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Abstract: It has been known for some time that the classical work of Kirchhoff, Love,
and Birkhoff on rigid bodies in incompressible, irrotational flows provides effective models
for treating control problems for underwater vehicles. This has also lead to a better
appreciation of the dynamics of such systems. In this paper, we develop results based on
geometric mechanics and center manifold theory to solve controllability and stabilization
questions for a class of under-actuated left invariant mechanical systems on Lie groups
that include approximate models of underwater vehicles and surface vehicles. We also
provide numerical evidence to capture the global properties of certain interesting feedback
laws.
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1 INTRODUCTION

In this paper we present results related to the con-
trollability and stabilization of a class of under-
actuated mechanical systems with symmetry. We
consider systems with configuration space G, a Lie
group, and G-invariant forced dynamics on the
cotangent bundle T ∗G.

This research is motivated by issues related to the
control of under-actuated hovercraft and underwa-
ter vehicles. It can be shown that simplified mod-
els of these systems satisfy the above assumption
of G-invariance (see Section 2). For example, if
an underwater vehicle is modeled as a completely
submerged rigid body in an inviscid, incompress-
ible and irrotational fluid of infinite volume, the
impulse motion of the body-fluid system can be
shown (Lamb, 1945; Birkhoff, 1960) to vary as
the momentum of a finite dimensional system un-
der the influence of external forces. Hence, iden-
tifying the configuration space of the underwater
vehicle with the Lie group SE(3), the dynamics
can be modeled on T ∗SE(3). The existence of a

∗This research was supported in part by a grant from
the National Science Foundation’s Engineering Research
Centers Program: NSFD CDR 8803012, and by the Army
Research Office under the MURI97 Program Grant No.
DAAG55-97-1-0114 to the Center for Dynamics and Con-
trol of Smart Structures.

control law to steer these systems in situations of
actuator failure poses an interesting problem. To
resolve questions related to controllability we ob-
serve that a geometric approach leads to a deeper
understanding of the problem. The G-invariance
permits the dropping of the dynamics to a lower
dimensional space, namely the quotient manifold,
T ∗G/G. Analysis of the reduced dynamics pro-
vides insight into properties of the unreduced dy-
namics. In (Manikonda and Krishnaprasad, 1997)
we presented sufficient conditions (Theorem 3.2)
for controllability of the reduced dynamics of these
systems. In this paper we extend these results and
present sufficient conditions for controllability of
the unreduced dynamics (Theorem 3.6 and Theo-
rem 3.10).

In addition to proving results on controllability,
in this paper, we also present a general ap-
proach (Theorem 4.2), based on center manifold
theory, to construct feedback laws to stabilize rel-
ative equilibria of mechanical systems with sym-
metry. Our approach again exploits the geometry
of the reduced space and the Lie-Poisson structure
to show that under certain hypothesis the fixed
points of the reduced dynamics can be shown to
belong to an immersed equilibrium manifold (The-
orem 4.1). The existence of this equilibrium man-
ifold and controllability are used to design stabi-



lizing feedback laws.

The paper is organized as follows. In Section 2
following a brief discussion on Lie-Poisson re-
duction, examples of left-invariant mechanical
systems are presented. In Section 3 we present
results on controllability. In Section 4 a general
approach based on center manifold theory, to
construct feedback laws to stabilize relative
equilibria are presented. Conclusions and direc-
tions for future research are discussed in Section 5.

2 PRELIMINARIES AND
EXAMPLES

In this section we present, briefly, the geometric
framework used in this paper. For the class of
mechanical systems discussed, we assume that the
configuration space of these systems can be identi-
fied with a Lie group G . We model the dynamics
of these systems as controlled Hamiltonian sys-
tems on T ∗G. Written in the form of an affine
nonlinear control system the dynamics take the
form

Σ : ẋ = XH(x) +
m∑
i=1

Yi(x)ui. (1)

In Equation (1) XH is a Hamiltonian vector field
with respect to a Hamiltonian H : T ∗G → IR
and the canonical Poisson bracket on T ∗G. We
further assume that the Hamiltonian H and the
control vector fields Yi are G-invariant i.e. ∀g ∈
G, and x ∈ T ∗G, H ◦ T ∗Lg(x) = H(x) and
T (T ∗Lg)Yi(x) = Yi(T

∗Lgx). Here Lg denotes the
left action of G on itself and T ∗Lg the cotangent
lift of Lg.

