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The exclusion effects of repulsive intermolecular potential cores are often mod-

eled by hard sphere fluids, for which an accurate Hydrostatic Linear Response (HLR)

equation was previous developed by Katsov in 2001 for computing the density re-

sponse to general external fields. In this dissertation the HLR equation is combined

with various thermodynamic integration pathways to investigate the solvation free

energy of cavity insertion which characterizes the entropic cost of solvating molecules

in a fluid. A Shifted Linear Response (SLR) equation is developed to build in the

exact limits of external fields varying in very small ranges and fluids confined in



narrow spaces, where the HLR fails qualitatively. The SLR is derived from an ex-

pansion truncated at linear order about a reference density, and an Insensitivity

Criterion (IC) is proposed for determining an optimal reference density.

The slow 1/r decay of the Coulomb potential is characteristically long-ranged,

but it also becomes strong at short distances. The structure of ionic systems exhibits

an intricate interplay between the short and long length scales of their molecular

potentials. A strategy is proposed for separating the Coulomb interaction between

general charge distributions into a short-ranged piece u0(r) and a slowly varying

piece u1(r). In the strong coupling states of the ionic systems that we have studied,

mimic systems with only the short-ranged part u0(r) are found to show very similar

correlation functions. The slow decays of ion-ion and ion-dipole interactions give rise

to unique long-wavelength constraints on ionic fluid structure. Local Molecular Field

Theory (LMF), which maps an external field in the full system to a mimic system

in the presence of a renormalized field, can correct the mimic correlations by em-

bodying contributions from u1(r). The LMF has been applied to both uniform and

nonuniform model ionic systems, and accurate results for bulk correlation functions,

internal energy and the density distribution in a confined system are obtained. For

a system of counterions confined by charged walls, the LMF and the mimic system

have especially helped shed light on many phenomena that had previously lacked

coherent physical interpretations and consistent approximations.
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Chapter 1

Introduction

1.1 Overview

Based on the framework of statistical mechanics, this dissertation will focus on devel-

oping systematic and physical theories for understanding the equilibrium properties

of both uniform and inhomogeneous fluids. Depending on the spatial length scales

of the molecular interactions, different treatments may be required for handling the

distinctive physics involved. The attempt to understand systems with only short-

ranged repulsive interactions and also those further complicated by long-ranged

Coulomb interactions comprises two major parts of this research. In particular, the

understanding and accurate treatment of long-ranged interactions is often closely

intertwined with the considerations required for the shorter-ranged correlation. A

consistent and successful theoretical framework to bridge and also to clarify the in-

terplay between interactions of different length scales had previously been absent.

In this thesis, theories have been developed to specifically tackle such challenges.

To single out the most essential physics and to examine these ideas in clear and

1



controlled detail, the theories have also been applied to various standard model sys-

tems. It is hoped that the experience thus obtained can be further applied to more

sophisticated and experimentally realistic systems. Theoretical analysis, numerical

solutions and computer simulations have all been employed in this research.

Short-Ranged and Repulsive Interactions At the microscopic length scale,

the molecular interactions in most physical systems possess effective short-ranged

repulsive cores. These repulsive cores lead to highly nontrivial packing of the fluid

particles so that the correlation function of a dense fluid often exhibits characteristic

oscillations [24]. A fluid consisting only of hard spheres, simple as it is as a model

to represent such packing effects, still presents considerable theoretical difficulties.

Moreover, a hard sphere fluid of properly chosen diameter has also proven useful

as a starting point for perturbation theories treating more general and softer re-

pulsive cores. Theories for computing the singlet density response of a hard sphere

fluid in the presence of a general external field have been devised. The hydrostatic

linear response (HLR) equation, based on the ideas of a hydrostatic shift of the

chemical potential and the local field, and linear response to nonuniform fields, was

first proposed for this purpose by Katsov and Weeks [40] and had proven to be

computationally efficient and encouragingly accurate, especially for slowly varying

external fields and hard-wall like potentials. In this dissertation, various thermo-

dynamic integration pathways are combined with the HLR equation and shown to

yield accurate results for predicting solvation free energies. However, there are still
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two important limiting cases that the HLR fails to capture. One is for external fields

that are nonzero only in a very tiny region; the other is for external fields that con-

fine the fluid to a very small region, like a narrow slit. To remedy these deficiencies

of the HLR theory, a new and more general equation, shifted linear response (SLR)

equation, has been subsequently developed. The SLR equation has the HLR as a

limit and provides a unifying view for the two seemingly opposite limits that the

HLR fails to reproduce.

Long-ranged and Ionic Interactions In recent years, much interest and many

efforts have been drawn to the understanding of biological systems. In living cells,

electronic charges, either in intercellular electrolytes or those generally distributed

on various macromolecules such as proteins and DNAs, are a ubiquitous presence.

The ability to treat Coulomb interactions is thus deemed crucial for studying a

wide range of biophysical phenomena. Coulomb interactions, because of their very

long-ranged 1/r decay, have posed significant challenges to theoretical statistical

mechanics and computer simulations particularly. In this thesis, local molecular

field theory (LMF) [74], which has close connections with conventional theories

such as Poisson Boltzmann (PB) or Debye Huckel (DH) [2, 50] approximations,

has been applied to various model ionic systems. The LMF shows greatly improved

accuracy over all ionic strength regimes and reproduce the weak coupling limit

exactly. On the contrary, the DH or the PB approximation, though exact for weak

coupling, fail very quickly once away from this limit. The present theory is based
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on new physical insights into the traditional “mean-field-like” theories, separating

out long-wavelength perturbation potentials based on a very general recipe. This

separation of potential reveals underlying mimic systems which have much shorter-

ranged molecular interactions. For uniform fluids, the correlation functions of mimic

systems can be strikingly close to those of the full ionic systems to which they

correspond. When computing the density response of an ionic system to an external

field, the LMF maps the external field to a new renormalized field in the mimic

system that induces the same density response as the full field would in the ionic

system. And, again, the nonuniform mimic system’s correlation functions can agree

very well with those of the full Coulomb system. This dissertation will present

applications of the LMF theory to the structural and thermodynamic properties

of both uniform and inhomogeneous model ionic systems. Our theory can also

be connected to the Ewald summation method [16, 1] and other ways of treating

long-ranged interactions in computer simulations 1.

1.2 Outline of the Dissertation

This dissertation consists of two major parts. The first part, in chapters 1 and

2, concerns the treatment of the response of hard sphere fluids to general external

fields. In Chapter 1, the HLR equation is combined with different thermodynamic

integration pathways to compute the solvation free energies and surface tensions of

1For a survey for other algorithms, such as fast multipole method, particle-mesh (PM) and

particle-mesh/particle-particle (P3M), see reference [16].
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spherical cavities of various sizes. The varying accuracy of the different pathways

and their comparison with other theories based on Gaussian fluctuations [11] are

explained. Chapter 2 addresses the tiny field and narrow slit (confining fields)

limiting cases that the HLR fails to recover. The exact density response of a hard

sphere fluid to such fields are derived. A density expansion that expands the fluids’

nonuniformity locally about a possibly different bulk system at each point of the

r-space, as first proposed by J. K. Percus [59], is truncated at the linear order to

produce the shifted linear response equation (SLR). With a properly chosen reference

density, the SLR equation is shown to be exact at both limits in which the HLR

fails. The SLR theory is also exact in the hydrostatic limit and reduces to the HLR

theory. A new insensitivity criterion (IC) is proposed for determining a proper

reference density for the use of the SLR. Applications of the IC to various external

fields are presented and discussed in comparison with the HLR, PY, and computer

simulation results.

The second part of the dissertation, ranging from Chapter 3 to 5, presents the

development of the local molecular theory [74] and its applications to model ionic

systems. Chapter 3 focuses on two single-component ionic systems, one-component

plasma (OCP) and the one-component charged hard spheres (OCCHS). A controlled

separation of the Coulombic potential is proposed to reveal a family of mimic sys-

tems for both systems. The molecular interactions of the mimic systems are strictly

short-ranged, free of the 1/r decay of the full Coulombic interaction. It is shown in
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this chapter that in dense states, the correlation functions of these mimic systems

are extremely close to those of the OCP and OCCHS. Taking advantage of the sim-

ilarity of the structure factors between the full system and its mimic counterparts,

a simple and very accurate approximation can be derived to correct the internal

energy of the mimic system. At low density states, the mimic system’s correlation

functions no longer resemble those of the full system, and the LMF can be used to

correct the differences. However, at sufficiently low densities, the LMF theory is

especially simple, since the response to an external field can be accurately approxi-

mated using a simple Boltzmann factor. This leads to our mimic Poisson Boltzmann

(MPB) approximation, which reduces to the standard PB approximation as the den-

sity approaches zero. We find the MPB approximation has a much wider range of

validity. An important sum rule, the Stillinger-Lovett second moment condition [69]

that governs the small k behavior of the ionic structure factor can also be satisfied

by scaling of the LMF equation.

Chapter 4 further generalizes the separation of Coulomb interaction to arbi-

trary charge distributions that may be carried by molecules. This derivation lays

the foundation for applying LMF theory to multi-component ionic systems and in

particular to systems involving dipolar interactions. A multipole expansion of the

Coulomb potential between charged entities is designed by substituting a damped

Green’s function for the ordinary 1/r Green’s function of Poisson’s equation [38].

The expansion is constructed so that contributions arise only from long wavelengths;
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it converges rapidly even for short molecular distances. The perturbation potential

for the LMF comprises only the lowest order nonvanishing multipole moment that

can be unambiguously extracted from the expansion. The LMF equation is specif-

ically generalized to be expressed in terms of general multipole moments, and the

sum rules involving monopoles and dipoles can be seen to emerge readily from the

equation. The general separation of Coulomb potential is controlled by an important

length scale parameter, and the minimum working choice of this parameter is also

discussed. A binary ionic mixture model, size asymmetric primitive model (SAPM)

is investigated at the end of Chapter 3. The mimic system defined through such

a potential separation also shows striking structural similarity to the full system

at strong coupling states. At low density but strong coupling states, the correla-

tion functions of the mimic system even exhibits the features that characterize ion

clustering in a regime where some traditional integral equation approaches fail to

converge.

Chapter 5, in contrast to the applications to bulk correlations in the preced-

ing chapters, presents a qualitative analysis of the LMF to an explicit nonuniform

system. The system considered is a one-component plasma confined by two charged

planar walls. The PB approximation is exact for the weak coupling states, but fails

qualitatively to recover the strong coupling limit. The PB theory always predicts

an effective repulsive pressure between the walls, thus is unable to explain both

computer simulations and experimental observations [20, 52, 53, 54, 71] that show
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effective wall attraction at strong coupling states. Here, the LMF is shown to be

exact in both weak and strong coupling limits of such a system. Moreover, we show

that its approximation by the MPB holds in both limits, so a simple and general an-

alytic approach is available. The different regimes are characterized by the interplay

between a single coupling parameter ξ and the wall separation d̃ are categorized and

examined in detail. This system has a complex ξ − d̃ phase diagram, but the LMF

is capable of treating and accounting for all the possible regimes of this model. The

LMF provides a clear physically compelling explanation of the somewhat mysterious

effective attraction between the walls 2, and it offers also important insights into

more general qualitative issues that traditional approaches cannot provide, such as

how two strong coupling walls can separate into two independent, strong coupling

walls at large distances. Although such decoupling of the walls can be understood

physically, theoretical treatments for the transition into such a regime are lacking,

as is any understanding of an intriguing re-entrant repulsion at large separations.

2The numerical solution of the MPB is more recently carried out by C. Kaur and has also shown

impressive quantitative agreement with simulation results.
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Chapter 2

Different Thermodynamic Pathways to the Solvation Free

Energy of a Spherical Cavity in a Hard Sphere Fluid

This chapter is heavily based on a published paper by Chen, Y.-G. and Weeks, J.

D., Journal of Chemical Physics, 118 (17): 7944-7953, 2003.

2.1 Introduction

The solvation free energy determines how readily a solute can be dissolved in a given

solvent fluid. This plays an important role in many chemically and biologically

important processes, perhaps most notably in hydrophobic interactions in water.

A significant part of the solvation free energy arises from the required expulsion of

solvent molecules from the region occupied by the harshly repulsive molecular core

of the solute. These very strong “excluded volume” interactions can significantly

perturb the local density around the solute and cause simple approaches based on

gradient expansions to fail.

These effects can be seen most clearly in the simple model system treated in

this chapter. We will calculate the excess or solvation free energy associated with
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the insertion of a spherical cavity with radius Rv into a hard sphere fluid, whose

molecules have diameter σ. By definition, the centers of the solvent molecules are

completely excluded from the region of the cavity, which thus acts like a hard core

external field.

This system has many interesting limits. When the exclusion field or cavity

radiusRv equals σ, then the cavity acts like another solvent particle and the solvation

free energy is directly related to the chemical potential of the solvent. As the

cavity radius tends to infinity it effectively turns into a hard wall and the relevant

thermodynamic quantity is the surface free energy or surface tension associated

with a hard wall in a hard sphere fluid. A cavity with radius Rv = σ/2 acts like a

hard core “point solute” of zero diameter. Even shorter-ranged hard core fields or

“tiny cavities” with Rv ≤ σ/2 are also of interest, since the induced structure and

solvation free energy of a tiny cavity can be calculated exactly. This limit can thus

serve as a nontrivial check on approximate methods.

The most commonly used method today for such problems is weighted density

functional theory (DFT) [15]. Here one attempts to describe the free energy directly

as a functional of some kind of smoothed or weighted average of the nonuniform and

often rapidly varying singlet density. This has the advantage that the free energy

is obtained directly and by construction the associated fluid structure (obtained by

functionally differentiating the free energy) is consistent with the approximate free

energy. However the choice of appropriate weighting functions is by no means obvi-
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ous and a number of different and often highly formal schemes have been proposed.

We focus instead in this chapter on making direct use of structural information

about the nonuniform solvent fluid to obtain the solvation free energy. We believe

this allows physical intuition to play a more central role and we can take advantage

of the recent development of a generally very accurate theory relating the structure

of a nonuniform hard sphere fluid to the associated external field [40].

As we will see below, the free energy can then be calculated by integration,

starting from an initially known state (e.g., the uniform fluid) and determining the

free energy changes as the solute-solvent interaction (the hard core external field) is

“turned on”, or alternatively, as the density is changed from the initial to the final

state. There exist many possible routes from the initial to the final state, and we

will generally refer to them as thermodynamic pathways. If exact results are used for

the intermediate values of the structure and associated fields, then all these different

pathways will give the same (exact) result for the free energy.

In practice, of course, approximations will have to be made and the different

pathways will generally yield different results. This is sometimes referred to as the

“thermodynamic inconsistency” of structurally based methods [15]. But this can be

viewed more positively as giving one the freedom to choose particular pathways that

could be relatively insensitive to the errors that exist in the structural theory, and we

will try to use this flexibility to obtain the most accurate results. Moreover, there is

an inherent smoothing of the structural information in the integration used to obtain
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the free energy. The differences in free energy predicted by different pathways will

also give us some indication about the overall quality of the theory.

This approach generally requires the density profiles and associated fields of

all the intermediate states along the various pathways, and thus a fast and accurate

method for determining these quantities is crucial for computation efficiency. We

will use here the generally accurate hydrostatic linear response (HLR) equation [40]

proposed by Katsov and Weeks. A different physically motivated derivation of the

HLR equation is given below.

We will also examine the alternative free energy predictions that arise from

a theory closely related to the HLR equation, the Gaussian field model (GFM) de-

veloped by Chandler [11]. For a solute with a hard core the GFM proposes an

approximate partition function from which the associated density response can be

derived. In the particular case where a rigid cavity is inserted into a hard sphere

fluid, the HLR and the GFM approaches turn out to make identical predictions for

the induced structure. Thus structurally based routes to the free energy involv-

ing only hard core fields will give the same results. In addition, one can use the

approximate GFM partition function to evaluate the solvation free energy directly.

However, as we will show later, the latter approach tends to produce less accurate

results. This deficiency shows up even more strongly in the tiny cavity limit where

the structural predictions of the HLR and the GFM are exact, and several pathways

giving the exact free energy can be found. This illustrates the advantage of consid-
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ering a variety of thermodynamic pathways that can make best use of the available

structural information.

2.2 Density Response to an External Field

2.2.1 The Hydrostatic Linear Response (HLR) Equation

We describe the system using a grand canonical ensemble, and thus want to deter-

mine the excess grand free energy arising from insertion of a spherical cavity or hard

core external field of radius Rv. To derive the HLR equation [40] we start with the

basic linear response equation [24] for a nonuniform hard sphere system in a general

external field φ(r), with chemical potential µB, inverse temperature β = (kBT )−1

and associated density ρ(r; µB, [φ]) ≡ ρ(r):

−βδφ(r1) =

∫
dr2 χ

−1(r1, r2; [ρ])δρ(r2). (2.1)

This relates small perturbations in the density and field through the (inverse) linear

response function

χ−1(r1, r2; [ρ]) ≡ δ(r1−r2)/ρ(r1)−c(r1, r2; [ρ]). (2.2)

Here c(r1, r2; [ρ]) is the direct correlation function of the nonuniform hard sphere

system. The notation [ρ] indicates that these correlation functions are nonlocal

functionals of the density ρ(r).

Since we want to focus on the effects of the perturbing field, we have used

the inverse form of linear response theory [63] in Eq.(2.1), where the field appears

13



explicitly only on the left hand side, evaluated at r1. This provides many advantages

in dealing with large field perturbations, as will soon become apparent. In most cases

we will consider perturbations about a uniform system with chemical potential µ

and density ρ(µ) ≡ ρ(r; µ, [φ = 0]). When using this simplified notation ρ(µ)

should not be confused with ρ(r) ≡ ρ(r; µB, [φ]). Similarly, we will let µ(ρ) denote

the chemical potential of the uniform fluid as a function of density ρ. In a uniform

system the direct correlation function c will take the simple form c(r12; ρ), where

r12 ≡ |r1 − r2|.

But how can we use Eq.(2.1) to describe the density response to a large field

perturbation such as the hard core field of interest here? This linear relation between

a (possibly infinite) external field perturbation on the left hand side and the finite

induced density change on the right must certainly fail for values of r1 where the

field is very large. Conversely, Eq.(2.1) should be most accurate for those values

of r1 where the field is small — in particular where the field vanishes — and then

through the integration over all r2 it relates density changes in regions where the

field vanishes to density changes in the regions where the field is nonzero.

To treat large fields, we note that for any given r1 we can locally impose

the optimal condition that the field perturbation vanishes by introducing a shifted

chemical potential

µr1 ≡ µB − φ(r1), (2.3)
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and a shifted external field

φr1(r) ≡ φ(r)− φ(r1). (2.4)

Since there is an arbitrary zero of energy and a constant external field acts like a

shift of the chemical potential in the grand ensemble, we make no physical changes

if we shift both functions by the same amount. In particular ρ(r; µB, [φ]) =

ρ(r; µr1 , [φr1 ]).

The superscript r1 in µr1 indicates a particular value of the chemical potential,

which from Eq.(2.3) depends parametrically on r1 through the local value of the field.

When φ(r1) vanishes, then µr1 reduces to µB. We define ρr1 , the hydrostatic density,

by

ρr1 ≡ ρ(r; µr1 , [0]) = ρ(µr1). (2.5)

Thus ρr1 is the density of the uniform fluid in zero field at the shifted chemical

potential µr1 ; equivalently ρr1 satisfies

µ(ρr1) = µr1 = µB − φ(r1). (2.6)

Thus far, we have have merely introduced an equivalent (and apparently more

complicated!) way of describing the system in terms of a shifted field and a shifted

chemical potential. However this perspective immediately suggests a very simple

first approximation to the density response to a slowly varying external field. Since

φr1(r) by construction vanishes for r = r1, if φr1(r) is sufficiently slowly varying,

then the region around r1 within a correlation length is essentially in zero field. In
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that case the uniform hydrostatic density ρr1 is clearly a good approximation to

ρ(r1), the exact induced density at r1. Moreover, when the field is more rapidly

varying, it is natural to introduce a second and even more accurate approximation

to the density response.

The hydrostatic density ρr1 takes account only of the local value of the field

at r1 by a shift of the chemical potential. The HLR equation improves on this

“local field” approximation by using linear response theory to determine the density

change from the hydrostatic density induced by nonlocal values of the shifted field

φr1(r). Thus starting from the uniform density ρr1 , we assume a linear response

to the shifted field, replacing χ−1(r1, r2; [ρ]) by χ−1(r12; ρ
r1) in Eq.(2.1) and setting

δφ(r) = φr1(r) and δρ(r2) = ρ(r2) − ρr1 . Then the left side of Eq.(2.1) vanishes

(giving the optimal linear response condition), and we have

0 =

∫
dr2 χ

−1(r12; ρ
r1)[ρ(r2)− ρr1 ], (2.7)

which can be rewritten exactly using Eq.(2.2) as

ρ(r1) = ρr1 + ρr1

∫
dr2 c(r12; ρ

r1)[ρ(r2)− ρr1 ]. (2.8)

This is our final result, which we refer to as the HLR equation. We view this

as an integral equation relating the hydrostatic density ρr1 to the full density ρ(r)

and solve it self-consistently for all r1. When φ(r1) is known, we can immediately

determine ρr1 at each r1 from the local relation in Eq.(2.6), and then solve Eq.(2.8)

by iteration for all r1 to determine the full density response ρ(r). Conversely, for a

16



given equilibrium density distribution ρ(r) we can use HLR equation to determine

the associated field φ(r). This inverse solution of Eq.(2.8) is particularly easy to

carry out, since we can determine the local field at each r1 separately, without

iteration. Accurate results have been obtained for many test cases with strong

repulsive or attractive fields [40, 42].

This requires in particular expressions for µ(ρ) and for the direct correlation

function c(r12; ρ) of the uniform hard sphere fluid. In this chapter we will use the

Percus-Yevick (PY) [60] approximation for c(r12; ρ). This same function also arises

from a self-consistent solution of the HLR equation, where the density response to

a hard core field with Rv = σ (equivalent to fixing a solvent particle at the origin) is

related to the uniform fluid pair correlation function. Thus this self-consistent use

of the HLR equation provides a physically suggestive way of deriving the PY result

for c(r12; ρ) [40]. The PY c(r12; ρ) has a very simple analytical form and proves

sufficiently accurate for our purposes here. Even better results can be found if one

uses the very accurate expressions for the bulk c(r12; ρ) and µ(ρ) as given by the

GMSA theory [73] as inputs to the HLR equation.

2.2.2 Relation to the PY Approximation for a Hard Core

Solute

A spherical cavity acts like a hard core external field φ that excludes the centers

of all solvent molecules from the cavity region. We take the center of the cavity as

the origin of our coordinate system, so that all distances are measured relative to
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the cavity center. Note that both the hydrostatic density ρr1 from Eq.(2.5) and the

full density response ρ(r1) from Eq.(2.8) vanish whenever r1 is located in the cavity.

This exact “hard core condition” comes out naturally from the theory, and does not

have to be imposed by hand as in the GFM or the GMSA approaches.

To make contact with the PY approximation, recall that the cavity-solvent

direct correlation function C(r1; ρ
B, Rv) for this system exactly satisfies

C(r1; ρ
B, Rv) =

∫
dr2χ

−1(r12; ρ
B)[ρ(r2)− ρB]. (2.9)

Thus C(r1) is the function that replaces −βδφ(r1) so that the linear response equa-

tion (2.1) gives exact results when the full density change relative to the bulk is used

on the right hand side. When this is compared to the HLR equation (2.7) for r1

outside the cavity region (where ρr1 = ρB and φ = 0) we see that the HLR equation

predicts that C(r1) vanishes. Thus for the HLR equation ρ(r1) vanishes inside the

cavity region and C(r1) vanishes outside. This is the same as the PY approximation

for the hard core cavity-solvent system [40, 74].

If Rv is greater than σ/2, with σ the solvent hard core diameter, then an

equivalent exclusion is achieved by replacing the hard core external field by a hard

core solute particle with (additive) diameter

σv ≡ 2Rv − σ. (2.10)

From this it follows that if the PY approximation for the bulk c or χ−1 is used, the

density ρ(r) predicted by the HLR equation is identical to that given by the PY
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equation for the solute-solvent pair correlation function for a binary hard sphere

mixture in the limit that the concentration of the solute species goes to zero [27].

Since an exact analytical solution of the PY equation for a binary HS mixture at

arbitrary concentrations is known [45], we can take advantage of these results when

computing the excess grand free energy.

This equality of solutions of the HLR equation and the PY mixture equation

holds only for hard core cavity fields with radius Rv ≥ σ/2 or σv ≥ 0. As discussed

below in Sec. 2.5, for tiny cavities with Rv ≤ σ/2 the HLR equation can be solved

directly and gives exact results for the density response if exact bulk correlation

functions are used, and very accurate results when the PY approximation for the

bulk c is used. However, the corresponding PY mixture solutions in this range of Rv

(arrived at formally by taking σv in Eq.(2.10) to be negative) are much less accurate.

This inaccuracy arises from using the PY mixture solutions for negative σv. The

direct solution of the PY cavity-solute equation for a tiny cavity, where a given

approximation for the bulk c is used along with the PY approximation that C(r1)

vanishes outside the cavity and ρ(r1) vanishes inside, gives the same accurate results

as the HLR equation. However, for more general external fields, the HLR equation

is quite distinct from the PY approximation, and is generally more accurate; it has

given good results for a wide range of fields [40, 42, 74]. This additional flexibility

of the HLR equation will be required later in this chapter when we discuss alternate

density routes to the free energy.
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2.3 Thermodynamic Pathways to the Free Energy

In this section we discuss three different exact thermodynamic pathways for obtain-

ing the excess free energy of inserting a cavity into a hard sphere fluid. The first

two are well known, and the third describes a new density route that may have

some computational advantages in other applications. We use the HLR equation to

provide the needed structural information in all cases. We believe our calculation

here represents the first use of a density route to obtain the excess free energy for

this system. We then describe a simple but less accurate route to the free energy

based on use of the partition function for the GFM.

2.3.1 Compressibility Route

In this route the excess free energy is determined by varying the chemical potential

of the system while the external field φ(r) producing the cavity with radius Rv

remains constant. In the grand canonical ensemble the average number of particles

〈N〉 is given by

∂Ω

∂µ
= −〈N〉, (2.11)

where Ω(µ, [φ]) is the grand free energy. We can then calculate the free energy

difference between the final state of interest and the trivial ideal gas state of zero

density with µ = −∞ and Ω = 0 by integration:

Ω(µB, [φ]) = −
∫ µB

−∞
dµ〈N〉 = −

∫ µB

−∞
dµ

∫
drρ(r;µ, [φ]). (2.12)
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Then ∆Ωv ≡ Ω(µB, [φ]) − Ω(µB, [0]), the desired excess grand free energy of the

nonuniform fluid relative to the uniform bulk state, is given by

∆Ωv = −
∫ µB

−∞
dµ

∫
dr1{ρ(r1;µ, [φ])− ρ(µ)}. (2.13)

As before, ρ(µ) gives the density of the uniform hard sphere solvent fluid as a

function of the chemical potential.

Since ρ(r;µ, [φ]) vanishes inside the cavity, Eq.(2.13) shows there is a term in

the excess free energy proportional to the cavity volume v given by

v

∫ µB

−∞
dµρ(µ) = v

∫ ρB

0

dρ
dµ

dρ
ρ = vpB, (2.14)

on using the thermodynamic relation ρ(∂µ/∂ρ)T = (∂p/∂ρ)T . This exact leading

order term for large v is determined when using the compressibility route so that

pB is the uniform fluid pressure calculated by the compressibility route [33].

The term in curly brackets in Eq.(2.13) can be rewritten in a more convenient

form for calculations by using the inverse relation to Eq.(2.9) for a general chemical

potential µ:

ρ(r1;µ, [φ])− ρ(µ) =

∫
dr2χ(r12;µ)C(r2; ρ(µ), Rv), (2.15)

where χ(r12;µ) ≡ ρδ(r1− r2)+ ρ2[g(r12)− 1] is the usual linear response function of

the uniform solvent fluid and g(r) is the radial distribution function. Substituting

into Eq.(2.13) and carrying out the integration over r1, we have the formally exact
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result 1

β∆Ωv = −β
∫ µB

−∞
dµχ̂(0, µ)

∫
dr2C(r2; ρ(µ), Rv)

= −
∫ ρB

0

dρ Ĉ(0; ρ,Rv). (2.16)

Here χ̂(0, µ) is the k = 0 value of the Fourier transform of χ, with a similar definition

for Ĉ(0; ρ,Rv). In the last equality we used the uniform fluid compressibility relation

βχ̂(0, µ) = dρ(µ)/dµ to change variables to an integration over density. We will

explicitly solve the HLR equation for Rv ≤ σ/2 in Sec. 2.5 below, and from the

equivalence between the HLR equation and PY mixture equation for Rv ≥ σ/2, we

can use the exact solution of the PY mixture equation to obtain Ĉ at larger Rv.

Thus we can analytically carry out the integration in Eq.(2.16) for all Rv.

2.3.2 Virial Route

We now consider a different thermodynamic pathway, which was first used in scaled

particle theory [65, 26]. Here we keep the chemical potential fixed at µB and vary

the range of the external hard core field by a scaling parameter λ, defining φλ(r) ≡

φ(r/λ). For the hard core cavity field of interest here, as λ is varied from 0 to 1 the

1Equation (2.16) is a special case of the general exact result from potential distribution theory

[82] that the excess free energy arising from inserting a single solute molecule at some position r0

in a (generally nonuniform) solvent fluid is equal to the one-body direct correlation c(1)(r0) of the

solute [30]. In the present case the solute is the spherical cavity and the fluid in the absence of

the solute is uniform. Integrating the functional derivative relation between the one-body and the

two-body (solute-solvent) direct correlation functions [24] for a uniform density change then gives

Eq.(2.16).
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radius of the exclusion zone then varies from 0 to Rv. Since the density is generally

related to the external field in the grand ensemble by

δΩ

δφ(r)
= ρ(r), (2.17)

the desired free energy difference is given by integration:

β∆Ωv =

∫ 1

0

dλ

∫
drρλ(r)

∂βφλ(r)

∂λ
. (2.18)

Here ρλ(r) ≡ ρ(r;µB, [φλ]). This formula is quite general and holds for any λ-

dependent potential that vanishes for λ = 0. By exploiting special properties of

the scaled hard core potential (the derivative of the Boltzmann factor of a hard

core potential is a delta function) it is easy to show that Eq.(2.18) can be exactly

rewritten as

β∆Ωv = 4πR3
v

∫ 1

0

dλλ2ρλ(λRv). (2.19)

Here ρλ(λRv) is the contact density at the surface of the scaled exclusion zone with

radius λRv. As in the compressibility route, we can analytically carry out the

integration in the virial route to obtain solvation free energies for cavities for all

Rv. The equivalent PY solution for binary hard sphere mixtures is used for the

contact densities for all λRv’s larger than σ/2, while the explicit solution of the

HLR equation is used for the λRv’s smaller than σ/2.

2.3.3 Density Routes

In addition to these particular pathways, we can also imagine directly changing the

equilibrium density from ρB to ρ(r) over some convenient pathway specified by a
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coupling parameter λ, while taking account of the associated changes in Ω and φ(r).

Integrating Eq.(2.18) by parts to make ρλ(r) explicitly the controlling variable, we

have exactly

β∆Ωv =

∫
drρ(r)φ(r)−

∫ 1

0

dλ

∫
drφλ(r)

∂ρλ(r)

∂λ
. (2.20)

Here φλ(r) is the external field consistent with the specified density profile, so that

ρ(r;µB, [φλ]) = ρλ(r). For a given density field ρλ(r), the HLR equation (2.8) can

be solved inversely to obtain the associated hydrostatic density field ρr
λ. Using

Eq.(2.6), φλ(r) at each r is locally related to ρr
λ through µ(ρ). Here we used the

accurate Carnahan-Starling expression [7] for µ(ρ).

Most workers have considered a simple linear density path where

ρλ(r) = ρB + λ[ρ(r)− ρB]. (2.21)

This has some theoretical advantages since ∂ρλ(r)/∂λ is independent of λ and has

been successfully used in numerical calculations of the surface tension of the liquid-

vapor interface [42]. However, when φ(r) has a hard core (or is strongly repulsive),

then the region near λ = 1 in the λ-integration in Eq.(2.20) must be treated carefully,

since for r in the hard core region ∂ρλ(r)/∂λ is constant, while φλ(r) must tend to

infinity as λ→ 1. Although the singularity in the potential is integrable (for a hard

core potential the divergent term in βφλ goes as − ln(1 − λ) and could be treated

separately), in any case large contributions to the integral arise from a relatively

small interval near λ = 1. This could cause problems in a numerical integration.
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To illustrate the computational advantages and flexibility that different path-

ways can provide, we introduce here a new density route that removes this possible

difficulty. We consider a path that is linear in the square root of the density:

ρ
1/2
λ (r) ≡ (ρB)1/2 + λ[ρ1/2(r)− (ρB)1/2], (2.22)

where ρ
1/2
λ (r) =

√
ρλ(r) , etc. For this pathway we have

∂ρλ(r)

∂λ
= 2ρ

1/2
λ (r)

∂ρ
1/2
λ (r)

∂λ
. (2.23)

Both factors on the right side of Eq.(2.23) are easy to determine from Eq.(2.22). The

numerical integration in Eq.(2.20) can now be carried out straightforwardly since

the ρ
1/2
λ (r) factor in Eq.(2.23) will cause ∂ρλ(r)/∂λ to tend to zero exponentially fast

wherever φλ(r) becomes large. Results using this path are reported below. Other

paths implementing this idea exist and we have not tried to make an optimal choice.

