatment of flapping flight 

of birds and insects has developed as computing power has advanced, with two-

dimensional simulations of directly solved viscous flow performed by the end of the 20
th

 

century (e.g. Liu, Ellington, Kawachi, Van Den Berg and Wilmott, 1998; Wang, 2000a). 

Researchers have proposed that mechanical properties of wings, geometry, and 

kinematics play a significant role in system performance and provide insights into 

flapping flight of insects, motivating investigations such as those by Wang, Birch and 

Dickinson (2004). These authors have addressed varied kinematics and geometry and 
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confirmed previously proposed flapping flight related phenomena in the context of 

particular case studies by comparing two-dimensional simulation results with results from 

three-dimensional experiments.  Three-dimensional numerical investigations have been 

limited to specific case studies due to the immense computational cost, and these 

investigations have ranged from fully-coupled fluid-structure interactions (FSI) and direct 

numerical simulation (DNS) to the utilization of simplified methods for weak FSI, large 

eddy simulation (LES), and turbulence modeling. Three-dimensional simulations have 

been used to model hovering in the hawkmoth (Liu, Ellington, Kawachi, Van Den Berg 

and Wilmott, 1998), drosophila (Sun and Tang, 2002) and general low-Reynolds number 

insect hovering flight (Ramamurti and Sandenberg, 2002). Other groups have opted to 

make simplifying assumptions for conditions rather than fluid modeling such as large 

aspect ratio wings with small span-wise angular displacements so as to allow for  

accurate modeling  in two dimensions (e.g., Vanella, Fitzgerald, Preidikman, Balaras, and 

Balachandran, 2009; Wang, Birch and Dickinson, 2004), DNS with weakly coupled FSI. 

Other simplifications to the modeling of fluid flow include inviscid potential-based 

methods, such as the unsteady vortex lattice method (UVLM) and similar (e.g. Sane and 

Dickinson, 2002; Fitzgerald, Valdez, Vanella, Balaras, and Balachandran, 2011). Inviscid 

methods have been shown to exhibit similar qualitative trends and provide reasonably 

accurate cycle-averaged steady-state performance metrics for high Reynolds number 

flapping. Steady forward flight has been treated by Gopalakrishnan and Tafti (2010) in a 

manner similar to steady hovering flight, but with the significant assumption of fully 

prescribed, constant boundary inflow. The prescribed boundary inflow may only be 

physical for one particular inertial body with a corresponding drag coefficient and under 
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the assumption that the inertial base of the wings negligibly deviates from a smooth, 

consistent trajectory during each flapping period. The transition between hovering and 

forward flight has been briefly addressed experimentally by Vandenberghe, Zhang, and 

Childress for unstable kinematic symmetry (Vandenberghe, Zhang and Childress, 2004; 

Vandenberghe, Childress and Zhang 2006).  

 A two-dimensional formulation has been adopted for the present work as it 

allows for the use of common modern computational hardware with acceptable 

processing duration while maintaining the capability of solving strong coupling of fluid-

structure interactions and complete resolution of turbulence and small flow structures 

through direct numerical simulation of a viscous fluid. The present work endeavors to 

investigate and to characterize the effects of flexibility, structural dissipation at 

resonance, geometric symmetry and variations in harmonic kinematics of flapping wings. 

The effects of related parameter variations for steady hovering flight under specified 

conditions are quantified in terms of dimensionless performance metrics for lift and 

thrust, drag and power, and their ratios. A mechanism for the transition between hovering 

and forward flight is proposed as steady, symmetric hovering with decay to asymmetric 

kinematics to produce an unbalanced lateral force by introducing an offset in the angle of 

attack. 

 

Interest in Flapping Flight 

Flapping flight is known to be the single most successful mode of animal 

locomotion that is exhibited by over one thousand species of bats, more than nine 

thousand species of living, flighted birds, and as many as tens of millions of species of 
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flying insects. Flapping flight’s use for primary locomotion has evolved independently at 

least during four known periods in the animal kingdom: in mammals, birds, insects, and 

reptiles. In mammals, flapping wings have developed as branched skeletal frames with a 

stretched membrane to produce the mostly smooth aerodynamic lift surface with the 

primary mode of flight as continuous flapping (Simmons, Seymour, Habersetzer, and 

Gunnel, 2008). In reptiles, pterosaurs are the most notable of the pterosauria order and 

they had wings composed of a basic skeletal frame at the leading and trailing edges 

corresponding to “arms” and “legs” with a smooth, stretched membrane between them, 

lacking additional major frame structures (Gatesy and Dial, 1996). Low-frequency 

flapping and gliding are believed to be the primary uses of these wings because of the 

overall Reynolds scale and wing size relative to the body. Birds are known to vary from 

the 2.6-inch wingspan of the Bee Hummingbird to twelve feet of the Wandering 

Albatross, and the wings are flapped at frequencies ranging from 80 Hz to less than 1Hz  

(Wood, 1983). Insects appear on a much smaller scale in general than previous categories 

and are known to have wing spans that range from the millimeter-wing span of the Fairy 

Wasp (Gonatocerus ater) to the Witch Moth’s 12-inch wing span with flapping 

frequencies ranging from 3 Hz to over 1,000 Hz  (Walker, 1999). A snapshot of a small 

hovering bee is presented in Figure 1.1 with an aesthetic translucent vorticity contour 

overlay from two dimensional simulations in the present work at Reynolds 75. 

The similarities and differences in structure, scale, and mechanisms of lift and 

maneuvering between these diverse branches of the evolutionary tree illustrate the 

versatile use of flapping flight From soft, flexible, aerodynamic wings of many birds and 

bats to more rigid, branch-structured and jagged wings of many insects; from the precise 
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Figure 1.1: Hovering Bee with Vorticity Field Overlay 

“Hovering Bee” from Karen Cusick, used with permission 

(source: http://daffodilphotoblog.wordpress.com/2011/03/05/mostly-bees/); 

Vorticity overlay from present work. 

 

control of high-frequency hummingbirds and bees to the low-energy expenditure of large 

soaring birds; from nearly-unitary aspect ratios of wings of small flies to the high aspect 

ratio of the albatross and dragon flies; the applications, mechanisms, structure and utility 

of flapping flight are evidently diverse and nearly incomprehensible. However, through a 

fundamental analysis grounded in first principles of Newtonian physics and continuum 

mechanics with basic physical models, one can hope to construct elements of 

understanding of this complex and diverse phenomenon. 

http://daffodilphotoblog.wordpress.com/2011/03/05/mostly-bees/
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Flapping is a highly scalable lift and propulsive concept for locomotion in any 

fluid media. It combines the highly versatile capabilities of vertical take-off and landing, 

high-speed maneuverability, and the smoothness and efficiency of gliding. Flapping 

integrates the actions of lateral propulsion, vertical lift, and directional control into 

functions performed by a single system: wings. In the context of robotics, flapping flight 

also includes potential performance-related gains in peak lift and thrust production as 

well as efficiency gains relative to power consumption when compared to conventional 

fixed-wing and vertical rotor aircraft. These properties are of significant importance to 

aircraft and flying robots on all scales; particularly, those intended for isolated operation, 

extended duration, adverse weather conditions and disturbance rejection, or those desired 

to have widely variable payload mass capability. Concepts for configurations of small 

flapping Micro Air Vehicles (MAVs) include humming-bird-sized systems, such as that 

shown in Figure 1.2, capable of carrying surveillance equipment or other payloads while 

allowing for precise motion control. 

Inspired by the widespread use of this locomotion in nature, for this thesis work, it 

is chosen to be investigated in the context of a parametric study of hovering and 

transition to forward flight for the effects of flexibility, structural dissipation and varied 

kinematics. Consideration is given to the importance of fully-coupled fluid-structure 

interactions with the dynamic wing model. Combinations of these wing structure and 

flapping parameters and variations thereof are simulated numerically and compared using 

resulting performance metrics of each parameter combination case. Performance metrics 

considered include instantaneous and cycle-averaged dimensionless coefficients of thrust, 

drag, power, and their ratios. Discrete sampling of parameter combinations allows for 
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Figure 1.2: Archilichus alexandri (Hummingbird) Hovering 

(source: http://en.wikipedia.org/wiki/File:Archilochus-alexandri-002-edit.jpg,  

public domain). 

mapping of performance metrics in parameter space to identify regions of predicted 

optimality through interpolation of discrete data sets developed through simulation.  

System frequency responses are analyzed as important clues for fundamental physical 

phenomena, which can be correlated to system performance. 

 The rest of this thesis is organized as follows.  In Chapter 2, the problem 

statement is provided, and in the following chapter, the methods used in this study are 

presented and discussed.  In Chapter 4, the results obtained are presented and discussed, 

and in Chapter 5, a summary of the work carried out is presented along with concluding 

remarks and suggestions for future work.  Additional results are included in Appendix A, 

and algorithms and codes used in this work are given in Appendix B.  Bibliography 

related to this work is presented at the end.   

http://en.wikipedia.org/wiki/File:Archilochus-alexandri-002-edit.jpg
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2. Problem Statement 

In this thesis work, the author intends to characterize the flapping flight of a small 

insect during steady hovering for variations in wing flexibility, structural dissipation, 

chord-wise asymmetry, phase shifts in harmonic kinematics, and the breaking of 

kinematic symmetry to produce an unbalanced lateral thrust. A common fruit fly hovers 

at a Reynolds number of approximately 25 whereas a small bee hovers at a Reynolds 

number of approximately 200 and higher (Sane, 2003). Moderately in between this range 

is the Reynolds number 75, which has been selected and held fixed for the investigations. 

Fluid-structure interactions at this Re number have also been studied in the group’s 

previous studies (e.g., Fitzgerald et al., 2011).  The two-dimensional formulation has 

been adopted for the present work, as it allows for the use of common modern 

computational hardware with acceptable processing duration while maintaining the 

capability of solving strongly coupled fluid-structure interactions. The two-dimensional 

formulation also allows for complete resolution of turbulence and small flow structures 

through full direct numerical simulation (DNS) of a viscous fluid. The physics models 

employed in the present study include an incompressible Newtonian fluid with a flexible 

dynamic wing modeled as two rigid sections connected by a torsion spring and damper 

combination; this structural model is wrapped in a smooth aerodynamic body for 

immersion in the fluid domain, as detailed in the following sections of this chapter. 

Many phenomena in nature and in engineering design occur at or near their first 

linear system resonance, which has not been previously investigated in the context of 

potential benefits in flapping flight performance. Numerical studies addressing structural 

flexibility have omitted structural dissipation considerations, only allowing effects of 
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fluid forces to dampen the structural system. Previous work has also considered only 

symmetric wing sections and has considered parameter effects in very limited cases due 

to the high computational effort required. Motivating questions of interest in 

understanding flapping flight to be addressed by this thesis may be summarized as 

follows: i) would flapping at the first linear system resonance be beneficial? ii) How does 

structural dissipation affect the system response? iii) How does wing section geometry 

affect aerodynamic performance? iv) How do the flapping forcing parameters affect the 

system response and overall performance? Parametric studies will be performed using the 

models detailed in the following sections and methods detailed in Chapter 3 to address 

these motivating questions, with results and analysis presented in Chapter 4. 

 

2.1. Fluid Model 

The fluid medium that the flexible wing model moves through and interacts with 

in the present study is modeled as an incompressible Newtonian fluid continuum 

governed by the Navier-Stokes equations: 

    21
p

t Re


      



v
v v v f    (2.1) 

Here v is the velocity field, t is the time variable, p is the pressure field, and f represents 

all external body forces. The Reynolds number is defined as  

     f c cρ L v
Re

μ
      (2.2) 

where  
 
 is the fluid density,    is the characteristic length of the undeformed wing chord, 

   is the characteristic speed defined by the peak translational speed of the driving point 

for given kinematics, and   is the dynamic viscosity of the fluid. The primary application 
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intended for this study is the flapping of a flexible wing in atmosphere under sufficiently 

subsonic conditions as to approximate the flow as being entirely incompressible. 

Furthermore, pressure shocks travel throughout the fluid domain with effectively infinite 

speed, such that pressure variations in one fluid element affect all other fluid elements 

and the entire pressure field instantaneously. Key conditions that must be satisfied are 

that the velocity field is divergence free for all time; that is,  

     0 v      (2.3) 

The equations (2.1) and (2.3) are discretized and solved by using the second-order 

Adams-Bashforth linear multistep method on a structured, staggered Cartesian mesh. 

Incompressibility is enforced by using a fractional step method with time integration. 

 

2.2. Wing Section Model and Kinematics 

The two-dimensional flexible flapping wing is modeled by using two separate 

components, one in the structural or inertial domain and one in the fluid domain. In the 

inertial domain, the wing is described by two rigid links connected at a hinge point with a 

simple torsion spring and damper combination. The torsion spring equilibrium position 

corresponds to the co-aligned position of both links; that is, it corresponds to  t  = 0 in 

Figure 2.1. The masses of the links are modeled as point masses at each link’s designated 

center of mass; for example, for link A, at a distance A from the hinge point and having 

moment of inertia AI . In the fluid domain, the wing is modeled as an aerodynamic 

surface with specified thickness as a percent of the chord, 3% LC for the present work,  
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Figure 2.1: Flexible Wing Cross-Sectional Model for 

a) 10% LC Thickness and b) 3% LC Thickness 

(source: Fitzgerald et al., 2011, used with permission). 

 

 

with hemispherical ends and interpolated splines along the flexible section that are 

tangent to the rigid sections; their curvatures are used to enforce a constant cross-

sectional area during flexible deformation. 

The two-link structural model is depicted in Figure 2.1. The rigid links A and B 

(dashed black line) are connected at hinge b by a torsion spring with stiffness k. The 

variables x(t), y(t), θ(t), and α(t) are the generalized coordinates used to describe the 

wing’s motion. In the hovering simulations, x(t), y(t), and  t are prescribed by  

equations (2.4).   t is the only degree of freedom needed to define the system. 

        1 cos
2

t
x

f

A
x t e t 



    

   ( ) 0y t         (2.4) 

        0 1 sin
t

ft e A t
   



      
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The forcing frequency is defined as 2 /f xA  . The initial offset for the prescribed link 

is 0 / 2    and the angle of attack amplitude    for the prescribed link has been set to 

/ 4  radians. The phase shift in the harmonic theta kinematics, given by  , is set to zero 

in  all but one series of case studies. The amplitude in the x-direction xA  is set to 2.8 so 

that the peak translational speed is normalized to 1. The time constant   is introduced to 

provide a non-impulsive start from a vertical rest initial condition and is chosen such that 

the kinematics reach 99.8% of the prescribed amplitude after 5T, where 2 / fT    is 

the period for harmonic flapping; 0.8 (2 )f    . 

 The smooth decay from rest to steady harmonic motion has been shown to reduce 

transient effects and startup noise in the flow fields and structural response. The flapping 

frequency 
f  is fixed while varying the frequency ratio /f n   is equivalent to varying 

the spring stiffness k for fixed inertial parameters and allows for variation in the present 

study between a frequency ratio of 1/6, corresponding to a very stiff spring, to the linear 

system resonance ratio of 1. With kinematics prescribed for the top link, B, the bottom 

link, A, is free to deform due to fluid forces with a single degree of freedom,  t . It can 

be shown that the equation of motion that governs the structural response is given by: 

               sinA A A AI t c t k t I t m x t t t Q              (2.5) 

wherein the dimensionless ratio of the forcing frequency to the natural frequency for the 

system defined by dimensional system parameters is given by: 

     
2 /

/

f x

n A

A

k I




      (2.6) 
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Here, the structural system’s natural frequency is defined as /n Ak I  . The damping 

factor is allowed to vary from zero to 5.0 in the present work and it is defined as  

     
2 A

c

kI
       (2.7) 

 As shown in Figure 2.1, the structural system is wrapped in an aerodynamic 

flexible surface in order to smoothly deform in the fluid domain. Fluid forces are 

interpolated in the fluid domain at the control points defined as the aerodynamic body’s 

surface and the net forces and moments are applied to the structural model presented 

here. An example of the driving kinematics as well as inertial and fluid-induced  

 
 

Figure 2.2: Motion profile with fluid-structure interaction for symmetric  

harmonic kinematics. The path is given for intervals of 16 equally spaced  

intervals of the period for a frequency ratio / 1/ 3fω ω ,  

Re = 1000, and aerodynamic profile thickness of 10% LC 

(source: Fitzgerald et al., 2011, used with permission). 
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deformation is displayed in Figure 2.2 as snapshots over one flapping period. One can see 

the rigid link structural model embedded in the aerodynamic body during steady state 

flapping from previous work at Reynolds number 1000 and a thicker wing profile relative 

to the chord length. 

 

2.2.1. Structural Dissipation 

The viscous fluid surrounding the immersed wing geometry acts to dissipate 

energy and it can be considered as a source of damping. The fluid inertial and viscous 

effects result in a low amplitude of oscillation of the free section than an identical 

flapping wing without the effects of a surrounding fluid. However, the mechanism of 

wake capture breaks down this analogy at the two stroke reversals per period where 

energy imparted into the fluid is partially recaptured for additional lift production. 

Structural dissipation is introduced in the form of a simple torsion damper at the hinge 

point. The torsion damper provides a moment that is proportional to the angular velocity 

   at all times and strictly acts to dissipate energy of the system. The frequency ratio 

defined in the present work is in terms of the undamped natural frequency for all cases.  It 

is remarked that the damped natural frequency for an underdamped system is given by 

21d n    , which  will be less than the undamped natural frequency. Also, note that 

the strong coupling of the fluid-structure interactions results in a non-zero (and non-

constant) effective damping for all cases considered due to the viscous fluid; therefore, 

even nominally undamped cases will not respond in a manner identical  to that of an ideal 

undamped flexible system considered with elementary single degree-of-freedom 

dynamics. 
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2.2.2. Asymmetrical Links 

 In a significant portion of the present work, the author addresses the effects of 

geometrical asymmetry in the simple wing model presented and characterizes the related 

effects on performance. It is of interest to vary the location of the hinge between wing 

links, thereby changing their lengths relative to the chord. This is accomplished by 

generalizing the dynamic description of the system in Section 2.2 and rearranging the 

control points for the rigid and spline-fitted flexible sections, which describe the 

aerodynamic body in the fluid domain. An example of the “initial” symmetrical 

aerodynamic body and the “shifted” body control points are presented for a shift to a 

leading link length of 0.25LC in Figures 2.3 and 2.4. 

 

 
 

Figure 2.3: Default symmetric and shifted  

asymmetric (0.25LC) wing aerodynamic profile. 
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Figure 2.5: Asymmetric wing profiles with maximum dynamic deflections and 

pressure contours (-1, 1) to illustrate flexible, free, and prescribed  

section lengths. A = 0.10Lc (top left), 0.25Lc (top right),  

0.50Lc (bottom left), and 0.75Lc (bottom right). 

 

 A series of pressure contour snapshots to illustrate deformation and relative 

section lengths for the cases considered in the present work are presented in Figure 2.5 

for a frequency ratio of 1// 4f n   . The relative leading section lengths to be 

considered are 0.10LC, 0.25LC, 0.50LC, and 0.75LC. 