Since T ∗Lg is a free and proper action recall that
the dynamics on T ∗G project 1 to dynamics on
T ∗G/G ∼= g

∗. In particular the Hamiltonian H,

projects to H̃ defined on g
∗ s.t. H = H̃ ◦ π,

where π : T ∗G → g
∗ denotes the projection map,

and the Hamiltonian vector field XH projects to a
Hamiltonian vector field XH̃ on g

∗. Further XH̃ is
Hamiltonian on g

∗
− w.r.t. to the reduced Hamilto-

nian H̃ and the minus Lie-Poisson bracket define
on g

∗. Hence on g
∗
− the reduced dynamics are

given by

Σ̃ : µ̇ = XH̃(µ) +
m∑
i=1

Ỹi(µ)ui (2)

As we shall see the Lie-Poisson structure of XH̃
and the geometry of g

∗ play an important role in
determining controllability and stability proper-
ties of the reduced system.

Example 1: The Jet-Puck - An Under-
actuated Hovercraft We model a hovercraft
as a planar rigid body with a vectored thrust
(Manikonda and Krishnaprasad, 1996) and iden-
tify its configuration space with SE(2)2. It is fur-

1Due to limitations on space we do not discuss the
reduction process in detail. The reader is referred to
(Marsden and Ratiu, 1994) and references therein for
details.

2In the rest of the discussion an element of SE(n), n =

ther assumed that the line of action of the force
is fixed and does not pass through the center of
mass. Observing that the Lagrangian, which is
simply the kinetic energy, and body fixed forces,
are invariant under the lifted action of SE(2) on
TSE(2), the dynamics on T ∗SE(2) project to re-
duced dynamics on se(2)∗. Choosing convected
linear momentum, (P1, P2) and body angular mo-
mentum Π as coordinates for se(2)∗, the reduced
dynamics are given by

Ṗ1 = P2Π/I + αu

Ṗ2 = −P1Π/I + βu (3)

Π̇ = dβu

where α = cosφ, β = sinφ. The drift vector field
in (3) is a Lie-Poisson vector field with respect to
the minus Lie-Poisson structure on se(2)∗ and the
reduced Hamiltonian

H̃ =
1

2I
Π2 +

‖P‖2

2m
. (4)

Example 2: Autonomous Underwater Ve-
hicle An autonomous underwater vehicle can be
modeled as a rigid body submerged in an infinitely
large volume of incompressible, inviscid and ir-
rotational fluid which is at rest at infinity (cf.
(Lamb, 1945; Birkhoff, 1960; Leonard, 1997)). We
consider an underwater vehicle with ellipsoidal ge-
ometry and assume that the center of mass and
center of buoyancy are coincident. Identifying the
configuration space with SE(3), one observes that
the Lagrangian L : TSE(3)→ IR given by

L(R, r, Ṙ, ṙ) =
1

2
(ΩTJΩ + vTMv)

is SE(3)-invariant and dynamics on T ∗SE(3)
project to dynamics on se(3)∗. Here Ω and v
denote the body angular velocity, and the lin-
ear velocity components along the body frame.
J is the body inertia matrix plus the added in-
ertia matrix due to the flow of the fluid. Simi-
larly M is the mass matrix plus the added mass
matrix associated with the fluid. (See (Lamb,
1945; Birkhoff, 1960) for details on modeling rigid
bodies in incompressible, inviscid and irrotational
flows). Let us assume that we have only one pure
force and two torques to control the position and
orientation of the underwater vehicle. Choosing
Π = ∂L

∂Ω = JΩ and P = ∂L
∂v

= Mv as coordinates
for se(3)∗ the dynamics on T ∗SE(3), in terms of
coordinates (r,R,Π, P ), are given by

ṙ = RM−1P (5)

Ṙ = R\J−1Π (6)

Π̇ = Π× J−1Π + P ×M−1P + U1 (7)

Ṗ = P × J−1Π + U2 (8)

where U1 = (u1, u2, 0)T and U2 = (u3, 0, 0)T .
Equations (7-8) correspond to the reduced dynam-
ics on se(3)∗.

