MAsTER’S THESIS

Browsing Hierarchical Data with Multi-Level Dynamic
Queries and Pruning

by H.P. Kumar
Advisor: B. Shneiderman

CSHCN M.S. 95-3
(ISR M.S. 95-5)

. CENTER FOR SATELLITE AND HYBRID
COMMUNICATION NETWORKS

4

The Center for Satellite and Hybrid Communication Networks is a NASA-sponsored Commercial Space
Center also supported by the Department of Defense (DOD), industry, the State of Maryland, the
University of Maryland and the Institute for Systems Research. This document is a technical report in
the CSHCN series originating at the University of Maryland.

Web site http://www.isr.umd.edu/CSHCN/

Abstract

Title of Thesis: Browsing Hierarchical Data with
Multi-Level Dynamic Queries
and Pruning.

Name of degree candidate: Harsha Prem Kumar
Degree and year: Master of Science, 1994

Thesis directed by: Professor Ben Shneiderman
Institute for Systems Research

Users often must browse hierarchies with thousands of nodes in search of those
that best match their information needs. The Tree-browser visualization tool was
specified, designed and developed for this purpose. This tool presents trees in
two tightly-coupled views, one a detailed view and the other an overview. Users
can use dynamic queries, a method for rapidly filtering data, to filter nodes at
each level of the tree. The dynamic query panels are user-customizable. Subtrees
of unselected nodes are pruned out, leading to compact views of relevant nodes.

The software architecture, data structures and algorithms used to achieve
this behavior are specified. Usability testing of the Tree-browser, done with
8 subjects, helped assess strengths and identify possible improvements. The
Tree-browser was applied to the Network Management (600 nodes) and Univer-

sityFinder (1100 nodes) applications. Future research directions are suggested.

Browsing Hierarchical Data with
Multi-Level Dynamic Queries

and Pruning.

by

Harsha Prem Kumar

Thesis submitted to the Faculty of the Graduate School
of The University of Maryland in partial fulfillment
of the requirements for the degree of
Master of Science
1994

Advisory Committee:

Professor Ben Shneiderman, Chairman/Advisor
Professor Michael Ball
Dr. Catherine Plaisant, Associate Research Scientist

© Copyright by

Harsha Prem Kumar

1994

Dedication

To my parents

ii

Acknowledgements

I am thankful to Prof. Ben Shneiderman for being so supportive throughout
my stay at the HCIL. I am continuously inspired by his boundless and infectious
enthusiasm for work and life in general, and his creative mind that helps us
develop our ideas through to completion and then some! One very important
skill I have tried to learn from him is to always say what’s nice about something
before saying what’s missing and suggesting improvements.

Dr. Catherine Plaisant has guided and taught me a lot over the last 2 years.
Her cheerful manner and sharp mind helped keep our sometimes long and ab-
stract design discussions interesting. She contributed enormously to my thesis
work.

Prof. Michael Ball seems to always be able to find loopholes in the “thorough”
network management designs that we GRAs put together after days of work! It
was a pleasure explaining my Tree-browser design to him, and have him provide
fresh perspectives and improvements that had never crossed my mind.

Fellow members of the HCIL have contributed significantly to this research
through their constructive suggestions. I have learnt a lot from fellow HCIL
graduate and undergraduate students. I shall cherish the late nights spent goof-
ing off at the lab... being at the HCIL was a unique experience in that we were
all able to do good work and yet have a lot of fun!

My family (mother, father, sister and grand-parents) has always been the
main source of my inspiration and encouragement. Given the amount of sacrifices
they have made for me, they deserve most of the credit for this work. My

friends have always helped me see the brighter side of things and have been

i

there whenever I needed them.

I am extremely grateful to every one of these people.

iv

Table of Contents

Section Page
List of Tables viii
List of Figures ix
1 Introduction 1
1.1 Motivation 2
1.2 Contributions 3
1.3 Content 3

2 Analysis 4
2.1 Original Motivation : Network Management Application 4
2.1.1 Simplified Network Structure 5

2.1.2 The Task : Toset up a Session 5

2.2 Tree-browser System Requirements 7
2.3 Literature Review o 8
2.3.1 Visualizing Trees 10

2.3.2 Automated node-link tree layout 17

2.3.3 Browsing Trees and Graphs 18

2.3.4 Dynamic Queries L.

3 Interface Design

3.1

3.2
3.3

3.4
3.5
3.6

Theory
3.1.1 Dynamic Queries on Hierarchical Data Sets
3.1.2 Dynamic Query Environments
Description of features and operation
Example Applications
3.3.1 Network Management
3.3.2 UniversityFinder
Tree-browser Limitations,
Possible design alternatives. 0oL
Generalizing thedesign L.
3.6.1 Coping with varying structure and growing size
3.6.2 Specification of general boolean queries
3.6.3 Pruning applied to Treemaps

3.6.4 Dynamic Queries applied to Cone-Trees

4 Software design

4.1

4.2

Software System Architecture and Data Structures
4.1.1 'Tree data structure subsystem
4.1.2 Treeview node-link diagramming subsystem
4.1.3 Tight-coupling of overview and detailed view subsystem . .
4.1.4 Query specification and evaluation subsystem
Algorithms.