2.3.4 Gaussian Field Model

Finally we consider an alternative approach, the Gaussian field model (GFM) [11],

that for hard core fields has many common elements with the HLR method. The

GFM describes density fluctuations in a uniform fluid with average density ρ by an

effective quadratic Hamiltonian

HB =
kBT

2

∫
dr1

∫
dr2δρ̌(r1)χ

−1(r12; ρ)δρ̌(r2), (2.24)

where δρ̌(r) = ρ̌(r)−ρ with ρ̌(r) the microscopic density. The partition function for a

system in an external field φ(r) = φ0(r) + φ1(r), with φ0 a hard core field producing
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a cavity of radius Rv and φ1 a weaker perturbation, is then assumed to be given by

[11]

Ξv =

∫
Dρ̌(r)

{∏
r∈v

δ[ρ̌(r)]

}

× exp[−βHB+β

∫
drρ̌(r)φ1(r)]. (2.25)

The product of delta functions imposes the constraint that the density vanish in-

side the cavity. Inserting a Fourier representation for the δ-functions and formally

integrating ρ̌(r) from −∞ to ∞ yields a Gaussian approximation for the partition

function, as discussed below.

Moreover, using the same approximations, by functionally differentiating Ξv

with respect to the field, one obtains the nonuniform singlet density in the GFM.

In the case of a pure hard core field with φ1 = 0, the density response to a cavity

with radius Rv is given by

ρ(r1) = ρB − ρB

∫
v

dr2

∫
v

dr3χ(r12;µ
B)χ−1

in (r2, r3). (2.26)

The integrations are restricted to the cavity region, as indicated by the subscript

v on the integral symbols. Here χ−1
in is the inverse of the restricted linear response

function χin(r12;µ
B), which equals χ(r12;µ

B) if both r1 and r2 are in the cavity

region and equals zero otherwise. Thus χ−1
in is nonzero only inside the cavity and

satisfies ∫
v

dr2χ(r12;µ
B)χ−1

in (r2, r3) = δ(r1 − r3), (2.27)
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when both r1 and r3 are in the cavity region. Comparing Eq.(2.26) to Eq.(2.15),

one can identify the cavity-solvent direct correlation function in the GFM as

C(r2) = −ρB

∫
v

dr3χ
−1
in (r2, r3). (2.28)

By properties of χ−1
in , the GFM C(r) vanishes outside the cavity region and

ρ(r) in Eq.(2.26) vanishes inside. Thus the GFM gives exactly the same solution for

the density response to a hard core external field as the PY or the HLR equations.

(In the more general case where there is an additional perturbation potential φ1, the

various approaches differ. The GFM can be shown to treat the softer tail using the

mean spherical approximation, which is different from and generally less accurate

than the hydrostatic shift used in the HLR equation.)

Thus for cavities or hard core solutes all structurally based routes to the excess

free energy will give the same results when using the GFM or the HLR equation. In

addition, the GFM partition function also provides a direct and very simple route to

the free energy [11]. However this route is inherently approximate because Eq.(2.25)

is not really a free energy functional for the whole configuration space, but rather a

restricted one describing only the space outside of the specified cavity region. This

functional may legitimately describe subsequent small perturbations of φ1 outside of

the cavity, but it does not contain enough information about the functional depen-

dence on the cavity volume in the first place. Moreover the approximations made

in evaluating the GFM partition function do not build in the fact that in grand

canonical ensemble, the thermodynamic properties should depend on µ − φ rather
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than on µ and φ individually. Thus it is also not consistent with the free energy

prediction from the compressibility route, which integrates over states at different

chemical potentials but with a fixed hard core always present.

Evaluating the Gaussian integrals in Eq.(2.25), the excess grand free energy

arising from a cavity with radius Rv is given by

β∆Ωv = − log Ξv/Ξ
B

= −1

2
ρBĈ(0; ρB, Rv) + log (detχin). (2.29)

Here Ξv denotes the partition function with no particles in the cavity region and

ΞB is the uniform bulk partition function. The term involving Ĉ in Eq.(2.29) arises

from the Gaussian integration of ρ̌ in Eq.(2.25) and Eq.(2.28). When compared

with the exact Eq.(2.16) from the compressibility route, we see the GFM effectively

approximates Ĉ(0; ρ,Rv) for intermediate density values by
(
ρ/ρB

)
Ĉ(0; ρB, Rv).

This free energy contribution has a form similar to a harmonic oscillator with(
ρ/ρB

)
Ĉ(0; ρB, Rv) analogous to the restoring force. The second term is a result of

the reduction of the configuration space.

An alternate perspective considers the average probability Pv(N) of finding N

particles in the volume v with radius Rv. The probability of inserting a cavity is

thus Pv(0). Then a formally exact expression for the excess free energy β∆Ωv is

β∆Ωv = − logPv(0) = − log
Ξv[0]∑Nmax

N=0 Ξv[N ]
. (2.30)

Here Ξv[N ] is the constrained partition function whenN particles are in the specified
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volume. This formula has been successfully used in the information theory approach

developed by Hummer, Pratt and coworkers [35].

If the GFM is used to approximate the partition functions in Eq.(2.30) by

replacing the product of δ-functions in Eq.(2.25) by the single average constraint

δ[
∫

v
drρ̂(r) − N ], one arrives at a Gaussian approximation [35, 49] for Ξv[N ]. This

“discrete” approximation for β∆Ωv based on this use of the GFM is

β∆Ωv = − log
e−N̄2/2χv∑Nmax

N=0 e−(N−N̄)2/2χv

(2.31)

where

χv ≡
∫

v

dr1

∫
v

dr2χ(|r1 − r2|), (2.32)

and N̄ = ρBv.

We determined the solvation free energy β∆Ωv for the GFM using both the

continuum version, Eq.(2.29), and the discrete version, Eq.(2.31). For the uniform

χ we used the PY result. To estimate log detχin we expanded χin in the volume

v using two orthogonal basis functions. A single constant basis function was used

in Ref. [49]. This is exact for tiny cavities with Rv ≤ σ/2, as can be seen using

Eq.(2.44) below. We chose one basis function to be constant. The other was taken

to be j0(Rvr/π), the zeroth order spherical Bessel function with its first node fixed

at r = Rv, but made orthogonal to the first (constant) basis function. The second

basis function is thus a linear combination of j0(Rvr/π) and a constant. This was

introduced to test the accuracy of the one basis function approximation previously

used and hopefully will give improved results for larger Rv.
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2.4 Results for Larger Cavities with Rv > σ/2

We now discuss the solvation free energies given by the various pathways for a cavity

with Rv > σ/2, equivalent to a physically realizable hard core solute particle with

diameter σv > 0. (Results for tiny cavities with Rv ≤ σ/2 are discussed in Sec. 2.5

below.) We use the simplest version of the theory, where the PY approximation

is used for the uniform fluid correlation functions. Fig. (2.1) give the solvation

free energy β∆Ωv from the different pathways as a function of the packing fraction

η = πρBσ3/6 forRv/σ = 1, 1.5, 1.75, where the results can be compared to computer

simulations [13] of Crooks and Chandler. Note that the volume of a spherical cavity

with Rv = 1.75σ is over 42 times greater than that of a solvent particle. For Rv = σ

the results also give the excess chemical potential as a function of density for the

uniform hard sphere fluid.

As discussed above, we can obtain analytical expressions for ∆Ωv for both the

compressibility and virial routes. The compressibility route gives

β∆Ωv =
η(−2 + 7η − 11η2)

2(1− η)3
− log(1− η) +

18η3

(1− η)3

Rv

σ

−18η2(1 + η)

(1− η)3

Rv
2

σ2
+

8η(1 + η + η2)

(1− η)3

Rv
3

σ3
, (2.33)

and the virial route gives

β∆Ωv =
η(−2 + 7η − 5η2)

2(1− η)3
− log(1− η)

−18η2(1− η)

(1− η)3

Rv
2

σ2
+

8η(1 + η − 2η2)

(1− η)3

Rv
3

σ3
. (2.34)

Results for the density route and for the GFM are computed numerically.
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In this range of Rv there is good agreement except at the highest densities

between the compressibility, virial and density routes, with best results overall aris-

ing from the compressibility route. The direct GFM predictions in Fig. (2.2) from

the partition function are less satisfactory. Both the discrete and the continuum

versions of the GFM give results that approach zero incorrectly as ρB → 0, and the

continuum values are consistently too large at high density while the discrete values

are too small. The discrete version of the GFM uses a Gaussian approximation

for the constrained partition functions and gives less accurate results than could be

obtained from a fit to accurate values of 〈N〉 and 〈N2〉 as in the information theory

approach [35].

As Rv → ∞, the surface of the cavity approaches that of a planar wall. As

shown in Eq.(2.14) there is a diverging term in the excess free energy given by the

cavity volume v = 4πR3
v/3 times the bulk pressure pB, and the more interesting

quantity to calculate is the surface term γv, given by

βγv =
β∆Ωv − βpBv

4πR2
v

. (2.35)

The surface tension of the planar wall is then γ∞. In the present case, both the

compressibility and the virial routes give analytical expressions for β∆Ωv which

depend on Rv as a polynomial: a0 + a1Rv/σ + a2R
2
v/σ

2 + a3R
3
v/σ

3. The coefficient

a3 thus gives another route to the bulk pressure on taking the wall limit. The pB

used in Eq.(2.35) has to agree with the prediction from the a3 so that γ∞ is finite. As

discussed earlier, the compressibility β∆Ωv yields the same bulk pressure as given
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Figure 2.1: The excess free energy predicted by the three thermodynamic routes

for cavity radii Rv = σ, 1.5σ and 1.75σ, compared with simulation data. η is the

packing fraction and is equal to πρBσ3/6.

by the accurate uniform fluid PY compressibility equation of state. The virial route

does not automatically build in this consistency, and the pressure predicted from

the coefficient a3 is less accurate than the uniform fluid PY virial equation of state.

The coefficient of the quadratic term then gives the surface tension βγ∞ =

a2/4πσ
2. Using the compressibility route we find

−4πβγ∞σ
2 =

18η2(1 + η)

(1− η)3
, (2.36)
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Figure 2.2: The excess free energy predictions by both the discrete and the contin-

uum versions of the GFM, plotted for the same Rv values and on the same scale as

in Fig. 2.1.

while the virial route gives

−4πβγ∞σ
2 =

18η2(1− η)

(1− η)3
. (2.37)

The γ∞ obtained by the compressibility route coincides with that given by scaled

particle theory [65, 26, 34]. We obtained γ∞ numerically for the density route.

These results can be compared to the quasi-exact formula [28]

−4πβγ∞σ
2 =

18η2(1 + 44
35
η − 4

5
η2)

(1− η)3
, (2.38)

which fits simulation data [34] and imposes the known first and second surface virial
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Figure 2.3: Surface tension predicted by the thermodynamic routes compared with

the simulation fitting formula.

coefficients [4]. As shown in Fig. (2.3) the compressibility and density routes give

excellent results, while the virial route is much less satisfactory.

This can be understood since the virial route uses only the contact densities at

the fixed bulk density. The HLR equation is least accurate for the contact density

at high bulk density and for large Rv, while the density response away from the

solute is more accurate. On the other hand, the compressibility and density routes

make use of the density response at all distances and over a range of densities from

low density to the final ρ(r) where the HLR equation is more accurate.
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2.5 A Special Regime: “Tiny” Cavities

2.5.1 Exact Results

The density response to a tiny cavity with Rv ≤ σ/2 is especially simple, since the

center of at most one hard core solvent particle can lie anywhere within such a region

[65, 26]. This fact allows one to determine exactly both the density response to a

tiny cavity and the solvation free energy. Here we will compare these exact results

to the predictions of the HLR and GFM approaches

As in Eq.(2.30), the solvation free energy is directly related to the average

probability that no particles are in the cavity region, namely,

e−β∆Ωv = Pv(0), (2.39)

where Pv(N) is the probability of finding N particles simultaneously in the region

with volume v = 4πR3
v/3. When Rv ≤ σ/2 , the region can hold no more than one

solvent particle, so that

Pv(0) + Pv(1) = 1, (2.40)

and

ρBv = 〈N〉v = Pv(1). (2.41)

Substituting these into Eq.(2.39) we thus find the exact result [65, 26]

β∆Ωv = − log(1− ρBv). (2.42)

This argument can be extended to show that the exact density response to a
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tiny cavity is [64]:

ρ(r) =
ρB[1−

∫
v
dr′ρBg(|r′ − r|)]

(1− ρBv)
(2.43)

for r outside v, with ρ(r) = 0 for r inside. Here g(r) is the exact radial distribution

function for the uniform solvent fluid. Note that the contact density ρ(Rv) = ρB/(1−

ρBv) is exactly determined independent of the details of g(r), since the corresponding

g(|r′− r|) in Eq.(2.43) vanishes for all r′ inside v. This result is valid as long as the

inserted region v can hold no more than one solvent particle, so Eq.(2.43) also holds

for solvents with a hard core pair potential plus a softer tail.

2.5.2 Structural Predictions of the GFM and HLR Methods

Now let us examine the GFM result in Eq.(2.26) for the case of a density response to

a tiny cavity. Since g(|r1− r2|) = 0 when both r1 and r2 are in v, then χin(r1, r2) =

ρBδ(r1−r2)−(ρB)
2
inside v. It is easy to see from Eq.(2.27) that the inverse function

χ−1
in then has the simple form [39]

χ−1
in (r1, r2) =

δ(r1 − r2)

ρB
+

1

1− ρBv
. (2.44)

When Eq.(2.44) is inserted into Eq.(2.26) to obtain the GFM density response to

a tiny cavity, we recover the exact expression for ρ(r) given in Eq.(2.43), provided

that the exact uniform fluid g(r) or c(r) is used. If approximate (say PY) results

are used to describe the uniform fluid response functions then strictly speaking the

GFM and HLR predictions for ρ(r) will not be exact for all r. However, the contact

density ρ(Rv) is exact in any case, since, as noted earlier, this requires only that
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Figure 2.4: The compressibility and virial routes are exact for the tiny cavity regime.

The density route is plotted along with the GFM results to compare with the exact

free energy predictions for Rv = 0.3σ and 0.5σ.

the approximate g(r) vanish inside the cavity region. Because of the equivalence

between the structural predictions of the GFM and the HLR equation, these same

conclusions hold for the HLR equation. In particular, the density response outside

a tiny cavity is exactly described by linear response theory about the uniform bulk

system.
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2.5.3 Solvation Free Energy from Thermodynamic Path-

ways

Moreover, these theories give the exact result of Eq.(2.42) for the solvation free

energy β∆Ωv, independent of possible errors in g(r), for all structurally based ther-

modynamic pathways that use only tiny hard core fields. In particular, the virial

route in Eq.(2.19) gives exact results for β∆Ωv since this requires only the (exact)

contact values ρλ(λRv). The compressibility route as written in Eq.(2.16) requires

C(r1), which from Eq.(2.28) depends only on the exact χ−1
in in Eq.(2.44). Both re-

sults require only that the bulk g(r) vanish for r < σ, and are unaffected by any

errors at larger r. This is in accord with our general supposition that particular

thermodynamic pathways can be relatively insensitive to errors in the structural

theory.

However the choice of pathway is important. Thus the density routes do not

give β∆Ωv exactly even in the tiny cavity regime. This is because as ρλ(r) is varied,

the corresponding φλ(r) in general is not a pure hard core field and spreads outside

the cavity region. Neither the GFM nor the HLR theories can treat these softer

and longer-ranged fields exactly even if exact uniform fluid correlation functions are

used.
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2.5.4 Solvation Free Energy from the GFM Partition Func-

tion

The β∆Ωv obtained directly by taking the logarithm of the partition function in

Eq.(2.29) can be expressed analytically for tiny cavities as

β∆Ωv =
1

2
log (1− ρBv) +

1

2

ρBv

1− ρBv
. (2.45)

As v → 0, this goes as (ρBv)2/4, while the exact result from Eq.(2.42) goes as ρBv.

This quadratic term arises from the assumption of Gaussian fluctuations, which

breaks down in this limit. The alternate discrete version from Eq.(2.31) reduces to

β∆Ωv = − log
e−N̄ / [2(1−N̄)]

e−N̄ / [2(1−N̄)] + e−(1−N̄)/[2N̄ ]
, (2.46)

where N̄ ≡ ρBv. This has the peculiar behavior as v → 0 that all derivatives vanish,

and so is significantly in error in this regime. See Fig. 2.4 for comparison with the

exact answer.

2.6 Conclusion

We have discussed several different thermodynamic routes that can be used to deter-

mine the solvation free energy for inserting both small and large cavities into a hard

sphere fluid. Generally accurate results are found by using the HLR equation to

relate the densities and associated fields over the intermediate states of the different

pathways. We also considered the GFM and showed that it gives results equivalent

to the HLR equation for the density response induced by a rigid cavity. However
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the GFM cannot describe the softer external potentials and intermediate densities

needed for the density routes and for more general thermodynamic pathways. Direct

use of the approximate partition function of the GFM to determine the solvation

the free energy of a cavity also gives less accurate results.

Best results using the HLR equation for the solvation free energy of a cavity

are found from the compressibility and density routes. This can be understood since

most states along these routes require the density response at intermediate densities

and distances away from the cavity where the HLR equation is most accurate. The

HLR equation can also be used for more general solutes with different shapes or

longer ranged attractive interactions and in applications where other pathways may

be more useful. Combined with an appropriate pathway it represents a versatile

and computationally efficient method for determining both the structure and the

thermodynamics of nonuniform fluids.
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Chapter 3

Shifted Linear Truncation Theory for Hard Sphere Fluids

A paper adapted from this chapter, “Structure of nonuniform hard sphere fluids

from shifted linear truncations of functional expansion” by Chen, Y.-G. and Weeks,

J. D., has been submitted to Journal of Physical Chemistry (in press).

3.1 Introduction

The HLR approximation, as demonstrated in the previous chapter, is a generally

accurate and computational efficient method for determining the density response of

hard sphere fluids to general external fields. However, the HLR equation can become

qualitatively incorrect when the fluid is extremely confined. In this chapter, a new

conceptual framework for developing more accurate theories of nonuniform hard

sphere fluids is proposed. Both the HLR and PY approximations can be derived

from this framework. This enables us to better understand the validity of these

approximations and why they fail to be accurate in some cases, and provides possible

clues about how the deficiencies could be remedied. In the following sections, several

limiting cases of this framework will be examined and a criterion for its practical
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application is developed. This is an on-going research project and future work along

these lines is planned.

3.2 Exact Expansions for the Density Response to an Ex-

ternal Field

The potential distribution theorem of Widom [82] relates the density response ρ(r)

of a single component hard sphere fluid in an external field φ(r) to the probability

P (r; [ρ]) of inserting a fluid particle at the position r in the nonuniform fluid:

ρ(r) = Λ−3eβ[µ−φ(r)]P (r; [ρ]). (3.1)

The direct interaction from the external field is excluded in determining P (r; [ρ]).

Equivalently, P (r; [ρ]) is the probability that a cavity whose radius is equal or greater

than the diameter d of the hard sphere exists at the particular point r, since only

then can the hard sphere be inserted. Here µ is the chemical potential, Λ the thermal

de Broglie wavelength, and [ρ] specifies explicitly the functional dependence on the

density profile. P (r; [ρ]) can be formally reexpressed in terms of the one-body direct

correlation function [15, 24]c(1)(r; [ρ]) as

P (r; [ρ]) = ec(1)(r;[ρ]). (3.2)

By expanding P (r1; [ρ]) at a given r1 in a functional Taylor series about a

uniform fluid state at some density ρ̃, Percus derived the following expansion for

42



the nonuniform density [59]

ρ(r1) = Λ−3eβ[µ−φ(r1)]+c(1)(ρ̃){1 +

∫
dr2 c

(2)(r12; ρ̃)(ρ(r2)− ρ̃)

+

∫
dr2

∫
dr3 [c(2)(r12; ρ̃)c

(2)(r13; ρ̃) + c(3)(r1, r2, r3; ρ̃)](ρ(r2)− ρ̃)(ρ(r3)− ρ̃) + ...}

(3.3)

The c(n)(r1, r2, ..., rn) are defined by successive functional derivatives of c(1)(r) with

respect to the singlet density, i.e.,

c(n)(r1, r2, ..., rn) =
δc(n−1)(r1, r2, ..., rn−1)

δρ(rn)
. (3.4)

Since we expand about a uniform bulk state, c(2)(r1, r2; [ρ]) = c(2)(r12; ρ̃),where

r12 = |r2 − r1|, due to translational invariance. Although the density ρ(r) can have

discontinuities caused by the discontinuities in the external field φ(r), representing,

e.g., a hard wall or a spherical cavity, P (r; [ρ]) is always continuous and smooth

[59, 60, 24] even across any discontinuities in φ(r). The expansion of Eq.(3.3) is

thus designed to take advantage of this smoothness of P (r; [ρ]). The hope is that

with proper choice of ρ̃ the expansion can be truncated at some low order and a

relatively simple theory for ρ(r) will result.

Percus considered several other expansions as well [59], some of which might

seem more promising. For example by directly expanding c(1)(r1; [ρ]) in Eq.(3.2) in

a Taylor series, we are guaranteed that the resulting approximation for the density

after a truncation is always nonnegative, an exact and desirable property not always

produced by truncations of Eq.(3.3). However there is a well defined limit where the
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expansion in Eq.(3.3) truncates exactly, in contrast to the corresponding expansion

for c(1). Moreover we will show that both the HLR and the PY equations can be

derived from Eq.(3.3). This suggests that it offers a versatile starting point for

further research.

3.3 Confined Fields and the PY Approximation

One limit where the expansion in Eq.(3.3) is particularly useful is when the external

field φ is nonzero only in a region much smaller than the correlation length of the

fluid. The analyticity of P (r; [ρ]) then ensures that its values in the tiny region where

φ is nonzero can be accurately determined by making use of low order extrapolation

of its values outside, i.e., where φ vanishes. For such locally confined fields, it seems

clear that the expansion in Eq.(3.3) should be about ρ̃ = ρB, the bulk density. This

is related to the chemical potential µ from Eq.(3.1) and Eq.(3.2) by

ρB = Λ−3eβµec(1)(ρB). (3.5)

It seems plausible that expansion only to linear order in Eq.(3.3) could give an

accurate description of the fluid’s density response to a very confined field:

ρ(r1) = Λ−3eβ[µ−φ(r1)]+c(1)(ρB)[1 +

∫
dr2 c

(2)(r12; ρ
B)(ρ(r2)− ρB)]. (3.6)

This qualitative argument will be made more precise below. Using Eq.(3.5), this

equation can be rewritten as

ρ(r1) = ρBe−βφ(r1)[1 +

∫
dr2 c

(2)(r12; ρ
B)(ρ(r2)− ρB)]. (3.7)
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If the direct correlation function c(2)(r12; ρ
B) of the uniform bulk fluid is known,

Eq.(3.7) can be solved for the density ρ(r) induced by the external field φ(r).

Equation (3.7) is the PY approximation [59, 60] for nonuniform fluids. We

show below that it gives exact results for any sufficiently localized φ(r), as suggested

by the extrapolation argument. Moreover, as discussed in the previous chapter of

this thesis, the PY approximation is known to give reasonably accurate results for the

density response to larger spherical cavities, where φ(r) is infinitely repulsive inside

a spherical region of radius R, but zero elsewhere, including the hard wall limit.

For such potentials the exact result ρ(r) = 0 is trivially obtained from Eq.(3.7) in

regions where φ(r) is infinite because of the Boltzmann factor e−βφ(r).

Despite this success, the linear extrapolation using the bulk fluid in Eq.(3.7)

would be expected to give poor results for external fields that remain finite and vary

over extended regions, especially in negative regions of the field where errors in the

truncated series can be greatly magnified by the Boltzmann factor e−βφ(r). These

are limits where the PY approximation is known to be very inaccurate.

3.4 Exact Shifting Property in the Grand Ensemble

When the linear truncation is inaccurate, it may seem difficult to make further

progress, since the higher order terms in Eq.(3.3) are too complicated to use in

practical calculations. However, as mentioned by Percus [59], one does not always

have to expand Eq.(3.3) about the bulk density defined by Eq.(3.5), nor does one
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have to expand about the same bulk state for each r value of ρ(r). We can use this

additional flexibility to greatly extend the accuracy of different linear truncations

of Eq.(3.3).

As discussed in detail in the last chapter of this thesis, it is the combination

µ − φ(r) that determines the density profile in the grand canonical ensemble, and

not µ and φ(r) separately. When both the chemical potential and the external field

are shifted by the same constant, the system’s properties should remain unchanged.

This exact shifting property of the grand ensemble will play a key role in what

follows.

In particular, a uniform system with chemical potential µ and a constant field

φc = c everywhere is thus equivalent to a bulk system in zero field with shifted

chemical potential µ̃c = µ − c [24]. The basic idea leading to the HLR equation

discussed in the last chapter is that the response to non-constant but slowly varying

fields is naturally and accurately approximated in terms of a uniform fluid at a

chemical potential similarly shifted by the local value of the external field. Both the

HLR equation and the new approximate theory we will develop below are consistent

with the shifting property and thus predict the same density profile ρ(r) for all

systems related by a uniform shift of the external field and the chemical potential.

To exploit this shifting property of the grand canonical ensemble in Eq.(3.3)

we consider a general shifted chemical potential

µ̃r1 = µ− ar1 (3.8)
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and a shifted external field

φ̃r1(r) = φ(r)− ar1 , (3.9)

both of which are shifted from the original µ and φ(r) by a constant ar1 that in

principle can depend on the point r1 about which the expansion is carried out.

The superscript r1 in µ̃r1 , φ̃r1 , ar1 indicated this parametric dependence on r1. The

shifted chemical potential µ̃r1 defines at each r1 an associated bulk system with a

uniform density

ρ̃r1 ≡ ρ(µ̃r1), (3.10)

whose correlation functions are used in the expansion. Equation (3.3) thus becomes

ρ(r1) = Λ−3eβ[µ̃r1−φ̃r1 (r1)]+c(1)(ρ̃r1 ){1 +

∫
dr2 c

(2)(r12; ρ̃
r1)(ρ(r2)− ρ̃r1)

+

∫
dr2

∫
dr3 [c(2)(r12; ρ̃

r1)c(2)(r13; ρ̃
r1)

+c(3)(r1, r2, r3; ρ̃
r1)](ρ(r2)− ρ̃r1)(ρ(r3)− ρ̃r1) + ...} (3.11)

In principle, if we could accurately evaluate all terms in the Taylor series, the same

exact result for ρ(r1) would be found for any choice of ar1 (subject to the convergence

of the series) due to the shifting property. But this is hopelessly complicated in

general and approximate values for ρ(r1) from truncations of the series do depend

on the choice of the ar1 .

3.5 Shifted Linear Truncations

Our strategy is to try to choose the ar1 or the ρ̃r1 at each r1 in such a way that

a self consistent solution for ρ(r1) based on a simple low order truncation of the
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series in Eq.(3.3) can give accurate results. In particular, we suppose that the ar1

can be chosen by some argument to be specified later so that the expansion can be

truncated at linear order to a good approximation. We thus arrive at a very general

starting point, which we refer to as the shifted linear response (SLR) equation:

ρ(r1) = Λ−3eβ[µ̃r1−φ̃r1 (r1)]+c(1)(ρ̃r1 ){1 +

∫
dr2 c

(2)(r12; ρ̃
r1)(ρ(r2)− ρ̃r1)}

= ρ̃r1e−βφ̃r1 (r1){1 +

∫
dr2 c

(2)(r12; ρ̃
r1)(ρ(r2)− ρ̃r1)} (3.12)

Specific choices of the ar1 or ρ̃r1 will lead to different approximations for ρ(r1).

The PY approximation arises from the choice ar1 = 0 or ρ̃r1 = ρB. As we argued

above this choice should give very accurate results for sufficiently localized fields.

However, when the external field is extended but slowly varying, a different choice of

ar1 is clearly more appropriate. As shown in the previous chapter, the HLR equation

is very accurate in such cases. This uses the hydrostatic shift, where the external

field is locally shifted at each r1 to be zero. This corresponds to the choice

ar1 = φ(r1), (3.13)

in Eq.(3.12) so that φ̃r1(r1) = 0 and ρ̃r1 = ρr1 ≡ ρ(µ−φ(r1)). When the hydrostatic

shift is employed, the SLR equation (3.12) reduces exactly to the HLR equation.

Thus the expansion Eq.(3.11) provides an alternative derivation of the HLR

equation in addition to the previous argument using linear response with the hy-

drostatic shift (also see reference [40]). More important, it provides the additional

flexibility needed to suggest improvements of the HLR equation. With proper choice

48



of ar, Eq.(3.12) can be used to describe and bridge several limits that both the PY

and the HLR equations fail to capture. These limiting cases will be addressed in

the following.

3.5.1 “Tiny” Fields

Consider first a very localized field φ(r) that is non-vanishing only within a spherical

volume V φ of radius d/2, with d the hard sphere diameter:

φ(r) 6= 0, |r| < d

2

= 0, otherwise. (3.14)

This volume is so small that it can simultaneously accommodate the centers of at

most one hard sphere particle. We call localized fields that are nonzero only in such

a tiny region tiny fields. A special case of “tiny fields” is a tiny cavity, where φ is

infinite in V φ. The density response of a hard sphere fluid to any tiny field can be

determined exactly, as we now show.

We start with the grand partition function Ξ[φ] when a general external field

φ is present in the fluid:

Ξ[φ] =
∞∑

N=0

zN

N !
ZN [φ]

=
∞∑

N=0

zN

N !

∫
dr1...rNe

−β
∑N

n=1 φ(ri)−βVN (r1,r2,...,rN ). (3.15)

Here ZN [φ] is the canonical partition in the presence of the field, ZN [0] refers to
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that of a bulk fluid, i.e., when the external field is zero, and z ≡ exp(βµ)/Λ3.

VN(r1, r2, ..., rN) is the intermolecular interaction potential between the N fluid

particles. Introducing the Mayer f -function for the external field

fφ(r) ≡ e−βφ(r) − 1, (3.16)

Eq.(3.15) can be rewritten in terms of an expansion about the uniform fluid with

φ = 0:

Ξ[φ] =
∞∑

N=0

zN

N !

N∑
n=0

∫
dr1dr2...drn

N !

(N − n)!n!
fφ(r1)f

φ(r2)...f
φ(rn)∫

drn+1, ..., drNe
−βVN (r1,...,rN ) (3.17)

=
∞∑

n=0

1

n!

∫
dr1dr2...drnf

φ(r1)f
φ(r2)...f

φ(rn)

∞∑
N≥n

zN

(N − n)!

∫
drn+1, ..., drNe

−βVN (r1,...,rN ) (3.18)

= Ξ[0]
∞∑

n=0

1

n!

∫
dr1dr2...drnf

φ(r1)f
φ(r2)...f

φ(rn)ρ(n)(r1, ..., rn; [0])

(3.19)

Here ρ(n)(r1, ..., rn; [0]) is the n-particle distribution function in the uniform grand

canonical ensemble with chemical potential µ.

For general extended fields this formal expansion does not converge rapidly.

However it can be very useful when the field is confined to a small localized region

of space since fφ(r) is nonzero only where φ is nonzero. In particular for tiny

fields the expansion Eq.(3.19) must truncate exactly due to the vanishing of the

ρ(n)(r1, ..., rn, [0]) when more than one hard particle is simultaneously within the
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volume V φ. By functional differentiation of Eq.(3.19) we can also find an expression

for ρ(r; [φ]) that similarly truncates. Thus we have exactly for tiny fields

Ξ[φ] = Ξ[0][1 +

∫
dr1ρ

Bfφ(r1)], (3.20)

and

ρ(r1; [φ]) =
ρBe−βφ(r1)

1 +
∫
dr2ρBfφ(r2)

[1 +

∫
dr2ρ

Bg(2)(|r1 − r2|; ρB)fφ(r2)]. (3.21)

This exact result for the density response to a tiny field φ was originally derived in a

different way by Reiss and coworkers [64]. Here g(2)(|r1− r2|; ρB) is the exact radial

distribution in the uniform hard sphere fluid. This same formula clearly holds for

a more general model with longer ranged pair interactions outside the hard core if

the appropriate g(2) is used.

As might be expected by the appearance of ρB in this equation, one can show

(see appendix B for details) that the PY approximation Eq.(3.7) is consistent with

this exact result for any tiny field. In accord with the qualitative argument above,

the linear extrapolation from the bulk into the tiny region is exact in this case. This

desirable feature of the PY approximation for nonuniform fluids does not seen to be

known in the literature. This corresponds in the SLR equation to the choice ar = 0,

i.e., ρ̃r = ρB and shows that the series indeed truncates exactly in this special case.

