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The Expectation-Maximization (EM) algorithm is a popular and convenient

tool for the estimation of Gaussian mixture models and its natural extension, model-

based clustering. However, while the algorithm is convenient to implement and nu-

merically very stable, it only produces solutions that are locally optimal. Thus, EM

may not achieve the globally optimal solution in Gaussian mixture analysis prob-

lems, which can have a large number of local optima. This dissertation introduces

several new algorithms designed to produce globally optimal solutions for Gaussian

mixture models. The building blocks for these algorithms are methods from the

operations research literature, namely the Cross-Entropy (CE) method and Model

Reference Adaptive Search (MRAS).

The new algorithms we propose must efficiently simulate positive definite co-

variance matrices of the Gaussian mixture components. We propose several new so-

lutions to this problem. One solution is to blend the updating procedure of CE and



MRAS with the principles of Expectation-Maximization updating for the covariance

matrices, leading to two new algorithms, CE-EM and MRAS-EM. We also propose

two additional algorithms, CE-CD and MRAS-CD, which rely on the Cholesky de-

composition to construct the random covariance matrices. Numerical experiments

illustrate the effectiveness of the proposed algorithms in finding global optima where

the classical EM fails to do so. We find that although a single run of the new algo-

rithms may be slower than EM, they have the potential of producing significantly

better global solutions to the model-based clustering problem. We also show that

the global optimum matters in the sense that it significantly improves the clustering

task.

Furthermore, we provide a a theoretical proof of global convergence to the

optimal solution of the likelihood function of Gaussian mixtures for one of the al-

gorithms, namely MRAS-CD. This offers support that the algorithm is not merely

an ad-hoc heuristic, but is systematically designed to produce global solutions to

Gaussian mixture models. Finally, we investigate the fitness landscape of Gaussian

mixture models and give evidence for why this is a difficult global optimization

problem. We discuss different metrics that can be used to evaluate the difficulty

of global optimization problems, and then apply them to the context of Gaussian

mixture models.
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Chapter 1

Introduction

1.1 Background

A mixture model is a statistical model where the probability density function

is a convex sum of multiple density functions. Mixture models provide a flexible and

powerful mathematical approach to modeling many natural phenomena in a wide

range of fields (McLachlan and Peel, 2000). One particularly convenient attribute

of mixture models is that they provide a natural framework for clustering data,

where the data are assumed to originate from a mixture of probability distributions,

and the cluster memberships of the data points are unknown. Mixture models

are highly popular and widely applied in many fields, including biology, genetics,

economics, engineering, and marketing. Mixture models also form the basis of many

modern supervised and unsupervised classification methods such as neural networks

or mixtures of experts.

The primary application of mixture models in this dissertation is clustering

data. Mixture models are an extremely common tool in practice for clustering

data to achieve many different goals. For example, in biological sequence analysis,

clustering is used to group DNA sequences with similar properties. In data mining,

researchers use cluster analysis to partition data items into related subsets, based on

their quantifiable attributes. In social sciences, clustering may be used to recognize
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communities within social networks of people. These examples represent a small

portion of the many applications of clustering via mixture models for real-world

data.

In mixture analysis, the goal is to estimate the parameters of the underlying

mixture distributions by maximizing the likelihood function of the mixture density

with respect to the observed data. One of the most popular methods for obtaining

the maximum likelihood estimate is the Expectation-Maximization (EM) algorithm.

The EM algorithm has gained popularity in mixture analysis, primarily because of its

many convenient properties. One of these properties is that it guarantees an increase

in the likelihood function in every iteration (Dempster et al., 1977). Moreover,

because the algorithm operates on the log-scale, the EM updates are analytically

simple and numerically stable for distributions that belong to the exponential family,

such as Gaussian. However, one drawback of EM is that it is a local optimization

method only; that is, it converges to a local optimum of the likelihood function (Wu,

1983). This is a problem because with increasing data-complexity (e.g., higher

dimensionality of the data and/or increasing number of clusters), the number of

local optima in the mixture likelihood increases. Furthermore, the EM algorithm is

a deterministic method; i.e., it converges to the same stationary point if initiated

from the same starting value. So, depending on its starting values, there is a chance

that the EM algorithm can get stuck in a sub-optimal solution, one that may be far

from the global (and true) solution. The mathematical details of mixture models

and the EM algorithm are given in Chapter 2 of this dissertation.

There exist many modifications of the EM algorithm that address shortcomings
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or limitations of the basic EM formulation. For instance, Booth and Hobert (1999)

propose solutions to overcome intractable E-steps (see also Levine and Casella, 2001;

Levine and Fan, 2003; Jank, 2004; Caffo et al., 2003). On the other hand, Meng and

Rubin (1993) suggest ways to overcome complicated M-steps (see also Meng, 1994;

Liu and Rubin, 1994). The EM algorithm is also known to converge only at a linear

rate; ways to accelerate convergence have been proposed in Louis (1982), Jamshidian

and Jennrich (1993), and Jamshidian and Jennrich (1997). Yet, to date, very few

modifications have addressed global optimization qualities of the EM paradigm.

There have been relatively few attempts at systematically addressing the short-

comings of EM in the mixture model context. Perhaps the most common approach

in practice is to simply re-run EM from multiple (e.g., randomly chosen) starting

values, and then select the parameter value that provides the best solution obtained

from all runs (see Biernacki et al., 2003). In addition to being computationally bur-

densome, especially when the parameter space is large, this approach is somewhat

ad-hoc. More systematic approaches involve using stochastic versions of the EM al-

gorithm such as the Monte Carlo EM (MCEM) algorithm (Wei and Tanner, 1990).

Alternative approaches rely on producing ergodic Markov chains that exhaustively

explore every point in the parameter space (see e.g., Diebolt and Robert, 1990; Cao

and West, 1996; Celeux and Govaert, 1992). Another approach that has been pro-

posed recently is to use methodology from the global optimization literature. In

that context, Jank (2006a) proposes a Genetic Algorithm version of the MCEM al-

gorithm to overcome local solutions in the mixture likelihood (see also Jank, 2006b;

Tu et al., 2006). Along the same lines, Ueda and Nakano (1998) propose a deter-

3



ministic annealing EM (DAEM) designed to overcome the local maxima problem

associated with EM.

Numerous additional methods for clustering, other than simply extensions of

EM, have been developed in recent years. Mangiameli et al. (1996) compare the

self-organizing map (SOM) neural network with other hierarchical clustering meth-

ods. Milligan (1981) gives a computational study of many algorithms for clustering

analysis, including the well-known Ward’s minimum variance hierarchical procedure

(Ward, Jr., 1963). However, many of these clustering procedures do not incorporate

ideas from the theory of global optimization.

Two methods from the operations research literature that are designed to at-

tain globally optimal solutions to general multi-extremal continuous optimization

problems are the Cross-Entropy (CE) method (De Boer et al., 2005) and Model

Reference Adaptive Search (MRAS) (Hu et al., 2007). The CE method iteratively

generates candidate solutions from a parametric sampling distribution. The can-

didates are all scored according to an objective function, and the highest scoring

candidates are used to update the parameters of the sampling distribution. These

parameters are updated by taking a convex combination of the sampling parameters

from the previous iteration and sample statistics of the top candidate solutions. In

this way, the properties of the best candidates in each iteration are retained. MRAS

shares similarities with CE. Like the CE method, MRAS also solves continuous op-

timization problems by producing candidate solutions in each iteration. However,

the primary difference is that MRAS utilizes a different procedure for updating its

sampling parameters, leading to a more general framework in which theoretical con-
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vergence of a particular instantiated algorithm can be rigorously proved (Hu et al.,

2007). In this dissertation we propose methods that apply CE and MRAS updating

principles for the global optimization of Gaussian mixture models.

1.2 Contributions of this Dissertation

Because MRAS was introduced relatively recently (in the last couple of years),

there exists no work to date on applying MRAS to the global optimization of mixture

models or clustering problems. Additionally, only few works have addressed applying

the CE method to clustering problems. Botev and Kroese (2004) propose the CE

method for Gaussian mixtures with data of small dimension, and Kroese et al.

(2007) use CE in vector quantization clustering. This dissertation proposes several

new algorithms that apply the ideas of CE and MRAS to maximum likelihood

estimation in mixture models, and are also capable of handling high dimensional

data.

One of the major difficulties for any algorithm that utilizes either CE or MRAS

for the estimation of Gaussian mixture models of data with high dimension is the

efficient simulation of the positive definite covariance matrices of the mixture compo-

nents. This dissertation proposes several new solutions to this problem in Chapter

3. One solution is to blend the updating procedure of CE and MRAS with the

principles of Expectation-Maximization updating for the covariance matrices, lead-

ing to two new algorithms, CE-EM and MRAS-EM. A second solution involves

updating the Cholesky factorizations of the covariance matrices, as opposed to up-
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dating the components of the covariance matrices themselves. Using the Cholesky

decomposition in the updating procedure leads to two new algorithms, CE-CD and

MRAS-CD. Numerical experiments illustrate the effectiveness of the proposed al-

gorithms in finding global optima where the classical EM fails to do so. We find

that although a single run of any of the new algorithms may be slower than EM,

they have the potential of producing significantly better global solutions to Gaussian

mixture models. We also show that the global optimum matters in the sense that

it significantly improves the clustering task (Heath et al., 2007b).

Of the many optimization algorithms that are designed to overcome locally

optimal solutions, most can only offer a promise of better performance than EM

in empirical studies. That is, most of the approaches stop short of guaranteeing

global convergence and, similar to EM, can only guarantee convergence to a local

optimum. In Chapter 4 of this dissertation we rigorously prove the convergence of

the MRAS-CD algorithm to the global optimum of Gaussian mixtures. The proof

gives justification that the algorithm is not merely an ad-hoc heuristic, but is a

systematic approach for producing globally optimal solutions to Gaussian mixture

models (Heath et al., 2007a).

Because the likelihood function of a mixture density is highly nonlinear, un-

derstanding its physical properties is difficult. In Chapter 5 of this dissertation we

analyze what attributes make a global optimization problem difficult and provide

evidence to why estimating Gaussian mixture models is such a difficult optimization

problem. One such reason is that mixture models can have a large number of local

optima that are quite inferior to the global optima. We propose and discuss met-
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rics that quantify the difficulty of a given optimization problem, and demonstrate

these metrics on several numerical examples. Furthermore, we measure how the

difficulty of the optimization problem changes with varying dimensionality, number

of clusters, and number of data points.

7



Chapter 2

Mathematical Background

2.1 Choosing the Optimal Number of Mixture Components

In practice, sometimes there is enough information available about the data

in a mixture model that g, the number of mixture components, is known a priori.

Otherwise, finding the optimal number of components in a mixture model can be a

difficult problem in itself (McLachlan and Peel, 2000). In that case, it is necessary

to optimize the mixture model across values of g. In this dissertation we assume

that the optimal number of components g in the mixture are known, and thus focus

on methods which obtain the mixture model which best fit the data for the given

value of the number of components g. Methods for estimating the optimal value

for g from the data are discussed in Fraley and Raftery (1998). In principle, one

could combine these methods with the global optimization algorithms for mixture

models that we propose in Chapter 3. The only adjustment that needs to be made

is that the log-likelihood function as the optimization criterion be replaced by a

suitable model-selection criterion such as the Akaike information criterion (AIC) or

the Bayesian information criterion (BIC) (McLachlan and Peel, 2000).
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2.2 Finite Mixture Models

We begin by presenting the mathematical framework of finite mixture models.

Assume there are n observed data points, y = {y1, ..., yn}, in some p-dimensional

space. Assume that data is known to have been derived from g distinct probability

distributions, weighted according to the vector π = (π1, ..., πg), where the weights

are positive and sum to one. Each component of the mixture has an associated

probability density fj( · ;ψj), where ψj represents the parameters of the jth mixture

component. The mixture model parameters that need to be estimated are θ =

(πj;ψj)
g
j=1; that is, both the weights and the probability distribution parameters for

each of the g components. We write the mixture density of the data point yi as:

f̃(yi; θ) =

g∑
j=1

πjfj(yi;ψj).

The typical approach to estimating the parameters θ with respect to the ob-

served data y is via maximization of the likelihood function:

L(y, θ) =
n∏

i=1

f̃(yi; θ),

which is equivalent to maximization of the log-likelihood function:

`(y, θ) = logL(y, θ) =
n∑

i=1

log f̃(yi; θ)

=
n∑

i=1

log

g∑
j=1

πjfj(yi;ψj).

Maximization of the log-likelihood function in the mixture model problem is non-

trivial, primarily because the log-likelihood function ` typically contains many local

maxima, especially when the number of components g and/or the data-dimension p

is large.
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Consider the following example for illustration. We simulate 40 points from

two univariate Gaussian distributions with means µ1 = 0 and µ2 = 2, variances σ2
1 =

.001 and σ2
2 = 1, and each weight equal to .5. Notice that in this relatively simple

example, we have 5 parameters to optimize (because the second weight is uniquely

determined by the first weight). Figure 2.1 shows the log-likelihood function plotted

against only one parameter-component, µ1. All other parameters are held constant

at their true values. Notice the large number of local maxima to the right of the

optimal value of µ1 ≈ 0. Clearly, if we start the EM algorithm at, say, 3, it could

get stuck far away from the global (and true) solution. This demonstrates that a

very simple situation can already cause problems with respect to global and local

optima.

2.3 Model-Based Clustering

Model-based clustering is a common and natural extension of finite mixture

models. The mathematical framework of model-based clustering is the same as that

of finite mixture models described in Section 2.2. The mixture components are

oftentimes referred to as the clusters in the model-based clustering context. After

estimating the parameters of the mixture model, we can then statistically infer how

the data points can be grouped into the corresponding g clusters.

10
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Figure 2.1: Plot of the log-likelihood function of the data set described
above with parameters µ = (0, 2), σ2 = (.001, 1), and π = (.5, .5), plotted
against varying values of the mean component µ1.

2.4 The Expectation-Maximization Algorithm

The Expectation-Maximization (EM) algorithm is an iterative procedure de-

signed to produce maximum likelihood estimates in incomplete data problems (Demp-

ster et al., 1977). We let y denote the observed (or incomplete) data, and z the

unobserved (or missing) data. We refer to the collection of the observed and unob-

served data (y, z) as the complete data. Let f(y, z; θ) denote the joint distribution

of the complete data, where θ represents its corresponding parameter vector, which

lies in the set Ω of all possible θ. EM iteratively produces estimates to the maxi-

mum likelihood estimate (MLE) of θ, denoted by θ∗, by maximizing the marginal
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likelihood L(y, θ) =
∫
f(y, z; θ)dz. Each iteration of the EM algorithm consists of

an expectation and a maximization step, denoted by the E-step and M-step, respec-

tively. Letting θ(t) denote the parameter value computed in the tth iteration of the

algorithm, the E-step consists of computing the expectation of the complete data

log-likelihood, conditional on the observed data x and the previous parameter value:

Q(θ|θ(t−1)) = E
[
log f(y, z; θ)|y; θ(t−1)

]
.

This conditional expectation is oftentimes referred to as the Q-function. The M-step

consists of maximizing the Q-function:

θ(t) = argmax
θ∈Ω

Q(θ|θ(t−1)).

Therefore, Q(θ(t)|θ(t−1)) ≥ Q(θ|θ(t−1)), and so EM guarantees an increase in the

likelihood function in every iteration (Dempster et al., 1977). Given an initial esti-

mate θ(0), the EM algorithm successively alternates between the E-step and M-step

to produce a sequence θ(0), θ(1), θ(2), ... until convergence. The stopping criterion

generally used to signify convergence in the EM algorithm is when the difference or

relative difference of successive log-likelihood values falls below a specified tolerance.

Under mild regularity conditions (Wu, 1983), the sequence of estimates generated

by EM converges to θ∗.

For the model-based clustering problem, the incomplete data are the observed

data points y = {y1, ..., yn}. The missing, or unobserved, data are the cluster mem-

berships of the observed data points. We write the missing data as z = {z1, ..., zn},

where zi is a g-dimensional 0− 1 vector such that zij = 1 if the observed data point

yi belongs to cluster j, and zij = 0 otherwise. In other words, zij = 1 signifies
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that yi was generated from the probability density f( · ;ψj). We can now write the

complete data log-likelihood of θ = (π;ψ) as

logL(y, θ) =
n∑

i=1

g∑
j=1

zij {log πj + log f(yi;ψj)} .

