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Sustainment constitutes 70% or more of the total life-cycle cost of many safety-,

mission- and infrastructure-critical systems. Prediction and control of the life-cycle cost is

an essential part of all sustainment contracts. For many types of systems, availability is

the most critical factor in determining the total life-cycle cost of the system. To address

this, availability-based contracts have been introduced into the governmental and non-

governmental acquisitions space (e.g., energy, defense, transportation, and healthcare).

However, the development, implementation, and impact of availability requirements within

contracts is not well understood.

This dissertation develops a decision support model based on contract theory, formal

modeling and stochastic optimization for availability-based contract design. By adoption

and extension of the “availability payment” concept introduced for civil infrastructure

Public-Private Partnerships (PPPs) and pricing for Performance-Based Logistics (PBL)

contracts, this dissertation develops requirements that maximizes the outcome of contracts

for both parties.

Under the civil infrastructure “availability payment” PPP, once the asset is available

for use, the private sector begins receiving a periodical payment for the contracted number

of years based on meeting performance requirements. This approach has been applied to



highways, bridges, etc. The challenge is to determine the most effective requirements,

metrics and payment model that protects the public interest, (i.e., does not overpay the

private sector) but also minimizes that risk that the asset will become unsupported. This

dissertation focuses on availability as the key required outcome for mission-critical systems

and provides a methodology for finding the optimum requirements and optimum payment

parameters, and introduces new metrics into availability-based contract structures.

In a product-service oriented environment, formal modeling of contracts (for both the

customer and the contractor) will be necessary for pricing, negotiations, and transparency.

Conventional methods for simulating a system through its life cycle do not include the

effect of the relationship between the contractor and customer. This dissertation integrates

engineering models with the incentive structure using a game theoretic simulation, affine

controller design and stochastic optimization. The model has been used to explore the

optimum availability assessment window (i.e., the length of time over which availability

must be assessed) for an availability-based contract.
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Chapter 1: Introduction

Understanding the total life-cycle cost is an essential part of pricing for any procure-

ment/sustainment acquisition or service contract. For many safety-, mission- and infra-

structure-critical systems, availability is an important factor in determining the life-cycle

cost. Common wisdom is that higher reliability and more efficient supply-chain manage-

ment improves the availability of systems; however, it is also important to explore how

availability drives system and supply-chain attributes. For example, how can the contractor

establish efficient and cost-effective management approaches given specific availability

requirements? What are the methodologies and quantitative methods for designing an

availability requirement in an optimum way? This chapter addresses the current state of

knowledge by reviewing: 1) the definitions and existing approaches used to design and

plan for availability contracts; and 2) the associated approaches for decision modeling for

sustainment acquisition. Chapter 2 addresses the challenges, gaps and opportunities for

new research in this area, followed by the formal problem statement.

1.1 Introduction to Availability-Based Contracts

A significant shift toward a service-based economy has forced organizations to modify their

business philosophy from product-centric to service-oriented through out-sourcing logistics

and maintenance (Baines et al., 2009). Outcome-based contracts that pay for effectiveness

and penalize performance shortcomings have been introduced and referred to as pay-per-

hour or performance-based contracts, e.g., performance-based logistics (PBL) contracts

used by the United States Department of Defense (DoD), and “availability contracting
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maintenance model” initiated by Rolls-Royce (Bangemann et al., 2006). These concepts

are also being used for federal acquisition of healthcare (Eijkenaar et al., 2013), energy,

infrastructure, and in other sectors. Outcome-based contracts allow customers to pay only

for the specific outcomes achieved rather than workmanship and materials delivered. One

of the merits of outcome-based contracts is the optimally sharing of risks by both parties.

These contracts present a pricing challenge due to a dramatic alteration of the risk sharing

scheme when compared to conventional contracts like fixed-price or cost-plus (Kim et al.,

2007). Underestimating the risks involved and therefore the contract cost have caused

some projects to stop and given rise to doubts about the applicability of this class of policy

for new acquisition contracts (Thompson, 2010). The challenge also exists for designing

availability requirements given uncertainties in both inputs and outcomes over a long time

of period. This issue has been largely ignored for a several reasons: 1) availability-based

contracts are a relatively new concept and there is not enough historical data to evaluate

their effectiveness and the success of contractors that implement them; 2) the engineering

design process does not directly target the availability (or other contractual outcomes), but

rather focuses on immediate preferences like performance, purchase price; 3) the logistics

and maintenance of the system are planned and executed separately from the design of

the system (often as an afterthought); 4) design methodologies are not equipped to handle

availability and other outcomes as design inputs; and 5) usage behavior and incentives

for maintenance contractors are being neglected in most design cases due to the high

level of uncertainty in the operational phase of the life cycle. An integrated approach that

includes supply chain, inventory and maintenance management to enable direct evaluation

of different contracting and support policies is needed.

The next section provides a simple qualitative example that demonstrates how an

availability-based contract could work (many variations are possible and in use today). It

describes who the parties to the contract are and how the contract agreement is transacted

between them. After the example, the remainder of this chapter describes and defines the
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main elements of availability-based contracts from the viewpoint of the contractor and the

customer. It explains the most important factors involved in designing availability-based

contracts and how this class of contracts can effectively improve the preparedness and cost

effectiveness of sustainment activities if the design issues are addressed.

1.2 Availability Contract Examples

This section focuses on a simplistic case that addresses the practical aspects of availability-

based contracts. We assume that there is a costumer that uses parts from an inventory

and the contract governs the availability level of the inventory of these parts, where the

inventory is operated (managed) by a contractor (who is not the customer).

In the simplest version of this problem, we assume that the objective of the contractor

is to minimize their costs. We also assume that the customer owns the inventory facility

and the contractor will pay for the use of the space that the parts inventory occupies.1 The

availability contract articulates a penalty that is imposed on the contractor if the availability

of the inventory drops below a certain level. As described, this example is a simplified

version of Performance Based Logistics (PBL) that is currently implemented by the US

DoD. In our simple example, we do not consider any profit-sharing between the contractor

and the customer, but interested readers should see (Hamidi et al., 2014).

In order for the customer to enforce the inventory availability requirement in the

contract, there have to be assessments. An assessment is defined as checking the perfor-

mance of the contractor based on the predefined metrics (e.g., reliability, inventory level

and back-orders) and we assume that at each assessment point the customer can terminate

the contract if the performance of the contractor does not meet the criteria specified in the

contract.

1 In this simple example we will assume that the contractor buys the parts (i.e., the inventory) from an

OEM and the contractor owns the parts forever (even after the customer takes the parts from the inventory

and puts them into their system). For real-world contracts, the actual ownership of the inventory depends on

the particular situation and the contract.
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We assume that during the period of contract (the length of time covered by the

contract), there will be 𝑁𝑎 assessments. At each assessment the performance of the

contractor will be measured; based on the results of the assessment, the customer’s payment

to the contractor could be adjusted (penalized or incentivized).2 Therefore, the contractor

needs to adjust their planning horizon around the periods associated with the assessments.

Everything in this contract costs the contractor money. The contractor must pay to

hold the parts in inventory, order additional parts, tie up capital in the parts, for delays caused

by back-orders, and the penalties assessed on the contractor by the customer. But it will be

the customer that pays for the cost of assessing the contractor performance (GAO-02-1049,

2002; GAO-05-966, 2005). This assessment can be done on a regular basis or randomly

by a performance review unit consisting of both parties (e.g., performance review board).

This example is a simplified version of an availability-based contract, many PBL

contracts operate similarly to this example. There are many variations of this in use today

and just about every availability-based contract is unique (Gansler & Lucyshyn, 2006). In

the next subsection, a particular availability contract is described.

1.2.1 Michelin Tire/US Navy Contract

In this subsection, we describe a a real-world example of availability-based contracting.

The example is a contract between US Navy (the customer) and Michelin Aircraft Tire

Co, LLC (MATC) (the contractor) associated with sustaining the aircraft tires used by U.S.

Navy over a wide range of aircraft including F-14, F-18, and A-4. MATC uses Lockheed

Martin as a sub-contractor for supply-chain management. The goal of the US Navy is to

improve the availability (more exactly, the fill-rate) while reducing the inventory level.

The availability-based contract is used to guarantee aircraft fleet readiness and reduce the

logistics cost to the customer. The primary metrics are the fill-rate and reliability of the tires.

The decision to repair/replace is done based on (MIL-PRF-7726K, 2007) for repairable tires

2In some PBL contracts, the customer may also have the flexibility to cancel the contract, replace the

contactor with another contractor, or take over the operation themselves.
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and (MIL-PRF-5041K, 1998) for new tires. The contract requires that MATC fills 95% of

the tire requisitions within 2 working days in the continental United States and 4 working

days outside of the continental United States. The length of the contract is five years with

two five-year extension options. Fill-rate is defined as the number of requisitions filled

within the time criteria divided by the total number of requisitions during a measurement

period. Measurement periods are defined as increments of 6 months starting at the contract

award.

In terms of the scope of operation of the contractor, the “baseline requirements” of the

Michelin contract asks for an “Intermediate to Depot” maintenance concept. Maintenance

operations of an organization are generally divided into three types: 1) organizational-

level maintenance, which are maintenance activities performed directly on a system or its

support equipment (e.g., repair, inspection, testing or calibration); 2) intermediate-level

maintenance, which is done on removed component parts or equipment at a “shop”; and

3) depot-level maintenance, which is done at a major repair facility (Dulcos & Shepherd,

1991). If a malfunction is diagnosed in a system, the malfunctioning item is removed from

the system and brought to the base supply. If a spare is available it is installed in the system;

otherwise a back-order is established for that item. Because this item is directly installed

in the system, the back-order implies that there is a “hole” in the system that causes it to be

non-operational. In our example the fill-rate is measured at the intermediate to depot level

and the back-order does not imply a “hole” in the system, but rather a shortage of parts in

the inventory.

The payments in this contract are based on Annual Firm Fixed Pricing for Level

of Performance addressing operations to support a forecasted demand over a fifteen-year

period to include a five-year base period, and two five-year options. The contractor bills

the Government monthly for 1/12th of the estimated annual cost.

One significant challenge in these availability-contracts is that the period of perfor-

mance (the assessment period) is arbitrary, i.e., not based on any carefully constructed
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analysis, but rather probably determined by convenience or based on what was done in

previous contracts. For example in Section 1.2.1 the assessment period is bi-annual. This

dissertation addresses the optimization of the period of performance assessment in these

contracts.

1.3 Desired Outcome/Performance Measure: Availability

Outcomes can be divided into performance and availability. Figure 1. The concept of

availability is important as it accounts for both the frequency of the failure (reliability)

and the ability to restore the service or system to operation after a failure (maintainabil-

ity). In industries with complex systems for which product downtime has a very high

cost, availability is often the single most driver of total life-cycle cost. The maintenance

ramifications translate into how quickly the failure can be isolated, and the system can be

repaired and/or restored. These tasks are usually driven by fault detection, isolation and

prognosis followed by inventory response.

Figure 1: Categorization of contractual outcomes
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Availability is the probability that the system is operating properly when it is re-

quired for use. In other words, availability is the probability that a system is not failed

or undergoing a repair action when it needs to be used. The definition of availability is

somewhat flexible, depending on what types of downtimes are considered in the analysis.

As a result, there are a number of different types of availability, point (instantaneous)

availability, mean availability, steady-state availability, operational availability, interval

availability, and materiel (inventory) availability, network availability, fleet availability

and layered availability. It needs to be noted that availability-based contracts do not differ-

entiate between sources of success in the outcomes making it difficult to identify the effect

of using such contracts on reliability improvement (Newsome, 2008; U.S. Government

Accountability Office, 2008).

1.3.1 Point Availability

Point (or instantaneous) availability is the probability that a system (or component) will

be operational at any time, 𝑡. Point availability is similar to reliability in that it gives the

probability that a system has no failures in the interval from 0 to 𝑡. Unlike reliability, the

point availability measure incorporates maintainability information. At any given time 𝑡,

the system will be operational if the following conditions are met: it functioned properly

during the time interval from 0 to 𝑡 with probability 𝑅(𝑡), and, it functioned properly since

the last repair at time 𝑢, 0 < 𝑢 < 𝑡, with probability:

􏾙
𝑡

0
𝑅(𝑡 − 𝑢)𝑚(𝑢) 𝑑𝑢 (1)

in which 𝑅(𝑡) is the reliability of the system at time 𝑡 and 𝑚(𝑢) is the renewal density

function of the system. The point availability is the summation of these two probabilities,

or:

𝐴(𝑡) = 𝑅(𝑡) +􏾙
𝑡

0
𝑅(𝑡 − 𝑢)𝑚(𝑢) 𝑑𝑢 (2)
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𝐴(𝑡) = 𝑅(𝑡) + 𝑅(𝑡 − 𝑢) (3)

1.3.2 Mean Availability

The mean availability is the proportion of time during a mission or time-period that the

system is available for use. It represents the mean value of the point availability function

over the period (0, 𝑇𝑡):

𝐴𝑒(𝑇𝑡) =
1
𝑇𝑡
􏾙

𝑇+𝑡

0
𝐴(𝑡) 𝑑𝑡 (4)

1.3.3 Steady-State Availability

The steady-state availability of the system is the limit of the point availability function as

time approaches infinity:

𝐴(∞) = lim
𝑇𝑡→∞

𝐴(𝑇𝑡) (5)

1.3.4 Operational Availability

Operational availability is a measure of the availability that includes all experienced sources

of downtime, such as administrative downtime, logistic downtime, etc. The equation for

operational availability is:

𝐴𝑜 =
Uptime

Operating Cycle
(6)

where the operating cycle is the overall period, time, term of operation being investigated

and uptime is the total time the system was functioning during the operating cycle. When

there is no logistic downtime or preventive maintenance specified, the operational availabil-

ity equation returns the mean availability of the system. The system’s availability measure

approaches the operational availability as more sources of downtime are specified, such

as crew logistic downtime, spares logistic downtime, restock logistic downtime, etc. In

all other cases, the availability measure is the mean availability. Note that the operational

availability is the availability that the customer experiences. It is essentially a posteriori
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availability based on actual events that happened to the system. Operational availability can

be effectively estimated by accumulating times in discrete-event simulators. The previous

availability definitions are priori estimations based on models of the system failure and

downtime distributions. In many cases, operational availability cannot be controlled by

the manufacturer due to variation in location, resources and other factors that are the sole

province of the end user of the product.

1.3.5 Interval Availability

Interval availability is the fraction of time the system is operational during a given interval

of time. When there the focus is on the transient behavior of a system or continuous demand,

the interval availability is a relevant measure. For instance, the amount of crude oil or

natural gas to be delivered over a finite period requires related platforms to be available for

a certain number of hours in that window. Figure 2 shows that depending on the interval;

the availability can vary greatly within the intervals, while still resulting in the same overall

availability.

Figure 2: Interval availability with different intervals
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1.3.6 Materiel Availability

Materiel availability is a measure of the fraction of the total inventory of a system oper-

ationally capable of performing (ready for tasking) an assigned mission at a given time,

based on the materiel condition. Materiel availability can be expressed mathematically as

(the number of operational end items divided by the total population).3 Determining the

optimum value for materiel availability requires a comprehensive analysis of the system and

its planned use, including the planned operating environment, operating tempo, reliability

alternatives, maintenance approaches, and supply-chain solutions. Materiel availability

is primarily determined by system downtime, both planned and unplanned, requiring the

early examination and determination of critical factors, such as the total number of end

items to be fielded and the major categories and drivers of system downtime. The materiel

availability key performance parameter must address the total population of end items

planned for operational use, including those temporarily in a non-operational status once

placed into service (such as for depot-level maintenance).

Materiel availability can be expressed in different ways. The following definition

represents a point (instantaneous) estimate for materiel availability as a measure, expressed

as a fraction of systems (end items).

Materiel Availability (𝐴𝑚) =
Number of Operational End Items

Total Population
(7)

The key elements that must be incorporated in any assessment of 𝐴𝑚 are: any measure of

𝐴𝑚 must include the total population of systems (end items) to be fielded; any measure of

𝐴𝑚 must consider the total life-cycle timeframe of the system (end item); and any measure

of 𝐴𝑚 must include all major categories of downtime, both planned and unplanned. These

are the distinguishing features of the materiel availability metric that differentiate it from

the more familiar operational availability metric (uptime/uptime downtime).

3Note, this is the same definition as “yield”, however, yield refers to the outcome of a manufacturing

process.
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Figure 3: Materiel availability, state of the system & interval availability

As the Figure 3 depicts, it is clear how 𝐴𝑚 differs from 𝐴𝑜 as it applies to the

number of units in the entire fielded inventory of systems, over the entire life cycle of the

system and incorporates all categories of downtime. In fact, uptime and downtime of an

inventory can be defined based on the level of available inventory or materiel availability

as well. However, the best way to view the relationship between 𝐴𝑚 and 𝐴𝑜 is to see

𝐴𝑚 as a function of 𝐴𝑜, together with many other variables. The best way to assess both

𝐴𝑚 and 𝐴𝑜 is through comprehensive modeling and simulation. Materiel reliability is the

cornerstone that insures both𝐴𝑚 and𝐴𝑜 requirements can be met. 𝐴𝑚 is far more important

in determining the level of availability that is achievable than any other component of

logistics system (“Materiel Availability”, 2010).
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1.3.7 Service level requirements

Service level is commonly used in supply chain management and inventory management

to measure the performance of inventory replenishment policies. Several definitions of

service levels are used in the literature as well as in practice. We introduce the two main

definitions that are related to Materiel Availability.

𝛼-service level (type I)

The 𝛼-service level is an event-oriented performance criterion. It measures the probability

that all customer orders arriving within a given time interval will be completely delivered

from stock on hand, i.e. without delay.

Two versions are discussed in the literature differing with respect to the time interval

within which the orders arrive. With reference to a demand period, 𝛼 denotes the probability

that an arbitrarily arriving customer order will be completely served from stock on hand,

i.e. without an inventory-related waiting time:

𝑆𝛼 = Pr(Period Demand < Inventory on hand at the beginning of period)

In order to determine the safety stock that guarantees a target service level, the stationary

probability distribution of the inventory on hand must be known. This version of 𝛼 is also

called the ready rate.

𝛽−service level (type II)

The 𝛽-service level is a quantity-oriented performance measure describing the proportion

of total demand within a reference period that is delivered without delay from stock on

hand:

𝑆𝛽 = 1 −
Expected backorder per time period

Expected period Demand
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This is equal to the probability that an arbitrary demand unit is delivered without delay.

Because, contrary to the variations of the 𝛼-service level, the 𝛽-service level does

not only reflect the stockout event but also the amount backordered, it is widely used in

industrial practice. For example, if customer orders total 1000 units, and you can only

meet 900 units of that order, your 𝛽-service level is 90%. It is also being called the fill rate.

The time-period in this definition is assumed to be sufficiently large enough to

capture a single order cycle. For example, a monthly fill-rate can be defined as:

Monthly Fill-rate =
Quantity Ordered per Month − Quantity Backordered per Month

Quantity Ordered per Month

Also, by the definition, 𝑆𝛼 ≤ 𝑆𝛽 whenever the probability of zero demand equals 0.

1.3.8 Network Availability, Fleet Availability, Layered Availability

Network services are distributed across several nodes and can depend on the performance of

each node and the demand on each node. Defining and measuring availability requirements

for networked systems or fleets in a way that satisfies the ultimate goal of the customer

(e.g., preparedness) is not trivial (Immonen & Niemelä, 2008). Difficulties defining and

measuring availability metrics makes it even more difficult to predict the availability over

a fleet or network of subsystems and parts (Mickens & Noble, 2006). Targeting availability

in different layers of the system increases the dimension of the problem, and this problem

commonly is called fleet availability.

In summary, one should ask why availability is being used in performance-based

contracts instead of other performance metrics or why it is being distinguished as a special

performance metric from other metrics? Availability along with technical performance,

cost and process efficiency are key elements of support effectiveness. Availability is often

an observable and measurable index, especially for a combination of multiple complex sub-

systems (i.e., system of systems). One can combine the availability of different subsystems
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to achieve the availability of the platform and the reverse can also be done under certain

conditions. In service contracts for complex systems, availability may be a less ambiguous

factor to rely upon to reward the effectiveness of the efforts of the contractors. Availability

is also directly connected to reliability and the quality of support, whereas performance is

highly affected by the users of the system and the engineering design philosophy. Lastly,

when aiming to maintain fleet-level preparedness, availability is more closely connected to

sustainment contractors.