However, a closely related limit highlights a general problem with the PY

approximation. Consider a field φc(r) that is a non-zero constant c outside a tiny

region V φ and any value φ(r) inside. This can immediately be shifted to be the type
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for which Eq.(3.20) and Eq.(3.21) hold by making the choice ar = c. For such a field

φc we then have

ρ(r1; [φ]) =
ρ̃ce−βφ̃c(r1)

1 +
∫
dr2ρ̃cf̃ c(r2)

[1 +

∫
dr2ρ̃

cg(2)(|r1 − r2|; ρ̃c)f̃ c(r2)]. (3.22)

Here ρ̃c = ρ(µ − c) and f̃ c is defined as in Eq.(3.16) with the shifted tiny field

φ̃c(r) = φc(r)− c.

For a perturbation that varies significantly only in a very local region (com-

pared with the correlation length of the particles), a particle situated in the per-

turbed region, though directly affected by the field, should screen the perturbation

from the rest of the fluid particles. The fluid’s response thus essentially remains

that of the uniform fluid outside the local region. The shifted field represents such

a localized perturbation. Thus choosing the density ρ̃c to be that of the bulk en-

vironment i.e., ρ(µ − c), will truncate Eq.(3.19) at low order, leading to Eq.(3.22).

And again, the choice ar = c in the SLR equation (3.12) gives this exact result.

In this essentially equivalent case however, the PY approximation, which al-

ways uses the unshifted ρB, will give an incorrect result, even though it can exactly

describe the tiny field limit when c = 0. Unlike the SLR equation, the PY approxi-

mation does not build in the exact shifting feature of the grand canonical ensemble.

This can cause significant errors for extended slowly varying fields.

However, the HLR approximation uses the hydrostatic shift Eq.(3.13) and thus

will correctly describe the shifted bulk density ρ̃c in this case. Moreover it is exact

for tiny cavities [39](tiny fields that are infinitely repulsive inside V φ) since any
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finite value for ar inside the cavity would still give the correct zero density. However

the HLR equation is not exact for more general finite tiny fields. The HLR local

density ρr would follow the variations in φ inside the tiny region, contrary to the

exact result with a constant ρ̃c everywhere. Rapidly varying tiny fields can generate

noticeable errors in the HLR approximation, as will be shown in a later section

where computational results are reported.

3.5.2 Narrow Slits

Another application that may at first seem to be very different from the tiny field

case is when an extended external field confines the fluid to a region of reduced

dimensions. For example, consider a hard sphere fluid confined between two planar

hard walls forming a narrow slit. We can get exact results for this case from Eq.

(3.19) by exploiting the shifting property of the grand ensemble. The confining field

can be taken to be the limit of piecewise constant potentials defined so that

φc(z) = 0, 0 < z < Ls

= c, otherwise, (3.23)

in the limit where c→∞. In this limit the fluid’s density will be zero except in the

narrow region between the walls. Here Ls is the effective width of the slit as seen

by the centers of the fluid particles.
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If we formally introduce the uniform shift az = c we have

φ̃c(z) = −c, 0 < z < Ls

= 0, otherwise (3.24)

and the shifted external field φ̃c(z) is non-zero only in the narrow slit region, similar

to a tiny field. However, the shifted slit field is not strictly a tiny field as defined

in the previous section where the expansion exactly truncates, because even when

Ls → 0, many particles in principle can still be found in the slit, aligned in a two-

dimensional layer along the walls of the slit. But once this shift has been made,

the expansion in Eq.(3.19) and Eq.(3.22) converges rapidly for small Ls since the

contribution from the integration over the f̃ c tends to zero. The shifted chemical

potential µ̃c = µ − c tends to −∞, corresponding to an expansion about the ideal

gas limit where the shifted bulk density ρ̃c tends to zero and c(1)(ρ̃c) = 0.

Inside the slit where µ̃c − φ̃c(r1) = µ − φc(r1) = µ, we have a finite limiting

density as Ls → 0 given by

ρ̃ce−βφ̃c(r1) = Λ−3eβ[µ̃c−φ̃c(r1)]+c(1)(ρ̃c) = Λ−3eβµ. (3.25)

Equation (3.22) then gives the first two terms in an exact (but non-truncating)

virial-like expansion valid for narrow slits. Higher order terms can be determined

straightforwardly from Eq.(3.19). In agreement with previous work [31], there is a
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constant limiting lowest order density profile in the narrow slit given by

ρ(z) = Λ−3eβµ, 0 < z < Ls

= 0, otherwise. (3.26)

For a value of µ corresponding to a dense uniform hard sphere fluid, this yields a

very large limiting value for the reduced density in the slit ρ3Dd3 ≡ Λ−3eβµd3 � 1.

However the density of fluid particles per unit area of the wall ρ2Dd2 ≡ Λ−3eβµd2Ls

tends to zero as Ls → 0. Thus particles in the narrow slit are very far apart laterally

and an expansion about the ideal gas limit is physically appropriate.

Clearly the SLR equation can reproduce these exact limiting results if the

proper choice az = c for all z (where c→∞) is made. However, the PY approxima-

tion uses az = 0 everywhere in the SLR equation, while the HLR equation assumes

az = c outside the slit but az = 0 inside, and hence they both give incorrect results

in the limit Ls → 0. Both theories correctly predict zero density outside the slit,

since for any choice of az, the factor ρ̃z1e−βφ̃z1 (z1) in Eq.(3.12) immediately makes

ρ(z1) zero outside the slit. However, inside the slit both the PY and the HLR equa-

tions take ρ̃z1 = ρB and thus expand about the bulk reference state, which gives a

very poor description of the dilute 2D gas in the slit. The PY and the HLR solution

are equivalent for this system. As Ls → 0 they predict a limiting density much

lower than given by Eq.(3.26). These problems arise only at small separations of

the order or smaller that of the hard sphere diameter d. At larger separations and

in the one wall limit both theories give much more satisfactory results [29], as that
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can be observed in Fig.(3.8).

3.6 A New Criterion for the Shifted Linear Response (SLR)

Equation

The above discussion has shown the versatility of the SLR equation and its ability

to give exact limiting results in several specific cases with proper choice of the ρ̃z.

It has also shown that inaccuracies arise in some cases from the prescribed local

choices made by the PY and HLR equations. Thus we need to have a more general

and systematic way of arriving at better choices for ρ̃z in the SLR equation. To

that end we first look more closely at the reasons why the HLR choice fails in some

cases.

3.6.1 Limitations of the HLR Equation

The expansion Eq.(3.11) provides an alternative derivation for the HLR equation in

addition to the linear response and hydrostatic shift arguments used in the previous

chapter. It can be observed that the HLR approximation always shifts the external

field such that the field value is locally zero at the point of interest, and expands

the density about that of the local uniform system at the shifted chemical potential.

Unlike the PY approximation, the HLR thus builds in the invariance of a grand

canonical ensemble when both the chemical potential and the external field are

shifted by a constant. It is an excellent approximation when the external field is

slowly varying, truncating the expansion of Eq.(3.11) about the hydrostatic density
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Eq.(3.10) efficiently. Moreover it gives the same results as the PY approximation

for hard core fields. In general the HLR approximation is much more accurate and

more useful than the PY approximation for a wide range of external fields.

However, HLR’s choice of ρ̃r = ρ(µ − φ(r)) depends on the external field too

locally in cases where the external fields varies significantly in local regions much

smaller than the correlation length of the fluid. In such cases, the proper density

ρ̃r to expand about is often not the hydrostatic density ρ(µ− φ(r)), but a nonlocal

extrapolation using the density of the surroundings, as illustrated by the tiny field

and narrow slit examples discussed above. To improve the HLR approximation

using the SLR equation (3.12), one needs a new way to choose ρ̃r that can account

for this extrapolation of the local uniform system in such cases, while not spoiling

the good results of the HLR equation in most other applications. We describe below

our first attempt to develop such a criterion.

3.6.2 The Insensitivity Criterion

If all orders are exactly retained in the expansion (3.11), it should be invariant with

respect to a simultaneous shift of the chemical potential µ and the external field φ.

Thus Eq.(3.11) should hold for all choices of ρ̃r . However only certain choices of ρ̃r

can efficiently truncate the series at low orders. One possible criterion for truncation

57



is to choose a ρ̃r that minimizes the contribution from the quadratic term

Q(r1) ≡
∫
dr2

∫
dr3c

(2)(r12; ρ̃
r1)c(2)(r13; ρ̃

r1)

+c(3)(r1, r2, r3; ρ̃
r1))(ρ(r2)− ρ̃r1)(ρ(r3)− ρ̃r1) (3.27)

in Eq.(3.11). However, unlike c(2)(r12; ρ), c
(3)(r1, r2, r3; ρ) is often not available an-

alytically [60, 45] (and accurately) and the 6-dimension integral of Q(r) is very

computational demanding.

To circumvent the difficulty of dealing with the Q(r) directly, a reasonable

alternative is to consider how the predictions of the SLR equation change as ρ̃r is

varied. Since the SLR equation is a truncation of the exact series in Eq.(3.11), it is

certainly not invariant with respect to variation of any ρ̃r. However if the truncation

is accurate for some particular choice of ρ̃r, in effect the higher order terms in the

series have then been taken into account. Thus the SLR equation should be relatively

insensitive to small variations about the particular ρ̃r that makes the higher order

corrections to the SLR equation small. This condition need not be exact, even in

the case of a tiny field where the series truncates exactly, but it seems likely that it

could produce reasonable choices for ρ̃r in many cases.

This leads to the following self-consistent condition for the density given by

the SLR equation (3.12):

δρ(r1)/δρ̃
r2 = 0, ∀r1, r2, (3.28)

expressing the insensitivity of the density with respect to variations in ρ̃r. Differ-

entiating both sides of the SLR equation (3.12) and collecting the terms given by

58



δρ(r1)/δρ̃
r2 (for more details of the derivation, see appendix C), the insensitivity

criterion in Eq.(3.28) can be written as:

ρ̃r1 =

∫
dr2W (|r1 − r2|; ρ̃r1)ρ(r2)∫
dr2W (|r1 − r2|; ρ̃r1)

. (3.29)

where

W (|r1 − r2|; ρ) ≡ ċ(1)(ρ)c(2)(|r1 − r2|; ρ) + ċ(2)(|r1 − r2|; ρ) (3.30)

and

ċ(1)(ρ) ≡ dc(1)(ρ)/dρ; ċ(2)(|r1 − r2|; ρ) ≡ dc(2)(|r1 − r2|; ρ)/dρ. (3.31)

Because the function W (|r1 − r2|; ρ) in Eq.(3.30) has range of c(2)(|r1 − r2|; ρ),

Eq.(3.29) shows that ρ̃r1 can be interpreted as the full density ρ(r) averaged over

the range of the fluid’s correlation length around the point r1, using a self-consistent

weighting function W that itself depends on ρ̃r1 . We will refer to the resulting ρ̃r as

the smoothed reference density in what follows. Some versions of weighted density

functional theory [51, 15] have used similar weighted densities, though the detailed

implementation and justification is rather different.

Equation (3.29) derived from the insensitivity criterion (IC) can then be solved

with the SLR equation to determine both the full density ρ(r) and the smoothed

density ρ̃r. We refer to these coupled equations as the IC equations. The IC equa-

tions can be solved numerically by iteration.
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3.6.3 Results in Limiting Cases

We first verify that the IC equations can give accurate results in limiting cases where

the proper choice of ρ̃r is known. In the hydrostatic limit where the external field is

very slowly varying, ρ(r) must reduce to the hydrostatic density ρr = ρ(µ−φ(r)), as

given by the HLR equation. In this same limit ρ(r2) in the IC equation (3.29) can

be approximated by ρ(r1) and taken outside the integral. This gives ρ̃r = ρ(r) and

hence ρ̃r = ρr. The IC equations thus reduce to the HLR equation for slowly varying

fields and recover the hydrostatic limit correctly. However, because of the averaging

in Eq.(3.29), in other limits the IC choice of ρ̃r is less local than the HLR choice

ρr and tends to smear out the nonuniformity caused by external perturbations in

small regions.

For the narrow slit limit discussed above, the ρ̃r given by Eq.(3.29) correctly

approaches zero as L → 0, since the Boltzmann factor e−βφ(r) ensures that ρ(r) is

zero inside the walls. Thus the IC equations are exact in the narrow slit limit as

Ls → 0 and correct the poor predictions of both the HLR and PY equations.

For tiny fields, the IC choice in Eq.(3.29) strictly reproduces the exact bulk

density choice ρ̃r = ρ(µ − φ(∞)) only in the limit where V φ → 0, and is not exact

for general tiny fields. However ρ̃r is generally very close to that of the bulk density

because the tiny field volume V φ has little weight in the averaging. Thus the IC

equations can be expected to agree reasonably well with exact results for general

tiny fields, as will be shown in the next section.
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3.7 Results

We first consider the density response of a hard sphere fluid at a moderate packing

fraction η = 0.3 to a series of spherical model potentials of varying ranges and

different signs. In particular we studied repulsive (attractive) step functions of

height 3kBT (−3kBT ) and different ranges and “triangular” fields that start with

the same height at the origin and vary linearly in r to the cutoff. Hard sphere cavities

with the same cutoffs were also studied. Numerical solutions of the IC, HLR, and

PY equations are presented, together with results of Monte Carlo simulations for

the fluid’s density response. The PY bulk direct correlation function c(2)(r12; ρ),

which is very accurate at these densities, was used in the theoretical calculations.

The Carnahan-Starling equation [7] of state was used for computing the density

ρ̃r = ρ(µ− ar) of the locally shifted uniform system.

3.7.1 “Tiny” Fields

For tiny fields, all results should be compared to the PY approximation, which

is exact for such fields (subject only to the small errors in the PY bulk direct

correlation function). As can be seen in Fig.(3.1) and Fig. (3.2), the HLR equation

is exact only for tiny cavities. For finite tiny fields, its major errors occur in the

tiny region where the field is nonvanishing. The density response predicted by the

HLR equation often exhibits a negative region where the external field varies most

rapidly. The IC approximation, on the other hand, in general agrees with the PY
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approximation much better in the tiny field region and in particular eliminates the

negative densities given by HLR. However the IC is not exact for tiny fields, and

tends to overestimate the contact densities.

3.7.2 Extended Fields

For more extended fields, none of the approximations are exact, so Monte Carlo

simulations were carried out to test the various theories. As shown in Fig.(3.3) and

Fig.(3.4), as the range of the “step” and the “triangle” potentials becomes wider,

the HLR approximation becomes more accurate. However, it still exhibits negative

densities in its solution for both repulsive and attractive step potentials, especially

for the narrower steps. For the same width of the potentials, the HLR equation

does better in predicting the response to the triangle potentials than to the step

potentials. This agrees with the expectation that the HLR equation should be more

accurate when the external field is more slowly varying.

The PY approximation, on the contrary, becomes less accurate when the field’s

width increases, as is seen in Fig.(3.3). This is because the PY expansion about

the bulk density and extrapolation into the region where the external field is non-

vanishing becomes less and less justified when the range of the potential increases.

This problem of the PY approximation is much more acute for attractive potential,

when its errors are magnified by the large Boltzmann factor (Eq.(3.7)), and the

results are so poor that we do not show them in Fig.(3.4). Indeed, the PY approx-

imation for nonuniform fluid is hardly ever applied in practice except for strongly
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Figure 3.1: The density response to tiny repulsive external fields of different widths

W is plotted. The curves are the predictions by the IC, PY and HLR approxima-

tions. The PY approximation is exact for the density values inside the non-zero

field region. All the external fields are spherical. “Step” denotes a spherical step

function where βφ(r) = 3,∀r < W and βφ(r) = 0, otherwise. “Triangle” refers to

the potential βφ(r) = 3− 3r/W that has the same height as the step potentials but

decays linearly to zero at r = W with βφ(r) = 0, otherwise. “Cavity” refers to the

hard core potential βφ(r) = ∞,∀r < W and βφ(r) = 0, otherwise. The form of

the potentials βφ(r) are illustrated in the insets. For the cavity potentials, the PY

and HLR approximations give identical density solutions. The bulk fluid’s packing

fraction η ≡ πρBd3/6 is η = 0.3.

repulsive potentials, where the value ρ̃r value is essentially irrelevant.

The IC approximation is able again to correct the negative densities given

by HLR and, most notably, to capture the highly nontrivial density profile inside

both positive and negative step potentials due to the packing of the hard spheres.

However, for spherical cavities, although it is known that the PY (and HLR) ap-

proximation consistently predicts a contact density lower than the exact value, the

IC noticeably over-corrects the contact densities. This has a deleterious effect on

the rest of the profile, especially near the cavity region.

The density response given by the HLR and IC equations for two deep attrac-

tive parabolic bowl potentials are plotted in Fig.(3.5) for a hard sphere fluid with

packing fraction η = 0.25656. Fig.(3.6) shows the potentials on the left and the

reference densities ρr and ρ̃r for the HLR and IC equations on the right. For the
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shallower bowl potential (see the left graphs of Fig.(3.6)), both the IC and HLR

approximations agree well with the Monte Carlo simulations. The reference density

ρ̃r of the IC approximation is very close to that of the hydrostatic density ρr, as can

be seen in the right graph of Fig.(3.6), except that ρ̃r varies smoothly near the edge

of the bowl, while the hydrostatic density has a discontinuous derivative.

For the deeper bowl potential, both approximations deviate noticeably from

the simulation data, but nonetheless capture the nontrivial oscillatory density profile

inside the bowl. In particular, both reproduce the density minimum at the center of

the bowl, where the external field is actually most attractive, due to nonlocal effects

from packing of the hard spheres. However, the HLR density becomes negative at

the bottom of the bowl, while the IC density remains positive, though somewhat

lower than the MC result. The reference density ρ̃r for the IC method for the deeper

bowl potential has more oscillations than that of the shallow bowl potential, and

exhibits a maximum at the center, which is the key for keeping its predicted full

density positive. Once outside the bowl, all approximations agree well with the MC

result.

Fig.(3.7) plots the density response solutions to a soft continuous repulsive

potential of the form βφ(r) = Aerf(r/σ)/r. This is a potential that will be very

relevant for the ionic systems we study in later chapters. Here all the approximate

results agree quite well with the simulations, except that the HLR equation again

shows a narrow negative density region for the more rapidly varying potential (left
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also been computed by Katsov and Weeks, see reference [40].

graphs of Fig.(3.7)).

Finally, in Fig.(3.8), the density response to a planar hard wall determined

using the IC and HLR approximations is compared to the results of the generalized

mean spherical approximation (GMSA) [73]. The GMSA fits the contact density at

the wall to the bulk equation of state using an exact sum rule, and is known to be

very accurate for such systems. Thus it can be used as a benchmark for the other

approximations. As shown in the previous chapter, the HLR approximation agrees

very well with the GMSA except for its consistent underestimate of the contact

density.
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The IC method is now significantly less satisfactory than it was in the other

cases. The main problem arises from a severe overestimate of the contact density,

which goes on to spoil the rest of the density profile. The state shown is at a mod-

erate packing fraction η = 0.314 and the errors get even worse at higher densities.

This problem is similar to that seen for the cavity potentials presented before.

The IC method can also be used in an inverse way to determine what ρ̃r

is needed to obtain a given density ρ(r) as a solution to the SLR equation. We

determined the ρ̃r associated with the accurate GMSA ρ(r) in this way, and it

can be seen that this GMSA ρ̃r dips below the bulk density (used in the relatively

accurate HLR equation) near the wall. The IC ρ̃r shows a similar deviation, but

has more oscillations and dips a little too low near the wall, which causes the high

contact density it predicts.

This example shows that small changes in ρ̃r near the wall can have large

effects on the predicted density profile near the wall in the SLR equation. The fact

that the HLR choice, clearly appropriate for slowly varying fields, continues to give

reasonably good results for single hard walls and hard cavities seems fortuitous, as

illustrated by the errors HLR produces for rapidly varying but finite potentials. The

IC method, which gives very good results in most other limits, correctly predicts

the lowering of ρ̃r near the hard wall but overestimates its magnitude.
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3.8 Conclusion

The SLR equation provides a versatile framework for computing the density response

of hard sphere fluids to general external fields. By satisfying the exact shifting

property of the grand ensemble, it is possible to accommodate exactly two important

limits using this framework: slowly varying external fields (hydrostatic limit) and

the opposite limit where fields can be very rapidly varying but only perturb the

fluid in tiny or narrow regions. Errors in specific predictions arising from the linear

truncation in the SLR equation can be minimized by choosing locally at every point

in space a different uniform system with density ρ̃r to expand about.

In principle there could be different prescriptions for how this could best be

achieved in particular applications and for specific properties. In most cases the

simple local HLR choice is quite sufficient. However this has problems for rapidly

varying but finite fields and the SLR equation, which reduces to the HLR equation

for slowly varying fields, offers additional flexibility. A general idea often used in

other expansions in liquid state theory is to choose a reference density ρ̃r that at

least minimizes the next order correction to the SLR equation. However, this is

very complicated, and there will still be unknown contributions from the higher

order terms.

Here as a first attempt, we have devised an insensitivity criterion (IC), based

on the idea that the SLR equation should be insensitive to small variations of ρ̃r.

This property would be exactly satisfied if all terms in the expansion were taken
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into account, and by imposing it self-consistently on the SLR equation we hope to

generate a truncation where the contribution from higher order terms are indeed

small. The resulting IC method is very successful in correcting the negative density

regions that the HLR often exhibits for rapidly varying finite fields, and although

not exact, the IC method also shows considerable improvement over HLR for the

tiny field cases. Moreover, the IC method is exact for narrow slits as the slit width

Ls → 0, while the HLR and PY approximations have very significant errors in this

limit.

However, the IC method tends to overestimate the contact value of the density

response to simple hard core cavities of all sizes, and this damages the accuracy of

the rest of the density profile. In practice this is not a significant limitation, since

these cases are reasonably well treated by the HLR and PY approximations, even

though they noticeable underestimate the contact density. Other specific conditions

for hard core potentials, such as the sum rule used in the GMSA approximation,

could be taken into account to improve the IC method in this limit. But it seems

conceptually worthwhile to see if ρ̃r can be chosen more generally within the SLR

framework so that accurate results naturally arise in this limit as well. To that end

we believe it would be profitable to further study the tiny field limit, where similar

problems are encountered, to gain additional insights for optimal use of the SLR

equation.
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Chapter 4

Connecting Systems with Short and Long Ranged

Interactions: Local Molecular Field Theory for Ionic Fluids

This chapter is heavily based on a paper “Connecting systems with short and long

ranged interactions: local molecular field theory for ionic fluids” by Chen, Y.-G.

and Weeks, J. D., submitted to Journal of Physical Chemistry (in press).

4.1 Introduction

The local molecular field (LMF) theory had been successfully applied to nonuniform

simple fluids [43, 41, 78, 79, 80, 74]. In this chapter, a new theory for the structure

and thermodynamics of ionic fluids based on a generalization of the LMF theory is

described. A basic step in the LMF theory is the replacement of longer ranged and

slowly varying parts of the intermolecular interactions by an appropriately chosen

effective single particle potential. The structure and thermodynamics of the result-

ing reference system with shorter ranged intermolecular interactions in the presence

of the effective field is then related to that of the original system of interest.

This strategy seems particularly appropriate for ionic systems since at long
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distances the Coulomb interaction is weak and very slowly varying, and systems with

short ranged interactions are significantly easier to treat by theory or simulations.

However Coulomb interactions can be very strong and rapidly varying at short

distances. A key question that is addressed is how to divide the Coulomb interaction

into “short” and “long” ranged parts so that the LMF theory can give accurate

results. Its answer allows for the first controlled use of the LMF approximation,

and exceptionally accurate results are found, even better than those found earlier

for fluids with short ranged interactions.

Although the most physically interesting applications of these ideas are prob-

ably to nonuniform mixtures of size and charge asymmetric ions, in this initial

discussion we consider a uniform one-component charged hard sphere system (OC-

CHS) where almost all the ideas in the LMF theory can be seen in their simplest

form [24]. The OCCHS is made up of (say positively) charged “ions” comprised of

hard spheres with a diameter d ≥ 0 with centrally embedded positive point charges

in the presence of a uniform neutralizing background. The only nontrivial correla-

tions are between the positive ions and for most purposes we can think of this as a

one-component system with very long ranged repulsive interactions. A special case

is the one-component plasma (OCP) where there is no hard core (d = 0). Nothing

in the theory makes essential use of the simplifications in the OCCHS. Generaliza-

tions to nonuniform and asymmetric models are straightforward in most cases, and

equally good results have been found.
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4.2 Local Molecular Field Equation (LMF)

4.2.1 Nonuniform Systems

Let us discuss the qualitative ideas leading to the LMF equation. These will be

further developed and made more precise in our discussion of the OCCHS. The

simplest application of LMF theory relates the structure and thermodynamics of a

nonuniform system of interest with a spherically symmetric pair potential w(r) in an

external field whose value at any point r1 is φ(r1) to those of a reference system with

a shorter ranged pair interaction u0(r) in a renormalized effective field φR(r1). φR

is supposed to be chosen to take account of the averaged effects of the perturbation

potential u1(r), where

w(r) = u0(r) + u1(r). (4.1)

This separation of the intermolecular interaction w into two parts can be done

in an infinite number of ways, and any choice of u1 defines a possible associated

reference system. However the averaging procedure leading to the simple LMF

theory can be expected to give very accurate results only for certain properly chosen

slowly varying u1.

Fig.(4.1) gives examples of separations of the repulsive Coulomb potential we

will use in this chapter, parameterized by an important length scale σ. As explained

in detail in Section 4.4, when σ is chosen larger than some state-dependent minimum

size σmin, the Coulomb perturbation u1 is sufficiently slowly varying that the LMF

theory can give very accurate results. This is the crucial step in developing a simple
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and accurate theory for ionic systems.

We will refer to the resulting special reference systems with properly chosen

σ as “mimic systems.” In realistic models of ionic solutions there are always strong

short ranged repulsive core interactions that must be dealt with in any quantitative

theory or simulation. The mimic system simply treats the short ranged rapidly

varying part of the Coulomb potential as an additional core-like contribution that

generates a modified core interaction. As we will see, many properties of the full

long ranged system can be very accurately described using those of the short ranged

mimic system.

For simple fluids with short ranged interactions the LMF approach has proved

most useful when w can be divided into a slowly varying perturbation u1(r) describ-

ing the relatively weak and longer ranged attractive interactions and a short ranged

rapidly varying core potential u0, which accounts for the local excluded volume cor-

relations of the particles [75]. A separation with these qualitative features suffices

to motivate the derivation of the basic LMF equation that follows.

For any given φ(r) an associated φR(r) could always found in principle so

that the nonuniform singlet density ρ0(r; [φR]) in the reference system (denoted by

the subscript 0) equals that in the full system ρ(r; [φ]). Of course the latter is not

known in advance and its determination is one of the main goals of the theory.

However, if a u1(r) can be chosen to be slowly varying over the range of excluded

volume correlations induced by the short ranged potential u0(r), then we can make
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some physically motivated approximations to derive a self-consistent equation to

determine the associated φR.

At high densities we expect that short ranged correlations in both systems are

controlled by packing effects from the identical repulsive cores, and it seems plausible

that φR can be chosen so that both the singlet densities and the conditional singlet

densities in the reference and full systems resemble each other. That is, when

ρ0(r; [φR]) = ρ(r; [φ]), (4.2)

we also expect that

ρ0(r1|r2; [φR]) ' ρ(r1|r2; [φ]) (4.3)

holds to a good approximation. Here ρ0(r1|r2; [φR]) is the (conditional) density at r1

given that a particle is fixed at r2, directly related to the nonuniform pair correlation

function. With this assumption we can derive an equation for φR that also turns out

to give exact results at very low densities, where pair correlations are not important.

As discussed previously [79], by subtracting the balance of forces as described

by the exact Yvon-Born-Green hierarchy [24] for the full and reference systems we

find a relation between the associated forces

−∇1[φR(r1)− φ(r1)] = −
∫
dr2ρ0(r2|r1; [φR])∇1u1(r12). (4.4)

Moreover, if u1(r12) is very slowly varying over the range of short ranged pair

correlations, then ∇1u1(r12) essentially vanishes in the range of integration where

ρ0(r2|r1; [φR]) differs significantly from ρ0(r2; [φR]) in Eq.(4.4). Then we can replace
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the former by the latter, and take the gradient outside the integral and integrate eq

4.4.

In making this replacement we have ignored correlations between the particles

at r1 and r2, and in most contexts this would represent a crude and generally

inaccurate approximation. However for slowly varying u1 we see that this particular

use of the (mean field) approximation can be very accurate, even at high density.

Choosing the constant of integration so that the bulk densities in zero field satisfy

ρB = ρB
0 we arrive at the simple local molecular field (LMF) equation [43, 74] for

the effective field φR:

φR(r1) = φ(r1) +

∫
dr2[ρ0(r2; [φR])− ρB

0 ]u1(r12), (4.5)

which is the starting point for our work on nonuniform fluids with both short and

long ranged interactions.

To solve this self consistent equation we need to determine the nonuniform

density ρ0(r2; [φR]) in the presence of the effective field φR. The LMF approach does

not specify or require a particular way to do this. However since the intermolecular

interactions and the effective field have shorter ranges in the reference system, both

theory and simulations of the nonuniform structure are usually easier to carry out

than in the full system. Equation 4.2 then provides the fundamental link between

structure in the nonuniform reference and full systems, and from this thermodynamic

functions can be determined.

The name “local molecular field” is suggested by the direct analogy to the

82



spatially varying effective field introduced in the usual mean or molecular field theory

for a nonuniform Ising model [5, 77]. However, while the latter theory is usually

viewed as a crude approximation, the derivation sketched above suggests that if a

proper choice of a slowly-varying u1 is made, then accurate results should be found

from a self-consistent solution of the LMF equation in many cases, provided that an

accurate treatment of the density response ρ0(r; [φR]) to a given φR is used. In this

chapter we use the exact Eq.(4.8) below at low densities and results of computer

simulations at higher densities, so whatever errors remain arise only from the LMF

approximation itself.

4.2.2 Uniform Systems

LMF theory is equally useful for uniform fluids. [72, 80] In particular eq 6.14 is

consistent with the physical idea that in a dense uniform fluid with φ = 0 the forces

associated with the slowly varying u1 from oppositely situated particles essentially

cancel in most relevant configurations [83, 75]. Moreover, any residual effects are

strongly damped by the small compressibility at high density, so we expect that the

radial distribution functions will satisfy

g0(r) ' g(r), (4.6)

as predicted by Eq.(4.3) and Eq.(6.14) for φ = φR = 0. For example, Eq.(4.6) holds

to a rather good approximation at high density in the uniform Lennard-Jones (LJ)

fluid provided that the WCA separation [12, 75, 76] with its relatively slowly varying
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u1 is used, showing the consistency of the physical picture.

This perfect cancellation argument can at best give reasonable results only for

uniform fluids at high density. However, LMF theory can be applied to a general

nonuniform fluid, and by taking such a perspective and using only the basic Eq.(4.2),

we can significantly improve on the predictions of Eq.(4.6) for pair correlations in

uniform fluids. [72, 80]

Corrections to Eq.(4.6) can be found by considering the particular external

field arising from a fluid particle fixed at the origin, φ(r) = w(r). The induced

density now gives

ρ(r; [w]) = ρBg(r). (4.7)

This exact equation [58] relating the nonuniform singlet density induced by a fixed

particle to the radial distribution function g(r) in the uniform fluid plays a key role

in the theory below. There are now net unbalanced forces arising from the fixed

particle and eq 6.14 predicts a nonzero φR, which can be used in Eq.(4.2) to give a

more accurate approximation for ρ(r; [w]) and hence g(r).

For the uniform LJ fluid this approach accurately determines the small cor-

rections to Eq.(4.6) at high density [72, 80]. Moreover at very low densities where

Eq.(4.6) would be very inaccurate, Eq.(6.14) gives φR(r) = φ(r) = w(r) and we

obtain the exact low density limit [24] for g(r) = exp[−βw(r)] by using Eq.(4.2)

and the exact low density limit of the reference system in the field φR:

ρ0(r; [φR]) = ρBe−βφR(r). (4.8)
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Here β = (kBT )−1.

Similar accurate results for the nonuniform LJ fluid have been found for more

general external fields representing hard core solutes of various sizes, for the liquid-

vapor interface, and for drying transitions [43, 41]. Thus LMF theory has provided

a qualitatively and often quantitatively accurate description of structure, thermo-

dynamics, and phase transitions in fluids with short ranged interactions [74].

4.3 One-Component Charged Hard Spheres (OCCHS)

In this chapter we focus on the uniform OCCHS, where there are N positive ions in

a volume V with a uniform neutralizing background that also penetrates the ions.