Note that the flexible section length varies for the minimum link length. The 

default symmetrical wing has a flexible section of length 0.45LC, which is slightly 

reduced to 0.40LC for the medium-short and medium-long cases. The minimum driven 

section length case, 0.10LC, due to geometrical constraints has a flexible section length of 

only 0.10LC. This sharper curvature is visible in the deformation snapshots illustrated in 

Figure 2.5. The minimum driven section length case may be interpreted as prescribing the 

slope and position of the leading edge with time and allowing a long free section to 

deform flexibly. The maximum driven section length may be interpreted as prescribing 
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the slope and position of a large wing with a small flexible trailing edge. The cases 

considered allow a coarsely resolved comparison across the full range of a prescribed 

leading edge with a large flexible section and the existing data for a fully rigid flapping 

plate. 

 

2.2.3. Phase Shift in Theta 

 Simple harmonic kinematics is a natural starting point for well-understood, 

periodic, time-varying systems such as periodic, steady flapping. However, previous 

researchers (e.g., Dickinson, Lehmann, and Sane, 1999; Bos, Lentink, Van Oudheusden, 

and Bijl, 2008) have proposed alternate kinematics that have been found to produce 

performance enhancements in some cases relative to lift production or lift-to-power 

efficiency.  Here, simple harmonic kinematics is maintained for the ease of analysis and 

actuator implementation for Micro Air Vehicle (MAV) design guidance. Despite the 

relative simplicity of harmonic kinematics, many parameters exist for parametric analysis 

to discover more efficient or more desirable configurations. Parameters to vary for the 

considered harmonic kinematics include the vertical and horizontal stroke amplitudes, the 

angle of attack amplitude, and phase shifts in these spatial variables. The amplitudes are 

chosen to be fixed in the present work and a phase shift in the angle of attack kinematics 

is of interest. A pictorial representation of the kinematics for various phase shifts in the 

angle of attack of a rigid wing is presented in Figure 2.6. 
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Figure 2.6: Harmonic kinematics for a rigid wing with a phase shift  

in theta shown with 20 snapshots over one period at equally spaced  

time intervals. Phase Shift: -0.5rad (top left), 0 (top right),  

+0.5rad (bottom left), and +1.0rad (bottom right). 

 A thought experiment employing harmonic flapping of a rigid two-dimensional 

wing as presented in Figure 2.6 intuitively suggests a potentially significant difference in 

lift production and power expenditure for significant phase shifts. One can imagine that 

the stroke reversal of a rigid wing with a phase lag in the angle of attack might increase 

the power expenditure, due to the resistance of the trailing fluid during stroke reversal. 

Conversely, advancing the phase in the angle of attack may ease the power required for 

reversal and cause the trailing fluid to increase the lift generated upon angle of attack 

reversal. This mechanism, known as “wake capture,” acts to partially reclaim energy 

previously expended into the fluid by the wing. Therefore, it is predicted that a reduction 

in lift and an increase in power will occur for phase lag in angle of attack harmonic 

kinematics whereas an increase in lift and a reduction in power expenditure will occur for 

a small phase lead. 
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3. Methods 

 In this chapter, the models used to carry out the simulations are described, the 

assumptions made are stated, and the tools used to examine the results are also discussed. 

 

3.1. Scope of Methods 

In this section, the assumptions and limitations of the physical models used for the 

fluid and dynamic wing section and the solution method employed are summarized, 

along with the assumptions made in the problem formulations.  

The fluid is assumed to be Newtonian, incompressible, and behave as a 

homogeneous, isotropic continuum with constant viscosity and density. Gravity loading 

is not accounted for, and therefore, no weight or buoyancy effects are considered. This is 

a reasonable assumption due to the small wing area (thickness 3% of chord) and the wing 

material density ratio to fluid (82.073:1). The density ratio is set in order to fix the mass 

of the links relative to 10% LC thickness cases used in previous studies, in which the 

density ratio was set to 25:1. This ratio was chosen in order to allow the ratio of fluid 

forces to inertial forces to be on the order of ½. There are no heat transfer effects and no 

temperature effects considered in the system. The unsteady, incompressible Navier-

Stokes equations are also based on a divergence-free velocity field at all times and an 

infinite speed of pressure propagation is assumed. The Reynolds number of insect flight 

ranges from 10 to 10
5
 (Sane, 2003). For the fixed Reynolds number studies considered in 

this thesis, this number is chosen to be 75. For context, the Reynolds number of a 

common fruit fly is about 25 and about 250 for a honey bee. All turbulence is directly 

resolved, and no simplification or turbulence modeling is employed. The Kolmogorov 
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dissipative micro-scale requirement to sufficiently resolve turbulence at all scales dictates 

a resolution per characteristic length, LC, of (Ferziger and Peric, 1997)   

    3 9/4 16553.4  25.5N Re N       (3.1) 

divisions per chord length, which requires Δx  0.039. The mesh spacing used in the 

refined region is over an order of magnitude smaller at Δx = 0.003725 and stretched out 

to the domain boundaries. The refined region maximum Courant-Freidrichs-Lewey 

(CFL) number is on the order of  

    

 

 

51 7 10

0.02
0.003725

m
s

u t s

x m

 
    


   (3.2) 

which is well below the stability limit of 1 for an explicit method (Ferziger and Peric, 

1997). The “approximately equal to” symbol is used because the translational velocity is 

normalized to 1m/s while peak velocity magnitudes in the flow field may slightly exceed 

this characteristic value. Post-analysis of the flow fields reveals peak velocity magnitude 

of less than 1.6 m/s across all cases whereas the kinematics normalizes the peak 

translational speed of the driving point for a symmetric wing at 1m/s. This results in a 

peak CFL number of 0.032 for the worst case simulated. The mesh dissipation number is 

given by 

    
   

  
 
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7 10
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t st

x x m


 
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 

  (3.3) 

Again, “approximately equal to” is used because the characteristic velocity is used for the 

nominal value. Post-analysis of the flow fields reveal a peak dissipation number of 0.12 

for the worst case simulated. 
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The wing section model receives and transmits forces on its aerodynamic 

boundary immersed in the fluid at points interpolated along the boundary between mesh 

points in the fluid domain. The fluid forces are interpolated at these control points and 

applied to the dynamic model of the wing as a comprehensive force and moment on the 

lower link with the upper link kinematics fully prescribed. The torsion spring and damper 

response is computed explicitly with 12610
3
 time steps per period and the resulting 

displacement produces inertial forces due to the free section and prescribed displacement 

of the leading section to be imposed onto the fluid by the interpolated control points onto 

the fluid mesh. The final step per iteration is the Poisson inversion for pressure field 

correction to enforce the divergence-free velocity field condition for incompressible flow, 

performed once per time step. A single simulation of 15 periods for this model requires 

approximately 6 weeks to solve on a 2.5GHz processor for raw flow field variable 

snapshots, force and moment data production.  

 

3.2. DNS, Immersed Boundary, and Strongly-Coupled FSI 

A fluid domain of 551 horizontal by 1229 vertical grid points is resolved to 

0.003725LC in the refined region and stretched to a bounding box of dimensions 30LC  

30LC to minimize the effect of boundaries and maximize the allowable simulation 

duration. Periodic vertical boundary conditions are imposed and a no-slip horizontal wall 

is imposed at the lateral boundaries. Simulation results are checked following the final 

period to ensure that flow effects do not reach the boundary. This was found empirically 

to typically occur between approximately the periods of 17 and 18 depending on the 

strength of the vertical fluid jet for simulations at the Reynolds number of 75. The reader 
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is referred to Vanella and Balaras (2009) for a detailed formulation of the immersed 

boundary method and validation. Prior work has also validated stability and mesh 

independence under similar simulations of flapping flight (e.g., Fitzgerald et al., 2011; 

Vanella et al., 2009; Vanella and Balaras, 2009). The fluid domain discretization used for 

all case studies in the present work at Reynolds number 75 is a stretched Cartesian mesh 

of dimension 30LC  30LC as presented in Figure 3.1. 

The parameters for density and profile thickness have been chosen such that the 

ratio of forces on the structure due to the fluid compared to body inertia are 

approximately a factor of two; that is,  Ffluid ~ ½ Fstructural inertia in order to emphasize the 

effects of strongly coupled fluid-structure interactions. Additionally, the boundary 

conditions on the domain are periodic in the vertical direction and no-slip and no-

penetration walls in the lateral direction. 

 

 
Figure 3.1: Fluid Domain with Characteristic Wing (Left), and  

Fluid Grid with Aerodynamic Body (Right). 

(source: Chabalko, Fitzgerald, Valdez, and Balachandran, 2012, used with permission) 
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3.2.1. Performance Metrics 

The forces interpolated at each time step on the control points of the immersed 

boundary are decomposed into their vertical and horizontal components. The sum of all 

vertical components is made dimensionless by using the fluid density, characteristic 

chord length, and characteristic velocity into the lift coefficient, CL, and recorded at each 

time step; that is, 

     
 

21
2

y

L

f c c

Q t
C t

V L
      (3.3) 

The sum of all horizontal components is made dimensionless by the fluid density, 

characteristic chord length, and characteristic velocity into the drag coefficient, CD, and 

recorded at each time step. The sign of the drag coefficient is defined as opposite of the 

instantaneous translational velocity at each time step, so that 

        
 
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   (3.4) 

The moment induced by inertial and fluid forces during flapping should average 

zero during a flapping cycle for symmetric kinematics. The net moment is made 

dimensionless by the fluid density, characteristic chord length, and characteristic velocity 

and denoted as the moment coefficient, CM, and is recorded at each time step. It is given 

symbolically by: 

     
   
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     (3.5) 

A conservative estimate for the input power for the given system and kinematics 

has been proposed by Vanella et al. (2009). The driving force in the x-direction, Rx(t), 
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and the driving moment in the theta direction, Rx(t), are computed from the mass matrix 

from the equations of motion with associated fluid forces and moments as 
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         sin sinA a B b A B AR t m m x I I I Q                 (3.7) 

Then the input power for translation, Ptr ( t ), and rotation, Prot ( t ),  can be defined as 
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    
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     (3.9) 

It is assumed that the power cannot be negative for this model system. There is no power 

recovery or storage in the drive or actuation system, and only, power expenditure. The 

total power is made dimensionless by the characteristic fluid density, velocity and chord 

length into the power coefficient defined by: 

     
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While maximum lift production is desired for the design and understanding of 

systems capable of flight, one must consider the instantaneous and cycle-averaged power 

required to sustain flight. For the application of Micro Air Vehicle (MAV) design, 

optimizing lift relative to power consumption allows for an efficient use of on-board 

power supplies. Conditions and parameters determined for peak lift production are 
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unlikely to correspond to power consumption minima, and therefore, one looks for the 

peak efficiency points in the context of the dimensionless lift-to-power ratio defined by 
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   (3.11) 

Maximizing the lift coefficient in MAV design and control allows for the most 

rapid takeoff and ascent as well as the ability to carry heavy payloads. Alternatively, 

maximizing the lift-to-power ratio allows for the longest flight duration for a fixed energy 

supply under otherwise the same conditions. By understanding lift production and power 

consumption for particular wing configurations and flapping conditions, one can gain 

insights into flight methods and anatomy in biological systems. Swift mobility and low 

power consumption may be significant evolutionary drivers, which have led to nature 

selected efficient and high-performing configurations that modern researchers employing 

numerical investigations would hope to identify and replicate. 

 

3.2.2. Flow Field and Principal Component Analysis 

 Flow field snapshots at particular points within a steady flapping period are 

interesting to illustrate major vortex structures and regions of high and low pressure. One 

looks for moderate free-link displacements, high pressure regions under the wing, low 

pressure regions above the wing, and flow movement downward in the central fluid jet as 

indicators of positive lift production. A representative snapshot of the near-body velocity 

field is presented in Figure 3.2 with illustrative magnitude contours and velocity vectors. 
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Figure 3.2: Representative flow field snapshot with  

wing profile (white), velocity contours, and vector field. 

 While useful, these snapshots are individually insufficient to characterize the 

steady state performance and illustrate key features of the flow field that may not be 

apparent with one particular snapshot. Principal Component Analysis (PCA) allows the 

breakdown of the flow field into its most significant features, either per snapshot or 

considering a cycle average of snapshot data. PCA can be performed by using several 

means depending upon the level of detail needed, the data to be analyzed and the 

intended application. For the present work, Singular Value Decomposition (SVD) is used 

to deter mine the principal components associated with the flow fields. The finite matrix 

M of discrete data is decomposed into a unitary pre-multiplication matrix Ut , a post-

multiplication matrix Vt, and a diagonal matrix of t singular values    in order of their 

significance: 

     t t tM U V       (3.12) 

The “approximately equal to” symbol is used to indicate that partial reconstructions with 

t modes can be a sufficient approximation to an m  n matrix M. An example of SVD of 

a discrete data set is the decomposition of an image, where each pixel in the image 
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domain corresponds to a matrix element with a particular scalar value. In Figure 3.3, 

there is a demonstration of the deconstruction and reconstruction of a grayscale image 

from the first, first two, first ten, and then first 100 modes. 

 The original image of a dragonfly can be seen to have complex features and 

details with some clear primary structures. The first mode shows a strong, thin vertical 

section at the center of the image with two parallel, prominent features extending 

horizontally. With knowledge of the original image, one identifies the body and the 

wings as these primary features identified in Mode 1. Considering the sum of the first two 

modes in the next sub-figure, details emerge on the tail section that is narrower than the 

body section, the head is distinguishable from the main body, and the wings begin to take 

shape and are seen to converge at the body section. The far right sub-figure illustrates that 

adding the next 98 most significant modes to the first two modes does very little to reveal 

fundamental structures and principal components, but rather only fills in fine details with 

rapidly diminishing significance. In fact, the reconstructed image only reproduces the 

original image when the number of modes added equals the largest dimension of the 

image matrix. In this thesis, the same method will be applied to deconstruct the less-

obvious, dynamic near-body flow field for both instantaneous and cycle-averaged 

variables. 

 The singular value decomposition orders the modes according to their 

significance. Furthermore, the level of significance in terms of “percentage of 

information” may be computed. Both the SVD modes and the associated significance 

rankings are reported for period-averaged flow fields. 
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Figure 3.3: Principal component analysis of Dragonfly image (far left), and 

decompositions  into Modes 1, 1-2, 1-10, and 1-100 (second left to right). 

(Source: http://en.wikipedia.org/wiki/Green_Darner, Anax junius, public domain) 
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4. Results and  Analysis  

 By using the methods described in the previous chapter, sets of numerical 

experiments for certain parameter combinations of interest were conducted to investigate 

the influence of the different parameters on the system dynamics and performance.  A 

total of 36 numerical simulations were run in sets ranging from 4 to 12 simulations per 

set depending upon available resources and desired parameter resolution. Results with 

distilled summaries of performance metrics, flow fields, analysis and correlations are 

presented in the following sections of this chapter. 

 

4.1. System with Damping and Resonance Forcing 

 Simulations were run for a flexible wing flapping forced at system resonance with 

torsion damping factors of 0.5, 0.7, 1.0, and 1.1. The angular displacement was 

significant at the lightest damping factor considered, 0.5, as seen in Figure 4.1 with 

negative lift produced for all cases; hence, no lower damping factor cases were 

considered. An upward trend in performance metrics at the high end of the initial series 

prompted an additional set of investigations with damping factors of 1.5, 2.0, 3.0, and 

5.0; positive lift was achieved for all cases in this second series of numerical experiments. 
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Figure 4.1: Steady state angular displacement of free link.  From largest to  

smallest amplitude, damping factor values: 0.5, 0.7, 1.0, 1.1, 1.5, 2.0, 3.0, and 5.0. 

 

4.1.1. Performance Metrics 

 The lift coefficient plot presented in Figure 4.2 is illustrative of  the negative lift 

observed for the first series of damping factors considered with a near-zero lift produced 

for a  damping factor 1.1 and a positive slope for the first four cases. This trend prompted 

another set of numerical experiments with the significantly larger damping factors of 1.5, 

2.0, 3.0, and 5.0.  It is noted that the inherent structural damping factors for conventional 

homogeneous materials are on the order of 0.01 to 0.1; hence, practical implementation 

of these simulated conditions would require a system or component specifically intended 

to provide these high damping factors. As expected from the initial series, the upward lift  
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Figure 4.2: Cycle-averaged steady state lift coefficient (left) and 

cycle-averaged steady state drag coefficient (right). 

 

trend continued and increasing positive lift was obtained for lift coefficients between 1.5 

and 5.0. The rate at which the positive lift grows with respect to the damping factor is 

observed to decrease beyond a damping factor of 1.1. This diminishing performance 

increase suggests that the lift coefficient may level off to a finite value as the damping 

factor is increased towards infinity.  

 The cycle-averaged lift and drag coefficients are presented as a function of 

damping factor in Figure 4.3 on the same scale for better resolution and a more direct 

comparison. The positive trend in the lift coefficient for sub-unity damping factors is 

apparent and there is an inflection point around 1.1 and an upward trend as the damping 

factor is increased. The drag coefficient shows a similar trend for damping factors above 

1.1, suggesting that the lift-to-drag ratio would level off as well. The complexity of the 

curves in the simulated cases relative to well-behaved and well-understood elementary 

functions suggests that there is much more information to consider in the flow field in 

order to draw fundamental relationships than simply the net cycle-averaged forces on the 

body’s surface. The lightest damping case considered produced large angular  
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Figure 4.3: Cycle-averaged steady state lift coefficient (blue),  

drag coefficient (red), and power coefficient (green). 

 

displacements in the free link of the wing, on the order of 110°, which may be causing 

the high drag during flapping. As the damping factor is increased, the angular 

displacement decreases to more intuitively aerodynamic ranges and the structural 

compliance in the system allows a minimum in drag between damping factors of 0.7 and 

1.1. Snapshots of the wing profile during maximum angular displacement during steady 

flapping are presented in Figure 4.4 to visually convey why damping factors below 0.5 

were not considered. 

 The lift increases at a decreasing rate as the damping factor is increased. As the 

damping factor increases further, the drag increases. One would expect the flexible wing 

to approach the performance of a harmonically oscillating rigid plate under the same 

conditions at the limit of the damping factor approaching infinity. This is demonstrated in 

Figure 4.5 with the lift-to-drag ratio, where the value at the far right is the case for a rigid 
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Figure 4.4: Steady sate maximum angular displacement of free link  

pressure contour (-1 , 1) snapshot; damping factor 0.5 (left) and 5.0 (right). 

 

wing computed in earlier work (Fitzgerald et al., 2011). The drag coefficient in all cases 

presented is significantly higher than the lift coefficient, with a curious minimum 

between the damping factors of 0.7 and 1.0. Unfortunately, this minimum in drag 

corresponds to a lift coefficient of approximately zero; hence, from the lift-to-drag ratio 

curve in Figure 4.5, it can be stated that there is no practical benefit or significance to this 

minimum under these simulated conditions in terms of performance.  

 Assuming a valid extrapolation beyond a damping factor of 5.0, one may interpret 

the distilled performance metrics of the simulation set as an assertion that a flexible wing 

flapping at linear system resonance can at best only approach the lift and lift-to-drag ratio 

performance of a rigid wing under the specified conditions. Implications of this result are 

that insects flying under similar conditions likely do not flap near resonance as the 

amount of structural damping available in conventional mechanical or biomaterials would 

not allow positive lift production. Additionally, it is recommended MAVs not be 

designed to operate with flexible wings near resonance unless near-rigid behavior of the 

wings can be achieved with sufficiently high structural damping. 
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Figure 4.5: Average steady state lift-to-drag and lift-to-power ratios. 