1.4 Performance Evaluation and Performance Sampling Procedures

In availability-based maintenance contracts, customers (e.g., road administrators, the DoD,

etc.) define performance measures that specify the minimum condition to which the asset

items must be maintained. To ensure that contractors maintain the asset items according

to these measures, customers must design and implement a comprehensive and reliable

performance monitoring process.

One of the most important areas within the performance monitoring process is

inspection conducted in the field. Defining a procedure that guarantees the success of field

inspections is a challenge. There are generally two categories of performance sampling:

deterministic and statistical.

Deterministic sampling involved looking at the performance at the end of some

contractual period and determining the payment based on the relationship between payment

and performance. In statistical sampling, for example in a performance-based maintenance

of a highway, the customer can only sample the quality of pavement a few times and in

a few places (Ozbek & Jesus, 2007). Based on this concept, Pinero (2003) developed a

statistical sampling procedure to ensure that findings from field inspections will be reliable

and representative, with high confidence, of the condition of asset items in the entire

population.
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1.4.1 Analysis and Modeling of Time-Correlated Failures

The majority of existing reliability-based work assume failures are identically, and in-

dependently distributed. This assumption does not take into account the time-varying

behavior of failures, the periodic behavior of failures and peak periods in the number

of failures over time(Carroll et al., 2015). The presence of time correlations between

failures including periods with increased failure rate, rejects this assumption and can have a

significant impact on the effectiveness of the maintenance optimization, or fault-tolerance

strategy (Yigitbasi et al., 2010). Understanding the temporal correlations and exploiting

them for optimum checkpointing and scheduling decisions provides new opportunities for

enhancing conventional maintenance optimization and contract design.

1.5 Contract Mechanism: Performance-Based Contracting (PBC)

Performance-based contracting (also referred to as performance-based life cycle product

support and performance-based logistics (PBL)) refers to a group of strategies for sys-

tem support that instead of contracting for goods and services, the contractor delivers

performance outcomes as defined by performance metric(s) for a system or product. PBC

thinking is reflected in a famous quote from Theodore Levitt (Levitt, 1972): “The cus-

tomer does not want a drilling machine; he wants a hole-in-the-wall.” PBC and similar

outcome-based contracts (Table 1.1) pay for effectiveness (availability, readiness and/or

other related performance measures) at a fixed rate, penalize performance shortcomings,

and/or award gains beyond target goals. Table 1.1 describes outcome-based contracts in

terms of incentives and payment models.

PBL is the purchase of support as an integrated, affordable, performance package

designed to optimize system readiness and meet performance goals for the system through

long-term support.

The top-level metric objectives are operational availability, reliability, cost per unit,
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Table 1.1: Contract Types Based on Incentive Structure

Contract Type Criteria Taxonomy

Conventional Contract

(Labor/Material/Hour)

This is a conventional

contract, the customer

pays for the cost of

material, labor and hours

of performance that the

contractor reports

There is no incentive for

contractor to optimize their

operation or minimize

their costs.

Firm Fixed Price Customer pays a set price,

regardless of the

contractor’s costs or

efforts. After the

contractor achieves the

first best cost reduction

effort, they are

incentivized to reduce cost

as much as possible.

The rigidity of this

mechanism fails to control

costs, or help the

contractor to deal with the

risks and uncertainties

involved, specially in

R&D projects, and instead

produces expensive legal

battles.

Cost-Plus Award Fee (CPAF) Customer pays a fee

including an award amount

to motivate contractor to

achieve a certain objective.

It should be possible to

determine the feasible

level of objective before

the contract.

Supplier tries to increase

the cost as much as

possible. Predetermined

award fee based on

judgmental evaluation of

the contract.

Cost-Plus Incentive Fee The legal agreement

specifies a target cost, base

contractor pay, a formula

to be used to figure the

incentive bonus, and

minimum and maximum

limits on the contractor’s

pay.

The supplier exerts no cost

reduction, and is

indifferent to the award.

For incentivizing

subjective areas of

contractor’s performance.

logistics footprint and logistics response time. This level of support differs from the ‘best

effort’ approach typical of DoD organic support in terms of having a clear delineation

of performance outcome. Under PBL (also called Contract for Availability-CfA), the

contractor (system supporter) often commits to providing the current performance level
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at a lower cost, or increased performance at a cost similar to that previously achieved

under a non-PBL approach (Gruneberg et al., 2007). This concept is known in practice as

”Performance Contracting” (Hansen, 2006), “Availability Contracting” (Cushway, 2006),

Contract for Availability (CfA) (Hockley et al., 2011), “Performance-Based Logistics”

in the defense context and “ Performance-Based Service Acquisition (PBSA)” (Gansler,

2000). In the U.S. performance-based logistics is normally established on a contractual

basis, whereas in Europe PBL is being categorized under public private partnerships.

Performance-based logistics (PBL) and similar mechanisms have become popular

for contracting the sustainment of military systems in the United States and Europe and aim

to replace traditional fixed-price and cost-plus contracts to improve product preparedness

and reduce the total cost of ownership of systems. PBL has become the US DoD’s

preferred support strategy for weapons systems (Gansler, 2000). These contracts specify

the government’s desired result without stipulating how a task should be performed, thus

granting contractors the flexibility to complete its tasks in the manner the firm deems

most appropriate PBL contracts are normally executed at three levels: component-level,

subsystem-level, and system or platform-level. Subsystem-level contracts are the most

prevalent form of PBL. In a subsystem PBL contract, the contractor is tasked with sustaining

a subsystem over a period of 5-10 years4 – often the subsystem has previously been

supported via a non-PBL contract. Many of today’s PBL contracts use what is referred

to as public-private partnerships (PPPs). In a subsystem PBL, a PPP could mean that

the contractor partners with government owned and staffed maintenance facility. The

contractor brings in their best practices and manages the facility, and the contractor is

responsible for the outcome.5

Several studies have investigated the effectiveness of PBLs on product reliability

4 United States government PBL contracts are limited to a maximum 5 years by law. (FAR 16.505, FAR

17.104, FAR 17.204, FAR 22.1002)
5 PPPs in the civil infrastructure area (e.g., highway construction and support) have a different structure

than those referred to in subsystem PBL. Civil infrastructure PPPs require the private sector to take responsi-

bility for designing, building, financing, operating and maintaining an asset, which is a much broader view

than today’s subsystem PBL PPPs in use in the U.S. Department of Defense.
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in aerospace and electronics industry (Hockley et al., 2011; Kim et al., 2007) as well as

quantitative survey analysis over different defense agencies (Randall et al., 2011). They

have attempted quantitatively to relate the effect of incentives under this contract with

reliability improvement under PBL against conventional contracts. The expectation is

that the incentives of contractors will drive their course of action in the design process

so we should be able to see either an increase in scheduled maintenance or increase of

reliability, either way an increase in availability. Under availability-based contracting,

manufacturers supposedly move their designs toward higher maintainability and reliability

products, which leads to higher availability for the customer. Pricing such activities and

progressive decision making throughout the life cycle is a stochastic optimization problem

that is being performed today using highly qualitative “fudge factors” (Thompson, 2010).

Some authors use game theory to model the interaction between customer and contractor

toward decisions to improve the reliability (Ashgarizadeh & Murthy, 2000). Sometimes

the customer is interested in layered availability, which means differentiating between

subsystems or the interconnection between systems and their interactions. In other cases,

the limitation on contractors comes from the fundamental physics and/or properties of the

materials and cannot be resolved. Some have argued that these contracts are not necessarily

designed to save money, but rather to maintain or improve the current system or platform

performance in a cost constrained world (U.S. Government Accountability Office, 2008).

Another significant challenge with PBL contracts is to determine the contract re-

quirements and price that protects the interest of the customer, i.e., which does not overpay

the contractor, but also minimizes that risk that the system will become unsupported. Sub-

system PBL contracts are generally priced based on: 1) estimating how many units will

need repair, 2) how much it will cost for each repair, and 3) how the number of units

requiring repair and/or the repair cost will decrease over time as a result of design and/or

maintenance improvements made by the contractor. If greater than projected improve-

ments are realized, the money saved is shared with the contractor according to a schedule
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negotiated in the contract (“gain share”). Meeting or exceeding target performance may

also allow the contractor to add additional years to the contract (“award term”). With

subsystem PBL contacts, it is reasonably straightforward for the customer (which is most

often the government) to demonstrate a benefit by determining what it would cost to sup-

port the system doing business as usual (no improvements, non-PBL contract) compared

to the cost of a PBL contract, e.g., often pre-PBL support and performance experience

exists. However, for new system acquisition, where there is no sustainment history; and

for platform-level PBL, the PBL contract pricing problem is much more complex and it is

unclear how to optimally apply PBL contract mechanisms. For example, a recent study of

PBL effectiveness (Boyce & Banghart, 2012), reported on the cost of 21 PBL contracts

where in 9 out of 9 component and subsystem-level PBL contracts the cost decreased, but

for platform-level (called system-level in the study), PBL 6 out of 12 contracts resulted in

either cost increases or indeterminable cost changes.

PBL and availability payment PPPs share many characteristics. In both cases, the

public and private sector objectives are aligned towards ensuring better value for the end

users/public. These contracts are long-term in nature and demand the private sector to

play a major role in meeting the objectives of the system or project. The private sector

bears the majority of project or system risks and is encouraged to pursue innovative

processes and methods. Table 1.2 summarizes the similarities and differences between

these contracts. Although the procurement contracts are operated by different public

agencies and targeted on different assets, they all must be well-designed and priced to

ensure adequate protection of the public interest. In the defense industry, the challenge

becomes much greater considering the complexity and uncertainty of defense acquisition

programs. While current practices may be effective at the component and subsystem levels,

pricing a PBL contract becomes more difficult for a new system acquisition where no prior

estimates of any kind are available. Therefore, developing and introducing innovative

methods and best practices in civil infrastructure PPPs have great potential to improve
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DoD PBL contract acquisition significantly.

Table 1.2: Mapping of Availability Payment Contracts to PBL Contracts

DoD PBL Contracts Availability Payment PPP

Contracts

Performance Availability, reliability,

downtime, outcome, variances

from goals

Physical and qualitative

availability, serviceability,

resilience, and others

Incentive Contractor rewarded for

performance exceeding

expectations

Typically not used. In some

cases, incentives are used for

qualify materials up to 5% of

total construction cost.

Penalty Penalized for not meeting

performance criteria and

non-availability

Penalized for not meeting

performance criteria and

non-availability

Pricing Bidding Engineer estimate and bidding

Value for Money Benchmarking—compare to

non-PBL contracts; market

research

Value for money analysis to

consider unique characteristics

of infrastructure project

Contract Term Medium to long-term (5 year

base contract followed by a 5

year extension)-duration based

on regulations.

Long-term (minimum 10 year

and maximum 99 years),

duration based on the value for

money analysis

Renegotiation Allowed and possible May be allowed

1.6 The Design Process for Availability-Based Contracts

In the transition from conventional purchase models to a performance-based service con-

tract model, we need to re-examine the design process. Engineering system design and

pricing have a bi-directional relationship; one can reach the price from the design param-

eters or derive the design from a given budget. In the majority of engineering projects,

especially the ones dealing with designing new products, designers pursue the former

method; whereas in practice, and specifically in designing support and sustainment sys-

tems, the flow down of requirements will be determined by considering contractual terms
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and budgetary constraints. Breaking down the high-level requirements to lower-level

requirements requires considering constraints from lower levels (Kohani & Pecht, 2015).

This bi-directional relationship creates new constraints for the contractual oriented design

(Sun et al., 2009).

The classical design for procurement and support contracts are a trade-off between

the costs of providing high reliability (such that the system lasts longer than support contract

lengths or the warranty term) and the opportunity costs of the manufacturer or maintenance

parties (Frangopol & Maute, 2003).

In terms of life-cycle cost estimation, the design process is conventionally a point-to-

point mapping from the space of the design parameters to the space of structural responses

(e.g., total life-cycle cost, availability). In this mapping, each point in the space of the

design parameters defines a feasible or non-feasible design structure, and all feasible

designs guarantee that the predetermined (contractually obligated) outcome requirement is

met (Bakhshi & Sandborn, 2017). Most approaches of this kind require many iterations in

the design without any guarantee that the requirement is met (Jazouli & Sandborn, 2010).

Also, the problem of uncertainty and unavailable data is adding to this mapping challenge.

Möller et al. (2011) tackles this problem by using fuzzy processes to capture uncertainty

without depending on statistical data. To assess the robustness and agility of such designs

more computationally burdensome analysis is needed. Also, when numerous stochastic

factors are present the proposed strategy might not be flexible enough for operational

support. The uncertainty in achieving the final design specification might not be acceptable

in many cases. This will become even more challenging in the context of life-cycle

engineering and the support of critical systems with complex supply chains. Risk-based

design literature has addressed a similar problem by considering uncertainty propagation

through the process and risk allocation and management. In conclusion, the design for

availability based contracts has new dimensions that need to be treated separately and

specifically from conventional design.
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Chapter 2: Problem Construction and Objectives

The general problem of designing an availability-based contract that can provide a win-

win situation by minimizing the cost for the contractor and guaranteeing availability for

customer is very general and beyond the scope of this dissertation. This dissertation is

limited in terms of scope (the life-cycle stage of the systems under the availability-based

contracts) and the parameters that can be designed in the contract and cost structure it

targets. This dissertation is also looking a single contract between the contractor and

customer and ignores the effect of long series of contracts that can occur under relational

contracting (Erkoyuncu, 2011).

Based on Operation of the Defense Acquisition System Instruction (DoD Instruction

5000.02), there are multiple stages of the life cycle that contracts can be used in: 1) material

solution analysis, 2) technology development, 3) engineering and manufacturing develop-

ment, 4) production and deployment and 5) operations and support. In this dissertation, we

are focusing on operation and support stage of the life cycle with a focus on sustainment

and maintenance activities.

In this dissertation, the contract is defined as a set of requirements with a specific

payment structure for a certain level performance for a specific length of time between

a customer and a contractor (two parties). The availability-contract design problem is

defined as finding the optimum requirement parameters under which the minimum required

availability level can be achieved for the customer while respecting cost constraints. In

practice, the contract can be designed by the customer or by a third-party who works for

the customer under a separate contract.
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Figure 4: Mapping of the availability-based contract as a control loop

We define the contractual relationship within a control theory framework in which the

system and the contractor use a set point defined by customer in a closed-loop control system.

Control theory framework can address the dynamics of contractor and performance in time,

as well as the impact of monitoring performance on the payments. Figure 4 shows that

the contractor’s action will be an input to the supply-chain system including the inventory

of the sub-assemblies in which their availability is the main factor being monitored by

the contract. This outcome will be used to calculate the payment, which will influence

contractor behavior. The contract can regulate the behavior of contractor the same way a

reference point or set points works in a control system.

A general payment model defines the amount and scheduling of payments the cus-

tomer should pay the contractor based on the level of effort or outcome obtained from the

contractor’s effort. In an availability-based contract, the payments are tied to the achieved

availability (interval, operational or point) as the result of the sustainment and maintenance

activities of the contractor.

The contractor’s decision making model assumes that the contractor optimizes their

actions to minimize their costs. Using these two players (the contractor and the customer),

a two-level optimization can be used to find the contract features and contractor behavior

to meet the requirements. One of the important features of availability-based contracts is
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the time-window that the customer measures the availability over. This concept is called

“checkpointing” in some applications and it is the interval in which one measures the

interval availability (i.e., the assessment interval).

In some industrial contexts the goal of the contract designer is to optimize (maximize)

the availability. For example, the DoD (DoD Directive, 5000) requires program managers

(PMs) to “develop and implement performance-based product support strategies that opti-

mize total system availability while minimizing cost and logistics footprint. Sustainment

strategies shall include the best use of public and private sector capabilities through govern-

ment/industry partnering initiatives, in accordance with statutory requirements.” However,

because the customer cannot know the level of effort of the contract and the contractor

cannot be certain about the outcome of their decisions or the customer’s level of usage

within the time scope of the contract (e.g., asymmetrical information and incentives) it is

not a trivial task to enforce and monitor the best effort of the contractor with a contract

(Hooper, 2008). For example, when an insured party obtains financial coverage against

a bad event from an insurer, they are likely to be less careful in trying to avoid the bad

outcome against which they are insured.

Objective Statement

Determine the best outcome-based contract that achieves the availability required

by the customer and concurrently minimizes the cost and risk for the customer and

maximizes the revenue for the contractor.

The objective addressed in this dissertation can be expressed by the following opti-

mization problem. The contractor is trying to minimize their total cost while guaranteeing

a required level of availability over the contract period (assuming 𝑁𝑎 equal assessment

periods over the fixed length contract).

Customer Goal:

max
𝑁𝑎

􏾜
𝑘=1
𝑦∗𝑘 (8)
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Customer budget requirement:

𝑁𝑎

􏾜
𝑘=1

Payment 􏿵𝑦∗ 􏿵 𝑘𝑇
𝑁𝑎
􏿸􏿸 − deduction 􏿵𝑦∗ 􏿵 𝑘𝑇

𝑁𝑎
􏿸􏿸

(1 + 𝑑)𝑘𝑇/𝑁𝑎
< Budget 􏿶

𝑘𝑇
𝑁𝑎
􏿹 , 𝑘 = 1, …, 𝑁𝑎 (9)

where, 𝑦∗(.) is the optimum performance, e.g., availability, 𝑑 is the effective discount/interest

rate per period, 𝑇 is the contract length in periods and 𝑁𝑎 is the number of assessments

during the contract time (𝑇). Meanwhile, the customer tries to maximize their profit under

the contract requirements (limited by the dynamics of the system),

max
𝑁𝑎

􏾜
𝑘=1

Payment 􏿵𝑦∗ 􏿵 𝑘𝑇
𝑁𝑎
􏿸􏿸 − deduction 􏿵𝑦∗ 􏿵 𝑘𝑇

𝑁𝑎
􏿸􏿸 − cost(𝑘)

(1 + 𝑑)𝑘𝑇/𝑁𝑎
(10)

This is constrained by the following financial, performance (availability) and functionality

requirements over the whole contract period at all assessment points (𝑘 = 1,… ,𝑁𝑎).

Financial Requirement:

deductions(𝑘) + costs(𝑘) < 𝜂payments(𝑘), 𝑘 = 1,… ,𝑁𝑎, (11)

Where 𝜂 is the bankruptcy prohibition coefficient to ensure the bankruptcy avoidance for

the contractor over the total length of the contract.

Availability Requirement:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

𝑦(𝑘) > 𝑅1(𝑘)

𝑝{(𝑦(𝑘) > 𝑅1(𝑘))} > 𝑟2(𝑘), 𝑘 = 1,… ,𝑁𝑎

(12)

where 𝑅1 is a point availability requirement as defined in Section 1.3.1 and 𝑅2 is chance-

constraint or probabilistic availability requirements (refer to Section 1.3.5).

We model the dynamic of the inventory using dynamic system formalism given by
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functionality constraints that are derived by dynamical system representation:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

𝑥(𝑡 + 1) = 𝑓(𝑥(𝑡), 𝑢(𝑡)) + 𝑤1(𝑡)

𝑦(𝑡) = ℎ(𝑥(𝑡), 𝑢(𝑡)) + 𝑤2(𝑡),

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

𝑡 = 1,… , 𝑇, (13)

in which 𝑥(𝑡) is the states of the system, 𝑦(𝑡) represents the performance measure, 𝑤1(𝑡)

and 𝑤2(𝑡) are models inputs. 𝑓(.) and 𝑔(.) are functions. It should be noted that we assume

the 𝑦(𝑡) is completely measurable by customer.

In order to solve the availability-contract design problem posed above, it is necessary

to develop a comprehensive and detailed model of information and material flow. The

suggested algorithms should provide flexible and robust supply and logistics policies for

use in an uncertain environment. The output of such a design activity must be in the

form of simple policies, and the performance evaluation should be easily assessed to

support the performance of the suggested algorithm or solution. The common parameters

in these models address inventory policy (e.g., threshold, lead time, etc.) of safety stock as

well as shared inventories and the structure of the supply-chain network. Optimizing the

supply-chain network and inventory in a joint scheme is much more beneficial than solving

the problems separately. A similar approach should be applied to bring all optimization

elements into one platform.