The pair potential w(r) for the ions in the OCCHS is usually written as

w(r) = wd(r) + wq(r), (4.9)

the sum of a hard sphere potential

wd(r) ≡


∞, r ≤ d

0, r > d

(4.10)

and the pair potential wq(r) arising from point charges of magnitude q, where

wq(r) ≡
q2

εr
. (4.11)

The separation in Eq.(4.9) is a special case of eq 4.1 and more general separations

of w will prove useful in the LMF theory developed below. In Eq.(4.11) the solvent

is crudely represented by a uniform static dielectric constant ε. In the limit d = 0,

the OCCHS reduces to the OCP.
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It is convenient to introduce a characteristic length describing the typical dis-

tance between neighboring particles. A standard choice is the ion sphere radius a

chosen so that

4π

3
ρBa3 = 1 (4.12)

The nearest neighbor spacing is about 1.6a when the ions are arranged in a simple

cubic lattice.

Thermodynamic properties in the OCCHS can then be characterized using

two dimensionless parameters, the ionic strength

Γ ≡ βq2

εa
, (4.13)

which compares the bare Coulomb interaction energy between two ions separated

by the characteristic distance a to kBT , and the hard sphere packing fraction

η ≡ πρBd3/6. (4.14)

Note that d/a = 2η1/3. In the OCP d = η = 0 and thermodynamic properties

depend only on the single dimensionless parameter Γ.

Pair correlations between the ions in the uniform fluid are most conveniently

described in terms of the density change induced by fixing a particle at the origin:

∆ρ(r; [w]) ≡ ρ(r; [w])− ρB = ρBh(r), (4.15)

where ρB = N/V and h(r) ≡ g(r)− 1 is the pair correlation function in the uniform

fluid.
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The unique consequences of the long ranged interaction in the OCCHS are

most easily seen by taking the Fourier transform of Eq.(4.15) and defining the di-

mensionless structure factor

S(k) ≡ 1 + ∆ρ̂(k; [w]) = 1 + ρBĥ(k), (4.16)

where the caret denotes a Fourier transform. As argued generally in the seminal

work of Stillinger and Lovett [69] (SL), there should be complete screening at long

wavelengths of any induced charge distribution in a conducting ionic fluid. This

constrains the behavior at small wavevectors of the charge-charge correlation func-

tion. For the OCCHS the only nontrivial correlations are between the positive ions

and the results of SL reduce to the requirement that S(k) has the universal form

S(k) = 0 + k2/k2
D + O(k4), (4.17)

independent of any details of the short ranged core potential wd or any other short

ranged interactions that might exist. Here kD is the Debye wavevector, defined by

k2
D ≡ 4πβq2ρB/ε = 3Γ/a2. (4.18)

The exact vanishing of S(k) at k = 0 arises from electrical neutrality (the

“zeroth” moment condition) and the fixed coefficient of the quadratic term is an

example of the famous SL second moment condition [69, 55]. This behavior is

distinctly different than that found in any fluid with short ranged interactions, where

S0(k) at k = 0 is finite, proportional to the compressibility, and the coefficient of k2

depends on the details of the intermolecular interactions.
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Thermodynamic properties can be found by integration of the correlation func-

tions. In particular, accounting for the background by taking the appropriate limits

of the standard result for a two component system [56], the excess internal energy

(over the ideal gas) of the uniform OCCHS can be exactly written as

βEex

N
=
βρB

2

∫
dr
q2

εr
h(r). (4.19)

4.4 LMF Theory for OCCHS

4.4.1 Gaussian Charge Distribution

We want to use the general LMF equation to describe the ion correlation functions

in the uniform OCCHS. It is clear from the derivation in section 4.2 that a proper

separation of the interaction potential w = u0 +u1 is required for this self-consistent

approach to be accurate. At first glance it may seem natural to use the separation

on the right side of Eq.(4.9), where u0 is taken to be the hard core potential wd and

u1 is the full point charge interaction wq in Eq.(4.11). However at short distances

outside the hard core the Coulomb potential can be strong and rapidly varying and

such interactions cannot be accurately treated by the averaging used in Eq.(6.14).

Indeed in the OCP with no hard core there are arbitrarily large and rapidly

varying interactions as r → 0. This limit makes it clear that we should try to

separate the point charge Coulomb pair interaction wq(r) itself into a slowly varying

part wq1(r), which we will take as a particularly appropriate u1(r) to use in the LMF

theory, and then combine the remainder wq0(r) ≡ wq(r) − u1(r) with wd(r) (and
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more generally with any other short ranged core interactions that exist) to give the

associated u0(r).

This strategy differs from that used in many density functional and integral

equation methods, where one first chooses a mathematically convenient or especially

simple reference potential ũ0(r) and then treats the remainder w(r) − ũ0(r) as a

perturbation, taking advantage of the particular form of the reference system in

whatever approximate theories are used. However, for Coulomb systems at least,

the existing theories often have large and uncontrolled errors with the usual choices

of ũ0. We believe our approach of choosing a slowly varying u1 for use in the

LMF theory offers many conceptual and computational advantages, and it connects

directly to similar physically motivated work on fluids with short ranged interactions.

To that end we interpret the 1/r term in wq as the electrostatic potential of a

unit point charge in vacuum. The same slowly varying asymptotic behavior would

come from any other normalized charge distribution and the “smearing” of the point

charge would produce a less rapidly varying potential at small r. This suggests using

a properly chosen charge distribution to determine wq1(r) or u1(r).

Consider in particular as in the Ewald sum method [24, 16] a normalized unit

Gaussian charge distribution

Pσ(r) = π−3/2σ−3 exp[−(r/σ)2], (4.20)

where σ indicates the length scale of the smearing. The particular advantages of

this choice will soon become apparent. Our use of a Gaussian charge distribution
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to determine a slowly varying part of the Coulomb pair interaction is simpler than

in the Ewald sum method, which considers periodic images of ion configurations

with embedded screening (negative) and compensating (positive) Gaussian charge

distributions. [16]

The electrostatic potential vσ(r) arising from Eq.(4.20) satisfies Poisson’s equa-

tion ∇2vσ(r) = −4πPσ(r), which is easily solved by Fourier transform to give

v̂σ(k) =
4π

k2
exp[−1

4
(kσ)2], (4.21)

or in r-space,

vσ(r) =
1

r
erf(r/σ), (4.22)

where erf is the usual error function [16]. The point charge model corresponds to

the limit σ = 0.

Thus we can write

1

r
=

1

r
erfc(r/σ) +

1

r
erf(r/σ), (4.23)

and use this identity to extract from the dimensionless Coulomb pair interaction

βwq(r) a σ-dependent perturbation piece βu1(r):

βu1(r) =
βq2

ε
vσ(r) =

βq2

εr
erf(r/σ). (4.24)

This perturbation remains finite as r → 0, with βu1(0) = 2π−1/2βq2/(εσ).

As illustrated in Fig.(4.1), with appropriate choices of σ we can produce a

very slowly varying u1(r), which from Eq.(4.21) also decays very rapidly in k-space.
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As argued in section 4.2, these are the qualitative features that would be most

appropriate for a perturbation u1 to give accurate results from LMF theory. The

choice of σ in the Gaussian charge distribution permits a controlled use of the LMF

approximation, and as shown below, with proper choices of σ the LMF theory can

give exceptionally accurate results.

Any particular choice of σ in Eq.(4.24) then fixes the associated reference

system interaction as 1

βu0(r) = βud(r) +
βq2

εr
erfc(r/σ). (4.25)

The Coulomb part wq0(r) of the reference interaction decays very rapidly for r > σ.

For large r we have

βwq0(r) ≡
βq2

εr
erfc(r/σ) ∼ βσq2

√
πεr2

exp[−(r/σ)2]. (4.26)

We call the special reference systems that result from optimal choices of σ as

discussed in section 4.4.4 below mimic systems, since at high density the local struc-

ture in the uniform mimic system as exhibited in g0(r) very accurately approximates

the g(r) of the full system as in Eq.(4.6). This again illustrates the consistency and

accuracy of the LMF approach when an appropriate mimic system is used.

Equation 4.24 can also be interpreted physically as the Coulomb energy arising

from two ions each with a rigid Gaussian charge distribution, Eq.(4.20), with a

1This choice of a reference system for the OCP was first suggested in reference [10] However

they considered too small σ to observe mimic system behavior and used integral equation methods

rather than the LMF theory to try to correct for the long ranged interactions.
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width σ̃ = σ/
√

2. More generally, in ionic solutions we can always replace point

charges on the ions by rigid charge distributions without changing any physics if

we appropriately modify the core interactions as in Eq.(4.25). This can be very

useful because the rapidly varying short ranged parts of the Coulomb interaction

can often be more accurately treated by the same specialized methods used for the

other strong core interactions, which must be present in any realistic model of ionic

solutions.

4.4.2 Scaled LMF Equation for the OCCHS

We now apply the general LMF Eq.(6.14) to the OCCHS in the special case where

the external field φ(r) = w(r) is that resulting from an ion fixed at the origin,

given by Eq.(4.9). This choice allows us to describe uniform fluids, as discussed

in Section 4.2.2. We take advantage of spherical symmetry and use the Gaussian

charge separation of w(r) given in Eq.(4.24) and Eq.(4.25).

The LMF Eq.(6.14) can be naturally rewritten in terms of the more slowly

varying “perturbation part” of the effective field

φR1(r) ≡ φR(r)− u0(r). (4.27)

If the perfect cancellation argument were exact, then φR(r) = u0(r), or φR1(r) = 0,

corresponding to a fixed mimic particle at the origin, and the resulting induced

density in the mimic system would be ∆ρ0(r; [u0]) = ρBh0(r), with h0(r) the pair

correlation function in the uniform mimic system. The LMF equation corrects
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this approximation by determining a finite short ranged effective field perturbation

φR1(r), which we can picture as arising from a modified solute particle at the origin,

[72, 80] that takes better account of the locally averaged effects of the slowly varying

interactions u1.

Taking Fourier transforms, and introducing for reasons that will soon become

apparent a multiplicative parameter α that scales the amplitude of φ̂R1, a scaled

version of the LMF equation can be written as

βρBφ̂R1(k) =
αk2

D

k2
exp[−1

4
(kσ)2]SR(k), (4.28)

where

SR(k) ≡ 1 + ∆ρ̂0(k; [φR]) (4.29)

For now we simply note that the original unscaled LMF equation has α = 1, and

view α as a parameter at our disposal. A similar scaling of the LMF equation for

systems with short ranged interactions was discussed earlier [43].

Before giving quantitative results in sections 4.5 and 4.6 below, let us discuss

some qualitative features of a self-consistent solution of Eq.(4.28). Such a solution

would determine a short ranged effective field, implying a φ̂R1(k) that is finite as

k → 0, along with the associated ∆ρ̂0(k; [φR]). By the fundamental assumption of

LMF theory in Eq.(4.2), the latter is the LMF approximation to the full ∆ρ̂(k; [w])

in the OCCHS. In particular SR(k) in Eq.(4.29) is the LMF approximation to S(k)

in Eq.(4.16), and when no confusion will result, we will simply write S(k). SR(k)

should be carefully distinguished from S0(k) ≡ 1 + ∆ρ̂0(k; [u0]), which equals the
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structure factor in the uniform mimic system with φR1 = 0.

4.4.3 Choice of LMF Scaling Parameter α

In order that φ̂R1(k) remain finite as k → 0 in Eq.(4.28), it is clear that with any

choice of α, the associated SR(0) must vanish identically. In practice it is not easy

to ensure this in a self consistent iterative solution of Eq.(4.28), and we give in

the Appendix in Eq.(D.3) an alternate but equivalent version that is numerically

more stable.) Thus the LMF theory gives an approximate structure factor SR(k)

that always obeys the exact neutrality condition. Its expansion at small k has the

general form

SR(k) = 0 +B(α)k2 + O(k4), (4.30)

resembling Eq.(4.17), but the coefficient B(α) of k2 depends on α and does not

necessarily obey the exact second moment condition. However, by substituting

Eq.(4.30) into Eq.(4.28), we see that the exact result B(α) = k−2
D is found if α is

chosen self consistently so that 2

βρBφ̂R1(0) = α. (4.31)

Thus by proper choice of α, we can guarantee that the approximate structure

factor SR(k) also obeys the exact second moment condition. We show below in

section 4.5 that with optimal choices of the key parameter σ, even the unscaled LMF

2This criterion can equivalently be reexpressed in terms of the normalization of the electrostatic

potential [55].
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theory with α = 1 often gives very good numerical results. However it is conceptually

important to realize that the LMF approach can be naturally generalized as in

Eq.(4.28) so that the exact second moment condition is satisfied, and this adds

essentially no numerical costs to the self consistent solution. We use Eq.(4.28)

along with Eq.(4.31) in most of the work reported below, and usually refer to this

generalized approach as the LMF theory. If we want to emphasize that the second

moment condition is satisfied, we will refer to the LMF2 theory, and distinguish this

from the original unscaled version, which we will call the LMF0 theory.

4.4.4 Choice of Mimic Interaction Core Size σ

The ability to choose a σ larger than some σmin allows for a consistent application

of LMF theory to ionic fluids, ensuring that the LMF approximation is used only

for slowly varying parts of the Coulomb interactions. The choice of σmin determines

an effective Coulomb core size from the core component wq0(r) of the Coulomb

interaction. This may be larger or smaller than the “physical” core size d, which

can be varied independently in the OCCHS.

For strong coupling with Γ � 1, we expect considerable cancellation of the

very strong forces from ions at distances larger than the nearest neighbor spacing

a. Thus the effective core size σmin/a should be of order unity and essentially

independent of Γ at large Γ.

However, for weak couplings with Γ � 1 we would expect that any choice

of σ & σmin with σmin ' Γa will be sufficient for the LMF equation to give good
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results. This (conservative) choice of σmin corresponds to the Bjerrum length [24].

Only on length scales σmin much less that the average neighbor separation a will even

the bare Coulomb interactions between ions exceed kBT , which would characterize

an effective Coulomb core size. A more detailed argument 3 suggests that we can

take even smaller σ, including σ = 0, for Γ � 1 and still get accurate results from

the LMF theory. We will see below that these qualitative considerations hold true

generally.

In particular, by choosing σ large enough we can guarantee that βρBφ̂R1(k)

is nonzero only at small wavevectors, since the Gaussian factor in Eq.(4.28) causes

rapid decay for kσ & 2. The Gaussian charge distribution produces this very efficient

localization of βρBφ̂R1(k) to small wavevectors, and is much superior in this regard

to most other smooth distributions.

This property is very important at high density and strong coupling where

SR(k) can have significant structure at ka ' 2π, where a roughly measures the

typical distance between nearest neighbor particles. At those larger wavevectors

that characterize short ranged structure in r-space, βρBφ̂R1(k) essentially vanishes

3Using the Debye-Hückel approximation for the OCP SDH
R (k) = k2/(k2 + k2

D) and Eq.(4.18)

in Eq.(4.28) (consistent with α = 1) we have βρBφ̂D
R1(k) = 3Γe−

1
4 (kσ)2/[(ka)2 + 3Γ]. The exact

SR(k) has the same form at small k (in accord with the SL moment conditions) and generally very

different behavior at wavevectors larger than ka ≡ 1/a that characterize local structure in r-space.

In order to achieve mimic system behavior with SR(k) ' S0(k) at larger wavevectors we require

βρBφ̂R1(k) � 1 for all such wavevectors. Since SR(k) is generally of order unity, it should suffice

to choose σ so that βρBφ̂D
R1(ka) = 3Γe−

1
4 (σ/a)2/[1 + 3Γ] � 1. For large Γ we require σ of order a,

but for small Γ � 1 even σ = 0 will still satisfy this rough criterion.
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for any choice of σ ≥ σmin ' a. Thus for such wavevectors we have SR(k) ' S0(k)

from a crude linear response argument. Differences in these functions should show

up only at small k, where SR(k) will satisfy the SL moment conditions while S0(k)

remains finite as k → 0. However at high densities the compressibility in the mimic

system is small, so that the absolute differences between SR(k) and S0(k) remain

small even at small wavevectors, as will be illustrated in Fig.(4.9) below.

On taking inverse transforms we then expect that h0(r) ' h(r) holds true to

a very good approximation at high densities, as was qualitatively suggested by the

cancellation argument leading to eq 4.6. Thus we predict a family of uniform mimic

systems for different σ ≥ σmin, all of which should give essentially the same short

ranged structure at high density that closely approximates that of the full ionic

system. This is a dramatic example showing that the inverse problem of uniquely

determining the intermolecular potential from h0(r) can be ill-conditioned.

A “molecular-sized” choice of σ ' σmin for the mimic system is considerably

smaller than the typical choices made in Ewald sum methods, where σ is usually

taken to be proportional to the simulation system size [16]. Larger σ values will

give equally good results, provided that the resulting mimic system is described

accurately. However generally there is little to gain from such choices, since the

LMF theory is already consistent for σ ' σmin, and it may be more difficult to treat

the longer ranged interactions in mimic systems with larger σ. Thus optimal choices

for σ are generally near σmin.
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At lower densities and weak coupling there is little structure in SR(k) and

S0(k) at larger wavevectors, and we can choose a much smaller σmin as argued above

and still make consistent use of the LMF approximation. Very accurate results

for SR(k) are again found from a self-consistent solution of Eq.(4.28), but the long

wavelength perturbations from βρBφ̂R1(k) are not damped by low compressibility in

the mimic system, and h0(r) can differ noticeably from h(r). As Γ → 0, our theory

reduces correctly to the exact Debye-Hückel (DH) limit [24].

4.5 Results at Low Density: Mimic Poisson-Boltzmann (MPB)

Approximation

At low enough bulk densities, the mimic system’s response to φR(r) can be described

using the simple ideal gas Boltzmann factor as in Eq.(4.8), so that

∆ρ0(r; [φR]) = ρB[e−βφR(r) − 1]. (4.32)

This also represents the LMF prediction for the full system’s ρBh(r), and requires

only that second and higher order virial corrections to the mimic system’s pair

correlation function can be ignored. When Eq.(4.32) is substituted in the LMF

equation 4.28, a closed equation for φR(r) results. A self consistent solution is

readily found by iteration, using the equivalent but numerically more stable version

of the LMF equation in Eq.(D.3).

Equation 4.32 is the same structural approximation that is used in the Poisson-

Boltzmann (PB) theory [24]. Indeed if we set α = 1 and σ = 0 in the LMF equation
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Figure 4.2: SR(k) = S(k) at moderate coupling for the OCP computed using the

MPB theory with different σ’s and compared to S0(k) for the uniform mimic system.

Also shown are the associated ρβφ̂R1, which use the scale on the left y-axis. When

ρβφ̂R1 is taken into account using the MPB theory, both choices of σ give very

similar S(k) that compare well with simulation data for the full system [17].
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4.28 combined with Eq.(4.32), the results reduce exactly to those of the standard

PB theory. The PB theory thus results from taking the full Coulomb interaction

of Eq.(4.11) as the perturbation u1 in the LMF equation and using the Boltzmann

approximation for the density response.

We refer to the low density limit of our theory, where Eq.(4.32) is used in

Eq.(4.28), as the mimic Poisson-Boltzmann (MPB) theory. The MPB theory differs

from the PB theory only by the choice of σ yielding a consistent mimic system along

with a choice of α that ensures that the second moment condition is exactly satisfied.

As we will see, these simple modifications greatly improve the accuracy and range

of validity of the MPB theory.

4.5.1 MPB Theory for One-Component Plasma (OCP)

Consider first the OCP, where there is no length scale in the potential to suggest

an intrinsic core size. A qualitative discussion of the choice of the effective size σmin

was given above. In practice it is easy to determine σmin by solving Eq.(4.28) using

successively larger values of σ. For σ < σmin the results vary strongly with σ and are

generally very inaccurate. But for all σ > σmin the LMF theory is consistent and

should give very similar predictions for the full system’s structure as exhibited in

SR(k), even though the effective fields βρBφ̂R1(k) and the uniform mimic systems’

structure factors S0(k) can still vary strongly with σ. This is illustrated in Fig.(4.2)

for the state with Γ = 6, where the convergence of the results for σ/a = 0.69 and

σ/a = 0.73 is shown.
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Figure 4.3: Moderate coupling OCP structure computed using the MPB theory. In

the left graph, the LMF2 S(k) is compared with the result of the generalized Debye-

Hückel theory [70] (GDH), and the usual PB theory. The right graph makes the

same comparison for g(r) and also shows the effective field perturbation βφR1(r),

which uses the scale on the left y-axis. Both the LMF2 and GDH solutions satisfy

the second moment condition while PB does not. The GDH result is expressed as

an expansion and computed up to its l = 6 term [70].
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Figure 4.4: Low density OCCHS structure. The LMF2 g(r) from the MPB theory

is compared with the result of density functional theory [57] (DFT) and the PB

and DH approximations. Though constrained to be zero inside the hard core by a

boundary condition, the DH g(r) has a negative region near r = d, where u0(r) is

also rapidly rising, with a value of −1.62 at contact. The PB and DH theories fail

to capture qualitatively the onset of oscillation in g(r) at this moderate coupling

strength.
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for the OCCHS g(r) compared to MC data [57] for the full system for weak and

moderate ionic strengths. The PB approximation is satisfactory only at weak cou-

plings. The right graph shows that varying α so that the second moment condition

is satisfied in the MPB theory changes the amplitude of βρφ̂R1(0) but in this case

the effects on S(k) are hardly visible on the scale of the graph.
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The LMF equation itself would continue to give (even more) accurate results

for larger σ if an accurate theory for the structure ∆ρ0(r; [φR]) induced by a given

φR is used. However the simple Boltzmann approximation used in Eq.(4.32) for

this quantity must fail at higher densities where there are significant correlations

between mimic system particles. This sets a σmax above which the results of the

MPB theory become inaccurate, very roughly estimated by ρBσ3
max . 0.1 as for hard

sphere fluids.

As Γ increases, eventually the σmin needed for the accuracy of the LMF ap-

proximation exceeds this σmax and the MPB theory fails. The internal consistency

or inconsistency as σ is varied is very evident from the MPB theory itself. In prac-

tice we find very good and consistent results for all Γ . 6 and the slight differences

in the S(k) curves in Fig.(4.2) and deteriorating results at larger σ indicate that we

are near the upper limit of Γ where the MPB theory can be trusted. This represents

a surprisingly strong coupling, since the lowest order Boltzmann approximation for

the structure in eq 4.32 is used, and shows the virtues of choosing a mimic system.

As shown in Fig.(4.3), the results of the MPB theory for Γ = 6 are in very

good agreement with computer simulations [17], and compare very favorably to

those of the usual (nonlinear) PB theory or the generalized Debye-Hückel (GDH)

theory developed by Levin and coworkers [70]. Note that the MPB theory, unlike

the usual PB approximation, can predict oscillations in both S(k) and g(r) from

the self consistent determination of φR1(r) despite using only the lowest structural
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approximation, Eq.(4.32).

4.5.2 MPB theory for OCCHS

We now turn to the OCCHS. This has more complex structure because of possible

competition between correlations induced by the hard cores and the soft repulsive

Coulomb interactions. We follow the usual convention where lengths are measured

in terms of the hard core diameter d.

In Fig.(4.4) we compare the results of the MPB theory to MC simulations, to

results of a density functional treatment, and to the PB and DH theories for a low

density state with η = 0.02 but with a moderate ionic strength Γ = 5.43. The MPB

theory gives excellent results with a molecular-sized σ = 1.3d, noticeably better

than those of the considerably more complicated density functional theory [57].

The right panel in Fig.(4.5) illustrates the role of α for this state, and shows

that the self consistent choice of α = 1.2 can ensure that the exact second moment

condition is satisfied, though on the scale of the graph the differences between the

SR(k) with α = 1 are hardly visible. The left panels show that for much weaker

coupling with Γ = 0.54 even the usual PB approximation (with σ = 0) gives good

results, indicating that at weak coupling the choice of σ is not so important. How-

ever, unlike the MPB theory, the PB approximation can satisfy the second moment

condition exactly only in the limit Γ → 0, where it reduces to the DH approximation

[24].
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4.6 Results at High Density and Strong Coupling

4.6.1 Structure in Mimic and Full Systems

At high densities we expect that the local structure in r-space of even the uniform

mimic system, where all corrections from φR1 are ignored, will closely resemble that

of the full system as suggested in Eq.(4.6). This is illustrated in Fig.(4.6) for the

OCCHS for high density states with moderately strong couplings. Canonical Monte

Carlo simulations are carried out to obtain the uniform mimic system’s correlation

function g0(r), and these are compared 4 to previous simulations for the full system

[25], where Ewald sum methods were used to account for the long ranged interac-

tions. Because of the short ranged interactions u0 in the mimic system, our simula-

tions are completely straightforward and no Ewald sums or other special treatment

of the periodic boundary conditions are required. Again a molecular-sized choice of

σ = d of order the nearest neighbor spacing suffices.

Also shown on the same graphs are the bare ion potential βw(r) and the mimic

potential βu0(r). Despite the much smaller amplitude of the latter and its much

shorter range, the mimic g0(r) has a striking resemblance to the full system’s g(r),

4The S0(k) at larger wavevectors can be accurately determined by a Fourier transform of the

simulated g0(r), but at small wavevectors we directly sampled the ensemble average

1
N

< ρ̂kρ̂−k >=
1
N

<
N∑ ∑

i 6=j

e−ik·(ri−rj) > +1.

We used N = 250 and 432 particles for the OCP and up to 686 particles for the high density

OCCHS.
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Figure 4.6: OCCHS correlation functions g(r) at stronger coupling strengths Γ and

large packing fractions η for the full and mimic systems as determined by MC

simulations. Note the maximum in g(r) away from contact for Γ = 70, indicating

the strength of the Coulomb repulsions. Also shown are βw(r), the full potential of

the ionic fluid, and the mimic potential βu0(r), both of which use the scale on the

right y-axis. There is a hard core interaction for r < d.
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and the differences are hardly visible on the scale of the graph.

At the strongest couplings, the correlation functions at both densities have

a first peak shifted away from contact with the embedded hard sphere. Such a

correlation function is very different from the correlation function of a hard sphere

fluid, which has its maximum at contact, and shows that the strong short ranged

parts of the Coulomb interactions can compete with packing effects from hard cores

even at high density. This also emphasizes the importance of having the softer piece

wq0(r) = q2erfc(r/σ)/εr outside the hard core in our mimic system potential βu0(r)

in Eq.(4.25) in order to reproduce correlation functions in the OCCHS, especially

for strong coupling states.

There have been several previous empirical attempts to fit correlation functions

for Coulomb systems at high density using effective short ranged systems. The

DH limit might suggest that a generalized Yukawa fluid could be useful, [14] but

the results were not very accurate and there was no systematic way to determine

parameters for the effective potentials.

Most relevant to our work are ion reaction field (RF) methods, where an effec-

tive finite-ranged interaction wRF
q0 (r) was originally determined from the electrostatic

potential of a positive point charge surrounded by a neutralizing uniform spherical

charge distribution with a radius rc [36]. Good results for correlation functions

were found using the RF method in several applications at high density, though

some spurious oscillations were seen near the cutoff rc. These were attributed to
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the discontinuity of the second and higher order derivatives of wRF
q0 (r) at rc and

better results were found using a smoother “charge cloud” distribution that had

discontinuities only in fourth and higher order derivatives at the cutoff [37].

Our wq0 in Eq.(4.26) can be similarly interpreted in terms of the potential

arising from a positive point charge surrounded by a neutralizing Gaussian charge

distribution. All derivatives of wq0 are continuous because of the smooth cutoff, and

by construction the associated perturbation wq1 decays very rapidly in k-space. It is

the latter property that fundamentally leads to mimic system behavior with a proper

choice of σ. Our work thus provides a conceptual framework for understanding why

RF methods can work as well as they do in some cases and how results can be

significantly improved, especially at lower densities or in nonuniform environments

by using the LMF theory.

Fig.(4.7) gives a more detailed comparison of the structure of the high den-

sity/strong coupling state with Γ = 70 and η = 0.4 to that of two different mimic

systems with σ = d and σ = 1.5d. Despite the fact that the (repulsive) potential of

the latter is always greater than or equal to that of the former, both mimic systems

have very similar correlation functions that agree very well with that of the full

system, which can be viewed as the limit σ = ∞. Thus for high density states all

mimic systems with σ > σmin have essentially the same short-ranged structure in

r-space.

Fig.(4.8) gives similar results for the OCP at very strong coupling strengths

109



1

1.5

2

2.5

3

g(r)
g

0
(r), σ/d=1

g
0
(r), σ/d=1.5

βw(r)
βu

0
(r), σ/d=1

βu
0
(r), σ/d=1.5

OCCHS: Γ=70, η=0.4

1 1.5 2 2.5 3
r/d

0

10

20

30

40

50

Figure 4.7: Illustration of mimic system behavior. OCCHS correlation function for

the state Γ = 70 and η = 0.4 compared to those of two different mimic systems with

different σ values. Also shown are βw(r), the full potential of the ionic fluid, and

the mimic potentials βu0(r), all of which use the scale on the right y-axis.
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Figure 4.8: High coupling strength OCP correlations for the full and mimic systems.

For σ = 1.4a, g0(r) is essentially indistinguishable from the full system’s g(r). How-

ever a smaller σ = a fails to mimic the full system’s correlations. Note that around

Γ ' 170 the OCP starts to freeze [68]. Our simulations indicate that the mimic

system with σ = 1.4a also freezes at around the same Γ.
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Γ = 80 and Γ = 140. We find excellent agreement with simulations of the full system

[68] using a mimic system with σ/a = 1.4. As we would expect, for small enough σ

the good agreement fails, as illustrated by results for σ/a = 1.

Fig.(4.9) compares the mimic structure factor S0(k) and a simple estimate for

SR(k) = S(k) based on a linear response treatment [46] of the effects of βρBφ̂R1(k).

Only at very small k as revealed in the inset can any differences be seen. The linear

response treatment turns out give an SR(k) that satisfies exactly both the zeroth

and second moment conditions with α = 1, and the results converge to S0(k) at

larger k controlled by the factor exp[−1
4
(kσ)2] arising from our choice of a mimic

system. These features would be found in any more exact treatment and suffice at

high densities to give a very accurate estimate of SR(k). This also suggests that the

results from other approximate theories may be improved by use of a good mimic

system. Indeed, as already shown in Fig.(4.6), the simplest possible theory where

the effects from φR1 are ignored completely, already gives excellent results for short

ranged correlations in r-space.

4.6.2 Internal Energy at High Density

With accurate approximations for S(k) and h(r) in hand, it is straightforward to

calculate thermodynamic properties by integration. The simplest of these is the

internal energy, given by Eq.(4.19). One can always solve the LMF equation to

obtain h(r) and use this integral to compute the internal energy of an ionic system,

and we would expect very accurate results. Here we show that because of the great
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Figure 4.9: Linear response theory is used to approximate the change in SR(k) =

S(k) in the mimic system induced by the the perturbation φ̂R1(k). With α = 1, the

linear response theory for S(k) satisfies both SL moment conditions. The inset is a

blown-up view of the structure factor at small k where the differences in S0(k) and

S(k) can be seen.
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similarity of the local structure of the mimic and full systems in r- and k-space at

high density, we can obtain an accurate estimate of the energy in terms of the mimic

system’s energy and a simple analytic correction without explicitly solving the LMF

equation.

Equation 4.19 can be rewritten in k-space and the Coulomb interaction sepa-

rated into mimic and perturbation parts, so that

βEex

N
=

1

2

1

(2π)3

∫
dk

4πβq2

εk2
[1− e−

1
4
(kσ)2 ]ρBĥ(k)

+
1

2

1

(2π)3

∫
dk

4πβq2

εk2
e−

1
4
(kσ)2ρBĥ(k). (4.33)

In the first term of Eq.(4.33), because ρBĥ0(k) differs from ρBĥ(k) only at small k,

where the factor 1 − e−
1
4
(kσ)2also approaches zero, we can replace the latter by the

former with little error. In the second term, e−
1
4
(kσ)2 decays very quickly at higher k,

so only the small-k features of ρBĥ(k) ' −1+k2/k2
D from the SL moment conditions

are needed to have an accurate estimate of the integration.

The first term then gives the internal energy of the mimic system

βEex
0

N
=

1

2

∫
dru0(r)ρ

Bh0(r), (4.34)

(with a background contribution −πβq2σ2ρB/ε arising from the use of h0 in the

integral rather than g0), while the second term corrects the mimic system’s energy

and can be integrated analytically to give

βEex
1

N
=

βq2

ε
√
πσ

(
−1 +

2

(kDσ)2

)
. (4.35)
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Γ η σ/a σ/d Full MC Theory [Eq.(4.36)] βEex
0 /N

20 - 1.4 - -16.67 -16.59 -8.66

20 0.343 1.4 1 -17.17 -17.12 -9.20

20 0.4 1.4736 1 -17.33 -17.27 -9.73

70 - 1.4 - -60.81 -60.72 -32.65

70 0.343 1.4 1 -61.09 -61.02 -32.94

70 0.4 1.4736 1 -61.32 -61.24 -34.56

80 - 1.4 - -69.69 -69.64 -37.54

125 - 1.4 - -109.73 -109.74 -59.50

140 - 1.4 - -123.09 -123.13 -66.85

160 - 1.4 - -141.72* -141.57* -77.23

Table 4.1: Excess internal energy βEex/N . The full MC data are taken from ref-

erences [25] and [68]. At Γ = 160, both the full and the mimic systems are near

solidification, and the results depend on initial conditions.