 

4.2. System with Damping and Forcing Below Resonance  

 Representative cases with damping below resonance were simulated for 

frequency ratios of 1/3 and 1/4. The lift coefficient, presented in Figure 4.6, was found to 

decline with increasing damping factor for both frequency cases and all damping factor 

cases considered. The highest lift performance occurs for zero structural damping for 

these cases below resonance, and the lift produced falls off sharply for small deviations 

from zero and begins to level off for high damping factors. The power and drag 

coefficients for both cases below resonance are shown to reduce with increasing damping 

factor, presented in Figure 4.7. A possible explanation for this benefit is the damping of 

large amplitude deformation caused by structural inertial forces and, to a lesser extent, 

fluid forces. This resulting smaller free-link amplitude may require less energy for the 
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wing to be driven through the fluid. The frequency ratio of 1 is included in the figure for 

more complete treatment and to show the context of frequency ratio 1/3 and 1/4 results. 

 The reduction in the power coefficient suggests that structural damping may be 

beneficial for average-power-constrained systems, particularly those that flap at a 

frequency ratio of 1/3. Introducing a damping factor of just 0.1 reduces the power 

 
 

Figure 4.6: Average steady state lift for different  

damping factors and inverse frequency ratios W1, W3, and W4. 

 

 
 

Figure 4.7: Average steady state power coefficient (left) and drag coefficient (right) 

for different damping factors and inverse frequency ratios W1, W3, and W4. 
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requirement by over 7%. Heavy structural damping that achieves a damping factor of 1.0 

results in an input power requirement reduction of 22%. Unfortunately, the reduction in 

lift outweighs the reduction in power for increasing damping, illustrated in Figure 4.8. 

 The efficiency measures of lift-to-power and lift-to-drag depicted in Figure 4.8 

decrease with increasing damping for the cases considered of flapping below resonance. 

There appears to be no net lift improvement for any non-zero damping factor for these 

cases and, while the power required decreases, the efficiency ratios convey a net 

disadvantage.  

 

 
 

Figure 4.8: Average steady state lift-to-power coefficient (left) and  

lift-to-drag coefficient (right) for different damping factors and  

inverse frequency ratios W1, W3, and W4. 
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4.3. Asymmetrical Flexible Wings 

 Numerical simulations for flapping wings were conducted with varied leading 

link lengths and frequency ratios to determine the effect of asymmetrical flexibility for a 

single degree-of-freedom system. All prior research group efforts to this point have 

considered symmetrical links (Vanella et al., 2009a; Vanella, et al., 2009b; Fitzgerald et 

al., 2011; Fitzgerald et al., 2012). These studies identified a natural-to-forced frequency 

ratio of 1/3 as a preferred point for peak lift production and peak efficiency in lift-to- drag 

and power ratios across Reynolds numbers of 75, 250, and 1000 by using DNS, and 

inviscid flow by using the Unsteady Vortex Lattice Method (UVLM). A goal of the 

reformulation and parameters in the present work is to investigate the validity or 

universality of this apparent preferred efficiency point under further varied conditions. 

Numerical experiments were performed for leading link lengths of 0.10, 0.25, 

0.50, and 0.75 with zero structural damping. The simulated wing decays from rest to 

steady flapping in 5 periods, 3 periods are allowed for the fluid to dissipate transient 

behavior and reach a steady state at Reynolds number of 75; the resulting “steady state” 

data is presented for periods 8-12. Cases are identified with parameter combinations of 

W#A## where “#” corresponds to the inverse of the forced-to-natural frequency ratio and 

“##” corresponds to 100  the leading link length. For example, W2A75 identifies the 

frequency ratio of one half and a leading link length of 0.75. 

Initially, the model kinematics was provided for driving at the hinge point for 

symmetrical links. For asymmetrical links, the kinematics was translated to the peak of 

the leading edge so that all cases would have identical leading link and leading edge 

kinematics. It is noted  that A = 0.5 corresponds to conditions of previously performed 
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numerical experiments, which are repeated here and compared to previous results to 

verify the correct implementation of the kinematics translation from the hinge point to the 

leading edge. Current performance metrics results were found to match previous results 

to two significant figures or better. Representative flow field snapshot time lapse plots are 

given for vorticity contours for case W3A25 in Figure 4.9. Similar flow field time-lapse 

plots can be seen for pressure, vorticity and magnitude velocity in Appendix A. 

 

 
 

Figure 4.9: Case W3A25 vorticity contour (-3, 3) time lapse for  

frame interval T/8 on truncated domain (-3,3)(-5,2) for one period. 

Arrow indicates direction of time evolution. 

 

4.3.1. Performance Metrics 

 It is important to distinguish here between the variables and fixed quantities for 

comparative design purposes of particular systems. A fixed Reynolds number implies 

that, for a particular fluid and fixed structural system, a faster flapping frequency which 

produces a higher characteristic velocity is counteracted by a smaller chord. An insect in 
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flight that begins flapping faster, for example, has increased its Reynolds number as well 

as its frequency ratio. Therefore, for fixed wing and fluid properties, varying the flapping 

frequency or frequency ratio will vary the Reynolds number. Alternately, active stiffness 

control of a wing can be employed, which would help maintain the same flapping 

frequency; the stiffness properties would be varied to vary the fundamental natural 

frequency, thereby altering the frequency ratio while maintaining the same characteristic 

speed and Reynolds number for fixed wing geometry. A system that employs constant 

frequency with active stiffness control is a practical suggestion that one can come away 

with from the results presented in the case studies of this section. 

 A more involved implementation to make full use of the results obtained is to 

create a wing with a variable leading length and free section length. For fixed spatial 

kinematics, the leading link can be reduced and the free link extended by using active 

chord length control in order to transition between cases with desired performance as 

summarized below. Although technically valid, the latter possibility for implementation 

of these results is far more laborious; hence, the former interpretation is preferred for 

design considerations. Active stiffness control can be achieved by varying muscular or 

hydraulic resistance as well as variable stiffness springs through pre-loading or using 

electro-stiffening/electro-compliant materials. 

 The lift coefficient is plotted as a function of the normalized leading link length in 

Figure 4.10 for the four frequency ratio cases considered. First, it is noted that this set 

confirms the preferred frequency ratio of 1/3 for peak lift with symmetrical links, 

confirming previous findings. Asymmetrical links, however, show that a very slightly  
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Figure 4.10: Cycle-averaged steady state lift coefficient for different leading  

link lengths and inverse frequency ratios W2, W3, W4, and W6. 

 

higher lift can be achieved with a shorter leading link length of 0.25 at a frequency ratio 

of 1/3. Additionally, the frequency ratio of 1/4 achieves a very similar peak lift for a very 

short leading link length of 0.10. Therefore, very similar peak lift coefficients are shared 

and can be achieved by parameter combinations of W3A25, W3A50, W4A10, or 

W4A25. 

 Two frequency ratios are included in Figure 4.10 and several more link lengths 

that perform worse than these optimal cases. The cases with a frequency ratio of 6.0 were 

seen to provide relatively poor performance compared to the rest; yet these cases are 

fairly consistent for link lengths up to 0.5. Flapping a wing of the type presented whose 

leading link is shorter than its free link is expected to provide consistent results that are 

relatively insensitive to moderate link length variations. Contrary to the other three 

frequency cases, the ratio of 2.0 is associated with an increased lift as the leading link 

increases from 0.10 to 0.50, and increasing further to 0.75 yielded a negligible difference 

in performance. This is likely due to the large amplitude free link displacements for the 
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case close to linear system resonance forcing. As the free link length is reduced, the 

negative effect of its large angular displacement becomes less significant. In fact, in 

general, it can be seen that the shorter the free link, the less significant the performance 

difference is between the frequency cases. Intuitively, one would expect the performance 

of all frequency cases to converge further to the case of a single rigid wing as the free 

link length approaches zero. 

 For a frequency ratio of 2.0, a longer leading link produces more drag as seen in 

Figure 4.11. The effect of leading link length on drag production is mixed, but yet fairly 

consistent for other frequency ratios. However, the power consumption plot (Figure 

4.12), exhibit a general trend across all cases of an increasing leading link length 

requiring more power input. This trend suggests that less strictly prescribed motion of a 

wing surface with more compliance in the chord direction is advantageous to minimize 

power consumption. This observation also provides a guideline for design of MAVs and 

understanding of flight methods in biological systems in the context of power 

consumption: an insect may produce more lift with a W3A25 configuration and an output 

power coefficient of 1.42; however, physiology may limit the average output power 

magnitude or the flapping frequency, in which case, a lower frequency ratio of 1/4 with 

an asymmetric wing can produce a similar lift coefficient with a small drop in the 

required output power coefficient. 

 Making use of the lift- and drag-coefficients provided in Figures 4.10 and 4.11, 

the ratio plot presented in Figure 4.13 is constructed. The frequency ratio of 3.0 is noted 

as the ratio associated with the highest overall performance and across most link lengths 

for this definition of performance efficiency. The lift-to-drag ratio is highest for a 
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frequency ratio of 1/3 across the majority of the considered wing geometries. 

Interestingly, the peak efficiency occurs for a leading link length of 0.25. For a frequency 

ratio of 1/4, the peak efficiency also occurs for a leading link length of 0.25. The 

compliant cases of 1/2 and the stiff cases of 1/6 both have peak performance for 

approximately symmetrical wings, within the resolution of the link lengths considered 

with assumed validity of interpolation. However, these peak values are still significantly 

lower than those obtained for the high lift cases of 1/3 and 1/4. 

 For conventional, steady, fixed-wing flight, the lift coefficient and lift-to-drag 

ratio are the golden standards used to characterize performance and efficiency. The lift 

coefficient is directly related to the lift capability of an airfoil of a steady-cruising, fixed-

wing aircraft, the drag has a direct relationship to the power consumption, and the lift-to- 

drag ratio can be directly related to the distance traveled per unit of power consumed; or 

equivalently, the maximum steady cruising range for a fixed energy source. However, in 

 
 

Figure 4.11: Cycle-averaged steady state drag coefficient for different leading  

link lengths and inverse frequency ratios W2, W3, W4, and W6.  
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Figure 4.12: Cycle-averaged steady state power coefficient for different leading  

link lengths and inverse frequency ratios W2, W3, W4, and W6. 

 

 
 

Figure 4.13: Cycle-averaged steady state lift-to-drag ratio for different leading  

link lengths and inverse frequency ratios W2, W3, W4, and W6. 

 

flapping flight, lift forces and drag forces are not steady and the stroke reversal can 

require the wing to expend additional energy during rotation while also “capturing” some 

of the translational energy in the wake under the wing to enhance lift generation.  Due to 

these additional features in the dynamics of flapping flight, drag forces cannot be directly 
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related to energy expenditure. Therefore, the lift-to-power ratio is considered rather than 

the lift-to-drag ratio as the primary indicator of performance efficiency. 

 When attempting to understand flight in biology, one must consider the 

evolutionary pressures that guide specific anatomy, control, or behavior. The lift 

capability can be considered as available general thrust, and the ability to quickly escape 

predators or pursue prey. The power coefficient can be considered as the metabolic rate 

relative to locomotion, and a higher rate of energy expenditure requires additional 

mobility for energy source consumption, which in turn requires more energy expenditure. 

When designing a MAV with a specific body mass and payload capability, the flight 

performance and duration must be optimized for a fixed energy supply, likely a chemical 

battery. In Figure 4.10, the parameter combinations of W3A25, W3A50, W4A10, 

andW4A25 were identified as high lift cases, and in Figure 4.14, the performance is 

placed in the context of lift-to-power efficiency. 

 

 
 

Figure 4.14: Cycle-averaged steady state lift-to-power ratio for different leading  

link lengths and inverse frequency ratios W2, W3, W4, and W6. 
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 For the parameter combinations considered, the most advantageous frequency 

ratio is seen from Figure 4.14 to be 1/4, which is also the most sensitive to wing 

geometry.  For the frequency ratio of 1/3, the system also performs well with a similar 

peak efficiency and the benefit of less sensitivity to link length. It is notable that for the 

leading link length of 0.25, one achieves the highest lift-to-power efficiency and the 

system performance is insensitive to moderate variations in link length and consistent for 

frequency ratios between 1/4 and 1/3. Given that wing geometry is likely fixed for 

practical MAV designs and biological systems, variations in kinematics and frequency 

ratio are the practical options for increasing thrust output and achieving high lift-to-power 

efficiency. Therefore, insensitivity to frequency ratio is strongly preferable.  

 For a system that maintains consistent spatial kinematics and only alters flapping 

frequency ratio, it is observed in Figure 4.10 that a flexible wing of the type considered in 

the present work with a 0.25LC leading section and a 0.75LC free section is capable of the 

highest lift production at a frequency ratio of 1/3, whereas the same wing geometry 

achieves the best lift-to-power efficiency for frequency ratios between 1/3 and 1/4. A 

flapping insect or MAV near Reynolds number 75 can produce maximum lift with 

minimal power output for a frequency ratio of 1/3 and reduce its frequency ratio to 1/4 to 

produce less lift while maintaining the same lift-to-power efficiency. For systems that 

vary widely in flapping frequency to control thrust produced, symmetric flexible wings 

display minimal sensitivity to flapping frequency with respect to efficiency, while 

providing significant control of lift production between frequency ratios of 1/4 and 1/3. 
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4.3.2. Frequency Analysis and Phase Plots 

 The significance of understanding frequency content in flapping systems is multi-

faceted. First, the presence of certain frequencies manifested in the structural response 

may be correlated to performance in terms of thrust, power, or efficiency measures. 

Second, high-frequency content may indicate corresponding excessive power exertion or 

high amplitudes that can be modified through structural damping. Third, when 

controlling a dynamic system, angular positions and velocities are practical to measure 

and analyze in real time with on-board sensors and processing. A system may be able to 

predict control responses or modify control commands based on feedback received from 

free-link displacement measurements if known correlations to performance metrics exist. 

Additionally, the reduction of a high-dimensional, complicated system such as flapping 

flight into further perspectives through analysis provides a much greater chance of 

understanding and decoding the complicated physics into meaningful and useful high 

level interpretations. 

 The paths produced for the free links provide intricate phase plots that are clearly 

affected by high dimensional features in the fluid domain. The prescribed angle of attack 

for the leading link, theta, is compared graphically with the free link angular offset, alpha, 

and its angular velocity in the following phase plots of Figure 4.15 across four different 

frequency ratios for a leading link length of 0.25LC.  

 The amplitude of theta, the driven link angle of attack, is prescribed according to 

the kinematics. The amplitude of the relative free link displacement is observed to 

decrease as the stiffness of the torsion spring increases; or equivalently, as the frequency 

ratio is increased. This result is intuitively expected. The angular velocity plot displays 
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smooth, yet higher frequency content with amplitudes that are less affected by frequency 

ratio toward the compliant range.  In the phase plot associated with the free link provided 

in the last row of Figure 4.15, one notices that the higher lift production and higher lift-

to-power efficiency cases have smoother and soft transitions whereas the low-

performance cases of high stiffness and high compliance cases have sharp transitions in 

angular velocity near zero angular displacement. The comparisons imply that sharper 

transitions result in lower lift production and higher energy expenditure to achieve such a 

rapid directional change in a moderately viscous fluid. From a comparison of the phase 

plots in Figure 4.15 with the lift coefficient in 4.6 and the lift-to-drag coefficient in 4.9 

for the case of 0.25LC, one sees that in order of decreasing lift, the flapping frequencies 

can be  ranked as W = 3-4-6-2 and in order of decreasing lift-to-power ratios, the flapping 

frequencies can be ranked as W = 4-3-6-2. For both performance metrics, soft transitions 

in the    curves correspond to high lift and high lift-to-power efficiency.  

 Fast Fourier transforms (FFTs) of the angular offset position   time history and 

angular velocity   time history of the free link can provide further insights into the 

system dynamics.  The frequency analysis can be used to understand how higher order 

effects in the flow field become manifested in the structural response. The steady state 

variable data is processed for two periods and made dimensionless by multiplying 

frequency values by the period of flapping. The case corresponding to highest 

performance in terms of lift-to-power is chosen as the first full example for this analysis 

and the associated results are shown in Figure 4.16.  In this figure, single-period 

amplitude plots for   and   and their FFT plots are shown.  
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 W2A25     W3A25      W4A25                W6A25 

 

Figure 4.15: Steady state phase plots for  ,  ,  and   with different frequency 

ratios. For all plots, the domain is (-60°,60°)×(-60°,60°) and t/T = (10,12). 

 

The first interesting feature to notice is the prominence of the odd frequency 

content.  In particular, the first and third harmonics are especially significant in the   

FFT, and to a lesser extent, the fifth harmonic.  The presence of first, third, and fifth 

harmonics and, to a lesser extent, the seventh harmonic are evident in the   FFT. The 

peaks at the first, third, and fifth harmonics in the   and   responses are observed for 

all parameter cases considered.  Above the fifth harmonic, the spectral amplitudes die off 

rapidly to noise levels.  Beyond the seventh harmonic, no prominent peaks were found 

above the background or average noise levels. Therefore, the FFT plots presented are 

truncated for up to the tenth harmonic. A subset of the parameter combination cases 
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simulated has been presented in the current section, and the complete set of FFT plots for 

frequency cases of 2, 3, 4 and varied link lengths can be found in Appendix A. 

A cutoff value is selected for performance metrics in order to analyze the top few 

performance cases in terms of the spectral content and to look for similarities and draw 

correlations. Lift coefficients above 0.9 are achieved for cases W3A25, W3A50, W4A10, 

and W4A25, as shown in Figure 4.6. Lift-to-power ratios above 2/3 are obtained for 

W3A25, W4A10 and W4A25, as shown in Figure 4.14. The intersection of these two sets 

comprises the cases of primary interest; that is, W3A25, W4A10, and W4A25. The FFT 

plots of   and   histories for these three cases are presented in Figures 4.17 – 4.19. 

 
 

Figure 4.16: Steady state responses and associated FFTs of  (left) and  

  (right) for Case W4A25. Amplitudes have been normalized by  

maximum magnitude component value. 
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Figure 4.17: FFTs of   (left) and   (right) steady state histories  

for Case W3A25. Amplitudes have been normalized  

by maximum magnitude component value. 

 

 
Figure 4.18: FFTs of   (left) and   (right) steady state histories  

for Case W4A10. Amplitudes have been normalized  

by maximum magnitude component value. 

 

 
 

Figure 4.19: FFTs of   (left) and   (right) steady state histories  

for Case W4A25. Amplitudes have been normalized  

by maximum magnitude component value. 
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 All three cases corresponding to high performance show common spectral 

characteristics. Prominent peaks at the first and third harmonics are present in the   

response. All higher order spectral components have normalized magnitudes less than 

0.1, suggesting that this is a significant indicator of high performance for one or both of 

the metrics considered.  Similar characteristics are also observed in the   FFT plots. The 

spectral peak at the third harmonic is the strongest, with the first harmonic being the next 

strongest with a normalized amplitude around 0.3-0.4, followed by the fifth harmonic 

which has a normalized amplitude around 0.15-0.20. All higher order spectral 

components have normalized magnitudes below 0.1. In order to further validate these 

common magnitude proportions, two of the lowest performing cases W2A10 and W3A75 

are contrasted. The FFTs of the   and   responses for these two low performance  

cases are presented in Figures 4.20 and 21 below for comparison with the results 

displayed in Figures 4.17 to 4.19. 

 

 
 

Figure 4.20: FFTs of   (left) and   (right) steady state histories  

for Case W2A10. Amplitudes have been normalized  

by maximum magnitude component value. 