The design process of an availability-based contract will use contract terms, goals

and requirements as inputs that define the satisficing parameters for supply chain, inventory

management and design parameters of an engineering systemwith respect to physical-based

and budget-based constraints (Figure 5).

The fact that many of parameters might have unknown distributions also needs to be

addressed. For defining availability requirements based on the statistics of a fleet of systems,

it is not clear what form/distribution of availability is best to guarantee the effectiveness and

proper interpretation of the requirement. The role of different requirements distributions

is unexplored at this time. There have been many attempts to use algebraic notation to
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Figure 5: Design of availability-based contracts

formulate the requirement and contract-based relationship, e.g., (Benvenuti et al., 2008).

Approaches to solving this problem should be capable of addressing statistical

constraints like the dependence between different variables, there will be no need for

over-simplification of the problem; moreover, it should have the flexibility to update the

model parameters using Bayesian statistics in response to information added through the

life cycle. The difference between assuming fixed end of support contracts and contracts

with an uncertain end of support is significant and has been the topic of much of the actuary

and medical health-care literature. However, in the maintenance scheduling literature, e.g.,

(Kim & Park, 2008), end of support is assumed to be fixed despite the common practice of

system life extension. The trade-off between cost and availability will be controllable at

each point of the life cycle as it is expected to be more expensive to maintain a high level

of availability as the system ages. Imperfect maintenance is another inevitable factor that

increases cost and uncertainty through the contract term.

2.1 Solution Requirements

Any solution provided should be able to address requirements break-down to lower-levels

or sub-contractors. The break down will be used by sub-system designers and they need

to benefit from the freedom provided by availability-based contracts otherwise the whole

purpose of contract optimization is irrelevant. Solutions are also required to provide a
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concise policy for defining logistics policies directly from the availability-based contract

requirements. The solution must also be capable of being broken down into contract

terms for sub-contractors in terms of bonuses, rewards and penalties. At some point, the

degrees of freedom embedded in the availability-based contract will be decomposed and

designing a contract should define the best way to do this. Any solution for designing such

a contract should consider the uncertainty in the level of incentives for the contractors; and

the progressive information gathering that is being done by both customer and contractor.

2.2 Research Tasks

The following tasks have been performed in this dissertation:

1. Gap analysis of availability-based contract design

Extensive litterateur review was done on publication spaces relevant to performance-based

logistics and availability-based contracting (details in Appendix B). The requirement and

gap analysis was done based on contract theory, defense acquisition and maintenance cost

modeling literatures. Then the key findings of this step was used in reviewing modeling,

simulation and optimization of reliability and supply chain systems to develop a frame-

work that defines requirements for future solutions as well as elements of the proposed

methodology in this dissertation.

2. Model development

Modeling the maintenance process of the system along with the inventory is the base of any

further analysis and exploration. The availability and optimal decision making of contractor

are taken as key factors of the overall model. A hybrid model that accommodates both

the discrete (inventory operation, performance assessment) and continuous (degradation,

reliability) nature of the problem has been developed. A discrete-event model captures

the maintenance events and reliability features of the underlying system. However, the

availability measurement along with the mathematical methods to guarantee optimality of
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the method are defined in the continuous space.

The importance of time interval of assessment identified in this stage as well as

inter-dependencies in sub-assemblies’ failure rate that will cause the number of failures to

not be independent in time and therefore a special attention was paid to address this aspect

in further steps.

3. Performance measurement design

The goal of availability contracts is to guarantee a specified level of preparedness within a

cost constraint. How a contractor is rewarded or penalized is highly dependent on these

performance measures. Thus defining the availability requirements is a very important

decision customer needs to make. The measurement of these metrics can also be a subject

of challenge, due to uncertainties and limited access to measure key performance factors.

Moreover, the relationship between these performance metrics and contractor cost model

in availability-based contracts is not trivial. Thus, the variety of availability related metrics

from variety of real-world contracts collected, classified and compared.

4. Contractor action modeling with an affine controller and convex optimization

The behavior and decision making of contractors modelled within a dynamic programing

aimed at cost optimization. An affine controller that represents usage of historical data to

make a new decision was used to represent this decision-making. The affine controller

also allows the use of a convex optimization scheme and guarantees global optimality in

this level.
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5. Developing the payment model

A payment model that simulates how different payment structures can be related to the

different performance measurement and structure has been developed based on Availability

Payments in Public Private Partnership.

6. Optimization of assessment time window for dynamical performance measures

This dissertation proposes the concept of an optimal time-assessment window for which

meeting the minimum requirements of a dynamic performance metric will translate into the

cost effective and optimum preparedness of the overall project. To find the time-assessment

window size, a Monte Carlo analysis was performed on the system and contractor model,

and a trade-off analysis of cost and risk is presented to find the optimum time window size.

7. Analysis of the role of uncertainty

The uncertainty of failure rate is different in different systems based on their age or usage

rate. Moreover, the impact of uncertainties on contractor’s pro-active/dynamic decision

making throughout the contract time should be considered. To consider these risks from the

viewpoint of customer throughout the contract mean-var analysis used in a multi-objective

decision making to isolate contracts with lowest cost and cost-risk.
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Chapter 3: QuantitativeMethods for theDesign ofAvailability-Based

Contracts: A Review of Methods and Gaps

3.1 Designing Availability-Based Contracts

The relevant literature was classified into several specific groups and the following inclusion

and exclusion criteria were used: economic models, operational research models, life-cycle

cost models, reliability and maintenance oriented design models, supply chain and logistics

surveys and reports. Based on the approach described in the Appendix, the literature is

classified. We define contract design as the process of defining requirements and finding

the optimum incentives and penalties to impose within the contract. This can include the

design of metrics and methods for measuring the desired performance of the contract.

Traditionally, a contract’s price and requirements are derived from a life-cycle cost

estimation(Bakhshi et al., 2015). Most of these estimations are based on the historical data

associated with similar projects in the past, assigning cost to each unit of simulation (Datta

& Roy, 2010). Using a variety of information from the past (i.e., reliability, cost, lead-time,

delay, etc.), contractors choose the best or optimum parameters for their operation. In

this paper, we call parameters pertaining to the sustainment of a system design policy

parameters. Some of these requirements may be redefined as the project progresses

(Defense Acquisition University Press, 2005). The design policy parameters change

throughout the life cycle. To find the optimum parameter space for sustainment design to

meet the requirements, many simulations over the life cycle of the system are required.

Each unique design parameter value requires a model to be assigned to feasible points in
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the outcome space (reachability analysis).

In this chapter, we subdivide availability-contract design into its principal elements

so that the goals of each portion of the design can be clarified. The following subsections

discuss the key elements of this problem.

3.1.1 Reliability Modeling and Condition Monitoring

One of the goals of performance-based contracts is to encourage manufacturers and main-

tenance (O&M) contractors to improve reliability, aside from focusing on replacement and

supply-chain logistics alone. Evidence-based studies have investigated the effectiveness

of PBLs on product reliability in the aerospace and electronics industry (Guajardo et al.,

2012).

From the view point of the contractor, significant research has been performed on

optimizing reliability in the product design stage toward a limited (e.g., for warranty

contracts) or unlimited time horizon (Frangopol & Maute, 2003). There is also significant

work on multi-objective optimization of reliability and cost along with other performance

objectives (Juang et al., 2008; Lapa et al., 2006; Volovoi, 2004b).

From the view point of both the contractor and the customer, maintenance models

predict the life-cycle cost associated with different sustainment policies and can optimize

the efforts required to maintain a specific level of workload. Bowman and Schmee (2001)

outlined the architecture of a simulation tool for pricing maintenance contracts for a fleet

of systems using historical data. In the absence of historical data, there are also methods

proposed that do not require quantitative records. These methods are well suited to the type

of uncertainties in design for long-term development projects as mentioned in (Zietlow,

2007), as well as new product design.

Condition monitoring has been a typical practice for improving availability and re-

ducing maintenance cost. Nilsson and Bertling (2007) have demonstrated the effectiveness

of condition monitoring systems in maintenance management of offshore wind farms.
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Prognostics and health management (PHM) also can help contractors to meet their avail-

ability requirements as demonstrated in (Feldman et al., 2009) and (Lei & Sandborn, 2017).

Garza et al. (2008) have introduced the importance of performance sampling procedures for

monitoring the contractor’s performance under a performance-based maintenance contract

specifically from the customer’s point of view. Complexities related to contracts that

address heterogeneous fleet availability is another venue of research that has been widely

ignored. Block et al. (2014) developed a parametric method to measure the fleet-availability

of repairable units.

Another factor in contract-oriented design identified in the reliability literature is the

stage of life of the platform and the contract time-span. The requirements and conditions

for a newly acquired platform are different from the requirements at the end-of-support

or at the phase-out stage. Dandotiya et al. (2008) study optimal maintenance decision

making for a fleet of airplanes with a variety of ages. Block et al. (2010) optimize the repair

scheduling during phase-out of an aircraft fleet by considering the platform end-of-life

characteristics.

Human factor reliability and organizational dynamics are also of great importance

in the environment of contract-based design. Mendoza and Devlin (2005) demonstrate

the importance of organizational design, in maintaining the desired performance in the

environment of contract-based design. We will address these factors in the context of the

role of incentives in decision-making, in the next section.

3.1.2 Role of Incentives and Contract Theory

Contract theory is a well-developed and well-reviewed subject in the fields of law and

economics. In the context of service and maintenance contracts, models incorporate

incentives (e.g., payments, penalties, rewards) and uncertainties (outcomes of actions,

risk taking behavior), and try to identify decisions that lead to optimum outcomes, given

asymmetric information on each party in a contract. For example, Jin et al. (2015) used a
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principal-agent model to model the contract along with jointly optimizing the maintenance,

the spares inventory, and the repair capacity under the game-theoretical framework. They

concluded that longer service contracts are preferred by suppliers because they allow the

supplier to save on the annualized inventory investment.

The contract terms and requirements can greatly impact the contractor’s decisions and

potentially reduce the system life-cycle cost and improve the system reliability. (Guajardo

et al., 2012) used an evidence-based method to demonstrate the effectiveness of incentives

in performance-based contracting on product reliability. Hawker and McMillan (2015)

explored the impact of maintenance contract incentives on the energy production of wind

farms.

The effects of a contractor’s decisions on the life-cycle cost and availability will not

be fully known to the customer at the time of acquisition, or even by the end of the contract

time period. This effect is generally categorized as a “moral hazard” problem.1 In an effort

to review the limits of effectiveness of performance-based contracting, (Kobren, 2009)

noted that this class of contract does not simply shift all the risk to contractors, but also

it can add risks (of non-completion/fulfillment and other risks) to the customer side. For

example, contractors may choose not to bid for contracts especially in high-risk research

and development projects.

The operational research literature contains many papers considering different ab-

stract models and cases in different industries where the government is the sole customer

(e.g., healthcare and defense) (Tsay, 1999; Hockley et al., 2011; Kim et al., 2007). Con-

tractors can be classified into two different categories based on how they respond to the

risk and incentives: risk-taker and risk-averse. In the context of sustainment contracts,

numerous works acknowledge the efficiency of performance-based design concepts without

addressing the interaction between contractor and sub-contractors, or considering physical

limitations of the system (Scherer, 1964). The development in this field considers a variety

1 “Moral hazard” means that the party that takes the risk will not be responsible for the possible costs and

the other party may or may not have information about it.
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of contractual mechanism, contractors and customer configurations. For example (Zhu

& Fung, 2012) propose modular designs for the interaction between fourth-party and

third-party logistics providers in performance-based logistics contracts.

The role of incentives has also been studied in the game theory applications literature.

(Ashgarizadeh&Murthy, 2000) introduced amodel for the interaction between the customer

and the contractor in service contracts. Without considering the effect of incentives on

designer decision making, one might not realize the effect of different contract design

parameters specially the effect of penalties and awards on the contractor.

In summary, there are many works that use abstract contract models that capture a

variety of contractual configurations but there has been no effort to quantitatively integrate

the economic and engineering models to demonstrate the impact of these contracts on the

designers, the customer and the sustainment process.

3.1.3 Supply-Chain Management

Supply-chain management is one of the application spaces that performance-based contracts

are impacting most significantly. Contracting in the supply-chain space in an effort to

promote efficiency has been studied extensively; however, theoretical work in this field has

not found its way into practice (Lafontaine & Slade, 2002). In a meticulous and extensive

review of quantitative supply-chain contract design, Tsay (1999) provides a literature

review of supply contracts from a modeling perspective and finds that it is not clear what

constitutes a contract in the supply-chain contract literature. Most of the works in this

space define performance-based logistics as an efficient supply chain with the flexibility

to mitigate disruptions and to evolve as necessary (Glas et al., 2013). Elements of the

desired solution are being addressed with high-level information management architecture,

intelligent hardware allocation/distribution and extensive data collection and monitoring.

There are qualitative works and surveys that address risk management and modeling

of PBL applications (Arora et al., 2010); however, there are few works that address a
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theoretical grounding or provide empirical studies of this class of contract. In most cases,

the life cycle of contracts in these works are short and do not represent the situation of

long-term sustainment contracts. The long-term aspect of performance-based contracting

is so significant that long-term relationships between the contractor and customers have

also been studied as a form of networks of relationships rather than a market of buyers and

sellers (Jin & Wu, 2002).

Among numerous works that consider sharing the benefits of efficiency, (Cachon &

Lariviere, 2005) show that when forecasts are not credible enough, supply-chain perfor-

mance falls short of what is expected. Modeling and prediction for variation in demand is

a key feature that is the focus of the inventory optimization research. To address uncertain-

ties in long-term contracts, simulation is proposed to account for the stochastic nature of

demand and other uncertainties in the environment, such as change of regulations (Komoto

et al., 2011). For a concise review of modeling supply-chain contracts see (Tsay, 1999).

3.1.4 Integrated Design and Joint Optimization

For an enterprise-level performance measure like availability, an integrated end-to-end

model that includes maintenance, logistics, supply chain and financial cash flow is needed.

The benefits of such models have been addressed in recent literature (Godoy et al., 2014;

Grossmann, 2012). In designing availability-based contracts, optimizing inventory, supply

chain, maintenance, and system design parameters in an integrated scheme gives the de-

signer a degree of freedom that allows true utilization of performance-based contracting.

Studying jointly optimal subsystems or integrating different optimization schemes is dif-

ferent from serialization of a set of problems. Similarly, the design for the post-production

purchase period is more than just designing a new product and then optimizing the service

separately (Baines et al., 2009; Johnstone et al., 2008). The product-service-systems (PSS)

literature deals with dynamic interdependencies of product and service in an integrated

scheme. The solution needs to be an effective combination of technical and economic
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approaches. The first step is to combine the inventory, maintenance, and operational deci-

sions together and form a unified model that provides visibility into the effect of different

parameters (Arora et al., 2010; Rodriguez & Vecchietti, 2010). Therefore, the importance

of careful integration of logistics, maintenance and supply chain in the design phase is

essential.

3.1.5 Performance Management and Analysis

The effectiveness of performance-based contracts has been debated (U.S. Government

Accountability Office, 2008). Surveys of performance-based contracts show that customers

and contractors face serious challenges in defining the terms and conditions of the con-

tract, including the contract’s scope, responsibilities, the metrics to be measured, how to

measure them, and the translation of measurement to rewards (Gupta et al., 2011). There

is uncertainty in what performance analysis metrics need to be addressed. Possible metrics

include the time window of the performance assessment, the size of the fleet that is on

demand, and metrics to monitor and the weight of each parameter in building an overall

availability measure.

It is clear that conventional life-cycle cost methods are failing to address multi-

disciplinary product-service-systems (Settanni et al., 2017). Moreover, in the case of

availability-based contracts from the customer’s view point, availability is a measurable

index for the effectiveness of the service provided by the system. From the designer’s view

point, availability, along with technical performance, cost, and process efficiency are the

final goals (outputs) of the logistic and engineering design process. The asymmetry of

available information affects the decisions of contractors, while the customer might not

be able to evaluate the decision without having a reverse-looking (i.e., historical) model

(Datta & Roy, 2010).

Overall performance evaluation will come from the performance assessment of

sub-systems. Relating the performance of different subsystems to the performance of the
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overall system is also a critical and non-trivial task (Sherbrooke, 1971). One of the reasons

that availability and reliability are factors of interest is due to the potential for calculating

these performance metrics at a system level solely based on sub-system level performances.

The challenge of evaluating inventory management performance is as old as inventory

modeling and optimization (Feeney & Sherbrooke, 1966; Sherbrooke, 2006). The time

intervals over which performance is measured needs to be chosen very carefully (Ferreira

et al., 2009). Cost modeling of availability type contracts will be strongly tied to these

performance metrics rather than activities and material flow (Datta & Roy, 2010; Lai et al.,

2002).

Performance analysis and metrics of evaluation are the most important factors on the

customer side. If requirements are inaccurately defined, performance-based contracts can-

not provide the desired outcomes, and both parties will suffer the consequences. Defining

performance metrics and evaluating them is embedded in the definition of the requirements

and can be viewed as a legal document in the event of disagreements (Goebel et al., 2000).

3.2 Analytics of Methods

Although the pricing of availability-based contracts has been mentioned in a few reports,

e.g., (Whitehead & Jagdale, 2008), these reports provide no details clarifying their approach

to capturing the complexities and differences of such contracts compared to conventional

contracts. As of now, pricing performance-based contracts is largely absent from the

academic literature. In this section, we focus on existing methods of modeling applicable

to the availability-based contract design problem (these are summarized in the Appendix).

More detailed descriptions of these methods can be found in the associated references;

thus, only brief overviews are provided here. The bottlenecks associated with using each

of these approaches in availability-based contract design are clarified, and the challenges

faced by all of these methodologies are summarized in the discussion that follows.
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3.2.1 Optimization

The goal of an availability-based contract is to guarantee a specific availability level at all

times when the operation of the system is required. This can be achieved by maximizing

the availability, however, meeting a minimum availability requirement can also satisfy

this goal — the costs and risks associated with these two approaches can be very different.

Availability requirements are usually used as a constraint within an optimization problem

(Alfredsson, 1997; Dekker, 1996; Hokstad et al., 2005; Immonen & Niemelä, 2008), where

the decision parameters can be reliability, preventive maintenance scheduling, system

configuration, or supply-chain costs. In most of the existing optimization works, availability

is not actually the objective or the control variable. Although many authors address

availability, they are indirectly treating it via other parameters related to reliability and

maintainability: reliability (McCall, 1965), maintainability (Canfield, 1986) and the spare

part supply chain, including: inventory (Alfredsson, 1997), logistics and administrative,

etc. (Labadi et al., 2007). Most of the work in this group does not address the contractual

requirements over the total operational time.

Trade-off analysis is an essential part of designing such contracts; more maintenance

actions will potentially increase reliability at the expense of more downtime. For example,

the effect of different inventory policies on the short term and long term costs are different.

There are multi-objective schemes that focus on concurrently reducing the costs associated

with supporting the system and increasing availability (Taboada et al., 2008).

Overall, high-availability systems have interested researchers from the fields of

operational research, management science, computer networks, and reliability engineering

(Immonen &Niemelä, 2008; Janakiraman et al., 2004; Sherif & Smith, 2006). The majority

of the existing studies represent the availability using analytical expressions (Albright &

Soni, 1988; Dekker & Scarf, 1998). There is another group of approaches that look at

availability as a state for the whole system (Sato & Trivedi, 2007). This simplification

allows the utilization of elegant methods to prove optimality; examples include inventory
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optimization using s-S policy (Feeney & Sherbrooke, 1966; Wei et al., 2011).

The existing work proves the feasibility of availability optimization for simplified

types of systems; however, when availability needs to be evaluated for large populations

of complex systems over the total support time, no single method suffices. At this point,

there are a only few examples of existing works associated with maximizing a cost-benefit

function that combines the accumulated life-cycle costs associated with a specific system’s

management (e.g., logistics, maintenance, reliability, etc.) and the availability achieved

(Canfield, 1986; Kajal et al., 2013).

3.2.2 System Dynamics

System dynamics models look at the relationship between different factors, for example

efficiency, cost and higher-level factors; and drive the dynamics of results by simulating

ordinary differential equations between these factors (Angerhofer & Angelides, 2000).