Thus the internal energy can be estimated as

βEex

N
' βEex

0

N
+
βEex

1

N
. (4.36)

Results for this approximation are compared to MC results in Table 4.1 for a variety

of high density/strong coupling states. The Gaussian charge distribution is the key

to the accuracy of eq 4.36, both because of its fast decay in k-space and its use in

revealing an excellent mimic system for the full ionic system.

Note that at high densities or ionic strengths, the Debye wave vector kD in

Eq.(4.18) can be very large, making neutrality the major contribution to βEex
1 /N '

−βq2/(ε
√
πσ). Though the physical interpretation of this term is very different, its

limiting value is the same as the self-interaction correction in the Ewald sum method
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[16]. A similar correction was used in ion RF methods [36].

At high density where the compressibility χT of the mimic system is very

small, we can obtain a good estimate of the internal energy by simply replacing

h(r) by h0(r) in Eq.(4.19), where because of the background subtraction, a finite

result is found for any short ranged h0(r). Separating the Coulomb interaction as

in Eq.(4.33), and using only the k = 0 result ρBĥ0(0) = −1+ kBTρχT in the second

integral we find analogous to Eq.(4.35):

βEex
1

N
' βq2

ε
√
πσ

(−1 + kBTρχT ) , (4.37)

which agrees with Eq.(4.35) in the relevant limit of large kD and small χT .

4.7 Final Remarks

It is straightforward to apply these idea to charge and size asymmetric primitive

models (see Sec.5.5, in the next chapter) or to “simple molten salt” models [24]

with softer repulsive cores. The LMF approximation has been used to look at the

OCP near a charged hard wall [44] (also see chapter 6). Here very accurate results

are found both in the weak and strong coupling limits, and the more complicated

pair level theory recently introduced [6] is not required. Details will be presented

elsewhere, and only few general remarks are made here.

For size asymmetric primitive models, it has been found that the simplest

choice of a single σ parameter for all species gives excellent results. This can be

understood as a consequence of Stillinger and Lovett’s fundamental insight that for
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general ionic mixtures universal consequences of the long ranged Coulomb interac-

tions can be seen in the small wavevector behavior of the charge-charge correlation

function. By using the smeared charge distributions implied by a proper choice

of σ, we arrive at a smeared charge-charge correlation function that has significant

structure only at small wave vectors. The LMF theory can then reproduce the exact

long wavelength behavior found by SL, and the slowly varying smeared Coulomb

perturbations have little effect on the shorter wavelength correlations induced by

the modified ion cores in the mimic system, just as illustrated here for the OCCHS.

The main complication that arises for such mixtures is that the resulting mimic

systems will have short ranged attractive as well as repulsive interactions, but this is

required if we want the mimic system’s structure to resemble that of the full Coulomb

system. However, the LMF theory can then to a very good approximation take

care of the “universal” long ranged parts of the Coulomb interactions, which cause

major conceptual and computational problems in most approaches, while leaving

a nonuniversal, but surprisingly short ranged problem to be treated by whatever

means are available. Simulations are straightforward and some recent theoretical

developments for treating systems with strong but short ranged interactions look

very promising [62]. The ideas presented here offer a powerful general perspective,

and are actively pursuing their consequences for static and dynamic properties of

fluids with both short and long ranged interactions.
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Chapter 5

Potential Separation of Coulombic Interaction

In the previous chapter, the potential separation and the associated mimic system

used with the LMF have been studied for one-component systems. Here in this

chapter, a potential separation strategy is derived for more general charged systems.

Dipolar systems hopefully can be also studied using the same conceptual framework.

Application to a binary, asymmetric primitive model is also presented.

5.1 Interaction Between Two Rigid Charge Distributions

Suppose there are two charge distributions qi(r) and qj(r) carried by two particles

belonging to species i and j. Each distribution is described by its own body-frame.

Now suppose both distributions start with their body-frame overlapped, and the

qj(r) is displaced from qi(r) by a vector R so qj(r) becomes qj(r−R) in the coordinate

system of qi(r). There are also angular coordinates expressing the orientation of the

molecule body frames, which we do not explicitly show here. Now the electronic

potential energy between the two charge distributions, one centered at r = 0, the
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other centered at r = R depends on the R and is given by

wq.ij(R) =

∫
dr

∫
dr′qi(r)qj(r−R)

1

ε|r− r′|
, (5.1)

which can be also expressed as a k-space integral

wq,ij(R) =
1

(2π)3

∫
dkq̂i(−k)q̂j(k)e−ik·R 4π

εk2
. (5.2)

The caret denotes the Fourier transform of the decorated function herein. Note

that the discussion in this chapter will be limited to the cases where the dielectric

constant ε is a constant through out the space, thus no image charges need to be

considered. At large R’s, only the small k components of the q̂i(k) and q̂j(k) have

significant contribution to the integral; higher k components are eliminated by the

strong oscillation of the factor e−ik·R. Thus, at large R’s, wq,ij(R) can be expanded

near k = 0 and the series is expected to converge rapidly1. However, at small R’s,

the e−ik·R by itself can no longer truncate the high k components of the integrand,

particularly if q̂i(−k) and q̂j(k) decay slowly in the k space. Although wq,ij(R) in

general (depending on how localized qi(r) and qj(r) are) is long-ranged and becomes

quite slowly varying for R →∞, at small separations, the wq,ij(R) can also become

very rapid varying from the high-k components in the integration.

For the use of LMF, a perturbative potential u1,ij(R) that remains smooth as

two molecules are brought to close distances is crucial for the accuracy of the theory.

To result in a smooth and better behaved u1,ij(R), the rapid varying, short-ranged

1This is the idea behind the multipole expansion [38] of electric potential.
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part of wq,ij(R) at small R’s can actually be combined with the other short-ranged,

non-Coulombic core interaction ws,ij(R)2. As discussed in the previous chapter,

replacing the Green’s function of the Poisson’s equation, 1/r, by erf( r
σ
)/r and define

wq1,ij(R) =

∫
dr

∫
dr′qi(r)qj(r−R)

erf( |r−r′|
σ

)

ε|r− r′|
(5.3)

=
1

(2π)3

∫
dkq̂i(−k)q̂j(k)e−ik·Re−

1
4
(kσ)2 4π

εk2
. (5.4)

erf( r
σ
)/r decays asymptotically as 1/r and approaches smoothly to a finite value (for

finite σ) at r = 0. So the wq1,ij(R) defined through Eq.(5.3) is also slowly varying

at all r’s. The remainder wq0,ij(R) of wq,ij(R) is

wq0,ij(R) =

∫
dr

∫
dr′qi(r)qj(r−R)

erfc( |r−r′|
σ

)

ε|r− r′|
,

which is much shorter-ranged and decays much faster than the wq1,ij(R). Because

of the Gaussian function’s rapid decay in the k-space, it can be seen from Eq.(5.4)

that a long-wavelength expansion of the wq1,ij(R) should converge must more rapidly

not just for large R’s, but for all R’s! All short-wavelength details of the charge

distribution, for kσ ≥ 1, are essentially irrelevant to wq1,ij(R). wq1,ij(R) retains the

asymptotic decay of the wq,ij(R) but behaves much more smoothly at small R’s.

wq1,ij(R) thus is a much more ideal starting point for choosing the perturbative

potential u1,ij(R) for treating the Coulomb interaction with the LMF theory.

2Here only pair-wise interaction is considered for the wd,ij .
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5.2 Asymptotic and Multipole Moment Expansion

When molecules carry net charges or dipoles, their pair interactions can be very long-

ranged, and such slow decay of the interactions often causes theoretical difficulty and

are computational very costly. On the other hand, the LMF can treat the averaged

effect of these long-ranged component as an effective renormalized field in a mimic

system with much shorter-ranged interaction. Systems with typical short-ranged

interactions are often much easier to manage theoretically and offers insights for such

systems to be developed as a separate and specialized task, without the complication

arising from the long ranged interactions. To investigate the asymptotic part of

Coulomb interaction wq,ij(R) between qi(r) and qj(r), the charge distributions i, j

can be expanded in a Taylor series at long wavelengths, i.e.,

q̂i(k) =
∑

n

1

n!
kn · On

kq̂i(0) (5.5)

(kn)µ1µ2...µn ≡ kµ1kµ2 ...kµn (5.6)

(On
k)µ1µ2...µn ≡ ∂n

∂kµ1∂kµ2 ...∂kµn

. (5.7)
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The µi subscripts denote the three components kx, ky, kz of a vector k. Eq.(5.4)

can then expanded as the following

wq1,ij(R) =
∑
ni,nj

1

ni!nj!
Oni

k q̂i(0)O
nj

k q̂j(0)

· 1

(2π)3

∫
dk(−kni)knj

4π

εk2
e−

1
4
(kσ)2e−ik·R (5.8)

=
∑
ni,nj

1

ni!nj!
Oni

k q̂i(0)O
nj

k q̂j(0) · (−iO)ni
r (iO)nj

r (5.9)

· 1

(2π)3

∫
dk

4π

εk2
e−

1
4
(kσ)2e−ik·R (5.10)

=
∑
ni,nj

1

ni!nj!
Oni

k q̂i(0)O
nj

k q̂j(0) · (−iO)ni
r (iO)nj

r (
erf( r

σ
)

εr
) (5.11)

=
∑
ni,nj

1

ni!nj!
[Oni

k q̂i(0) · (−iO)ni
r ][Onj

k q̂j(0) · (iO)nj
r ](

erf( r
σ
)

εr
) (5.12)

The k-space gradient of a charge distribution measures the multipole moments of

distributions as

On
kq̂i(0) = (−i)n

∫
drqi(r)r

n

≡ (−i)nMi(n), (5.13)

so Eq.(5.8) can be written as

wq1,ij(r) =
∑
ni,nj

1

ni!nj!
[Mi(ni) · (−O)ni

r ][Mj(nj) · Onj
r ](

erf( r
σ
)

εr
). (5.14)
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Note that the Mi(n) is a rank-n tensor, and is directly related to the nth multipole

moment of charge distribution qi(r). The lowest n terms are especially familiar:

Mi(0) =

∫
drqi(r), monopole (5.15)

Mi(1) =

∫
drrqi(r), dipople (5.16)

Mi(2) =

∫
drrrqi(r), quadrupole. (5.17)

Note that the Mi(2) is not the conventional traceless quadrupole moment [38]. With

the erf( r
σ
)/r replaced by 1/r or when σ → 0, Eq.(5.14) becomes that of the ordinary

multipole expansion of wq,ij(R) [38]. However, unlike the later, for finite σ’s, the

expansion Eq.(5.14) of wq1,ij(R) converges much faster, i.e., it takes much fewer

terms to reliably estimate wq,ij(R) at small R’s than would be the case with wq,ij(R).

Also, erf( r
σ
)/r is smooth and finite even near the origin, and so are its successive

gradients. These features of Eq.(5.14) have very significant implications for advanced

simulation methods of ionic interaction such as the fast multipole method (FMM) [18]

and various particle-mesh (PM) schemes3. The FMM approximates the Coulomb

interaction between distant charge clusters by a multipole expansion4 which is the

σ → 0 limit of Eq.(5.14). With an elaborate algorithm for summing the multipole

moments, the computation complexity of the FMM in principle can achieve an O(N)

scaling with the number of particles N . However, the O(N) scaling is plagued by

a huge prefactor – p4, where p is the number of multipole moments used, and it

3For a survey, see e.g., reference [16].
4The “local expansion” used in FMM actually corresponds to expanding qj(r) near its body

frame’s origin.
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is often observed that it takes a very big N for the FMM to break even with the

prefactor and become more efficient than Ewald summation (which is “said” to

scale as O(N3/2) [16, 1]). However, the need to use many multipole moments is

most likely due to the use of the usual multipole expansion of Eq.(5.1,5.2) even at

small R’s. Unlike wq1,ij(R), wq,ij(R) can be rapidly varying at small R’s such that

straightforward multipole expansion converges poorly at small R’s. In fact, since all

realistic molecules at short distances interact also with potentials of non-Coulombic

origin, which are excluded from the FMM algorithm and treated as they would be

in ordinary systems with only short-ranged interactions, the rapid varying part of

the Coulomb interaction should be routinely combined with other core interactions,

instead of being treated by an asymptotic expansion! As is evident from Eq.(5.4), the

multipole expansion of wq1,ij(R) can converge much faster than that of wq,ij(R) and

wq1,ij(R) is much smoother at small R’s than wq,ij(R). If the FMM algorithm is used

only for approximating the wq1,ij(R), the number of multipole moments needed could

be significantly reduced and the O(N) scaling would be much less compromised by

the accompanying prefactor. The wq0,ij(R) could then just be combined with other

core interactions. There are also “particle-mesh” algorithms (PM, PME, SPME)5,

which solve Poisson’s equation on a mesh for the electronic interaction and scale as

O(N logN) . Because of the interpolation schemes employed for assigning charges on

mesh points, the major limitation of these algorithms is that they are most efficient

5See a survey in reference [16], appendix B.
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when particle densities are rather uniform but can deteriorate to much a slower

O(N2) scaling for highly nonuniform particle densities. Again, if Poisson’s equation

is solved for the wq1,ij(R), i.e., charge distribution q̂(k) smeared as q̂(k)e−
1
8
(kσ)2 ,

then the algorithms would be much less sensitive to the nonuniformity of q̂(k) and

avoid the degrading of efficiency. Similar ideas involving splitting the 1/r Coulomb

potential into a short-ranged and a long-ranged piece have also been explored for

the improvement of PM [16].

5.3 Treating the Leading Asymptotic Effects of the Coulomb

Interaction with the LMF Theory

In the last section, a multipole expansion of wq1,ij(R) is derived for using a damped

(in the k-space) Green’s function erf( r
σ
)/r in place of 1/r, as a result wq1,ij(R) is

also smooth at small R’s. However, the multipole moments of a charge distribution

in general depend on the choice of origin of the associated body frame, with the

exception of the lowest order nonvanishing multipole moment. This means that

only the leading asymptotic derived from Eq.(5.14) is unambiguous with respect to

the chosen origin of the body frame. The trickiest to handle are charge distributions

whose lowest order multipoles are monopoles or dipoles, since they cause interactions

that decay very slowly as 1/r or 1/r2 , thus are particularly demanding for computer

simulations or theoretical treatments. On the other hand, the LMF is particularly

useful for treating the averaged effect of such long-ranged potentials. To treat the
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leading order, slowest decaying part of interactions between charge carriers with the

LMF, the perturbative potential u1,ij(r) for the LMF can be defined using only the

lowest nonvanishing multipole moments of charge distributions qi(r) and qj(r)

u1,ij(r) ≡ 1

n∗i !n
∗
j !

[Mi(n
∗
i ) · (−O)

n∗i
r ][Mj(n

∗
j) · O

n∗j
r ](

erf( r
σ
)

εr
), (5.18)

û1,ij(k) =
i(n

∗
i +n∗j )

n∗i !n
∗
j !

[Mi(n
∗
i ) · (−k)n∗i ][M∗

j(n
∗
j) · kn∗j ]

4πe−
1
4
(kσ)2

εk2
. (5.19)

n∗i denotes the order of the lowest nonvanishing multipole moment of the charge

distribution on particle i . So if both i and j particles carry net charges, then

u1,ij(r) =
qiqjerf(

r
σ
)

εr
, (5.20)

which are the case of primitive models. Dipolar-monopole, dipole-dipole interaction

(on induced dipoles) as they are in civilized models6 or even more elaborate models

for water molecules, can be treated with the LMF with the perturbative potentials

u1,ij(r) = qi(pj · O)(
erf( r

σ
)

εr
), monopole qi with dipole pj (5.21)

u1,ij(r) = (pi · O)(pj · O)(
erf( r

σ
)

εr
), dipoles pi, pj, (5.22)

and a mimc system with interactions

u0,ij(r) = wij(r)− u1,ij(r). (5.23)

Note that especially for molecules modeled as carrying partial charge sites (such as

water molecules), one would like to choose the body frame of the molecules such

6Point dipoles are assigned at the centers of hard sphere particles.
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that higher order multipoles are as small as possible7. For example, for a molecule

with a net charge, i.e., a nonvanishing monopole, the origin of the molecule’s body

frame can always be preferably chosen such that the dipole moment vanishes8. In

fact, molecules are often modeled as carrying “point multipoles”, which is to say

that all higher order moments are zero. However, such description of course are

subject to a particular choice of origin that overlaps with where the point multipole

is assigned. In fact, if the origin of the molecule is deliberately shifted, artificial

and non-zero higher multipoles will be generated as well! So if considering a case of

salt dissolved in water, then the monopole-monopole (ion v.s. ion), monopole-dipole

(ion v.s. water) and dipole-dipole (water v.s. water) interactions9 can be treated

through the LMF theory with a mimic system free of such long ranged asymptotic

decay. What’s more, the LMF equation will ensure that important sum rules like

neutrality, dipole moment conservation are also built in (as will be addressed in the

next section).

Ewald summation methods have also been generalized to charged system

models that deal with the effect of higher order multipole moments [1]. In the

case that point multipole moments are assigned to molecules, the r-space part

7The generalized “norm” of a rank-n tensor Tn can be defined by ‖Tn‖ ≡ max(Tn · un),∀u.

u is the vector in the vector space that the tensor Tn operates on. A choice of body frame origin

that minimizes M(n∗ + 1) (second to the lowest multipole moment) is thus preferred.
8In general it is not always possible to make multipoles (higher order than dipole) to vanish by

shifting the origin of the body frame.
9Note that the dipole-dipole interaction between ions and waters need not be considered, be-

cause the dipole should be made zero by choosing the “right” origin of body frame.
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of the Ewald sum method actually corresponds to summing short-ranged poten-

tials as those in Eq.(5.18). However, when particles are modeled as carrying par-

tial charge sites, Ewald summation method sums over the monopole-monopole

u0,(i,a)(j,b)(r) = q(i,a)q(j,b)erfc(r/σ)/εr terms for each site (i, j refer to molecule la-

bels and a, b refer to site labels) in r-space, instead of the lowest total multipole

moment interaction between i, j molecules. The separation of potential proposed in

this chapter particularly differs from that of Ewald summation in this latter case.

In fact, the Ewald summation’s r-space short-ranged potential between two charged

molecules often carries many more multipole moments than just the lowest order

ones of the LMF u0,ij(r).

Finally, the w1,ij(r) and u1,ij(r) are defined with a certain relative orientation

of i, j molecules. If a particular body frame is chosen, u1,ij will also carry the

Euler angles of the body frame rotation. That is, u1,ij = u1,ij(r,Ω), so r is the

vector pointing from the origin of the i particle to that of the j’s, and Ω represents

the rotation of the j’s body frame with respect to the i’s. The Ω goes into the

definition of Eq.(5.18) by rotating the Mj(n)’s by Ω, i.e., Mj = Mj(n,Ω). Since

the phase space should also involve nontrivial contributions from the rotation degrees

of freedom of the molecules (if they are not spherically symmetric), the generalized

LMF equation for such systems should also take into the averaged effect of molecular

rotations, and would be written as

φR,i(r1,Ω1) = φi(r1,Ω1) +

∫
dr2dΩ2

∑
j

ρj(r2,Ω2)u1,ij(r12,Ω12). (5.24)
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Note that the angular integration in Eq.(5.24) in normalized such that
∫
dΩ = 1.

5.4 Determining σ

For the application of the LMF for general charge distributions, the question of how

one should choose the σ parameter still remains. The bigger the σ is, the smoother

the u1,ij(r)’s will be. In general, one would like to have a reference system such

that its structure differs from that of the full system only at wave vectors that are

smaller than a certain wave vector κ. κ is supposed to characterize the length scale of

the short-ranged “core” interaction and structure of the full system. To study more

specifically how this criterion leads to the choice of σ, consider a special case of using

the LMF to compute the pair correlation functions of a bulk ionic fluid. Because the

correlation function between i,j species is the same as the density response of the j

species to an i particle fixed at the origin, to apply the LMF for the bulk correlation

functions, all involved species should take turns being fixed at the origin. Each pair

response, between the fixed ith species and the responding jth, is associated with

an LMF equation

φR,ij(r1,Ω1) = wij(r1,Ω12) +

∫
dr2dΩ3

∑
h

δρ(r2,Ω2)u1,hj(r21,Ω12) (5.25)

δρih(r2,Ω2) ≡ ρih(r2,Ω2) − ρh, ρh = ρxh. ρih(r,Ω) = ρB
h gih(r,Ω) is the density

of the hth species at r and with orientation Ω with respect to the particle of ith

species fixed at the and xj is the mole fraction of species j. φR,ij(r1,Ω1) is the local

molecular field seen by the jth species’ reference particle when an ith particle is fixed
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at the origin. The φR,ij can be also divided into a short-ranged piece φR0,ij = u0,ij

and a long-ranged φR1,ijdefinedby

φR1,ij(r1,Ω1) ≡ u1,ij(r1,Ω1) +

∫
dr2dΩ2

∑
h

δρih(r2,Ω2)u1,hj(r21,Ω12).(5.26)

Using Eq.(5.19), one can perform Fourier transform with respect to the r1 depen-

dence of Eq.(5.26)

φ̂R1,ij(k,Ω1) = û1,ij(k,Ω1) +

∫
dΩ2

∑
h

δρ̂ih(k,Ω2)û1,hj(k,Ω12) (5.27)

=
4πe−

1
4
(kσ)2

εk2

i(n
∗
i +n∗j )

n∗i !n
∗
j !

(M∗
i · (−k)n∗i )(M∗

j · kn∗j )

+

∫
dΩ2

∑
h

4πe−
1
4
(kσ)2

εk2
δρ̂ih(k,Ω2)

i(n
∗
h+n∗j )

n∗h!n
∗
j !

(M∗
h · (−k)n∗h)(M∗

j · kn∗j )

=
in

∗
j

n∗j !
(M∗

j · kn∗j )ψ̂i(k) (5.28)

ψ̂i(k) ≡ 4πe−
1
4
(kσ)2

εk2

{
in

∗
i

n∗i !
(M∗

i · (−k)n∗i )

+

∫
dΩ2

∑
h

in
∗
h

n∗h!
(M∗

h · (−k)n∗h)δρ̂ih(k,Ω2)

}
(5.29)

ψi(r) is the electric potential contributed by the i particle at the origin and the

rest of the fluid particles. ψi(r) also bears the angular dependence implicitly in the

M∗
i . From Eq.(5.28), when the u1,ij(r) involves monopole and dipole interactions, in

order for φ̂R1,ij(0,Ω1) to be finite, the summation of the ρ̂ij(k,Ω)’s has to to remove

the 1/k2 and k/k2 divergence in the equation Eq.(5.28), and this in fact implies

that the LMF solution will satisfy the sum rules for neutrality and dipole moment
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conservation [9]. Further more, consider a field Ψ̂(k) defined as

Ψ̂(k) ≡
∫
dΩ1

∑
i

xi
in

∗
i

n∗i
(M∗

i · (−k)n∗i )ρβψ̂i(k,Ω1) (5.30)

=
4πρβe−

1
4
(kσ)2

εk2

{∫
dΩ1

∑
i

xi
in

∗
i in

∗
i

n∗in
∗
i

(M∗
i · (−k)n∗i )(M∗

i · (−k)n∗i )

+

∫
dΩ1dΩ2

∑
i,j

i(n
∗
i +n∗j )

n∗i !n
∗
j !

(M∗
i · (−k)n∗i )(M∗

j · (−k)n∗j )

ρxixjĥij(k,Ω1,Ω2)
}

(5.31)

=

∫
dΩ1dΩ2

∑
i,j

4πβρe−
1
4
(kσ)2

εk2

(−i)(n∗i +n∗j )

n∗i !n
∗
j !

kn∗i +n∗j

·ŜM∗
i M

∗
j
(k,Ω1,Ω2) (5.32)

ŜM∗
i M

∗
j
(k,Ω1,Ω2) ≡ M∗

i M
∗
j Ŝij(k,Ω12), (5.33)

= M∗
i M

∗
j

(
xiδninj

δ(Ω12) + ρxixjĥij(k,Ω12)
)
, (5.34)

xi is the molar fraction of species i. Note that ŜM∗
i M

∗
j

is a tensor of rank n∗i + n∗j .

The explicit angular dependence of Ω1 is specified in Eq.(5.30) since the angles of

the molecule i at the origin will also be averaged over in the integration of Ω1.

Ψ(R) given in k-space in Eq.(5.30) is the potential energy between two particles

separated by R, averaged over the species (thus also “type” of charge distributions)

and angular degrees of freedom. In a ion-dipole mixture, e.g.,

Ψ̂(k) =
4πβρe−

1
4
(kσ)2

εk2

(
ŜQQ(k) + k · ŜQD(k) + kk · ŜDD(k)

)
, (5.35)

ŜQD(k) ≡
∫
dΩ1

∫
dΩ2

ion∑
i

dipole∑
j

qipjŜij(k,Ω12), (5.36)

ŜDD(k) ≡
∫
dΩ1

∫
dΩ2

dipole∑ ∑
i,j

pipjŜij(k,Ω12). (5.37)
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Note that in the expansion of Ψ̂, the structure factors weighted by different mul-

tipoles accompany different interactions of 1/k2, k/k2, k2/k2,...,etc, as seen in

Eq.(5.35). For primitive models of spherical ions only, for which orientation in-

formation is irrelevant,

Ψ̂(k) =
4πβρe−

1
4
(kσ)2

εk2
ŜQQ(k), (5.38)

ŜQQ(k) =
∑ ∑

i,j

qiqjŜi,j(k). (5.39)

The Stillinger-Lovett second moment condition [69] is equivalent to the normaliza-

tion of Ψ̂(0) = 1 of Eq.(5.38). More generally, the second moment condition can be

generalized to any systems in which mobile ions (or dipoles) are involved, and it can

be expressed as the normalization of the ion-ion and ion-dipole parts of the Ψ̂

lim
k→0

4πβρe−
1
4
(kσ)2

εk2

(
ŜQQ(k) + k · ŜQD(k)

)
= 1. (5.40)

Eq.(5.40) had been also derived for the primitive model (ion mixtures) and the

civilized model (ion-dipole mixtures)10.

Ψ̂(k) characterizes the small k corrections that the LMF theory should subse-

quently predict to modify the reference system’s structure. Thus Ψ̂(k) is expected

to be small for all k > κ by a properly chosen σ, κ is the wave vector that charac-

terizes the effective core size of the molecules. This implies the following criteria for

10See reference [9]. Their results are further simplified by the fact that primitive model ions are

spherically symmetric. And note that ŜQQ in general should have the vector dependence as in

Eq.(5.40) since the ions can have non-spherical shapes.
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the choice of σ:

Ψ̂0(k)|k=~κ < 1, i.e., (5.41)

4πβρe−
1
4
(κσ)2

εκ2

∑
A,B

~κ(n∗A+n∗B) ·M∗
AM∗

BŜ0,AB(~κ) < 1 (5.42)

NA∑
iA

NB∑
jB

M∗
iA

M∗
jB
Ŝ0,iAjB

(k,Ω12) ≡ Ŝ0,AB(k), (5.43)

Ŝ0,ij(k,Ω12) is the partial structure factor of the reference system and the capital

A, B subscripts denote the types of the lowest multipoles. The
∑NA

i of Eq.(5.43)

sums over all the species whose lowest multipoles are type A, so for example, ŜQD(k)

would sum all ion (Q) or dipole (D) species. If the u1,ij(r,Ω) are turned on from the

reference system so the full molecular interaction wij(r,Ω) is recovered, the Ψ̂0(k)

then estimates the yet-to-be-screened potential that will further perturb the system’s

structure until the structure of the full system is obtained. At high densities and

when under strong coupling conditions, the βu1,ij(R) is often much greater than

unity when reaching aij (the average spacing of ij pair), meaning that the ij pairs

interaction goes beyond aij and much cancellation of the intermolecular forces from

more distant neighbors is expected. So at high densities the 1/κ should be taken to

be about the typical spacing a of the particles11, and κ is also supposed to be where

the ŜAB(k)’s start exhibiting oscillations.

At low densities, βu1,ij(r,Ω) � 1 at r = aij, 1/κ could then be about some

11There are still subtleties regarding the fact that when the molecules are very asymmetric(size

and concentration), there is the problem of what it means by the averaged particle spacing, and

which one (or even how to average) to choose.
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average “bare” core size of the βu1,ij(R,Ω)’s, denoted as lij. lij typically measures

where u1,ij(R,Ω) reaches kT . As such, we should require κl < 1 (l referring to all

pairs of lij). In such regimes, the particle correlations are mostly determined by lij,

thus σ chosen to be smooth across each of the core sizes would be a conservative

estimate to ensure the LMF’s accuracy. However, when ρ → 0, Ŝij(k,Ω12) → xiδij

so Eq.(5.42) becomes

4πβρe−
1
4
(κσ)2

εκ2

∑
A

xA(~κn∗A ·M∗
A)2 < 1 (5.44)

∼ 4πβρe−
1
4
(κσ)2

εκ2

∑
A

xA(κn∗A‖M∗
A‖)2 < 1, (5.45)

κ has also angular degree of freedom. If 4πβρ/ε is small enough, even without the

damping of e−1/4(kσ)2 , i.e., setting σ = 0, Eq.(5.44) could still hold for κ ∼ 1/l. This

in fact is the limit where the usual Poisson-Boltzmann approximation can apply.

For the simpler example of one-component plasma or primitive model, Eq.(5.45)

becomes

4πβρe−
1
4
(κσ)2q2

εκ2
< 1 (5.46)

⇒ (
kD

κ
)2 e−

1
4
(κσ)2 < 1. (5.47)

Once the system enters the weak coupling regime that βq2/εa � 1, which also

implies that kDa� 1 and kDl� 1, then Eq.(5.47) holds even with σ = 0.

The discussions above only serve as qualitative criteria for choosing σ, they

are by no means strictly quantitative, particularly for very asymmetric molecules.

However, it is crucial to recognize that the σ is not a “fitting” parameter. While
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these criteria estimate the smallest working σ (σmin) for the use of the LMF, one

can always increase the σ value until the LMF solution starts being invariant with

respect to the increase of the σ (with the condition that the reference system can be

treated accurately). The analysis here is meant to demonstrate that σmin remains

a molecular scale length scale, for all coupling ranges.

5.5 Application on a Size-Asymmetric Primitive Model

5.5.1 Model Description

A model of great current interest is the size-asymmetric primitive model (SAPM) of

ionic solutions, where one considers oppositely charged hard spheres of different sizes

in a dielectric continuum. The different hard sphere diameters crudely account for

the different sizes of real cations and anions, and there is an interesting and not well-

understood dependence of the critical temperature and critical density in this model

as the size ratio is varied. We consider in particular the equimolar system studied

by Weis and Levesque (WL) [81], where the diameter ratio d1/d2 = 0.4, with d2 the

negative ion diameter, and symmetric charges |q1| = |q2| = q. Thus ws,ij(r) = ∞

for r ≤ dij, where dij = (di + dj)/2, and is zero otherwise, and wq,ij(r) = qiqj/εr.

Let us denote the general dimensionless measure of the strength of the Coulomb

interactions by the ionic strength Γa ≡ βq2/(εa), the ratio of the Bjerrum length

lB ≡ βq2/ε (which is also called the reduced temperature β∗ used by WL) to some

characteristic nearest neighbor spacing a. WL take a = d2 and thus characterize the
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states by Γd2 = lB/d2 (called q∗2 in their notation), and a reduced density ρ∗ = ρBd3
2,

where ρB = (N1 +N2)/V is the total bulk number density of both ions. According

to the potential separation strategy introduced in the previous sections, the wq,ij(r)

of the SAPM can be divided into

u0,ij(r) = qiqjerfc(r/σ)/r,∀r ∈ dij

= ∞, otherwise,

and u1,ij(r) = qiqjerf(r/σ)/r. The structure of the SAPM in condensed or liquid-

vapor coexistence states are the result of the competition between the Coulomb

interaction and the packing arrangement of the embedded hard cores. At strong

coupling states, this competition, no matter which factor dominates, produces elab-

orate and distinctive features in the ion correlations. At a high density liquid state

of the SAPM, when the Coulomb interaction extends and remains strong beyond

the average spacing a of the ions, then Γa > 1. However, most of the Coulomb in-

teraction that extends outside the a would cancel, causing the bulk structure of the

SAPM to be very similar to a fluid with much shorter ranged molecular interaction.

This cancellation of the long forces remains effective for r > a only. When σ ∼ a

is chosen, because the u1,ij(r) is then ensured to be slowly varying across the range

of the a, turning off the u1,ij(r) as is done in the mimic system should not alter

significantly the structure of the fluid.
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5.5.2 Correlations of the Mimic System

Monte Carlo simulations for the mimic system are carried out for two high density

states to compare with WL’s simulation results for the SAPM. Both states are at

the same reduced temperature β∗ = 16, but one is at a higher density (ρ∗ = 1.4)

than the other (ρ∗ = 0.8) . The ions’ averaged spacing is about the order of d2.

From Fig.(5.1) and Fig.(5.2), at σ = 1.2d2 one can observe that all the partial

correlation functions of the mimic system and the full SAPM are strikingly similar.