The Gaussian mixture model allows significant simplifications for the EM up-

dates. In fact, in the Gaussian case both the E-step and M-step can be written in

closed form (Jank, 2006b). In the E-step of each iteration, we compute the condi-

tional expectation of the components of z with respect to the observed data x and

the parameters of the previous iteration θ(t−1) =
(
π(t−1);µ(t−1),Σ(t−1)

)
by

τ
(t−1)
ij = E

(
zij|yi; θ

(t−1)
)

=
π

(t−1)
j φ(yi;µ

(t−1)
j ,Σ

(t−1)
j )

∑g
c=1 π

(t−1)
c φ(yi;µ

(t−1)
c ,Σ

(t−1)
c )

(2.1)

for all i = 1, ..., n and j = 1, ..., g, where φ( · ;µ,Σ) is the Gaussian density function

with mean µ and covariance matrix Σ. Next, we compute the sufficient statistics:

T
(t)
j1 =

n∑
i=1

τ
(t−1)
ij , (2.2)

T
(t)
j2 =

n∑
i=1

τ
(t−1)
ij yi, (2.3)

T
(t)
j3 =

n∑
i=1

τ
(t−1)
ij yiy

T
i . (2.4)

The M-step consists of updating the Gaussian parameters by means of the above

sufficient statistics:

π
(t)
j =

T
(t)
j1

n
, (2.5)

µ
(t)
j =

T
(t)
j2

T
(t)
j1

, (2.6)

Σ
(t)
j =

T
(t)
j3 − T (t)−1

j1 T
(t)
j2 T

(t)T

j2

T
(t)
j1

. (2.7)
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EM is a deterministic algorithm; that is, the solution generated by EM is

determined solely by the starting value θ(0). Subsequent runs from the same starting

value will lead to the same solution. Also, EM is a locally converging algorithm,

and so depending on its starting value, EM may not produce the global optimizer

of the likelihood function. We demonstrate this on the example from Section 2.2,

choosing three different starting values. In particular, we let µ2 = 2, σ2 = (.001, 1),

and π = (.5, .5) for each initialization, along with three different values of µ1: 0, 2,

and 3. Figure 2.2 shows the iteration paths of EM for each of the three starting

values. In this example we choose the stopping criterion to be |ζk − ζk−5| ≤ 10−5,

where ζk is the log-likelihood value obtained in iteration k. As might be expected

from the shape of Figure 2.1, only the run with µ1 = 0 produces the globally optimal

solution, while the other two runs converge to sub-optimal solutions.
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Figure 2.2: Plot of the iteration paths for the log-likelihood of 3 different
runs of EM on the data set described in Section 2.2, with each run
initialized with a different value of µ1. The ∗ denotes the log-likelihood
value reached at convergence.
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Chapter 3

New Global Optimization Algorithms for Model-Based Clustering

3.1 Motivation

Two methods from the operations research literature that are designed to at-

tain globally optimal solutions to general multi-extremal continuous optimization

problems are the Cross-Entropy (CE) method (De Boer et al., 2005) and Model

Reference Adaptive Search (MRAS) (Hu et al., 2007). Both the CE method and

MRAS iteratively generate candidate solutions from a parametric sampling distri-

bution. The primary difference between the two are their different procedures for

updating their corresponding sampling parameters. In this chapter we set out to

apply these powerful global optimization methods to Gaussian mixture models and

the model-based clustering setting. The main purpose of doing so is because the

classical method for producing solutions to Gaussian mixture models in practice is

the locally converging EM algorithm. While the EM algorithm is capable of rela-

tively quick convergence, it only guarantees convergence to a local optimum of the

likelihood function (Wu, 1983). The likelihood of the mixture density may contain

many such local optima. We propose four new algorithms designed to overcome

locally optimal solutions of mixture models, two of which combine the convenient

properties of the EM paradigm with the ideas underlying global optimization.

The main contribution of this chapter is the development of global and efficient
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methods that utilize ideas of CE and MRAS to find globally optimal solutions for

model-based clustering problems. Our primary goal is to achieve better solutions

to clustering problems when the classical EM algorithm only attains locally optimal

solutions. In that context, one complicating factor is maintaining the positive def-

initeness of the mixture-model covariance matrices, especially for high-dimensional

data. We describe a previously-proposed method by Botev and Kroese (2004) and

demonstrate implementation issues that arise with data of dimension greater than

two. The primary problem is that simulating the covariance matrices directly be-

comes highly constrained as the dimension increases. We propose alternate updating

procedures that ensure the positive definiteness in an efficient way. One of our solu-

tions applies principles of EM for the updating scheme of the covariance matrices to

produce the CE-EM and MRAS-EM algorithms. Additionally, we exploit the work

of unconstrained parameterization of covariance matrices (Pinheiro and Bates, 1996)

to produce the CE-CD and MRAS-CD algorithms based on the Cholesky decompo-

sition. Chapter 4 of this dissertation focuses on proving theoretical convergence of

MRAS-CD to the global optimum of Gaussian mixture models. However, proving

theoretical convergence of the other three algorithms proposed in this chapter is still

an open problem.

We apply our methods to several simulated and real data sets and compare

their performance to the classical EM algorithm. We find that although a single run

of the global optimization algorithms may be slower than EM, all have the potential

of producing significantly better solutions to the model-based clustering problem.

We also show that the global optimum “matters”, in that it leads to improved
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decision making, and, particularly in the clustering context, to significantly improved

clustering decisions.

The rest of the chapter begins with explaining the CE method and MRAS in

Section 3.2, which provides the framework for our discussion of the proposed CE-

EM, CE-CD, MRAS-EM, and MRAS-CD algorithms. In Section 3.3 we carry out

numerical experiments to investigate how these new global optimization approaches

perform in the model-based clustering problem with respect to the classical EM

algorithm. The examples include simulated data sets and one real-world survey

data set. We conclude and discuss future work in Section 3.4.

3.2 Global Optimization Methods

In the following we discuss two powerful global optimization methods from the

operations research literature. We describe the methods and also the challenges that

arise when applying them to the model-based clustering context. We then propose

several new algorithms to overcome these challenges.

3.2.1 The Cross-Entropy Method

The Cross-Entropy (CE) method is a global optimization method that relies

on iteratively generating candidate solutions from a sampling distribution, scoring

the candidates according to the objective function, and updating the sampling dis-

tribution with sample statistics of the highest-scoring candidates. The CE method

has been used in a variety of discrete optimization settings such as rare event sim-
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ulation (Rubinstein, 1997) and combinatorial optimization problems (Rubinstein,

1999), as well as continuous optimization problems (Kroese et al., 2006). However,

applying CE to model-based clustering problems is a relatively new idea (Botev and

Kroese, 2004).

For the Gaussian model-based clustering problem described in Chapter 2, we

are trying to find the maximum likelihood estimate for the mixture density of n

p-dimensional data points across g clusters. To that end, we need to estimate the

unknown cluster parameters: the mean vector µj, covariance matrix Σj, and weight

πj for each cluster j = 1, ..., g. Therefore, when we apply the CE method to the

clustering setting, we need to generate g mean vectors, g covariance matrices, and g

weights for each candidate. Generating valid covariance matrices randomly is non-

trivial, which we will discuss in detail in Section 3.2.2. Note that since the covariance

matrix is symmetric, it is sufficient to work with a p(p+ 1)/2-dimensional vector to

construct a p× p covariance matrix.

As pointed out above, it is necessary to generate the following cluster param-

eters for each candidate: g · p cluster means, g · p(p + 1)/2 components used for

the construction of the g covariance matrices, and g weights, yielding a total of

g(p + 2)(p + 1)/2 cluster parameters. By convention, we let the candidate solution

X be a vector comprised of the g(p + 2)(p + 1)/2 cluster parameters. Our goal

is to generate the optimal vector X∗ that contains the cluster parameters of the

maximum likelihood estimate θ∗ = (µ∗j ,Σ
∗
j , π

∗
j )

g
j=1 of the mixture density.

In each iteration we generate N candidate vectors X1, ..., XN according to a

certain sampling distribution. The CE literature (Kroese et al., 2006) for continuous
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optimization suggests generating the components of each candidate independently,

using the Gaussian, double-exponential, or beta distributions, for example. We

choose the sampling distribution to be Gaussian for the simplicity of its param-

eter updates. Therefore, Xi is drawn from N(a, b2I), where a is the g(p+2)(p+1)
2

-

dimensional mean vector, b2I is the corresponding g(p+2)(p+1)
2

× g(p+2)(p+1)
2

covariance

matrix. We note that all off-diagonal components of b2I are zero, and so the compo-

nents of Xi are generated independently. As we will discuss later, it is also necessary

to generate some of the components of Xi from a truncated Gaussian distribution.

The next step is to compute the log-likelihood values of the data with respect to

each set of candidate cluster parameters. In each iteration, a fixed number of can-

didates with the highest corresponding log-likelihood values, referred to as the elite

candidates, are used to update the sampling distribution parameters (a, b). The

new sampling parameters are updated in a smooth manner by taking a convex com-

bination of the previous sampling parameters with the sample mean and sample

standard deviation of the elite candidate vectors. In the following, we describe each

of these steps in detail.

The CE algorithm for mixture models can be seen in Figure 3.1. In the al-

gorithm, the number of candidate solutions generated at each iteration is fixed at

N and the number of elite samples taken at each iteration is fixed at N elite. The

smoothing parameters α and β used in the updating step are also fixed. Note that

setting α = 1 updates the sampling mean with the value of the mean of the elite

candidates in that iteration. Doing so may lead to premature convergence of the

algorithm, resulting in a local, and poor, solution. Using a value of α between .5
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and .9 results in better performance, as the updated sampling mean incorporates the

previous sampling mean. Similarly, choosing a value of β close to 1 will accelerate

convergence, and so a value chosen between .3 and .5 seems to perform better, as

noted by emprirical evidence. The algorithm returns the candidate solution that

produces the highest log-likelihood score among all candidates in all iterations.

Data: Data points y1, y2, ..., yn

Result: Return highest-scoring estimate for X∗.
Initialize a0 and b20.1

k ⇐ 1.2

repeat3

Generate N i.i.d. candidate vectors X1, ..., XN from the sampling4

distribution N(ak−1, b
2
k−1I).

Compute the log-likelihoods `(y,Xi), ..., `(y,XN).5

For the top-scoring N elite candidate vectors, let ãk be the vector of6

their sample means, and let b̃2k be the vector of their sample variances.
Update ak and bk in a smooth way according to:7

ak = α ãk + (1− α)ak−1,

bk = β b̃k + (1− β)bk−1.

k ⇐ k + 1.8

until Stopping criterion is met.9

Figure 3.1: CE Algorithm for Mixture Models

The main idea of this algorithm is that the sequence a0, a1, ... will converge to

the optimal vector X∗ representing the MLE θ∗ = (µ∗j ,Σ
∗
j , π

∗
j )

g
j=1 as the sequence

of the variance vectors b20, b
2
1, ... converges to zero. The stopping criterion we use

is to stop the algorithm when the best log-likelihood value over k iterations does

not increase by more than a specified tolerance. However, occasionally one or more

components of the variances of the parameters prematurely converges to zero, per-

haps at a local maximum. One way to deal with this is by “injecting” extra variance
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into the sampling parameters b2k when the maximum of the diagonal components

in b2kI is less than a fixed threshold (Rubinstein and Kroese, 2004). By increasing

the variance of the sampling parameters, we expand the sampling region to avoid

getting trapped in a locally sub-optimal solution. We provide a list of both the

model parameters and the CE parameters in Table 3.1.

Table 3.1: List of the model and CE parameters.

Mixture Model parameters CE parameters
n = number of data points N = number of candidates
yi = ith data point Xi = candidate vector
p = dimension of data N elite = number of elite candidates
g = number of mixture components ak = Gaussian sampling mean vec-
πj = weight of jth mixture compo- tor
nent b2kI = Gaussian sampling covari-
ψj = probability distribution para- ance matrix
meters of jth component X∗ = candidate vector representing
fj( · ;ψj) = probability density of the global optimum
jth component ãk = mean of elite candidates in kth

θ = model parameters to estimate iteration

θ∗ = model parameters that repre-
sent the global optimum

b̃2k = variance vector of elite candi-
dates in kth iteration

`(y, θ) = log-likelihood function α = smoothing parameter for the
µj = Gaussian mixture mean vector sampling means
Σj = Gaussian mixture covariance
matrix

β = smoothing parameter for the
sampling standard deviations

3.2.1.1 Original CE Mixture Model Algorithm

We now discuss a potential way of generating candidates in the CE mixture-

model algorithm (see e.g., Botev and Kroese, 2004). The unknown parameters of the

Gaussian mixture model that we are estimating are the cluster means, the cluster

covariance matrices, and the cluster weights. Let us take the case where the data
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is 2-dimensional, such that each cluster j has two components of the mean vector,

µj,1 and µj,2, a 2 × 2 covariance matrix Σj, and one cluster weight πj. We can

construct the covariance matrix for each cluster by simulating the variances of each

component, σ2
j,1 and σ2

j,2, and their corresponding correlation coefficient, ρj, and

then populating the covariance matrix as follows:

Σj =




σ2
j,1 ρjσj,1σj,2

ρjσj,1σj,2 σ2
j,2


 . (3.1)

So, in the 2-d case, one needs to simulate 6 random variates for each cluster, resulting

in 6× g random variates for each candidate.

Note that some of the model parameters must be simulated from constrained

regions. Specifically, the variances must all be positive, the correlation coefficients

must be between -1 and 1, and the weights must be positive and sum to one. One

way to deal with the weight-constraints is via simulating only g− 1 weights; in this

case one must ensure that the sum of the simulated g−1 weights is less than one. We

choose a different approach. In order to reduce the constraints on the parameters

generated for each candidate, we choose to instead simulate g positive weights for

each candidate and then normalize the weights.

3.2.2 Challenges of the CE Mixture Model Algorithm

The cluster means and weights can be simulated in a very straightforward man-

ner in the CE mixture model algorithm. However, generating random covariance

matrices can be tricky, because covariance matrices must be symmetric and positive

semi-definite. Ensuring the positive semi-definite constraint becomes increasingly
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difficult as the data-dimension increases. In the CE mixture model algorithm, when

the dimension is greater than two, the method of populating a covariance matrix by

simulating the variance components and the correlation coefficients becomes prob-

lematic. This issue is not addressed in the original paper introducing the CE mixture

model algorithm of Botev and Kroese (2004). We propose several solutions to this

problem.

For practical purposes, we focus on methods that produce symmetric positive

definite covariance matrices, since a covariance matrix is positive semi-definite only

in the degenerate case. Ensuring the positive definite property when generating these

matrices is a difficult numerical problem, as Pinheiro and Bates (1996) discuss. To

investigate this problem, we rely on the following theorem, where Ai is the i × i

submatrix of A consisting of the “intersection” of the first i rows and columns of A

(Johnson, 1970):

Theorem 3.1 A symmetric n× n matrix A is symmetric positive definite (s.p.d.)

if and only if detAi > 0 for i = 1, ..., n.

Consider again the 2-dimensional case. This case is trivial, because the deter-

minant of the covariance matrix Σj in Equation (2.7) is given by σ2
j,1σ

2
j,2(1−ρ2

j) > 0,

for all |ρj| < 1. In other words, in the 2-d case, we can construct an s.p.d. covari-

ance matrix simply by simulating positive variances and correlation coefficients in

the interval [−1, 1]. However, when the number of dimensions is more than two, us-

ing the same method of populating the covariance matrix from simulated variances

and correlation coefficients no longer guarantees positive-definiteness. Therefore, it
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is necessary to place additional constraints on the correlation coefficients. Consider

the example of a general 3-dimensional covariance matrix:




σ2
1 ρ1σ1σ2 ρ2σ1σ3

ρ1σ1σ2 σ2
2 ρ3σ2σ3

ρ2σ1σ3 ρ3σ2σ3 σ2
3



. (3.2)

The matrix has determinant σ2
1σ

2
2σ

2
3 · (1 + 2ρ1ρ2ρ3− ρ2

1− ρ2
2− ρ2

3). One can see that

simulating the three correlation coefficients on the constrained region [−1, 1] will no

longer guarantee a covariance matrix with a positive determinant, e.g., by choosing

ρ1 = 1, ρ2 = 0, ρ3 = −1. As the number of dimensions of the data increases, there

are an increased number of constraints on a feasible set of correlation coefficients.

Generating a positive definite matrix this way has shown to be computationally

inefficient because of the high number of constraints (Pinheiro and Bates, 1996).

To illustrate this, we conduct a numerical experiment where we generate random

positive variance components and uniform random (0, 1) correlation coefficients to

construct covariance matrices of varying dimensions. For each dimension, we gen-

erate 100,000 symmetric matrices in this manner and then test them to see if they

are positive definite (see Table 3.2). Naturally, matrices of 2 dimensions constructed

this way will always be positive definite. But, as Table 3.2 indicates, this method of

generating covariance matrices is not efficient for high dimensional matrices. In fact,

in our experiment not a single 10-dimensional matrix out of the 100,000 generated

is positive definite.
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Table 3.2: The results from the experiment where 100,000 symmetric matrices of
varying dimensions are generated in the same manner as in the original CE mixture
model algorithm.