Such a meta-level point of view can model the dynamics of the system as well as expert

knowledge about the important factors of the model to the study overall performance of

the contractor or the system under contract. Classic dynamics of the system addresses

system performance over time. For example, degradation of components, evolution of

symptoms related to deterioration mechanisms, and the effect of information sharing on

maintenance quality, and generally the relation between different causes of performance

change. System dynamics uses a network of differential equations and forms decision

modeling approaches that are widely used in logistics and supply chain analysis applications

(Hussain et al., 2012) as well as in modeling different aspects of public-private partnerships

(Angerhofer & Angelides, 2000). In the project management literature, system dynamics

is an appropriate tool for modeling the relationship between different decision variables

and essential outcomes of interest for the contractor and customers.

System dynamics is generally used in a top-down fashion to simplify the relationships

between different elements within a system and time-varying or non-linear parameters, i.e.,
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system dynamics solutions usually don’t have a view of individual system components.

The source of equations that define parameters comes from experts, surveys, and historical

data, and may be inaccurate for new projects that lack historical precedent/data. As such,

this approach is also not generally flexible for analysis of what-if-cases.

3.2.3 Markov Chains

Markov chains have been extensively used to analyze different aspects of reliability, depend-

ability, risk analysis and in general probabilistic modeling for operation and management.

Markov models are the standard framework for prediction of steady-state performance

(Caro et al., 2010). They are rooted in modeling different states of operation (e.g., failures,

and repair) and ignore the statistical dependency that exists in each component’s failure

data and its specific maintenance history. Neuman and Bonhomme (1974) address the

maintenance policies under which Markov chain models can provide an accurate estimate

of reality. Using Markovian methods to model inventory management is well developed in

the literature (Albright & Soni, 1988). Markov models and decision trees in general lack

the flexibility required for modeling the reality of maintenance and reliability management.

Markov chain modeling forces the models states that are continuous as discrete. Examples

of such states include maintenance quality, severity of a failure, etc. More discrete states

have to be used if one decides to model such states in more detail. At the same time, the

uncertainty cannot be well defined, as each component of a system can only be in one state

at a time, since each state must be exclusive from other states. Additionally, due to their

state-based structure, Markov chains do not provide a clear prediction of the next event

time given the time the component has been in a neighbor state (Simpson et al., 2009).

In Markov chain based studies in the reliability and maintenance literature, there is

minimal attention paid to the variability and the stochastic nature of each parameter (or lack

of knowledge of the distributional properties of parameters) and changes in uncertainty as

time progresses. To address this gap, Bayesian extensions of Markov decision processes
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suitable for including epistemic uncertainty are introduced as in (Memarzadeh et al., 2014)

Markov decision processes in general do not allow the model to properly include the

knowledge available about the system, which may result in non-optimal strategies. Markov

chains also will not provide a full picture of system behavior under certain strategies. Also

flexibility of decision making and decision parameters during the contract term, in the

performance-based contracts, is mostly neglected by Markov chain approaches.

3.2.4 Event-Based Simulations

All the approaches mentioned so far assume that the dynamics of the system are known,

(e.g., in a closed-form) and they analyze the fleet of systems as a whole. The system can also

be modeled using scenario-based methods that simulate each item of the system separately

through different event-paths/sample paths (Fu, 1994). Simulation-based methods consider

components with differing attributes that move from one event to another in time while

including modeling parameters of each component, such as age, maintenance history,

and usage profile. Many recent analyses use simulation for optimization of different

aspects of maintenance scheduling (Wijk et al., 2011). Simulation-based approaches are

especially useful and common when the model grows in size or the integration of multiple

disciplines is required e.g. (Keskin et al., 2010). Monte Carlo sampling is usually used

for sampling from probability distributions of each parameter, as long as one can estimate

reasonable distributions (Marseguerra & Zio, 2000). Karnon (2003) compares discrete-

event simulation and a Markovian process for assessing the effectiveness of health care

policies; due to the importance of each instance of the system, discrete-event simulators

were preferred. Discrete-event simulation tends to offer better representational support for

organizational decision-making processes (Bodner et al., 2009).

Discrete-event simulation (DES) tests different scenarios, along with various behav-

iors of contractors (Angerhofer & Angelides, 2000). Bowman and Schmee (2001) offer a

discrete-event simulation model utilizing historical data of cost and failure analysis results
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to evaluate contract price. Ferguson and Sodhi (2011) addresses the role of simulation

in performance-based contract design by looking at the PBL contract as a news-vendor

optimization problem and advises on the best inventory policies.

Petri nets are a formal discrete-event simulation approach developed for capturing

concurrency and synchronization properties. Formal models like Petri models are however

more constrained during model development but have a number of advantages over simply

writing simulation codes or discrete-event simulators (Volovoi, 2004b). Petri nets can be

used to develop models that can easily be verified for deadlocks, conflict of conditions,

catastrophic states, and logical errors. Formal methods offer an articulated representation

of a system based on mathematical formalism, in which mathematics helps to prove

consistency of the specification and requirements while addressing the reliability parameters

such as aging of components (Volovoi, 2004a). Petri nets are also used to model multi-

party contracts to look for accordance (agreement with no conflict) of the public and

private view of contractors, e.g., Aalst et al. (2010), that will guarantee the correct overall

implementation of the contract. Meta-heuristic optimizations like genetic algorithms and

particle swarm optimization can also be used in combination of a discrete-event simulation

as well as being included in the simulation-based category (Kajal et al., 2013).

Lastly, when it comes to cost modeling, event-based simulation is the powerful and

flexible cost modeling method. . As Cai and Tyagi (2014) note, most cost models use a

combination of historical data or parametric models that are only valid for the conditions

under which the data was collected. However, for novel problems such as multi-generation

products with complex design phases a new simulation based paradigm is needed. Due

to the novelty of performance-based contracts and their impact on performance data, the

capabilities of simulation-based methods are needed(Bakhshi & Sandborn, 2017).
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3.3 State-of-the-Art in Contract-Based System Design

Traditionally, the contract and product parameters are defined separately. In recent years,

driven by a need for enhancing system reliability, maintainability, and logistics support,

attempts to include contract and engineering (performance) parameters simultaneously have

been articulated, but have not been done. There are a significant number of papers with a

wide array of measures to determine performance, taking both objective and subjective

views.

In this Section, the relevant approaches for designing contracts and products are

reviewed and the need for a concurrent contract-engineering design is introduced as a key

solution to obtain a more realistic overall PSS design.

The correlation between contracts and the PSS design process can be classified into

three categories:

1. Engineering/logistics design using fixed contract parameters

In this category, it is assumed that the contract parameters are given as a set of requirements,

and they are treated as fixed input parameters in the PSS design (i.e., they are constraints

on the PSS design). Hence, the PSS parameters are designed to maximize the operating

performance and functionality that satisfies the contract requirements.

Examples of product design processes (hardware and/or software) that include one

or more contract parameters, e.g., cost constraints, length of support requirements, etc.,

are very common. The analysis in (Lei & Sandborn, 2017) is an example of this category

of work where PPA requirements (energy price and the annual delivery target are used

to perform maintenance planning design for the wind farm). Other examples include

(Nowicki et al., 2008) who developed a spare previsioning system to respond to a given

performance-based contract from the viewpoint of the contractor. In (Nowicki et al., 2008)

the contractor’s objective is to maximize profit and the scope of its activity by optimizing

the inventory level (the inventory level is considered to be part of the logistics design).
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This scheme also includes sensitivity analysis that addresses the reliability of the product.

Less common are PSS design processes that use actual availability requirements.

(Jazouli et al., 2014) estimated the required logistics, design, and operation parameters

for a specific availability requirement. In this work the developed model connects the

requirements on each operational decision regarding repair, replacement and inventory

lead-time so that the impact of contract terms can be seen on the logistics decisions. Jin

and Wang (2011) studied the impact of reliability and usage uncertainty on planning PBCs

incorporating equipment availability, mean-time-to-failure, and mean-time-to-repair.

2. Contract design that uses fixed product parameters

In this category, the contract parameters are optimized for a given PSS. For example, the

following contract parameters may be determined: the payment schedules (amount and

timing) (Sharma et al., 2010), profit sharing (Hamidi et al., 2014), the length of contract

(Deng et al., 2015), the selected contract mechanism (Hong et al., 2016; Nowicki et al.,

2008), supply-chain parameters (inventory lead time,2 back-order penalties, etc.) (Zhu &

Fung, 2012), and warranty3 design could be determined (Arora et al., 2010).

Examples of work in this category include Arora et al. (2010) who studied an inte-

grated inventory and logistics model to minimize the cost of the total cost of supply-chain

support (Nowicki et al., 2008) developed a model that designs performance-based contracts

with different lengths and contract fees. In this work the contract design is based on a given

product with a fixed initial reliability. They explore the opportunity for further investment

in improvements in the product’s reliability under the proposed PBC to demonstrate a

win-win for the customer and contractor through the optimal choice of contact length.

2The inventory lead time (ILT) was considered to be a logistics parameter determined from an availability

requirement. It is also possible that ILT is a contract parameter that is flowed down to sub-contractors.
3Although we include warranty design in the list of possible contract design activities that could be

driven by the product parameters, for most products that have warranties the type of warranty and its length

are determined by marketing, and are not based on the product’s predicted reliability. More commonly,

the warranty type and length (which are a contract) are passed to the engineering design to determine the

appropriate warranty reserve fund.
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Hong et al. (2016) employed mechanism design theory4 to design an optimized main-

tenance service contract for gas turbines in which uncertainties associated with customer

actions, engine performance, and maintenance costs during the contract execution phase

were accounted for. They assumed that the gas turbine design was given and determined

the contract that maximizes the expected profit and provides a win-win incentive for the

customer and contractor.

Wang (2010) developed and discussed three different contract options for mainte-

nance service contracts between a customer and a contractor for a given system design.

The contract options were: 1) a full contract that covers both inspections and inspection

repairs, and failure repairs, 2) a partial contract that covers inspections and inspection

repairs, but not the failure repairs, and 3) a partial contract that covers failure repairs only.

For this category, there are several challenges. The existing models require a better

understanding of the impact of incentive structures on the system design and usage. Zhu

and Fung (2012) proposed a model based on the service delivery and customer satisfaction

level. They studied the design of optimal contracts that balances the incentives and risks to

the two sides of a contract, so that both can achieve maximum profits. They assume that

incentive payments to the contractor are dependent on the contractor’s performance. Further

research is also required on the risk attitude of contractors: risk-aggressive, risk-averse, or

prudent. In addition, a more general and comprehensive model would include flexibility for

the service provider to change their level of effort during the project to increase the chances

of meeting their contractual goals. Moreover, an important gap in contract theory models

is the assumption of a static risk allocation for the entire length of a project.5 Zhao and Yin

(2011) propose a theoretical model for a dynamic risk allocation in constructing a project.

However, a successful dynamic risk allocation needs a comprehensive understanding of

both engineering and contractual parameters and their variations throughout a project. Such

4Mechanism design theory is an economic theory that seeks to determine when a particular strategy or

contract mechanism will work efficiently.
5 This problem is also reflected in choosing a single value for the cost of money, i.e., the cost of money is

not constant over time (nor the same for all projects within an organization).
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a dynamic risk allocation is not addressed in any theoretical models and is the subject of

the next category.

3. Concurrent design of the contract and the PSS

Finally, the concurrent design of both the contract and the PSS would be the ideal solu-

tion (for both the customer and contractor) for real applications. However, there are no

models that accurately assess and design CfA, dealing with all the risks and uncertainties

involved (Rodrigues et al., 2015). One important proposed solution to fill this gap is to use

engineering inputs and to find the engineering connections to current theoretical contract

models (Hockley et al., 2011). Kashani-Pour et al. (2016) and Alrabghi and Tiwari (2015)

reviewed a wide-range existing analytical models in this space and developed a framework

for the design of availability-based contracts with consideration of engineering design and

incentive structure.

There is an increasing interest in employing PBC concepts to obtain a better mutual

understanding between the supplier and the customer. However, the existing literature

is primarily focused on solving the problem from the contractor point of view and does

not address the role of optimum contract design from the customer’s viewpoint. This is

partially due to the relatively short history of this class of contract (Rodrigues et al., 2015),

a lack of sufficient public data on different design contracts, and ignorance of the dynamic

impact of uncertainties in the existing models.

A few authors discuss the need for concurrent design, e.g., (Nowicki et al., 2008)

even fewer attempt to provide any type of solution to the problem (Hong et al., 2016), and

in cases that claim to address both the customer and contractor, the solutions are primarily

sensitivity analyses that ignore the asymmetry of information or moral hazard problem.6

Another proposed approach (also sensitivity analysis) is to study the impact of engineering

parameters on the construction of contracts (Erkoyuncu et al., 2009). Sols et al. (2008)

6 While there are some major manufacturers who appear to (or claim to) use an integrated approach in

designing a concurrent contract and product parameters, they are unpublished and no details are available.
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studied the formulation of an n-dimensional performance-based reward model for use in

PBC contracts. They developed an n-dimensional metrics structure that represents the

system effectiveness along with its reward model that results in a successful PBC contract.

The type of cost modeling necessary for concurrent engineering and contract design

isn’t the same as for either engineering or contract design alone. Most of the current

CfA decisions are based on expert opinions, estimation, and historical data from previous

designs, which can be unreliable (Knight & Singer, 2014). In addition, such an approach is

less useful when system complexity increases (Ferguson & Sodhi, 2011). Also, a lack of

relevant historical data is a major source of challenge in new projects (Knight & Singer,

2014; Ferguson & Sodhi, 2011).

Based on Kashani-Pour et al. (2016), solutions provided in this category should

be able to address the requirements breakdown (or flow down) to sub-contractors. The

breakdown of requirements for use by sub-system designers shares the freedom provided

by availability-based contracts. Solutions are also required to provide concise algorithms so

that the availability will be tangible and measureable, and so the contractor can implement

and understand the requirements within their sustainment activities. Designing availability-

based contracts should address reliability design of products and operational decisions

based on condition monitoring technologies, the role of incentives and their impact on the

life-cycle of the product, supply chain management of the PSS, and the integrated design

and joint optimization of different performance metrics. These requirements make the use

of concurrent design of PSS and contracts a necessary approach to model the problem for

application in real-world practice.

The key questions that should be answered in this category are: 1) What are the main

elements of an availability-based contract for a PSS? 2) What are the essential attributes

of the concurrent PSS and contract design process? And 3) How are the advantages of

concurrent design of PSS and contracts versus the first two category of design verified?

To summarize the concurrent design of contract and PSS needs to address both the
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contractor and customer and the dynamics created by the contractual term between them

including addressing uncertainties in achieving availability or reliability-related challenges.

Concurrent design considers contract design as a part of integrated system design with

PSS and the contract of main sub-systems with a dynamic relationship that is subject to

stochastic processes such as reliability, supply-chain demand and operational uncertainties.

3.4 Contract Design as a System Design Problem

We approach contract design as a system design problem where the process of designing

contractual terms that address performance metrics, the payment model, and performance

assessment are design parameters and a multidisciplinary life-cycle simulation of design

impacts needs to be integrated into the engineering design process. The significant challenge

of contract design in practice is on the customer side.

In the case of availability-based contracts, the TES and engineering designs should

determine the contract requirements and the contract length and price in the acquisition

and procurement stage, so that it protects the interests of the customer throughout the life

cycle (i.e., it does not overpay the contractor, but also minimizes the risk that the system

will become unsupported). Also, the solutions provided should be able to address the

requirements breakdown (or flow down) to sub-contractors. The breakdown of require-

ments for use by sub-system designers shares the freedom provided by availability-based

contracts. Solutions are also required to provide concise algorithms so that the availability

will be tangible and measureable. Hence, the contractor can implement and understand the

requirements within their sustainment activities and product life-cycle management.

3.5 Gaps

In order to solve the availability-contract design problem, it is necessary to develop a

comprehensive and detailed model that addresses interdependencies, uncertainties as well

as the role of contractor incentives. The output of the design activity must be in the form
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of straightforward requirements. Figure 6 shows the envisioned design process. The

design process iterates, mapping from inputs: contract terms, goals and requirements, to

the outputs: satisficing parameters of an engineered system. It starts with the customer

deciding on the mechanism of the contract and the best contract-design parameters (e.g.,

incentive model, contract length, performance objective function). Then the customer

needs to model the contractor’s maintenance, reliability and supply chain decision making

with respect to optimizing the contractor’s objective function. This model must consider

the uncertainty in the usage and historical data. Since contractor optimization does not

address the life cycle of the system outside of the contract, the cost and availability of the

system resulting from their decisions needs to be also assessed for its long-term impact

on the life-cycle cost of the system. The result will be used by customer to adjust the

contractual parameters (during system design iterations) in order to achieve their long-term

goals for the system. The constraints on the optimization in each step in the process of

designing the contract include both physical-based (technology, geometry, materials, etc.)

and budget-based.

The significant challenge of contract design in practice is on the customer side. In the

case of availability-based contracts, the design should determine the contract requirements,

length and price in the acquisition and procurement stage so that it protects the interests of

the customer throughout the life cycle (i.e., so it does not overpay the contractor, but also

minimizes that risk that the system will become unsupported). Also, solutions provided

should be able to address the requirements breakdown (or flow down) to sub-contractors.

The breakdown of requirements for use by sub-system designers shares the freedom

provided by availability-based contracts. Solutions are also required to provide concise

algorithms so that the outcome will be tangible and measurable, and so the contractor can

implement and understand the requirements within their sustainment activities.

Any solution for designing such a contract should consider the variable level of

incentives for the contractors (through the term of the contract), along continual information
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Figure 6: Design process of availability-based contracts

gathering that is done by both the customer and the contractor. Proposed approaches should

be capable of addressing statistical constraints like the dependence between different

variables. Moreover, a viable approach must have the flexibility to update the model

parameters using limited data in response to information added through the life cycle.

Optimum length of performance measurement or system condition monitoring for such

contracts, as well as the difference between assuming fixed-end-of-support contracts and

contracts with an uncertain end-of-support also need further investigation.

3.6 Conclusion

The goal of this chapter was to articulate the quantitative and formal elements of contract

models and contract design for sustainment applications in the context of availability-based

contracts and evaluate existing methods to address this design problem.

It has been shown that existing solutions are not addressing the degree of freedom

provided by this type of mechanism, but they have the essential components of an overall

solution. For example, optimizing an inventory will not lead to the optimal availability;

however, it is one of the necessary steps in the solution. PBL provides the increased

freedom needed to utilize integrated solutions while incorporating the operational risks
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involved. Finally, special attention needs to be paid to designing meticulous and effective

requirements and performance measures.

By utilizing availability-based contracts, contractors introduce a high-level payment

and requirements framework, however bottom-up engineering models addressing the

underlying dynamics of the system and the integration of different sub-systems to meet

these requirements need to be considered. The feasibility space of contracts and their

requirements should be derived by considering the engineering systems with their physical

constraints and uncertainties. The integration of engineering design and contract design

represents a new paradigm called Contract Engineering. Contract engineering is not a

payment structure based on a range of outcomes, rather a careful modeling and simulation

of the systems involved is an important component. A Contract Engineer develops a model

that can be used for negation by all parties involved and can estimate the impact of different

contractual requirements on costs and incentives. Contract Engineering is a practical and

engineering approach to guaranteeing a win-win solution space and discovers the feasible

regions of design with lower risks for both the contractor and the customer.

This chapter gives program, procurement and acquisition managers’ valuable back-

ground for assessing the existing cost and decision making models relevant to availability

contracting. Using the insight provided, managers can aligned the models and methodolo-

gies they are using to availability-based contracting, i.e., determine what models can assess

the cost of guaranteed performance considering the integration of all sub-systems involved;

understand the operational questions that common methods are not able to answer; can

cost saving strategies be compared to business-as-usual practices; and what knowledge do

acquisition personnel need to have to assess different cost models, i.e., to perform better

negotiation and more accurate pricing?
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Chapter 4: Optimal Performance Assessment Interval Model

One of the key identifying factors of contracts is the role of the assessment time window

(also referred to as inspection time window or checkpoints) on the determination of the best

possible performance of the contractor. We model the contractor decision making with an

affine controller that uses previous data observations to make a decision. This assumption

is reasonable for most of the contractor’s cost modeling and operational decisions. The

affine controller model is then used in a simulation to find the best contracts with optimum

assessment window size.