Note that the correlation functions of the SAPM exhibits charge oscillation that is

characteristic of strong coupling and dense electrolytes. The correlations between

the repulsive pairs “++” and “−−” obviously oscillate out of phase with respect to

that of the “+−” pair correlation. Clearly, such “charge” oscillation is not unique

or solely dictated by the Coulomb interaction, since the mimic system captures this

feature almost perfectly. Moreover, these partial correlations are also very different

from the oscillatory profiles of a high density hard sphere mixture, as is evident from

the very high contact density of the g12(r), for which the attractive tail outside of

the hard core is responsible. This also shows that the embedded hard cores can not

be a good mimic system for the SAPM.

At much lower densities, however, if the SAPM remains at a strong coupling

state, i.e., Γa > 1, there is still significant force cancellation at distances greater than

a. However, because the ionic fluid is much more compressible at a low density state,

turning on the perturbation potential u1,ij(r) from the mimic system would have
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Figure 5.1: The system presented in this graph is at ρ∗ = 1.4, β∗ = 16. Partial

correlation functions of the SAPM, (gij(r)), and of the mimic system, (g0,ij(r)), are

obtained by Monte Carlo simulations. The SAPM data are taken from reference

[81], by the courtesy of J. J. Weis. The full Coulomb interaction βq2/εr is plotted

in comparison with the mimic system’s interaction u0,ij(r), using the left axis. The

correlation functions are plotted using the right axis. The second graph gives an

enlarged view near the peaks of the g0,12(r) and gij(r): both have high contact values.

Note that all length scales are in unit of d2, which is the hard sphere diameter of

species 2.
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Figure 5.2: Similar to Fig.(5.1), but at another state ρ∗ = 0.8 β∗ = 16.
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more influence on the fluid’s structure than the high density state just presented.

Moreover, because at low densities the ions are further apart, the configuration of

the ions no larger have to compromise with the close packing of the hard cores. As

such, the SAPM exhibits qualitatively different behavior compared with that seen

at high density liquid states.

Monte Carlo simulation results for the mimic system of the SAPM at two

strong coupling gas state (ρ∗ = 0.04, β∗ = 4 and ρ∗ = 0.04, β∗ = 9) are presented

in Fig.(5.3) and Fig.(5.4). The a for this state can be roughly estimated by the

radius of ionic sphere – a ∼ (4π/3ρB)−1/3 = 1.8d2, so Γa > 1 for both states, and

the σmin ∼ a is expected to be sufficient for choosing the mimic system. However,

the two states show qualitatively different features in their correlations functions.

The lower temperature state in Fig.(5.4) exhibits pronounced peaks at a separation

of r = 1.4d2 in like-charge pairs (“++” and “−−” ) correlation functions, while

the partial correlation functions remain monotonic at the high temperature state

of Fig.(5.3). At the same low density ρ∗ = 0.04, the fluid’s correlation would have

already been well described by the Boltzmann factor of the wd,ij(r) if the hard

spheres did not carry the charges. With σ = 2.5d2, the mimic systems of both gas

states have correlations very similar to those of the SAPM, although the agreement

is not as good as it is for high density states, where corrections even at small wave

vectors are damped by the low compressibility in the mimic system. high density

states. Most notable is that the mimic system can also exhibit first peaks similar
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to those of the full system, as seen in Fig.(5.4). Such first peaks of the correlation

functions between like-charge pairs are characteristic of triplet, linear clusters of the

ions, including “+-+” or “-+-”. The peak position thus is the distance between the

like charge ions, d1 + d2 = 1.4d2 of the linear ion clusters. In principle, the ions

can form still longer and bigger clusters, which would be reflected by subsequent

peaks of the correlation functions at larger r’s . Such higher order ion clusters

are especially enhanced by stronger ionic strength. At the state of Fig.(5.4), the

ionic strength is not enough for longer clusters to hold against fluctuations, so the

correlation functions remain rather structureless after the first peak. On the other

hand, σ = 1.2d2, which is sufficient to give excellent results for the high density state

in Fig.(5.1), is too small at this state to serve as a mimic system and its correlations

deviates in magnitude from the SAPM significantly. Still, even for σ = 1.2d2, the

reference correlations show pairing peaks between “++”, “−−” pairs at the same

separation of r.

The clustering of the ions has probably been the most challenging phenomenon

for theoretical treatments of such systems. It is particularly crucial for the study

of critical phenomenon and vapor-liquid coexistence [67, 66, 47, 3]. The Poisson

Boltzmann approximation is unable to predict any clustering, neither is it capable

of treating the high density states. Integral equation theories such as HNC have

been more successful for primitive models high density states 12, but, as WL has

12For example, see the HNC result for SAPM computed by WL.
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commented, the HNC fails to predict ion clustering and even has no solution when

ρ∗ = 0.04, β∗ = 7.14. The zeroth order approximation of the LMF theory, g0,ij(r) ≈

gij(r), already builds in the most important feature of ion aggregation in the mimic

system. If necessary, particularly for the long-wavelength behavior gij(r), further

improvements can be obtained from the molecular fields φR,ij(r) through the LMF

equations

φR,ij(r) = wij(r) +

∫
dr′

∑
h

(ρ0,ih(r
′; [φR])− ρB

h )u1,hj(|r− r′|), (5.48)

which is a special case of the more general expression of Eq.(5.25). Although a

theoretical treatment for the mimic system has yet to be developed, and so far

we have only resorted to computer simulations, it is nonetheless short-ranged and

thus much more manageable in terms of theoretical approximations and qualitative

arguments and is computationally much more efficient. The LMF theory provides

a self-consistent and very natural framework to decouple the interplay between the

long-range interaction from the more complex short-ranged correlation.

5.6 Conclusion

In this chapter, the separation of long-ranged Coulomb interaction and the associ-

ated reference system interaction is derived for general charge distributions. The

decoupling of the long ranged interaction between charged entities from a mimic sys-

tem of only short-ranged interaction is systematically controlled by a single parame-

ter σ. The high wave vector components of the molecular potential are truncated by
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Figure 5.3: Low density gas state SAPM at ρ∗ = 0.04, β∗ = 4. Follow the same

convention as Fig.(5.1), except that now the correlation functions use the left axis.
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Figure 5.4: Low density gas state SAPM at ρ∗ = 0.04, β∗ = 9. Follow the same

convention as Fig.(5.1), except that now the correlation functions use the left axis.
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a rapidly decaying Gaussian function, whose width is characterized by a parameter

σ. The value of σ thus determines the range of the wavelengths to be separated and

treated by the LMF. The multipole expansion for Coulomb interactions converges

much faster if the Green’s function 1/r, which propagates the interaction between

two charge distributions, is replaced by a damped Green’s function erfc(r/σ)/r. The

perturbative potential u1,ij(R,Ω) retains only the contribution of the lowest order

nonvanishing multipole moments, which are independent of the choice of the body-

frame carrying the charge distributions, but the origin of the body-frame should

preferably be chosen to minimize the higher order moments. With such a strategy

of potential separation derived in this chapter, the LMF can be applied to dipolar

systems as well. These ideas are also relevant for computer simulation methods such

as fast multipole method and particle-mesh algorithms [16].

These approaches have been tested in the SAPM. The mimic system for SAPM

is defined by a single parameter σ. The u0,ij(r) of the mimic system and the size of

σ are determined according to the derivation for general charge distributions. By

properly choosing σ, mimic systems correlations resemble strikingly the correlation

functions of SAPM at strong coupling states, at both low and high densities. Most

notably, the mimic system is able to exhibit the characteristic ion pairing peaks

observed in the correlations of a low density, strong coupling SAPM. The mimic

system, incorporated with the LMF, may provide a very natural way of building in

the ion clustering phenomenon which are crucial for the study of the critical point
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and liquid-vapor coexistence of electrolyte models.
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Chapter 6

Charged Planar Walls and Counterions

It has been observed that like-charged ions can exhibit effective attractions [61,

19, 71, 22, 21]. This came as a surprise since the standard Poisson-Boltzmann

approximation (PB) [2], which had been and still is often employed in the study of

ion distribution in the presence of external fields, always predicts repulsions. The

failure of PB appears twofold. When the ions considered do not vary dramatically in

core sizes or valences, such as simple electrolytes, PB can be applied to solve for the

bulk correlation functions of the system of interest, but it fails to pick up the “ion-

pairing” or even higher order clustering that occurs at low density and for strongly

coupled electrolytes (low temperature or large charges) [67, 66, 47, 81, 48]. If the

considered charged entities are extremely asymmetric and some species are much

more dilute, which is often the case in colloidal suspensions, where macroions are

sparsely immersed with much smaller counterions or coions, the macroions are often

modeled as external fields of extended dimensions and held in a certain configuration.

The counterion distribution in the presence of the held “macroion-fields” is then

studied as a function of the configuration of the macroions, and the information
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regarding the effective interaction between the macroions can then be extracted

from the counterion distribution [8, 21, 23, 54, 22]. Macroion-macroion correlation

however is mostly ignored in this kind of setup. The PB approximation for such

systems always predicts repulsion between macroions at all macroion separations

and ionic strengths. While in the bulk electrolyte models, the PB approximation

ignores ion correlations of all pairs when estimating the potentials of mean force, in

the second set of models just mentioned, the PB is forced to take into account the

macroion-microion correlations explicitly but drops that of macroion-macroion due

to the nature of the models.

In previous chapters, the LMF equation has been applied to bulk ionic corre-

lations with the use of short-ranged mimic systems for the ionic system of interest.

At low densities and low temperature, “mimic ion-pairing” and increasingly higher

order clustering similar to that of ionic systems can be found. The LMF theory

can be used to correct the long-wavelength part of the mimic system structure, and

the use of a proper mimic system provides a very natural way to build in clustering

for describing the full ionic system. For model setups that treat macroion as frozen

external fields, the LMF theory can also be shown to naturally bridge the weak

coupling regime (which PB can describe) and the strong coupling regime related to

the intricate like-charge attraction (where PB fails qualitatively).

In the following we will examine in particular how LMF theory can be applied

for two particularly simplified model systems and how the LMF can be simplified
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in some important limits.

6.1 A Single Charged Wall with Counterions

6.1.1 Model Description and the Reduced Scales

The first model considered is a globally neutral system comprised of one planar,

charged wall and a single species of counterions with no hard cores, as in the OCP.

The charged wall is supposed to model the much larger-sized macroions in the case

where all macroions are very far apart from each other. This model is simplified to

exclude coions so as to focus on the charge density distribution near a macroion.

The investigation of this model serves as a introduction of our general approach and

prepares for the more complicated two-charged-wall model that will be discussed

in the later part of this chapter. Suppose that the wall located at z = 0 carries

a positive surface charge density −λe0, while the counterions with negative charge

qe0 are restricted to the z > 0 half space. Here e0 is the unit charge, all charge

carriers and the background are supposed to have the same dielectric constant ε

so no additional polarization of the involved medium needs to be considered. The

counterions interact with a Coulomb potential q2e20/εr, so that their interaction

strength/range is characterized by

lQ = βq2e20/ε = q2lB. (6.1)

lB = βe20/ε is the Bjerrum length and r = lQ is the distance where the counterion

interaction energy falls to kT . The charged wall creates a constant electric field
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Ew = 2πλe0/ε pointing outward from the wall. The Ew can be easily obtained from

Gauss’ law ∮
Ω

dS E · n̂ = 4πQ/ε, (6.2)

where Q is the net charge within the volume enclosed by the surface area Ω. The

charged wall field Ew then gives rise to an electric potential

φw(z) =
−2πλe0

ε
|z|, (6.3)

measured from the wall to z. In fact, −2π/ε(|z − z0| − |z0|) is the Green’s function

of Poisson’s equation in this planar geometry

∂2φ(z)

∂z2
= −4π

ε
δ(z − z0), (6.4)

if z = 0 is the chosen zero of potential, i.e., φ(z = 0) = 0. This convention will be

used throughout the discussion about this single-charged-wall system. The poten-

tial energy cost to displace a counterion from the charged wall to a perpendicular

distance z away is thus 2πλqe20/ε|z|. The strength and thus the “depth” of the

attractive well from the wall felt by a counterion can then be characterized by the

Gouy-Chapman length lG

lG =
ε

2πβλqe20
=

q

2πlQλ
. (6.5)

Note that lG is the distance from the wall at which the attractive potential energy

between the wall and a counterion reaches kT , and it can serve as a measure of

the “width” of the attractive potential well that the counterions feel. If lengths
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are measured in unit of lG, the electric contribution of this system’s Hamiltonian

(measured in kT ) is

βHel =
∑

i

2πβλqe20
ε

zi +
∑
i,j

βq2e20
ε|ri − rj|

(6.6)

=
∑

i

zi

lG
+

∑
i,j

lQ
|ri − rj|

,∀{zi} > 0 (6.7)

and can be expressed in terms of only dimensionless reduced quantities as

βHel =
∑

i

z̃i +
∑
i,j

ξ

|r̃i − r̃j|
, (6.8)

ξ ≡ lQ
lG

=
2πλq3e0

2

ε2k2T 2
, (6.9)

r̃ ≡ r

lG
. (6.10)

Eq.(6.8) embodies the underlying scaling property of βHel, which depends only on

ξ. The wall surface charge density also be written in dimensionless variables as

l2Gλ = q/2πξ.

6.1.2 The LMF Equation

Suppose the counterion interaction is w(r): the LMF equation can be applied to

this system with the separation of the potential in the form

w(r) = u0(r) + u1(r) (6.11)

u0(r) =
q2e20erfc(

r
σ
)

εr
, (6.12)

u1(r) =
q2e20erf(

r
σ
)

εr
, (6.13)

where u0(r) defines the mimic potential of the counterions, as in the case of the OCP

model. The LMF equation can also be expressed in terms of a set of dimensionless
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quantities as

φ̃R(z̃) = z̃ +

∫
dr̃0ρ̃(z̃0)

ξerf( |r̃−r̃0|
σ̃

)

|r̃− r̃0|
,∀z̃ > 0 (6.14)

= ∞, otherwise, (6.15)

with σ̃ ≡ σ/lG, ρ̃(z̃) ≡ l3Gρ(z̃lG) and φ̃R(z̃) ≡ βφR(z̃lG). Note that the counterion

density ρ̃(z̃) is not subtracted by a finite bulk density in Eq.(6.14), because the zero

of potential of this system, unlike the usual case in the bulk fluid, is not set at

infinity, but rather at z̃ = 0. Also because the linear attractive potential from the

wall forms an essentially infinitely deep well, this system does not have a bulk region.

The chemical potential or fugacity of the mimic counterions has to be determined

self-consistently with the LMF equation such that the counterion density satisfies

the neutrality condition of the total system, i.e.,

−q
2πξ

+

∫
dz̃ρ̃(z̃)q = 0 (6.16)

⇒
∫
dz̃2πξρ̃(z̃) = 1. (6.17)

While ρ̃(z̃) is the dimensionless particle density of the counterions, ñ(z̃) ≡ 2πξρ̃(z̃)

thus is the charge density relative to that of the wall surface charge (absolute value,

sign not considered). Eq.(6.14) can be integrated over the planar degrees of freedom
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as

φ̃R(z̃) = z̃ +

∫
dz̃0ρ̃(z̃0)ũ1(z̃0, z̃), (6.18)

= z̃ +

∫
dz̃0ñ(z̃0)G̃(z̃0, z̃), (6.19)

ũ1(z̃0, z̃) = 2πξG̃(z̃0, z̃), (6.20)

G̃(z̃0, z̃) ≡ −|z̃ − z̃0|erf(
|z̃ − z̃0|
σ̃

)− σ̃√
π
e−(

z̃−z̃0
σ̃

)2

+|z̃0|erf(
|z̃0|
σ̃

) +
σ̃√
π
e−(

z̃0
σ̃

)2 . (6.21)

Note again that the zero of potential is consistently chosen at z̃ = 0 for all the

potentials of interest, and this choice removes the infinities resulting from the direct

integration of ũ1(r̃0, r̃) over the planar degrees of freedom. Moreover, the counterion

distribution should not depend on such a choice. Any other choice only results in

a constant shift in both the φ̃R(z̃) and the chemical potential solution of the mimic

system. Note that G̃(z̃0, z̃) is the Green’s function of a dimensionless Poisson’s equa-

tion [38] with a normalized Gaussian planar charge distribution σ̃√
π
e−(

z̃−z̃0
σ̃

)2centered

at z̃0, i.e, the solution of

∂2G̃(z̃0, z̃)

∂z̃2
= −2(

σ̃√
π

)e−(
z̃−z̃0

σ̃
)2 . (6.22)

The integral form of Eq.(6.18) can thus also be recast in the form of Poisson’s

equation as if each counterion carries a “smeared” surface charged density cloud

instead of a point as charge

∂2φ̃R(z̃)

∂z̃2
= −2ñ∗(z̃), (6.23)

ñ∗(z̃) ≡
∫
dz0ñ(z̃0)

σ̃√
π
e−(

z̃−z̃0
σ̃

)2 . (6.24)
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Eq.(6.23) is then subjected to the boundary condition that ñ(z̃) = 0,∀z̃ < 0 and

˙̃φR(∞) = 0 (which can be seen to be equivalent to the neutrality of the system

by Gauss’ theorem). As the G̃(z̃0, z̃) in Fig.(6.1) shows, with increasing σ̃, the

G̃(z̃0, z̃) becomes increasingly slowly varying within a distance σ̃ from the position

of the charge source and only rises up linearly at larger separations from the charge

source, i.e., ũ1(z̃0, z̃) → −|z̃ − z̃0| up to a constant.

6.1.3 The Nonuniform Mimic System

Since the external field φ̃(z̃) has a Coulomb component, then separating out its long-

ranged part, denoted by φ̃1(z̃), naturally leaves a short-range part of the external

field φ̃0(z̃). φ̃1(z̃) can be given by the “damped” Green’s function G̃(z̃0, z̃) defined

by Eq.(6.22), i.e., φ̃1(z̃) = −G̃(0, z̃). For our discussion of counterions confined by

a charged wall, this separation is defined by

φ̃0(z̃) ≡ |z̃| −
(
|z̃|erf( |z̃|

σ̃
) +

σ̃√
π
e−( z̃

σ̃
)2 − σ̃√

π

)
,∀z̃ > 0 (6.25)

⇒ φ̃0(z̃) =


|z̃|erfc( |z̃|

σ̃
)− σ̃√

π
e−( z̃

σ
)2 + σ̃√

π
, ∀z̃ > 0

∞, ∀z̃ < 0.

(6.26)

The φ̃0(z̃) quickly approaches a constant once z̃ > σ̃, so its corresponding force is

weak once outside a range σ̃ from the wall. The φ̃1(z̃) combined with the integration

over the counterion interactions gives rise to a correction φ̃R1(z̃) to the φ̃0(z̃), namely,

φ̃R1(z̃) ≡
∫
dz̃0[−δ(z̃0) + ñ(z̃0)]ũ1(z̃0, z̃), (6.27)
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Figure 6.1: The functions φ̃0(z̃) and G̃(z̃0, z̃) for different σ̃’s are plotted for the

single wall system. Except for the φ̃q(z̃) = z̃, the other two thick lines are φ̃0(z̃)’s,

using the left y-axis. The thin lines are G̃(z̃0, z̃), using the right y-axis. G̃(z̃0, z̃) is

plotted with respect to z̃, at z̃0 = 0 and z̃0 = 10. Note that the superscript tilde is

omitted in this and all the following figures.
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so that φ̃R(z̃) = φ̃0(z̃) + φ̃R1(z̃). The −δ(z̃0) in the integrand of Eq.(6.27) is

the surface charge density located at z̃ = 0 and with a sign opposite to that of

the counterions. The neutrality condition of the system, Eq.(6.16), ensures that

dφ̃R1(z̃)/dz̃ ≡ ˙̃φR1(z̃) is local and vanishes at z̃ = ∞, which means that the mean

force − ˙̃φR(z̃) should also decay to zero, unlike the constant electric field produced

by a bare charged wall. Moreover, because ũ1(0, z̃) ∼ 0 is both weak and slowly

varying within a distance σ̃ near the wall, φ̃R1(z̃) should contribute little correction

to the φ̃0(z̃) for 0 < z̃ < σ, and thus only for larger z̃’s does the correction become

especially important in determining the asymptotic behavior of the ñ(z̃). With a

σ̃ sufficiently big, the distribution of the mimic counterions in the presence of φ̃0

thus can be expected to resemble that of the full LMF solution of ñ(z̃) at short

distances from the wall, provided that the chemical potential is properly chosen, as

will be discussed later. The φ̃0 is thus referred to as the mimic external field, and

the system of mimic particles in the presence of φ̃0 is the nonuniform mimic system.

This is actually similar to the previously discussed cases for correlation functions

of bulk fluids. The density profile induced in the mimic system by fixing a mimic

particle at the origin is very similar to that of the full ionic system, so here the φ0(r)

is just the u0(r).

In addition to this interpretation of φ0 as the remaining interaction after the

long ranged and slowly varying part of the ionic interaction is separated out, φ0

can be also understood very simply using a unique feature associated with ionic
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systems. From the LMF equation, one would be able to estimate the φR(r) if the

ρ(r) could be roughly approximated in advance. In general, one does not know

ρ(r) until the LMF equation is solved self-consistently. However, if the external

field is charged, the charge density in response to the external field must satisfy

an important constraint – it has to neutralize the external charges. For this single

charged wall system, the counterion density is thus constrained by Eq.(6.16). So

φ0 effectively arises from approximating ñ(z̃) by δ(z̃) in the LMF equation, while

the φ̃R1(z̃) by Eq.(6.27) is the remainder that eventually will need to be accounted

for, in particular for the asymptotic properties of the counterion distribution, if the

full LMF equation is solved. When using the LMF for treating other shorter-ranged

molecular potentials [49, 74], such as that of Lennard Jones potential, one does not

have constraints similar to the neutrality condition. As such, the φ0 associated with

a general φ cannot be so easily estimated in advance.

6.1.4 Choice of σ

In Eq.(6.18), σ must still be chosen properly, and an approximation for the mimic

system response to φR(z), is needed in order to solve Eq.(6.18) self-consistently.

To pick a proper σ, let’s first examine the important length scales that characterize

the counterions’ spacing and the range of wall-counterion and counterion-counterion

interactions. Because the attractive potential is increasingly strong as a counterion

is pulled away from the wall, most of the counterions will be concentrated within

the range of the Gouy-Chapman length from the wall. The Gouy-Chapman length
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lG is unity in reduced units, so if ã3D denotes the average spacing of the counterions

in 3 dimensions, then 1/ã3
3D ∼ ρ̃. Because of the neutrality of the whole system, as

demanded by Eq.(6.16), q/ ˜a3D
3 ∼ q/2πξ suggests that

ã3D ∼ ξ
1
3 . (6.28)

On the x-y plane, the lateral average spacing projected on the x-y plane of the

counterions, ã‖, is dictated also by neutrality that q/ã2
‖ ∼

q
2πξ

, i.e.,

ã‖ ∼ ξ
1
2 . (6.29)

Also Eq.(6.9) shows that ξ measures the strength and range of the counterion-

counterion interaction. So the relative scales of ξ, ã3D and ã‖ at weak coupling

(ξ � 1) or strong coupling limit (ξ � 1) are as follows:
ξ � 1

ξ � 1

=⇒

=⇒

ξ � ã‖ � ã3D � 1

ξ � ã‖ � ã3D � 1

. (6.30)

In the weak coupling limit where ξ � 1, the 3D spacing ã3D is much smaller

than the Gouy-Chapman length. Also, ξ, which indicates the range of the counterion-

counterion interaction, is much smaller than ã3D. This means that in this limit, there

are many counterions within the Gouy-Chapman length from the wall that signifi-

cantly screen the electric potential from the wall. However, these particles are also

far apart and and even nearest neighbors feel only weak interaction from each other.

The counterions thus can move rather freely in all three dimensions, and the coun-

terions are only weakly confined by the wall’s attraction. The counterions’ typical
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distribution in a weak coupling state is illustrated in Fig.(6.2), and it can be seen

that because many layers of counterions can stack perpendicular to the wall, the

lateral spacing ã‖ is much smaller than ã3D.

In the opposite, strong coupling limit of ξ � 1, ã‖ � ã3D � 1 indicates that

the counterions are bound very tightly to the wall, forming a very thin and strongly

correlated 2D layer as shown in the Fig.(6.2). In this limit, the counterion-counterion

interaction range ξ is much greater than that of the counterions’ lateral spacing ã‖,

which now characterizes the typical spacing of the counterions [54]. Counterions are

hardly allowed to have position fluctuations perpendicular to the wall, so any of them

essentially finds no neighbors stacked next to it along the z̃ direction. However, the

particles are strongly correlated in the x-y plane, their lateral spacing ã‖ is much

greater than the Gouy-Chapman length so that their mutual forces comparably

result in very little net z̃-component. Along the lateral direction, the counterions

appear to be “crowded” and their interactions significantly overlap. The forces

coming from beyond the range of ã‖ thus to a good extent get canceled, leaving the

effective core range of the counterions to be of the order of ã‖.

In order for the LMF equation to be accurate, σ needs to be chosen to ensure

that the u1(r) is slowly varying across the counterions’ core range. For ξ < 1,

the counterion interaction core range is simply ξ, so σ̃ > ξ should suffice. For

ξ > 1, because of force cancellation, the effective core size is determined by ã‖, so

σ̃ > ã‖ ∼ ξ1/2 is required. Such a choice for σ̃ is a conservative estimate and it
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may be actually more than needed. For example, when ξ < 1, and ã‖ < 1, each

counterion sees only few neighbors that hardly contribute significant mean forces to

it, so even if the u1 is not smoothed, the error of mean potential estimate could still

be negligible.

Hence forward ã will refer to the relevant length scale which characterizes the

typical spacing of the counterions. ã depends on the state of the system, ã ∼ ã‖

for ξ � 1, while ã ∼ ã3D for ξ � 1. As a conservative estimate, ã can be always

chosen to be the larger of ã3D and ã‖, and the minimum working σ̃, σ̃min, is about

σ̃ ∼ ξ, when ã > ξ (which means counterions on average feel only weak interaction

with each other), but σ̃min ∼ ã for ã < ξ (counterions’ interaction extends beyond

the averaged spacing ã and are forced to explore their strongly repulsive cores which

cause significant short-ranged correlation among the counterions).

6.1.5 Approximation for Mimic System’s Response to the

Molecular Field

To solve the LMF equation Eq.(6.18), one needs to decide a proper chemical po-

tential for the mimic system and also how the mimic system would respond to the

molecular field, i.e., a theory for ρ̃0(z̃; µ̃0, [φ̃R]), since the LMF equation approxi-

mates that ρ̃0(z̃; µ̃0, [φ̃R]) ≈ ρ̃(z̃;µ(ξ), [φ]). Here, the chemical potential of the full

system is given implicitly by the coupling parameter ξ, which constrains the total

surface particle density of the counterions.

When ξ < 1, as discussed above, σ̃ can be chosen as σ̃ ∼ ξ. The counterions
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Figure 6.2: The φ̃0(z̃) of the one wall system is plotted for a strong coupling (ξ =

1000) and a weak coupling (ξ = 0.1) state. The ñ(z̃) of ξ = 1000 is estimated by

ñ(z̃) ∼ exp(−φ̃0(z̃)) and the PB solution 1/(z̃ + 1)2 is plotted for ξ = 0.1. The

counterion distributions for the two states are also schematically presented. The

gray circles characterize the radii σ̃ of the mimic systems, and σ̃ = ξ1/2 for ξ = 1000

and σ̃ = ξ for ξ = 0.1. The dotted circles are the length of ξ.
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are thus only interacting weakly, having an average spacing ã ∼ ξ1/3 much greater

than their pair interaction range ξ. The mimic particles are supposed to respond to

the φ̃R with the same distribution as that of the counterions, which means that the

mimic particles are also in a very dilute and weakly interacting state. The ideal gas

approximation for the mimic particles’ singlet density

ñ(z̃) = ñ0(z̃) ≈ Ae−φ̃R(z̃) (6.31)

should thus suffice. Because ñ(z̃) is the charge density, the constant A in Eq.(6.31)

absorbs the fugacity. The approximation of Eq.(6.31) states that only the external

field φ̃R(z̃) is responsible for the spatial variation of the ñ(z̃) and the A determines

the total surface particle density of both the full and the mimic system. ñ(z) can

then be obtained by solving Eq.(6.31) and Eq.(6.18) self-consistently , with A de-

termined by the neutrality condition Eq.(6.16).

If σ̃ � 1, Eq.(6.31) with the LMF equation reproduces the PB approximation,

which is exact as ξ → 0 [2], and the ñ(z̃) decays algebraically

lim
ξ→0

ñ(z̃) = ñPB(z̃) =
1

(z̃ + 1)2
. (6.32)

Eq.(6.32) corresponds to

φ̃R(z̃) → φ̃PB(z̃) = 2 log(z̃ + 1). (6.33)

Note that although φ̃PB(z̃) diverges as z̃ → ∞, the attractive force from the wall

−dφ̃PB(z̃)
dz̃

= −2
(z̃+1)

decays to zero at large z̃, in contrast to the constant attraction
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from the wall when there is only one counterion present. Seen far enough from the

wall, the charged wall would appear screened by the counterions. However, it still

takes an infinite amount of work for a counterion to escape from the wall, though

the work is “much reduced”, and this agrees with the fact that eventually all the

counterions are bound to the wall such that they constitute a finite surface charge

density which neutralizes the wall charges. The screening of the wall-counterion

interaction appears to be weaker than that of the ion-ion interaction in a bulk

electrolyte fluid because in this model there are only counterions. Although the

wall charges can be screened by the oppositely charged counterions, there are no

co-ions to screen a counterion, so the counterions can not form a bulk phase far away

from the charged wall. The profile ñ(z̃) and a schematic presentation of how the

the counterions are distributed within the wall’s confining potential well is shown

in the ξ = 0.1 case of Fig.(6.2).

In the opposite limit, when ξ � 1, the σ̃ should be chosen to be at least

σ̃ ≈ ã‖ ∼ ξ1/2. This means that σ̃ � 1, i.e., σ̃ is much greater than the Gouy-

Chapman length. Because the u1(z̃1; z̃2) is small for z̃1, z̃2 < σ̃, it thus remains

very small in essentially all of the z̃ space. The onset of the linear behavior of the

G̃(z̃1; z̃2) is delayed to increasingly large distances as ξ → ∞. In such a limit, the

integration of the G̃(z̃1, z̃2) has no contribution for any finite separation from the

wall, so the molecular field reduces to the bare electric potential energy between the
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wall and a single counterion, i.e.,

φ̃R(z̃) = z̃, ∀z̃ > 0. (6.34)

The mimic particles’ core size is about σ̃, which becomes much bigger than the width

of the attractive potential well φ̃R(z̃)’s width, which is unity. For the mimic parti-

cles, this is actually a very confining potential well, and is similar to the “narrow

slit” case discussed in chapter 2. When the potential well appears to be so narrow

that it essentially could accommodate only a single 2D layer of mimic particles and

allows little position fluctuation perpendicular to the wall, a mimic particle feels

forces from its neighbors mostly along the lateral direction, resulting in little net

force perpendicular to the wall. In the strong coupling limit, only the external field

φ̃R contributes to the z̃-component of the mean force felt by the mimic particles.

Perpendicular to the wall, the mimic particles appear to be non-interacting, so the

probability of finding a mimic particle is only proportional to e−φ̃R(z̃). This agrees

with the results reported earlier for the “narrow slit” limit, at which the fluid ap-

pears ideal gas like and the contribution from the C(1)(r) vanishes from the sum

rule Eq.(13.1).

This means that, the approximation in Eq.(6.31), which is justified for a weak

coupling state, should also apply in the strong coupling limit, though for a very

different reason! Using this approximation and the fact that in the strong coupling

limit, the φ̃R(z̃) is given by the bare wall potential (Eq.(6.34)), the LMF equation
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clearly reduces to

lim
ξ→∞

ñ(z̃) = e−z̃, (6.35)

where the constant A is fixed by the neutrality condition. This is in fact an exact

result in the limit ξ → ∞, as has been discussed previously by other authors [54].

The PB approximation, though exact in the weak coupling limit, fails to capture the

qualitative behavior of the counterions in this opposite regime. In fact, the argument

above for the density response of the mimic particles also applies to the counterions

directly, since for the counterions the φ̃(z̃) is also a very confining “narrow slit”.

By the same token the counterion response can be deduced to be that of Eq.(6.35)

as well, consistent with the result from the LMF theory. Contrary to the weak

coupling limit, when ξ � 1, φ̃R(z̃) ≈ φ̃(z̃) = z̃ recovers the bare potential of the

charged wall, so the charged wall is hardly screened. This has to do with the huge

repulsive cores that the counterions must force upon each other. Because of the

strong repulsive cores, the counterions cannot arrange themselves perpendicular to

the wall and still stay in the narrow well. The PB approximation completely ignores

such short-range repulsions between the counterions. In fact, the PB in the context

of the LMF equation is equivalent to choosing an ideal gas mimic system. As a

result, the PB can not cope with a regime where such counterion correlation plays

a major role. But the lowest order Boltzmann factor in Eq.(6.31) can readily take

into account of such ”size” induced correlations in the mimic system. The profile

ñ(z̃) and a schematic presentation of how the the counterions are distributed within
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the wall’s confining potential well is shown in the ξ = 1000 case of Fig.(6.2).