Remark: In the rest of the discussion we will
assume that

J = diag(I1, I2, I3) and M = diag(m1,m2,m3).

2, 3 is given by the pair (R, r) whereR ∈ SO(n) and r ∈ IRn

is a vector from the origin of the inertial frame to the origin
of the body frame.



3 CONTROLLABILITY

Proving controllability of affine nonlinear control
systems, where the linearization is not control-
lable, is in general a difficult task. Important
contributions in this area have been due to Bon-
nard, Lobry, Crouch, Byrnes and others (Jurdjevic
and Kupka, 1981; Crouch and Byrnes, 1986; Lo-
bry, 1974)

Of particular interest in the current setting is
following result due to (Lobry, 1974; Lian et
al., 1994) where weak positive Poisson stability
(WPPS) of the drift vector field is used to con-
clude controllability. Recall that a vector field X
on a manifold M is called weakly positively Pois-
son stable if the set of points p ∈ M such that
for all T > 0 and any neighborhood Vp of p, there
exists a time t > T such that φXt (Vp)

⋂
Vp 6= ∅

(where φXt (Vp) = {φXt (q) | q ∈ Vp}) is dense in
M .

Theorem 3.1 If the system

ẋ = f(x)+
m∑
i=1

gi(x)ui, u = (u1, · · ·um) ∈ U ⊂ IRm

where U contains {u | |ui| ≤ Mi 6= 0, i, · · · ,m} is
such that f is a weakly positively Poisson stable
vector field, then the system is controllable if the
accessibility Lie algebra rank condition (LARC) is
satisfied.

While proving WPPS of the drift vector field can
be difficult, in a setting where the drift vector field
is a Lie-Poisson reduced Hamiltonian vector field,
in (Manikonda and Krishnaprasad, 1997) we prove
the following result.

Theorem 3.2 Let G be a Lie group that acts on
itself by left (right) translations. Let H : T ∗G →
IR be a left (right)-invariant Hamiltonian. Then,

(i) If G is a compact group, the coadjoint orbits
of g

∗ = T ∗G/G are bounded and the Lie-Poisson
reduced Hamiltonian vector field XH̃ is WPPS.

(ii) If G is a noncompact group then the Lie-
Poisson reduced Hamiltonian vector field XH̃ is
WPPS if there exists a function V : g

∗ → IR
such that V (µ) is bounded below, V (µ) → ∞ as

‖µ‖ → ∞ and V̇ = 0 along trajectories of the
system.

Here H̃ is the induced Hamiltonian on the quo-
tient manifold g

∗ = T ∗G/G and {·, ·}−(+) is the
induced minus (plus) Lie-Poisson bracket on the
quotient manifold g

∗ = T ∗G/G.

In our present setting of Lie-Poisson reduced dy-
namics, WPPS conditions in Theorem 3.1 can be
verified whenever the hypotheses of Theorem 3.2
hold. Once WPPS of the drift vector field has
been established Theorem 3.1 can be used to con-
clude controllability. In (Manikonda and Krish-
naprasad, 1997) we prove the following:

Proposition 3.3 The reduced jet-puck dynamics
defined by (3) are controllable if sinφ 6= 0.

Proposition 3.4 The Lie-Poisson reduced dy-
namics of the underwater vehicle with coincident
center of buoyancy and center of gravity, defined
by (7-8), are controllable if I1 6= I2.

If the symmetry group G is compact we now show
(Theorem 3.6) that the above hypotheses are suf-
ficient to conclude that the unreduced drift vector
field XH too is WPPS. To prove this we need the
following lemma- (see (Manikonda, 1997) for the
proof of the lemma and Theorem 3.6).

Lemma 3.5 Let G be a compact Lie group whose
action Φ : G ×M → M on a manifold M is free.
Let π : M → M/G denote the projection map.

Then D = π−1(D̃) is compact iff D̃ ⊂ M/G is
compact i.e the projection map π is a proper map.