4.1 Background and Literature Review

Finding the optimum checkpoint distances1 for assessing the condition of a sub-system’s

performance to ensure the performance of the whole system has been widely investigated

in high-availability computer server applications, e.g., (Szentiványi, 2005). Checkpointing

helps to switch the system to a backup system, so that the system delivers the maximum

availability while not losing its performance. The checkpointing should be short enough to

give a small downtime (“failover”), but long enough to utilize most of the system resources

for delivering tasks (Szentiványi et al., 2005).

Szentiványi (2005) provides a comprehensive picture of finding the optimal check-

pointing distance for high-availability server systems. This paper reviews a group of papers

with a variety of modeling detail. All the reviewed methods use queueing theory to model

1“Checkpoints” are the point that define intervals in which the system performs tasks, intervals are mostly

have equal sizes.

53



the architecture of a server system and then aim to optimize the availability by finding the

best checkpoint.

Some researchers investigated the “optimal check pointing interval” problem in the

context of fault-tolerant processing systems especially with long-running jobs. Interval

availability is availability defined by the amount of time during which the system is in

operation over a finite observation period. In this area, there is more focus on the usage and

continuous demand. For instance, the amount of crude oil or natural gas to be delivered

over a finite period requires related platforms to be available for a certain number of hours

within a specified window. Although inventory backups usually cover short interruptions

in the production process, the loss of production for several consecutive days might cause

problems in meeting the sales contract, involve high penalty costs, and loss of goodwill

from customers. In computer and manufacturing systems, the guaranteed performance

during a finite period is sometimes a more important competitive factor than the average

performance observed over an infinite horizon (Dijkhuizen & Van der Heijden, 1999). In

this respect, the interval availability of the production system is often seen as an appropriate

performance measure in a practical context; particularly for order-driven manufacturing

systems, in which capacity planning plays a key role in satisfying contractual obligations.

Previous work on simulation for contract design has been done by Ferguson and

Sodhi (2011) under the assumption of fixed failure rate in which this assessment window

was not studied. Ferguson and Sodhi (2011) used a news-vendor in a single-order period

model in their simulation-based method to measure the impact of inventory level on the

availability of torpedoes under a performance-based contract. Their work explored the

secondary metrics that can be used as requirements to help the customer choose a better

contractor given their level of inventory. Jazouli and Sandborn (2011) used stochastic

simulation by assuming known distributions for logistical parameters to address different

aspects of operation over a life cycle. Their direct simulation method determines the design

and support parameters that results in a desired availability from the perspective of the
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Figure 7: Positioning of the work in this dissertation relative to other key works

contractor. Figure 7 positions the work in this dissertation relative to the work of Jazouli

and Sandborn (2011) and Ferguson and Sodhi (2011).

Other researchers, e.g., Schuëller and Jensen (2008), use Markov chain models and

consider up and down states for each component and try to formulate the conditions under

which a specific number of sub-systems (𝑘 out of 𝑛) are operational. Faults are assumed

to be independent, and subsystems are independent so that there will be a closed-form

mathematical representation of the total system availability, which can be optimized to

find the best checkpoints.

In the maintenance scheduling literature, the optimummaintenance intervals maintain

availability above requirements with minimum cost; however these intervals are not always

fixed, and they generally depend on the close-form representation of cost and availability

(Kim et al., 2009). Among efforts to address the uncertainty of the demand/failure rate,

Verma et al. (2007) use a fuzzy model to find the intervals of preventive maintenance to

optimize the cost of maintenance.

From the variability of demand stand point, there are also works in the preventive

maintenance space that optimize the scheduling of preventive maintenance to guarantee a

level of availability under the assumption of increasing hazard rate using closed form cost
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modeling (Kim et al., 2009).

Most of the above existing references formulate a closed-form formula that relates

various logistics parameters to availability and cost. Then they assume that demand is

independent (in time) and that the contractor has access to infinite resources to support the

system (no constraints on the contractor’s resources). In existing works that use discrete-

event simulators, the contractor is generally ignored and the optimization via trial-and-error

without a proof of optimality. Alternatively, to address the problem posed in this dissertation

we must consider stochastic demand that is not necessarily independent from time period

to time period; and the contractor’s behavior in response to incentives must be modeled

(i.e., the existing works do not view the problem from a “contract” engineering perspective

and therefore are ignorant of the contractor’s behavior).

4.2 Model Development

The problem we are looking to solve in this section can be written as

𝑁 ∗
𝛼 = argmin

𝜃∈Θ
𝐶(𝑁𝛼) s.t. 𝐶(𝑁𝛼) = 𝐸(𝐿(𝜃, 𝜔)) (14)

In which 𝐶(.), the expected total cost of contract from the view point of customer is the

performance measure of interest, 𝐿 will be called sample performance, 𝜔 represents the

stochastic effect of the system, 𝜃 is a controllable vector of 𝑝 parameters, and Θ is the

constraint set on 𝜃, defined explicitly or implicitly (by mathematical programing formula-

tions). If 𝐶(.) was known explicitly, then analytical techniques including mathematical

programing could be usually be applied.

The model for the maintenance operation developed in this chapter uses a convex

optimization to design an optimal controller that represents the contractor decision making

inspired by (Skaf & Boyd, 2010). The Skaf and Boyd (2010) method uses convex optimiza-

tion to design a globally optimum affine controller for a discrete-time time-varying linear
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dynamic system, perturbed by a process noise, with linear noise corrupted measurement,

over a finite horizon. This method addresses the problem of designing a general affine con-

troller in which the control input is affine function of all previous measurements, in order

to minimize a convex objective, in either stochastic or worst-case setting. This controller

design is not convex in its nature but can be transformed to a convex optimization problem

by a nonlinear change of variables that comes below. What follows are the basic steps of

such design for a closed-loop controller design.

Considering that the system can be modelled by a discrete-time time-varying linear

dynamic system, over time interval 𝑡 = 0,… , 𝑇, with dynamics

𝑥(𝑡 + 1) = 𝐴(𝑡)𝑥(𝑡) + 𝐵(𝑡)𝑢(𝑡) + 𝑤(𝑡), 𝑡 = 0,… , 𝑇 − 1, (15)

where 𝑥(𝑡) ∈ ℝ𝑛 in the system state,

𝑦(𝑡) = 𝐶(𝑡)𝑥(𝑡) + 𝐷(𝑡)𝑢(𝑡) + 𝑣(𝑡), 𝑡 = 0,… , 𝑇 − 1 (16)

𝑢(𝑡) = 𝜑(𝑦(0), … , 𝑦(𝑡)) (17)

= 𝑢0(𝑡) +
𝑡
􏾜
𝜏=0

𝐹(𝑡, 𝜏)(𝑦(𝜏))

where we define the feedback matrix as

𝐹 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝐹(0, 0) 0 ⋯ 0

𝐹(1, 0) 𝐹(1, 1) ⋮

⋮ ⋮ ⋱ 0

𝐹(𝑡 − 1, 0) 𝐹(𝑡 − 1, 1) ⋯ 𝐹(𝑡 − 1, 𝑡 − 1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

which is (𝑚, 𝑝) block lower triangular. Then we can have

𝑢 = 𝐹𝑦 + 𝑢0. (18)
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Then we can solve for 𝑥 and 𝑢 in terms of 𝑤 and 𝑣 to get,

⎡
⎢⎢⎢⎢⎢⎢⎣
𝑥

𝑢

⎤
⎥⎥⎥⎥⎥⎥⎦ = 𝑃

⎡
⎢⎢⎢⎢⎢⎢⎣
𝑤

𝑣

⎤
⎥⎥⎥⎥⎥⎥⎦ +

⎡
⎢⎢⎢⎢⎢⎢⎣
𝑥̃

𝑢̃

⎤
⎥⎥⎥⎥⎥⎥⎦

where,

𝑃 =

⎡
⎢⎢⎢⎢⎢⎢⎣
𝑃𝑥𝑤 𝑃𝑥𝑣

𝑃𝑢𝑤 𝑃𝑤𝑣

⎤
⎥⎥⎥⎥⎥⎥⎦

𝑃𝑥𝑤 = 𝐺 + 𝐻𝐹(𝐼 − 𝐶𝐻𝐹)−1𝐶𝐺 (19)

𝑃𝑥𝑣 = 𝐻𝐹 + (𝐼 − 𝐶𝐻𝐹)−1 (20)

𝑃𝑢𝑤 = 𝐹 + (𝐼 − 𝐶𝐻𝐹)−1𝐶𝐺 (21)

𝑃𝑢𝑣 = 𝐹(𝐼 − 𝐶𝐻𝐹)−1 (22)

and

𝑥̃ = 𝑥0 + 𝐻𝑢0 + 𝐻𝐹(1 − 𝐶𝐻𝐹)−1(𝐶𝑥0 + 𝐶𝐻𝑢0) (23)

𝑢̃ = 𝐹(1 − 𝐶𝐻𝐹)−1(𝐶𝑥0 + 𝐶𝐻𝑢0) + 𝑢. (24)

The matrix 𝐶𝐻𝐹 is (𝑝, 𝑝) block strictly lower triangular, so (𝐼 − 𝐶𝐻𝐹) is invertible.

𝑃 is the closed-loop matrix, 𝑥 as the closed-loop state trajectory, and 𝑢 is the closed-loop

control trajectory. It can be shown that as long as the objective function can be represented

as a convex function of 𝑃, 𝑥, 𝑢.

Now that we can use an optimal controller to address the optimal decision making

process, there are several approaches that can be used to relate the event-based space to

the dynamical representation of the system (time-based).

Integration of an event-based system with a time-synchronous system for simulation

can be done in variety of methods and is one of the most pursued goals in simulation
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research (Brailsford et al., 2010). It also should be noted that this area of research is

not well developed and there are few existing works on synchronization of time-based

and event-based methods. The outcome-based orientation of our problem places more

emphasis on selecting the integration structure. The proper time-frame to evaluate the

performance is one of the key part of this dissertation. Meanwhile the nature of reliability

and maintenance actions are generally creating an event-based subsystem (Kashani-Pour

et al., 2014).

The goal of the analysis approach is to maintain the preparedness of the system,

which translates into insuring a minimum level of availability at all times. For the support

of a fielded system this requires management of parts in such a way as to minimize the back-

order and holding (inventory position), which will ideally be close to zero after responding

to demands in each period. The model involves the integration of the event-based structure

(demand generation) with a time-based controller, Figure 8. The time-based controller uses

the historical demand data in equal periods of time to determine new order sizes. Demands

are generated by a discrete-event simulator that simulates the behavior of the system in

time.

Figure 8: The translation of event-based domain of failure to time-based domain

In (Jin & Wang, 2011) it is shown that product inherent failure rate, usage rate,

and the size of the installed base have significant impacts on the equipment availability.

Equipment availability is jointly determined by product reliability, usage rate and the size
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of installed based which uses these parts. Here the same strategy is used to combine the

failure of multiple systems and derive the demand based on the failure of these parts. As

Figure 8 shows, the architecture of the analysis approach is based upon a discrete-event

retranslation of the process, however the controller only communicates with this model in a

time-based regime. Also the performance measurement of the system is a separate activity

that considers each simulation path and feeds the controller with a different objective

function based on the objective function in a time domain.

The selection of a demand distribution is of great importance. In civil infrastructure

(highway management) the demand is selected to represent the condition of pavement

or roads, which generally degrades with a slow dynamic, while for operational purposes,

systems under PBL contracts consist of parts with a variety of failure rates. Modeling the

demand distribution for design purposes has a direct effect on the optimality of the result.

In most existing works, demand is considered as being uncorrelated in time, however it

seems reasonable to consider a level of correlation in time considering the system level

dependencies that these parts might have.

4.3 The Expected Number of Failures

We need to be able to simulate the number of failures in each time interval. For repairable

systems, the number of failures at a given operational interval is one of the most important

reliability metrics because based on the predicted number of failures, proper resources

can be allocated. The most commonly used models for the failure process of a repairable

system are renewal processes (RP), including the homogeneous Poisson processes (HPP)

and nonhomogeneous Poisson processes (NHPP).

A flexible model (that has been successful in many applications) for the expected

number of failures in the first 𝑡 hours,𝑀(𝑡), is given by,

𝑀(𝑡) = 𝑎𝑡𝑏, for 𝑎, 𝑏 > 0. (25)
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𝑀(𝑡) is known as a renewal function.

The repair rate (or ROCOF) for this model is,

𝑚(𝑡) = 𝑎𝑏𝑡𝑏−1 = 𝛼𝑡−𝛽, for 𝛼 > 0, 𝛽 < 1, (26)

where 𝑚(𝑡) is the renewal density function.

The Homogenous Poisson Process (HPP) model has the constant repair rate𝑚(𝑡) = 𝜆.

If we substitute a time-variable 𝜆(𝑡) for 𝜆 we will have a non-homogenous Poisson process

(NHPP) with intensity function 𝜆(𝑡) = 𝑚(𝑡) = 𝛼𝑡−𝛽. When 𝛽 = 0, the model reduces to the

HPP constant repair rate model.

Probabilities of a given number of failures for the NHPP model are calculated by a

straightforward generalization of the formulas for the HPP. Thus, for any NHPP

𝑃(𝑁(𝑇) = 𝑘) =
(𝑀(𝑇))𝑘

𝑘!
𝑒−𝑀(𝑇) (27)

and for the Power Law model:

𝑃(𝑁(𝑇) = 𝑘) =
[𝑎𝑇𝑏]𝑘 𝑒−𝑎𝑇𝑏

𝑘!
. (28)

Numerous work have used this assumption and developedmodels that addresses availability

as a function of demand size (reliability). For example (Nowicki et al., 2012) used this

model, which is based on the assumption that repair times are independent for calculating

the expected back-orders (proxy to materiel availability). It should be noted that NHPP

model corresponds to what is called minimal repairs, meaning that the system after repair

is only as good as it was immediately before the failure. There are many more possible

extensions of such approach which can be derived from statistical modeling literature

dedicated to repairable systems (Lindqvist, 2006).

In this work, we create an auto-correlated random values for the number of failures
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in time. This time series will be used as the demand stream to test the performance of the

contractors under hypothetical contracts.

For the 2-dimensional case: given a correlation 𝜚we can generate the first and second

values, 𝑋1 and 𝑋2, from the standard normal distribution. If 𝑋3 is a linear combination

given by 𝑋3 = 𝜚𝑋1 + 􏽮1 − 𝜚𝑋2 then

𝑌1 = 𝜇1 + 𝜎1𝑋3, 𝑌2 = 𝜇2 + 𝜎2𝑋3, (29)

so that 𝑌1 and 𝑌2 have correlation 𝜚.

Likewise for generating 𝑛 correlated Gaussian random variables 𝑌 ∼ 𝑁(𝜇, Σ),

where 𝑌 = (𝑌1, … , 𝑌𝑛) is the vector we need to simulate, 𝜇 = (𝜇1, … , 𝜇𝑛) the vector of

means and Σ the given covariance matrix. To use this formula, we simulate a vector of

uncorrelated Gaussian random variable, 𝑍. Then we find 𝐶 such that

𝐶𝐶𝑇 = Σ. (30)

The target vector will be 𝑌 = 𝜇 + 𝐶𝑍, and a popular choice to calculate 𝐶 is the Cholesky

Decomposition method (Trefethen & Bau III, 1997).

4.4 Discrete-Event Simulation (DES)

Figure 9 shows the general schematic of the closed-loop representation of the proposed

system. The availability and several cost factors are chosen as the parameters that the

controller needs to control. The demand distribution is derived from the reliability of the

parts and the controller action orders new parts for replacement. Control action is defined

as an affine function2 in which we are using previous demands to estimate the new order.

Making the control action affine makes comparison of different control policies that can be

2Affine in the context of nonlinear systems means the control appears linearly (where the nonlinearity

with respect to the state is automatically implied).
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Figure 9: Model integration architecture

described by affine functions straightforward, e.g., Model Predictive Controller or Greedy

Algorithms. These are common methodologies that use demand forecasting for planning

future inventory support. The controller builds a model from a number of samples in the

past and then predicts the next demand and the analysis window moves forward in time as

more information is gathered.

Because of the complexity and stochastic nature of real world applications, devel-

oping mathematical models of the system under study is far from trivial and assessment

of their performance is equally difficult. Models that are accurate enough to adequately

represent system behavior often cannot be analyzed using, for example, methods based on

the theory of continuous-time Markov chains on a finite or countable infinite state space.

DES is capable of representing the timeline of the life of different parts and subsystems

with fewer restrictions. One can add any number of variables and parameters to the model
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without the need to change the structure of model. DES provides a visual indication of what

happens to the fleet and each socket. Most importantly, this model provides a probabilistic

sensitivity analysis.

DES has the ability to indicate how a supply chain performs and behaves over time

when different rules and policies are applied. Testing different scenarios by adjusting

parameters and procedures means that supply chain performance and behavior can be

explored.

We use a DES model of the platform including its maintenance and we test the

controller performance for the system. The parts in this system go from operational to

faulty and then based on the availability requirements at any specific time they will be

selected for maintenance or replacement. Also, a model of the inventory is provided within

the same scheme, and different performance measures can be extracted from this model.

Petri nets are a DES approach developed for capturing concurrency and synchronization

properties. Petri nets are graphical representations and mathematical tools for formal

specification of complex systems (Haas & Shedler, 1986). Formal models like Petri net

models have a number of advantages over simply writing simulation codes or DESs. They

can be easily and automatically verified for deadlocks, conflict of conditions, catastrophic

states, and logical errors in reliability-based design projects (Dohi et al., 2006).

4.5 Controller Mechanism (The Ordering/Planning Strategy)

To model the behavior of contractor with respond to contractual requirements, special

attention was paid exploring the decision-making process. A game theoretic two-level

optimization problem was used before in Zhu and Fung (2012) with the goal of optimizing

the contract from the perspective of customer and contractor separately.

The control-feedback mechanism for availability contracts is based on the established

affine control model developed by Skaf and Boyd (2010). As shown in Figures 10 and

11 the model aims to determine the optimal incentives/disincentives in an availability
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Figure 10: PPP model for availability payment model

Figure 11: Affine controller for availability contract
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contract so that the customer can expect the best performance or availability given the

long-term budget constraint while the contractor maintains a steady revenue (with profit).

In public private partnership structure, the private sector, given the MAPs and the deduction

matrix, must decide their strategies throughout the operation phase, such as quality of the

construction, O&M plan and service quality, so as to maximize their profit and minimize

their risk.

4.6 Time Assessment Interval Optimization

The time window that customer uses to evaluation of contractor performance is of great

importance. However, most methods target long-term and steady-state performance of

simulators. The availability assessment window length is related to 𝑇 (the contract length)

by the following,

Avalability Assesment Interval =
Total Operational Hours in the Contract

Number of Assesment During Contract (𝑁𝑎)
(31)

Also, it needs to be noted that the systems under contract are not operational during

the whole contract time and in fact, the contractor needs to be assessed only during the

time that the system is operational. For this purpose, we ignore the times that the system is

not on-demand and calculate the availability and performance of the contractor based on

these operational windows. The assessment also will be performed during one of these

operational periods. Figure 12 depicts how the operation time is derived from the total time

and how it divides into equal assessment windows. As an example, two cases of quarterly

assessment and bimonthly assessment for a 1 operational year contract are shown.

The on-demand time is the time that the customer actually needs the system and the

preparedness or availability of system is critical whereas the out of demand times are the

time that customer does not require the availability from the system. In out of demand

times, the system can be available or unavailable, but it will not count for the hours that the

66



Figure 12: Operational time and time-window assessment

contract requires the contractor to support the system. These are the times that scheduled

maintenance can be done without affecting the availability. The contractor’s performance

is measured in milestones throughout the contract length by assessing the performance only

over the operational time, and it will be awarded at the end of each assessment interval. It

seems trivial that larger assessment windows (larger assessment window size) will result

in fewer assessments (𝑁𝑎) also, there can be more oscillation in the performance of the

contractor. Also, if the time assessment window is too long, then contractor actions near

the end of the window will have little impact on the availability measurement (contractors

will be inclined to “drop the ball” late in the window because nothing they do will change

the result). Alternatively, if windows are too short, contractors are almost penalized for

the initial condition of the system and the inventory, and he has a very limited time to

learn the demand distribution. Alternatively stated, the size of the assessment window

will determine the sensitivity of contractor performance actions to different interruptions

and eventually affect the contractor’s degree of freedom in design. Optimization of the

assessment window size is a primary goal of the model discussed in this chapter. It needs

to be noted that in complex systems with high-availability requirements, each availability

assessment has an associated customer cost of performing the assessment, i.e., assessing
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the contractor’s performance is not free. This is another aspect in which contract design is

different from optimum warranty design which is usually focused on one agreement period,

with no assessment cost to customer (Wu et al., 2007). In Availability based contracts the

performance assessment cost can be an administrative cost or the tasks of evaluating the

level of availability at the end of each period (option period). For the sake of simplicity,

we assumed the same assessment cost for all different length of the assessment window

although it can depend on the other parameters (e.g. level of inventory as well).