4.2.1 Node-Link Tree Layout

vi

29
30
30
31
32
37
37
41
46
46
47
48
51
52
%)

4.2.2 Dynamic Querying and Tree Pruning 73

5 Usability Testing 80
51 Goal 80
52 Methods 80
5.3 Subjects 81
54 Tasks. 82
55 Results. 83

5.5.1 Most liked features 83
5.5.2 Subjectiveratings 84
5.5.3 Suggestions for improvement 86
56 Discussion 91
5.7 A controlled experiment 92

6 Conclusions 95
6.1 Contributions L 95
6.2 Future Directions oL 96

6.2.1 Extensionstoourwork 96
6.2.2 Other open tree-browsing research issues 97

vii

Number

5.1 Subjective ratings

List of Tables

viii

List of Figures

Number

2.1 Simplified satellite network structure
2.2 The Tree-browser
2.3 Node-link visualization of a tree (Treeview)
2.4 The 2D-browser of Beard and Walker
2.5 Treemap visualizationof atree
2.6 Cone-Tree visualizationof atree

2.7 The HomeFinder

3.1 Range-slider and Menu widgets

3.2 Illustrating Pruning - Nets 1 and 2 do not match query

3.3 Illustrating Pruning - Subtrees of Nets 1 and 2 are not shown

3.4 Uninteresting leaf nodes hogging up screen-space
3.5 Entire UniversityFinder tree
3.6 The 7selectedstates
3.7 The final 7 universities and 17 departments.
3.8 Extending the interface to trees of arbitrary depth

3.9 Pruning applied to treemaps

ix

4.1
4.2
4.3

4.4
4.5
4.6
4.7
4.8

Tree-browser software system architecture 58
Tree data structure L. 59
Treeview and Treemap visualizations built on top of the tree data

structure 60
Tree Data File Format 64
Treeview Data Structure 65
The Tree-browser as an Image-Browser 66
Arrays of nodes at each level, .. 68
Treeview Layout 69

Chapter 1

Introduction

“Scientific Visualization allows scientists to make sense of intellectu-
ally large data collections. It does so by exploiting the human percep-
tual system, using animation and visualization to stimulate cognitive
recognition of patterns in the data. A similar set of problems exists in
the information world, where the volume of information we deal with
expands at an astonishing rate. Information access and management
is difficult in large information spaces, because it is hard to visualize

what is there and how the various parts are related.” [RMC91]

Decisions are an integral part of human life. From deciding what movie to
see, to what universities to apply to, one is constantly faced with decisions. A
number of decisions in everyday life and in engineering applications require the
selection of one or a few elements from many, possibly thousands of elements.
In such cases, we humans often find ourselves trying to make a “good” choice
by deciding first what we do not want, i.e. we first try to reduce the data set

to a smaller, more manageable size. After some iterations, it is easier to make

the final selection(s) from the reduced data set. This iterative refinement of
data sets is sometimes known as a hierarchical decision-making process.

A hierarchical data set (HDS) is one in which the data points are organized
into a hierarchy. HDSs are common in the real world and in many applications
in Engineering and Computer Science. For example, a computer file system
consists of either files or directories; a directory can have more directories and
files within it. A hierarchy is also known as a tree. A data point in a hierarchical
data set is also known as a node. Any node in a tree has a unique parent node
(except for the root node of the tree, which has no parent node). A node might
have sibling nodes and children nodes. If a node has no children, it is called a
leaf node. A HDS can be filtered (queried and reduced) very effectively using a

hierarchical-decision making process because the data is inherently hierarchical.

1.1 Motivation

The original motivation for this work was our research on user interfaces for net-
work management (See Section 2.1 for details). While working on a user interface
for satellite network configuration, we were faced with the task of choosing one
leaf node from a large tree of thousands of nodes. Further, the task was such that
the number of interesting leaf nodes could be reduced drastically based on selec-
tion criteria at various levels in the tree. This problem prompted us to design
and implement the Tree-browser. In the remainder of this thesis, Tree-browser is
used to refer specifically to our design and implementation, while Tree-browser

is used to refer generally to tree browsing visualizations.

1.2 Comntributions

The major contributions of this work are as follows:

e Extension of dynamic queries to hierarchical data sets: Using the parent-

children interrelationship between nodes to facilitate browsing of the HDS,

e Dynamic query environments: A more flexible and powerful mechanism to

specify selection subsets of large data sets.

1.3 Content

Chapter 2 presents the original motivation for this work and a review of liter-
ature. Chapter 3 describes the design of the Tree-browser, its operation, and
generalizations to the design. Chapter 4 describes the software system archi-
tecture, data structures and algorithms used for tree drawing, dynamic querying
and tree pruning. Chapter 5 is about the Usability Testing of the Tree-browser,

and finally, Chapter 6 summarizes and suggests directions for future work.