Theorem 3.6 Let G be a compact Lie group
whose action on a Poisson manifold M is free and
proper. A G-invariant Hamiltonian vector field
XH defined on a manifold M is WPPS if there
exists a function V : M/G → IR that is proper,

bounded below and V̇ = 0 along trajectories of the
projected vector field XH̃ defined on M/G.

As mentioned earlier, having concluded the WPPS
nature of the Hamiltonian vector field, if the
Hamiltonian control system on M satisfies the
LARC, then from Theorem 3.1 controllability can
be concluded. The conclusion on the controllabil-
ity of the unreduced dynamics where G is com-
pact is similar in spirit to that of (Martin and
Crouch, 1984).

In the present setting of hovercraft and underwa-
ter vehicles we observe that though SE(n), n =
2, 3 is not a compact group, it is a semidirect prod-
uct, i.e. G = H ×ρ V where H = SO(n) is com-
pact and V = IRn is a vector space. For semidirect
products one observes that G/V ∼= H. Hence re-
duction of G-invariant dynamics can be performed
in two stages. First by V , to obtain dynamics on
H × g

∗, and then by H to obtain the reduced dy-
namics on g

∗. Hence under appropriate LARC
assumptions we can conclude the reduced dynam-
ics on H × g

∗ are controllable iff the Lie-Poisson
reduced dynamics on T ∗G/G are controllable.

Applying these results to the examples discussed
earlier we have the following results.

Proposition 3.7 The reduced dynamics of the
jet-puck defined on SO(2)×se(2)∗ are controllable
if sinφ 6= 0.

Proposition 3.8 The reduced dynamics (6-8) of
the underwater vehicle with coincident center of
mass and center of buoyancy, defined on SO(3)×
se(3)∗ are controllable if I1 6= I2.

In the setting where the symmetry group is non-
compact, under additional assumptions of equi-
librium controllability, reduced space controllabil-
ity is sufficient to conclude controllability on T ∗G.



Before we prove this result we define equilibrium
controllability, a concept introduced in (Lewis and
Murray, 1996). Consider a mechanical system
with a G-invariant Hamiltonian and G-invariant
forces. Assume that the Hamiltonian is quadratic

and projects to H̃ = µT II−1µ, µ ∈ g
∗, where

II : g→ g
∗ is the inertia tensor. Then the dynam-

ics on T ∗G can be written in the form
ġ = gII−1µ (9)

µ̇ = Λ(µ)∇H̃ +
m∑
i=1

f iui. (10)

Here Λ(µ) is the Lie-Poisson tensor defined on g
∗.

Definition 3.9 The system (9-10) is equilibrium
controllable if for any (g1, 0), (g2, 0) there exists a
time T > 0 and an admissible input u : [0, T ]→ U
such that the solution (g(t), µ(t)) of (9-10) with
initial conditions (g(0), µ(0)) = (g1, 0) satisfies
(g(T ), µ(T )) = (g2, 0).

Theorem 3.10 If the dynamics of a mechanical
system given by (9 -10) are such that
(i) the system is equilibrium controllable, and
(ii) the reduced dynamics (10) are controllable,
then the system is controllable.

Proof: We need to show that there exists a
T > 0 and an admissible control u : [0, T ] → U
such that given any (g1, µ1) and (gf , µf ) the so-
lution (g(t), µ(t)) satisfies (g(0), µ(0)) = (g1, µ1)
and (g(T ), µ(T )) = (gf , µf ). Using the properties
(i) and (ii) we construct such a control.

Assume that there exists a state (g3, 0) and an
admissible control u′, such that u′ will steer the
system from (g3, 0) to (gf , µf ) in finite time.(The
existence of such a (g3, 0) and u′ is shown later.)
The problem is now reduced to finding a control
to steer the system from (g1, µ1) to (g3, 0) which
is done as follows.

Let g(t, t0, g0, µ(t)) denote the the solution of (9)
at t > t0 for a particular curve µ(t) ∈ g

∗ and
initial condition g0. Similarly let µ(t, t0, µ0, u(t))
denote the the solution of (10) at t > t0 for a
particular input u and initial condition µ0, and let
ζ(t, t0, (g0, µ0), u) denote the solution of (9-10) at
t > t0 for a particular input u and initial condition
(g0, µ0).