4.7 Payment Model

Payment model is the second important factor of the contract the shapes the contractor

decisions. The following model describes the general form of the optimization process of

an availability-based contract:

max
𝑁𝑎

􏾜
𝑘=1
𝑦∗𝑘 or max

𝑁𝑎

􏾟
𝑘=1

𝑦∗𝑘. (32)

In availability-based contracts and models 𝑦𝑘 represents the outcome of contractors

decisions at assessment number 𝑘, which is associated with degradation and reliability

model of operating system and it supply chain network. It is also possible to derive 𝑦𝑘

without considering the reliability of the system and directly from a dynamical model

similar to Sharma et al. (2010). They used linear models to model road deterioration

dynamics. In their work since the contracts were long enough that the effect of the transient

behavior of the system can be ignored.

4.7.1 Payment Model in PPP Contracts

Depending on the nature of availability and performance measurement the payment model

will have different structure. For example in PPP contracts we have developed the below
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structure

max
𝑁𝑎

􏾜
𝑘=1
𝑦∗𝑘 or max

𝑁𝑎

􏾟
𝑘=1

𝑦∗𝑘 (33)

MAP𝑘 −Deduction(𝑦∗𝑘) ≤ Budget(𝑘), 𝑘 = 1,… ,𝑁𝑎

where 𝑦∗𝑘 solves problems (𝑘 = 1,… ,𝑁𝑎),

max
𝑁𝑎

􏾜
𝑘=1

⎛
⎜⎜⎜⎜⎜⎝
𝐸(MAP𝑘) − Deduction(𝑦𝑘) − Cost(𝑘)

(1 + 𝑑)
𝑘𝑇
𝑁𝑎

⎞
⎟⎟⎟⎟⎟⎠ (34)

subject to:

Deduction(𝑦∗𝑘) − Cost(𝑘) ≤ 𝜂MAP𝑘, 𝑘 = 1,… ,𝑁𝑎,

where 𝑦∗𝑘 is the availability of the project at the end of 𝑘-th assessment interval; 𝑑 is the

effective discount rate per period (more generally the weighted cost of capital); 𝑁𝑎 is the

number of assessments during the contract time;3 𝜂 is a bankruptcy constraint; andMAP𝑡

(maximum availability payment) and Deduction(𝑡) are decision variables for contract

design for level one (public sector) problem. Given the detailed contract, the private sector

(level two) must decide on the best 𝑦∗𝑘 at the end of each assessment interval 𝑘 to optimize

its overall profit. To find the best payment plan (MAP) a search on a non-convex feasibility

space of the second layer will be needed.

Design space explorations using a variety of search methods and optimization meth-

ods is a common approach in multidisciplinary contract-based designs (Nuzzo et al., 2014).

In our method, every decision or solution needs to be checked for feasibility of physical

system realization. There are variety of methodologies that can be used for this layer from

heuristic search to nonlinear-mixed integer programing. Figure 13 shows a possible search

method to find the optimum MAP and deduction using a heuristic search.

3The operational time during the contract is divided into equal independent periods for performance

measurement. At the end of each period (timewindow), an assessment will be done on the level of performance

of the contractor. The outcome in each of these periods will determine the payment.
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Figure 13: Decision chart of payment model

4.8 The Impact of Penalty Coefficients on Contractor Performance

One of the main tasks of the contract design is to embed the right penalty rates for back-

order or holding in the payment model. These penalties are incentives to guarantee the

availability requirements while minimizing the total life-cycle cost of support of the system.

We can generally assume that there exists a base cost for each back-order of a unit and a

holding cost per time unit that the contractor has to pay. Conventionally, when it comes to

penalty items, the back-order cost is calculated based on opportunity costs and the cost

of downtime. The base holding cost is calculated based on the inventory constraints and

inventory operation.

In the process of contract design, the cost model of the contractor is mostly unknown
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to customer. But in outcome-based contracts, the customer can only shape the behavior of

the contractor with these adding incentives or penalties to these rates at the inventory level.
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Chapter 5: Case Study

This chapter presents a case study of a torpedo enterprise. The case study demonstrates that

using the modeling developed in Chapter 4, there exist an optimal availability requirements

assessment interval for a PBL contract. The case study also explores the best-contracts

space from the cost-risk perspective and determines the relative value of using an optimal

availability assessment window.

5.1 Torpedo Enterprise System Description

The case presented in this section is based on a case study and data from Ferguson and

Sodhi (2011);1 It examines the inventory of torpedoes for a submarine fleet (Enterprise)

managed by a contractor under an availability-based (PBL) contract. The design process

presented in this chapter determines the best assessment interval as a contract parameter

to reduce the total cost of the system and guarantees that inventory (materiel) availability

requirements are met. For our purpose, each item in the inventory is a whole torpedo.

Exercises and deployment require constant servicing of the torpedoes, and during testing,

if torpedoes are found to be defective, a complete torpedo is replaced from inventory by

supply contractors.2 Following testing, the torpedoes are returned to the fleet for use. When

the torpedoes are tested, if they are found to be defective, they are replaced from inventory

1Note, Fergusoon and Sodhi do not study the assessment window. They used a news-vendor model to

measure the impact of inventory level on the availability of torpedoes under a performance-based contract.
2In reality, sub-assemblies within a torpedo are tested, however, if any of the sub-assemblies are found to

be defective, the whole torpedo is not returned to the contractor/OEM but only the defected parts for repair

or replacement. The contractor/OEM guarantees the availability of complete non-defective torpedoes in the

inventory.
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and the inventory needs to be replenished by supply contractors. The flow of torpedoes in

the enterprise is shown in Figure 14.

Figure 14: Torpedo Enterprise Material Flow

There are very few works in this application space that report realistic data (Fincher,

2016). We demonstrate our method on this system using the data provided in Ferguson

and Sodhi (2011).3 In their work they look at the torpedo inventory level as an indicator in

competitive contracting environment to discriminate between bids.4 Ferguson and Sodhi

(2011) assume that the failure rate of each torpedo is reported as a constant failure rate in a

monthly unit. However, in our work we assume a distribution for number of failures with

different variance but expected value equal to the fixed rate in Ferguson and Sodhi (2011)

to simulate the number of failures over time.

The operational availability defined in (6) in Section 1.3.4 can be used to determine

the costs incurred on the contractor side that include shortage, holding, and shipping costs.

Back-order (shortage) cost is calculated per day of not having a usable torpedo available

in the inventory when one is needed. This could be considered the cost of an inventory

(or maintenance) worker’s downtime (the work that could have been done), or the cost of

penalties due to delays. Storage (holding) cost is the cost of storing one torpedo for one

3The extent to which the data from Ferguson and Sodhi (2011) represents a realistic torpedo inventory

management system is unknown, however it represents a published data set that can be readily used for

demonstration purposes. Note, we have added some reasonable data to the case study that was not originally

included in the Ferguson and Sodhi work.
4The realism of this particular aspect of the torpedo enterprise is unknown, but it is consistent with

published cases.
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day at the customer’s facility.

Table 5.1: Reliability and cost data for the torpedo enterprise from Ferguson and Sodhi

(2011)

U.S. Navy Torpedo Enterprise

Model A

OPTEMPO 1000 units/year

Total downtime penalty/Unit shipped $(28)(DTP)

Holding (Storage) Cost $100/item/month

Back-order Cost $1000/item/month

Failure rate 𝜆 = 10% /year

Contract Length (year) Max 5 Years

DTP: downtime penalty, shipping takes 28 days and its cost is based on the back-order in this case.

OPTEMPO is the expected usage rate of the products being supported by the torpedo inventory for a given

time period. In the case of the Torpedo Enterprise, this would be the number of torpedoes expected to be

received for maintenance, cleaning, testing and reassembly.

The contract obligates the contractor to support the torpedo enterprise at a specified

operational availability while minimizing the number of torpedoes at the customer’s facility

(the tire example in Section 1.2.1 has a similar requirement). In this PBL environment,

the customer/contractor interface is at the “shelf” where the torpedoes are stored at the

customer’s facility.

The customer provides the contractor with up-to-date inventory levels, which trigger

the contractor’s decision to restock (replenish spares). For instance, if a torpedo is found

to be defective during testing, a spare would be removed from the inventory to replace it.

To model the PBL contractor we use an affine controller that makes the order based

on the goal of minimizing the cost to the contractor by using the previous demand periods

(assessment intervals). The contractor seeks to minimize the number of torpedoes kept in
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the customer’s inventory by restocking the inventory as the torpedoes are used. In PBL

contract the requirements are focused on the final outcome (availability level) and they

do not limit the stock level directly and this makes the development of an inventory cost

modeling more complex as the costs are not occurring per item and harder to directly

connect to a contractor’s actions. Table 5.1 shows the data inputs for this case study from

Ferguson and Sodhi (2011).5

The contract model should address the two different perspectives of customer and

contractor. The customer has limited access to the contractor’s cost incentives and reliability

information and contractor has no role in the customer usage rate of the system. However,

from contract design perspective, we are interested in designing a contact from the view

point of customer considering including these uncertainties.

The next section describes the details of the stochastic simulation process to generate

the number of failures (demand in the inventory model). Section 5.3 explains the basic

maintenance inventory model in a general way as the base of the model in this case study.

This formalism is not limited torpedo enterprise and can be applied to variety of contract

from financial planning, human sourcing to work-order scheduling. Section 5.4 simulates

the torpedo enterprise including reviewing the relevant performance metrics and their

applicability to the Torpedo Enterprise case. Section 5.6 is the detailed description of

optimization-via-simulation for a cost-oriented objective. Section 5.7 considers the risk

dimension of the problem and reviews the feasible space from a multi-objective perspective

using Mean-Variance (Mean-Var) analysis from modern portfolio theory as a financial risk

assessment and optimization.

5Note, the cost of buying a spare (torpedo) is not included in the model. This is because it is a “wash”

between the cases compared, i.e., all cases consume the same number of spares. This case study also assumes

that the discount rate can be ignored, i.e., all timeframes are short.
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5.2 Stochastic Demand Simulation

In most of the literature related to contract design and reliability optimization regarding

performance-based contracts the failure rate is assume to be a fixed (i.e., constant) (Nowicki

et al., 2012; Ashgarizadeh & Murthy, 2000). Assuming a fixed failure rate helps produce

an elegant closed-form cost model and since most systems spend most of their lifetime

in the long flat constant failure rate portion of the “bathtub curve”, this is not far from a

practical condition in an ideal situation.

In this work we are using two different assumptions for the number of failures in

each time interval. First we assume a normal distribution with no co-relation in time and

we generate 1000 failure streams for each time period over the contract length. In the

second assumption, we look at failures with a lognormal distribution (for generalization

over lifetime) and with a correlation in time (to address seasonality, usage rate and common

cause failures). For the torpedo enterprise, since the failure rate is reported to be 10% per

year we are going to generate different demand streams with the same expected number of

failures per year to have a baseline for comparison.

Figure 15a shows five different demand streams (called scenario 1-5) over ten time

periods, simulated from the different distribution assumptions. The first scenario is a fixed

failure rate; the next four scenarios assume a normal distribution for the number of failures

per period (four examples, “sample paths”, are shown). Note that we assume corrective

maintenance and that’s how failure rate and demand are directly related. If the operation

is using predictive maintenance, then this number of failures could be sampled from the

predicted failure distribution (coming from a Prognostics and Health Monitoring Analysis).

In 15b, the five scenarios (five examples, “sample paths”, are shown) represent the case

where the number of failures is derived from a lognormal distribution with a correlation in

time to address seasonality in number of failures.

The results in Figure 15 demonstrate that the assumption of a fixed failure rate (which
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(a)

(b)

Figure 15: Number of failures simulation over 10 time intervals.

is never really true when time periods are short, due to seasonality and other effects) yields

a demand history that varies significantly from a constant.

5.3 Modeling of Maintenance Inventory Replacement

Different maintenance operation and logistics modeling are described in Section 3.2.

5.3.1 Discrete-Event Modeling

For a demonstration of the discrete-event model, consider a repair shop inventory. This is

a single commodity linear supply-chain problem. Where we assume that each failure can

be replaced or repaired immediately. The decision to repair or replace is being made based
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on field standards as well as availability requirements of the spare parts in the inventory.
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Figure 16: The inventory & supply chain model developed in stochastic petri-nets

The flow of parts in this system is as follows: a number of systems are running

continuously using parts that fail based with a time to failure distribution. At each cycle

(e.g., day) after 𝑎 failure events, based on the level of the availability (defined by an

operational availability requirement), the part is either replaced or repaired. In this model,

we assume a high availability requirement and we do not consider repair, i.e., the model

assumes immediate refilling of the inventory with spare parts. We also assume the system

will be available immediately after replacement. It should be noted that in reality not all

the demand/failures will go for replacement and some of them will go for repair, which

will result in longer downtime that could cost the contractor more.
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Figure 17: The inventory & supply chain model developed in stochastic petriNets

As an order arrives, based on the replacement request, a new part from inventory is

needed. We used stochastic Petri-net formalism (Volovoi, 2006) to develop a preliminary

model of this operation and perform preliminary statistical data analysis (Figure 16). Petri-

nets are commonly used for performance modeling for processes that include stochastic

events. Figure 17 shows the graphical representation of the inventory and manufacturing

support model, done in CPN Tools (Ratzer et al., 2003). This discrete-event can gener-

ate failure data and maintenance inventory demands via sampling from time to failure

distributions for the system’s part.
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5.3.2 System Dynamics / Feedback Systems Modeling

We can formulate the overall performance of this model as a discrete-time linear time-

varying feedback system, with the contractor’s performance being assessed at times 𝑡 ∈

􏿯0, 𝑇
𝑁𝑎
, 2𝑇
𝑁𝑎
, … , 𝑇􏿲 and if the performance is not satisfactory the contract will be terminated

immediately. At any time the amount of spare parts available to be used in inventory is

(𝑡) ∈ ℝ .

The initial condition is assumed to be 𝑥(0). The inventory varies over time defined

by the following dynamic:

𝑥(𝑡 + 1) = 𝑥(𝑡) + 𝑢(𝑡) + 𝑤(𝑡), 𝑡 = 0, … , 𝑇, (35)

where 𝑤(𝑡) presents the demand size (with negative sign) coming from the failure sampling

of the system time 𝑡 in (35). The number of parts available in the inventory at time 𝑡 can

be positive or negative with 𝑥(𝑡) < 0 meaning a backlog of 𝑥(𝑡) units of the parts. The

demand for the part at time 𝑡 is denoted 𝑤(𝑡). The number of parts shipped to the inventory

at time 𝑡 is denoted 𝑢(𝑡). Figure 18 shows the order of events in a discrete time scope.

Figure 18: The inventory level at 𝑡 + 1, 𝑥(𝑡 + 1)
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5.3.3 Contractor Objective(Cost) Modeling

The goal for the contractor is to maximize profit by minimizing the inventory cost and

meeting the customer availability requirements targeting number of units in repair. We

assume the contractor addresses the demand in multiple periods during the contract time

(as oppose to models based on single-cycle, i.e., Ferguson and Sodhi (2011)). We also

assume the contractor addresses requirements by associating penalties to each performance

factor as what we call the inventory cost.

The inventory cost consists of shipping costs, holding cost and back-order cost.

The shipping cost will be proportional to the amount shipped 𝑢(𝑡) and inventory costs.

For positive inventory, holding cost will be ℎ𝑥(𝑡), and when the inventory is depleted the

backlog cost is given by −𝑏𝑥(𝑡). The total cost incurred in time 𝑡 is:

𝜙(𝑥(𝑡), 𝑢(𝑡)) = max(ℎ(𝑡), −𝑏𝑥(𝑡)) + 𝑠|𝑢(𝑡)| (36)

and the total inventory cost for the period of 𝑡 = [0, 1, … , 𝑇] is:

𝐶𝑚(𝑇) =
𝑁𝑎

􏾜
𝑘=1
𝜙[(𝑥(𝑘), 𝑢(𝑘))] (37)

where 𝜙(𝑥(𝑘), 𝑢(𝑘)) is the total inventory cost and the goal of the contractor is assumed to

be,

min𝐸 􏿰
𝑁𝑎

􏾜
𝑘=1
𝜙(𝑥(𝑘), 𝑢(𝑘)).􏿳 (38)

When the demands 𝑤(𝑡), 𝑡 = 0, …, 𝑇, are independent, the supply chain optimization

problem has a solution of the form of an (𝑠, 𝑆) policy (Federgruen & Zheng, 1992). When

the demand is correlated across time, and there is no general solution, Skaf and Boyd (2010)

use an optimal affine controller approach that performs better thanModel Predictive Control

and Greedy Algorithm. Moreover, they show that if demand has a discrete distribution

and can take on only a finite number of values (demand scenarios); the affine controller
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Figure 19: Distribution of contractor costs based on 10,000 simulated contracts

design problem can be reduced to a LP (linear Programming) problem and solved exactly.

However, if demand has a continuous distribution, the affine problem will have to be

approximately sampling from the distribution or by other stochastic optimization methods.

To generalize the results, we assumed a real-number demand sampled from a normal

and exponential family distribution (Weibull) with different variance to demonstrate and

evaluate the suggested model and methodology. The results of simulation of total cost for

a contract with 𝑠 = 2800, 𝑏 = 1000, ℎ = 2000, 𝑁𝑎 = 10, and 𝑤(𝑡) = 𝑁(10, 2) is shown in

Figure 19.

5.4 Performance Measurement

We look at the problem of contract design from the view point of the customer. The

customer’s goals can be described by a variety of attributes. System outcomes or functions

of the outcomes that we call performance factors that are generally defined by the contract

terms, and observable contractor decisions or outcomes of the contractor’s actions are the

focus of this work. However, there are two types of unobservability that the customer is
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facing: 1) the uncertainty of real costs (and their ratios, which defines the contractor’s

incentives) on the contractor side, and 2) in some cases the customer needs to measure and

define secondary functions of these parameters (e.g., operational availability as the ratio of

uptime to total operational time, or the ratio of demand to the inventory). Based on the

performance factors used by the customer, different measurements and calculations need to

be done with the system outputs or the contractor’s observable actions (Doerr et al., 2005).

For example, the availability as a function of uptime and the total operational time

is a popular measure for operational purposes. For inventory-level contracts (e.g., ven-

dor managed inventories), materiel availability and fill-rate are more common. This is

represented in the following equation where 𝑦(𝑡) is the availability (𝛼-service level),

𝑦(𝑡) = 𝐸[𝑞] such that:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

𝑞 = 1 if 𝑤(𝑘) > 𝑥(𝑡) + 𝑢(𝑡)

𝑞 = 0 otherwise

(39)

or

𝑦(𝑡) =
Quantity Ordered per period − Quantity Backordered per period

Quantity Ordered per period
(40)

Since this output is not convex based on 𝑢(𝑡) we cannot directly use the affine controller

method and a non-linear change of parameters or a bisection method is needed.

By measuring the back-order of the different parts and subsystems, we can directly

determine the availability of the whole systems and possibly infer the ratio of holding to

back-order on the contractor side. This makes the availability the most important factor

for measuring the performance of contractors to support complex platforms (Cuthbertson

& Piotrowicz, 2011). Other performance measurement metrics are possible.

5.5 Model Setup

Our formulation models the case where the customer makes the decision of assessment

interval without the knowledge of the real costs of the contract. As the result, the pricing
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decision and selection of performance assessment intervals are made by customer and

the contractor will design his strategy around it as a follower. In this section, we lay

out the general model that we will use in the game-theoretic (a one shot Stackelberg

game formulation) by a two-level optimization. The Stackelberg game is a strategic game

in economics in which the leader firm moves first and then the follower firms move

sequentially.