 

 



 

53 

 

 
 

Figure 4.21: FFTs of   (left) and   (right) steady state histories  

for Case W3A75. Amplitudes have been normalized  

by maximum magnitude component value. 

 

 

 Moderately different spectral  profiles are observed for the two typical low 

performance cases presented in Figures 4.20 and 4.21 when compared to the high 

performance cases presented in Figures 4.17, 4.18, and 4.19. One first notices the 

presence of odd harmonics, which is observed in all cases considered. Upon closer 

inspection, the   plots show a significantly lower magnitude at the third harmonic, 

whereas for the high performance cases the magnitudes at the first and third harmonics 

are very similar. The   FFT plots show relative spectral component ratios that are 

significantly different than those observed for the high performance cases, for which the 

first harmonic has a much high magnitude and the fifth harmonic magnitude is a lower 

fraction of the magnitude of the first harmonic. 

 While all of the FFT plots of the steady state structural response of   and   

have common spectral components present, the high performance cases have specific 

relative magnitudes of specific spectral content. It is important to note that the absolute 

magnitude of   and   responses do not appear to have an effect on the performance; 

only the relative magnitudes of the spectral components. Therefore, the case-normalized 
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FFT plots are presented in this section. For example, the angular displacement response 

for a forcing frequency ratio of 1/3 is greater than that for a forcing frequency ratio of 1/4 

since the system is being excited closer to a nonlinear resonance, but the cases with 

similar case-normalized FFT profiles have similar characteristics on the low- and the 

high-performing ends. These trends suggest that active control at the flexible joint that 

imposes the presence of beneficial spectral content may enhance system performance and 

is worthy of future investigation. 

 

4.3.3. Near-Body Flow Field 

 The structural performance metrics and angular response data have the advantage 

of being real-time measurable quantities. In addition, the near-body flow field possesses a 

significant amount of information that may only be distilled in the structural response 

data which obscures higher-dimensional details. Lift produced in flapping flight is 

primarily attributed to the downward fluid jet. The lift force per unit span produced 

during flapping can be explained by a balance of the rate of momentum transfer into the 

downward fluid jet; this is given by 

( ) ( ) (A )1 1 1fluid fluid jet fluid fluid jet fluidL
fluid jet

dp d m v d V v dF
v

L dt L dt L dt L dt


     

 
| |

| |L
fluid jet jet jet

F N
v v w

L m
      (4.1) 

Here, /LF L  is the lift force per unit span of the wing, fluidp  is the linear momentum of 

the fluid, fluidm  is the mass of the fluid in volume fluidV , fluid  is the density of the fluid 

and t is time. A fluid  represents the cross-sectional area of the region of the fluid jet 
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considered with width 
jetw  and average velocity jetv .  The strength of the lift produced is 

therefore predicted to correlate directly to the width 
jetw  and the square of the fluid jet 

velocity magnitude. Given that the above equation does not account for the effects of 

vorticity or the dissipation of viscosity, it is not clear whether the prediction from 

equation (4.1) will exactly match the measured strength and size of the fluid jet. 

 The near-body flow field is deconstructed into primary components via Singular 

Value Decomposition (SVD) for the vertical velocity, horizontal velocity, and the 

vorticity for period-averaged structures. It is notable that the average of the SVD of each 

snapshot is not equivalent to the SVD of the period-averaged snapshots; therefore, the 

SVD plots presented in this section are the average of the SVD of each of the 20 

snapshots obtained individually per period. The primary mode in each case exposes the 

significant features in flow field relative to the variable deconstructed. An example of the 

primary velocity deconstruction is presented for the case W3A75 in Figure 4.22. The 

vertical velocity primary mode prominently exhibits significant structures identified as 

the central vertical fluid jet and the end of stroke vortices. The primary mode of the 

horizontal velocity exhibits features identified as the trailing edge vortices and the vortex 

street known to surround the vertical fluid jet. 

 It is worth mentioning the different signs of the regions of concentrated vertical 

velocity shown in Figure 4.22. While the central vertical fluid jet is clearly downward, 

the symmetrical end of stroke vortices at the top periphery of the central jet suggest a 

detrimental transfer of energy into the fluid; the upward velocity imparted into the end of 

stroke vortices would cause a downward force which reduces the lifting effect of the 

strong central fluid jet. The horizontal velocity contours display strongly opposing 
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Figure 4.22: Steady state SVD Mode 1 for Case W3A75: 

Vertical velocity (left) and horizontal velocity (right) for (-3,3)(-5,2) domain. 

Amplitudes have been normalized by maximum magnitude component value. 

regions of horizontal velocity in the dissipating vortex streets. However, these strong 

regions appear diametrically and they are equal and opposite to each other, suggesting 

that the net effect is zero for symmetric flapping at Reynolds number 75, as the net 

period-averaged structural force computations confirm for each case within 0.5%.  

 The complete cycle-averaged vertical velocity contours for leading link length 

A10 and various frequency ratios are presented in the right column of Figure 4.23. It is 

noted that the first mode of the vertical velocity SVD across all cases was found to 

contain 80% ± 2% of the total information relative to the total vertical velocity field 

period average. Additionally, the first ten modes of the vertical velocity SVD across all 

cases were found to contain over 98% of the vertical velocity flow field information. The 

SVD primary mode for each case is presented in the left of the same figure; this allows 

for a clearer comparison of the relative magnitudes of the opposing vertical velocity 

structures. Considering the strength and size of the period-averaged central fluid jets, one 

x 

y 

x 
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may visually estimate that the performance ranking in order of increasing lift produced 

would be frequency ratio inverse W = 3-4-6-2, where 2 clearly has a much narrower and 

weaker fluid jet than the other three cases. Investigating the deconstructed first SVD 

mode, however, one begins to see the relative effects of the end of stroke vortices and the 

true significance or insignificance of their upward velocities. It is evident from the SVD 

Mode 1 plots that the upward velocity is far less significant than the period-averaged 

plots for W3 and W4, yet, far more significant for W2 and W6. From the SVD Mode 1 

plots, one would estimate the performance ranking in order of increasing lift as W = 4-3-

6-2. A re-examination of the CL plot shown in Figure 4.10 in Section 4.2.1 confirms this 

ordering and confirms the significant difference in performance evident in a visual 

comparison of the cases’ SVD Mode 1 and Modes 1-10 of the vertical velocity. 

 The steady state cycle-averaged vorticity magnitude contours are presented in 

Figure 4.20 for a fixed forcing frequency ratio and varied leading link lengths on a 

truncated fluid domain. For this analysis, the vorticity was taken as absolute values in 

order to quantify the circulation in the domain as a sum of the magnitudes of all vortices. 

This procedure is done because counter-rotating vortices yield a net zero circulation. 

Additionally, the plots are scaled such that the open, stationary domain is black (zero 

vorticity) and the peak vorticity value over all cases is used to normalize all values so that 

the contours may be represented in grayscale. The 428499 pixel images with grayscale 

magnitudes then represent the magnitude vorticity in the truncated, equi-spaced Cartesian 

domain. The average magnitude vorticity is then computed as the average of each pixel 

element and the total circulation on the domain is simply the sum of all element 

magnitudes for comparison purposes.  
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a)   

b)   

c)   

d)   

Figure 4.23: Steady state cycle-averaged vertical velocity contour (-1,1)  

SVD mode 1 (left), modes 1-10 (center), and period average (right) on  

(-3,3)(-5,2) domain for A10 and frequency ratios: a) 1/2, b) 1/3, c) 1/4, and d) 1/6.  

x 
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a)   b)  

c)   d)  

 

Figure 4.24: Steady state cycle-averaged vorticity magnitude contour (0,1) on  

(-3,3)(-5,2) domain for W4 and link lengths: a) A10, b) A25, c) A50, and d) A75. 

Amplitudes are normalized by maximum magnitude component value; 40 

Snapshots per period. 

 

For the cases presented pictorially in Figure 4.24, the same analysis was applied 

to all cases with the forcing frequency ratios 1/2 and 1/3. Supplementary figures for these 

frequency ratios are included in Appendix A for comparison. With total magnitude 

circulation, denoted “|circulation|,” as defined above, the values computed for each 

frequency and leading link length case are presented in Figures 4.25 and 4.26. The plots 

of total magnitude circulation exhibit curiously coherent trends for both frequency ratios 

x 
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and normalized leading link lengths. One observes common trends in circulation as a 

function of the normalized leading link length: wings with symmetrical links or slightly 

smaller normalized leading links tend to produce less circulation whereas wings with 

very small or very large free segments tend to produce more circulation. Additionally, the 

amount of magnitude circulation produced correlates in all cases to the frequency ratio. 

Higher frequency ratios (below 1) result in more circulation produced during each 

flapping cycle for otherwise fixed structural and fluid conditions. Flapping closer to the 

natural frequency results in larger angular displacements of the free link which confirms 

the intuitive expectation that more circulation is produced for larger amplitude angular 

displacements.  

A rough correlation is observed for the lift-to-power and lift-to-drag efficiency 

ratios and total magnitude circulation in the truncated domain for the high performance 

frequency ratios /f n  = 1/3 and 1/4 for various leading wing section lengths. A brief 

comparison of the performance is presented in Figure 4.27. 

 
 

Figure 4.25: Steady state cycle-averaged total magnitude circulation on  

(-3,3)(-5,2) domain for different  frequency ratios and leading link lengths.  
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It is pointed out that the peak configurations for the frequency ratio /f n  = 1/3 

correspond to a minimum in the circulation produced. Likewise, a similar trend is 

observed for the frequency ratio of /f n  = 1/4, that generally higher circulation 

production results in lower lift-to- power and drag efficiency measures. The trend begins 

to break down for the frequency ratio /f n  = 1/2, for which the system was found to 

exhibit  relatively poor performance and likely has significant additional factors altering 

the performance metrics with regard  to circulation. The trend is moderately strong for 

/f n  = 1/3 in the lift coefficient and the lift-to-power ratio such that a near-linear 

relationship is found, as shown in Figure 4.28. 

 It is emphasized that the moderately strong relationship depicted in Figure 4.28 is 

only found for the frequency ratio 1/3, which also happens to be the frequency ratio that 

generates the highest lift. Despite showing a general trend of better performance for 

lower circulation for a frequency ratio of 1/4 as well, a linear relationship could not be 

drawn. The R
2
 correlation factor for a linear relationship for the frequency ratio 1/4 for 

lift and lift-to-power ratios were 0.54 and 0.43, respectively; far too low to suggest that 

circulation production can be used to predict performance and only allowing recognition 

of a “general” trend. Across all frequency ratios, it is clear that circulation alone is not 

enough to predict performance among similar cases and that additional flow field data 

such as fluid jet strength must be considered. 
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Figure 4.27: Comparisons of steady state cycle-averaged magnitude  

circulation with lift-to- power and drag performance. 

 

 
 

Figure 4.28: Steady state cycle-averaged lift (left) and lift-to-power (right) for 

frequency ratio /f n  = 1/3 as a function of normalized circulation on the  

truncated domain (-3,3)(-5,2) with linear regression lines.  
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4.4. Phase Shift in Angle of Attack 

 It would be naïve to assume that the peak lift, lift-to-drag or lift-to-power 

efficiency points for harmonic kinematics occur for a zero phase shift in the angle of 

attack,  . Furthermore, for harmonic kinematics, the peak lift, lift-to-drag and lift-to-

power ratios may not occur at the same phase shift. Therefore, a case study series was 

chosen to evaluate the parameter combination of W3A25 for phase shifts in the angle of 

attack of -0.50, -0.25, 0, +0.25, +0.50, +0.75 and +1.00 radians. A pictorial description of 

the harmonic kinematics and phase shifts is displayed in Figure 4.29. A thought 

experiment suggests that advancing the phase for harmonic kinematics of a rigid flapping 

wing by a slight amount may reduce the drag and power expenditure by following the 

flow and deceleration of the trailing fluid during reversal and reducing the wing’s 

resistance to the fluid. Considering the kinematics plots in Figure 4.29, the phase 

advancing cases appear that they would bias any additional rotation effort into shedding 

vortices and moving fluid downward. Conversely, a phase lag would intuitively increase  

 
 

Figure 4.29: Harmonic kinematics with phase shifts.  

(top left to bottom right): -0.5, 0, +0.5, +1.0 radians.  

30 snapshots per period with constant time intervals. 
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the power expenditure to rotate and reverse the wing due to higher resistance to the 

wing’s trailing fluid flow and appears that it may reduce the downward component of 

flow in the fluid jet. The composite   phase plots are displayed in Figure 4.30 for 

phase shifts of -0.5 through +0.5 radians. 

 The angular displacement amplitude is relatively unchanged for the phase shifts 

considered. The phase lag acts to sharpen the transition in these two-dimensional 

projections near the reversal points in θ. Leading the phase acts to soften the transition 

substantially, which was also noted  in Section 4.2 for reducing  the power requirement to 

drive the kinematics. Relating performance metrics to measurable system responses such 

as angular displacement and trends in two-dimensional phase plot projections provides 

the significant advantage of distilling higher-dimensional effects of the fluid into simple 

real-time feedback. With this objective in mind, the lift coefficient obtained for each of 

the phase shifts considered is displayed in Figure 4.31 with notable performance 

implications introduced due to the phase shifts. 

 Confirming the general predictions developed with thought experiments and rigid 

wing kinematics plots, the lift coefficient data in Figure 4.31 demonstrates an 

enhancement in lift generation for leading the phase by up to approximately +0.5 radians. 

This phase shift results in approximately a 4% increase in lift production for steady 

flapping flight. A phase shift of +0.5 radians (28.6°) appears to be most advantageous for 

the flapping model and conditions presented. The lift improvement trend is curiously 

almost linear between -0.5 and +0.5 radians with a slope of 0.15 rad
-1

 within the range. 
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a)   b)   d)   e)  

c)  

 

Figure 4.30: Steady state response plots in the    plane for phase shifts  

a) -0.50, b) -0.25, c) 0, d) +0.25, and e) +0.5 radians. 

 

 
 

Figure 4.31: Steady state lift coefficient plot for  

phase shifts (-0.50, +1.00) radians. 

  

For implementation purposes, this can be interpreted as a benefit in both the context of 
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deviations from targeted values. If for a flapping insect or MAV under these conditions,  

one can only practically implement and control a kinematics phase shift to within ±0.25 

rad (14.3°) of the intended value of +0.25rad, a lift coefficient between 0.97 and 1.0 can 

still be reliably achieved. 

 Plots of the efficiencies of lift with respect to drag and power are presented in 

Figure 4.32 for the various phase shifts considered. Note that the lift-to-drag curve 

displays an efficiency peak for a zero phase shift, though it also increases again for higher 

phase shifts. Since the practical metric for implementation and design is consideration of 

power, attention is shifted to the lift-to-power ratio. Following the trend in the lift 

coefficient, the lift-to-power efficiency displays an increasing trend for phase shifts 

between -0.5 to +0.5 radians. Phase lags appear to require more power while producing 

less lift than the zero offset case whereas phase leads up to +0.5 radians appear to 

increase lift while slightly reducing power requirements during stroke reversal.  

 

 
 

Figure 4.32: Plots of steady state ratios for lift-to-drag (left) and lift-to-power 

(right). Phase Shifts (-0.50, +1.00) radians. 
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 Beyond a phase lead of +0.5 radians, the wing section begins to lead the fluid 

rather than moving with it with least resistance, and the steep angle of attack during peak 

translation speeds reduces the lift generated. The peak lift and peak lift-to-power 

efficiency point occur for a phase lift of approximately +0.5 radians, corresponding to a  

4% increase in lift production and a 6% increase in lift-to-power efficiency. It is notable 

that the case of W3A25 with a phase shift of +0.5 radians is the only case in all of the 

parameter combinations considered in the present work to achieve or exceed a lift 

coefficient of 1.0, and the phase shifts of +0.25 and +0.5 radians are the only cases to 

surpass a lift-to-power ratio of 0.7.  

 

4.5. Transition to Forward Flight 

 The various harmonic kinematics used in the present work to this point have been 

strictly for symmetrical, steady hovering. It is proposed that a mechanism for transition 

between symmetric hovering and forward flight is the breaking of symmetry in harmonic 

kinematics to produce an unbalanced lateral force while maintaining the majority of the 

dominant vertical lift force. The breaking of symmetry is implemented by an offset in the 

angle of attack while maintaining the same amplitude. A pictorial representation of the 

kinematics for various angle of attack offsets is presented in Figure 4.33 and the modified 

theta kinematics are presented in equation 4.2 where a subscript T represents the 

transition. 
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 The greater the offset, the greater the period-averaged net lateral force is expected 

to be and the lower the vertical lift is expected to be. For the case of +45° offset, the 

kinematics in Figure 4.33 shows that a purely horizontal force is expected with zero net 

lift for period-averaged forces. Angle of attack offsets of 0°, 5°, 10°, 20°, and 30° are 

selected to simulate and characterize the effects of asymmetrical flapping. As with 

previous hovering cases, the wing decays from rest to steady, symmetric hovering 

between the periods 0 and 5. For periods 8 and 10, the structural and fluid responses are 

compared with baseline control cases to validate steady hovering. Over periods 10 

through 12, there is a decay from steady hovering to the offset kinematics displayed in 

Figure 4.33. Over the periods 13 and 14, the fluid is allowed to reach a steady state and 

the data are presented from periods 15 and 16. Simulations are conducted in this manner  

 

 

Figure 4.33: Steady state rigid wing harmonic kinematics with 

angle of attack offset (top left to bottom right): 0°, +10°, +20°, and +45°. 

30 snapshots per period with constant time intervals. 
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for symmetric flexible wings with frequency ratios of 1/2, 1/3, and 1/4. It is critical to 

note that this “transitional flight” model is not intended to model full transition from 

steady hovering to steady forward flight. The zero location of the wing kinematics 

remains in the same position, equivalent to an entirely stationary body. In reality, once 

the flapping system begins moving through the fluid due to the lateral force, the accuracy 

of this model devolves. Therefore, the results presented in this section simply provide an 

approximation to the forces produced quickly after the kinematics transition. 

 The lift coefficient is given in Figure 4.34 for all of the cases simulated. The 

forcing frequency ratio case of 1/3 is again found to be the highest performance lift case 

for symmetrical wing geometry, and this case appears to be moderately sensitive to 

deviations from a zero offset. For the low-performance frequency ratios of 1/2 and 1/4, 

the system response displays minimal sensitivity to offsets between zero and up to nearly 

10°, suggesting that any lateral benefit at either of these frequency ratios within this range 

can be achieved without impacting the available lift production. However, for all cases, 

 
 

Figure 4.34: Steady state lift coefficient for different angle of attack offsets  

and inverse frequency ratios W2, W3, and W4. 
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large enough offsets in the angle of attack cause a consistent downward slope indicating 

the tradeoff between vertical and lateral thrust productions. 

 A more useful metric may be the total thrust produced, given that a simple 

reorientation of the flapping system’s base can redirect the thrust in any desired direction. 

For comparison with the lift production, the lateral thrust produced as a function of 

angular offset is presented in Figure 4.35 on the left along with the total thrust produced, 

presented on the right. The total thrust is simply defined as the square root of the sum of 

the squares of the vertical (CL) and horizontal (CTx) non-dimensional component forces. 