Dimension Number s.p.d. % s.p.d.
2 100,000 100
3 80,107 80.1
4 42,588 42.6
5 13,052 13.1
6 2,081 2.08
7 159 .159
8 5 .005
9 1 .001
10 0 0

3.2.3 Two New CE Mixture Model Algorithms

In this section we introduce two new CE mixture model algorithms that mod-

ify the method of generating random covariance matrices and hence overcome the

numerical challenges mentioned in the previous section.

3.2.3.1 CE-EM algorithm

The problem of non-s.p.d. covariance matrices does not present itself in the

EM algorithm, because the construction of the covariance matrices (2.7) in each EM

iteration based on the sufficient statistics (2.2)-(2.4) guarantees both symmetry and

positive-definiteness. Therefore, one potential solution to the CE mixture model

algorithm is to update the covariance matrices at each iteration using the same

methodology as in the EM algorithm. In this method, which we refer to as the

CE-EM algorithm, the means and weights are updated via the CE algorithm for

each candidate during an iteration, while we generate new covariance matrices via
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EM updating.

The CE-EM algorithm has the same structure as the CE algorithm, except that

the candidate vector X consists of only the cluster means and weights. Therefore,

the sampling parameters a and b now have g · (p + 1) components. In iteration k,

we produce N candidates for the cluster means and weights, and we score each of

the candidates along with the same cluster covariance matrices, Σ(k−1), produced in

the previous iteration. The sampling parameters (a, b) are updated as in step 6 in

the CE algorithm. Then, we use the cluster means and weights from the updated

sampling mean ak along with the covariance matrices from the previous iteration

to compute the sufficient statistics (2.2)-(2.4) used in the EM algorithm, and then

update the covariance matrices Σ(t) by (2.7). We provide a detailed description of

the CE-EM algorithm in Figure 3.2.

3.2.3.2 CE-CD Algorithm

In addition to the CE-EM algorithm, we propose an alternative method to

simulate positive definite covariance matrices in the CE mixture model algorithm.

Pinheiro and Bates (1996) propose five parameterizations of covariance matrices in

which the parameterizations ensure positive-definiteness. We adopt two of these

parameterizations for our efforts, and both rely on the following theorem (Thisted,

1988) regarding the Cholesky decomposition of a symmetric positive definite matrix:

Theorem 3.2 A real, symmetric matrix A is s.p.d. if and only if it has a Cholesky

Decomposition such that A = UTU , where U is a real-valued upper triangular matrix.
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Data: Data points y1, y2, ..., yn

Result: Return highest-scoring estimate for X∗.
Initialize a0, b

2
0, and Σ(0).1

k ⇐ 1.2

repeat3

Generate N i.i.d. candidate vectors X1, ..., XN from the sampling4

distribution N(ak−1, b
2
k−1I).

Compute the log-likelihoods `(y,Xi,Σ
(k−1)), ..., `(y,XN ,Σ

(k−1)).5

For the top-scoring N elite candidate vectors, let ãk be the vector of6

their sample means, and let b̃2k be the vector of their sample variances.
Update ak and bk in a smooth way according to:7

ak = α ãk + (1− α)ak−1,

bk = β b̃k + (1− β)bk−1.

Compute sufficient statistics (2.2)-(2.4) using cluster means and8

weights in ak and Σ(k−1).
Update Σ(k) according to (2.7).9

k ⇐ k + 1.10

until Stopping criterion is met.11

Figure 3.2: CE-EM Algorithm

Because covariance matrices are s.p.d., each covariance matrix has a corresponding

Cholesky factorization U . Therefore, one possible way to stochastically generate

covariance matrices in the CE mixture model is to generate the components of

the U matrix from the Cholesky decomposition instead of the components of the

covariance matrix Σ itself. Note that only the p(p+1)
2

upper right-hand components

of U must be generated for each p × p covariance matrix (all other components

are necessarily zero). Then, the covariance matrix can be constructed from the

simulated Cholesky factors, ensuring that the covariance matrix is s.p.d. We will

refer to this version of the CE method that updates the covariance matrices via the

Cholesky decomposition as the CE-CD algorithm.
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One potential problem with this method is that the Cholesky factor for a

symmetric positive definite matrix is not unique. For a Cholesky factor U of Σ, we

can multiply any subset of rows of U by −1 and obtain a different Cholesky factor

of the same Σ. Thus there is not a unique optimal X∗ in the CE-CD algorithm.

This can present a problem if we generate candidate vectors Xi and Xj of the

components of U and −U in the CE-CD algorithm. Although the two candidate

vectors represent the same covariance matrix, the benefit of using them to update

the sampling parameters would offset. Different factorizations of Σ can steer the

algorithm in opposite directions, because if one candidate vector contains U and

another contains −U , their mean is zero, making convergence to a single Cholesky

factor of Σ slow.

Pinheiro and Bates (1996) point out that if the diagonal elements of the

Cholesky factor U are required to be positive, then the Cholesky factor U is unique.

Thus, by restricting the diagonal elements of U to be positive, we can circumvent

the uniqueness problem of the Cholesky factorization mentioned above. So, in the

CE-CD algorithm, we choose to sample X from a truncated Gaussian distribution,

where we restrict the components corresponding to the diagonal elements of U to

be positive.

One drawback to implementing this method is the computation time to con-

vergence. In comparison to the alternative method of generating covariance matrices

at each iteration via the CE-EM algorithm, the computation time is increased, due

to the extra burden of simulating p(p+1)
2

components to be used for the construction

of the covariance matrices for each candidate in each iteration. In other words, only
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one covariance matrix is generated in each iteration in the CE-EM algorithm, while

N , or the number of candidates, covariance matrices are generated in each iteration

of the CE-CD algorithm.

3.2.4 Model Reference Adaptive Search

Model Reference Adaptive Search (MRAS) is a global optimization tool similar

in nature to the CE method in that it generates candidate solutions from a sampling

distribution in each iteration. It differs from CE in the specification of the sampling

distribution and the method it uses to update the sampling parameters, which leads

to a provably globally convergent algorithm (Hu et al., 2007). The sampling distri-

bution we use is multivariate Gaussian, and thus the components generated in each

iteration will be inherently correlated. We refer to the MRAS sampling distribution

as g̃( · ; ξ,Ω), where ξ and Ω are the mean and covariance matrix of the MRAS

sampling distribution, respectively. These parameters are updated iteratively using

a sequence of intermediate reference distributions.

The basic methodology of MRAS can be described as follows. In the kth itera-

tion, we generate Nk candidate solutions, X1, X2, ..., XNk
, according to the sampling

distribution g̃( · ; ξ(k),Ω(k)). After sampling the candidates, we score them accord-

ing to the objective function, i.e., we compute the objective function value H(Xi)

for each candidate Xi. We then obtain an elite pool of candidates by selecting the

top ρ-percentile scoring candidates. The value of ρ changes over the course of the

algorithm to ensure that the current iteration’s candidates improve upon the can-
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didates in the previous iteration. Let the lowest objective function score among the

elite candidates in any iteration k be denoted as γk. We introduce a parameter ε,

a very small positive number, to ensure that the increment in the {γk} sequence is

strictly bounded below. If γk < γk−1 + ε, increase ρ until γk ≥ γk−1 + ε, effectively

reducing the number of elite candidates. If, however, no such percentile ρ exists,

then the number of candidates is increased in the next iteration by a factor of α

(where α > 1), such that Nk+1 = αNk.

The MRAS mixture model algorithm can be seen in Figure 3.3. In the de-

scription, note that MRAS utilizes S : < → <+, a strictly increasing function, to

account for cases where the objective function value H(X) is negative for a given

X. Additionally, the parameter λ is a small constant which assigns a probability

to sample from the initial sampling distribution g( · ; ξ(0),Ω(0)) in any subsequent

iteration. I{·} denotes the indicator function such that:

I{A} :=





1, if event A holds,

0, otherwise.

The main idea of MRAS is analogous to that of CE; i.e., the sequence of means

ξ(0), ξ(1), ... will converge to the optimal vector X∗, as the sequence of the sampling

covariance matrices Ω(0),Ω(1), ... converges to the zero matrix. We use the same

stopping criterion for the MRAS mixture model algorithm as in CE: the algorithm

stops when the increase of the best log-likelihood value over k iterations falls below

a specified tolerance. Table 3.3 provides a list of the model parameters and the

MRAS parameters.
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Data: Data points y1, y2, ..., yn

Result: Return highest-scoring estimate for X∗.
Initialize ξ(0) and Ω(0).1

k ⇐ 0.2

repeat3

Generate Nk i.i.d. candidate vectors X1, ..., XNk
from the sampling4

distribution g̃( · ; ξ(k),Ω(k)) := (1− λ)g( · ; ξ(k),Ω(k)) + λg( · ; ξ(0),Ω(0)).
Compute the log-likelihoods values `(y,X1), `(y,X2), ..., `(y,XNk

).5

Select the elite candidates by taking the top scoring ρk−1-percentile6

candidate vectors, and define γ̃k(ρk) as the ρk-percentile log-likelihood
score obtained of all candidates in iteration k.
if k = 0 or γ̃k(ρk) ≥ γk + ε

2
then7

γk+1 ⇐ γ̃k(ρk), ρk+1 ⇐ ρk, and Nk+1 ⇐ Nk.8

else9

find the largest ρ̃ ∈ (ρk, 100) such that γ̃k(ρ̃) ≥ γk + ε
2
.10

if such a ρ̃ exists then11

γk+1 ⇐ γ̃k(ρ̃), ρk+1 ⇐ ρ̃, and Nk+1 ⇐ Nk,12

else13

γk+1 ⇐ γk, ρk+1 ⇐ ρk, and Nk+1 ⇐ αNk.14

end15

end16

Update the sampling parameters according to:17

ξ(k+1) =

∑Nk

i=1 S(`(y,Xi))
k/g̃(Xi, ξ

(k),Ω(k))I{`(y,Xi)≥γk+1}Xi∑Nk

i=1 S(`(y,Xi))k/g̃(Xi, ξ(k),Ω(k))I{`(y,Xi)≥γk+1}
,

Ω(k+1) =

∑Nk

i=1
S(`(y,Xi))

k

g̃(Xi,ξ(k),Ω(k))
I{`(y,Xi)≥γk+1}(Xi − ξ(k+1))(Xi − ξ(k+1))T

∑Nk

i=1 S(`(y,Xi))k/g̃(Xi, ξ(k),Ω(k))I{`(y,Xi)≥γk+1}
.

k ⇐ k + 1.18

until Stopping criterion is met.19

Figure 3.3: MRAS mixture model algorithm

3.2.5 Two New MRAS mixture model algorithms

Analogous to the CE mixture model algorithms, we introduce two new MRAS

mixture model algorithms that overcome the difficulties of generating random co-

variance matrices, namely MRAS-EM and MRAS-CD.
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Table 3.3: List of the model and MRAS parameters.

Mixture Model parameters MRAS parameters
n = number of data points Nk = number of candidates in kth

yi = ith data point iteration
p = dimension of data Xi = candidate vector
g = number of mixture components ξ(k) = Gaussian sampling mean
πj = weight of jth mixture compo-
nent

Ω(k) = Gaussian sampling covari-
ance matrix

ψj = probability distribution pa-
rameters of jth component

g̃( · ; ξ(k),Ω(k)) = Gaussian sam-
pling density

fj( · ;ψj) = probability density of
jth component

γk = lowest objective score of elite
candidates in kth iteration

θ = model parameters to estimate ρ = elite candidate percentile
θ∗ = model parameters that repre- α = multiplicative parameter
sent the global optimum X∗ = candidate vector representing
`(y, θ) = log-likelihood function the global optimum
µj = Gaussian mixture mean vector λ = sampling weight
Σj = Gaussian mixture covariance
matrix

S : < → <+ = strictly increasing
function
ε = lower bound on the increase of
each γk

3.2.5.1 MRAS-EM Algorithm

The methodology of the MRAS-EM algorithm is parallel to that of the CE-

EM algorithm. Because we are dealing with the same issue of how to stochastically

construct and update covariance matrices in each iteration while maintaining the

symmetric positive-definite property of these matrices, the same algorithmic scheme

can be used as discussed in Section 3.2.3.1 on the CE-EM algorithm. Therefore,

MRAS updating is used for the cluster means and weights, while the cluster co-

variance matrices are updated via the EM algorithm. Note that in each iteration

the cluster means and weights are updated first and are then used to update the

covariance matrices.
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3.2.5.2 MRAS-CD Algorithm

With the MRAS-CD algorithm, we use the same ideas as in the CE-CD algo-

rithm as discussed in Section 3.2.3.2. In other words, the covariance matrices are

decomposed into its the components of the Cholesky decomposition, which are then

simulated for each candidate in each iteration, and then used for the construction

of the cluster covariance matrices. It is the Cholesky decomposition components,

along with the cluster means and weights, that constitute the model parameters that

are simulated and used for updating purposes in each iteration of the MRAS-CD

algorithm. To ensure uniqueness of the Cholesky decomposition, we sample the di-

agonal components of the Cholesky factorizations from the interval [0,∞]. Chapter

4 provides a proof of convergence of MRAS-CD to the global optimum for Gaussian

mixtures.

3.3 Numerical Experiments

In the following numerical experiments, we demonstrate the performance of

the proposed algorithms in comparison with the original EM algorithm. To that end,

we design three different experiments of increasing complexity. All experiments are

performed in Matlab and are run on a 2.80 GHz Intel with 1 GB RAM.

3.3.1 Preventing Degenerate Clusters

Maximizing the log-likelihood function in the Gaussian mixture model can

lead to unbounded solutions, if the parameter space is not properly constrained.
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In fact, we can make the log-likelihood value arbitrarily large by letting one of the

component means be equal to a single data point, and then letting the generalized

variance, or determinant of the covariance matrix, of that component be arbitrarily

small. Such a solution is referred to as a degenerate, or spurious, solution. In

order to prevent degenerate solutions in practice, it is necessary to constrain the

parameter space in such a way as to avoid exceedingly small variance components

in the univariate case, or exceedingly small generalized variances in the multivariate

case.

One constraint that achieves this goal is to limit the relative size of the gen-

eralized variances of the mixture components (McLachlan and Peel, 2000) and it is

given by:

min
i,j

|Σi|
|Σj| ≥ c > 0,

where |Σ| denotes the determinant of the matrix Σ. To avoid degenerate solutions,

we will use the following constraint instead:

min
j
|Σj| ≥ c > 0. (3.3)

In each of these constraints, determining the appropriate value of c is difficult when

no prior information on the problem structure is known. For our numerical exper-

iments, we use a value of c = .01. If any algorithm generates a covariance matrix

that violates the constraint given by (3.3), we discard it and re-generate a new one.
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3.3.2 Initial Parameters

For the EM algorithm we use uniform starting values over the solution space.

That is, we initialize the means uniformly over the range of the data, we initialize

the variances uniformly between 0 and the sample variance of the data, and we

initialize the weights uniformly between 0 and 1. Then we normalize the weights

so that they sum to one. The stopping criterion for the EM algorithm is set to

|ζk − ζk−1| ≤ 10−5, where ζk is the log-likelihood value obtained in iteration k.

One of the benefits of the CE method (and MRAS, for that matter) is that

its performance is virtually independent of its starting values for many practical

purposes (De Boer et al., 2005). We initialize the parameters a0 and ξ(0) of the CE-

and MRAS-based algorithms as follows: we set the means equal to the mean of the

data, we set the covariance matrices equal to diagonal matrices with the sample

variances of the data along the diagonals, and we set each weight component equal

to 1/g. Also, we initialize the parameters b20 and Ω(0) to ensure the exploration of

the entire solution space; to that end, we set each component of b20, for example the

ith component b20,i, to a value so that the range of that parameter is encompassed in

the interval
(
a0,i − 2

√
b20,i, a0,i + 2

√
b20,i

)
. Therefore, the entire range is within two

sampling standard deviations of the initial mean. We initialize Ω(0) in the MRAS

algorithms in a similar manner, setting it equal to a diagonal matrix with the values

of b20 along the diagonal.

We choose the additional parameter values for the CE algorithms as follows

(see also Botev and Kroese, 2004): we use a population of N = 100 candidates
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in each iteration, with the number of elite candidates, N elite, equal to 10. The

updating parameters for the CE means a and variances b2 are α = .9 and β = .4,

respectively. We choose the additional parameter values for the MRAS algorithms

based on Hu et al. (2007): we set λ = .01, ε = 10−5, ρ0 = 80, N0 = 100, and

S(`(y,X)) = exp−`(y,X)/1000. For both the CE and MRAS algorithms, we use

the following stopping criterion: |ζk− ζk−10| ≤ .1, where ζk is the best log-likelihood

value attained in the first k iterations. However, we also run the CE and MRAS

algorithms a minimum of 50 iterations to ensure that the algorithms are given

enough time to steer away from the initial solution and begin converging to the

optimal solution. In other words, the stopping criterion is enforced only after 50

iterations, stopping the methods when no further improvement in the best log-

likelihood is attained in the last 10 iterations. Also, we restrict the maximum value

of Nk in any iteration of MRAS to be 1000 to limit the computational expense of

any single iteration.