In this analysis, we assume the customer information about the failure rate is repre-

sented by a random process with the properties described in Section 5.2. We also assume

both parties are interested in minimizing their costs.

First, we assume that the total cost to the contractor can be written as:

Total Cost to the Contractor = Baseline Operation Cost + Penalty Costs

The two-level game theoretic model of the problem can be written as below based

on previous sections.

Customer Goal:

min
𝑁𝑎

𝐶𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟(Φ(𝑁𝑎)) (41)

𝐶𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟(Φ(𝑁𝑎)) = 𝐶𝑐𝑜𝑛𝑡𝑟𝑎𝑐𝑡𝑜𝑟(Φ(𝑁𝑎)) + 𝐶𝑎𝑠𝑠𝑒𝑠𝑠𝑚𝑒𝑛𝑡(Φ(𝑁𝑎))

𝐶𝑎𝑠𝑠𝑒𝑠𝑠𝑚𝑒𝑛𝑡 is based on previous work in assessment interval modeling (Kim et al., 2009), in

which there is often a fixed cost associated with each assessment. This model also ignores

the money that customer deducts from the contractor payments as they do not help the

customer with reduced availability or life-cycle performance-goals.
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Contractor Objective:

𝐶𝑐𝑜𝑛𝑡𝑟𝑎𝑐𝑡𝑜𝑟(Φ(𝑁𝑎)) = max􏿵
𝑁𝑎

􏾜
𝑘=0
(Payment𝑘 − Deduction𝑘 − Cost𝑘)􏿸 (42)

= min􏿵
𝑁𝑎

􏾜
𝑘=0
(deduction𝑘 + cost𝑘)􏿸 (43)

Where the contractor sets their incentive, model based on the customer deduction.

We use the model defined in (36) to set the contractor incentive in response to deductions

as:

𝐶𝑐𝑜𝑛𝑡𝑟𝑎𝑐𝑡𝑜𝑟(Φ(𝑁𝑎)) = min𝑢(𝑘)
𝐸􏿵

𝑁𝑎

􏾜
𝑘=0
𝜑(𝑥(𝑘), 𝑢(𝑘)) + 𝑔(𝑇)􏿸, 𝑢(𝑡) > 0 (44)

WhereΦ(𝑁𝑎) is the expected cost of contractor given the number of assessment. The

minimization of the contractor also will have a constraint at each inspection period:

𝑁𝑎

􏾜
𝑘=1

Cost􏿵𝑦􏿴 𝑘𝑡
𝑁𝑎
􏿷􏿸 + Deduction􏿵𝑦􏿴 𝑘𝑇

𝑁𝑎
􏿷􏿸

(1 + 𝑑)
𝑘𝑇
𝑁𝑎

< 𝜂Payment􏿵
𝑘𝑇
𝑁𝑎
􏿸 (45)

0 < 𝑢(𝑘) (46)

𝛼 < 𝑥(𝑘) (47)

The 𝑥(𝑘) inventory level at 𝑘 from (35) and the constraint in (46) makes sure the inventory

level stays above the minimum accepted level of inventory during the length of each

performance interval. This constraint guarantees that the level of each level will not go

below the required minimum performance.

To address the first issue, we assume that there are some baseline values that the

contractor is facing, but these values or their ratios are not shared with the customer.

This means that the contractor’s cost of holding an inventory comes from the actual
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cost of running the inventory plus incentives for keeping a lower inventory, given by

ℎ = ℎ𝑎 + ℎ𝑝. Similarly, the back-order cost is 𝑏 = 𝑏𝑎 + 𝑏𝑝. The ℎ𝑝 and 𝑏𝑝 represent the

both the incentive/penalty design as part of decision making in the contract design as

well as in operational incentives of the contractor. We assume these values are limited by

0 < ℎ𝑝 < 100 and 0 < 𝑏𝑝 < 1, 000.6 To account for the uncertainty in ℎ𝑝 and 𝑏𝑝, we search

the entire feasible space:

𝐸(𝐶(𝑁𝑎)|𝑏, ℎ) = min𝑏𝑣,ℎ𝑣
𝐸(

𝑁𝑎

􏾜
𝑘=0
𝜑 ∗ (𝑥(𝑘), 𝑢(𝑘)) + 𝑔(𝑇)) (48)

So the customer has to choose ℎ𝑝 and 𝑏𝑝 as part of decision making in the contract

design limited by 0 < ℎ𝑝 < 100 and 0 < 𝑏𝑝 < 1, 000. To account for the uncertainty in ℎ𝑝

and 𝑏𝑝, we search the entire feasible space:

ℎ = ℎ𝑎 + ℎ𝑝, 𝑏 = 𝑏𝑎 + 𝑏𝑝

such that

𝜑(𝑥(𝑡), 𝑢(𝑡)) = max(ℎ𝑥(𝑡) − 𝑏𝑥(𝑡)) + 𝑠|𝑢(𝑡)| (49)

The total cost of the contract with known parameters (ℎ = 1000, 𝑏 = 2000, 𝑠 = 2800,

𝑔 = 10, 000,𝑁𝑎 = 10) over 1000 stochastic demand streams (time series of failure numbers)

produces the distribution of costs that is show in Figure 20.

Type I(𝛼) availability is the number of times during the contract that the demand was

not met perfectly. It does not consider the percentage of the time in which all the failures

are replaced immediately with existing stock. Type II(𝛽) is considering what percentage of

the failure numbers are replaced, therefore the Type II(𝛽) is generally higher than type I.

The histogram of the Type I and Type II availability and cost shows the average

6These limits were chosen to simplify the numerical aspects of the simulation. The ratio (10:1) insures

that we cover a vast area of design space. Ultimately the important attribute is the points that optimize the

contract and the ratio of ℎ𝑝 to 𝑏𝑝 plays a bigger role and can be mapped to any other problem including the

Torpedo case.
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Figure 20: Performance Measurements in a single run for a single contract

Figure 21: Sample performance scenario in one contract, each performance period is

summarized by a box and the histogram is the overall performance of the population over

the contract period

number of three performance measures for the given contract over the simulate demand

scenarios. Figure 21 looks closer at a single contract with 10 assessment periods and how

the inventory level and demand availability oscillates over different demand scenarios. It
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is clear that since the contract has a good measure of prediction, the order size in each

period meets the demand and the average inventory level at each period is very low. Thus,

despite the low alpha and beta service level (materiel availability score), the contractor

minimizes the costs with minimum inventory level and back-order size.

5.6 Optimization-via-Simulation

In this section the Optimization-via-Simulation for optimizing stochastic discrete-event

systems via simulation is explained. The focus in this work is on the expected cost for

each contract using simulation to compare different contract’s performance. From the view

point of the contractor, there is no need to consider the effect of assessment cost since we

assume the assessment is done by the customer or a performance review board on behalf

of the customer. To isolate the important factors of contract parameters we also ignore

the effective discount rate to make the comparison between different assessment intervals

clearer.

Table 5.2 provides the parameters assumed to generate the 900 different contracts

that were considered to cover the domain of uncertainty in contractor incentive space from

the view point of the customer.

Table 5.2: Parameters of 900 simulated contracts

Holding cost (ℎ)
USD/month

Shipping

cost (s)

Back-order cost (𝑏)
USD/month

Number of

Assessments (𝑁𝑎)
Contract

Number

1000, 2000,… , 10, 000 Fixed 2800 1000, 2000,… , 10, 000 4, 6, 8, 10… , 18, 20 1, 2, … , 900

The effect of shipping cost was held constant (effectively removing it influence from

the analysis) in the model because we are only interested in the behavior of the contractor

in terms of reliability- and maintainability-related goals meaning how many items they

maintain in inventory to target the availability.

The problem in (48) of Section 5.5 is solved using different methods depending on

the particular distribution of 𝑤(𝑡). Since 𝑤(𝑡) is assumed to be continuously distributed,
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we approximated the stochastic problem by sampling from its distribution. Therefore,

the expectation in the stochastic objective was replaced by the empirical mean over𝑀

samples of 𝑤(𝑗)(𝑡), 𝑗 = 1,… ,𝑀. And the stochastic constraints expanded according to the

𝑀 samples. Following equations shows the problem in its refined form:

min
1
𝑀

𝑀
􏾜
𝑗=1
􏿯𝐸􏿵

𝑁𝑎

􏾜
𝑘=0
max(ℎ𝑥(𝑗)(𝑡) − 𝑏𝑥(𝑗)(𝑡)) + 𝑠|𝑢(𝑗)(𝑡)|􏿸 + 𝑔(𝑇)􏿲 (50)

subject to

ℎ = ℎ𝑎 + ℎ𝑝, 𝑏 = 𝑏𝑎 + 𝑏𝑝

(ℎ𝑥(𝑗)(𝑘) − 𝑏𝑥(𝑗)(𝑘)) + 𝑠|𝑢(𝑗)(𝑘)| < 𝜂Payment􏿵
𝑘𝑇
𝑁𝑎
􏿸

𝑗 = 1,… ,𝑀, 𝑘 = 0,… ,𝑁𝑎

0 < 𝑢(𝑗)(𝑘), 𝑗 = 1,… ,𝑀, 𝑘 = 0,… ,𝑁𝑎

𝛼 < 𝑥(𝑗)(𝑘), 𝑗 = 1,… ,𝑀, 𝑘 = 0,… ,𝑁𝑎

Where

𝑥(𝑗)(𝑡) = (𝐼 + 𝐻𝑄)𝐺𝑊 (𝑗) + (𝐼 + 𝐻𝑄)𝑥0 + 𝐻𝑟

𝑢(𝑗)(𝑡) = 𝑄(𝐺𝑊 (𝑗) + 𝑥0) + 𝑟

Due to the sampling procedure, the dimension of the problem increases dramatically,

but the problem is still in the form of a linear programming, and remains solvable.

For each contract candidate, 10,000 performance period were generated to test the

contractor’s optimal decisions over the contract length. A small group of of results are

shown in Figure 21 by the box plots of inventory level, failure rate and order size of

contractor. The box plot shows the of the performance of the contractor in each assessment

interval and its expected value along with outliers caused by large number of contract
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population used in the stochastic simulation . The histogram of the inventory level shows

that the performance of the contractor is satisfactory not only by the measure of expected

value but by the majority of the population of performance. However, because of the large

number of samples in the stochastic simulation there are also outliers in performance that

are shown in the left plots. In the rest of simulations, in order to illustrate the effectiveness

of our framework and model, the following metrics were simulated and studied, expected

annual cost for customer and contract along with expected availability measured by service-

level metrics.

We also look at the material availability based on the fill-rate definition in (40);

Moreover, each point that represents an expected value is addressing the annual performance

of a single contract design over 10,000 simulated contractor performance. Considering a

fixed cost per assessment independent of the inventory size (assessment is not testing and

therefore independent of number of units in inventory or fleet), the contractor performance

measured by the expected availability and total cost for a total contract length of one year

is simulated, and the result is shown in Figure 22a and 22b.

The calculation of expected annual inventory operation cost from the simulation for

900 contracts is done as follows:

𝐸(Contractor Cost(𝑁𝑎, 𝑏, ℎ)) = min𝐸􏿵
𝑁𝑎

􏾜
𝑘=0
𝜑(𝑥𝑗(𝑘), 𝑢𝑗(𝑘)) + 𝑔(𝑁𝑎)􏿸 (51)

= min
1
𝑀

𝑀
􏾜
𝑗=1

𝑁𝑎

􏾜
𝑘=1
𝜑(𝑥𝑗(𝑘), 𝑢𝑗(𝑘)) + 𝑔(𝑁𝑎) (52)

One can look at the performance of the contractor in each of these contracts for

worst-case scenario analysis or derive secondary objectives such as materiel availability as

shown in Figure 22a. The points of this plot are coming from the expected 𝛽𝑠𝑒𝑟𝑣𝑖𝑐𝑒 level

calculated by:

𝐸(𝛽𝑠𝑒𝑟𝑣𝑖𝑐𝑒(𝑁𝑎, 𝑏, ℎ)) = 𝐸(𝐴|𝑁𝑎) = 􏿵
1

𝑚𝑏𝑚ℎ
􏿸􏿵
1
𝑚
􏿸

𝑁𝑎

􏾜
𝑘=1

𝑀
􏾜
𝑗=1
𝛽𝑠𝑒𝑟𝑣𝑖𝑐𝑒 (53)
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Figure 22: Expected performance measure of contractor in 900 simulated contracts

As Figure 22b shows, the expected cost to the contractor for each of the assessment

intervals indicates that by decreasing the number of assessments (𝑁𝑎), which is the same

as increasing 𝑁𝑑, total cost can decrease. However there is a limit to this trend, meaning
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Figure 23: Customer Cost including the Assessment Cost

that after a certain number of assessments the amount of cost avoidance will diminish.

by assuming a cost for the assessments, customer will need a trade-off for the 𝑁𝑎 and

consequently for the assessment interval. This optimum value of 𝑁𝑎 minimizes the cost

Figure 24: Expected Availability level over number of days in each assessment
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of operation for the customer and based on the level of monitoring and payment this can

reduce the cost that the contractor incurs as well.

In the next step, we study the simulation results in groups, with each group having

same 𝑁𝑎 (number of assessments) or 𝑁𝑑 (assessment interval length), and use expected

value as the descriptive factor of each group, we observe that there is an optimum value

of 𝑁𝑑 or 𝑁𝑎. Since we are assuming the assessment interval is a customer decision we

calculate the performance measures given each assessment interval length. This can be

calculated by using all the generated samples. For example customer cost can be calculated

by:

𝐸(𝐶𝑐|𝑁𝑎) = 􏿵
1

𝑚𝑏𝑚ℎ
􏿸􏿵
1
𝑚
􏿸

𝑁𝑎

􏾜
𝑘=1

𝑀
􏾜
𝑗=1

Customer Cost

𝑁𝑎
(54)

In Figure 23 and 24, each point is a the average performance of 100 contracts that all

share the same𝑁𝑎, and each one is the result of 10,000 sample path simulation for different

failure time series. The Service Level is given by (39). Figure 23 is the 𝐸(𝐶𝑐|𝑁𝑎), represents

expected cost for each assessment interval size from the view point of the customer.
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The total contract length is assumed to be 1 year. Figure 23 shows that for the

customer there is an optimum based on the cost of the assessments. Figure 24 shows

that from the availability perspective there is also a shrinking gain from more frequent

assessment.

Figure 25 shows the cost-availability relationship in the 9000 simulated contracts.

Each contract is represented with their mean of annual cost and mean of material availability

as one point on this plot. The group in red are the ones that result in expected availability

more than 90% and can be used for further analysis. Grouping the points in Figure 26 by

𝑁𝑎 allows the customer to choose an assessment policy, but the customer does not know

the costs on the contractor side. Figure 26 shows the direct relationship between cost and

availability for each of these groups (𝑁𝑎 = 12 has the minimum cost).
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Figure 26: Availability-Cost

We have chosen to present the majority of the results in terms of 𝑁𝑎 (the number of
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assessments in the contract) rather than 𝑁𝑑 (the assessment window length) because, 𝑁𝑎

more clearly distributes the results in a structured way (i.e., it is linear).

The results show that the optimum interval reduces the cost per period for the

contractor as well. The optimal point in the case of low assessment cost ($50 per assessment)

as shows in Figure 23, saves between 5-8%7 of the total operation cost of the customer

comparing to a quarterly assessment.

Using the proposed affine controller scheme for controlling the availability, we

observed: 1) there is a (globally) optimum assessment window length for assessing the

contractor. An assessment window that is larger or smaller than this optimum will not

benefit the contractor or the customer. However, the cost versus assessment window length

relation (Figure 26) is not symmetrical around the optimum point and adding more time to

the assessment window has a less detrimental effect than reducing the time (i.e., assessing

more often).

5.7 Mean-Variance Analysis

From a risk management perspective, the cost-risk analysis is another critical factor in

decision making. Financial risk, in federal acquisitions, is mostly associated with the risk

that the project costs more than what was budgeted. The term Cost Risk can be used to

refer to this variability of cost from what it is expected to be throughout time. The Cost

Risk (CR) can lead to performance risk if cost overruns lead to reductions in scope or

quality on the contractor side. Cost Risk (CR) can also lead to schedule risk if the schedule

is extended because not enough funds are available to complete the project on time.

A common method that can be used to determine the best contract parameters is

the expected variance of cost in each contracting scenario. The variance of costs can

7In Figure 23, for 𝑁𝑎 = 12 in the case of medium assessment cost ($100) the annual cost of contract for

the customer in a quarterly assessment is $43,312. This means 6.8% = (43, 312 − 40, 557)/40, 557 more
that optimum cost or in other words the optimum assessments can reduce the cost by 6.3% = (43, 312 −
40, 557)/43, 312 from the case of quarterly assessment.
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show the range of uncertainty at each decision point for the contractor. This risk will

indirectly impact the customer via the contractor performance and readiness. The variance

of the expected costs for contractor over 10,000 simulations for each contract is shown in

Figure 27. Figure 27 shows that by decreasing the number of days in each assessment, the

variability in the performance of the contractor will decrease, which means there will be

less variation in cost to the contractor. Figure 27 also shows that if the contractor looks

at variance as a determining objective, the previous optimum might not be chosen and

depending on the risk-taking attitude of contractor or customer the optimum point can be

changed. To find a trade-off between cost-risk and expected cost we use a commonly used

method in Modern Portfolio analysis.

Modern portfolio theory (MPT) is a mathematical framework for assembling a

portfolio of assets such that the expected return is maximized for a given level of risk,

defined as variance. In Modern Potfolio Theory, one models the rate of returns on an

investment (asset or decision) as random variables. Here the variance of the expected

total cost of a contract is taken as a surrogate for its volatility (risk). Economist Harry

Markowitz introduced MPT in a 1952 essay (Markowitz, 1952).

As ameasure of risk that contractor is dealingwithwe looked at coefficient of variance

of annual cost for each contract number. In probability theory and statistics, the coefficient

of variation (CV), also known as relative standard deviation (RSD), is a standardized

measure of the dispersion of a probability distribution or frequency distribution.

Coefficient of Variation 𝐶𝑉 =
𝜎
𝜇

(55)

𝜎 =
􏽱

∑(total_cost(𝑗) − 𝜇𝑗)2

𝑛 − 1
, 𝜇 =

∑𝑗
1 total_cost(𝑗)

𝑀

As Figure 28 summarizes, a risk-averse decision maker will prefer a situation with

larger number of assessments (𝑁𝑎), which corresponds to a smaller assessment window, to
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Figure 27: Coefficient of variation for simulated contract lifecycles as a measure of cost-risk

for contractor

achieve a lower variation in costs lower due to its lower variability.

It is often expressed as a percentage, and is defined as the ratio of the standard

deviation and the mean. Complementary studies such as Value at Risk (VAR) can benefit

from the distribution of each simulation.

Optimizing the expected cost alone cannot guarantee that the realized cost measure

will fall within a narrow range of its expected value when the corresponding variance in

failure and eventually costs at each assessment point is high. Moreover, just focusing on

the expected cost ignores the risk attitude (risk aversion, risk neutral or risk seeking) of

contractors, which may cause them to change their strategy during the contract period. To

investigate this case, we have carried out a mean–variance (Mean-Var) analysis on the

simulated contract with their demand scenarios.

𝐸(𝐶𝑐|𝑁𝑎) =
1

𝑚𝑁𝑎

𝑀
􏾜
𝑗=1

contractor_cost(𝑗)

To measure this cost risk, we look at the coefficient of variance of the cost over
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Figure 28: Coefficient of variation for simulated contract for

the contract length. Figure 29 shows expected cost versus the expected risk in 10,000

simulated contracts. Mean-Var Analysis (MVA) recommends that the best contracts will

be on the Pareto-frontier of the curve that bounds these data points. The best contracts

can be selected and compared against the worst contracts over the same set of demand

scenarios and further analysis can be performed.

Since the assessment cost is added linearly it will only shift the mean of the costs

and it will not impact the variance of the costs. Therefore, the variability of the assessment

cost will not influence this result.

The result of MVA is shown in Figure 29, the hyperbola-shape area shown by the

data points is referred to as the ’Markowitz Bullet’. The efficient hyperbola (frontier)

of this curve is where the risk is minimized and the return (cost savings in this case) is

maximized.