 The horizontal thrust produced by introducing an offset into the angle of attack 

kinematics varies approximately linearly for the first twenty degrees with a slope 

determined by the frequency ratio. While a frequency ratio of 1/3 produces the highest 

lift, it also produces the strongest lateral force per degree offset. The curves in the right 

plot of Figure 4.35 put the tradeoff between vertical and horizontal thrust into perspective 

by considering the total thrust produced per degree offset. It is observed that the highest 

performance case is also the most sensitive to the introduction of an offset, losing 4.4% 

of the total thrust capability at 10° in order to produce a 0.24 lateral force coefficient 

(CTx) while maintaining a 0.87 lift coefficient (CL), nearly, an 8% reduction in lift 

production. The insensitivity of lift and total thrust to angle of attack offset for frequency 

ratios 1/2 and 1/4 can be attributed to their poor performance at zero offset compared to 

the potential demonstrated by the system at the forcing frequency ratio 1/3.  

 The lift and horizontal thrust power efficiency metrics are plotted in Figure 4.36. 

The lift-to-power ratio falls from its peak value steeply, especially, for the forcing 

frequency ratio 1/3. For 1/2 and 1/4 ratios, the moderately flat, shallow slope is  
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Figure 4.35: Steady state horizontal thrust coefficient (left) and  

total thrust coefficient (right) for different angle of attack offsets  

and inverse frequency ratios W2, W3, and W4.  

 

 
 

Figure 4.36: Steady state lift-to-power coefficient (left) and  

horizontal-thrust-to-power coefficient (right) for different angle  

of attack offsets and inverse frequency ratios W2, W3, and W4.   

 

maintained for the first ten degrees as observed in the CL plot, falling steeply for higher 

offsets. The CTx-power-ratio plot displays similar efficiencies and slopes for frequency 

ratios 1/3 and 1/4, meaning that the higher horizontal thrust production for a frequency 

ratio of 1/3 requires a correspondingly higher power requirement such that the power 
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efficiency ratios are nearly identical up to a 20° offset. The vertical lift-to-power 

efficiency, however, reaffirms the preference of the frequency ratio of 1/3 for peak 

performance. 

 The total thrust-to-power ratio as a function of angle of attack offset is presented 

in Figure 4.37. The optimal efficiency is achieved for a zero offset for frequency ratios 

1/3 and 1/4 whereas the optimal efficiency for frequency ratio 1/2 occurs for an offset of 

5°. For the frequency ratio 1/3, the system significantly outperforms the other cases 

considered, and the total efficiency drop is only 3% over the first 10° offset from zero. 

The lift-to-power coefficient drops off fairly quickly, but the horizontal-thrust-to-power 

coefficient also increases quickly enough to maintain the total thrust-to-power coefficient 

near its maximum for offsets up to 10°. It is noted that the thrust-to-power efficiency is a 

description of power required to produce a particular thrust under particular conditions 

and parameter combinations.  

 A period-averaged nonzero pitching moment is also produced by the 

asymmetrical kinematics, presented in Figure 4.38. The free section displacement 

complicates the relationship between the moment produced and the angle of attack offset, 

however a general trend of increasing magnitude pitching moment is observed for 

increasing offsets in the angle of attack. Higher effective stiffness results in stronger 

magnitude moments produced, indicating that more control and counter-balance 

consideration is necessary for lower frequency ratios. In biological and MAV systems, 

this counter-balance may be achieved by shifting the body’s center of gravity through 

movement of body structures such as a controllable tail or hind section. Proper 

displacement of the center of gravity may be used to create an equal and opposite 
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moment in order to maintain the desired orientation of the entire system. It is finally 

noted that the asymmetric kinematics for this parametric study induces a moment in all 

cases that acts to pitch “upward” in the direction that the body will be compelled due to 

the lateral forces produced. 

 
 

Figure 4.37: Steady state thrust-to-power coefficient  

for different angle of attack offsets and  

inverse frequency ratios W2, W3, and W4.   

 

 
 

Figure 4.38: Steady state moment coefficient  

for different angle of attack offsets and  

inverse frequency ratios W2, W3, and W4.   

0.00 

0.10 

0.20 

0.30 

0.40 

0.50 

0.60 

0.70 

0 5 10 15 20 25 30 35 

A
ve

ra
ge

 C
T/

C
P

 

Theta Offset (deg) 

2 

3 

4 

-0.14 

-0.12 

-0.1 

-0.08 

-0.06 

-0.04 

-0.02 

0 

0 5 10 15 20 25 30 35 

A
ve

ra
ge

 C
M

 

Theta Offset (deg) 

2 

3 

4 



 

74 

 

 It is worth noting that the offset as a mechanism to produce lateral thrust is simply 

a curious option for implementation with minimal system complication. For the cases 

considered, introducing an offset into the angle of attack generally reduces both the lift 

and the total thrust produced, as seen in Figure 4.34 and 4.35, especially for the high-

performance 1/3 frequency ratio case and with the exception of a peak in total thrust at 5° 

for the forcing frequency ratio of 1/2. Another option for implementation would be to 

simply rotate the body during hovering such that the x-axis is rotated by an angular offset, 

turning the former “lift” force into corresponding vertical and horizontal components. 

The same deconstruction for that scenario can be performed as for the mechanism 

proposed in this section, with the same limited duration of validity due to the assumption 

of a stationary body; the forces computed with this simulation would only be 

approximately valid for a short time, during the beginning of transition between steady 

hovering and forward flight. The total thrust produced and the thrust-to-power ratios for 

evaluating this alternate mechanism can be interpreted simply as the lift coefficient plots 

and lift-to-power coefficient plots discussed in Section 4.2.  

 Practically, in terms of performance, the mechanism proposed in this section is 

less desirable than simply rotating the body, and therefore, the x-axis of the flapping 

kinematics because it results in production of lower forces and lower power efficiency. 

However, the actual implementation and control may be easier for MAVs given that the 

angle of attack is already controllable in the given kinematics whereas axis rotation 

requires additional actuation and control of the body. For MAVs, the omission of this 

extra actuation and control requirement allows for lighter systems, lower lift production 

requirements, and longer flight durations for a fixed power source. For insects and birds, 
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however, the many degrees of freedom already present in the body allow for control of 

the flapping axis by rotation of the abdomen or tail outward-from or under the body’s 

center of mass. This mechanism of hovering stabilization or transition to forward or 

backward directional control is commonly seen in dragonflies, bees, and hummingbirds. 
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5. Summary and Concluding Remarks 

A simulation-based parametric investigation of flapping flight has been presented 

to explore and characterize the effects of various physical parameters and kinematics for 

flexible wing sections during steady hovering and the beginning of transition to forward 

flight. The parametric studies have been organized around the following categories: i) 

structural dissipation at linear system resonance during steady hovering, ii) geometrical 

asymmetry in flexible wings during steady hovering, iii) phase shift in the angle of attack 

for harmonic kinematics during steady hovering, and iv) the initial transition from steady 

hovering to forward flight by the smooth introduction of a constant offset in the angle of 

attack for symmetrical, flexible wings. 

Performance metrics used to compare the results obtained from the different case 

studies and evaluate the effects of parameters of interest consist of dimensionless steady-

state cycle-averaged lift, drag, power, and their ratios. With structural dissipation for 

flapping at linear system resonance, the system performance was found to at best only 

approach the lift and lift-to-power performance of a rigid wing. Furthermore, with 

damping during resonance forcing, positive lift forces were only produced for cases of 

relatively high damping factors, above approximately 1.1; that is, overdamped cases. 

Therefore, for flapping flight under conditions similar to those simulated in the present 

work, accurately modeled in two dimensions, it is highly unlikely for biological systems 

to employ flapping at linear system resonance due to the relatively poor lift and lift-to-

power efficiency performance and the relatively large structural damping factors 

required. It is found to be more advantageous in terms of stated performance metrics to 

flap a purely rigid wing or to flap well below resonance. The few representative cases of 
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flapping with damping below resonance resulted in a reduction in lift, power, and the lift-

to-power ratio with increasing damping; the best performance for the cases below 

resonance considered proved to be zero damping. The present work reaffirmed the 

findings of earlier work (Fitzgerald et al., 2011; Fitzgerald et al., 2012) that the peak lift 

and the peak lift-to-power ratio is achieved for a forcing frequency ratio of 1/3 for 

symmetrical wings and simple harmonic kinematics. However, it was discovered that the 

highest lift coefficient is achieved for a frequency ratio of 1/3 and an asymmetrical wing 

with a normalized leading link length of 0.25LC (case W3A25). Furthermore, the highest 

lift-to-power ratio is achieved for a frequency ratio of 1/4 and a normalized leading link 

length of 0.25LC (case W4A25). For highly compliant ( /f n    1/2) and highly stiff (

/f n    1/6) wing sections of the considered geometries, the system performed poorly 

compared to the mid-stiffness frequency ratios for which the system performance 

exhibited peak lift and peak lift-to-power ratios.  For mid-stiffness frequency ratios (

/f n  1/3 and 1/4), moderately shorter leading sections and longer relative free 

sections of the flexible wing section generally produced more favorable lift values and 

power efficiency, especially in the overall high performance cases. 

Phase plot projections of the responses for the asymmetrical, flexible cases show 

a general correlation between the softness of transitions in the two-dimensional 

projections of the plotted variables and general improvement of performance. The 

frequency characterization is explored further with the use of Fast Fourier Transforms of 

the   and   steady state responses.  Significant spectral content is found for odd 

harmonics while even harmonics are not noticeable above the background noise levels. 
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The significant spectral content dies off above background levels above a dimensionless 

frequency of approximately 5. Furthermore, a specific profile of relative magnitude 

content in the FFT plots curiously appears for the high-performance parameter cases 

(W3A25, W4A10 and W4A25), which is significantly different than the FFT content of 

other low-performance cases. It is proposed that a control system employing excitation 

and damping of the free link in a flexible wing may be used to enhance performance of 

the low-performance cases by matching the common FFT content of the high-

performance cases. Flow structures in the near-body flow field are identified as the 

leading and trailing edge vortices, the end of stroke vortex, the vertical vortex street, and 

the central vertical fluid jet. The central vertical fluid jet is identified as the most 

significant flow structure to determine lift production; however, it was found to require 

consideration of the energy expenditure into fluid circulation in order to predict relative 

performance. Circulation and vortices, while significant and beneficial in fixed-wing 

airfoil flow, prove detrimental to performance in some cases of hovering flapping flight 

due to the inefficient transfer of energy into the fluid as less-useful rotational energy 

rather than the translational energy that creates lift through linear momentum transfer. 

Therefore, minimizing excess vorticity production and maximizing vertical fluid jet 

strength appears to produce the maximum lift and the highest lift-to-power ratio. 

A phase shift in the angle of attack for simple harmonic kinematics was found to 

be relatively insensitive for the case study presented, but yet also found to have a 

significant effect on performance for large phase shifts. Lift is reduced and power 

required is increased for phase lagging shifts, while lift production is increased and power 

required is decreased for phase leading shifts. The optimal phase lead within the coarse 
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resolution presented was found to be around 0.5 radians, corresponding to approximately 

a 4% increase in lift production and a 6% increase in the lift-to-power ratio when 

compared to the baseline zero phase shift case (W3A25). The improvements in 

performance are indicative of the effects of “wake capture,” whereby upon stroke 

reversal the wing utilizes previously expended energy in the trailing fluid to enhance lift 

and reduce the power required to perform the kinematics reversal. Wake capture is 

evidently increased between the  phase shifts of -0.5 radians and +0.5 radians, yielding a 

nearly linear improvement in performance metrics throughout this range, after which the 

performance decreases due to premature advancement of the angle of attack during lateral 

translation. 

A mechanism for transition between hovering and forward flight for symmetrical 

flexible wings is presented as the change from symmetric harmonic kinematics for steady 

hovering to asymmetric harmonic kinematics by introducing a steady offset in the angle 

of attack. The asymmetric kinematics produces an unbalanced lateral force while 

maintaining the majority of the dominant vertical lift force. The lateral force is evaluated 

in terms of the tradeoff between the vertical lift and the total magnitude of thrust 

produced by the wing as well as the forces relative to power expenditure for various 

asymmetrical offsets. For the best performance frequency ratio case, /f n  1/3, the 

system is found to produce the highest total thrust coefficient and highest total-thrust-to-

power coefficient ratio for zero angle of attack offset, while being moderately sensitive to 

offsets from zero. In all cases, the lift production is successfully traded for lateral thrust 

production by increasing the offset in the angle of attack at the expense of a loss in total 

thrust production and thrust-to-power efficiency except for small offsets between 0 and 
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5° for /f n  1/2 and 1/4, for which there is a slight efficiency gain for those particular 

cases. The best performance frequency ratio case, /f n  1/3, is found to be the most 

sensitive to the introduction of an offset, losing 4.4% of the total thrust capability at a 10° 

angle of attack offset in order to produce a 0.24 lateral force coefficient (CTx) while 

maintaining a 0.87 lift coefficient (CL); nearly, an 8% reduction in lift to produce a 

horizontal thrust just over one quarter the magnitude of the lift. A pitching moment is 

also produced for the asymmetrical kinematics that generally increases with the angle of 

attack offset and acts to pitch “upward” in the direction that the system is compelled by 

the horizontal thrust produced. 

The general results of this study allow for prediction of approximate wing 

properties and parameters as well as kinematics for flapping insects that operate near 

Reynolds number 75 with approximately two-dimensional flows. For example, the 

parametric investigations in the present work suggest that it is highly unlikely for an 

insect operating near these simulated conditions to flap at linear system resonance due to 

the low performance. Considering the preference of evolutionary development towards 

low energy expenditure and high thrust capability for swift movement, it is predicted that 

insects under conditions similar to those simulated prefer to flap at 1/4 to 1/3 of their 

wing’s natural frequency with wing geometry configured with a shorter, driven leading 

edge (~0.25LC) with a longer trailing section free to deform flexibly with inertial and 

fluid forces. For MAVs on such a small Reynolds scale, the design recommendations are 

similar: design wings with larger free sections and shorter driven sections (~0.1-0.25LC) 

at the leading edge; size the wingspan, body mass, and payload mass, select the structural 

stiffness, and implement control to flap between 1/4 and 1/3 of the wing’s natural 
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frequency with a 0.5 radian phase lead in the angle of attack. These conditions suggest 

high relative lift production and an efficient lift-to-power ratio for harmonic kinematics, 

translating to maximum acceleration and payload capability as well as flight duration for 

a fixed on-board energy supply. 

 

5.1. Ongoing Work and Suggestions for Future Work  

Ongoing work includes generation of intensity maps of vertical velocity similar to 

those presented for vorticity in Section 4.2.3. The goal is to quantify the strength of the 

fluid jet in the truncated domain and relate the mean magnitude vorticity and mean 

vertical velocity flow with the lift generated. It is proposed that lower circulation 

corresponds to higher power efficiency for similar fluid jet strengths. The findings in 

Section 4.2.3 suggest that circulation has a negative effect on the efficiency of converting 

energy transferred into the fluid into useful lift production. However, the lack of 

applicability of the finding across all forcing frequency ratios, particularly the low-

performance cases, and the lack of clear relationships between vorticity production and 

lift production suggests that more variables must be considered. Additional 

characterization of the effects of structural dissipation for forcing below linear system 

resonance is desired, motivating a series of case studies for various damping factors. 

Frequency content and flow structures are to be correlated in a similar way as the 

structurally un-damped cases in the present work, and the effects of structural dissipation 

on the performance of flexible wings will be emphasized. 

A few suggestions for future work can be broken down into major categories. 

First, a simple continuation of the present work in the context of further investigation of 



 

82 

 

configurations and parameter combinations that extrapolation suggests may yield high-

performing results. Additionally, a series of numerical experiments may be performed to 

cover parameter combinations not yet fully mapped. For example, the present work 

investigated phase shifts only for W3A25 combination, but not other high-performing 

cases at zero phase shift such as W3A50, W4A10 and W4A25. It is possible that one or 

more of those three additional cases may yield even higher peak performance with 

respect to lift generation or lift-to-power efficiency. Implementing active control of the 

wing stiffness is recommended such that the FFT dimensionless frequency content may 

be dampened or excited in order to obtain the specific FFT profile found to be common 

among the high-performing cases. Additionally, stiffness control may be used to 

investigate perturbations in the current “optimal” FFT profile in order to attempt to 

further improve performance. Given that the common high-performing dimensionless 

frequency content (FFT profile) was found in combinations spanning two frequency 

ratios and three link lengths (W3A25, W3A50, W4A10, W4A25), manipulation of the 

dimensionless frequency content may allow for equally high performance under many 

various conditions of flapping frequency ratio and wing geometry.  

Second, parameters may be investigated that are currently able to be modified in 

the existing computational model but have been fixed for the present work. Examples of 

these are the Reynolds number, the fluid-to-solid density ratio, kinematics amplitudes and 

other variable phase shifts or offsets, link profile thickness, and further investigation of 

the effects of structural dissipation. For the cases considered in the present work, a fixed 

body flaps two-dimensional wings in an initially-stationary fluid domain. The fluid 

domain may be given a prescribed inflow to simulate steady forward flight with specific 
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assumptions regarding the body mass being moved through the fluid, approximated as 

perfectly steady inflow. Additionally, the model may be modified to accommodate 

further physical capabilities. For example, the root of the wing kinematics may be 

attached to an inertial base with a specified weight with either one degree of freedom 

(vertical motion), two linear degrees of freedom, or two linear directions and pitching 

angle movement for full two-dimensional inertial coupling. While the present model 

includes a single degree of freedom, the wing profile may be modified for multiple 

flexible joints or continuous flexibility. The wing geometry may also be modified to 

include more aerodynamic shapes than a monolithic, symmetric wing; such as an NACA 

symmetric or cambered airfoil, or one that is bio-inspired. For biological systems, 

amplitude and frequency are typically the primary controllable variables. While natural 

frequency has been given significant consideration here at Reynolds 75, a study of 

amplitude effects in two spatial directions and orientation may provide significant insight 

into the structure and evolution of flapping systems found in nature. It is further 

acknowledged that the camber produced during flexible flapping is frequently positive in 

biological systems whereas the single-degree-of-freedom flexible system developed for 

the present work resulted in negative camber. Multiple flexible joints, continuous 

flexibility, either homogeneous or structured, may result in positive-camber wing 

deformation and allow for alternate performance-trend conclusions. 

Third, a survey of flapping frequency ratio and wing geometry for insects flying 

under similar conditions is recommended in order to test the predictions and conclusions 

made by the present work. Namely, the results here predict a preferred flapping 

frequency ratio of approximately 1/4 to 1/3 and a preferred shorter, driven leading edge 
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(~0.25LC) with a longer trailing section free to deform flexibly with inertial and fluid 

forces. This general configuration was found to produce maximum lift and maintain 

maximum lift-to-power efficiency in the present work. 

 The first note of difficulty encountered in these numerical experiments involving 

snapshots and flow fields is the enormous amount of data generated and computational 

resources required. Simulations presented in the present work produce approximately 

10Gb of raw data to simply capture the steady state flow fields, and can reach around 

12Gb per case with all post-processing files. Minimally useful data sets are on the order 

of 5Gb per case. Each of the cases at Re 75 requires approximately 2,000-2,500 CPU-

hrs/GHz to solve depending on the number of periods simulated, the complexity of the 

structural system or the fluid domain response. The second note of difficulty is the 

rapidly growing number of simulations required to fully map the parameter space 

considering each variable of interest as a new “dimension” to map all combinations. 