Though arising from different physical reasons, the Boltzmann factor approx-

imation Eq.(6.31) turns out to be very accurate (in fact exact) for both the weak

and strong coupling limits. Thus it may well be a reasonable approximation for

the mimic system for all ξ’s and to naturally bridge the very different regimes of

ξ. The combined use of Eq.(6.35) with the LMF equation Eq.(6.18) is the Mimic

Poisson Boltzmann (MPB) approximation used for low density OCP and OCCHS

in Chapter 4.

6.1.6 The Asymptotic Solution of MPB and the Absorption

Layer

At large z̃’s, where both ñ(z̃) and ˙̃n(z̃) are approaching zero, then ñ∗(z̃) ≈ ñ(z̃)

(ñ∗(z̃) defined in Eq.(6.24)). Suppose this approximation starts being valid from

z̃ = z̃∗, then Poisson’s equation Eq.(6.23) reduces to the PB form

¨̃φR(z̃) ≈ −2ñ(z̃) (6.36)

≈ −2Ae−φ̃R(z̃), ∀z̃ > z̃∗. (6.37)

After multiply both sides of Eq.(6.37) by ˙̃φR(z̃), the equation can be integrated to

yield

1

2
( ˙̃φR)2 = 2Ae−φ̃R(z̃) + C1, (6.38)
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where C1 is the constant of integration, but C1 = 0 since charge neutrality of the

whole system requires that ˙̃φR(∞) = 0. Eq.(6.38) can be integrated again to give

1√
A
e

1
2
φ̃R(z̃) = z̃ + C2. (6.39)

Since ñ(z̃) = Ae−φ̃R(z̃), Eq.(6.39) predicts an asymptotic algebraic decay of the MPB

approximation

ñ(z̃) ≈ 1

(z̃ + C2)2
, ∀z̃ > z̃∗. (6.40)

Eq.(6.40) has a form to the PB solution but with a different decay constant C2

usually greater than unity for finite ξ’s. The exact asymptotic decay of ñ(z̃) is

believed to be the form of Eq.(6.40) [6]. This analysis is equally valid in general

for the LMF, as long as the theory for the response of the mimic system to the φ̃R

eventually goes as e−φ̃R for large z̃’s, where the φ̃R becomes very large and the density

of the counterions or the mimic particles is very small. z̃∗ thus divides the space

into two regions of different nature. For z̃ < z̃∗ the counterions are tightly confined

to the wall and appear as an absorption layer which effectively reduces the surface

charge density of the wall. For z̃ > z̃∗, counterions see an effective wall with reduced

surface density. The counterions that escape to z̃ > z̃∗ are only weakly bound to

the wall and are far apart from each other, so the PB approximation eventually

becomes legitimate at large z̃’s. In the absorption layer, the repulsive cores sizes of

the counterions appear to be much bigger than the potential well near the wall. Most

of the counterions are forced to distance themselves from each other along the lateral
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direction and near the wall. The counterion behavior inside the absorption layer is

thus very different from the asymptotic region, and the counterion correlation due

to their strong cores is most important when describing the counterion distribution

near the wall. The LMF approximation fixes the core correlation of the counterions

in the mimic system by an appropriate choice of σ̃ while the subsequent long-ranged

perturbation of ũ1(r̃) causes little change on short-range structure of the mimic

system. The larger the ξ is, the more counterions are tightly absorbed to the wall,

as shown in the strong coupling case of Fig.(6.2), and the “loosely bound region” is

delayed further from the wall, corresponding to increasingly larger z̃∗’s. Thus in the

ξ → 0 limit, all the counterions are loosely bound, such that z̃∗ = 0 and PB solution

ñ(z̃) = 1/(z̃ + 1)2 is recovered for all z̃’s. In the opposite limit of ξ →∞, the ñ(z̃)

is dominated by the confinement of the mimic particles in the bare field ñ(z̃) → e−z̃

for all z̃’s and the “loosely bound region” is pushed to infinitely far away.

6.1.7 The Chemical Potential of the Mimic System

In principle, the chemical potential of the mimic system should be solved along

with the LMF equation, and the converged solution for the counterion density is

ρ̃(z̃;µ(ξ), [φ̃]) = ρ̃0(z̃;µ0, [φ̃R]) [74]. However, for strong coupling states, the cor-

rection from φ̃R1(z̃) to ρ̃0(z̃;µ0, [φ̃0]) causes little modification within a distance

σ̃ from the wall. The counterion density near the wall thus can be often esti-

mated by ñ(z̃) ≈ ñ0(z̃;µ0, [φ̃0]). Because the φ̃R(z̃) eventually becomes infinite,

ρ̃0(z̃;µ0, [φ̃R]) → 0 as z̃ →∞ such that the integration of ρ̃0(z̃;µ0; [φ̃R]) gives rise to
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a finite surface charged density and maintains the neutrality of the system. How-

ever, as shown in Fig.(6.1) φ̃0(z̃) eventually approaches a plateau. This means that

the confinement of the mimic particles by φ̃0(z̃) is only local, and eventually the

particles are able to escape the near-wall well and form a bulk state with nonzero

density far away enough from the wall, although the bulk density would be very

low for ξ � 1. ρ̃0(z̃;µ0, [φ̃0]) is thus inevitably unnormalizable, and as a result it is

impossible to determine the µ0 by imposing the neutrality condition. This simply

reflects the fact that although the mimic system could have a local structure near

the wall very similar to that of the full system, it asymptotically has to deviate from

that of the full system, if no correction of φ̃R1(z̃) is considered. However, because

ñ(z̃) ≈ ñ0(z̃;µ0, [φ̃0]) should be only expected to hold for finite z̃’s anyway, the µ0

does not have to take care of the asymptotic behavior of ñ0. A µ0 that best helps

mimic ñ(z̃) near the wall is a more desirable (and possible!) choice. Fortunately,

for this system of one charged wall, there is an exact contact theorem [8, 21, 22]

ñ(0+) = 1 (6.41)

that in fact serves as a perfect constraint for the µ0 to ensure that the ñ0(z̃;µ0, [φ̃0])

is similar to the exact ñ(z̃) near the wall. So as a zeroth order approximation if

φ̃R1(z̃) is not yet solved from the LMF equation, the µ0 of the mimic system can be

determined by requiring ñ0(0+;µ0, [φ̃0]) = 1. The value of µ0 will depend on how

the mimic system is described, and will be in general different from that determined

self-consistently from the LMF equation.
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It is shown in Appendix E that the PB approximation and the converged

solution of the LMF (thus including MPB) satisfy the contact theorem. Derivations

of this are in the appendix E. Not all theories will be able to satisfy the contact

theorem. In particular, the recently developed pair level PB theory [6], Test Charge

Mean Field theory (TCMF), that also gives the exact SC limit in general does not

satisfy the contact theorem for finite ξ values, and further more, predicts an incorrect

asymptotic decay of c(ξ)/(z̃ + 1)2.

6.2 Two Walls with Counterions

While the system of one charged wall with counterions studied above models the

macroion-counterion distribution when macroions are all very far apart, now we

discuss a system which models explicitly how two macroions, separated by a finite

distance, experience an effective interaction mediated by the counterions. experience

the counterion meditated interaction. Consider two parallel charged planar walls

facing parallel to each other, with single component counterions in between the

walls. Each of the walls is charged with a surface density λe0 and each counterion

carries a point charge qe0. The two walls are separated by a distance d. The

following discussion will use same reduced unit convention as in the discussion of

the one wall case, and we let

d̃ ≡ d/lG. (6.42)
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The whole system is neutral, therefore, the counterions should form a slab of charges

where the total charge confined per unit area of the wall neutralizes that of the two

walls. The one wall system is just the limit that d̃→∞.

The net electric field between the walls is zero, since the constant electric fields

from both walls are equal in their magnitudes but opposite in direction in between

the walls. Thus the net electric potential in between the walls is a constant, and

will be set to be zero. The zero of potential in general will be set at z̃ = d̃/2 for the

sake of the reflection symmetry. The LMF solution will not depend on the choice

of the zero of potential. The LMF equation for this system now is

φ̃R(z̃) =


∫ d̃

0
dz̃0ñ(z̃0)G̃(z̃0, z̃), ∀z̃ ∈ [0, d̃]

∞, otherwise,

(6.43)

and G̃(z̃0, z̃) is defined as in Eq.(6.21). Here the electronic part of the molecular

field only comes from the nonuniformity of the counterions. The nonuniform mimic

system is then the mimic particles with an appropriate σ̃ in the presence of the

external field φ̃0 where

φ̃0(z̃) =


|z̃|erfc( |z̃|

σ̃
) + |z̃ − d̃|erfc( |z̃−d̃|

σ̃
)− d̃erfc( d̃

2σ̃
)

− σ̃√
π
(e−( z̃

σ̃
)2 + e−( z̃−d̃

σ̃
)2 − 2e−( d̃

2σ̃
)2), ∀z̃ ∈ [0, d̃]

∞, otherwise.

(6.44)

The left most graph of Fig.(6.3) shows how the φ̃0(z̃) of a two-wall system is simply

given by the summation of the single-wall fields φ̃1w
0 (z̃) from the walls at z̃ = 0, d̃.
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The LMF’s correction to the φ̃0(z̃) is then

φ̃R1(z̃) =

∫ d̃

0

dz̃0[−δ(z̃0)− δ(z̃0 − d̃) + ñ(z̃0)]G̃(z̃0, z̃). (6.45)

The φ̃R1(z̃) of Eq.(6.45) integrates over the mean electric potential energy con-

tributed by the surface charges of both walls and the counterions. A counterion

near one of the walls would feel the rest of the counterions’ repulsion pushing it

against the wall, while near the middle of the two walls (z̃ = d̃/2), because of the

symmetry of the system, there are about equal number of counterions pushing from

both sizes, so the net force on a counterion near the middle should be small. This

as a result causes the counterions to accumulate near the two walls. The electronic

interaction from the walls has no direct effect on the counterion distribution ex-

cept implicitly through determining how many counterions per unit area have to be

present. However, without the wall surface charges, it would take infinite energy

per unit area to assemble the counterions in between the walls at finite separations

and the pressure between the walls certainly would be different, too. Because there

are two charged walls, the neutrality condition for this system is now
∫
dz̃ñ(z̃) = 2.

For two walls, the average lateral spacing ã‖ of the counterions is still deter-

mined as before by ã‖ ∼ ξ1/2, while the ã3D now involves the interplay between

the Gouy-Chapman length and the wall separation d̃. When counterions spread

rather uniformly from one wall to the other, ã3D can be roughly estimated by

d̃/ã3
3D ∼ q/2πξ, using the surface charge density q/2πξ of the wall and the inte-

gration range d̃ of the counterion distribution, so ã3D ∼ (d̃ξ)1/3. On the other hand,
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especially at strong coupling and when the walls are “well separated” from one an-

other, the counterions tend to be tightly bound next to the walls, and the width of

attractive wells near the walls are more characterized by the Gouy-Chapman length

lG, which is order of unity in the reduced units. In this later case, as for the one wall

system previously discussed, the ã3D ∼ ξ1/3. To consistently use the LMF equation,

as with the case of one wall, σ̃ in general has to be chosen such that σ̃ ≥ ã ∼ ξ1/2

for strongly confined counterions, since the counterions’ spacing is characterized

by their lateral distance. However, ˜σmin ∼ ξ when counterions’ spacing is greater

than counterions’ interaction range ξ (that is, dilute counterions). The following

will analyze in more details the LMF’ and the MPB solutions for several limiting

regimes.

6.2.1 Weak Coupling ξ � 1

For this system at this limit of ξ � 1, the hard wall potential and the single wall

attractive well (∼ z̃) compete as two sources of confinement on the counterions.

The width of single wall potential well is measured by the Gouy-Chapman length

and is unity in reduced units. When d̃ > 1, the single wall potential well is effective

and localizes the counterions next to each wall within the Gouy-Chapman length,

so the ã3D ∼ ξ1/3 just as was estimated for the one wall system. On the other hand,

when d̃ < 1, the single wall potential well becomes shallow in between the hard walls

and the counterions do not localize near each wall but are spread rather uniformly

across the slit width. It is then the hard wall potential that is responsible for the
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Figure 6.3: The left most graph represents the separation of electric potential φ̃q(z̃)

of a two-wall system. The φ̃q,0(z̃) and φ̃q,1(z̃) (thus excluding the potential of the

hard walls) of a two-wall system are the summation of those from two single walls

positioned at both z̃ = 0 and z̃ = d̃. The one-wall potentials are denoted by

a superscript “1w”. The φ̃q,0(z̃) is subsequently plotted for two strong coupling

and two weak coupling states, so is the corresponding schematic representation of

counterion distribution.
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Figure 6.4: The φ̃0(z̃)’s of two-wall systems, both of the same strong coupling state

ξ = 1000 as that in Fig.(6.3), but at two different wall separations d̃ = 150 and

d̃ = 1500. For d̃ = 1500 the two-wall system enters the decoupling regimes d̃ > ξ,

while for d̃ = 150 the counterions are localized to the walls but not fully decoupled.
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counterion confinement. In this later case the ã3D should be instead estimated by

d̃/ã3
3D ∼ q/2πξ, so ã3D ∼ (d̃ξ)1/3 . The lateral spacing of the counterions does not

depend on d̃ and is estimated by ã‖ ∼ ξ1/2 as before.

d̃ > ξ, PB Like

For d̃ > 1, ã3D > ã‖ so ã ∼ ã3D ∼ ξ1/3. ã thus is much greater than counterions’

Bjerrum length ξ. This implies that the counterions appear to be only loosely

bound by the single wall potential well. The σ̃min should be chosen to be σ̃min ∼ ξ,

so σ̃min � 1. A mimic system with σ̃ ∼ ξ is thus very dilute with respect to

either d̃ or l̃G, so the MPB approximation should suffice. In the limit that σ̃ → 0,

G̃(z̃0, z̃) → −|z̃0 − z̃| + |z̃0|, and the LMF equation reduces to the integral form of

Poisson’s equation, as ñ∗(z̃) → ñ(z̃) in Eq.(6.22,6.24), so LMF simply reduces to

the PB approximation [2]

ñPB(z̃) = A/ cos2(A1/2[z̃ − d̃/2]), (6.46)

A is determined by the neutrality condition. However, ñ0(z̃;µ0, [φ̃R]) can not be

accurately estimated by the density of the nonuniform mimic system ñ0(z̃;µ0, [φ̃0])

since the LMF correction from φ̃R(z̃) quickly arises away from each wall, and the

full LMF (or MPB) solution should always be used.

As long as ξ remains small with respect to ã and d̃, the LMF can be well

approximated by the MPB and gives solutions close to that of the PB. However,

because for d̃ < 1, ã3D ∼ (d̃ξ)1/3, for sufficiently small d̃ such that d̃ < ξ1/2, the 3D
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spacing ã3D ∼ (d̃ξ)1/3 can actually become smaller than ã‖ ∼ ξ1/2. So for d̃ < ξ1/2,

the typical counterion spacing should instead be ã ∼ ã‖ ∼ ξ1/2 . At such wall

separations, the perpendicular fluctuation of the counterions is much suppressed

compared with their lateral fluctuation. However, if ξ < d̃ < ξ1/2, the slit would

still appear wide to the counterions, and some counterions can move next to each

other perpendicular to the walls without feeling much of their short range repulsion.

So until d̃ < ξ, the PB approximation could still remain valid and and give results

very similar to the MPB approximation, since σ̃ ∼ ξ � 1 still is much smaller than

the slit width. When d̃ < ξ, the slit width is finally smaller than the counterions’

core size, and the core repulsion of the counterions would prevent any counterion

from ever aligning perpendicularly to another counterion. So the counterions in

this limiting wall separation become a 2D, single-layer thin film, and a counterion

feels from the others almost no net mean force along the z̃ direction. This regime

corresponds to the ξ = 0.1, d̃ = 5 graph in Fig.(6.3) and the “WC2” region labeled

in the phase diagram Fig.(6.5).

d̃ < ξ, “Narrow Slit” Like, Counterions Weakly Interacting in a 2D Layer

For d̃ < ξ � 1, ã ∼ ξ1/2 � ξ, the counterions are only weakly interacting and have

little overlap of their short-ranged core potentials on the lateral plane. The σ̃min

thus is still σ̃min ∼ ξ � d̃. So for σ̃ ∼ ξ, the LMF should be reduced to the MPB

because this again is a “narrow slit” limit as the strong coupling limit of the one wall

system, and the φ̃R1 provides little modification on the φ̃0. The LMF then predicts
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in this limit that φ̃R(z̃) ≈ 0, ∀z̃ ∈ [0, d̃] and the counterion density ñ(z̃) approaches

a constant that is determined by the neutrality condition

ñ(z̃) =


2
d̃
, ∀z̃ ∈ [0, d̃]

0, otherwise

. (6.47)

Eq.(6.47) is consistent with the picture that the counterions form a thin 2D layer and

is the exact solution for ñ(z̃) as d̃ → 0. It is the repulsion between the counterion

cores whose size is much greater than the slit width that forces them into a 2D layer.

Although the PB gives solutions close to that of the MPB for weak coupling and

wider walls’ separations, because the PB completely ignores the correlation of the

counterions when computing the potential of mean force, the PB can not distinguish

the difference of this σ̃min regime from the other regimes in which the wall separation

is wider than ξ. On the other hand for the LMF (and thus MPB in this limit), the

finite value of σ̃min ∼ ξ eventually exposes this regime where the PB should fail. In

fact, the neutrality condition imposes on the PB solution that

√
A tan(

√
A
d̃

2
) = 1, (6.48)

which can then be used to show that

ñPB(
d̃

2
)− ñPB(0) = 1. (6.49)

Eq.(6.49) implies that the ñ(z̃) given by PB always varies along z̃, no matter how

small d̃ is, and the difference of the contact density and the middle density of the

ñPB(z̃) is exactly unity for all separations. This also proves that the PB solution
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can never reduce to the constant density result of Eq.(6.47).This regime corresponds

to the ξ = 0.1, d̃ = 0.05 graph in Fig.(6.3) and the “WC1” region labeled in the

phase diagram Fig.(6.5).

Summary

For weak coupling ξ � 1, ã � ξ and σ̃min ∼ ξ suffices. The LMF reduces to PB

as ξ → 0. For d̃ > ξ1/2, the LMF reduces to the MPB and gives solutions close to

that of the PB. But the LMF theory is also exact in the narrow slit limit d̃� ξ1/2,

which the PB fails to predict.

6.2.2 Strong Coupling, ξ � 1

At this limit, similar to the weak coupling limit of the last section, the lateral spac-

ing is still estimated by ã‖ ∼ ξ1/2, but the ã3D needs to be analyzed depending

on the walls’ separation. Because of the huge “size” of the counterions, only when

d̃ > ξ can the walls possibly be decoupled, since a counterion near one wall would

feel little force from the counterions on the other half of the space. For such a widely

separated case counterions are localized within a distance of Gouy-Chapman length

from the wall like the single wall system and ã3D ∼ ξ1/3.

For smaller d̃’s, the counterions near one wall significantly interfere with those

near the other wall at the same vertical level, and the counterions are more spread

across the z̃ space, so d̃ characterizes the range of the counterion distribution, leading
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to ã3D ∼ (d̃ξ)1/3 . The behavior of the counterion distribution can be categorized

into three regions and are discussed in below. The PB approximation can not

describe any of the following strong coupling regimes categorized by different wall

separations.

d̃ < ξ1/2, “Tiny Slit” Like, Counterions Strongly Correlated in a 2D Layer

Because d̃ � ξ1/2 � ξ, there could hardly be more than one counterion aligned

perpendicular to the wall, the system enters this “narrow slit”, 2D-like regime for

a similar reason as that of the weak coupling case. It can be estimated that ã3D ∼

(d̃ξ)1/3, so the lateral spacing ã‖ ∼ ξ1/2 is much greater than ã3D, which agrees with

that the counterions appear to be 2D like. The typical spacing is thus characterized

by ã ∼ ã‖ ∼ ξ1/2. However, for ξ � 1, ξ � ã, so unlike the weak coupling

limit’s “tiny slit” regime, the counterions interact with strong repulsive cores and

are highly correlated laterally. In other words, the counterions are very crowded

on the x-y plane and much cancellation of their long-range forces can be expected.

Thus σ̃min ∼ ã > d̃ should be chosen for the mimic system in this regime. in this

regime, so φ̃R(z̃) ≈ φ̃0(z̃) ≈ 0,∀z̃ ∈ [0, d̃/2]. The mimic system also appears to be

“narrow slit” like and so the LMF again predicts also a constant counterion density

profile like that in Eq.(6.47). This regime is illustrated by the ξ = 1000, d̃ = 5 graph

in Fig.(6.3) and the “SC1” region labeled in the phase diagram Fig.(6.5). This limit

had been previously examined by Netz [53, 54], particularly for explaining the origin

of effective attractions between the walls at strong coupling states. However, the
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connection between the narrow slit limit of both a weak and a strong coupling state

had not been noted before.

ξ1/2 < d̃ < ξ, Counterions Localized next to the Two Walls, the Walls not

yet Decoupled

In this regime, the interaction of counterions of a counterion near one wall with

others on the same side is significantly stronger than it is with others directly across

on the other wall. As a result it is possible to occasionally find more than one

counterion perpendicular to the wall since this can be favorable compared with being

forced to align laterally at a smaller spacing ã‖ ∼ ξ1/2. Because of the counterions’

strong repulsion in the ξ � 1 limit, most counterions are tightly pushed against the

wall and concentrated within a distance of Gouy-Chapman length from the wall.

So ã3D ∼ ξ1/3, which for this regime implies ξ > ã‖ > ã3D, thus the typical spacing

is still ã ∼ ã‖ ∼ ξ1/2. However, since d̃ < ξ still, the counterions on each side still

significantly influence the other, so only d̃ > ξ1/2 is not sufficient to ensure that the

walls have completely decoupled.

Since ã� ξ, the mimic system should be chosen that σ̃min ∼ ã ∼ ξ1/2. φ̃0(z̃)

forms a potential well (∼ z̃) near each wall that turns to a plateau value only until

about a σ̃ distance away from the wall. Since ξ � 1, σ̃min � 1, the potential wells

can be very deep, thus very effective in trapping most counterions near the walls

and forcing them into two 2D like layers near the walls. The φ̃R1(z̃) can only modify

φ̃0(z̃) for z̃ > σ̃ or d̃ − z̃ > σ̃, i.e., where φ̃0(z̃) turns to a constant as Fig.(6.4)
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shows. However, in this regime there is not enough space between the walls for

the rise of the φ̃R1(z̃) to suppress the ñ(z̃) to the asymptotic decay of a single wall

solution, although ñ(d̃/2) can already be very small. Near the walls, the mimic

system’s charge density ñ0(z̃;µ0, [φ̃0]) can be very similar to that of the full solution

of the LMF and agree qualitatively with what’s expected for the full system. This

regime corresponds to the ξ = 1000, d̃ = 150 graph in Fig.(6.3) and the “SC2” region

labeled in the phase diagram Fig.(6.5). Although the walls can still exhibit effective

attractions in this regime, the strong coupling field theory of Netz [54] can no longer

apply.

d̃ > ξ, the Walls Decoupled, Recovering Single Wall, Strong Coupling

Solution

For d̃ > ξ, the counterions localized near each wall hardly feel the strong core

repulsion from the others, so the two halves become uncorrelated, and the walls

essentially decouple. The counterion distribution would be expected to recover that

of the single wall solution in this regime when d̃→∞.

In this regime the φ̃R1(z̃) becomes important and eventually asymptotically

infinite near z̃ = d̃/2, as d̃→∞. Without the correction of φ̃R1, the mimic system

alone with φ̃0 results in a bulk phase with a finite density in between the walls. For

the LMF, since most of the counterions are absorbed near the walls, the few left

that make it further towards the middle region view the walls with surface charges

that are much reduced by the strongly bound counterions. As already shown in the
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study of the single charged wall system, for finite ξ’s, the LMF predicts an algebraic

decay 1/(z̃ + b)2 as Eq.(6.40). The b value is the much lengthened effective Gouy-

Chapman arising from the remaining small effective surface charge of the wall. In

the asymptotic region the counterions appear to be dilute so that b > ξ. For strong

coupling although l̃G = 1 � ξ, by absorbing most counterions near the wall, the

remaining ones are effectively weak coupling. So for the LMF solution for the two

wall system to reduce to that of two decoupled single walls, at least d̃ > ξ is needed

to provide the asymptotic region for the algebraic decay region of the single wall

counterion distribution. This regime corresponds to the ξ = 1000, d̃ = 1500 graph

in Fig.(6.4) and the “SC3” region labeled in the phase diagram Fig.(6.5).

It had also previously been suggested that for d̃ > ξ (up to a logarithmic

correction), the system re-enters a “PB” regime [54]. Such a criterion was proposed

based on the loop-expansion analysis of the PB limit from a field theory context.

However it was by no means clear how such change of regimes could occur based on

the field theory analysis, since eventually the two wall system of a strong coupling

state must decouple and recover the solution for the one wall system of the same

surface charge density. And it is been known that for a strong coupling state of a

single wall system, the ñ(z̃) for finite z̃’s is quite different from the profile the PB

would describe. The LMF, on the contrary, bridges the different strong coupling

regimes very naturally, from small d̃ to the eventual decoupling of the two walls.

In fact, such arguments about the asymptotic “PB” state at large d̃’s can at best
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describe only the asymptotic ñ(z̃) ∼ 1/z̃2 behavior at large z̃’s , all other vital

information, including the right algebraic decay constant, and mostly important, the

ñ(z̃) ∼ e−z̃ profile near the walls (most crucial for recovering the strong coupling,

single wall solution) is completely lost. The previous inability of theoretical studies

to consistently treat strong coupling states for all wall separations thus left the

physical interpretation of the decoupling of strongly charged walls rather unclear.

Summary

For strong coupling states, for all wall separations, σ̃min ∼ ã ∼ ξ1/2. The counterion

distribution ñ(z̃) near the walls can be approximated by the nonuniform mimic

system’s distribution ñ0(z̃;µ0, [φ̃0]) for moderate separations ξ1/2 < d̃ < ξ. For

d̃ > ξ, the LMF correction of φ̃R1(z̃) becomes important in correcting the asymptotic

decay of the ñ(z̃) decays into the middle region. Subtleties about how µ0 could be

chosen with φ̃0 for an appropriate mimic system will be addressed in section 6.2.4.

Once d̃ > ξ1/2, the counterions start being localized in a 2D layer near the walls,

and the φ̃0(z̃) gives rise to deep attractive wells near the walls when ξ → ∞. In

this case, the ñ(z̃) can be roughly estimated by the superposition of two single-wall

exponential profiles,

ñ(z̃) ∼ e−z̃ + e−(d̃−z̃)

1− e−d̃
(6.50)

where the neutrality condition determines the overall prefactor. This estimate

Eq.(6.50) is what Netz [53, 54] had proposed for strong coupling but larger d̃’s.

However, this estimate was purely an “observation” of what would be expected to
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make connection with the single wall solution when d̃ → ∞. Conceptually it is

rather ad hoc, since it cannot be obtained directly from the field theory expansion

for two wall system devised by these authors, and it hardly conveys how the sub-

sequent re-entrance into the “PB” regime [54] that these authors had argued takes

place.

6.2.3 Effective Interaction between the Two Walls

Here the pressure in between the two walls,

P̃ ≡ P/2πlGλ
2 (6.51)

in reduced unit is introduced. For this two charged wall system, the contact density

of ñ(z̃) is no longer unity except at the limit that d̃ → ∞. Instead, the contact

density is related exactly to the pressure between the walls by [8, 21, 22]

P̃ = −1 + ñ(0+). (6.52)

The wall at z̃ = 0, supposedly carrying a surface charge 1, feels a constant attraction

from a net surface charge “−1” from the positive charge (+1) on the other wall and

the negative charge (−2) form the counterions. This net electric attraction con-

tributes to the “−1” term in Eq.(6.52). However, the counterions are not a static,

uniform film of charges, but rather have microscopic correlations. The counterions

also fight with the walls’ confinement through their contact collisions to the walls,

and this gives rise to an effective repulsion between the walls that favors a wider wall
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separation. Whether or not the walls in effect attract depends on the competition

of the constant electric attraction and the entropic repulsion due to counterion con-

finement. When the two walls decouple, the interaction between them is completely

screened to zero so P̃ = 0, and Eq.(6.52) requires ñ(0+) = 1. The contact theorem

for one wall thus is a limiting case of Eq.(6.52).

It has been observed that like-charge macroions can exhibit effective attraction

to each other, especially for highly charged macroions or at low temperature states.

As several authors have pointed out [23, 54], such effective interaction is counterion

mediated and can be seen its onset at the strong coupling limit. We will first re-

iterate how such effective attraction can be derived and will also demonstrate how

all the regimes in the d̃ − ξ phase diagram in Fig.(6.5), obtained by Moreira and

Netz [53] using computer simulations, can be at least qualitatively understood and

reproduced using the unified framework of the LMF theory and the mimic system.

d̃− ξ Phase Diagram

Strong Coupling States, ξ � 1 For small separations d̃ < ξ1/2, the ñ(z̃) is

roughly given by the constant profile of Eq.(6.47), so

P̃ ≈ −1 +
2

d̃
. (6.53)

The P̃ of the result of Eq.(6.53) is repulsive for smaller separations, yet may become

attractive when d̃ is increased. Thus d̃∗ = 2 is the equilibrium separation in this

regime, and the position of the walls is stable to the variation of d̃ near d̃∗. This
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Figure 6.5: The d̃−ξ phase diagram of a two-wall system as obtained by Moreira and

Netz using computer simulations [53]. The labels “SC1”, “SC2”, “SC3”, “WC1”,

“WC2” were later added by Y.-G. Chen for discussing different d̃− ξ regimes. SC1:

d̃ < ξ1/2, SC2: ξ1/2 < d̃ < ξ, SC3: d̃ > ξ, WC1: d̃ < ξ, WC2: d̃ > ξ.
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regime demonstrates how an effective attraction between like-charged walls could

ever exist through the counterions’ mediating attraction to the both walls. This

result has been well understood by Netz et al [53, 54], and is also reproduced by the

LMF.

For larger d̃’s, when ξ1/2 < d̃ < ξ, the approximation of Eq.(6.47) is no longer

valid and the counterions start being localized next to the walls. The φ̃0(z̃) of the

mimic system can form deep attractive wells near the walls and turn into a plateau

in the middle region. The LMF’s correction of φ̃R1(z̃) will further add the remaining

counterion repulsion from the ũ1 to create a higher barrier towards the middle region

and suppress the counterion density there. However, because in this regime there

is not enough space for the full onset of the φ̃R1(z̃), the φ̃R(z̃) is not sufficiently

big to stop the counterions from escaping the φ̃0(z̃) potential wells. This implies

that ñ(0+) may be still lower than its asymptotic value ñ(0+) → 1, d̃ → ∞, thus

still resulting in a net attraction which persists from d̃ ≥ 2, but this attraction is

increasingly weakened by bigger d̃’s.

For d̃ > ξ, φ̃R1(z̃) eventually builds a robust barrier in the plateau region of

the bare φ̃0(z̃) that prevents the counterions from escaping the walls and forming

a finite bulk density. At d̃ → ∞, the ñ(z̃) and φ̃R(z̃) recover those of the LMF’s

single wall solution. As d̃ is decreased to a very big but finite value, the φ̃R(z̃)’s

logarithmic increase towards z̃ → d̃/2 remains almost equally formidable for the

counterions, but the now reduced space requires them to return to and concentrate
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near the walls more. So for most of the d̃’s in this regime, the ñ(0+) would be slightly

higher than unity and result in a net repulsion between the walls. This repulsion

can be also understood from the fact that if ñ(z̃) is already close to its asymptotic

form of d̃ → ∞, the neutrality condition should require an overall increase of ñ(z̃)

upon the decrease of the d̃. The ñ(z̃) thus should approach unity from above.

Note that in going from d̃ < ξ to d̃ > ξ, the trend that the attraction be-

tween the walls weakens upon increasing d̃ must transit to the other trend that the

walls’ effective interaction turns repulsive and weakens as d̃ keeps increasing. The

attractive regime for smaller d̃’s corresponds to ñ(0+) < 1 while ñ(0+) > 1 for the

repulsive regime at even large d̃’s. This implies a meta stable equilibrium position

for strong coupling states at large d̃’s and is the re-entrant of repulsion that Netz et

al have previously conjectured and shown by computer simulations [54].

Weak Coupling, ξ < 1 For exceptionally small wall separation d̃ < ξ, it is possi-

ble for the walls themselves to squeeze the counterions into a constant distribution

as seen in Eq.(6.50). However, for this profile to hold, it must be that d̃ � 1 , im-

plying that P̃ > 0 should be very repulsive. Well before d̃ approaches 2, the system

has already entered the regimes where the PB approximation is valid and it always

predicts repulsion between the walls. The walls thus exhibit no effective attraction

at weak coupling states.
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Decouple of the Two Walls

Although the bare external field φ̃(z̃) seen by the counterions is a constant between

the walls, the φ̃0(z̃) reveals the potential wells near the walls that are particularly

effective in trapping and localizing the mimic particles in strong coupling states.