We can trace back the points on the frontier and find the contracts that produce the

frontier of this group. Figure 30 uses the same group average to show the effect of the
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Figure 29: Mean-Var Analysis of 9000 contract from the view point of contractor

assessment interval on the cost-risk curve for the customer. The lowest cost and lowest

risk is highly desired by the customer.

5.8 Discussion

In this case study, a stochastic model is used in a hybrid simulation to search for the optimal

number of assessments throughout an availability-based contract.

A non-collaborative relationship between contractor and customer is assumed in

the sense that contractor does not share information (cost structure, reliability) or profit

with the customer. Since we are looking to design a contract from the customer point
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Figure 30: The Mean-Var analysis from the customer point of view

of view assuming an ideal contractor, we first assumed a range of uncertainty for the

operational cost of a contractor given different contractual penalty rates and assessment

intervals. We also assumed that the contractor will try to maximize its profit by minimizing

the spare parts inventory operational cost while respecting availability requirements. We

used an affine controller to model the contractor behavior, which uses historical data to

make an optimum decision in every ordering cycle. This algorithm has been shown in

previous work (Skaf & Boyd, 2010) to outperform Model Predictive Controller (MPC)

and greedy algorithms. Using these assumptions, a hybrid of discrete-event simulation and

dynamic system simulation was used to test 900 contracts each with 1000 failure time series.

Unknown information about contractor was addressed by assuming uniform distributions.

The customer will ask for a certain number of assessments (𝑁𝑎) throughout the contract.

The cost of one year of the contract was used as a basis for comparison between different

contracts. Data provided by Ferguson and Sodhi (2011) provided us with a practical range
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of the inventory parameters for a Torpedo Enterprise. The cost to the customer will also

include the cost of performing the assessments. Next, the cost-risk issues were addressed

by employing Mean-Var analysis. The coefficient of variation (CV%) of cost per period

was used as the measure of risk that contractor and customer are facing at each period.

Finding the best contract based on the cost-risk criteria is a multi-objective decision that

uses Mean-Var analysis data.

In the formulation of affine controller for the contractor, we used a convex cost

structure to achieve a global optimum, which minimize the inventory level and back-order.

This model can be extended to target a certain level of inventory (safety stock), order-size

limits, or an availability growth curve through time.

An availability-cost trade-off analysis was used to show the impact of a different

number of assessments including its associated costs. In our analysis, we assumed that

reliability (and thereby demand) is not a control parameter for the maintenance contractor,

however in reality, PBL is designed to incentivize OEMs to improve their reliability

(Guajardo et al., 2012).

To achieve a real-world application impact, it is assumed that the number of failures

in each time per period are not independent and are correlated to address the imperfect

maintenance, the seasonality of failures and other factors identified in field-data reliability

literature (Yigitbasi et al., 2010). The performance assessment and payment structure in

this work was based on extending a PPP modeling.

Using this stochastic model, it is shown that when there is a complete lack of

information about contractor’s incentive and cost structure and without requiring detailed

requirements, the customer can build a framework by assuming an ideal contractor and the

customer can still design a contract that reduces the total life-cycle costs.

The model aims to provide guidance for better design and negotiation of availability

contracts and is expected to help both parties understand the essential purpose of the

partnership, and seek their mutual interest more efficiently. The optimum number of
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assessments and time interval for assessing the contractor’s efforts is a key factor that

determines the constraints for a contractor’s design process. Longer assessment interval

allows for more fluctuation in the inventory level, but the prediction of demand can be done

more accurately by contractor. The length of the assessment window translates directly to

the length of time over which availability is measured for contract assessment purposes.

An end-to-end quantitative model of operation that addresses the contract parameters

(assessment interval, penalty and payment model) supports contract design negotiations

and can help both parties to identify the effect of each contract term and requirement on

the possible result of the contract (Wijk et al., 2011; Settanni et al., 2017).
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Chapter 6: Summary, Contributions, and Suggestions for FutureWork

In the process of contract negotiation and contract execution the objectives and constraints

of the customer and contract (e.g., the public sector and the private sector) are different.

The private sector has full authority to decide how to obtain a maximized long-term profit,

specifically, how to control the cost of maintenance while reaching a good performance

level so as to receive a better payment. Hence, the profit not only depends on the detailed

contract terms, but also on the private sector’s Operation and Maintenance (O&M) strategy

during the contracted life time of the project. The public sector, on the other hand, is trying

to incentivize the private party to sustain a good performance level throughout the contract,

given the long-term budget constraint.

This dissertation provides a comprehensive review of the elements of the contract

that can help the customer to incentivize the contractor without adding complex terms

to the contract requirements. Analytical methods to design maintenance contracts that

address the reliability of systems and supply chain operation are reviewed and the existing

gaps analyzed. The concept of “Contract Engineering” is introduced as the concurrent

design of contract and systems(Kashani-Pour et al., 2017).

A simulation-based method that aids in contract design and negotiation was devel-

oped and demonstrated. The method allows the identification of different features of an

availability-based contract for a variety of systems that are transitioning from conventional

labor and material contract to performance-based contracting.

The simulation method introduced in this dissertation uses different models for the

contractor and customer separately which are related through a payment model. The model
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aims to guide better design and negotiation of availability contracts and is expected to

help both parties understand the essential purpose of the partnership and seek their mutual

interest more efficiently. We can extend the model developed in this dissertation (i.e., the

controller design) either to target a certain function of availability directly or an availability

growth curve through time determined by enforcing more detailed requirements. In our

analysis, we assumed that reliability (and thereby demand) is not a control parameter;

however, in reality, PBL is designed to incentivize OEMs to improve their reliability

(Guajardo et al., 2012) and the effect could be captured in the model. An extension of the

model could be used, under certain assumptions, to determine the optimum contract length

for such contracts similar to Deng et al. (2015).

The new model has several direct managerial applications: using the model one can

quantify that the contractor’s prefer a larger assessment interval because: 1) more informa-

tion is more helpful for demand forecasting, 2) the effect of a few low-performance periods

on the overall performance will be minor (more tolerance towards demand variability),

and 3) there is more time and opportunity to compensate for a sudden change in demand.

The contractor’s preferences can be observed by assessing the variance of performance

under various assessment intervals (as shown in Figure 30). However, as the simulation

model focuses on the expected cost, a long interval will cause more oscillation in contractor

behavior and not necessarily help the contractor. Figure 26 shows that by increasing the

length of the assessment interval the variability in the performance of the contractor will

increase; this variability is measured at the end of each assessment interval. This variability

shows the amount of risk the contractor is facing during each period. Moreover, in this

work, the contractor does not change their optimal policy after each observation, but one

could consider such changes for some contractors. It is also clear that there is no need to

increase𝑁𝑎 excessively, and there is a threshold beyond which choosing a larger assessment

window size can result in any desired variability for a given performance level.
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6.1 Contributions

In general, there has been very little work that links engineering design to the contract

design (Sandborn et al., 2017). This dissertation represents the first attempt to formally

(and quantitatively) connect these two.

• The approach developed in this dissertation represents a new method for cost mod-

eling and pricing sustainment contracts. To the best of the author’s knowledge, no

previous cost modeling methods have considered the effect of uncertainty of contrac-

tor incentives to the customer cost models and contract requirements selection. This

method can be classified as bottom-up discrete-event simulation for cost modeling

for outcome-based pricing.

• A comprehensive end-to-end event-based model for modeling the operation, supply-

chain and the payment mechanism has been developed using a variety of methods

(discrete-event simulation and dynamic programing). This model covers the whole

spectrum from the physical layer of the system (represented in the stochastic Petri

nets) to the payment structure (based in public-private partnerships) including incen-

tives of maintenance agents and the contractor goal. Such an integrated approach to

modeling has not appeared previously in the maintenance and service literature.

• Dynamic Model of Contractor Behavior

Instead of a direct discrete-event simulation, a closed-loop optimal affine-controller has

been used to model the predictive and corrective actions of the contractor throughout the

inspection periods and total length of contract with response to availability requirements.

The affine-controller is used to model an ideal contractor that minimizes the expected

total cost of operating the maintenance inventory. Using this assumption the customer can

assume a range of uncertainty for the contractor performance and incentives and simulate
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the total-life-cost of the contract to find the best set of requirements, i.e., time-assessment

window. Usage of such approach in contract modeling is new.

• Payment Plan, Award and Penalty Design

The adaption and extension of “availability payment” concepts currently in use for civil

infrastructure PPPs to contract design and pricing for PBL contracts. The model develop-

ment in this dissertation explores and demonstrates the merit of the civil infrastructure PPP

approach for platform-level PBL and new acquisition subsystem PBL contracts. We have

focused on availability as the key required outcome and introduce a stochastic and layered

availability requirement into the proposed civil infrastructure PPP based PBL contract

structure.

• By assuming the cost for the assessments, there will be a trade-off that will provide

a global optimum for the number of assessments (𝑁𝑎) and consequently for the

assessment interval. This optimum value of 𝑁𝑎 minimizes the cost of operation for

the customer. An assessment window that is larger or smaller than this optimum

will not benefit the contractor or the customer. However, the cost versus assessment

window length relation is not symmetrical around the optimum point and adding

more time to the assessment interval has a less detrimental effect than reducing the

interval (i.e., assessing more often). In addition, this interval will reduce the cost-risk

for the customer as well as the variation of operational cost for the contractor.

• An optimal performance assessment interval was shown to exist that has a consid-

erable influence on the cost of the contract. The concept of an optimal assessment

interval has not existed previously in the maintenance service contract literature, but

has practical applications for defining contract options periods. This suggests that

there is a potential for defining newmetrics for contractors that can make availability-

based contracts more successful. Moreover, there could be new contract mechanisms

designed to account for the time assessment window.
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• A multi-objective decision making can benefit from the mean-var analysis to assess

contractors with different risk attitudes (risk-averse, risk neutral) with regard to

cost-risk and variation of cost at each assessment time.

• The methodology developed in this dissertation can help when a Performance Based

Logistic (PBL) Contract is being negotiated. The decision making team can use the

data provided in Mean-Var or Cost-Risk analysis and might not need to repeat the

simulation during the negotiation given the inclusiveness of the result state-space

provided by simulation.

6.2 Future Work

Since the structure is based on simulation-based search, nearly any type of payment model

or requirement (level or ramp) can be tested using the developed method. Different payment

mechanisms to address the cost variations can be pursued with advanced optimization

methods.

Future work can be done using a game theoretic, two-layer optimization structure

that models the interaction between the contractor and the customer under sudden changes

or interruption in the outcome, or to investigate the effect of sharing of information (PHM

information) on total cost. Including system design refreshment decisions as well as

requirement trends in time.

The optimization of the performance must be achieved under conditions that include

the different types of risk-taking attitudes of the contractor. The role of heuristic search is

essential due to complexities in the objective function and operation requirements. For

example, objective functions such as conditional value at risk (CVAR) put more focus on

the preparedness. The role of uncertainty in demand that is rooted in the reliability or the

systems requirements can be further investigated. The physical model that generates such

demand can become more complex.

Finally, the Government Accountability Office (GAO, 2016) estimates the current
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US weapon portfolio total acquisition cost, including buying and sustaining, will be around

$1.44 trillion—and the estimates are based on deliberately optimistic projections. The

costs will likely grow, as has happened many times in the past. A data-driven approach

can use publicly available sustainment contracts solely based on their base and option

period lengths and assess the role of program assessment periods on cost-over runs and

availability.
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Appendix A: Affine Controller Design

Consider a discrete-time linear time-varying system, which satisfies the following system

transition:

𝑥(𝑡 + 1) = 𝐴(𝑡)𝑥(𝑡) + 𝐵(𝑡)𝑢(𝑡) + 𝑤(𝑡), 𝑡 = 0,… , 𝑇 − 1 (56)

Equation (56) can be rewritten as:

𝑥 = 𝐺𝑤 + 𝐻𝑢 + 𝑥0 (57)

where

𝐺 =

⎡
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1𝐵(0) 𝐴𝑇

2𝐵(1) ⋯ 𝐴𝑇
𝑇𝐵(𝑇 − 1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

and

𝑥0 = (𝑥(0), 𝐴1
0𝑥(0), … ,𝐴𝑇

0𝑥(0)𝑇
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where 𝐴𝑡
𝜏 = 𝐴(𝑡 − 1)𝐴(𝑡 − 2)⋯𝐴(𝜏), and 𝐴𝑡

𝑡 = 𝑙.

Then we consider a casual feedback affine controller, which has the form of:

𝑢(𝑡) = 𝜑𝑡(𝑥(0), … , 𝑥(𝑡)) = 𝑢0(𝑡) +
𝑡
􏾜
𝜏=0

𝐹(𝑡, 𝜏)𝑥(𝜏) (58)

𝜑𝑡 is called the control policy. With a close-loop system, the feedback matrix can be

defined as:

𝐹 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝐹(0, 0)

𝐹(1, 0) 𝐹(1, 1)

𝐹(𝑇 − 1, 0) 𝐹(𝑇 − 1, 1) 𝐹(𝑇 − 1, 𝑇 − 1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Then we will have

𝑢 = 𝐹𝑥 + 𝑢0 (59)

With (57) and (59), we can solve for 𝑥 and 𝑢 in ters of 𝑤, to get

⎡
⎢⎢⎢⎢⎢⎢⎣
𝑥

𝑢

⎤
⎥⎥⎥⎥⎥⎥⎦ = 𝑃𝑤 +

⎛
⎜⎜⎜⎜⎜⎜⎝
𝑥̃

𝑢̃

⎞
⎟⎟⎟⎟⎟⎟⎠ (60)

Where 𝑃 is called close-loop matrix

𝑃 =

⎡
⎢⎢⎢⎢⎢⎢⎣
𝑃𝑥𝑤

𝑃𝑢𝑤

⎤
⎥⎥⎥⎥⎥⎥⎦ (61)

𝑃𝑥𝑤 = 𝐺 + 𝐻𝐹(𝐼 − 𝐻𝐹)−1𝐺

𝑃𝑢𝑤 = 𝐹(1 − 𝐻𝐹)−1𝐺
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And

𝑥̃ = 𝑥0 + 𝐻𝑢0 + 𝐻𝐹(𝐼 − 𝐻𝐹)−1(𝑥0 + 𝐻𝑢0)

𝑢̃ = 𝐹(𝐼 − 𝐻𝐹)−1(𝑥0 + 𝐻𝑢0) + 𝑢0

The optimization problem is in general not convex in the design variables 𝐹 and

𝑢0. By a suitable 𝑄-design procedure, however, these problems can be cast as convex

optimization problems, and therefore solved efficiently:

Define:

𝑄 = 𝐹(𝐼 − 𝐻𝐹)−1 (62)

Then

𝐹 = (𝐼 + 𝑄𝐻)−1

Define

𝑟 = (𝐼 + 𝑄𝐻)𝑢0 (63)

Then

𝑢 = (𝐼 + 𝐹𝐻)𝑟

Then the close-loop matrix P becomes

𝑃 =

⎡
⎢⎢⎢⎢⎢⎢⎣
𝑃𝑥𝑤

𝑝𝑢𝑤

⎤
⎥⎥⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎢⎣
(𝐼 + 𝐻𝑄)𝐺

𝑄𝐺

⎤
⎥⎥⎥⎥⎥⎥⎦ (64)

𝑥̃ = (𝐼 + 𝐻𝑄)𝑥0 + 𝐻𝑟

𝑢̃ = 𝑄𝑥0 + 𝑟
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Therefore:

𝑥 = (𝐼 + 𝐻𝑄)𝐺𝑊 + (𝐼 + 𝐻𝑄)𝑥0 + 𝐻𝑟 (65)

𝑢 = 𝑄(𝐺𝑊 + 𝑥0) + 𝑟 (66)
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Appendix B: Literature Review Methods

The strategy used to analyze the existing relevant work on availability contract design

and analysis was based on multiple cross-checking of models and contexts of applications

and literature. A variety of related literature was studied to identify contract models

or contract-oriented applications in the context of performance- and availability-based

contacts. Related works were identified through an electronic search of databases that

included: Emerald, Science Direct, IEEE Explore, library files and reference lists in

relevant papers. In addition, the literature search was extended to the US governement

websites (NASA, GOA, DoD, Defense Acquistion University) and consulting companies’

web pages (Booz Allen, CSSI, RAND, etc.). In this paper, we only consider works that were

foundational, quantitative and explicitly related to designing availability-based contracts

and sustainment models.

A structured approach was adopted to develop a framework for the assessment of

works from variety of literature from reliability to supply-chain management. This struc-

tured approach is based on the following questions: 1) What is the domain of application

or theory the paper is focused on? 2) What is the context of the problem statement in the

paper? 3) What type of contract is being addressed? 4) If the paper is in the reliability

domain, what elements relevant to contract design are discussed in the paper? 5) If the

paper is in the supply chain realm, what is the modeling contribution of the paper? 6)

Is the work from the view point of the customer or the contactor (or both)? 7) What is

the quantitative nature of the model? And 8) If an optimization method is used, how are

the constraints or objectives connected to contract requirements? In addition, there was a

116



careful study of the quantitative problem statement in each optimization paper including

objective function, constraints, time horizon of the algorithm (finite, infinite) and the scope

of the model (fleet level or individual unit of the system). This approach is shown with the

data collected in this study in Table B.1 for a selected group of papers. The organization of

the paper is based on the framework shown in Table B.1.
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Table B.1: Framework for comparison of examples of computational approaches to availability-based contract design

ELEMENTS OF CONTRACT CONTEXT AND APPLICATION OF 
CONTRACT

METHODS AND MODELS

Type of paper Type of 
Contract

View Point Requirements
Constraints

Context RAMS
Aspect

Supply Chain
Aspect

Modeling 
Approach

Time Horizon Optimization 
Method

Review
Report
Case-study
Method
Application

PBL/
Availability-
based Contract/
PPP

Contractor

Customer

Both

Objective 
function 
Deterministic/
Probabilistic
Fleet Level/
Product-unit

Economics
OR
L+SCM
RAMS
LCC
PM
ACQ

Reliability
Inventory
Availability
Maintenance
CM
Warranty
LCC

Logistics
Inventory
Transportation
Supply Chain

Markov 
Models/
Petri-nets/
DES
/Close-Form
SD/ FL/
Simulation

Periodical
Infinite
(steady-state)
Finite

LP
DP
Stochastic 
Programing
GA
Heuristics
Monte-Carlo

Datta and Roy, 
2010

Review of 87 
papers

Availability-
based Contract

Both LCC LCC

Jazouli et al., 
2010

Method Availability-
based Contract

Contractor Deterministic / 
Product unit

RAMS
LCC

LCC DES Finite
Parametric

Monte-Carlo

Dandotiya, et 
al., 2008

Method Availability-
based Contract

Deterministic RAMS Maintenance Closed-form Finite
parametric

LP

Ferguson et al.,
2011

Method PBL Both SCM
ACQ

Inventory Closed Form Monte-Carlo

de la Garza, et 
al., 2008

Method PBL Customer Deterministic CM road condition Periodical
Parametric

Sampling 
Procedure

Mendoza et al., 
2005

Report PBL Customer PM

Komoto, et al., 
2011

Method PBL Contractor LCC DES Stochastic 
Programing

Volvoi, et al.,
2004 

Method Fleet Level Reliability Petri Nets

Arora et al.,
2010

Method Contractor OR Inventory
supply chain

Finite
Parametric

Heuristic

Bowman &
Schmee, 2001

Method Contractor OR LCC
Availability

DES 5-20 years DES

Nilsson et al.,
2007

Method
Case-Study

Contractor LCC LCC Closed-form 20 years

Frangopol et
al., 2003

Review of 195 
papers

Both LCC
RAMS

Warranty
RAMS

Inventory

Lapa, et al.,
2006

Method Cost&
Reliability

PM Probabilistic 
Closed-form

Flexible 
intervals 

GA

ACQ : Acquisition ; CM: Condition Monitoring; DES: Discrete-Event Simulation DP: Dynamic Programing ; FL: Fuzzy Logic; GA: Genetic Algorithm; LCC:

Life Cycle Cost; LP : Linear Programing; L+SCM : Logistics and Supply Chain Management; OR Operational Research ; PBL: Performance Based Contract; PM:

Predicative Maintenance; PPP: Public Private Partnership; RAMS: Reliability, Availability, Maintainability Safety; SD: System Dynamics.

1
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