Chapter 2

Analysis

This chapter explains the original motivation, specifies Tree-browser system re-

quirements and analyzes the previous work done in this field.

2.1 Original Motivation : Network Manage-
ment Application

The original motivation for this work was our research on user interfaces for
network management. We worked closely with Hughes Network Systems to
design and develop task-oriented user interfaces which provide data overviews
and task overviews to the network operator [KPTS94].

While working on a user interface for satellite network configuration, we were
faced with choosing one leaf node from a large tree of thousands of nodes. This is
basically a needle-in-a-haystack problem where the haystack is hierarchically
structured! Further, the task was such that the number of interesting leaf nodes

could be reduced drastically based on selection criteria at various levels in the

tree. This problem prompted us to design and implement the Tree-browser.
Therefore, let us first look at the satellite network configuration problem in

some detail.

2.1.1 Simplified Network Structure

In the Hughes architecture, the satellite network consists of a centralized hub
and many (thousands) of remotes. Each remote communicates with the hub
via satellite (Figure 2.1). This communication is established by setting up a
session. Any 2 remotes communicate via the hub.

The hub and each remote consist of a complex hierarchy of hardware and
software objects (Figure 2.1). A remote has many DPCs (Data Port Clusters),
each DPC has many LIMs (LAN Interface Modules), and each LIM many ports.
The hub hardware has a similar but larger containment hierarchy: many net-
work groups, many networks, many DPCs, many LIMs and many ports. A hub

typically has thousands of ports.

2.1.2 The Task : To set up a Session

A session is established between a port on the hub and a port on the remote.
Without getting into details, (see [KPTS94] for details) suffice it to say that in
order to set up a session, the network operator has to make at least two selections

from large hierarchical data sets:

1. Select a port from hundreds on a remote.

2. Select a port from thousands on the hub.

% .
\l‘Outmute ®
L]
Rawts | el LN

Feacken IRl

T
Network gronp . M/ I\~
Nem{\\... PM/IY‘\A..
DPC/I\\...
LIM/I\\...
SN~

Port

Figure 2.1: Simplified satellite network structure

In both cases, certain choices are better than others. This depends on some
port attributes as well as some attributes of the port’s corresponding LIM, DPC,
etc.

One current network configuration management system that we studied did
not address this user requirement at all. Thus, operators made somewhat ad-hoc
choices of ports resulting in deterioration in network performance.

The need for a tool to aid in this selection process is clear. The goal is that by

making a well-informed decision to begin with, the need for rework and trouble-

shooting will be reduced and the network will also maintain better performance
levels.
Once suitable ports are selected, the operator proceeds to enter a number of

configuration parameters needed to set up the session.

2.2 Tree-browser System Requirements
The Tree-browser needs to meet the following system requirements:

1. Requirement 1: Ability to browse the entire tree and view it at different

levels.

2. Requirement 2: Ability to query nodes at all levels on the basis of at-
tribute values. Querying mechanism should be easy, yet powerful. The
interface should make it easy for the operator to specify selection subsets

on large trees.

3. Requirement 3: Ability to hide uninteresting nodes and branches of
nodes and thus reduce the data set progressively. Ability to easily iterate

by un-hiding hidden nodes / branches.
The Tree-browser design needs to address these basic issues:

1. How will the tree be visualized? i.e. as a 2D node-link diagram, as an

outline, as a treemap, or as a cone-tree?

2. How will selection subsets be specified on the original data set?

3. How will the visualization update / respond as the selection criteria are
continuously refined? And how will it change as the level at which the tree

is visualized is changed?

Figure 2.2 shows our Tree-browser applied to the network management ap-
plication. Details of the system design and implementation are presented in the

next 2 chapters.

2.3 Literature Review

Papers relating to user interface design and visualization were surveyed in or-
der to better design the Tree-browser. The discussion of literature reviewed is

organized as follows:

1. Visualizing Trees: The different visualizations of tree structures that people

have used and evaluated, e.g. node-link diagrams, treemaps etc.

2. Automated node-link tree layout: Algorithms to automatically generate

node-link layouts for trees.

3. Browsing Trees and Graphs: Strategies to browse trees and graphs. Graph
structures are a more general class of data structures than trees. Many

interesting browsing issues are common to tree and graph structures.