Table 6.1 shows how quickly the scope of an investigation can get out of hand: the third 

column, a study only considering three frequency cases, four damping factors and three 

leading link lengths at two Reynolds numbers requires a total of 72 cases to be simulated, 

would generate 360Gb of data (at a coarse snapshot rate producing 5Gb per simulation) 

and would take approximately 100,000 CPU-hrs to solve and post-process. 

 The practical implementation of a large-scale study utilizing DNS and the 

evaluation methods of the present work requires full automation of the setup, starting, 

post-processing and summary of the full simulation process and the use of a computing 

cluster with a large number of available nodes to run cases in parallel. The present work 

was conducted on a 6-core system in batches of 4-6 simulations simultaneously with 36 
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Table 5.1: Variables of Interest and Scope Implications 

Variables # Cases # Cases # Cases 

Frequency Ratio 5 5 5 5 3 3 

Damping Factor 5 25 4 20 4 12 

Leading Link 

Length 
4 100 4 80 3 36 

x Amplitude 5 500 1 80 1 36 

θ Phase Shift 5 2500 1 80 1 36 

θ Amplitude 5 12500 1 80 1 36 

Reynolds 

Number 
3 37500 3 240 2 72 

 Total # Cases Total # Cases Total # Cases 

 37,500 240 72 

 187,500 Gb data 1,200 Gb data 360 Gb data 

 

simulations completed properly and successfully in total, generating over 400Gb of raw 

and post-processed summary data. 

Laboratory experiments are recommended as a validation of both the physical 

results obtained in the present work and the evaluation of the range of validity of the two-

dimensional flow assumption or approximation. Considering that turbulence is inherently 

a three-dimensional phenomenon and many biological flapping systems employ angular 

kinematics described primarily by pitch, plunge and sweep (or pitch, roll and yaw); fully 

three-dimensional simulations are a highly desirable extension of the present work. 

However, given the computational requirements for two-dimensional simulations noted 

above, there exists a scaling challenge in that a third dimension with the same resolution 

of the original lateral dimension would require the expansion of the 1229x551-node grid 

(677,179 total) into a 1229x551x551-node grid (373,125,629 total). The most costly 

operation in DNS of an incompressible fluid obeying the Navier-Stokes equation is the 

un-parallelizable inversion of the pressure-correction matrix. Furthermore, the simulation 
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of higher Reynolds number flapping flight allows for larger time steps but requires finer 

spatial resolution, exacerbating the difficulty of the matrix inversion and suggesting that 

three-dimensional DNS of flapping flight is outside the realm of current computing 

capability for full DNS. Still, two-dimensional simulations may be used to generate 

knowledge of precise effects of parameter choices and combinations as well as a 

thorough representation of the near-body flow field and fluid physics within the domain. 

The conclusions made through two-dimensional simulation may well approximate some 

three-dimensional configurations that can be validated with laboratory experiment. Two-

dimensional simulation and three-dimensional experiment may be used in collaboration 

to produce meaningful design criteria and guidelines as well as to provide means for 

understanding flapping flight in biology that exists in many forms and on many scales in 

the natural world. 
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A. Appendix: Supplementary Figures 

This appendix complements the results presented in Chapter 4.  

 

 
 

Figure A.1: Case W3A25 vorticity contour (-3, 3) time lapse for  

frame interval T/8 on truncated domain (-3,3)(-5,2) for one period. 

Arrow indicates direction of time evolution 

 

 
 

Figure A.2: Case W4A25 vorticity contour (-3, 3) time lapse for  

frame interval T/8 on truncated domain (-3,3)(-5,2) for one period. 
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Figure A.3: Case W3A25 pressure contour (-1, 1) time lapse for  

frame interval T/8 on truncated domain (-3,3)(-5,2) for one period. 

 

 

 
 

Figure A.4: Case W4A25 pressure contour (-1, 1) time lapse for  

frame interval T/8 on truncated domain (-3,3)(-5,2) for one period. 
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Figure A.5: Case W3A25 magnitude velocity contour (0, 1) time lapse for  

frame interval T/8 on truncated domain (-3,3)(-5,2) for one period. 

 

 

 

 
 

Figure A.6: Case W4A25 magnitude velocity contour (0, 1) time lapse for  

frame interval T/8 on truncated domain (-3,3)(-5,2) for one period. 
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Figure A.7: Steady state histories and FFTs for   (left) and   (right) for 

Case W2A10. Amplitudes normalized by maximum magnitude component. 

 

 

 
 

Figure A.8: Steady state histories and FFTs for   (left) and   (right) for 

Case W2A25. Amplitudes normalized by maximum magnitude component. 
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Figure A.9: Steady state histories and FFTs for   (left) and   (right) for 

Case W2A50. Amplitudes normalized by maximum magnitude component. 

 

 
Figure A.10: Steady state histories and FFTs for   (left) and   (right) for 

Case W2A75. Amplitudes normalized by maximum magnitude component. 
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Figure A.11: Steady state histories and FFTs for   (left) and   (right) for 

Case W3A10. Amplitudes normalized by maximum magnitude component. 

 

 

 
Figure A.12: Steady state histories and FFTs for   (left) and   (right) for 

Case W3A25. Amplitudes normalized by maximum magnitude component. 
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Figure A.13: Steady state histories and FFTs for   (left) and   (right) for 

Case W3A50. Amplitudes normalized by maximum magnitude component. 

 

 

 
Figure A.14: Steady state histories and FFTs for   (left) and   (right) for 

Case W3A75. Amplitudes normalized by maximum magnitude component. 
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Figure A.15: Steady state histories and FFTs for   (left) and   (right) for 

Case W4A10. Amplitudes normalized by maximum magnitude component. 

 

 
Figure A.16: Steady state histories and FFTs for   (left) and   (right) for 

Case W4A25. Amplitudes normalized by maximum magnitude component. 
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Figure A.17: Steady state histories and FFTs for   (left) and   (right) for 

Case W4A50. Amplitudes normalized by maximum magnitude component. 

 

 
Figure A.18: Steady state histories and FFTs for   (left) and   (right) for 

Case W4A75. Amplitudes normalized by maximum magnitude component. 
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Figure A.19: Steady state cycle-averaged vorticity magnitude contour (0,1) on 

(-3,3)(-5,2) grid for W2 and Link Length (top right to bottom left) A10, A25, A50, 

and A75. Amplitudes normalized by maximum magnitude component;  

20 snapshots per period. 
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Figure A.20: Steady state cycle-averaged vorticity magnitude contour (0,1) on 

(-3,3)(-5,2) for W3 and Link Length (top right to bottom left) A10, A25, A50, and 

A75. Amplitudes normalized by maximum magnitude component;  

40 snapshots per period. 
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Figure A.21: W4A10 Case: Steady state cycle-averaged vorticity (left)  

and SVD Modes 1-10 (right) Contours (-1,1) on (-3,3)(-5,2) grid. 

Amplitudes normalized by maximum magnitude component;  

40 snapshots per period. 

The SVD Modes 1-10 of the near-body vorticity field presented in Figure A.21 

illustrate why the vorticity field is considered only in period-average. Modes of the 

horizontal and vertical velocity are found to be insightful and useful, whereas the SVD 

Modes of vorticity, the curl of the velocity field, produce few coherent structures.  
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B. Appendix: Developed and Modified Codes 

This appendix contains codes developed and codes modified during the course of this 

thesis work.   These codes are as follows:  

 

i) Spcoordroutines.f90 (only subroutines added) 

 The first subroutine was developed in order to drive the kinematics for a flexible 

wing with structural damping with unequal moments of inertia. The second subroutine 

was developed to translate the symmetrical wing harmonic kinematics, which used the 

pivot point as the prescribed position, to drive an asymmetrical wing from the same 

leading edge. This resulted in all cases considered with different wing section geometries 

following the same leading edge position and slope, originally defined for the prescribed 

kinematics of the symmetrical wing section. 

 

ii) master_results.m (355 lines) 

 All parameters and variables of interest are computed in master_results.m from 

the raw data. Truncated variables that only contain steady-state information are built here 

and period averages, non-dimensonalized performance metrics, and plots are developed 

in this program. 

 

iii) plot_data.m (278 lines) 

 All flow fields presented in figures in this work were produced using contour 

plots on the truncated domain developed in this program. Options exist for modifying the 
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truncated domain and plotting pressure, vorticity, velocity vector fields, and vertical, 

horizontal, and magnitude velocity from the raw flow field snapshots. 

 

iv) FFT_alpha.m (200 lines) 

 The Fast Fourier Transforms were computed in FFT_alpha.m, which reads raw 

displacement and velocity data for the free link during steady-state periods and plots the 

variables and the first ten modes of their FFT for a specified case. 

 

v) h5hyperslab.m (120 lines) 

 The full domain flow field snapshot data is saved in HDF5 format. h5hyperslab.m 

extracts the truncated domain of the “near-body” flow field and computes SVD modes, 

produces flow field and mode plots for single snapshots. 

 

vi) svd_period.m (156 lines) 

 The full domain flow field snapshot data for one period is extracted on the 

truncated domain. The program then computes SVD modes for period averages, produces 

total and single-mode plots for period-averaged flow field data. 

 

vii) vortcalc2.m (45 lines) 

 A grayscale image representing a vorticity contour on an equi-spaced grid on the 

truncated domain is read in and the mean magnitude vorticity and total circulation is 

computed and reported for a single case.  
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Subroutines Added to spcoordroutines.f90 

! ******************************************************************* 

! --------------------------------------------------------------- 

! Subroutine hovprofrestthetadampedfwd: 

! Specified Hover for the generalized coordinate theta with 

!  Transition to Forward Flight  

! RESTRAINTS(i).restdof(j) = 13 

! Time constant tau = 0.8*T (for hovering) 

! Gives Oscillatory Steady State values for t/T > 5.5 

! Time constant taufwd = 0.4*T (for transition to forward flight) 

! Gives Oscillatory Steady State values for (t-tfwd)/T > 3.0 

! Time of transition to Forward Flight is at t/T = 10 

! --------------------------------------------------------------- 

      subroutine hovprofrestthetadampedfwd(nmaxparamres,nparam,param, & 

                                        time,spcoord) 

     

      implicit none 

      integer nmaxparamres,nparam 

      real*8 param(nmaxparamres),time,spcoord(3) 

       

 

      ! Local variables: 

      real*8, parameter :: pi = 3.141592653589793 

      real*8, parameter :: chord = 1. 

      real*8 hovflag,Sta,Stc,Aoc,beta,tita0,amptita,phip 

      real*8 frecp,ampo,tau,expttau 

   real*8 taufwd,expttaufwd,timefwd,Tfwd,thetaoffset 

      real*8 titad,titadd,tita 

 

      hovflag = param(1); 

      Sta     = param(2); 

      Stc     = param(3); 

      Aoc     = param(4); 

      beta    = param(5); 

      tita0   = param(6); 

      amptita = param(7); 

      phip    = param(8); 

   thetaoffset = param(9); ! Added parameter 

   Tfwd = param(10); ! Added parameter 

 

 

      if (hovflag .EQ. 1) then 

!c     In all cases umax is taken as 1 

!c     In all cases the chord is taken as 1 

         ampo  = Aoc*chord 

 

         if (ampo .NE. 0) then 

            frecp = 1.0/(ampo*pi) 

         else 

            frecp = 0 

         endif 

 

      elseif (hovflag .EQ. 2) then 

!c        In all cases uo is taken as 1 
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!c        In all cases the chord is taken as 1             

         frecp = Stc*1.0/chord 

                

         if (frecp .NE. 0) then 

            ampo  = Sta*1.0/frecp 

         else 

            ampo  = 0. 

         endif      

      endif 

       

      tau = 0.8 * 1.0/frecp; 

      expttau = exp(-time/tau) 

   timefwd = Tfwd*1.0/frecp; 

      taufwd = 0.4 * 1.0/frecp; 

   !expttaufwd is 1 until time = timefwd, then decays to zero 

   if (time .GE. timefwd) then 

     expttaufwd = exp(-(time-timefwd)/taufwd); 

   else 

  expttaufwd = 1.; 

      endif 

 

   !Original Damped Hovering Kinematics are commented out 

   !New kinematics implement transition to hovering after time = 

tfwd  

      !tita  = tita0 + (1.-expttau)*amptita*sin(2.*pi*frecp*time + 

phip) 

      tita = tita0 + (1.-expttau)*(thetaoffset*(1-expttaufwd) + & 

     amptita*sin(2.*pi*frecp*time + phip)) 

 

      !titad = (1./tau)*expttau*amptita*sin(2.*pi*frecp*time + phip) +  

&  

      !     2.*(1.-expttau)*amptita*cos(2.*pi*frecp*time + 

phip)*pi*frecp 

      titad = (1.-expttau)*(thetaoffset*expttaufwd/taufwd + & 

        2.*amptita*pi*frecp*cos(2.*pi*frecp*time+phip)) - &  

     expttau*(thetaoffset*(expttaufwd-1.) - &  

     amptita*sin(2.*pi*frecp*time+phip))/tau 

  

      !titadd= -tau**(-2)*expttau*amptita*sin(2.*pi*frecp*time + phip) 

+ &  

      ! 4./tau*expttau*amptita*cos(2.*pi*frecp*time + phip)*pi*frecp - 

&  

      ! 4.*(1.-expttau)*amptita*sin(2.*pi*frecp*time + phip) * &  

      ! pi**2 * frecp**2 

      titadd = (expttau - 1.)*(thetaoffset*expttaufwd*taufwd**(-2) + & 

     4.*amptita*pi**2*frecp**2*sin(2.*pi*frecp*time + phip)) + & 

  (expttau*(thetaoffset*(expttaufwd - 1.) - & 

  amptita*sin(2.*pi*frecp*time + phip)))*tau**(-2) + & 

  2.*expttau*(thetaoffset*expttaufwd/taufwd + & 

  2.*amptita*pi*frecp*cos(2.*pi*frecp*time + phip))/tau 

 

      ! Theta generalized coordinate, velocity and accel: 

      spcoord(1) = beta + tita; 

      spcoord(2) = titad; 

      spcoord(3) = titadd; 
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      return 

 

      End subroutine 

! ******************************************************************    

       

    

! --------------------------------------------------------------- 

! Subroutine TransformKinematics_DriveFromTip: 

! To change kinematics to be driven from the tip, rather than the pin 

! RESTRAINTS(i).restdof(j) = 23 

! --------------------------------------------------------------- 

      subroutine TransformKinematics_DrivingPt(spcoord_x, &  

                                                spcoord_y, &  

                                                spcoord_tita,length) 

     

      implicit none 

      real*8, INTENT(INOUT) :: spcoord_x(3) 

      real*8, INTENT(INOUT) :: spcoord_y(3) 

      real*8, INTENT(IN)    :: spcoord_tita(3) 

      real*8, INTENT(IN)    :: length 

       

      real*8 x(3),y(3),tita(3) 

      real*8 sinT,cosT,thetad; 

       

      ! where 'length' is the distance along from the pin joint along 

      ! the link to where the kinematics are being applied 

      ! therefore 'length = length_plate' means that the kinematics are 

      ! driving the tip 

             

      x      = spcoord_x; 

      y      = spcoord_y; 

      tita   = spcoord_tita; 

      thetad = tita(2); 

            

      cosT = cos(tita(1)); 

      sinT = sin(tita(1)); 

       

      ! Transpose x: 

      spcoord_x(1) = x(1) - length*cosT; 

      spcoord_x(2) = x(2) - length*(-thetad*sinT); 

      spcoord_x(3) = x(3) - length*(-tita(3)*sinT - 

thetad*thetad*cosT); 

       

      ! Transpose y: 

      spcoord_y(1) = y(1) - length*(sinT) - length + (0.5-length);  

! an offset is added to y to place the leading edge at +0.5 

      spcoord_y(2) = y(2) - length*(thetad*cosT); 

      spcoord_y(3) = y(3) - length*(tita(3)*cosT - thetad*thetad*sinT); 

       

       

      end subroutine 

************************************************************************ 
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master_results.m (355 lines) 

************************************************************************ 
% master_results.m 

  
% Based on plot_str.m in the "results" folders of each run 
% This program plots structural results with the option of  
% omitting transient data from the first few periods 
clear all; close all; clc;      

  
%% Choose the run 
(directory information omitted) 
%load FlatPlate_Re0075_wwf4.0_circ03_zeta0.00.mat 

  
% --------------------------- Run Parameters --------------------------

--- 
rhoratio = 82.073;            % 25 for 10% thickness, 82.073 3% cases 
omegaratio = 4.0;             % Ratio of forcing to natural frequency 
kinematics_flag = 'harmonic'; % 'harmonic' for all current cases 
dampingratio = 1.00;           %  
thickness_percent = 3;        % 3 for all current cases  
A = 0.50;                     % Leading link relative length (0-1) 
Tstart = 0.5180001;              % Throw out the first few periods; 

consider only steady state 

  
%Plot limits 
xlim = 2; 
ylim = 2; 
%---------------------------------------------------------------------- 

  
Ox = A-0.5;     % Don't touch: Pivot Point location on normalized wing, 

Ox = 0 for all A=0.5 cases. 
                % (forced link on left, free link on right) 
                % i.e., A=0.1 corresponds to Ox = -0.40; 

  
% ALL runs are at Re = 75, FlatPlate with 3% thickness 
% Steady State for final 5 Periods begin at:  
(omitted) 
% --------------------------------------------------------------------- 

  
%Variables loaded from matrix file are: 
%{ 
newtime  
theta_rs_flt 
x_rs_flt            %Contains 3 columns: x, dx/dt, d^2x/dt^2  
y_rs_flt 
CD_rs_flt  
CDw_rs_flt           
CL_rs_flt  
CLw_rs_flt 
Cma_rs_flt          %nondim moment about alpha 
Cmt_rs_flt          %nondim moment about theta 
alpha_rs_flt  
fx_rs_flt  
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fy_rs_flt  
ma_rs_flt  
mt_rs_flt  
%} 

  
%% Plotting Parameters 

  
T = 2.8*pi; %define the period 

  
%build truncated variables 
data_size = floor(length(newtime)-2.8*pi*Tstart/(newtime(2)-

newtime(1))); 
time_short = zeros(data_size,1); 
CD_short = zeros(data_size,1); 
CL_short = zeros(data_size,1); 
alpha_short = zeros(data_size,1); 
alphadot_short = zeros(data_size,1); 
x_short = zeros(data_size,1); 
xdot_short = zeros(data_size,1); 
y_short = zeros(data_size,1); 
ydot_short = zeros(data_size,1); 
theta_short = zeros(data_size,1); 
thetadot_short = zeros(data_size,1); 
%When Calculating Power: 
% 
fx_short = zeros(data_size,1);  
fy_short = zeros(data_size,1);  
ma_short = zeros(data_size,1); 
mt_short = zeros(data_size,1); 
%} 

  
j = 1; 
for i = drange(length(newtime)-data_size:length(newtime)), 
   time_short(j) = newtime(i); 
   CD_short(j) = CD_rs_flt(i); 
   CL_short(j) = CL_rs_flt(i); 
   alpha_short(j) = alpha_rs_flt(i,1); 
   alphadot_short(j) = alpha_rs_flt(i,2); 
   x_short(j) = x_rs_flt(i,1); 
   xdot_short(j) = x_rs_flt(i,2); 
   y_short(j) = y_rs_flt(i,1); 
   ydot_short(j) = y_rs_flt(i,2); 
   theta_short(j) = theta_rs_flt(i,1); 
   thetadot_short(j) = theta_rs_flt(i,2); 