3.3.3 Numerical Experiment 1

The first data set consists of 120 points simulated from a 3-mixture bivariate

Gaussian distribution; the parameters are displayed in Table 3.4. Notice that this is

a relatively simple example with three clusters in the 2-dimensional space; we will

use this example to illustrate the different algorithms and their relative performance.

Table 3.5 contains the results of 20 runs of the EM, CE-EM, CE-CD, MRAS-

EM, and MRAS-CD algorithms performed on this data set. We report the best
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Table 3.4: Parameters used to generate data set 1.

Cluster Mean Covariance Matrix Weight

1
(

2 2
) (

1 .5
.5 1

)
.5

2
(

4 8
) (

.2 0
0 1

)
.3

3
(

0 6
) (

1 −.2
−.2 .5

)
.2

(Max `), worst (Min `), and average (Mean `) solution (log-likelihood value) over

the 20 runs. We also report the associated standard error (S.E.(`)) as a measure for

the variability of the solutions. Moreover, we report the average number of iterations

and the average computing time (in seconds) as a measure for computational effort.

And lastly, we report the number of runs M∗
ε that come within ε = .1% of the

best solution found. The best solution equals `∗ = −413.99. Since the methods

are stochastic, it is unlikely that they all yield the exact same solution. Thus, we

consider a solution as approximately equal to the global optimum if it falls within

.1% of `∗.

Table 3.5: Simulation results on data set 1 based on 20 runs.

Algorithm Max ` Min ` Mean ` S.E.(`) M∗
ε iters Avg time

EM -413.99 -475.14 -431.86 5.36 12 15.20 0.094
CE-EM -413.99 -414.01 -414.00 0.0016 20 119.85 15.02
CE-CD -414.03 -414.09 -414.06 0.0038 20 108.65 14.52

MRAS-EM -414.00 -414.02 -414.01 0.0012 20 101.25 14.25
MRAS-CD -414.03 -454.22 -416.10 2.01 19 131.85 14.40

The results in Table 3.5 confirm that all of the algorithms have little trouble

finding the optimal or near-optimal solutions. The EM algorithm is on the order of
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100 times faster than the other methods. However, notice that EM finds the global

optimum solution in only 12 out of 20 runs, while our methods are successful in

finding the global optimizer every single time (except MRAS-CD, which failed once).

In fact, the worst solution (Min) of EM is almost 15% below the global optimum.

Although the computational time is somewhat sacrificed, we see that our methods

are much more consistent at finding the optimal solution. For instance, the worst

solution obtained by our methods is much better than the worst solution obtained

by EM; moreover, the variability in the solutions (S.E.(`)) is also much smaller. This

is also illustrated pictorially in Figure 3.4, which shows the convergence patterns

of all five algorithms. In that figure, we plot the average iteration path of the

best solution along with pointwise confidence bounds in the form of plus/minus two

times the standard error. The confidence bounds illustrate EM’s local convergence

behavior: EM gets stuck in local solutions and thus the bounds do not narrow;

this is different for the other methods for which, at least eventually, all solutions

approach one another.

Figure 3.5 shows typical iteration paths of EM, CE-EM, and CE-CD. We can

see that the deterministic nature of EM results in a smooth iteration path until

convergence. This is in contrast to the other two methods, where the element of

chance can cause uphill moves as well as downhill moves, at least temporarily. For

instance, the dips in the iteration path of CE-CD around iterations 75 and 90 are

the points where the algorithm injects extra variance into the sampling distribution

to increase the search space. Without this injection, the algorithm may prematurely

converge to a local maximum; the extra variance increases the search space which can
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Figure 3.4: Plots of the average iteration paths of the best solution
obtained for each method, along with the average plus/minus two times
the standard error.
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Figure 3.5: Plot of typical iteration paths of EM, CE-EM, and CE-CD
on data set 1, where the best log-likelihood value obtained in an iteration
is plotted for CE-EM and CE-CD.

steer the algorithm away from the local maximum and toward the global maximum.

In Figures 3.6-3.8, we compare a typical evolution of EM, CE-EM, and CE-

CD. Each graph shows two standard deviation ellipses around the estimate for the

mean in various iterations as the algorithms evolve. We notice how EM (Figure 3.6)

achieves the final (and globally-optimal) solution in fewer iterations. On the other

hand, CE-EM (Figure 3.7) spends more computational time searching the solution

space before settling on the final solution. This is similar for CE-CD (Figure 3.8).

In fact, the covariance matrices for CE-CD converge at a slower pace compared to

CE-EM. This is due to the fact that in CE-CD the components for the covariance
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Figure 3.6: Typical evolution of EM on data set 1.

matrices are generated independently of the means and weights, while in EM (and

consequently also in CE-EM) this is not the case (see Equations (2.5)-(2.7)). Thus,

we can expect convergence of CE-CD to be somewhat slower on average than that

of CE-EM. The benefit, though, is the increased search space with respect to the

covariance matrices.

42



−3 −2 −1 0 1 2 3 4 5 6
−2

0

2

4

6

8

10

12

1st dimension

2nd
 d

im
en

si
on

Best CE−EM candidate in 1st iteration

−3 −2 −1 0 1 2 3 4 5 6
−2

0

2

4

6

8

10

12

1st dimension

2nd
 d

im
en

si
on

Best CE−EM candidate in 10th iteration

−3 −2 −1 0 1 2 3 4 5 6
−2

0

2

4

6

8

10

1st dimension

2nd
 d

im
en

si
on

Best CE−EM candidate after 20th iteration

−3 −2 −1 0 1 2 3 4 5 6
−2

0

2

4

6

8

10

1st dimension

2nd
 d

im
en

si
on

Best CE−EM candidate after 30th iteration

−3 −2 −1 0 1 2 3 4 5 6
−2

0

2

4

6

8

10

1st dimension

2nd
 d

im
en

si
on

Best CE−EM candidate in 40th iteration

−3 −2 −1 0 1 2 3 4 5 6
−2

0

2

4

6

8

10

1st dimension

2nd
 d

im
en

si
on

Best CE−EM candidate in 50th iteration

Figure 3.7: Typical evolution of CE-EM on data set 1.
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Figure 3.8: Typical evolution of CE-CD on data set 1.
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3.3.4 Numerical Experiment 2

For the next data set, we simulate 200 points from a 2-dimensional 6-mixture

Gaussian distribution. This data set is similar to the one used in Botev and Kroese

(2004), who found that the CE method is superior to EM. Table 3.6 shows the

parameters used to generate the data. Notice that this example is much harder

than the first one; although we still operate in the two-dimensional space, correctly

identifying 6 clusters is much harder than identifying only 3 clusters. Our results

will also show that EM has more difficulty in finding the optimal solution.

Table 3.6: Parameters used to generate data set 2.

Cluster Mean Covariance Matrix Weight

1
(

0.6 6
) (

1 .9
.9 1

)
.1

2
(

1 −10
) (

1 −.9
−.9 1

)
.1

3
(

10 −1
) (

2 0
0 2

)
.2

4
(

0 10
) (

2 0
0 2

)
.2

5
(

1 −3
) (

2 0
0 2

)
.2

6
(

5 5
) (

2 0
0 2

)
.2

Table 3.7 shows the results of 20 runs of each method. In that table, we

report the percent improvement of the log-likelihood value of the best solution found

by each method over the log-likelihood value of the best solution found by EM

(imp.), in addition to the values reported in Table 3.5. We see that all four of our

methods outperform EM in terms of the best log-likelihood value (Max `). Also,
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the worst solution (Min `) is much better than the worst solution found by EM,

and the variance of the solutions is smaller. To be fair, we also see that the time

for convergence increases drastically for the global optimization methods. However,

this may be a fair price for obtaining significantly better solutions.

Table 3.7: Simulation results on data set 2 based on 20 runs.

Algorithm Max ` Min ` Mean ` S.E.(`) imp. iters Avg time
EM -956.34 -1060.9 -981.25 5.71 - 23.20 0.26

CE-EM -947.02 -1019.0 -975.78 4.64 0.97% 257.65 55.50
CE-CD -946.98 -999.83 -967.73 4.08 0.98% 249.35 56.65

MRAS-EM -947.08 -1018.4 -979.81 4.10 0.97% 217.15 47.23
MRAS-CD -947.12 -997.76 -967.92 3.28 0.96% 227.85 58.06

Figure 3.9 shows what can be gained using a global optimization method. In

that figure, we see the best solution found by EM versus the best solution found by

MRAS-CD. Note that based on Table 3.7 alone, the difference does not appear large

(-956.34 for EM versus -947.12 for MRAS-CD, an improvement of less than 1%).

However, Figure 3.9 indicates that MRAS-CD identifies the 6 clusters much better

than EM. In fact, while both methods correctly identify the bottom 3 clusters, EM

has a hard time distinguishing between the upper 3 clusters. While EM overesti-

mates the first cluster, it underestimates the other two. The reason for this poor

performance is that the upper 3 clusters are not well separated and EM commits

too soon on a final solution. On the other hand, MRAS-CD explores the solution

space better and spends a longer time doing so. Only after a thorough exploration

of the solution space, MRAS-CD settles on a final solution which also is the true

solution.
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Figure 3.9: The best runs of MRAS-CD and EM on data set 2.

3.3.5 Clustering of Survey Responses

The final data set consists of 152 responses in a survey of MBA students. In

that survey, students were asked about their perceived desirability of 10 different

cars. The cars ranged from minivans and hatchbacks, to sport utility vehicles and

sports cars. Students rated the desirability of each car on a scale of 1-10. Thus, the

resulting data set comprises of 152 10-dimensional vectors. The goal of clustering is

to find segments in the market of all MBA students with respect to car preferences.

We illustrate our methods on this more challenging data set in the following

way. Assuming g = 3 clusters, we first standardize the data to make it more

amenable to the Gaussian assumption. Because of the larger data-dimesion, we

increase the number of candidates generated in each iteration of the CE algorithms,

N , to 400, and increase N elite to 20. While this increases the computation time, it

allows us a more thorough search of the solution space. We run each method 10

times. Table 3.8 shows the results.

We notice the increased complexity of this problem: the variability of the
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Table 3.8: Simulation results on the survey data set based on 10 runs.

Algorithm Max ` Min ` Mean ` S.E.(`) imp. iters Avg time
EM -1622.1 -1942.2 -1797.6 28.20 - 13.6 0.14

CE-EM -1623.4 -1857.2 -1694.8 19.88 -0.08% 151.8 90.50
CE-CD -1300.6 -1809.9 -1599.3 37.85 19.83% 280.0 265.62

MRAS-EM -1329.9 -1955.5 -1709.6 39.10 18.01% 117.4 68.45
MRAS-CD -1435.5 -1886.1 -1620.4 32.87 11.50% 268.4 297.91

solutions is larger and so is the average computing time. However, we also notice the

much larger gains of our methods compared to EM: for three out of the four methods,

the improvement over EM ranges between 10% and 20%. Only CE-EM fails to

produce a better solution than EM. One reason for this underperformance may be

the close link to EM via the covariance-updating procedure, which may not allow

enough flexibility to explore the entire solution space. We also note that since we

increased the number of candidates generated per iteration, the computational time

difference between our methods and EM is now even larger. EM is approximately 3

orders of magnitude faster than the new methods in this experiment.

In order to gauge what can be gained from the global optimum, consider the

graph in Figure 3.10, which depicts the best set of clusters obtained by each of the

two methods, with the data projected onto the first two principal components. We

can see that the best solution obtained by MRAS-CD (left panel) separates the data

much better into 3 distinct clusters than the best solution obtained by EM (right

panel). In particular, in the left panel the cluster means are much better separated,

as are the cluster shapes (i.e., the corresponding covariance matrices). The clusters

in the left panel span the data set without the amount of overlap seen in the right
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panel. All-in-all, the cluster assignment corresponding to the best solution obtained

by the MRAS-CD algorithm appears to be supported much better by the observed

data than that of the best solution obtained by EM.
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Figure 3.10: The best runs of MRAS-CD and EM on the survey data set, with the
data projected onto the first two principal components.

3.3.6 A Fair Comparison

Since EM has considerably faster run-times than the proposed algorithms, one

could argue that running EM multiple times with random starting values very well

might produce as good or better solutions than a single run of the new algorithms

in roughly equivalent time. In the following, we provide a numerical experiment as

a fairer comparison between EM and the new algorithms. We use the same data set

as in Section 3.3.4, a 200 point, bivariate 6-component Gaussian mixture. However,

in this experiment, one simulation includes not just one run of EM, but multiple

runs of EM (with random starting values) so that the sum of the run-times totals at

least 55 seconds, roughly equal to the run-times of the other algorithms. We report

the statistics (Max, Min, Mean, S.E.) of the best runs of EM for each of the 20
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simulations.

Table 3.9: Simulation results on data set 2 based on 20 runs for the new algorithms,
and 20 sets of multiple runs of EM compliling a total run-time of at least 55 seconds.

Algorithm Max ` Min ` Mean ` S.E.(`) Avg time
EM -946.98 -958.24 -951.04 1.53 55.69

CE-EM -947.02 -1019.0 -975.78 4.64 55.50
CE-CD -946.98 -999.83 -967.73 4.08 56.65

MRAS-EM -947.08 -1018.4 -979.81 4.10 47.23
MRAS-CD -947.12 -997.76 -967.92 3.28 58.06

Table 3.9 contains the results of the fair comparison simulations. Running EM

multiple times for roughly equivalent times compared to the proposed algorithms

produces the global optimum on multiple trials. Moreover, the minimum and mean

likelihood values across the 20 trials are an improvement over the proposed algo-

rithms. This experiment shows that for the current state of the proposed algorithms

and for this particular data set, the algorithms have slightly poorer overall perfor-

mance on average as multiple runs of EM for equivalent time. However, optimizing

the proposed algorithms for speed would reduce the run-times of the algorithms, thus

lessening the ability of EM to find the global optimum alloting the same run-times.

3.3.7 Does the Global Optimum “Matter”?

One question that comes to mind when considering local, sub-optimal solutions

is whether the global optimum really matters. That is, does knowledge of the global

solution make a difference in practice or is the difference merely academic. In the

following, we conduct a numerical experiment to answer this question.

In this numerical experiment, we test how the global optimization clustering
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algorithms perform in relation to EM, not only gauging the goodness of fit by the

log-likelihood values, but also using the resulting mixture distribution to classify a

select subset of the data points according to the computed clusters. Specifically, we

take simulated data, of which we know the underlying parametric distribution as

well as the true cluster membership of each data point, and randomly select 70% of

the data and declare it the training set. We call the remaining 30% of the data the

test set.

We use the EM, CE-EM, CE-CD, MRAS-EM, and MRAS-CD algorithms to

estimate the clusters from the training set, which is held constant throughout the ex-

periment. After we cluster the training set, we use the computed cluster parameters

to compute the posterior probabilities of the test set, according to Equation (2.1).

Each posterior probability, τij, represents the probability that test point i belongs

to cluster j. Because we simulated the data, we know the true cluster membership

of each data point. We refer to the true membership as τ ∗ij, which we set to 1 if test

point i was simulated from cluster j, and 0 otherwise. So, we can refer to τ ∗i as the

true g-dimensional cluster membership vector for the ith test point.

To quantify how well the the clustering algorithms perform, we look at how

the estimated posterior probailities τij compare with the true values τ ∗ij. One way we

do so is to assign each test point yi to cluster j∗, where j∗ = argmaxj τij. Then, we

count the number of correctly assigned test points and compute the corresponding

empirical probabililty p̂.

Another way is to compute the norm of the difference of the two vectors τi and

τ ∗i , effectively computing a distance between the estimated and the true vectors. We
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compute the average L2 norm for the data points, which we refer to as D̄, via:

D̄ =

∑n
i=1 ‖τi − τ ∗i ‖

n
.

We simulate 500 data points from the bivariate Gaussian mixture distribution

seen in Table 3.6, and designate 350 of them as the training set, and the remaining

150 as the test set. We then apply each algorithm 20 times. Table 3.10 contains

the simulation results of the 20 runs. We report the mean and standard errors of

the following values: the resulting log-likelihood values (`), the proportion correctly

assigned to the true membership (p̂), and the average norm (D̄).

Table 3.10: Simulation results on data set 1 based on 20 runs.