4. Dynamic Queries: The use of direct manipulation widgets to incrementally,

reversibly and continuously control a real-time visual display of the data.

oL

7 P—
T

v

~7g‘ r?é. g

2
Bhaie s Gyl
o8

. nwf)iw, i

v

AR e e
B

qeTeey

2 S

f
e /"N;’&A

B \““’i«(RS 5“‘!2‘.‘ N, <

ws@@a/%@
KL ?&%’W;%’%%w“%/m« P

Zasid e ’f/ -
i ,/wm

5
5,”/«’ T3

,»// ,é,}’y,’»’saé/ o,
//»’

;‘(‘

Afmw, Goos i ;M% sk

o w% 7 i QMMWMIN,/?IMA, ey

S S, o

& ’z?%—w Phipore By
1, s 5T mﬁ%l/mﬁ/m%v,,
i ey e Sy
G /Z/ 2ot T

NG

f%ﬂ s "/
N

B

N

TN

a4

ma/w %5,%' ¥

5 N
;,,«,(%&7 ~,,/< x4‘ff’~/’§7//,/~//

AT

o e *’*’z}‘
e st

b iy WS

7)

”>(,

7 f, A

S g Slal5
g v

<¥

{Matches Query

Figure 2.2: The Tree-browser

2.3.1 Visualizing Trees

The goal of surveying literature in this area was to make a choice of the visual-
ization method.

The most obvious visualization for any tree structure is the classical node-
link diagram (Figure 2.3), which usually uses rectangles to represent nodes in the
tree and lines to represent the links (parent-children interrelationship between

nodes).

Figure 2.3: Node-link visualization of a tree (Treeview)

We specified and implemented the Treeview widget which provides a node-
link visualization of any m-ary tree [CJK*94]. Treeviews have traditionally been

used for a number of applications, for example:

10

1. Hierarchy Visualization Applications: Treeviews have been used to visual-
ize hierarchical information such as geographical data, computer file sys-

tems, object inheritance hierarchies, and org-charts.

2. Non-Hierarchy Visualization Applications: Treeviews are widely used in
the areas of probability and set theory, reliability engineering and systems

engineering. Event trees and fault trees are two examples.

The advantages of node-link visualizations of trees are that they are a familiar
mapping of structured relationships and therefore easy to understand. They can
display attributes of links by color or size if required. However, it is well known
that node-link diagrams make inefficient use of screen space, and even trees of
medium size need multiple screens to be completely displayed. This necessitates
scrolling of the diagram and global context is lost, since only a part of the whole
diagram is visible at any given time.

David Beard and John Walker [BI90] used a map window - a miniature of
the entire information space with a wire-frame box to aid users in remembering
their location (Figure 2.4). The map window is better known as an overview
and the entire information space shown in full size is better known as the De-
tailed View and the wire-frame box is better known as the field-of-view or the
panner [PCS95]. The field-of-view can be dragged around in the overview to pan
the detailed view. Similarly, scrolling the detailed view updates the position of
the field-of-view in the overview. Hence, the overview and the detailed view are
said to be Tightly-coupled.

Beard and Walker [BI90] compared three interfaces to browse 2-D spaces:
The first provided only scrolling of the detailed view and no overview, the second

added an overview and the ability to pan, and the third also added the ability

11

Entire information space

Map window
Wire—frame box

some text here

Figure 2.4: The 2D-browser of Beard and Walker

to zoom into parts of the information space. They found that the overview
significantly improved user performance. Further, the pan technique and the
zoom and pan technique were significantly faster than the scroll technique.

Hence, if the node-link visualization is chosen as the visualization technique
for our Tree-browser, it would have to provide a tightly-coupled overview and
detailed view, in order to provide global context and a more convenient browsing
mechanism.

Plaisant et al. [PCH92] found that in some cases, it might even be useful
to provide an intermediate view in addition to the overview and the detailed
view, when the detail-to-overview zoom ratio is high. An experiment showed
that users performance significantly degraded when no intermediate view was
provided for a detail-to-overview zoom ratio over 20:1.

The treemap visualization of tree structures uses a two-dimensional (2-d)

space-filling approach in which each node is a rectangle whose area is propor-

12

tional to some attribute such as node size [Shn92]. Shneiderman notes that “even
designers of family trees, animal species trees, or organization charts found that
a large wall was necessary to give the whole picture”, if a node-link visualization
is used.

On the other hand, the treemap algorithm utilizes 100% of the designated
space (Figure 2.5). Sections of the hierarchy containing more important infor-
mation can be allocated more display space while portions of the hierarchy which

are less important to the specific task at hand can be allocated less space.

Figure 2.5: Treemap visualization of a tree

Treemaps have been used for file management [JS91], stock portfolio visual-
ization [JT92] and network management [KPTS94].

A similar visualization for hierarchical structures is described by Ritchie [Rit91],

13

in which he describes the Rectangular Structure Chart (RSC) as an abstract di-
agramming method for drawing hierarchical structures. These charts are also
compact, nestable, space-filling mosaics which are strictly rectangular, with no
curves, slants, line crossings or tees.