1. Since the reduced dynamics are controllable
there exists a T1 > 0 and a control u1 such that
ζ(T1, 0, (g1, µ1), u1) = (g2, 0) (for some g2).

2. Since the dynamics are equilibrium controllable
there exists a T2 > T1 > 0 and a control u2 such
that ζ(T2, T1, (g2, 0), u2) = (g3, 0).

3. Finally applying u′ we have
ζ(T3, T2, (g3, 0), u′) = (gf , xf ).

The existence of (g3, 0) and u′ is shown as fol-
lows. Find u3 and T ′3 such that µ(T ′3, 0, 0, u3) =
µf . Existence of such a control follows from
the reduced space controllability of (10). Ap-
ply the control u3 to (9-10) with initial condi-
tion µ(0) = 0 and arbitrary g(0) = g′3. Then
ζ(T ′3, 0, (g

′
3, 0), u3) = (g4, µf ) where g4 need not

be equal to gf . Let g(t, 0, g′3, µ(t)) denote the solu-
tion to (9) where µ(t) = µ(t, 0, 0, u3). Let R ∈ G.
Then by left invariance ḡ = Rg(t, 0, g′3, µ(t)) is a
solution to (9-10). Choose R such that ḡ(T ′3) =
Rg(T ′3, 0, g

′
3, µ(t)) = gf , i.e R = g−1

4 gf and hence

ḡ(t) = g−1
4 gfg(t, 0, g

′
3, µ(t)). Again from left in-

variance it implies that ḡ(T ′3, 0, g
−1
4 gfg

′
3, µ(t)) =

gf or equivalently ζ(T ′3, 0, (g
−1
4 gfg

′
3, 0), u3) =

(gf , µf ). Hence choose g3 = g−1
4 gfg

′
3, u

′ = u3

and T3 = T2 + T ′3.

Given G-invariant dynamics, controllability of re-
duced space can be verified using Theorem 3.1
and Theorem 3.2. Equilibrium controllability
can be verified using results in (Lewis and Mur-
ray, 1996; Bullo and Lewis, 1996) where the follow-
ing sufficient conditions for equilibrium controlla-
bility are presented.

Let adξ : g→ g; η 7→ [ξ, η] denote the adjoint map
and ad∗ξ denote its dual. Let

ġ = gξ (11)

IIξ̇ = ad∗ξIIξ +
m∑
i=1

f iui (12)

define G-invariant dynamics on TG.3 Define the
symmetric product 〈· : ·〉 : g×g→ g : ξ, η 7→ 〈ξ : η〉
as

〈ξ : η〉 = −II−1(ad∗ξIIη + ad∗ηIIξ) (13)

Let B = {b1, · · · , bm} ⊂ g (a left invariant dis-
tribution on G) denote the input subspace. In
the present setting bi = II−1f i. Let Lieg(B) and

Sym
g
(B) denote the involutive and symmetric clo-

sure of B in g. A symmetric product is bad if it
contains an even number of each of the vectors in
B. A symmetric bracket is good if it is not bad.

Theorem 3.11 (Lewis and Murray, 1996; Bullo
and Lewis, 1996) The system (11-12) is equi-
librium controllable if rank(Lieg(Sym

g
)(B)) =

dim(G) and every bad symmetric product can be
written as a linear combination of good symmet-
ric products of lower degree.

We now apply Theorem 3.10 to the autonomous
underwater vehicle with coincident center of mass
and center of buoyancy. Controllability of reduced
dynamics follows from Proposition 3.4. Equilib-
rium controllability of the above dynamics can
now be verified using Theorem 3.11. Details re-
garding the relevant symmetric bracket calcula-
tions can be found in (Manikonda, 1997)

Proposition 3.12 The unreduced dynamics (5-
8) of the autonomous under water vehicle with co-
incident center of mass and center of buoyancy,
defined on T ∗SE(3) (or equivalently TSE(3)) are
controllable if I1 6= I2.

Remark: In the case of the unreduced jet-puck
dynamics as we have only one input, every non

3In (Lewis and Murray, 1996; Bullo and Lewis, 1996) it
is assumed that the dynamics evolve on TG. Setting µ =
IIξ, the two formulations (9-10) and (11-12) are equivalent.



trivial second order symmetric bracket is bad.
Hence sufficient conditions for equilibrium control-
lability are not satisfied and hence we cannot con-
clude controllability of unreduced dynamics.