Algorithm Mean ` S.E.(`) p̂
√
p̂(1− p̂) Mean D̄ S.E.(D̄)

EM -1759.3 9.31 .810 .0231 .281 .0327
CE-EM -1749.2 8.34 .808 .0198 .282 .0303
CE-CD -1721.3 5.66 .911 .0151 .136 .0223

MRAS-EM -1730.9 4.10 .861 .0168 .201 .0237
MRAS-CD -1726.1 4.66 .895 .0150 .158 .0221

The results in Table 3.10 indicate that, on average, EM produces solutions

with a log-likelihood value of −1759.3, and a standard error of 9.31. On the other

hand, all of our four proposed algorithms perform better with average log-likelihood

values higher than that of EM. In particular, CE-CD performs the best in this

experiment, with an average log-likelihood value of −1721.3. Additionally, the pro-

posed algorithms all produce solutions with lower variability than EM, as evidenced

by the smaller standard errors of the likelihood values. EM correctly classifes the

test points in this experiment with estimated probability p̂ = .810, and a standard

error of .0231. While the classification rate of CE-EM is marginally lower than EM
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at .808, the other three algorithms perform significantly better than EM. The two

methods that utilize the Cholesky decomposition perform the best, with CE-CD

and MRAS-CD correctly classifying 91.1% and 89.5% of the data, an improvement

of about 10% over EM. All four proposed algorithms also produce solutions that

classify with significantly lower variability than EM, as seen by the lower standard

errors of p̂. Looking at the average norm D̄, again CE-EM has a slightly poorer

performance than EM, whose average norm is .281. Analogous to the results for p̂,

the other three algorithms exhibit much better performance than EM, with CE-CD

performing the best with an average of .136. Again, all four algorithms have lower

standard errors for the computed norms than EM.

From Table 3.10, we can conclude that the better likelihood values found by

CE-CD, MRAS-EM, and MRAS-CD directly translate into better clustering per-

formance on the test set. The only exception is CE-EM, which, despite marginally

better (average) solutions, does not cluster the data any better than EM. It is gen-

erally also revealing that the CD-based global optimization methods (CE-CD &

MRAS-CD) perform better than the ones based on EM. An explanation for this

phenomenon is the de-coupling of mean and variance estimation in the CD-based

methods. While CE-EM and MRAS-EM use the EM updates for estimating the co-

variance matrices (which are not independent of the estimated means), CE-CD and

MRAS-CD update the covariance matrices independently of the cluster means and

cluster proportions. This increased flexibility may lead to an improved exploration

of the solution space and, consequently, to better clustering performance.
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3.4 Discussion

In this chapter we introduced several new methods to find globally optimal so-

lutions for model-based clustering problems. Numerical experiments indicate that,

although they are more computationally intensive than the classical EM, the pro-

posed algorithms perform better on average than EM. In fact, the experiments show

that unlike EM, the new methods are relatively insensitive to the starting points. In

addition to cross-validating the results using classification techniques as in Section

3.3.7, calculating the likelihood ratio chi-square significance is another way to test

the significance of improved solutions for mixture models.

The computational costs of the new methods are orders of magnitudes greater

than the EM algorithm, and in some cases, the additional gains in performance are

marginal, so an important research avenue to pursue would be a characterization

of when the new methods are most effective. Clearly, higher-dimensional problems

offer one opportunity, as demonstrated by the MBA survey example example, but

even so, it would be worthwhile to determine which properties of the problem lead to

more local solutions. Characterizing how the run-time complexity of the proposed

algorithms changes with respect to problem size would also be an important factor

for determining when the algorithms are most effective.

Another potential avenue of future work for these algorithms would be to

generalize the objective function in order to find the best clustering across all val-

ues of g. One approach for doing so would be to wrap a suitable model-selection

criterion around the algorithms for varying values of g. Other approaches might
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include incorporating some sort of hierarchical clustering scheme into the proposed

algorithms.

Other extensions to our work include application of global optimization meth-

ods to general mixture models, as well as other data mining algorithms such as

neural networks. Both CE and MRAS provide a natural framework for these op-

timization problems, and tailoring CE and MRAS to them could result in better

global solutions. Also, as the EM algorithm forms the basis for many supervised

and unsupervised learning methods, application of these methods to that field are

worth investigating.
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Chapter 4

Global Convergence of Gaussian Mixture Models with MRAS

4.1 Motivation

Because the likelihood function of Gaussian mixture models typically has a

large number of local maxima, finding the global maximum can be a difficult task.

Many optimization methods only guarantee convergence to a local optimum, and

are not necessarily concerned with systematically finding the global optimum. In

this chapter we discuss a method specifically designed to find the global optimum.

The method was first introduced in the field of operations research and is referred

to as Model Reference Adaptive Search.

Model Reference Adaptive Search (MRAS) is a method that was first proposed

in the field of operations research and is designed to attain globally optimal solutions

to general multi-extremal continuous optimization problems (Hu et al., 2007). As

discussed in Chapter 3, MRAS produces estimates to optimization problems by iter-

atively generating candidate solutions in each iteration from a parametric sampling

distribution. The candidates are all scored according to an objective function, and

the highest scoring candidates are used to update the parameters of the sampling

distribution by minimizing the Kullback-Leibler (KL) divergence between the sam-

pling distribution and the current reference model. Due to the choice of the reference

model sequence, the updating scheme of MRAS leads to a more general framework
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than the CE method, and allows for rigorous analysis of theoretical convergence (Hu

et al., 2007).

Many global optimization algorithms that perform well empirically have no

theoretical convergence proofs. A good number of these algorithms are ad-hoc or

based on heuristics that do not allow for a rigorous mathematical investigation of

their convergence properties. In particular, these approaches lack a built-in mech-

anism to systematically escape from locally optimal solutions. For instance, the

methods we discuss in Chapter 1 that are designed to globally optimize the likeli-

hood function of Gaussian mixture models are not theoretically globally convergent.

In contrast, in this chapter we prove global convergence of the MRAS-CD algorithm

to the global optimum of Gaussian mixtures. To the best of our knowledge, this

is the first mixture analysis algorithm that has provable global convergence. In

addition to providing theoretical justification that the algorithm is not merely an

ad-hoc heuristic, the convergence proof also gives insight into the performance of

the algorithm.

The rest of the chapter begins with an explanation of MRAS in general, as

well as some details on its convergence proof in Section 4.2. We discuss the MRAS-

CD algorithm and prove its convergence to the global optimum of the likelihood

function Gaussian mixture models in Section 4.3. We summarize the findings in the

discussion in Section 4.4.
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4.2 Model Reference Adaptive Search

Model Reference Adaptive Search (MRAS) is a global optimization tool that

estimates the global optimum by generating candidate solutions from a parametric

sampling distribution in each iteration. Hu et al. (2007) introduce MRAS as a

method that produces solutions to the following global optimization problem:

x∗ ∈ argmax
x∈χ

H(x), χ ⊆ <n.

MRAS achieves this goal by utilizing a sequence of intermediate reference distribu-

tions on the solution space to guide the parameter updates.

The basic methodology of MRAS can be described as follows. In the kth iter-

ation, we generate Nk candidate solutions, X1, X2, ..., XNk
, according to a sampling

distribution g̃( · ; Υ(k)), where Υ(k) represents the sampling parameters of the kth

iteration. After sampling the candidates, we score them according to the objective

function, i.e., we compute the objective function value H(Xi) for each candidate

Xi. We then obtain an elite pool of candidates by selecting the top ρ-percentile

scoring candidates. These elite candidates are used to update the parameters of the

sampling distribution for the next iteration. An outline of MRAS is given in Figure

4.1.

In MRAS, the value of the percentile ρ changes over the course of the algorithm

to ensure that the current iteration’s candidates improve upon the candidates in the

previous iteration. Let the lowest objective function score among the elite candidates

in any iteration k be denoted as γk. We introduce a parameter ε, a very small positive

number, to ensure that the increment in the {γk} sequence is strictly bounded below.
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Result: Return highest-scoring estimate for x∗

Initialize Υ(0).1

k ← 0.2

repeat3

Generate Nk i.i.d. candidate vectors X1, ..., XNk
from the sampling4

distribution g̃( · ; Υ(k)).
Compute the objective function values H(X1), H(X2), ..., H(XNk

).5

Select the elite candidates by taking the top scoring ρ-percentile6

candidate vectors.
Compute the updated MRAS sampling parameters Υ(k+1) via (4.1)7

using the elite candidates.
k ← k + 1.8

until Stopping criterion is met.9

Figure 4.1: MRAS Outline

If γk < γk−1+ε, increase ρ until γk ≥ γk−1+ε, effectively reducing the number of elite

candidates. If, however, no such percentile ρ exists, then the number of candidates is

increased in the next iteration by a factor of α (where α > 1), such that Nk+1 = αNk.

The sampling parameters are then updated as follows:

Υ(k+1) := argmax
Υ∈Θ

1

Nk

Nk∑
i=1

[S(H(Xi))]
k

g̃(Xi; Υ(k))
I{H(Xi)≥γk+1} ln g(Xi; Υ), (4.1)

where S : < → <+ is a strictly increasing function to account for cases where

the objective function value H(X) is negative for a given X, and I{·} denotes the

indicator function such that:

I{A} :=





1, if event A holds,

0, otherwise.

The sampling distribution g̃ in MRAS is generally chosen from the natural

exponential family. We choose to sample candidate solutions from the Gaussian

distribution for our implementation, such that Υ = (ξ,Ω), where ξ and Ω are the

mean and covariance matrix of the MRAS sampling distribution, respectively. The
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main idea of MRAS is that the sampling parameters will converge to a degenerate

distribution centered on the optimal solution; i.e., the sequence of means ξ(0), ξ(1), ...

will converge to the optimal vector X∗, representing the optimal solution x∗, as

the sequence of the sampling covariance matrices Ω(0),Ω(1), ... converges to the zero

matrix. Table 4.1 provides a list of the mixture model parameters and the MRAS

parameters.

Table 4.1: List of the model and MRAS parameters.

Mixture Model parameters MRAS parameters

n = number of data points Υ(k) = sampling parameters in kth

yi = ith data point iteration
p = dimension of data g̃( · ; Υ(k)) = sampling density
g = number of mixture components Nk = number of candidates in kth

πj = weight of jth mixture compo- iteration
nent Xi = candidate vector
ψj = probability distribution para- ρ = elite candidate percentile
meters of jth component γk = lowest objective score of elite
ψj = probability distribution para- candidates in kth iteration
meters of jth component λ = sampling weight
fj( · ;ψj) = probability density of
jth component

S : < → <+ = strictly increasing
function

θ = model parameters to estimate X∗ = candidate vector representing
θ∗ = model parameters that repre- the global optimum
sent the global optimum ε = lower bound on the increase of
`(y, θ) = log-likelihood function each γk

µj = Gaussian mixture mean vector ξ(k) = Gaussian sampling mean vec-
Σj = Gaussian mixture covariance tor
matrix Ω(k) = Gaussian sampling covari-

ance matrix
χ = constrained domain for candi-
date vectors
H( · ) = objective function
Θ = constrained domain for sam-
pling parameters

While MRAS is generally very versatile, applying it to the mixture model
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context is not straightforward. Part of the reason is that the mixture model requires

simulation of candidate solutions that satisfy the mixture model constraints. In the

following, we propose a solution via the Cholesky decomposition in order to assure

an efficient implementation of MRAS.

4.2.1 Global Convergence of MRAS

In this section we discuss the global convergence properties of MRAS mixture

model algorithm in the finite mixture model problem. We must first revert to the

general MRAS framework, where Hu et al. (2007) provide a convergence proof of

MRAS to the globally optimal solution when using a sampling distribution g( · ; Υ)

that belongs to the exponential family. Before we discuss the theorem, we provide

the definition of the exponential family of distributions, as well as some required

assumptions for the theorem.

Definition 4.1 A parameterized family of p.d.f.’s {g( · ; Υ),Υ ∈ Θ ⊆ <m} on χ

is said to belong to the exponential family if there exists functions h : <n → <,Γ :

<n → <m, and K : <m → < such that

g(x; Υ) = exp{ΥT Γ(x)−K(Υ)}h(x), ∀Υ ∈ Θ,

where K(Υ) = ln
∫

x∈χ
exp{ΥT Γ(x)}h(x)dx.

The following assumptions are referenced in the statement of Theorem 4.1.

Assumptions:

A1. For any given constant ξ < H(x∗), the set {x : H(x) ≥ ξ} ∩ χ has a

strictly positive Lebesgue measure.
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A2. For any given constant δ > 0, supx∈Aδ
H(x) < H(x∗), where Aδ : = {x :

‖x − x∗‖ ≥ δ} ∩ χ and the supremum over the empty set is defined to

be −∞.

A3. There exists a compact set Πε such that {x : H(x) ≥ H(x∗) − ε} ∩

χ ⊆ Πε. Moreover, g(x; Υ(0)) is bounded away from zero on Πε, i.e.,

g∗ = infx∈Πε g(x; Υ
(0)) > 0.

A4. The parameter vector Υ(k) computed in (4.1) is an interior point of Θ

for all k.

In Theorem 4.1, Hu et al. (2007) show global convergence of MRAS to the

optimal solution x∗ when using the multivariate Gaussian sampling distribution. As

the number of iterations tends to infinity, the sampling distribution tends toward a

degenerate distribution centered on the optimal solution x∗.

Theorem 4.1 If multivariate Gaussian p.d.f.’s are used in MRAS, i.e.,

g(X; ξ(k),Ω(k)) =
1√

(2π)n|Ω(k)| exp

(
−1

2
(X − ξ(k))T (Ω(k))−1(X − ξ(k))

)
,

ε > 0, α > (βS∗)2, and Assumptions A1, A2, A3, and A4 are satisfied, then

lim
k→∞

ξ(k) = x∗, and lim
k→∞

Ω(k) = 0n×n w.p. 1

4.3 MRAS algorithm for Gaussian Mixture Models

As pointed out above, MRAS requires, in every iteration, the simulation of

candidate solutions from within the parameter space. In the Gaussian mixture
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model, these candidate solutions must include the mixture weights π = (π1, ..., πg)

and the probability distribution parameters ψj = (µj,Σj) for j = 1, ..., g, where µj

is the mean vector and Σj is the covariance matrix of the jth component. Simulat-

ing covariance matrices is involved, since they need to be positive definite. Naive

approaches (e.g., via simulating matrices randomly and consequently selecting only

those that are positive definite) can be extremely inefficient. In Chapter 3 the

MRAS-CD algorithm was introduced as an algorithm utilizes updating the Cholesky

factorization of a covariance matrix to efficiently simulate s.p.d. covariance matrices.

that applied MRAS to Gaussian mixture models updated the covariance matrices of

iteratively. In this chapter, we look more closely at one of those algorithms, namely

MRAS-CD. and we proposed several algorithm. In th following, we propose a new

method to simulate positive definite covariance matrices for the MRAS mixture

model algorithm. This method relies on the Cholesky decomposition. Recall the

following theorem (see e.g., Thisted, 1988) regarding the Cholesky decomposition of

a symmetric positive definite matrix:

Theorem 4.2 A real, symmetric matrix A is symmetric positive definite (s.p.d.)

if and only if it has a Cholesky decomposition such that A = UTU , where U is a

real-valued upper triangular matrix.

Because covariance matrices are s.p.d., each covariance matrix has a corre-

sponding Cholesky factorization U . Therefore, one way to stochastically generate

covariance matrices in the MRAS mixture model is to generate the components

of the U matrix from the Cholesky decomposition instead of the components of
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the covariance matrix Σ directly. Note that only the p(p + 1)/2 upper right-hand

components of U must be generated for each p × p covariance matrix (all other

components are necessarily zero). Then the covariance matrix can be constructed

from the simulated Cholesky factors, ensuring that the covariance matrix is s.p.d.

One potential problem with this method is that the Cholesky factorization for

a symmetric positive definite matrix is not unique. For a Cholesky factorization

U of Σ, we can multiply any subset of rows of U by −1 and obtain a different

Cholesky factorization of the same Σ. Thus, there is not a unique global optimum

in the MRAS mixture model algorithm. However, in their discussion of parame-

terizations of positive definite matrices, Pinheiro and Bates (1996) note that if the

diagonal elements of the Cholesky factorization U are required to be positive, then

the Cholesky factorization U is unique. Thus, by restricting the diagonal elements

of U to be positive, we can circumvent the uniqueness problem of the Cholesky

factorization mentioned above. We therefore choose to construct the covariance

matrices in the MRAS mixture model algorithm by sampling the diagonal compo-

nents of U from a truncated Gaussian distribution (accepting all positive values),

and subsequently computing the covariance matrix Σ = UTU .