This provides an important perspective for understanding very simply how the two

walls could decouple, and how the solution could approach asymptotically the single-

wall solution as d̃ → ∞. On the other hand, the seemingly mysterious decouple of

the two walls can be also understood from the full system without considering the

mimic system.

Because of the reflection symmetry, there must be equal number of counterions

in both z̃ ∈ [0, d̃/2] and z̃ ∈ [d̃/2, 0], and the mean force felt by a counterion must

vanish at z̃ = d̃/2. For weak coupling, when particles are on average far away from

each other and very weakly correlated, the counterions on one half of the space

appear to be a uniform slab of charges. From Gauss’s theorem this slab of charges

cause a constant repulsive electric field (thus linear in potential) to the other half of

the counterions. For counterions within z̃ ∈ [0, d̃/2], the effect of this repulsive field

is equivalent to adding to the hard wall at z̃ = 0 a linear attractive well to “trap”

the counterions near the wall.

However, for strong coupling, the counterions on both sides of the slit keep

being correlated even for very large d̃’s, until finally d̃ > ξ � 1. For d̃ � ξ, the

fluctuation of the counterions on each side still hardly alters the lateral uniformity
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of their charge distribution and the estimate for the mutual repulsion of the two

sides is similar to what’s already argued above for weak coupling walls. The system

thus can be solved as if there is only a single strong coupling wall. Moreover, as

the d̃ is further decreased, the counterions from each side would be more strongly

correlated. If d̃ < ξ, any counterion fixed on one side would significantly “dent”

the lateral uniformity of the counterion distribution on the other side. The forces

from the counterions on the other side and act on the held counterion thus are often

“skewed” in the lateral direction and subsequently results in a reduction of the net

mean force along the z̃ direction. This weakening of the single-wall confinement and

counterion localization to the walls explains how for d̃ < ξ, ñ(0+) could be lowered

as the spacing d̃ decreases and a net attraction between the walls could be induced.

As to the LMF equation Eq.(6.43), it can be decomposed into two parts

φ̃R(z̃) =

∫ d̃
2

0

dz̃0ñ(z̃0, z̃)G̃(z̃0, z̃) +

∫ d̃

d̃
2

dz̃0ñ(z̃0, z̃)G̃(z̃0, z̃). (6.54)

Because the G̃(z̃0, z̃) approaches −|z̃− z̃0|+Const. when |z̃− z̃0| � σ̃ (as shown in

Fig.(6.1)), the z̃ > d̃/2 integral of the Eq.(6.54) should produce a linear potential

z̃ − z̃ + Const. for z̃ < d̃/2, if d̃� σ̃. So at the limit of d̃→∞, Eq.(6.54) becomes

φ̃R(z̃) → z̃ +

∫ d̃
2

0

dz̃0ñ(z̃0, z̃)G̃(z̃0, z̃),∀z̃ <
d̃

2
, (6.55)

which is the LMF equation of a single wall system. So the LMF solution for a

two-wall system reduces to two single-wall solutions at the limit of infinite wall sep-

aration. Note that the linear potential in Eq.(6.55) is in fact only given by the
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counterion repulsion from the other half space with z̃ ∈ [d̃/2, d̃]. The PB approxi-

mation decouples to single wall solutions similarly, since it is just the limit of the

LMF at σ̃ → 0. The φ̃0(z̃) approaches φ̃0(z̃) → φ̃1w
0 (0, z̃), for z̃ < d̃/2, when d̃→∞

(the first argument of φ̃1w
0 (0, z̃) indicates the position of the single wall). The φ̃R1(z̃)

correction

φ̃R1(z̃) =

∫ d̃
2

0

dz̃0[−δ(z̃) + ñ(z̃0, z̃)]G̃(z̃0, z̃)

+

∫ d̃

d̃
2

dz̃0[−δ(z̃0 − d̃) + ñ(z̃0, z̃)]G̃(z̃0, z̃) (6.56)

→
∫ d̃

2

0

dz̃0[−δ(z̃) + ñ(z̃0, z̃)]G̃(z̃0, z̃), d̃→∞, (6.57)

because the neutrality of [−δ(z̃) + ñ(z̃0, z̃)] ensures that asymptotically it gives a

screened potential. The second integral of Eq.(6.56) actually gives a logarithmic

divergence, if measured from z̃ = d̃. However, since the derivative of this logarithm

term vanishes when d̃− z̃ � 1, it appears as a constant for z̃ < d̃/2, and in fact is

made to be zero by the choice of zero of potential. So Eq.(6.57) is consistent with

the decoupling of the LMF equation already observed.

However, for strong coupling states where σ̃ can be very big, the φ̃0(z̃) ≈

φ̃1w
0 (0, z̃) is no longer true for z̃ < d̃/2, if d̃ becomes small enough. The φ̃0(z̃) can

then become shallower when the contribution of φ̃1w(d̃, z̃) becomes more important,

as can be seen in the strong coupling states of Fig.(6.3). This weakening of the

single-wall confinement of the counterions correspond to the situation where the

counterions from both sides start being significantly correlated, resulting in reduced
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mutual repulsion. Because the PB approximation corresponds to σ̃ = 0, it can not

describe this weakening of the confinement, and always assumes a linear confining

potential from the other half of the counterions.

6.2.4 The Chemical Potential of the Mimic System

Unlike the case for the one wall system, the special case of the contact theorem,

Eq.(6.41), does not apply. The µ0 thus can not be determined for ñ0(z̃;µ0, [φ̃0]) from

the contact density, if the full LMF is not solved. However, for strong coupling states

at small to moderate separation d̃’s, when the correction of the φ̃R1(z̃) is unimpor-

tant, the µ0 can be instead determined by the neutrality condition
∫
dz̃ñ0(z̃;µ0, [φ̃0]) =

2. In fact, this can readily give the “narrow slit” limit profile ñ(z̃) = 2/d̃,∀z̃ ∈ [0, d̃].

However, when the φ̃R1(z̃) is important in correcting how the ñ(z̃) behaves asymp-

totically towards the middle region, the neutrality condition could not be used since

ñ(z̃;µ0, [φ̃0])’s plateau bulk region of finite density eventually makes the normaliza-

tion impossible, just is the case with the single wall system. Thus to accurately

determine the effective interaction between the walls at large d̃, where P̃ is very

small (whether repulsive or attractive), the LMF equation should be always solved

in full for this subtle information. Nonetheless, for ξ � 1, the ñ(z̃)’s variation near

the walls should be still of the form Ae−z̃, A is a constant in z̃. This can seen in

the mimic system ñ0(z̃;µ0, [φ̃0]) as well, and is insensitive to how the µ0 is chosen

(though A’s value could change).
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6.3 Conclusion

In this chapter, a qualitative investigation of model charged wall systems is carried

out based on the LMF theory. Although many of the important phenomena such

as the effective attraction between like-charged walls and the re-entrant behavior of

the walls’ repulsion have previously been addressed by various authors [53, 54], a

consistent theoretical framework to provide physical interpretations and successfully

bridge the very different coupling regimes can not be obtained in these works. In

contrast to previous theoretical studies, it has been argued above that the LMF is

able to connect and reproduce very naturally all the regimes. In fact, while the

field theory treatment proposed by Netz et al to a great extent takes advantage of

the special form of the counterion interaction, the LMF can be straightforwardly

generalized to different counterion core interactions (such as embedded hard cores)

and more realistic macroion modeling. Moreover, in most cases the LMF can be

reduced to the MPB, especially for the systems discussed in this chapter, and the

numerical computation of the MPB is straightforward and no more difficult than

using the PB approximation. This also compares very favorably with the Test-

Charge Mean Field Theory (TCMF) [6], a pair level PB approximation, developed

very recently by Burak et al, which is able to recover the strong coupling limit of

the one wall system, but is computationally much more demanding. Even with its

much greater computational cost, the TCMF still predicts an incorrect asymptotic

decay of ñ(z̃) and fails to satisfy the contact theorem for its one wall solution. In
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previous chapters, the LMF has been applied to the correlation functions of uniform

fluids. Here its application to an explicitly nonuniform system again demonstrates

its versatility for the theoretical understanding of general ionic fluids.
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Chapter 7

Summary and Outlook

In this dissertation, we have (hopefully!) developed physically motivated theoretical

frameworks for understanding equilibrium fluid structure. The scope of the research

ranges from simple liquids whose constituents interact with regular short-range in-

termolecular potential, to ionic systems whose very long-ranged Coulomb interaction

has cast many unique challenges for theoretical statistical mechanics. What con-

trasts our approach to others is often a closer look into theories that originate from

physical approximations but fail to gain success in a wider range of general appli-

cations. Instead of engaging in technical and ad hoc modifications whose physical

justification is unclear, we have striven to gain new insights into the success of “the

old theories”, e.g., the PY approximation[60] for hard sphere fluids, and the mean

field approximations[2, 50] for ionic systems. Such efforts have rewarded us with

new and exciting theoretical methods whose range of validity extends well beyond

the conventional theories. Nonetheless, many more possible applications and fur-

ther refinement and generalization of these theoretical developments are still worth

pursuing. We believe such research will continue to generate exciting contributions
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to relevant fields of research.

7.1 Future Directions

With proper choice of the reference density ρ̃r for a nonuniform fluid, the shifted lin-

ear response (SLR) equation can serve as a versatile framework for bridging several

important limits. The insensitivity criterion (IC) has been proposed for determining

the ρ̃r. Although the IC has been shown to accurately predict the singlet density

response of hard sphere fluids to a variety of external fields, in particular those where

the hydrostatic linear response (HLR) equation has failed qualitatively, it is by no

means the optimal or only possible choice for determining the reference density. In

particular, despite the IC’s success in tiny fields and confining fields, it is signif-

icantly less accurate for hard wall or rigid cavity potentials. It seems that other

recipes that could also work well for hard walls might be devised for the reference

density used with the SLR equation.

The solution of the local molecular field (LMF) equation also requires the

treatment of the mimic system’s response to general external fields. For general and

especially more realistic systems, molecules can have all kinds of effective repulsive

cores, so it is essentially hopeless to devise a theory that can apply satisfactorily

to all possible short-range interactions. However, primitive models are of particular

importance for understanding the essential physics involving Coulomb interactions

and are also superb test grounds for new theories. In the applications of the LMF
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to model ionic systems, the mimic systems’ molecular potentials u0,ij(r) are all of

the form of a hard core plus a potential of the form wq0,ij(r) = qiqjerfc(r/σ)/εr,

which decays rapidly in r-space. However, so far we have only employed computer

simulations and a simple Boltzmann approximation at low densities (mimic Poisson

Boltzmann) for the mimic system. It should further facilitate the LMF’s application

to these models if well controlled theoretical approximations can be provided for

these mimic systems.

The systems that have been considered so far all have a constant static dielec-

tric constant throughout all space. This assumption, though simplifying, excludes

the interesting and possibly more challenging situations where image charges can

be also induced due to a discontinuity of the dielectric constant in space. Systems

with conducting boundaries and polarizable charge carriers pose questions as to how

the concept of a mimic system can be generalized to such systems, and might even

highlight the limitations of the LMF picture itself. Thus more thorough study of

such boundary conditions is thus also highly desirable. The potential separation

for general charge distributions has been derived in this dissertation. It then be-

comes straightforward to apply the LMF to systems involving molecules carrying

net dipoles rather than net charges. The mimic systems suitable for these dipolar

molecules can be readily defined. Explicit applications of the LMF to dipolar sys-

tems will be continued with co-workers. Hopefully such applications will also prove

useful for the study of water, which is a subject of intense research interest for many
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years.

The LMF has close connections to computer simulation methods which are in-

dispensable for treating Coulomb interactions[16, 1]. A more detailed investigation

of these connections may benefit both simulation development and the understand-

ing of the LMF. In particular, as mentioned before, because ionic systems represent

such a broad category that can embed any kind of short-ranged cores, it eventually

becomes more practical and useful to develop effective simulations of the mimic

system but with LMF corrections from the long ranged forces effectively taken into

account “on the fly” as the simulation proceeds. Some preliminary thought has been

given to such developments but much more work along such directions remains to

be pursued.

So far our study has focused on equilibrium properties of ionic systems. How-

ever, in biological systems, life sustaining processes are hardly in equilibrium. Trans-

port properties of charged molecules in highly nonuniform geometry are often most

crucial and interesting in such processes, as occurs in ion channels. What our theory

implies for the dynamic properties of ionic systems thus is definitely worth further

research work and should enable more relevant theoretical exploration into biological

systems.
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Appendix A

Surface Tension of a Hard Sphere Fluid Next to an Infinite

Spherical Cavity – the “Wall” Limit

In the “wall” limit where Rv →∞, the surface tension given by the compressibility

route is determined from

γ∞ = −
∫ ρB

0

dρ
∂µ

∂ρ

∫ ∞

0

dz[ρw(z)− ρ], (A.1)

with ρw(z) ≡ ρ(z +Rv). The virial route gives

γ∞ = kBTρ
B

∫ ∞

0

dR[G(R)−G(∞)], (A.2)

Here ρBG(R) is the contact value of the density response to a cavity of size R. In the

case considered in Chapter 2, the γ∞ from both the compressibility and the virial

routes can be determined analytically. In general, when no analytical expressions

are available, one may need to carry out these integrations numerically.

There also exists the exact virial sum rule ρBG(∞) = βpB for a planar wall

immersed in the hard sphere fluid [32]. However, this focuses on the structure at

contact for the planar wall, which is the region where the HLR equation is least
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accurate. Thus this thermodynamic pathway for the bulk pressure gives relatively

poor results.
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Appendix B

Exact Density Response to “Tiny” Fields

While the derivation given above for the exact density response of a hard sphere

fluid to a tiny fields is quite simple, more work is required to prove that the PY

approximation, i.e., Eq.(3.12) with the choice ρ̃r = ρB, is exact in this limit as well.

Suppose that the external field φ(r) is the following general tiny field

φ(r) 6= 0,∀r ∈ V φ

= 0,∀r /∈ V φ, (B.1)

where V φ can accommodate no more than one fluid particle simultaneously. The

following derivation will be based on this division of r-space into two regions, V φ

where φ(r) can be nonzero, and its complement, with zero external field.

First we introduce several identities related to the linear response and inverse

linear response functions of the bulk hard sphere fluid:

χ(r1, r2; ρ) = ρδ(r12) + ρ2h(2)(r12; ρ), (B.2)

χ−1(r1, r2; ρ) =
1

ρ
δ(r12)− c(2)(r12; ρ). (B.3)
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χ(r1, r2; ρ) and χ−1(r1, r2; ρ) are functional matrix inverses of each other, i.e.,

∫
dr3χ(r1, r3; ρ)χ

−1(r3, r2; ρ) = δ(r1 − r2). (B.4)

We may divide these matrices into four blocks based on whether the coordinates r1

and r2 are inside or outside the volume V φ:

χ =

 χ11 χ12

χ21 χ22

 , χ−1 =

 χ∗11 χ∗12

χ∗21 χ∗22

 . (B.5)

The i label of χij(r1, r2) refers to the first argument r1, so i = 1 indicates that all

r1 ∈ V φ and i = 2 otherwise. The j label similarly refers to the second argument

r2. Consider matrices χout and χ−1
in defined by

χout ≡

 0 0

0 (χ∗22)
−1

 , χ−1
in ≡

 χ−1
11 0

0 0

 . (B.6)

Since χoutχ
−1
in = 0 (zero matrix), χoutχ

−1χχ−1
in = 0 and χ−1

in χχ
−1χout = 0 give rise to

the identities:

χ∗12(χ22)
−1 + χ−1

11 χ12 = 0, (B.7)

(χ∗22)
−1χ∗21 + χ21χ

−1
11 = 0. (B.8)
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In addition, a Mayer f -function matrix F for the external field is defined by

F ≡

 F11 0

0 0

 , F11(r1, r2) ≡ fφ(r1)δ(r1, r2), (B.9)

E ≡ U + F (B.10)

fφ(r1) ≡ e−βφ(r1) − 1, (B.11)

a ≡
∫
dr1f

φ(r1), (B.12)

v ≡
∫

V φ

dr11, (B.13)

where U = δ(r1, r2) is the identity matrix.

The PY approximation Eq.(3.7) can be re-written as

(1+fφ(r1))ρ
B

∫
dr2χ

−1(r1, r2)ρ(r2)−fφ(r1)ρ(r1) = ρB(1+fφ(r1))

∫
dr2χ

−1(r1, r2)ρ
B

(B.14)

which can be cast using matrix multiplication as

ρBEχ−1ρ̂− Fρ̂ = ρBEχ−1ρB Î, (B.15)

where ρ̂ = ρ(r) is a Hilbert space vector on which the matrices operate, Î is a

constant vector, i.e., Î = 1, ∀r. Now Eq.(B.15) can be split into two equations in

terms of the i, j block labels as

ρBE11(χ
∗
11ρ̂1 + χ∗12ρ̂2)− F11ρ̂1 = ρBρBE11(χ

∗
11Î1 + χ∗12Î2), (B.16)

ρB(χ∗21ρ̂1 + χ∗22ρ̂2) = ρBρB(χ∗21Î1 + χ∗22Î2). (B.17)
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ρ̂1 refers to ρ(r) when r is inside V φ while ρ̂2 describes r outside V φ. Using the

identities Eq.(B.7,B.8), ρ̂1 can be expressed in terms of χ11 and χ∗11 only, as

ρ̂1 = (ρBE11χ
−1
11 − F11)

−1ρBE11χ
−1
11 ρ

B Î1. (B.18)

Since the volume V φ can not accommodate more than one fluid particle, χ11 is

simply

χ11(r1, r2) = ρBδ(r1, r2)− (ρB)2, ∀r1, r2 ∈ V φ, (B.19)

whose inverse χ−1
11 (r1, r2) can be easily found as

χ−1
11 (r1, r2) =

1

ρB
δ(r1, r2) +

1

1− ρBv
. (B.20)

Then (ρBE11χ
−1
11 − F11) can be expressed in terms of the coordinate indices as

(
ρBE11χ

−1
11 − F11

)
(r1, r2) = δ(r1 − r2) + ρB 1 + fφ(r1)

1− ρBv
. (B.21)

To find the inverse of Eq.(B.21), one can take advantage of the fact that the off

diagonal elements depend only on one coordinate, so that one has∫
dr2

∫
dr3

(
ρBE11χ

−1
11 − F11

)−1
(r1, r2)

(
ρBE11χ

−1
11 − F11

)
(r2, r3) =

∫
dr2δ(r1, r2)

(B.22)

Integrating r3 on the left hand side using the expression of Eq.(B.21) yields

∫
dr2

(
ρBE11χ

−1
11 − F11

)−1
(r1, r2) = 1− ρB(v + a)

1 + ρBa

=

∫
dr1

(
δ(r1, r2)−

ρB(1 + fφ(r1))

1 + ρBa

)
(B.23)
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which is obtained by rearrangement. From this result in Eq.(B.23) one can easily

verify that

(ρBE11χ
−1
11 − F11)

−1 = δ(r1, r2)−
ρB(1 + fφ(r1))

1 + ρBa
. (B.24)

The value of χ−1
11 can be also determined in a similar way. With Eq.(B.24), Eq.(B.18)

gives ρ̂1 as

ρ(r) =
ρBe−βφ(r)

1 + ρBa
, ∀r ∈ V φ (B.25)

and ρ̂2 can be determined from either Eq.(B.16) or (B.17) as

ρ̂2 = ρB Î2 + (χ∗22)
−1χ∗21(ρ

B Î1 − ρ̂1)

= ρB Î2 − χ21χ
−1
11 (ρB Î1 − ρ̂1). (B.26)

Thus for r /∈ V φ we have

ρ(r) = ρB 1 +
∫

v
dr′ρBg(|r− r′|; ρB)fφ(r′)

1 + ρB
∫
dr′fφ(r′)

. (B.27)

Equations (B.25) and (B.27) together give the PY predictions for ρ(r) for tiny fields,

and they agree with the exact result in Eq.(3.21). Thus the PY approximation is

indeed exact for tiny fields. In particular, the PY approximation gives the exact

density values inside V φas long as the bulk direct correlation function c(2)(|r−r′|; ρB)

used is consistent with a g(r− r′|; ρB) that vanishes when |r− r′| is smaller than the

hard core diameter. However, to obtain the density outside V φ exactly, the exact

c(2)(|r − r′|; ρB) has to be used. Note that the fluid particles’ interaction does not

have to be only hard cores; Eq.(B.25) and Eq.(B.27) will still hold even when there

are additional softer tails in the molecular interaction if the exact bulk g is used.
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Appendix C

Insensitivity Criterion (IC) for the SLR Equation

After carrying out the functional derivative δρ(r1)/δρ̃
r2 in Eq.(3.28) on the ρ(r1)

given by the SLR equation, one can rewrite the resulting equation as∫
dr3

[
δ(r1, r3)− ρ̃r1e−βφ̃r1 (r1)c(2)(|r1 − r3|; ρ̃r1)

] δρ(r3)

δρ̃r2

= δ(r1, r2)e
β(µ−φ(r1))/Λ3eC(1)(ρ̃r1 ){ċ(1)(ρ̃r1)−

∫
dr3c

(2)(|r1 − r3|; ρ̃r1)

+

∫
dr3[ċ

(1)(ρ̃r1)c(2)(|r1 − r3|; ρ̃r1) (C.1)

+ċ(2)(|r1 − r3|; ρ̃r1)(ρ(r3)− ρ̃r1)]} (C.2)

A special case of Eq.(3.4) relating the n−1 and nth order direct correlation functions

can be written as[15]

ċ(n−1)(r1, r2, ..., rn−1; ρ) =

∫
drnc

(n)(r1, r2, ..., rn−1, rn; ρ). (C.3)

Using this on the right hand side of Eq.(C.1), we are left with only the integral

terms in the third line in the curly brackets. Thus, the condition Eq.(3.28) requires

that∫
dr3

[
ċ(1)(ρ̃r1)c(2)(|r1 − r3|; ρ̃r1) + ċ(2)(|r1 − r3|; ρ̃r1)(ρ(r3)− ρ̃r1)

]
= 0, (C.4)
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which implies the result in Eq.(3.29). Note that by using Eq.(C.3), the equation

above can be written as

∫
dr2

∫
dr3c

(2)(|r1 − r2|ρ̃r1)c(2)(|r1 − r3|; ρ̃r1)

+c(3)(r1, r2, r3; ρ̃
r1)(ρ(r3)− ρ̃r1) = 0. (C.5)

This could also be derived by making the following approximation for Q(r) in

Eq.(3.27):

Q(r1) ≈ (ρ(r1)− ρ̃r1)

∫
dr2

∫
dr3c

(2)(r12; ρ̃
r1)c(2)(r13; ρ̃

r1)

+c(3)(r1, r2, r3; ρ̃
r1))(ρ(r3)− ρ̃r1), (C.6)

i.e., by assuming that ρ(r2) differs little from ρ(r1) in the region of integration near

r1 in the definition for Q, and setting the result to zero.
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Appendix D

Numerically Stable Version of LMF Equation

The LMF equation 4.28 will produce the desired short ranged φR1(r) with a finite

value of φ̂R1(0) only if SR(k) rigorously vanishes at k = 0 as in Eq.(4.30), which

of course is the exact result. However, such self consistent equations are usually

solved by iteration and any small errors in an intermediate approximation to SR(k)

at small k are greatly amplified. This can lead to numerical instabilities. The

following rewriting of Eq.(4.28) can alleviate this problem. We can remove the

sensitivity at small k by multiplying both sides of Eq.(4.28) by k2, giving

k2βρBφ̂R1(k) = αk2
D exp[−1

4
(kσ)2]SR(k). (D.1)

This equation suffices to determine φ̂R1(k) everywhere except near k = 0, where φ̂R1

is assumed to be regular. We next formally write an identity involving φ̂R1(k) that

remains finite as k → 0, namely,

K2βρBφ̂R1(k) = K2βρBφ̂R1(k), (D.2)

where K is a (real) constant wavevector. (More generally, we can multiply both

sides by a known real function of k that does not vanish as k → 0.) We now add
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these two equations as written and divide by k2 +K2, which yields our final result

βρBφ̂R1(k) =
αk2

D

k2 +K2
exp[−1

4
(kσ)2]SR(k)

+
K2

k2 +K2
βρBφ̂R1(k). (D.3)

This equation has no divergences at small k and is stable when iterated, with a

choice of K of order kD. A converged solution will produce a SR(k) that vanishes

identically at k = 0 with βρBφ̂R1(0) finite. From Eq.(4.31) this quantity is in fact

of order unity when the second moment condition is satisfied. This way of rewriting

equations of this kind was suggested by Kirill Katsov [39].
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Appendix E

Demonstration that the PB and LMF Theories Satisfy the

Contact Theorem for One Charged Wall

A neutral system consisting of a single charged planar wall and one species of coun-

terions is considered. The “contact theorem”[8, 21, 22] imposes a constraint on the

counterion density at contact with the wall,namely,

ñ(0) = 1. (E.1)

The PB approximation satisfies this condition. The following discussion will start

from a derivation of how the PB approximation satisfies the contact condition and

then generalize it to show that the LMF theory also does.

E.1 PB

The Poisson-Boltzmann approximation for this system is

d2φ̃R(z̃)

dz̃2
= −2ñ(z̃), (E.2)
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while ñ(z̃) is approximated by Eq.(6.31). From Eq.(6.31), one can relate the ˙̃n(z̃)

with ˙̃φR(z̃)

˙̃n(z̃) = −ñ(z̃) ˙̃φR(z̃). (E.3)

Integrating Eq.(E.3) from z̃ = 0 to ∞, we have

ñ(∞)− ñ(0+) = −
∫ ∞

0+

dz̃ñ(z̃) ˙̃φR(z̃). (E.4)

With the boundary conditions that ñ(∞) = 0 and ˙̃φR(∞) = 0, using Eq.(E.2),

Eq.(E.4) gives

ñ(0+) = −1

2

∫ ∞

0+

dz̃ ¨̃φR(z̃) ˙̃φR(z̃)

= −1

4
( ˙̃φR(∞))2 +

1

4
( ˙̃φR(0))2

=
1

4
( ˙̃φR(0+))2, (E.5)

Due to the surface charge density (which is normalized to δ(z̃)) on the wall, ˙̃φ(z̃)

has a discontinuity across z̃ = 0, i.e.,

˙̃φR(0+)− ˙̃φR(0−) = −2. (E.6)

Also, because of the neutrality of the whole system and the boundary condition that

˙̃φR(∞) = 0, one has

˙̃φR(∞)− ˙̃φR(0−) = 0, which implies (E.7)

˙̃φR(0−) = 0. (E.8)

The results of Eq.(E.6) and Eq.(E.7) are just the consequence of Gauss’s law and

together they result in ˙̃φR(0+) = −2. So Eq.(E.5) now yields the contact theorem
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that states ñ(0+) = 1.

E.2 LMF

E.2.1 MPB

The MPB approximation satisfies Eq.(6.23) instead of Eq.(E.2). Because ñ∗(z̃) is

the convolution of ñ(z̃) with a Gaussian function, ñ∗(z̃) does not have a sharp

discontinuity from a finite contact value to zero behind the walls. To facilitate a

derivation similar to that above, define another mean potential function ψ̃(z̃) by

d2ψ̃(z̃)

dz̃2
≡ −2ñ(z̃), i.e., (E.9)

⇒ ψ̃(z̃) = z̃ +

∫ ∞

0

dz̃0ñ(z̃0)(−|z̃ − z̃0|+ |z̃0|). (E.10)

The ψ̃(z̃) differs from φ̃R(z̃) by ∆(z̃)

∆(z̃) ≡ ψ̃(z̃)− φ̃R(z̃) =

∫ ∞

0

dz̃0ñ(z̃0)H̃(z̃0, z̃) (E.11)

H̃(z̃0, z̃) = −|z̃ − z̃0|erfc(
|z̃ − z̃0|
σ̃

) +
σ̃√
π
e−(

z̃−z̃0
σ̃

)2

+|z̃0|erfc(
|z̃0|
σ̃

)− σ̃√
π
e−(

z̃0
σ̃

)2 . (E.12)

H̃(z̃0, z̃) is just the u0(r1, r2) of the mimic particles integrated over the planar degrees

of freedom (though stripped of the charge strength ξ and in reduced units). With
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Eq.(E.9,E.11), we can re-write Eq.(E.4) as

ñ(∞)− ñ(0+) = −
∫ ∞

0+

dz̃ñ(z̃)( ˙̃ψ(z̃)− ∆̇(z̃)) (E.13)

=
1

2

∫ ∞

0+

dz̃ ¨̃ψ(z̃) ˙̃ψ(z̃)

+

∫ ∞

0+

dz̃

∫ ∞

0+

dz̃0ñ(z̃)ñ(z̃0)
d

dz̃
H̃(z̃0, z̃) (E.14)

=
1

4
( ˙̃ψ(z̃))2|∞0+

+

∫ ∞

0+

dz̃

∫ ∞

0+

dz̃0ñ(z̃)ñ(z̃0)
d

dz̃
H̃(z̃0, z̃) (E.15)

Note that d
dz̃
H̃(z̃0, z̃) is the force from a particle at z̃0 acting on another one at z̃,

and the force should be of the same magnitude but in the opposite direction if it

is from z̃ to z̃0, i.e., d
dz̃
H̃(z̃0, z̃) = − d

dz̃0
H̃(z̃, z̃0), as should be required by Newton’s

third law. The second term of the Eq.(E.15) thus should vanish. So again we have

from the Eq.(E.13) that

ñ(∞)− ñ(0+) =
1

4
( ˙̃ψ(z̃))2|∞0+

(E.16)

ñ(0+) = 1,

following the similar argument of Eq.(E.6-E.8) for the ψ̃(z̃). So the MPB also

satisfies the contact theorem condition.

E.2.2 General Treatment for the Reference System’s Re-

sponse to φR

An accurate and different treatment for the density response of the mimic system

can be also used with the LMF equation. So can this approach also satisfy the

contact theorem? The exact density response of the mimic system to the molecular
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field φ̃R(z̃) should be of the form

ñ(z̃) = Ae−φ̃R(z̃)+Ṽ (z̃), (E.17)

where the Ṽ (z̃) simply accounts for the potential of mean force of the rest of the

mimic particles. In addition to the Boltzmann factor of the molecular field, in

general the potential of mean force Ṽ (z̃) from the other particles should be also

taken into account. ˙̃V (z̃) is the mean force and is of the following form

˙̃V (z̃) =

∫ ∞

−∞
dx̃′dỹ′

∫ ∞

0+

dz̃′ρ̃(z̃′)g0(r̃
′, r̃)

∂

∂z̃
ũ0(|r̃− r̃′|). (E.18)

Note that the subscript “0” of g0(r̃
′, r̃) denotes that it is the pair correlation function

of the mimic system. As long as g0(r̃
′, r̃) has permutation symmetry in the treatment

of the mimic system,

∫ ∞

0+

dz̃̃̃n(z̃) ˙̃V (z̃) = 2πξ

∫ ∞

−∞
dx̃′dỹ′

∫ ∞

0+

dz̃

∫ ∞

0+

dz̃′ρ̃(z̃)ρ̃(z̃′)g0(r̃
′, r̃)

∂

∂z̃
ũ0(|r̃− r̃′|)

(E.19)

vanishes also owing to Newton’s third law that ∂
∂z̃
ũ0(|r̃ − r̃′|) = − ∂

∂z̃′
ũ0(|r − r′|),

since Eq.(E.19) is the net internal force per unit area of the particles along the z̃

direction. With Eq.(E.17), the Eq.(E.13) of the MPB gains an additional term and

become

ñ(∞)− ñ(0+) = −
∫ ∞

0+

dz̃ñ(z̃)( ˙̃ψ(z̃)− ∆̇(z̃) + ˙̃V (z̃)). (E.20)

Since the integration with the ∆̇(z̃) and ˙̃V (z̃) vanishes, by going through the similar

argument as that has been presented for the PB and MPB, it can be also proved that

215



the contact condition ñ(0+) = 1 can be also satisfied by more general treatments of

the mimic system with the LMF equation.
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GLOSSARY

1. DFT: Density Functional Theory

2. DH: Debye-Huckel

3. FMM: Fast Multipole Method

4. GDH: Generalized Debye-Huckel

5. GFM: Gaussian Field Model

6. GMSA: Generalized Mean Spherical Approximation

7. HLR: Hydrostatic Linear Response

8. HNC: Hyper-Netted Chain

9. LMF: Local Molecular Field

10. MPB: Mimic Poisson Boltzmann

11. OCCHS: One Component Charged Hard Spheres

12. OCP: One Component Plasma

13. SAPM: Size Asymmetric Primitive Model
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14. SL: Stillinger-Lovett

15. SLR: Shifted Linear Response

16. TCMF: Test-Charge Mean Field

17. PB: Poisson-Boltzmann

18. PY: Percus-Yevick

19. WL: Weis and Levesque

20. YBG: Yvon-Born-Green
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