4 DISSIPATIVE FEEDBACK
CONTROL

In this section we study stabilization of fixed
points of the reduced dynamics. These fixed
points give rise to relative equilibria, i.e. trajecto-
ries that are group orbits in the unreduced phase
space. For example, steady translations and ro-
tations correspond to relative equilibria for the
underwater vehicle. The energy-Casimir method
serves (cf. (Bloch et al., 1992; Bloch and Mars-
den, 1990)) as a good tool to study stability
of equilibria corresponding to dynamics of Lie-
Poisson type. Having identified unstable equi-
libria, various approaches have been adopted to
stabilize them. In (Bloch et al., 1992; Bloch and
Marsden, 1990; Leonard, 1996) feedback laws have
been chosen such that the closed loop system is
still Hamiltonian with respect to a Poisson struc-
ture defined on the quotient manifold. The ad-
vantage of choosing such a feedback law is that
the closed loop system again lends itself to sta-
bility analysis using the energy-Casimir method
or similar techniques. We refer to these controls
as Hamiltonian feedback controls. In this section
we present constructive feedback laws to stabilize
relative equilibria of Hamiltonian systems using
dissipative control laws. We define a control law
to be dissipative if the divergence of the closed loop
system is less than zero. The approach is based on
the observation that, under certain hypothesis the
fixed points of the Lie-Poison reduced dynamics
can be shown to belong to an immersed equilib-
rium manifold. The existence of this equilibrium
manifold and controllability is used to construct
stable center manifolds. The main ideas behind
this approach are described below.

Consider the Lie-Poisson reduced dynamics on g
∗

given by

µ̇ = f(µ) +
m∑
i

gi(µ)ui µ ∈ g
∗. (14)

Exploiting the symplectic foliation of g∗ by coad-
joint orbits we make the following observation (see
(Manikonda, 1997) for proof).

Theorem 4.1 Let µe be an equilibrium point of
(14) such that there exists a neighborhood V of
µe in which the Poisson tensor Λ(µ) has con-
stant rank. Then in V there exists an im-
mersed submanifold E such that for all µ ∈
E , XH̃(µ) = 0. Further locally there exist coor-
dinates (y1, · · · , yr, z1, zn−r) such that z = 0 on
E.

We call E the equilibrium submanifold. Lets as-
sume that E is of dimension k. Choose coordinates
(y, z) in a neighborhood V of µe such that z = 0
on E . In these coordinates µe = (ye, 0) and(14)
can be written as

ẏ = A1
2z + f̃1(y, z) +

m∑
i=1

b1i ui +
m∑
i=1

g̃1(y, z)u1(15)
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Figure 1: Stabilizing dissipative feedback laws for the
Hovercraft. µe = (2, 0, 0), λ1 = λ2 = −0.1

ż = A2
2z + f̃2(y, z) +

m∑
i=1

b2iui +
m∑
i=1

g̃2(y, z)u1(16)

where A1
2 = ∂f1(y,z)

∂z
|(y0,0) and A2

2 =
∂f2(y,z)

∂z
|(y0,0). We refer to (16) as the trans-

verse dynamics. Now if the linearized transverse
dynamics are controllable it is easy to show (cf.
(Manikonda, 1997; Zenkov et al., 1997)) that one
can find a feedback law, such that z = 0 is a stable
center manifold (Carr, 1981) or equivalently µe is
a stable (in the sense of Lyapunov) equilibrium
point of the closed loop system.

Theorem 4.2 Under the assumption that (14)
has an equilibrium submanifold E, there exists a
class of state feedback laws uλ(µ) = Kλz + φλ(z),
with φλ(0) = 0, such that (y0, 0) ∈ E , y0 6= 0
is a stable equilibrium of the closed loop system if
the linearized transverse dynamics (16) are stabi-
lizable. Further for all trajectories (y(t), z(t)) of
the closed closed loop system sufficiently close to
the origin

(y(t), z(t))→ (c, 0) as t→∞
i.e the closed loop system is asymptotically stable
in z and stable in y.