MRAS can now be applied to the estimation of Gaussian mixtures in the fol-

lowing way. We first sample candidate solutions Xi that correspond to the set of

mixture parameters θ = (µj,Σj, πj)
g
j=1, where the covariance matrices are repre-

sented by their corresponding Cholesky factorizations mentioned above. We then

score each candidate with the log-likelihood function, and use the best-scoring can-

didates to update the sampling distribution. The goal is to obtain the optimal
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solution X∗ containing the mixture means, Cholesky factorizations, and weights of

the global maximum likelihood estimate θ∗ = (µ∗j ,Σ
∗
j , π

∗
j )

g
j=1. We provide the MRAS

mixture model algorithm in Figure 4.2. Note that the MRAS parameter λ is a small

constant which assigns a probability to sample from the initial sampling distribution

g( · ; Υ(0)) in any subsequent iteration. Also, g( · ; ξ,Ω) is the multivariate Gaussian

density, i.e.,

g(X; ξ,Ω) =
1√

(2π)p|Ω| exp

(
−1

2
(X − ξ)T Ω−1(X − ξ)

)
,

where |Ω| denotes the determinant of the matrix Ω.

The stopping criterion for the MRAS mixture model algorithm that we use is to

stop when the increase of the best log-likelihood value over k iterations falls below

a specified tolerance.

4.3.1 Preventing Degenerate Solutions

As mentioned in Section 3.3.1, maximizing the log-likelihood function in the

Gaussian mixture model can lead to unbounded solutions, if the parameter space

is not properly constrained. Therefore, we choose to constrain the MRAS mixture

model algorithm generates a covariance matrix that violates the constraint given by

Equation (3.3), we discard the candidate and re-generate a new one.
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Data: Data points y1, y2, ..., yn

Result: Return highest-scoring estimate for X∗.
Initialize ξ(0) and Ω(0).1

k ← 0.2

repeat3

Generate Nk i.i.d. candidate vectors X1, ..., XNk
from the sampling4

distribution g̃( · ; ξ(k),Ω(k)) := (1− λ)g( · ; ξ(k),Ω(k)) + λg( · ; ξ(0),Ω(0)).
Compute the log-likelihoods values `(y,X1), `(y,X2), ..., `(y,XNk

).5

Select the elite candidates by taking the top scoring ρk−1-percentile6

candidate vectors, and define γ̃k(ρk) as the ρk-percentile log-likelihood
score obtained of all candidates in iteration k.
if k = 0 or γ̃k(ρk) ≥ γk + ε

2
then7

γk+1 ← γ̃k(ρk), ρk+1 ← ρk, and Nk+1 ← Nk.8

else9

find the largest ρ̃ ∈ (ρk, 100) such that γ̃k(ρ̃) ≥ γk + ε
2
.10

if such a ρ̃ exists then11

γk+1 ← γ̃k(ρ̃), ρk+1 ← ρ̃, and Nk+1 ← Nk,12

else13

γk+1 ← γk, ρk+1 ← ρk, and Nk+1 ← αNk.14

end15

end16

Update the sampling parameters according to:17

ξ(k+1) ←
∑Nk

i=1
S(`(y,Xi))

kXi

g̃(Xi,ξ(k),Ω(k))
I{`(y,Xi)≥γk+1}∑Nk

i=1
S(`(y,Xi))k

g̃(Xi,ξ(k),Ω(k))
I{`(y,Xi)≥γk+1}

, (4.2)

Ω(k+1) ←
∑Nk

i=1
S(`(y,Xi))

k(Xi−ξ(k+1))(Xi−ξ(k+1))T

g̃(Xi,ξ(k),Ω(k))
I{`(y,Xi)≥γk+1}∑Nk

i=1
S(`(y,Xi))k

g̃(Xi,ξ(k),Ω(k))
I{`(y,Xi)≥γk+1}

. (4.3)

k ← k + 1.18

until Stopping criterion is met.19

Figure 4.2: MRAS Mixture Model Algorithm

4.3.2 Proving Global Convergence of the MRAS Mixture Model Al-

gorithm

In order to show that Theorem 4.1 applies to the MRAS mixture model al-

gorithm algorithm, we must show that Assumptions A1, A2, A3, and A4 hold true
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in the maximization of the likelihood function of the mixture density. So, for our

purposes, the objective function H(x) discussed in the general MRAS framework is

the log-likelihood of the mixture density:

`(y, θ) =
n∑

i=1

log

g∑
j=1

πjfj(yi;µj,Σj).

In the MRAS mixture model algorithm, we are estimating the vectorX∗ representing

the optimal means, weights, and Cholesky factorizations of the covariance matrices,

i.e., the vector X∗ representing the optimal solution θ∗ = (µ∗i ,Σ
∗
i , π

∗
i )

g
i=1. Therefore,

we are trying to solve the optimization problem:

X∗ ∈ argmax
X∈χ

`(y,X).

Before we prove the global convergence of the MRAS mixture model algorithm,

we first provide the following useful lemmas. Lemma 4.1 shows that a continuous

function that is bounded above and possesses a unique optimal maximizer on a

constrained space χ ∈ <n satisfies Assumption A1.

Lemma 4.1 For a continuous function H(x), x ∈ χ ∈ <n, where H is bounded

above and there exists a unique optimal maximizer x∗ s.t. H(x) < H(x∗), ∀x 6= x∗,

then ∀ξ < H(x∗), the set {x : H(x) ≥ ξ} has strictly positive Lebesgue measure, and

thereby Assumption A1 is satisfied.

Proof: Choose ξ < H(x∗) and let ε = H(x∗)−ξ > 0. By continuity of H, ∃δ > 0 s.t.

∀x ∈ {x : ‖x− x∗‖ < δ}, then |H(x)−H(x∗)| < ε. By rewriting the left- and right-

hand sides of the inequality, we see that H(x∗)−H(x) < H(x∗)− ξ, i.e., ξ < H(x),

∀x ∈ {x : ‖x− x∗‖ < δ}. Since the set {x : ‖x− x∗‖ ≤ δ
2
} ⊆ {x : H(x) ≥ ξ}, then

m ({x : H(x) ≥ ξ}) ≥ m
({x : ‖x− x∗‖ ≤ δ

2
}) > 0. 2
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Lemma 4.2 gives an inequality relating the determinants of two positive definite

n×n matrices with the determinant of their convex combination (see e.g., Horn and

Johnson, 1990).

Lemma 4.2 For positive definite n× n matrices A and B,

det (αA+ (1− α)B) ≥ (detA)α(detB)1−α, where α ∈ (0, 1).

In Lemma 4.3 we extend the statement of Lemma 4.2 to a convex combination

of an arbitrary number of positive definite n×n matrices. In the proof, we make use

of two properties of positive definite matrices: for positive definite matrices A,B,

and scalar α > 0, then αA and A + B are both positive definite as well (Johnson,

1970).

Lemma 4.3 For positive definite n× n matrices Aj, j = 1, ..., k,

det

(
k∑

j=1

αjAj

)
≥

k∏
j=1

(detAj)
αj ,

for any set of {αj}kj=1 s.t. αj > 0 and
∑k

j=1 αj = 1.

Proof: We prove this lemma by induction.

i. Base case: k = 2, shown by Lemma 4.2.

ii. Assuming the lemma holds for k, we show it holds for k + 1, i.e., for any set

{α̃j}k+1
j=1 s.t. α̃j > 0 and

∑k+1
j=1 α̃j = 1, then,

det

(
k+1∑
j=1

α̃jAj

)
≥

k+1∏
j=1

(detAj)
α̃j .
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Define αj =
α̃j

1−α̃k+1
, for j = 1, ..., k. Thus,

∑k
j=1 αj = 1 and the induction

assumption can be applied to {A1, ..., Ak} for this set of {αj}kj=1. Then,

det

(
k+1∑
j=1

α̃jAj

)
= det

(
k∑

j=1

α̃jAj + α̃k+1Ak+1

)

= det

(
(1− α̃k+1)

k∑
j=1

αjAj + α̃k+1Ak+1

)

≥
[
det

(
k∑

j=1

αjAj

)]1−α̃k+1

(detAk+1)
α̃k+1 (by Lemma 2)

≥
[

k∏
j=1

(detAj)
αj

]1−α̃k+1

(detAk+1)
˜αk+1

(
by induction

assumption

)

=

[
k∏

j=1

(detAj)
α̃j

]
(detAk+1)

α̃k+1

=
k+1∏
j=1

(detAj)
α̃j .

Therefore, we have shown by induction that the statement of the lemma is true. 2

Constraining the parameter space is necessary for the proof of the MRAS

mixture model algorithm convergence theorem. As mentioned in Section 3.3, we

must place additional constraints on the parameter space in order to prevent de-

generate clusters and an unbounded log-likelihood value. Specifically, these con-

straints are |UT
j Uj| ≥ c > 0, j = 1, ..., g, i.e., bounding the generalized variances

of the covariance matrices below. We simplify this constraint by relying on a con-

venient property of determinants of positive definite matrices: for positive defi-

nite A,B, detAB = detA detB. So, for the Cholesky decomposition Σ = UTU ,

|Σ| = |UT ||U | = |U |2. Equivalently, we write |U | ≥ √c. Since U is an upper-
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triangular matrix, |U | is equal to the product of its diagonal elements. So, the

constraint |UTU | ≥ c can be written as
∏p

i=1 Uii ≥
√
c.

One condition that is necessary for satisfying Assumption A2 is that the op-

timal candidate solution X∗ be unique. By restricting the diagonal components of

the Cholesky factorization U to be positive, its correponding covariance matrix Σ

is unique. However, for a given optimal solution, any permutation of the cluster

labels will result in an equivalent log-likelihood value to the problem, resulting in

g! optimal solutions and therefore a non-indentifiable formulation. To avoid this

problem, we add the following constraint to the problem:

µ1(1) ≤ µ2(1) ≤ µ3(1) ≤ ... ≤ µg(1),

where µi(1) represents the 1st mean component of the ith cluster. Although the

inequalities in this constraint are not strict, the probability of multiple mean com-

ponents of continuous random data being equal is zero. Therefore, this constraint

mandates a unique ordering of the mixture components of θ∗ w.p. 1 for continuous

random data, resulting in a unique optimal candidate solution X∗ to the MRAS

Gaussian mixture model algorithm.

To allow us to prove convergence, we choose to bound the candidate means

within a compact space based on the observed data set. In particular, we define

ymin as the minimum value over all components of the data points y1, ..., yn. That

is, ymin(i) = minj=1,...,n yj(i). Similarly, we define ymax as the maximum value over

all components of the data points, i.e., ymax(i) = maxj=1,...,n yj(i). We note that

bounding the candidate mean components by ymin and ymax is not an unreasonable
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constraint; clearly, the means of the optimal clusters will not lie outside the range

of the data.

We also place constraints on the components of the Cholesky factorizations

when we generate the candidate vectors. We first calculate the sample variance

of the data set, V ar({y1, y2, ..., yn}), and then choose the maximum across all p

components, i.e., Vmax = maxi=1,...,p V ar({y1, y2, ..., yn}). And so, Vmax represents an

upper bound for the variance component of any cluster. Constraining the diagonal

components of the Cholesky factorizations within the bounds [0, Vmax] and the off-

diagonal non-zero components within [−Vmax, Vmax] suffices, as the global optima

will undeniably satisfy these constraints.

Therefore, the solution space with all of the necessary constraints is given by

the following:

χ =





µj ∈ [ymin, ymax], j = 1, ..., g

s.t. µ1(1) ≤ µ2(1) ≤ ... ≤ µg(1)

Uj(ii) ∈ [0, Vmax], j = 1, ..., g; i = 1, ..., p

s.t.
∏p

i=1 Uj(ii) ≥
√
c > 0, j = 1, ..., g

Uj(ik) ∈ [−Vmax, Vmax], j = 1, ..., g; i = 1, ..., p− 1;

k = i+ 1, ..., p

πj ∈ [0, 1], j = 1, ..., g

s.t.
∑g

j=1 πj = 1

(4.4)

The number of parameters that we are estimating, namely the means, weights,

and the upper-triangular entries of the Cholesky factorization (all other components
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are necessarily zero) for each cluster, is d := g (p+1)(p+2)
2

, so we can consider the space

χ to be d-dimensional. The MRAS sampling parameters Υ = (ξ,Ω) belong to the

space Θ, where Θ = {ξ ∈ χ, Ω is s.p.d.}.

Lemma 4.4 The subspace χ ⊆ <d is compact.

Proof: For any vector X ∈ χ, we note that all components of X are bounded

as described in (4.4). We now show that the space χ is closed. The constraints

that bound the space clearly constitute a closed subspace in <d. The remaining

constraints, namely µ1(1) ≤ µ2(1) ≤ ... ≤ µg(1),
∏p

i=1 Uj(ii) ≥
√
c for j = 1, ..., g,

and
∑g

j=1 πj = 1, each represent a closed subspace of <d, because all inequalities on

the constraints are not strict. Therefore, χ is a finite intersection of closed sets, and

is thus closed. Because χ is both closed and bounded, then χ is compact. 2

Lemma 4.5 For a continuous function H(x), x ∈ χ ∈ <n, where H is bounded

above and there exists a unique optimal solution x∗ s.t. H(x) < H(x∗), ∀x 6= x∗

and χ is a compact space, then ∀δ > 0, supx∈Aδ
H(x) < H(x∗), where Aδ := {x :

‖x− x∗‖ ≥ δ} ∩ χ, and thereby Assumption A2 is satisfied.

Proof: We prove this lemma directly:

We can rewrite Aδ = χ \ {x : ‖x − x∗‖ < δ}, which is the complement of the open

ball of radius δ around x∗ intersected with χ. Therefore, since χ is a compact space,

Aδ is a compact space as well.

Since H(x) is a continuous function, it achieves its supremum on the compact space

Aδ, i.e., ∃x̃ ∈ Aδ s.t. supx∈Aδ
H(x) = H(x̃).
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And, because H(x) < H(x∗), ∀x 6= x∗, we have:

sup
x∈Aδ

H(x) = H(x̃) < H(x∗). 2

Now we give Theorem 4.3, where we show that Theorem 4.1 applies to MRAS

mixture model algorithm in the global optimization of Gaussian finite mixture mod-

els.

Theorem 4.3 For the maximization of the likelihood function of a mixture density

of g Gaussian clusters, if the MRAS parameters are chosen s.t. ε > 0, α > (βS∗)2,

where S∗ := S(`(y, θ∗)), and we are optimizing over the compact space χ denoted by

(4.4), then:

lim
k→∞

ξ(k) = X∗, and lim
k→∞

Ω(k) = 0d×d w.p. 1,

where X∗ is the unique optimal vector representing the MLE θ∗ = (µ∗j ,Σ
∗
j , π

∗
j )

g
j=1.

Proof: This proof consists of showing that Assumptions A1, A2, A3, and A4

apply to MRAS mixture model algorithm in the maximization of the log-likelihood

of the Gaussian mixture density.

i. Because `(y, θ) is continuous on χ w.r.t. θ, then by Lemma 4.1, for any

ξ < `(y, θ∗), the set {y : `(y, θ) ≥ ξ} ∩ χ has a strictly positive Lebesgue

measure. Thus, Assumption A1 is satisfied.

ii. By Lemma 4.5, since `(y, θ) is continuous on χ w.r.t. θ, then ∀δ > 0,

supθ∈Aδ
`(y, θ) < `(y, θ∗), where Aδ := {θ : ‖θ − θ∗‖ ≥ δ} ∩ χ. And so,

Assumption A2 is satisfied.
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iii. By restricting the search space to a compact region, then the set {θ : `(y, θ) ≥

`(y, θ∗) − ε} ∩ χ is a subset of a compact set, namely χ itself. Moreover,

using a multivariate Gaussian sampling distribution ensures that sampling any

point in the entire solution space on the first iteration occurs with non-zero

probability. Thus, A3 is shown.

iv. In order to show that the formulation satisfies A4, we first revisit the updating

scheme of MRAS when the sampling distribution is multivariate Gaussian as

given by Equations (4.2) and (4.3). It is evident that the mean of the sampling

distribution, ξ(t), is simply a convex combination of the elite candidates. Since

each candidate Xi ∈ χ, then a convex combination of them will satisfy all of

the constraints as well. One can verify this by noting that the space χ is

convex; this is clearly evident for all of the constraints in the formulation,

except for the degenerate cluster constraint, |Uj| ≥
√
c > 0, j = 1, ..., g, which

we now address.

We need to show that a convex combination of the top t candidates also

satisfies this constraint, namely
∣∣∣∑t

j=1 αjUj

∣∣∣ ≥ √c. We note that as a direct

application of Lemma 4.3,
∣∣∣∑t

j=1 αjUj

∣∣∣ ≥∏t
j=1 |Uj|αj ≥ minj |Uj| ≥

√
c. This

shows that a convex combination of Cholesky factorizations satisfying the

degenerate constraint will also satisfy the degenerate constraint.

Also, because the candidates Xi are sampled from the probability distribution

g̃( · ; ξ(k),Ω(k)), then w.p. 1 each candidate lies in the interior of χ. Therefore,

the updated mean vector ξ(k+1) will also lie in the interior of the space. Also,
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the updated Ω(k+1) is clearly s.p.d. by construction, and thus A4 is satisfied.