One advantage of the treemap is the fact that leaf nodes get display space
proportional to their respective weights. This feature, while being an advantage

over traditional node-link diagrams, also leads to the following disadvantages:

e It is assumed that there is at-least one meaningful numerical attribute
shared by all nodes at all levels in the hierarchy. Further, it is assumed
that the value of this attribute for a parent node is the sum of the values
for all its children. This assumption does hold for applications such as
a file manager, where the size of each file / directory can be used as the
weight in the treemap layout algorithm. However, in many applications
like the network management application, this is not a valid assumption.
Most node attributes are level-specific; only some are valid at all levels
in the hierarchy. The way the treemap gets around this limitation is by

allowing each leaf node to occupy unit space.

e Since it is assumed that nodes occupy a display area strictly proportional
to their weights [JS91], nodes that users are currently not interested in
might end up wasting screen space. As specified in Section 2.2, users
should be able to filter out nodes that they are not interested in currently.
One implementation of the treemap, called the WinSurfer (used for file
management in the Windows environment), does allow users to manually
hide one node at a time, but a faster and more convenient mechanism for

hiding and un-hiding nodes is clearly needed.

14

Hence, the treemap can be used as the visualization method for the Tree-
browser, after making some changes to the treemap algorithm.

Robertson et al. [RMC91] and Chignell et al. [CZP93, CGPZ93| used 3D
node-link diagrams in order to visualize tree structures. Robertson et al., in the
Information Visualizer project at Xerox PARC, developed a tool called Cone-
Trees that allows for animation of 3D trees (Figure 2.6). They claim that inter-
active animation can effectively shift cognitive processing load to the perceptual
system. However, while there is considerable literature on search within static
2D displays, there is relatively little prior literature on searches within and ma-

nipulation of complex, dynamic 3D displays.

Figure 2.6: Cone-Tree visualization of a tree

Chignell et al. developed the Info-TV tool. Spatial models of information

capitalize on the fact that people are very familiar with tree-dimensional spaces

15

and with the visual cues associated with them [CZP93]. The visual scene of
a 3D world is supposed to be a more “natural”, “ecological”, or “compatible”
representation than that provided by 2D displays. However, while people are
highly skilled at viewing a 3D world, they may require some training to navigate
effectively in three dimensions.

Info-TV allows two styles of pruning:

1. The sub-branch(es) for which the chosen node is the root can be removed

from the screen

2. The nodes and labels are removed, but the links remain

The authors however, do not describe at all how the nodes whose sub-trees
are to be pruned are specified by the user. It is assumed that the user makes
these specifications manually by selecting these nodes. This kind of specification
is too slow and cumbersome to match our system requirements. Clearly, a better
selection subset specification mechanism is needed.

Similarly, Robertson et al. [RMC91] describe “gardening operations” where
the user can manually prune and grow the view of the tree (Figure 2.6). Prune
and grow operations are done either by menu or by gestures directed at a node.
While these gardening operations do help in managing and understanding large,
complex hierarchies, this manual mechanism of pruning or growing one subtree
at a time, is clearly not sufficient nor very effective in specifying complex searches
spanning several levels of the tree. Cone Trees do provide for searches like wild-
card string searches, but the updates are not dynamic. In fact, when a search

starts, all nodes are made invisible.

16

Ware and Franck [WF94] tried to quantitatively assess the worth of pre-
senting abstract data in 3D. They report that “true” 3D viewing can increase
the size of the graph that can be understood by a factor of 3; using stereo or
head-coupling alone produced less advantages.

3D trees were rejected as the visualization method for our Tree-browserimple-
mentation because of the need for high-end workstations to support 3D animated
visualizations.

A 2D node-link diagram was chosen as the visualization method for this
implementation of the Tree-browser. It is worth mentioning however, that a

treemap, a Cone-Tree, or any other tree visualization could also have been used.

2.3.2 Automated node-link tree layout

Researchers have proposed guidelines that lead to pretty, easy to read, aesthet-
ically appealing trees. Wetherell and Shannon [WS79] and later Reingold and
Tilford [RT81] formalized notions of tree drawing, and present algorithms based
on these. Tilford extended the aesthetics and algorithms to handle m-ary trees.
Radack and Desai [RD88] claim to have improved upon Tilford’s algorithm.
Charles Wetherell and Alfred Shannon, and Edward Reingold and John Til-

ford defined five rules to draw an aesthetic binary tree [Moe90]:
1. A parent should be drawn above its children.
2. Nodes at the same level should lie along a horizontal line.

3. A left child should be positioned to the left of its parent and a right child

to the right.

4. A tree and its mirror image should be drawn to reflect each other.

17

5. A subtree should look the same, regardless of where it occurs in the tree.

Moen argues that these rules, while useful, were meant only for binary trees,
and general trees are a far more useful class of data structures to visualize.
Also, it made more sense to use horizontal trees to diagram user-interface trees
because typically, the nodes contained text strings of varying length. The author
describes algorithms to draw dynamic trees. His algorithm tries to overcome two

drawbacks in traditional tree-drawing algorithms:

1. Tree Nodes of varying shapes and sizes are not supported, and if they are,

the overall layout is not compact enough.