Using this approach we find a class of linear feed-
back laws to stabilize unstable relative equilibria
for the hovercraft and underwater vehicle.

Proposition 4.3 : The class of feedback laws,
parameterized by λ1, λ2 given by

uλ1,λ2 =
λ1λ2

P 0
1 γ

P2−(
(λ1 + λ2)

γ
+
λ1λ2βI

P 0
1 γ

)Π, λ1, λ2 > 0

(17)
stabilize the equilibrium (0, P 0

1 , 0) of (3) for any
P 0

1 6= 0

Remark: (i) If P 0
1 < 0 then the divergence of

the closed loop system is less than zero for any
choice of λ1, λ2 > 0, making the closed loop sys-
tem dissipative. (ii) If P 0

1 > 0 then λ1, λ2 > 0
can be chosen such that the closed loop system is
dissipative.

Figure 1 shows the trajectories of the closed loop
system with a dissipative feedback law for vari-
ous initial conditions in the neighborhood of the
equilibrium.



We now construct linear feedback laws
to stabilize the equilibrium solution
xe = (0, 0,Π0

3, 0, 0, P
0
3 ), P 0

3 6= 0 for the un-
derwater vehicle. We assume that m3 < m1.
Recall that this is an unstable relative equilibria
(Lamb, 1945). To compare our results with
Hamiltonian feedback laws lets assume that in
(7-8) U1 = (u1, u2, u3) and U2 = (0, 0, 0). 4

Proposition 4.4 There exists a class of state
feedback laws of the form ui =

∑5
1 αizi +

φi(z), φi(0) = 0, where z = (z1, · · · z5) =
(Π1,Π2,Π3, P1, P2) such that the equilibrium xe =
(0, 0, 0,Π0

3, 0, P
0
3 ), P 0

3 6= 0 is a locally stable equi-
librium of the closed loop system (7-8).

0 2 4 6 8 10 12 14 16 18 20
-1

0

1

2

3

4

time

(P
i1

 .)
, (

P
i2

 -
-)

, (
P

i3
 -

.)

0 2 4 6 8 10 12 14 16 18 20
-2

0

2

4

6

time

(P
1.

),
 (

P
2-

-)
, (

P
3 

-.
)

0 2 4 6 8 10 12 14 16 18 20
-10

-5

0

5

10

time

(P
i1

 .)
, (

P
i2

 -
-)

, (
P

i3
 -

.)

0 2 4 6 8 10 12 14 16 18 20
-5

0

5

time

(P
1.

),
 (

P
2-

-)
, (

P
3 

-.
)

Figure 2: (Left):Dissipative feedback law for the
AUV. (Right): Stabilizing Hamiltonian Feedback
Law

In Fig. 2 (left) we stabilize the unstable rela-
tive equilibrium (0, 0, 0, 0, 0, 1) using a dissipative
feedback law. (In the simulations m3 << m1).
Observe that the states Π(t), P1(t) and P2(t) are
asymptotically stable. (Compare the results with
Fig. 2 (right) where a Hamiltonian feedback law
has been chosen to stabilize the same equilibrium).
Since the divergence of the closed loop system is
less than zero one might conjecture that under
assumptions of boundedness of solutions and ab-
sence of limit cycles the closed loop system is glob-
ally stable, i.e. globally, trajectories converge to
the stable manifold (“attractor”). Analytical re-
sults for the examples discussed did seem to indi-
cate this.

5 CONCLUSIONS

In this paper we presented results related to con-
trollability and stabilization of a class of nonlinear
left-invariant mechanical systems with symmetry.
Our results on controllability provide a manage-
able tool to check for controllability of a wide
class of mechanical systems including hovercraft
and underwater vehicles. We also presented an
approach, based on center manifold techniques, to
design feedback laws to stabilize relative equilib-
ria.

Future directions of research include designing
constructive control laws to steer in T ∗G, stabi-
lization of the unreduced dynamics and in show-
ing global stability of the closed loop system under
the dissipative feedback laws.

4In general, any set of control vector fields may be cho-
sen as long as hypotheses of Theorem 4.2 are met.
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