2

4.4 Discussion

In this chapter we presented a proof of global convergence of the MRAS-CD

algorithm to the optimal solution for Gaussian mixtures. In addition to its theo-

retical convergence, the numerical experiments discussed in Chapter 3 indicate that

the proposed algorithm can find better global solutions missed by the classical EM.

Furthermore, we note that by restricting the parameter space of the optimization

decision variables to a compact set, the proof can be extended to finite mixture mod-

els of other probability distributions as well, in addition to Gaussian as presented

in this chapter.
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Chapter 5

Landscape Analysis of Finite Mixture Models

5.1 Motivation

In this chapter we examine the likelihood function of finite mixture models,

specifically focusing on metrics that measure the difficulty of finding the global

optimum of a given data set. Note that although the standard formulation of finite

mixture models as given in Chapter 2 is a non-identifiable formulation due to the

label-switching problem addressed in Chapter 4, mandating a unique ordering of

the labels results in a unique global optimum for mixture models. This dissertation

has focused on global optimization of mixture models, and now in this chapter we

focus on some of the underlying reasons for why optimizing the likelihood function

of mixture models is difficult. We do so by analyzing the likelihood function’s fitness

landscape, which is defined as the fitness function evaluated on all points of the state

space, first introduced by Wright (1932). Additionally, we investigate which factors

affect the landscape, and consequently how the difficulty changes.

Understanding the behavior of the likelihood function for various mixture

model data sets may provide insight into the complexity of the optimization of

its landscape. The primary reason for why it is difficult to find the global optimum

of Gaussian mixtures is that the likelihood function can have a large number of local

optima that are quite inferior to the global optimum. The presence of many local
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optima on the fitness landscape increases the chance that optimization algorithms

will get trapped in sub-optimal solutions.

In this chapter we look at previous work that characterize the difficulty of op-

timization problems. Törn et al. (1999) present three criteria that capture this dif-

ficulty. The authors do not provide a quantifiable metric for the third criterion, and

so in this chapter we propose a new metric to quantify this criterion. Additionally,

we propose a new, fourth criterion for measuring the difficulty of an optimization

problem. We introduce a metric for measuring this fourth criterion, and examine

the classes of problems in which this new criterion is deemed important. We apply

these global landscape metrics to two classical optimization problems as well as a

variety of Gaussian mixture model data sets, and show how different attributes of

the data set affect these landscape measures.

The rest of the chapter begins with a discussion of metrics that quantify the

difficulty of optimization problems in Section 5.2. We discuss how these metrics

can be calculated and applied to Gaussian mixture models in Section 5.3. Then, in

Section 5.4 we apply the metrics to several simulated and real-world data sets. We

summarize the findings in the discussion in Section 5.5.

5.2 Measuring the Difficulty of Optimization Problems

Consider the following optimization problem:

Min f(y), s.t. y ∈ χ ⊆ <n. (5.1)

77



We assume that the optimization problem defined in Equation (5.1) has a unique

global optimum y∗∗, andN locally optimal solutions, y∗1, y
∗
2, ..., y

∗
N , such that f(y∗∗) <

f(y∗i ), for all i = 1, 2, ...,N .

Törn et al. (1999) discuss three criteria to consider when characterizing the

difficulty of a global optimization problem. The first criterion, and arguably the

most important, is the relative size of the region of attraction of the global optimum

with respect to the size of the solution space. The region of attraction of a local

optimum is similar to the idea of the stability region in nonlinear dynamical systems

(Reddy et al., 2006). We define the region of attraction of a local optimum y∗i of (5.1)

as the subset of the solution space, R(y∗i ) ⊂ χ, such that an infinitely small step,

strictly decreasing local optimization algorithm starting in any point in R(y∗i ) will

converge to y∗i . The difficulty of a given optimization problem is directly correlated

to the relative size of the global optimum’s region of attraction with the size of the

solution space.

To further discuss mathematically what the region of attraction represents,

we first define the operator | · | on a set. For a discrete set A, the value |A| is

simply defined as the number of elements in the set A. However, in this chapter we

concentrate on continuous optimization problems, and so the spaces we consider are

non-discrete, and generally compact. For a compact set B ⊂ <n, we define |B| as

the Lebesgue measure of the set B.

We now define the relative size of the region of attraction of a local optimum

y∗i , given by A(y∗i ), as the ratio A(y∗i ) := |R(y∗i )|/|χ|. Clearly, the value A(y∗i ) is

a positive number between zero and one. If the region of attraction of the global
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optimum y∗∗ is a relatively large portion of the solution space (i.e., A(y∗∗) is close

to one), then finding that global optimum is not difficult. Conversely, if A(y∗∗) is

relatively small (i.e., close to zero), then finding the global optimum is more difficult.

However, we take careful note that for these purposes it is imperative to consider

a solution space χ that is bounded. That is, we choose the bounds of χ in a way

so that we are certain that the bounds contain only feasible solutions, and that

χ contains the global optimum. We note that we can be certain that χ contains

the global optimum for constrained formulations of optimization problems, such as

the Gaussian mixture model formulation described in Chapter 4. In unconstrained

optimization problems, finding proper bounds for χ may be more difficult. Deter-

mining the bounds of the solution space χ can drastically affect the value of the ratio

|R(y∗i )|/|χ|. Therefore, we choose the bounds of χ in the same manner as we choose

the bounds for random starting values in a solution space for multiple runs of a local

optimization algorithm. It is of primary importance that the bounds are chosen in a

consistent manner for the same class of problems to provide a fair comparison. We

discuss how the bounds of χ are chosen for the parameters of Gaussian mixtures in

Section 5.3.

The second criterion for the characterization of the difficulty of optimization

problems is the number of unique local minima, N . This idea is straightforward;

the more local minima, the more opportunities for an optimization algorithm to

get stuck in sub-optimal solutions. Furthermore, a large number of local minima

corresponds to more computational time being spent using local search to investigate

non-globally optimal local solutions.
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The third and final criterion is the embeddedness of the global minimum. An

embedded global optimum as one in which points sampled close to the global mini-

mum will in general be better (in terms of fitness) than points sampled farther away

from the global minimum. Similarly, local minima closer to the global minima are

generally better solutions than local minima farther away from the global minimum.

An isolated global optimum is a solution that is not embedded; that is, the corre-

sponding optimization problem is more difficult to optimize because points in its

surrounding neighborhood have relatively poor fitness compared to points farther

away. Obviously an embedded global optimum would generally be easier to find on

a fitness landscape than an isolated one, because evolutionary optimization meth-

ods steer in the direction of better fitness values in an attempt to obtain the global

optimum. Törn et al. (1999) present this idea of embeddedness as a rather vague,

high-level criterion for measuring the difficulty of an optimization problem. They do

not discuss a quantifiable metric for gauging the embeddedness of a given problem.

We present such a metric now.

Jones and Forrest (1995) present a fitness-distance correlation metric for opti-

mization problems where the correlation is between the distances of random points

in the solution space to the global optimum and the fitness values of these points.

We introduce a metric that is similar, but instead we measure the correlation of the

distances of the unique locally optimal solutions to the global optimum and their cor-

responding fitness values. So, for each locally optimal solution y∗i , we compute the

Euclidean distance, ‖y∗i − y∗∗‖. We then compute the correlation r of the (distance,
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fitness) pairs (‖y∗i − y∗∗‖, f(y∗i )), as given by Equation 5.2.

r =

∑N
i=1(xi − x̄)(zi − z̄)

(N − 1)sxsz

, (5.2)

xi = ‖y∗i − y∗∗‖,

x̄ =
1

N
N∑

i=1

xi,

sx =

√√√√ 1

N − 1

N∑
i=1

(xi − x̄)2,

zi = f(y∗i ),

z̄ =
1

N
N∑

i=1

zi,

sz =

√√√√ 1

N − 1

N∑
i=1

(zi − z̄)2.

A correlation value r close to 1 signifies that a minimization problem is highly

embedded, while a value of r close to -1 for a minimization problem indicates an

isolated global optimum, and vice versa for maximization problems.

5.2.1 A Fourth and New Attribute for Characterizing Optimization

Problems

In the following, we propose a fourth and new criterion for measuring the

difficulty of optimization problems. This criterion is the relative size of the region

of attraction of ε-optimal solutions. The reasoning behind this criterion is that in

certain problems a solution whose fitness value is within a small range ε of the global

optimum may be considered good enough, especially when the marginal cost of

finding the global optimum is significantly greater than the time required to produce
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an ε-optimal solution. We define the region of attraction of ε-optimal solutions as

R(y∗∗ε ) = R(y∗∗)∪⋃N
i=1{R(y∗i ) | f(y∗i )− f(y∗∗) < ε}, and the corresponding relative

size of the region of attraction of ε-optimal solutions as A(y∗∗ε ) := |R(y∗∗ε )|
|χ| .

For some optimization problems one may be satisfied with a solution whose

objective value is within ε of the global optimum. For example, given a pool of

financial assets, say we want to maximize the return given a certain amount of

risk. Then, the focus is on the risk and expected return of the portfolio rather than

the specific make-up of the portfolio. A second example is the traveling salesman

problem, where we may be primarily interested in the distance traversed along the

prescribed route, rather than the ordering of the sites visited. In both of these

examples, one may be satisfied with a local solution that, while not optimal, has a

fitness of within ε of the global optimum.

However, an ε-optimal solution that is significantly different from the global

optimum may have adverse consequences in some problem settings. For example, in

statistical applications that involve maximum likelihood estimation, the likelihood

value itself usually has little physical meaning, and it is the optimized variables (e.g.,

parameters of a family of distributions) that are of primary importance, because they

are used to make statistical inferences. Since an ε-optimal solution may be vastly

different from the global optimum, the resulting statistical inferences are likely to

differ drastically, as well.
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5.3 Calculating the Global Landscape Metrics

We call the boundary of a region of attraction, or stability region, of a lo-

cal optimum the stability boundary of that local optimum. Finding an analytical

representation of the stability boundaries of a local optimum is extremely difficult,

and sometimes impossible, for optimization problems with nonlinear objective func-

tions. Furthermore, global optimization problems by nature tend to have nonlinear

objective functions. For this reason an analytical computation of |R(y∗i )| is usually

infeasible. Therefore, we estimate
|R(y∗i )|
|χ| empirically by randomly sampling over χ,

applying a local descent algorithm to each of these random starting values, and cal-

culating the percentage p̂ of runs that converge to y∗i . As noted earlier, we choose

the bounds of χ in the same manner as we choose the bounds for random starting

values in a solution space for multiple runs of a local optimization algorithm; that is,

the bounds will contain the global optimum, and will only contain feasible solutions

to the problem.

For the second criterion, finding the exact number of locally optimal solutions

N for a nonlinear optimization problem may be infeasible. However, when emprir-

ically estimating the relative size of the region of attraction of the global optimum

described above, we can also estimate the number of locally optimal solutions by

counting the unique number of locally optimal solutions found in the same experi-

ment. Naturally, this number would only represent the lower bound of the unique

number of local optima. But by increasing the number of random starting values

used to an arbitrarily large value, we can obtain a reasonable estimate for the correct
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number. We estimate the embeddedness of the optimization problem by computing

the correlation r of the unique locally optimal solutions found according to Equation

(5.2).

5.3.1 Applying Global Landscape Metrics to Known Examples

We demonstrate the global landscape metrics discussed in Section 5.2 on two

known examples. For both of the examples, we invoke a local optimization algorithm

on 1000 starting values, uniformly distributed over the solution space. The local

optimization algorithm we use is fminsearch, a built-in Matlab function that utilizes

the simplex search method of Lagarias et al. (1998). We compute the relative size

of the region of attraction of the global optimum A(y∗∗), the number of unique

locally optimal solutions N , the correlation r of the (distance, fitness) pairs of the

locally optimal solutions, and the relative size of the region of attraction of ε-optimal

solutions A(y∗∗ε ). For the following experiments, we let ε = 1, so that any solution

with a fitness value within one unit of the global optimum is an ε-optimal solution.

5.3.1.1 Shekel’s Foxholes

De Jong (1975) introduced the function known as Shekel’s Foxholes, often

known as function F5 in his test suite, which is now typically used as benchmarking

for Genetic Algorithms. The function, given in Equation (5.3). has 24 local minima,

excluding the unique global minimum at f1(−32,−32) ≈ .998032. Its landscape is

notoriously difficult to optimize, and this is visually apparent as given by the plot
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of the landscape in Figure 5.1.

f1(x1, x2) =
1

.002 +
∑25

j=1
1

j+
P2

i=1(xi−aji)6

, (5.3)

aj1 = {32, 16, 0, 16, 32, 32, 16, 0, 16, 32, 32, 16, 0, 16, 32,

32, 16, 0, 16, 32, 32, 16, 0, 16, 32},
aj2 = {32, 32, 32, 32, 32, 16, 16, 16, 16, 16, 0, 0, 0, 0, 0,

16, 16, 16, 16, 16, 32, 32, 32, 32, 32},
65.536 ≤ xi ≤ 65.536, i = 1, 2.

Figure 5.1: Plot of the landscape of Shekel’s Foxholes.

The results of 1000 runs of fminsearch with random initializations are as fol-

lows. 51 of the 1000 runs converged to the global minimum, and therefore we

estimate the region of attraction of the global minimum as 5.1%. Multiple runs
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converged to every of the N = 24 unique local optima. One local minimum had

a fitness value within ε = 1 of the global minimum, which raises the number of

ε-optimal runs to 101 out of 1000. Figure 5.2 shows the Euclidean distances of the

local solutions plotted against their fitness values, along with the line of best fit.

The correlation of the data in the plot is .8046, signifying a fairly highly embedded

global optimum. The results of these runs are found in Table 5.1.
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Figure 5.2: Plot of the local solutions of Shekel’s Foxholes, with their distance to
the global minimum plotted against their corresponding fitness values.

5.3.1.2 Goldstein-Price Function

The Goldstein-Price function is an eighth-degree polynomial in two variables,

first introduced by Goldstein and Price (1971). The function, given in Equation 5.4,

has a total of three local minima, excluding the global minimum at f2(0,−1) = 3.
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f2(x1, x2) = {1 + (x1 + x2 + 1)2(19− 14x1 + 3x2
1 − 14x2 + 6x1x2 + 3x2

2)}

· {30 + (2x1 − 3x2)
2(18− 32x1 + 12x1

2 + 48x2 − 36x1x2 + 27x2
2)}, (5.4)

2 ≤ xi ≤ 2, i = 1, 2.

The results of 1000 runs of fminsearch with random initializations are as fol-

lows. 598 of the 1000 runs converged to the global minimum, and therefore we

estimate the relative size of the region of attraction of the global minimum as

A(y∗∗) = 59.8%. The global minimum has a fitness value of 3, while the other

three local minima have fitness values of 30, 84, and 840. Since no other local min-

imum is within ε = 1 unit of the global minimum, then the region of attraction of

ε-optimal solutions is equal to the region of attraction of the global minimum, so

A(y∗∗ε ) = 59.8% as well. Multiple runs converged to all N = 3 unique local optima.

Figure 5.3 shows the Euclidean distances of the local solutions plotted against their

fitness values, along with the line of best fit. The correlation of the (distance, fitness)

pairs in the plot is r = .6139, indicating a moderately embedded global minimum.

The results of these runs are found in Table 5.1.

Table 5.1: Simulation results of 1000 runs on Shekel’s Foxholes and the Goldstein-
Price function, with ε = 1.

Function A(y∗∗) N r A(y∗∗ε )
Shekel’s 5.1% 24 .8046 10.1%

Goldstein-Price 59.8% 3 .6139 59.8%
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Figure 5.3: Plot of the local solutions of the Goldstein-Price function, with their
distance to the global minimum plotted against their corresponding fitness values.

We notice several interesting results in Table 5.1. The primary reason that

Shekel’s Foxholes is a more difficult problem to optimize than the Goldstein-Price

function is because the relative size of the global minimum of Shekel’s Foxholes is

significantly smaller than that of the Goldstein-Price function. Also, Shekel’s Fox-

holes has 24 local optima compared to 3 local optima for the Goldstein-Price func-

tion, which means there are many more opportunities on the landscape of Shekel’s

Foxholes to get trapped in sub-optimal solutions. Shekel’s Foxholes is more embed-

ded than Goldstein-Price, which signifies that an evolutionary based optimization

algorithm would have an easier time steering to the global minimum for Shekel’s

Foxholes. However, this may not be the case in reality, because the Goldstein-Price

function has only three local minima, decreasing the statistical significance of its
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embeddedness correlation.