    
   %For calculating power: 
   % 
   fx_short(j) = fx_rs_flt(i,1);  
   fy_short(j) = fy_rs_flt(i,1);  
   ma_short(j) = ma_rs_flt(i,1); 
   mt_short(j) = mt_rs_flt(i,1); 
   %} 

    
   j=j+1; 
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end 

  
%% Build Cycle-Averaged Variables for one Period 
% Save number of periods 
num_per = (max(time_short) - min(time_short))/T; 
dt = time_short(2)-time_short(1); 
numsteps = floor(T/dt); %Number of time steps per period 
fy_ave = zeros(round(data_size/num_per),1); 
for i = drange(1:round(num_per)) 
    for j = drange(1:numsteps) 
       fy_ave(j) = fy_ave(j)+fy_short(j); 
    end 
    fy_ave = fy_ave/(round(num_per)); 
end 
t_ave = [dt:dt:T]; % build time variable for one period 
%plot(t_ave/T,fy_ave) % Example plot for period-averaged variable 

  
%% 
% navigate back to base directory 
cd Z:\jrmax_runs\DampingSweep\newkinematics\Re0075 

  
%% Power Calculations  
%Added by Jesse Maxwell 9/13/12 
% 
%For identical link cases 
%[na, ma, k, Ia] = 

DimensionalCalcs(rhoratio,omegaratio,kinematics_flag,dampingratio,thick

ness_percent); 
%[na, ma, k, Ia] = 

DimensionalCalcs(25,wwf,kinematics_flag,0,thickness_percent); 
%Body A, free link 
[na, ma, ka, Ia, ca] = 

DimensionalCalcs(rhoratio,omegaratio,kinematics_flag,dampingratio,thick

ness_percent,Ox, 1); 
%Body B, forced link 
[nb, mb, kb, Ib, cb] = 

DimensionalCalcs(rhoratio,omegaratio,kinematics_flag,dampingratio,thick

ness_percent,-Ox, 1); 
%For varied link length cases 
%[na, ma, k, Ia, c] 

=DimensionalCalcs(rhoratio,omegaratio,kinematics_flag,dampingratio,thic

kness_percent, hinge_point, screen_info); 
%{ 
nb = na; 
mb = ma; 
Ib = Ia; 
%} 
grav = 0; 

  
POW_tr_x = zeros(length(time_short),1); 
POW_tr_y = zeros(size(POW_tr_x)); 
POW_rot = zeros(size(POW_tr_x)); 
Power_rot = zeros(size(POW_tr_x)); 
Power_tr = zeros(size(POW_tr_x)); 
Power_short = zeros(size(POW_tr_x)); 
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%for loop done with 'variable' rather than 'signal.variable' 
if( isnumeric(omegaratio) == 1 ) 
    for ii = 2:data_size; 
        y1 = x_short(ii);          % x 
        y2 = y_short(ii);          % y 
        y3 = theta_short(ii);      % theta 
        y4 = alpha_short(ii);      % alpha 

  
        y5 = xdot_short(ii);          % xd 
        y6 = ydot_short(ii);          % yd 
        y7 = thetadot_short(ii);      % thetad 
        y8 = alphadot_short(ii);      % alphad 

  
        twodt = time_short(ii+1)-time_short(ii-1); 
        y5d = (xdot_short(ii+1)-xdot_short(ii-1))/ twodt; % xdd 
        y6d = (ydot_short(ii+1)-ydot_short(ii-1))/ twodt; % ydd 
        y7d = (thetadot_short(ii+1)-thetadot_short(ii-1))/ twodt; % 

thetadd 
        y8d = (alphadot_short(ii+1)-alphadot_short(ii-1))/ twodt; % 

alphadd 

  
        % Resultant force in the x direction R = m*xdd - fx 
        R_x = (ma+mb)*y5d +(-ma*na*sin(y3+y4) + mb*nb*sin(y3))*y7d + 

... 
              (-ma*na*sin(y3+y4))*y8d -( ma*na*cos(y3+y4)*(y7+y8)^2 - 

... 
              mb*nb*cos(y3)*y7^2) - fx_short(ii); 

  

  
        % Resultant force in the y direction R_y = m*ydd - fy; 
        R_y = (ma+mb)*y6d + (ma*na*cos(y3+y4) - mb*nb*cos(y3))*y7d + 

ma*na*cos(y3+y4)*y8d  ... 
         - ( ma*na*sin(y3+y4)*(y7+y8)^2 - mb*nb*sin(y3)*y7^2 )                                     

... 
         - (ma+mb)*grav ... ... 
         - fy_short(ii); 

  

  
        % Resultant torque in the theta direction TR = I*thetadd - 

Mtheta 
        MT = (-ma*na*sin(y3+y4) + mb*nb*sin(y3))*y5d + ... 
            ( ma*na*cos(y3+y4) - mb*nb*cos(y3))*y6d + ... 
            (Ia+Ib)*y7d + Ia*y8d - mt_short(ii) ; 

  
        % Transtlational work: 
        try 
        POW_tr_x(ii,1) = R_x*y5; 
        POW_tr_y(ii,1) = R_y*y6; 
        catch 
            fprintf(2,'Error.  ii = %d\n',ii) 
            return 
        end 
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        if POW_tr_x(ii,1) < 0 
            POW_tr_x(ii,1) = 0; 
        end 

  
        if POW_tr_y(ii,1) < 0 
            POW_tr_y(ii,1) = 0; 
        end 

  
        % Rotational work: 
        POW_rot(ii,1)= MT*y7; 

  
        if POW_rot(ii,1) < 0 
            POW_rot(ii,1) = 0; 
        end 

  
        %            EN_elast(ii,1) = Kt * y4^2; 
        %           POW_elast(ii,1)= -(Kt * y4) * y8; 

  
    end 
end 

  
%POW_trmean  = mean( POW_tr_x(1:data_size,1)) + mean( 

POW_tr_y(1:data_size,1)); 
%POW_rotmean = mean( POW_rot(1:data_size,1)); 
Power_tr = POW_tr_x + POW_tr_y; 
Power_rot = POW_rot; 
Power_short = Power_tr + Power_rot; 
Power_avg = mean(Power_short); 

  
% Define Power Coefficient, CP = (Ptr + Prot)/( 1/2 * rhof * Vc^3 * Lc) 
% Definition from Fitzgerald, et al 2011 
CP_short = Power_short/(0.5*1*1^3*1); 

  

  
%% Plots 
% 
%PRINT USEFUL DATA 
disp('  DATA SUMMARY') 

  
max_per = (max(time_short))/T; 
str = sprintf('Max Period:     %.3f',max_per); 
disp(str); 

  
num_per = (max(time_short) - min(time_short))/T; 
str = sprintf('Num Periods:     %.3f',num_per); 
disp(str); 
% 
%Average Lift Coefficient 
CLavg = mean(CL_short); 
str = sprintf('CLavg =          %.5f',CLavg); 
disp(str); 
%Average Drag Coefficient 
CDavg = mean(CD_short); 
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str = sprintf('CDavg =          %.5f',CDavg); 
disp(str); 
%Average Power Coefficient 
CPavg = mean(CP_short); 
str = sprintf('CPavg =          %.5f',CPavg); 
disp(str); 
%Average Lift to Average Drag 
CLCDavg = CLavg/CDavg; 
str = sprintf('CLavg/CDavg =    %.5f',CLCDavg); 
disp(str); 
%Average Lift to Average Power 
CLCPavg = CLavg/CPavg; 
str = sprintf('CLavg/CPavg =    %.5f',CLCPavg); 
disp(str); 
%Average Fy 
Fyavg = mean(fy_short); 
str = sprintf('Fyavg =    %.5f',Fyavg); 
disp(str); 
%Average Fx 
Fxavg = mean(fx_short); 
str = sprintf('Fxavg =    %.5f',Fxavg); 
disp(str); 
%} 
%{ 
CLCDavg2 = mean(CL_short./CD_short); 
str = sprintf('(CL/CD)avg =     %.5f',CLCDavg2); 
disp(str); 
%} 

  

  
%plot(time_short/T,CD_short,time_short/T,CL_short); 

  
%{ 
%plot(time_short/T,CD_short) 
fig = figure(); 
ax = axes('parent',fig); 
%plot(newtime/T,alpha_rs_flt(:,1),'k',time_short/T,alpha_short) 
%plot(alpha_short,CL_short,alpha_short,CD_short,alpha_short,alphadot_sh

ort) 
plot(alphadot_short,CL_short,alphadot_short,CD_short,alphadot_short,alp

ha_short) 
%plot(alpha_short,alphadot_short) 
title('Steady State (t/T > 10)'); 
xlabel('Adot'); 
ylabel('CD(G), CL(B), A(R)'); 
set(ax,'DataAspectRatio',[1 1 1]); 
set(ax,'XLim',[-xlim xlim],'YLim',[-ylim ylim]); 
%} 

  
%{ 
% Look at theta versus alpha in steady state 
fig = figure(); 
ax = axes('parent',fig); 
plot(theta_short*180/pi+90,alpha_short*180/pi) 
set(ax,'XLim',[-60 60],'YLim',[-60 60]); 
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set(ax,'DataAspectRatio',[1 1 1]); 
%} 

 
% navigate back to base directory 
cd Z:\jrmax_runs\DampingSweep\newkinematics\Re0075 

************************************************************************ 
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plot_data.m (278 lines) 

************************************************************************ 
% plot_data.m 
% Based on test_plot.m 
% Creates separate plots for visualizing individual frames' 
% flow fields. Seperately plot: Pressure, 
% Vorticity, Velocity Magnitude (contour and arrow),  
% Vertical Velocity and Horizontal Velocity 

% User options WITHIN the code which variables to plot and plotting 

parameters 

  
%% 
clear all ; close all ; clc 

  
%% Parameters 
%cd 

'Z:\jrmax_runs\DampingSweep\newkinematics\Re0075\FlatPlate_wwf1.0_circ0

3_zeta1.0\frames_small' 
%cd 

'Z:\jrmax_runs\DampingSweep\newkinematics\Re0075\FixedMass\FlatPlate_ww

f3.0_circ03_LinkA0.25_zeta0.00\frames' 
cd 

'X:\Re0075\FixedMass\FlatPlate_wwf4.0_circ03_LinkA0.25_zeta0.00\frames' 
baseprefix = '../FlatPlate_wwf4.0_circ03_zeta0.00/'; 
%cd 

'Z:\jrmax_runs\DampingSweep\newkinematics\Re0075\FlatPlate_wwf3.0_circ0

3_LinkA0.50_zeta0.10\frames' 
%baseprefix = '../FlatPlate_wwf3.0_circ03_zeta0.10/'; 
%cd 

Z:\jrmax_runs\DampingSweep\newkinematics\Re0075\Transitional_Flight\Fla

tPlate_wwf2.0_circ03_LinkA0.50_zeta0.00_ThOff30\frames 
%baseprefix = '../FlatPlate_wwf4.0_circ03_zeta0.00/'; 
%dirprefix = [baseprefix,'../frames_small/']; 
dirprefix = [baseprefix,'../frames/']; 
gridfile = 'grid.h5';  

  
%Plots 1 = YES, 0 = NO 
framenumber = 260;      % frame number to plot 
%countours = 30;        % # of contours for each plot 
xlim           =  3;%3    % horizontal plot limit centered around zero 
ylim           =  2;%1    % vertical plot limit centered around zero 
ylimlow        =  5;%5    % ylim; 
plotgrid       =  0;    % Plot the grid over contour plots  
numcontours    =  100;   % # of contours for each plot 
plotpressure   =  0;    % Pressure 
   pressurelimit    =  0.75;    % Contour Plot Limits 
plotvorticity  =  0;    % Vorticity 
   vortclip         =  3;    % Clip Max Vorticity Values 
   vorticitylimit   =  3;    % Vorticity Plot Limits 
plotvelocity   =  1;    % Velocity Magnitude 
   velocitylimit    =  1;    % Velocity Plot Limits 
plotquiver     =  0;    % arrow vectors on the velocity plot 
   reductionfactor  = 20;  % must be integer, reduces # arrows ^2 
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   scalingfactor    = 0.75; % scaling factor for arrow length 
plotu          =  0;    % Vertical Velocity 
plotw          =  0;    % Horizontal Velocity 
hfile = [dirprefix,sprintf('/uwp%04d.h5',framenumber)]; 

  
%% 
x = hdf5read(gridfile,'/x'); 
xc = hdf5read(gridfile,'/xc'); 
z = hdf5read(gridfile,'/z'); 
zc = hdf5read(gridfile,'/zc'); 

  
%% load up Pressure 
p = hdf5read(hfile,'/p'); 

  
if plotpressure == 1, 
p = p-p(1,1); 
% plot 
fig = figure(); 
ax = axes('parent',fig); 
contourf(ax,zc,xc,p,numcontours,'color','none') 
set(ax,'DataAspectRatio',[1 1 1]); 
set(ax,'XLim',[-xlim xlim],'YLim',[-ylimlow ylim]); 
hold on 

  
% plot the grid 
if plotgrid == 1, 
 nz = length(z); 
 nx = length(x); 

  
 for j = 1:nz; 
    plot([z(j) z(j)],[x(1) x(end)],'k') 
 end 
 for i = 1:nx; 
    plot([z(1) z(end)],[x(i) x(i)],'k') 
 end 
end 

  
plot_body('./', framenumber, ax, 0, 0,'none','k')  
title('Pressure'); 
set(ax,'Clim',[-pressurelimit pressurelimit]) 

  
end % end if plots 

  
%% Vorticity 
vort = hdf5read(hfile,'/vort'); 

  
if plotvorticity == 1, 

  
% Reference Vorticity 
vort = vort-vort(1,1); 

  
% 
% Clip Max & Min Values 
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%vortclip = vorticitylimit; 
for i = 1:length(vort(:,1)) 
   for j = 1:length(vort(i,:)) 
      if vort(i,j) > vortclip, 
          vort(i,j) = vortclip; 
      end 
      if vort(i,j) < -vortclip, 
          vort(i,j) = -vortclip; 
      end 
   end 
end 
%} 

  
% Normalize Vorticity 
%vort = vort./max(max(abs(vort))); 

  
% plot 
fig = figure(); 
ax = axes('parent',fig); 
contourf(ax,z,x,vort,numcontours,'color','none') 
set(ax,'DataAspectRatio',[1 1 1]); 
set(ax,'XLim',[-xlim xlim],'YLim',[-ylimlow ylim]); 
hold on 

  
% plot the grid 
if plotgrid == 1, 
 nz = length(z); 
 nx = length(x); 

  
 for j = 1:nz; 
    plot([z(j) z(j)],[x(1) x(end)],'k') 
 end 
 for i = 1:nx; 
    plot([z(1) z(end)],[x(i) x(i)],'k') 
 end 
end 

  
plot_body('./', framenumber, ax, 0, 0,'none','k') 
title('Vorticity'); 
%set(ax,'Clim',[-vorticitylimit vorticitylimit]) 
set(ax,'Clim',[-vortclip vortclip]) 

  
end % end if plots 

  
%% Velocity Magnitude 
uo = hdf5read(hfile,'/uo'); 
wo = hdf5read(hfile,'/wo'); 
vmag = sqrt(uo.^2+wo.^2); 
vmax = max(max(vmag)); 

  
if plotvelocity == 1, 
% plot 
fig = figure(); 
ax = axes('parent',fig); 
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contourf(ax,z,x,vmag,numcontours,'color','none'); %,'edgecolor','none') 
%contour(ax,z,x,vmag,contours) 
set(ax,'DataAspectRatio',[1 1 1]); 
set(ax,'XLim',[-xlim xlim],'YLim',[-ylimlow ylim]); 
hold on 
%{ 
if plotquiver == 1, 
%build a sparser grid for plotting arrows 
wosparse = zeros(size(wo)); 
[wrow wcol] = size(wo); 
uosparse = zeros(size(uo)); 
[urow ucol] = size(uo); 
for i = 1:reductionfactor:wrow, 
   for j = 1:reductionfactor:wcol,  
    wosparse(i,j) = wo(i,j); 
   end 
end  
for i = 1:reductionfactor:urow, 
   for j = 1:reductionfactor:ucol,  
    uosparse(i,j) = uo(i,j); 
   end 
end  
quiver(z,x,wosparse,uosparse,scalingfactor,'k-') 
end % end if plotquiver 
%} 
% plot the grid 
if plotgrid == 1, 
 nz = length(z); 
 nx = length(x); 

  
 for j = 1:nz; 
    plot([z(j) z(j)],[x(1) x(end)],'k') 
 end 
 for i = 1:nx; 
    plot([z(1) z(end)],[x(i) x(i)],'k') 
 end 
end 

  
% plot the body over the grid 
plot_body('./', framenumber, ax, 0, 0,'none','k') 
title('Velocity'); 
set(ax,'Clim',[-velocitylimit velocitylimit]) 

  
end % end if plots 

  
if plotquiver == 1, 
%build a sparser grid for plotting arrows 
wosparse = zeros(size(wo)); 
[wrow wcol] = size(wo); 
uosparse = zeros(size(uo)); 
[urow ucol] = size(uo); 
for i = 1:reductionfactor:wrow, 
   for j = 1:reductionfactor:wcol,  
    wosparse(i,j) = wo(i,j); 
   end 
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end  
for i = 1:reductionfactor:urow, 
   for j = 1:reductionfactor:ucol,  
    uosparse(i,j) = uo(i,j); 
   end 
end  
quiver(z,x,wosparse,uosparse,scalingfactor,'k-') 
end % end if plotquiver 

  

  
%% Vertical Velocity 
uo = hdf5read(hfile,'/uo'); 

  
if plotu == 1, 
% plot 
fig = figure(); 
ax = axes('parent',fig); 
contourf(ax,zc,x,uo,30,'color','none') 
set(ax,'DataAspectRatio',[1 1 1]); 
set(ax,'XLim',[-xlim xlim],'YLim',[-ylimlow ylim]); 
hold on 

  
% plot the grid 
if plotgrid == 1, 
 nz = length(z); 
 nx = length(x); 

  
 for j = 1:nz; 
    plot([z(j) z(j)],[x(1) x(end)],'k') 
 end 
 for i = 1:nx; 
    plot([z(1) z(end)],[x(i) x(i)],'k') 
 end 
end 

  
% plot the body over the grid 
plot_body('./', framenumber, ax, 0, 0,'none','k') 
title('Vertical Velocity'); 
set(ax,'Clim',[-velocitylimit velocitylimit]) 
hold off 

  
end % end if plots 

  
%% Horizontal Velocity 

  
wo = hdf5read(hfile,'/wo'); 

  
if plotw == 1, 
% plot 
fig = figure(); 
ax = axes('parent',fig); 
contourf(ax,z,xc,wo,30,'color','none') 
set(ax,'DataAspectRatio',[1 1 1]); 
set(ax,'XLim',[-xlim xlim],'YLim',[-ylimlow ylim]); 
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hold on 

  
% plot the grid 
if plotgrid == 1, 
 nz = length(z); 
 nx = length(x); 

  
 for j = 1:nz; 
    plot([z(j) z(j)],[x(1) x(end)],'k') 
 end 
 for i = 1:nx; 
    plot([z(1) z(end)],[x(i) x(i)],'k') 
 end 
end 

  
% plot the body over the grid 
plot_body('./', framenumber, ax, 0, 0,'none','k') 
title('Horizontal Velocity'); 
set(ax,'Clim',[-velocitylimit velocitylimit]) 

  
end % end if plots 

  
%% Navigate Back to Original Directory 
cd 'Z:\jrmax_runs\DampingSweep\newkinematics\Re0075' 