2. Layout information is not reused when the trees change, so after every

change the layout must be recomputed and the tree redrawn.

Moen’s algorithm draws compact trees with nodes of any polygonal shape
and the data structure supports insertion and deletion operations on subtrees.

However, the example that Moen describes as a “large” tree is 9 levels deep
but only 43 nodes big. In the applications we encountered, that would be con-

sidered a very small tree!

2.3.3 Browsing Trees and Graphs

Visualizations have been used traditionally to browse trees and various types of
graph structures in different application domains. Examples of graph visualiza-
tions include hypertext graphs, finite-state diagrams, flow-charts, parse-trees,
pert-charts, dataflow diagrams, wiring diagrams and hierarchical decomposi-
tions.

David Gedye puts it very aptly when he says [Ged88|:

18

“Browsing is the loosely structured exploration of connected data. It
differs from database querying in that exact questions need not be
framed; the retrieval of information proceeds incrementally, and by
association. In electronic databases, as in written material, brows-
ing is most appropriate when the data being examined contains many
explicit relationships, or cross-references. When information is struc-
tured as objects and relationships, it often makes sense to browse it
graphically, as a two-dimensional picture on the screen. If the data
is presented as a graph, with nodes representing the objects, and
edges the relationships, the spatial arrangement of the picture aids

understanding of its content.”

Chimera et al. [CS94] evaluated three interfaces to browse a medium (174)

and a large (1296) online hierarchical table of contents. The three interfaces

were as follows:

1. A fully expanded stable interface.
2. An expand/contract interface.

3. A multi-pane interface.

Results showed that the stable interface produced the slowest performance
for timed tasks as compared to the other two interfaces for the large table of
contents. The authors conclude that the expand/contract and multi-pane in-
terfaces offer advantages over the stable interface and that the expand/contract

interface’s animation characteristics are very important to users’ performance

and comprehension.

19

Gedye [Ged88] describes an implementation of a browser for an engineering
design database and cautiously attempts to generalize the implementation. The
author claims that the research is directly applicable to any organizational struc-
ture which is graphical, big, well-connected (N nodes have at least O(N) edges)
and typed (there are different types of relationships between the objects).

The proposed solution is to present the user with a list of all the objects.
The user can then choose an object, and then upon choosing one particular
relationship, a DAG / tree or an equivalence set is created in a new window.
So, the tangled web that would have resulted by showing all the relationships
of the object together is eliminated by using one window per relationship. The
collection of windows for each object is called a context group. If there are more
then one context groups up on the screen at any given time, a unique window
background color identifies the context group.

When the size of the graph becomes very large, Gedye mentions two existing
techniques to reduce the amount of data on the screen to a manageable level:

Zooming: The user is given control of a scale parameter, and depending on
the value chosen, either a small amount of the graph is seen in detail, or a large
amount is seen in overview. Black box representation is often used to reduce the
complexity.

Panning: When the view is zoomed-in, and only a portion of the graph is
being displayed, the user is given control of which portion must be displayed.

The authors noted that both zooming and panning work well for graphs that
are almost trees, but are inadequate for arbitrary graph structures. Therefore,
they implemented pruning in order to assist in the browsing. A subgraph is

selected that contains few enough nodes to comfortably fit in the window, and

20

this subgraph is laid out and displayed in its entirety. The subgraph obtained by
the pruning procedure is called the ”display graph”. Rectangular pruning and
hourglass pruning algorithms have been described.

Gedye lists the extensions possible to this work. Among them, attribute-
based browsing, in which the user does not know the name of the component
being browsed, but can easily specify it by a combination of attributes. This
feature is similar to one of our Tree-browser requirements (Section 2.2).

Several papers deal with the aesthetics of drawing trees and graph diagrams.
Ding and Mateti [DM90] identify the following as features of “good” diagram-
ming: visual complexity, regularity, symmetry, consistency, modularity, sizes,
shapes, separation, and traditional ways of drawing. This work focuses on iden-
tifying features, on a high-level, that make for “nice” data structure diagrams.

The reason there is so much emphasis on automated diagramming algorithms
is well-captured by Sugiyama [STT81]: “An automatic method for the drawing
of hierarchies by a computer is indispensable because many hierarchies... should
be drawn one after another without much lapse of time”. The authors give algo-
rithms which take as input, a set of directed pairwise relations among elements
of a system and output a readable map. Readability comprises such elements
as hierarchical layout, less crossings of edges, straightness of lines, close layout
of vertices connected to each other and balanced layout of lines coming into or
going out from a vertex.

There are several other works that relate to aesthetic layouts of graph struc-
tures [BETT89, HH91, Hen92, MRH91, Mas92, SM91]. According to Henry and
Tyson [HH91, Hen92],

“Traditional graph layout algorithms have tried to increase the read-

21

ability of graphs by focusing on the task of minimizing specific fixed
properties. The following list contains some common graph aspects
traditional algorithms focus upon:

1. Maximize display symmetry.

2. Avoid edge crossings.

3. Avoid bends in edges.

B

. Keep edge lengths uniform.