The data in Table 5.1 supports the fact that Shekel’s Foxholes is a difficult

problem to optimize. However, for Shekel’s Foxholes, using a value of ε = 1, the

region of attraction of ε-optimal solutions is twice as large as the region of attrac-

tion of its global minimum. In other words, an optimization algorithm is twice as

likely to obtain an ε-optimal solution to Shekel’s Foxholes than obtaining the global

minimum. Therefore, if one is willing to accept a solution relatively close to the

global minimum, the chances of obtaining a good enough solution for this function

are increased.

5.3.2 Applying Global Landscape Metrics to Gaussian Mixtures

Because of the nonlinearity of the likelihood function of Gaussian mixtures,

finding an analytical closed-form expression for the region of attraction is not feasi-

ble. Therefore, we produce estimates for the relative size of the region of attraction,

number of local optima, and the embeddedness correlation of the (distance, fitness)

pairs of the local optima. We compute the distance between two clusterings simply

as the Euclidean distance between their mean components, minimizing across the

permuations of the labels. We do not consider the region of attraction of ε-optimal

solutions, because, as addressed in Section 5.2.1, an ε-optimal solution may have far

different optimal paramters than the global optimum of Gaussian mixtures. One

particularly unique attribute of Gaussian mixtures is the presence of degenerate

solutions, which we now address.
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5.3.3 What to do with Degenerate Solutions?

Anytime we run EM from a random starting value, there is a possibility that

the algorithm will converge to a degenerate solution. So, this raises two primary

questions: what is the criterion for determining whether a solution is degenerate,

and how should we incorporate degenerate solutions into the experimental results?

We choose to answer the first question in the following way. For a given value of

c, if a solution produced by EM violates the following constraint, we consider the

solution to be degenerate (McLachlan and Peel, 2000):

max
i,j

|Σi|
|Σj| ≤ c > 0. (5.5)

For the simulated examples, we know the true global optimum and thus can choose

a reasonable value of c intelligently. In particular, we choose the value of c in

the experiments as follows. Since we know the true global optimum, we compute

c∗ := maxi,j
|Σi|
|Σj | of the optimal solution. We then set the value of c equal to 25c∗,

rounding to the nearest 50. Therefore, we are assured to deem potentially promising

clusterings as non-degenerate. However, in the case where the optimal solution is not

known, it might be necessary to experiment with several values of c. The important

thing is to use a value of c large enough so that the optimal solution is considered

non-degenerate.

The second question is how we should incorporate the degenerate solutions

in the results of the experiment. Since a degenerate solution can have an inflated

likelihood value (since it’s mean is centered on a single point, as the generalized

variance of the covariance matrix tends to zero, the likelihood value tends to infinity),
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we choose not to include the solutions in the results. However, we count the number

of degenerate solutions obtained in an experiment, becuase every degenerate solution

obtained by EM is wasted computational time. Additionally, if a percentage pdeg of

runs converge to degenerate solutons, then we consider pdeg as an estimate for the

proportion of the solution space that is the degenerate region of attraction.

For the numerical experiments on Gaussian mixture models, we run So, if

we apply EM to 1000 random starting values, we report the number of degenerate

solutions obtained, and then the number of unique non-degenerate local optima

obtained.

5.4 Numerical Examples

In the following, we perform the test on a number of different examples, in-

cluding two simulated examples as well as two real-world examples. Throughout

the examples, the solution space is considered to be as follows: the means between

the minimum (min(X)) and maximum data points (max(X)), the weights between

.1 and .9, and the variance components between .01 Var(X) and .5 Var(X). The

lower bound for the variance components was chosen to be non-zero in an attempt

to discourange small variance degenerate solutions, while the upper bound was cho-

sen because all of the variance components of the optimal solutions of the data sets

were below this bound. We initialize the covariance matrices as diagonal matrices,

with the variance components along the diagonal. All initial values for EM were

simulated from a uniform distribution across the solution space.
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For each experiment, we apply EM to random starting values until we find

the first 500 non-degenerate solutions. This way there will be a fair comparison

for the number of local optima for each data set. However, we note that in these

examples, unlike the known examples of Section 5.3.1, we do not know the true

number of local optima, so we estimate N as a lower bound for the true value. In

the following examples, we estimate the relative size of the region of attraction of

the global optimum A(y∗∗), the number of unique locally optimal solutions N , the

correlation r of the (distance, fitness) pairs of the locally optimal solutions, and the

proportion of the solution space pdeg that is the degenerate region of attraction.

5.4.1 3-component Bivariate Gaussian Mixture

The first simulated example we analyze is the simple 3-component bivariate

Gaussian mixture from Section 3.3.3. For reference, the graph of the optimal solution

is given in Figure 5.4.

Applying EM to random starting values, we found the following results: using

a degenerate score of c = 150, 80 runs converged to degenerate solutions before

the 500th non-degenerate solution. We estimate the relative size of the degenerate

region of attraction as pdeg = 80
580

= 13.79%. 448 of the 500 non-degenerate EM runs

converged to the optimal value of -413.99. Thus we estimate the relative size of the

global optimum’s region of attraction to be A(y∗∗) = 448
580

= 77.24% of the solution

space. Of the non-degenerate runs, we found N = 14 unique local optima. Figure

5.5 shows the plot of each of the non-degenerate local solutions found, with their
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Figure 5.4: Plot of the simple bivariate Gaussian example with the optimal param-
eters.

distance to the global optimum plotted against their corresponding log-likelihood

value. The data in Figure 5.5 has a correlation of r = −0.7907, signifying a fairly

highly embedded global maximum. The results for the simulations on this data set,

along with the other three data sets, are found in Table 5.2.

5.4.2 6-component Bivariate Gaussian Mixture

The second simulated example is the more difficult 6-component bivariate

Gaussian mixture data set introduced in Section 3.3.3. The graph of the optimal

clustering solution is given in Figure 5.6.

Applying EM to random starting values, we found the following results: using

a degenerate score of c = 1000, 347 runs converged to degenerate solutions before
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Figure 5.5: Plot of the local solutions of the simple bivariate Gaussian example,
with their corresponding distance to the global optimum plotted against their cor-
responding log-likelihood values.

the 500th non-degenerate solution. We estimate the relative size of the degenerate

region of attraction as pdeg = 347
847

= 40.97%. 50 of the 500 non-degenerate EM runs

converged to the optimal value of -946.98. Thus we estimate the relative size of the

global optimum’s region of attraction to be A(y∗∗) = 50
847

= 5.90% of the solution

space. Of the non-degenerate runs, we found N = 180 unique local optima. Figure

5.7 shows the plot of each of the non-degenerate local solutions found, with their

distance to the global optimum plotted against their corresponding log-likelihood

value. The data in Figure 5.7 has a correlation of r = −0.7872, signifying a fairly

highly embedded global maximum. The results for the simulations on this data set

are found in Table 5.2, at the end of this section.
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Figure 5.6: Plot of the more difficult bivariate Gaussian example with the optimal
parameters.
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Figure 5.7: Plot of the local solutions of the more difficult bivariate Gaussian exam-
ple, with their corresponding distance to the global optimum plotted against their
corresponding log-likelihood values.

5.4.3 Iris Data Set

The iris data set consists of 150 random samples of iris flowers, including 50

samples from each of the following three iris species: setosa, versicolor, and virginica.
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The data was collected by Anderson (1935). Each data sample consists of four

measurements: sepal length, sepal width, petal length, and petal width, all measured

in centimeters. The iris data set gained notoriety when Fisher (1936) developed a

linear discriminant model to classify the species from the data measurements. Figure

5.8 depicts the 1st and 2nd principal components of the data, along with the optimal

clustering solution, corresponding to a log-likelihood value of -180.19.
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Figure 5.8: Plot of the 1st and 2nd principal components of the iris data set, along
with the corresponding optimal solution.

Applying EM to random starting values, we found the following results: using

a degenerate score of c = 10, 000, 67 runs converged to degenerate solutions before

the 500th non-degenerate solution. We estimate the relative size of the degenerate

region of attraction as pdeg = 67
567

= 11.82%. 277 of the 500 non-degenerate EM

runs converged to the optimal value of -180.19. Thus we estimate the relative
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size of the global optimum’s region of attraction to be A(y∗∗) = 277
567

= 48.85% of

the solution space. Of the non-degenerate runs, we found N = 11 unique local

optima. Figure 5.9 shows the plot of each of the non-degenerate local solutions

found, with their distance to the global optimum plotted against their corresponding

log-likelihood value. The data in Figure 5.9 has a correlation of r = −0.7362,

signifying a moderately embedded global maximum. The results for the simulations

on this data set are found in Table 5.2, at the end of this section.
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Figure 5.9: Plot of the local solutions of the iris data set, with their corresponding
distance to the global optimum plotted against their corresponding log-likelihood
values.

5.4.4 Control Chart Data

This data set consists of 600 control charts synthetically generated by the

process in Alcock and Manolopoulos (1999). There are six different classes of control
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charts in the data: normal, cyclic, increasing trend, decreasing trend, upward shift,

and downward shift. Each chart consists of a 60-dimensional vector. The goal is to

cluster the charts into six groups, where each group represents one of the control

chart classes. Figure 5.10 depicts the 1st and 2nd principal components of the data,

along with the optimal clustering solution, corresponding to a log-likelihood value of

-92799. Note that since we know the true memberships of each data point, in order

to produce the global otpimum, we intiated each cluster component’s parameters

with that particular cluster’s maximum likelihood paramters, and then ran EM.
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Figure 5.10: Plot of the 1st and 2nd principal components of the control chart data
set, along with the corresponding optimal solution.

Applying EM to random starting values, we found the following results: using

a degenerate score of c = 10100, 521 runs converged to degenerate solutions before

the 500th non-degenerate solution. We estimate the relative size of the degenerate
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region of attraction as pdeg = 521
1021
≈ 51.03%. Of the 500 non-degenerate runs, we

found N = 439 unique local optima. Perhaps due to the high dimensionality of

the data, we found many local optima (a total of 429) with a better log-likelihood

value than what we initially thought was the global optimum. The best solution

found has a log-likelihood value of -72803. Because of the extremely high number

of local optima, it is unclear whether this solution is the true global optimum of the

data. Only a single run of the 500 non-degenerate solutions converged to the best

solution found, and so we estimate the relative size of the global optimum’s region of

attraction to be A(y∗∗) = 1
1021
≈ 0.10% of the solution space. Figure 5.11 shows the

plot of each of the non-degenerate local solutions found, with their distance to the

global optimum plotted against their corresponding log-likelihood value. The data

in Figure 5.11 has a correlation of r = −0.8317, signifying a fairly highly embedded

global maximum. The results for the simulations on this data set are found in Table

5.2, in the following section.

Figure 5.12 shows the plot of the 1st and 2nd principal components of many

clusterings that have better log-likelihood values than the solution found in Figure

5.10. This is an interesting find, because if we did not know the true memberships

of the data points, these results by clustering using Gaussian mixtures would lead

us to believe that the true global optimum is a relatively poor solution, simply by

comparing the log-likelihood values. In fact, two of the clusterings (the two on the

right of Figure 5.12) lead us to believe that the data may only have 5 clusters, as

2 of the clusters sit on top of one another. This example shows us that there are

instances where Gaussian mixture clusterings may have better likelihood values, yet
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Figure 5.11: Plot of the local solutions of the control chart data set, with their
corresponding distance to the global optimum plotted against their corresponding
log-likelihood values.

in actuality do a poorer job of correctly classifying the true memberships of the

data. As evidenced by this example, this occurrence may be due to the complexity

brought on by the high dimensionality of the data.

5.4.5 Summary of Results

Table 5.2 summarizes the results of the four Gaussian mixture model examples.

We report the number of clusters, dimensionality, relative size of the region of at-

traction of the global optimum, number of unique local optima found, embeddedness

correlation, and the relative size of the degenerate region of attraction. Obviously

the control chart data set is the most difficult to optimize, as evidenced by its low
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Figure 5.12: Several solutions of the clusterings of the control chart data which differ
from the optimal solution, yet all have better log-likelihood values.

region of attraction of its global optimum score, as well as the high number of local

optima found. In fact, the number of local optima for this data set may be orders

of magnitude higher than the 439 reported, as these 439 were found in the first 500

non-degenerate runs. This may largely be in part to the high dimensionality of the

control chart data set. The 6-component Gaussian mixture was the second most

difficult to optimize. This leads us to believe that the number of clusters may be

the key factor for difficulty in these problems. More clusters leads to more model

parameters and thus more difficulty to find the global optimum. However, one at-

tribute that we did not capture is how well separated are the clusters. This would

also play an important role in characterizing the difficulty of optimizing Gaussian
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mixture models.

Table 5.2: Simulation results on four Gaussian mixtures.

Data Set g dimensionality A(y∗∗) N r pdeg

3-component Gaussian 3 2 77.24% 14 -.7907 13.79%
6-component Gaussian 6 2 5.90% 180 -.7872 40.97%

Iris 3 4 48.85% 11 -.7362 11.82%
Control Chart 6 60 0.10% 439 -.8317 51.03%

We also notice that the embeddedness correlation coefficients were all fairly

similar. This may signify that Gaussian mixture model problems are all roughly

equivalent in terms of embeddedness, thus relegating the embeddedness criterion to

be very minor in terms of its effect on optimization difficulty. Another interesting

deduction from the table is that the problems with higher number of clusters also

have a larger proportion of degenerate solutions. This could be attributed to the

idea that the more clusters we optimize, the higher probability that at least one of

them will get stuck in a degenerate solution centered on a single point.

5.5 Discussion

Many factors play a role in the difficulty of a given optimization problem.

Some of these factors, such as the region of attraction of ε-optimal solutions, only

have significance in certain problem settings. It would be nice to be able to gauge

the difficulty of a given optimization problem with a single metric. However, as

mentioned, this unified metric would likely be different for different classes of op-

timization problems, e.g., Gaussian mixture models being one. Also, in terms of
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mixture models, a metric for how well-separated are the clusters in a mixture would

definitely help the characterization of the optimization difficulty. Furthermore, an-

alyzing how the dimensionality, number of clusters, and number of data points of a

data set affect these landscape measures would potentially lead to new and useful

insight on the landscape of Gaussian mixtures.

Another extension to the work in this chapter could be to combine the re-

sults found for a given optimization problem with extreme value theory to estimate

the true global optimum. Golden and Alt (1979) developed procedures for deter-

mining interval estimates for intractable global optima of NP-hard combinatorial

optimization problems, and so an analogous procedure could be applied to mixture

models.
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Chapter 6

Conclusions

Perhaps the biggest current limitation of the CE and MRAS mixture model

algorithms is the computational time to convergence. Because the proposed algo-

rithms require the generation of multiple candidate solutions in each iteration, they

are inherently more computationally-intensive algorithms than EM. This is similar

in nature to the Monte Carlo EM algorithm (Booth and Hobert, 1999; Levine and

Casella, 2001; Levine and Fan, 2003; Jank, 2004; Caffo et al., 2003), which spends

most of its computational effort on simulating from a suitable distribution and is

thus much slower than its deterministic counterpart. That being said, our current

implementation of the CE and MRAS mixture model algorithms are not optimized

for speed, and continuous advances in computing power and processor speed will

make the computational disadvantages less practically important. At the end of the

day, the decision that researchers faces is whether one wants fast but possibly highly

inaccurate answers, or alternatively whether waiting a little longer is worth obtain-

ing better solutions. The algorithms proposed in Chapter 3 are systematic ways for

finding those solutions. However, part of my future plans include optimizing these

algorithms for better run times. Additional future work would include generalizing

the objective function in order to find the best clustering across all values of g.

Also, we would like to characterize how the run-time complexity of the proposed
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algorithms changes with respect to problem size.

In Chapter 4 we presented a proof of global convergence of the MRAS-CD

algorithm to the optimal solution for Gaussian mixtures. One possible path of future

work could include extending the proof to finite mixture models of other probability

distributions, in addition to Gaussian. In addition, proving the convergence of the

other three algorithms presented in Chapter 3 is an open problem.

Chapter 5 discussed many factors that play a role in the difficulty of a given

optimization problem. Some of these factors, such as the region of attraction of ε-

optimal solutions, only have significance in certain problem settings. It would useful

to combine all of the metrics discussed into a single metric. However, this unified

metric would likely be different for different classes of optimization problems. Also,

in terms of mixture models, a metric for how well-separated are the clusters in a

mixture would characterize optimization difficulty. Furthermore, analyzing how the

dimensionality, number of clusters, and number of data points of a data set affect

these landscape measures would potentially lead to new and useful insights on the

landscape of Gaussian mixtures.

105



Bibliography

Alcock, R. J. and Manolopoulos, Y. (1999). Time-Series Similarity Queries Em-
ploying a Feature-Based Approach. In 7th Hellenic Conference on Informatics,
Ioannina, Greece.

Anderson, E. (1935). The Irises of the Gaspé Peninsula. Bulletin of the American
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