************************************************************************ 
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FFT_alpha.m (200 lines) 

************************************************************************ 
%FFT_alpha.m 
% Based on master_results.m, but used strictly for FFT of data sets 

  
clear all; close all; clc;      

  
%% Choose the run 
cd 

Z:\jrmax_runs\DampingSweep\newkinematics\Re0075\FixedMass\FlatPlate_wwf

4.0_circ03_LinkA0.50_zeta0.00\results 
load FlatPlate_Re0075_wwf4.0_circ03_A0.50.mat 

 
% --------------------------- Run Parameters --------------------------

--- 
rhoratio = 82.073;            % 25 for 10% thickness, 82.073 3% cases 
omegaratio = 4.0;             % Ratio of forcing to natural frequency 
kinematics_flag = 'harmonic'; % 'harmonic' for all current cases 
dampingratio = 0.0;           %  
thickness_percent = 3;        % 3 for all current cases  
A = 0.50;                     % Leading link relative length (0-1) 
Tstart = 6.12500;               % Throw out the first few periods; 

consider only steady state 

  
%Plot limits 
xlim = 2; 
ylim = 2; 
%--------------------------------------------------------------------- 

  
Ox = A-0.5;     % Don't touch: Pivot Point location on normalized wing, 

Ox = 0 for all A=0.5 cases. 
                % (forced link on left, free link on right) 
                % i.e., A=0.1 corresponds to Ox = -0.40; 

  
% ALL runs are at Re = 75, FlatPlate with 3% thickness 
% Steady State for final 5 Periods begin at:  

  
% Varied Damping 
%% Plotting Parameters 

  
T = 2.8*pi; %define the period 

  
%build truncated variables 
data_size = floor(length(newtime)-2.8*pi*Tstart/(newtime(2)-

newtime(1))); 
time_short = zeros(data_size,1); 
alpha_short = zeros(data_size,1); 
alphadot_short = zeros(data_size,1); 
theta_short = zeros(data_size,1); 
thetadot_short = zeros(data_size,1); 

  
j = 1; 
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for i = drange(length(newtime)-data_size:length(newtime)), 
   time_short(j) = newtime(i); 
   alpha_short(j) = alpha_rs_flt(i,1); 
   alphadot_short(j) = alpha_rs_flt(i,2); 
   theta_short(j) = theta_rs_flt(i,1); 
   thetadot_short(j) = theta_rs_flt(i,2); 

  
   j=j+1; 
end 

  
%% Build Cycle-Averaged Variables for one Period 
% Save number of periods 
num_per = (max(time_short) - min(time_short))/T; 
dt = time_short(2)-time_short(1); 
numsteps = round(T/dt); %Number of time steps per period ***round was 

floor 
%fy_ave = zeros(round(data_size/num_per),1); 
alpha_ave = zeros(round(data_size/num_per),1); 
alphadot_ave = zeros(round(data_size/num_per),1); 
for i = drange(1:round(num_per)) 
    for j = drange(1:numsteps) 
       %fy_ave(j) = fy_ave(j)+fy_short(j); 
       alpha_ave(j) = alpha_ave(j)+alpha_short(j); 
       alphadot_ave(j) = alphadot_ave(j)+alphadot_short(j); 
    end 
    %fy_ave = fy_ave/(round(num_per)); 
    alpha_ave = alpha_ave/(round(num_per)); 
    alphadot_ave = alphadot_ave/(round(num_per)); 
end 
t_ave = [0:dt:T]; % build time variable for one period 
%plot(t_ave/T,alpha_ave) % Example plot for period-averaged variable 

  
%% 
% navigate back to base directory 
cd Z:\jrmax_runs\DampingSweep\newkinematics\Re0075 

  
%% FFT 

  
L = length(time_short); 
NFFT = 2^nextpow2(L); % Next power of 2 from length of y 
Y = fft(alpha_short,NFFT)/L; 
f = 1/dt/2*linspace(0,1,NFFT/2+1); 
F = f*T; % Nondimensionalize  
%{ 
fig = figure(); 
ax = axes('parent',fig); 
plot(F,2*abs(Y(1:NFFT/2+1))) 
title('Single-Sided Amplitude Spectrum of alpha(t/T)') 
xlabel('Nondimensional Frequency (f*T)') 
ylabel('|alpha(t/T)|') 
set(ax,'XLim',[0 10],'YLim',[0 1]); 
%} 

  
% Do the same for Alphadot 
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Y2 = fft(alphadot_short,NFFT)/L; 
f2 = 1/dt/2*linspace(0,1,NFFT/2+1); 
F2 = f2*T; % Nondimensionalize  

 
%% Plot all results together 
% 
fig = figure(); 

  
subplot(2,2,1); 
%Plot steady state averaged values for alpha and alpha dot 
%ax = axes('parent',fig); 
plot(t_ave/T,alpha_ave*180/pi) 
hold on; 
title('Steady State Cycle Averaged alpha(t/T)') 
xlabel('t/T') 
ylabel('alpha(t/T)') 
%set(ax,'XLim',[0 1],'YLim',[-30 30]); 
axis([ 0 1 -60 60]); 

  
subplot(2,2,2) 
%ax = axes('parent',fig); 
plot(t_ave/T,alphadot_ave*180/pi) 
title('Steady State Cycle Averaged d(alpha)/dt (t/T)') 
xlabel('t/T') 
ylabel('d(alpha)/dt (t/T) (deg)') 
%set(ax,'XLim',[0 1],'YLim',[-30 30]); 
axis([ 0 1 -60 60]); 
%} 

  
subplot(2,2,3) 
%ax = axes('parent',fig); 
Y1max = max(max(2*abs(Y(1:NFFT/2+1)))); 
plot(F,2*abs(Y(1:NFFT/2+1))/Y1max) 
title('Single-Sided Amplitude Spectrum of alpha(t/T)') 
xlabel('Nondimensional Frequency (f*T)') 
ylabel('|alpha(t/T)|') 
%set(ax,'XLim',[0 10],'YLim',[0 1]); 
axis([ 0 10 0 1]); 

  
subplot(2,2,4) 
%ax = axes('parent',fig); 
Y2max = max(max(2*abs(Y2(1:NFFT/2+1)))); 
plot(F2,2*abs(Y2(1:NFFT/2+1))/Y2max) 
title('Single-Sided Amplitude Spectrum of d(alpha)/dt (t/T)') 
xlabel('Nondimensional Frequency (f*T)') 
ylabel('|d(alpha)/dt (t/T)|') 
%set(ax,'XLim',[0 10],'YLim',[0 1]); 
axis([ 0 10 0 1]); 

************************************************************************ 
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h5hyperslab.m (120 lines) 

************************************************************************ 
%Create a truncated domain from the HDF5 structured grid and plot 

results 

 

clear all; close all; clc; 
 

cd 

'Z:\jrmax_runs\DampingSweep\newkinematics\Re0075\FixedMass\FlatPlate_ww

f2.0_circ03_LinkA0.10_zeta0.00\frames'; 
baseprefix = '../FlatPlate_wwf2.0_circ03_zeta0.00/'; 
%dirprefix = [baseprefix,'../frames_small/']; 
dirprefix = [baseprefix,'../frames/']; 
gridfile = 'grid.h5';  

  
%Plots 1 = YES, 0 = NO 
framenumber = 100;      % frame number to plot 
%   num_countours = 30;        % # of contours for each plot 
xlim           =  3.5;    % horizontal plot limit centered around zero 
ylim           =  2.5;    % vertical plot limit centered around zero 
ylimlow        =  5.5;    % ylim; 
plotgrid       =  0;    % Plot the grid over contour plots  
numcontours    =  30;   % # of contours for each plot 
plotpressure   =  0;    % Pressure 
   pressurelimit    =  .75;    % Contour Plot Limits 
plotvorticity  =  0;    % Vorticity 
   vorticitylimit   =  1;    % Vorticity Plot Limits 
plotvelocity   =  1;    % Velocity Magnitude 
   velocitylimit    =  1;    % Velocity Plot Limits 
plotquiver     =  0;    % arrow vectors on the velocity plot 
   reductionfactor  = 20;  % must be integer, reduces # arrows ^2 
   scalingfactor    = 0.75; % scaling factor for arrows 
plotu          =  0;    % Vertical Velocity 
plotw          =  0;    % Horizontal Velocity 
hfile = [dirprefix,sprintf('/uwp%04d.h5',framenumber)]; 

  
% x=1229, z=551 
% [xl yl xr yr] = [15 26 498 1180] creates box [(-3,-5)(3,1)] 
% [xl yl xr yr] = [15 26 512 1180] creates box [(-3,-5)(3,2)] 

  
xl = 15; %15; 
yl = 26; 
xr = 512; %498; 
yr = 1180; 
x = h5read(gridfile,'/x',xl,xr); 
xc = h5read(gridfile,'/xc',xl,xr); 
z = h5read(gridfile,'/z',yl,yr); 
zc = h5read(gridfile,'/zc',yl,yr); 

  
%% load up Pressure 
%p = hdf5read(hfile,'/p'); 
%data = hdf5read(working_file,[1 1],[5 3]); 
data = h5read(hfile,'/p',[xl yl],[xr yr]); 
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data = data-data(1,1); 
%{ 
% plot 
fig = figure(); 
ax = axes('parent',fig); 
contourf(ax,zc,xc,data,numcontours,'color','none') 
set(ax,'DataAspectRatio',[1 1 1]); 
set(ax,'XLim',[-xlim xlim],'YLim',[-ylimlow ylim]); 
set(ax,'Clim',[-pressurelimit pressurelimit]); 
%} 
%% 
% Change back to parent directory 
cd 'Z:\jrmax_runs\DampingSweep\newkinematics\Re0075'; 

  
% 
%I = imread('Rainier_small.jpg'); 
%I = im2double(I); 
%I = rgb2gray(I); 
[U S V] = svd(data); 
%imshow(data); 
  

%Choose number of SVD modes to rebuild 
j = 10; 

  
data2 = U(:,1:j)*S(1:j,1:j)*V(:,1:j)'; 
%imshow(Iaj); 

  
% plot 
fig = figure(); 
ax = axes('parent',fig); 
contourf(ax,zc,xc,data2,numcontours,'color','none') 
set(ax,'DataAspectRatio',[1 1 1]); 
set(ax,'XLim',[-xlim xlim],'YLim',[-ylimlow ylim]); 
set(ax,'Clim',[-pressurelimit pressurelimit]) 
%} 
%{ 
[U,S,V] = svd(X,0); 
ranks = [1 2 5 10 20 rank(X)]; 
for k=ranks(:)' 
Xhat = (U(:,1:k)*S(1:k,1:k)*V(:,1:k)'); 
image(Xhat); 
end 
%} 

 

************************************************************************ 
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svd_period.m (156 lines) 

************************************************************************ 
%svd_period.m 

%Load HDF5 snapshot frames and compute SVD modes on period averages  

% or just plot the period average without deconstruction 

clear all; close all; clc; 

  
cd 

'Z:\jrmax_runs\DampingSweep\newkinematics\Re0075\FixedMass\FlatPlate_ww

f4.0_circ03_LinkA0.75_zeta0.00\frames'; 
baseprefix = '../FlatPlate_wwf4.0_circ03_zeta0.00/'; 
%dirprefix = [baseprefix,'../frames_small/']; 
dirprefix = [baseprefix,'../frames/']; 
gridfile = 'grid.h5';  

  
%Plots 1 = YES, 0 = NO 
framenumber = 240;      % frame number to plot 
number_of_frames = 40;  % number of frames to include (20 per period) 
% Fixed Mass 
%   W2 outputs 20 frames/period, last frame is 140 
%   W3 outputs 40 frames/period, last frame is 280 
%   W4 outputs 40 frames/period, last frame is 280 
%   W6 outputs 40 frames/period, go from 376-416 

    

  
xlim           =  3;    % horizontal plot limit centered around zero 
ylim           =  2;    % vertical plot limit centered around zero 
ylimlow        =  5;    % ylim; 
plotgrid       =  0;    % Plot the grid over contour plots  
numcontours    =  30;   % # of contours for each plot 
plotpressure   =  0;    % Pressure 
   pressurelimit    =  1;    %1, Contour Plot Limits 
   vortlimit        =  1.5;    %1.5, Contour Plot Limits 

  
hfile = [dirprefix,sprintf('/uwp%04d.h5',framenumber)]; 

  
%% 
% Hyperslab 
% x=1229, z=551 
% [xl yl xr yr] = [15 26 498 1180] creates box [(-3,-5)(3,1)] 
% [xl yl xr yr] = [15 26 512 1180] creates box [(-3,-5)(3,2)] 

  
xl = 15; %15; 
yl = 26; 
xr = 512; %498; 
yr = 1180; 
x = h5read(gridfile,'/x',xl,xr); 
xc = h5read(gridfile,'/xc',xl,xr); 
z = h5read(gridfile,'/z',yl,yr); 
zc = h5read(gridfile,'/zc',yl,yr); 

  
%% Load Frames 
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data = h5read(hfile,'/p',[xl yl],[xr yr]); 
total_data = data*0;    % Initialize total_data, SVD Dataset 
raw_data = data*0;      % Initialize raw_data, Period Avg Dataset 

  
for i=1:number_of_frames, 
% load up Pressure for Current Frame 
%p = hdf5read(hfile,'/p'); 
%data = hdf5read(working_file,[1 1],[5 3]); 

  
% Choose Variable to Load 
% /p, /uo, /wo, /vort 
data = h5read(hfile,'/wo',[xl yl],[xr yr]); 

  
data = data-data(1,1); % Set zero reference (offset) 

  
[U S V] = svd(data); 
j = 10; 
data2 = U(:,1:j)*S(1:j,1:j)*V(:,1:j)'; 
total_data = total_data+data2;  % SVD Dataset 
raw_data = raw_data + data;     % Period Avg Dataset 

  
framenumber = framenumber+1; 
hfile = [dirprefix,sprintf('/uwp%04d.h5',framenumber)]; 
end %End Frame Loop 
%% 
% Remove Offset 
raw_data = raw_data-raw_data(1,1); 
%Reduce total_data to the period-average 
total_data = total_data/number_of_frames; 
raw_data = raw_data/number_of_frames; 
%Average SVD Variable Quantity 
str = sprintf('SVD Var Avg =    %.5f',mean(mean(total_data))); 
disp(str); 
%Average Raw Variable Quantity 
str = sprintf('Raw Var Avg =    %.5f',mean(mean(raw_data))); 
disp(str); 
% 
%Normalize such that max magnitude of any value is 1 
total_data_N = total_data/max(max(abs(total_data))); 
raw_data_N = raw_data/max(max(abs(raw_data))); 
%Average NORMALIZED SVD Variable Quantity 
str = sprintf('N SVD Var Avg =    %.5f',mean(mean(total_data_N))); 
disp(str); 
%Average NORMALIZED Raw Variable Quantity 
str = sprintf('N Raw Var Avg =    %.5f',mean(mean(raw_data_N))); 
disp(str); 
%} 

  
%% Plot data  
% 
% Plot non-normalized data 
% Contour Plot with Color Shades (no lines) 
fig = figure(); 
ax = axes('parent',fig); 
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%contourf(ax,zc,xc,total_data,numcontours,'color','none') 
contourf(ax,zc,xc,raw_data,numcontours,'color','none') 
set(ax,'DataAspectRatio',[1 1 1]); 
set(ax,'XLim',[-xlim xlim],'YLim',[-ylimlow ylim]); 
set(ax,'Clim',[-pressurelimit pressurelimit]) 
%} 
%{ 
% Plot Data -Greyscale 
fig = figure(); 
ax = axes('parent',fig); 
%contourf(ax,zc,xc,abs(total_data),256,'color','none') 
contourf(ax,zc,xc,abs(raw_data),256,'color','none') 
set(ax,'DataAspectRatio',[1 1 1]); 
set(ax,'XLim',[-xlim xlim],'YLim',[-ylimlow ylim]); 
set(ax,'Clim',[0 vortlimit]) 
set(gcf, 'colormap', gray) 
%} 
%{ 
% Plot Normalized Data -Greyscale 
fig = figure(); 
ax = axes('parent',fig); 
%contourf(ax,zc,xc,total_data_N,numcontours,'color','none') 
contourf(ax,zc,xc,raw_data_N,numcontours,'color','none') 
set(ax,'DataAspectRatio',[1 1 1]); 
set(ax,'XLim',[-xlim xlim],'YLim',[-ylimlow ylim]); 
set(ax,'Clim',[-pressurelimit pressurelimit]) 
set(gcf, 'colormap', gray) 
%} 
%{ 
% Plot Normalized Data 
fig = figure(); 
ax = axes('parent',fig); 
%contourf(ax,zc,xc,total_data_N,numcontours,'color','none') 
contourf(ax,zc,xc,raw_data_N,numcontours,'color','none') 
set(ax,'DataAspectRatio',[1 1 1]); 
set(ax,'XLim',[-xlim xlim],'YLim',[-ylimlow ylim]); 
set(ax,'Clim',[-pressurelimit pressurelimit]) 
%} 
%{ 
% Contour Plot with 20 Lines 
fig = figure(); 
ax = axes('parent',fig); 
contourf(ax,zc,xc,total_data,20) 
%contourf(ax,zc,xc,raw_data,20) 
%contourf(ax,zc,xc,raw_data_N,20) 
%contourf(ax,zc,xc,total_data_N,20) 
set(ax,'DataAspectRatio',[1 1 1]); 
set(ax,'XLim',[-xlim xlim],'YLim',[-ylimlow ylim]); 
set(ax,'Clim',[-pressurelimit pressurelimit]) 
%} 

  
% Change back to parent directory 
cd 'Z:\jrmax_runs\DampingSweep\newkinematics\Re0075'; 

************************************************************************ 

  



 

125 

 

vortcalc2.m (45 lines) 

************************************************************************ 
%% vortcalc2.m 
% Read in an image in greyscale and compute total magnitude vorticity 

% and total circulation on truncated domain of image 
clear all; 

  
%% Navigate to Working Directory 
cd 'C:\Documents and Settings\Jesse\Desktop\' 

  
%I = imread('W3_A50_J1_W_2T_n.png'); 
I = imread('TestImage2.jpg'); 
Idouble = im2double(I); 
Igrey = rgb2gray(Idouble); 

  
%Renormalize 
%IgreyN = Igrey-Igrey(5,5); 
%min(min(I)) 
%max(max(I)) 
%mean(I) 
%Average Raw Variable Quantity 
str = sprintf('Mean Vort  =    %.5f',mean(mean(Igrey))); 
disp(str); 
str = sprintf('Total Circ =    %.5f',sum(sum(Igrey))); 
disp(str); 

  
% 
[U S V] = svd(Igrey); 
imshow(Igrey); 

  
j = 100; 
Iaj = U(:,1:j)*S(1:j,1:j)*V(:,1:j)'; 
imshow(Iaj); 
%} 

  
%{ 
[U,S,V] = svd(X,0); 
ranks = [1 2 5 10 20 rank(X)]; 
for k=ranks(:)' 
Xhat = (U(:,1:k)*S(1:k,1:k)*V(:,1:k)'); 
image(Xhat); 
end 
%} 

  
%% Navigate Back to Original Directory 
cd 'Z:\jrmax_runs\DampingSweep\newkinematics\Re0075' 

************************************************************************ 
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