5. Distribute vertices uniformly.

Unfortunately, minimizing these kinds of aspects tends to be a very
difficult computational problem. In fact, finding a layout which sim-
ply minimizes edge crossings in a general graph is NP-complete. Ap-
proximate solutions can be found by heuristics that run in polynomial

time.”

According to Henry and Hudson, even when traditional layout algorithms do
a good job minimizing such properties, they do not produce the most readable
graphs or make the best use of available resources such as screen space, the reason
being that the “best layout” depends on the user’s current region of interest.

Consequently, a single canonical layout algorithm cannot always produce the
best results. Thus, the ability of users to customize the layout to meet their
current needs and interests is essential. Therefore, users must be provided with
interactive tools to iteratively dissect large graphs into manageable pieces.

[HH91, Hen92] suggested three novel concepts relating to graph visualization.
The first two deal with graph layout while the third is a highly interactive mech-

anism for selecting portions of the graph that match the user’s current focus.

22

The authors suggest that users should be able to create lots of views so that they
are able to home in on the aspects of the graph they are currently interested in.
While such flexibility, in general, is good, it is clear that integration of multi-
ple views in the minds of users is a non-trivial task, and may carry significant
performance overheads with it.

In their system, users can make multiple views of subgraphs. Each view
shows one “selection set”. Multiple selection sets are supported, but only one
of them is active at any given time. The system provides users with a direct
manipulation dialogue box to customize the views by setting parameters like
spacing using sliders. Users could create a new view by dragging each node or
by copying selected nodes.

In [HH91, Hen92|, the authors say that there are two basic types of selec-
tion, manual selection in which users select nodes and edges using simple direct
manipulation techniques, and algorithmic selection in which users apply an al-
gorithm to the graph. But by classifying manual selection into only individual
selection or marquee selection, the authors are greatly restricting the range of
interesting selection subsets that can be specified by the user.

[HH91] concludes by identifying two primary future directions: firstly, using
domain specific graph semantics to guide the layout and the selection, and sec-
ondly, creating a methodology that can be used to build an interactive system
for non-programmers to specify selection and layout algorithms. The
analysis of Tree-browser requirements has also lead us to the similar problem of
a methodology for users to specify selection criteria on data structure diagrams.

Sarkar and Brown [SB92] describe their extensions to fisheye views of graphs,

a strategy first proposed by Furnas [Fur86]. A fisheye view of a graph shows an

23

area of interest quite large and with detail, and shows the remainder of the
graph successively smaller and in less detail. Since the entire graph structure
visualization fits onto the available display space, there is no need to scroll and
pan and mentally integrate tightly-coupled views, and global context is not lost.
On the other hand, the "map view” strategy [BI90] suffers from the extra space
required for the overview, and from forcing the viewer to mentally integrate
detail and context.

Schaffer et al. list the many applications where effective graph visualization

is not only important, but life-critical!

“Operators often deal with hierarchically clustered networks such as
power grids, machine plants, telephone systems, and gas pipelines.
Operators must monitor the network operation. When something
goes wrong with the network operation, alarms are sounded. Op-
erators must then quickly isolate and repair problems: these are
sometimes due to isolated failures of network components, or they
could result from an interrelated breakdown of many components.
Failure of these systems could affect large numbers of people, use
expensive resources, and even be life-critical (e.g. a nuclear power
plant operation). The operator must be able to navigate through

these structures quickly and accurately.”

Schaffer et al. [SZB192] take the “Hierarchical clustering” approach to aid
the navigation of graph structures. This approach provides a framework for
viewing the network at different levels of detail by superimposing a hierarchy on
top of it. Nodes are grouped into clusters, and clusters are themselves placed

into other clusters. Users can then navigate these clusters until an appropriate

24

level of detail is reached. Links between clusters indicate that the clusters are
connected by at least one path in their respective sub-nets.

The authors describe a controlled experiment which compared the perfor-
mance of subjects navigating and repairing a simulated telephone network, rep-
resented as a hierarchically-clustered graph. Subjects used the full-zoom and
fisheye visualizations to navigate the clusters. The results showed that subjects
using fisheye views were more efficient at performing the task than when they
used the full zoom technique. In particular, they took less time to complete
the task, and the amount of navigation (indicated by the number of ”zoom”
actions) was reduced. From the comments of the subjects, most subjects greatly
preferred the extra context provided by the fisheye view. But a few subjects
expressed a preference for the simplicity of full-zoom views, because the amount
of information presented on the screen was always small.

Hollands et al. [HCMM89], however found users getting somewhat disoriented
while using fisheye views for complex tasks. The authors compared a fisheye
view with a scrolling view for presenting and browsing a graphical network.
Subjects were asked to select optimal routes between stations on a fictional
subway network, using both interfaces. Performance with the fisheye view was
superior when the destination station was not visible in the initial display; where
as performance with the scrolling view was superior when both stations were
visible and when more complex itineraries were required.

Plaisant et al. [PCS95] provide perhaps the most complete discussion of image
browsers including taxonomy and guidelines. This work attempts to standardize
some of the terms being used by researchers today, e.g. Detail View, Field-

of-view etc. Different kinds of browsers such as “Detail only”, “One window

25

with zoom and replace”, and “Tiled multilevel browser” are shown. The authors
identify 5 classes of tasks that are accomplished with image browsers, e.g. Open
ended exploration, navigation, monitoring etc.

So far, the review of the literature pertaining to tree and graph browsers
has not provided a good answer to the problem of specifying selection subsets
on large connected data sets like trees and graphs. The specification interface

needs to be powerful, flexible and easy-to-use.

2.3.4 Dynamic Queries

This section examines the concept of Dynamic Queries, which is a powerful way

of specifying selection subsets. According to Shneiderman [Shn94],

“Dynamic Queries describes the interactive user control of visual
query parameters that generates a rapid (100 msec update) ani-
mated visual display of database search results. Dynamic queries are
an application of the direct manipulation principles in the database
environment. They depend on presenting a visual overview, power-
ful filtering tools, continuous visual display of information, pointing
rather than typing, and rapid, incremental, and reversible control of

the query.”

[Shn94, WS92] describe a system (the HomeFinder - Figure 2.7) for real
estate brokers and their clients that allowed them to locate homes by adjusting
sliders for the price, number of bedrooms, distance from work, and buttons for
home type (house, townhouse, or condominium) etc. Each of the 1100 homes

appeared as a point of light on a Washington, DC map. Users could explore the

26

database to find neighborhoods with high or low prices by moving a slider and
watching where the points of light appeared. A point of light could be selected
to generate a detailed description of the corresponding house, at the bottom of

the screen.

Figure 2.7: The HomeFinder

Dynamic queries have also been applied to explore (databases of) movies,
chemical tables of elements, and health statistics [AS94, JS94, Pla93, AWS92].

The advantage of dynamic queries comes from the fact that users can rapidly,
safely and even playfully explore a database. The rapid reformulation of queries
encourages an atmosphere of exploration. Dynamic Queries achieve these ad-

vantages by applying direct manipulation strategies:

e Visual presentation of query components.

27

Visual presentation of results.

Rapid, incremental and reversible actions.

Selection by pointing (not typing)

Immediate and continuous feedback

This kind of real-time display enables users to catch trends in the data and
spot exceptions. Also, irrelevant information is filtered out. These concepts
of dynamic querying and tight-coupling are similar to those of Focusing and
Linking [BMMS91].

However, Shneiderman says: “Application specific programming is needed to
take the best advantage of dynamic query methods. While we have developed
some standardized tools, they still require some conversion of data and possibly
some programming”. It would be nice to have a flexible and general interface

that has no application-specific details coded into the interface.

28

Chapter 3

Interface Design

In Chapter 2 the Tree-browser system requirements were specified. Further,
a review of the literature showed that existing tools did not match all of the
requirements. Hence, the new Tree-browser was designed to meet these require-

ments:

1. Requirement 1: Ability to browse the entire tree and view it at different

levels.

2. Requirement 2: Ability to query nodes at all levels on the basis of at-
tribute values. Querying mechanism should be easy, yet powerful. The
interface should make it easy for the operator to specify selection subsets

on large trees.

3. Requirement 3: Ability to hide uninteresting nodes and branches of
nodes and thus reduce the data set progressively. Ability to easily iterate

by un-hiding hidden nodes / branches.

29

3.1 Theory

Two major concepts that guided the design of the Tree-browser both relate to

dynamic queries:

e Dynamic Queries on HDSs: This relates to how predefined interrelation-

ships between data points in a HDS influence the querying.

e Dynamic Query Environments: This relates to how the dynamic query
control panel could be made user-customizable, in order to accommodate

for varying user interests.

This work focussed on the above-mentioned issues, and some other issues,
while important, received considerably less attention. For example, we imple-
mented an algorithm to automatically layout trees as node-link diagrams (See
Section 4.2 for details), but did not try to optimize the layout in terms of com-

pactness etc.

3.1.1 Dynamic Queries on Hierarchical Data Sets

Dynamic queries have been applied to data sets consisting of independent data
points [WS92, AWS92, Pla93, AS94, JS94, Shn94]. In such cases, whether a
data point satisfies a given query or not does not in any way affect the outcome
for other data points. This is because there are no interrelationships between
the data points. Thus, the data set can be thought of as “flat”. Queries are
merely queries on the attributes of individual data points. For example, in
the FilmFinder, each movie is an independent data point. Similarly, in the

HomeFinder, each house is an independent data point (Figure 2.7).

30

In a “non-flat” data set, on the other hand, there are predefined interrelation-
ships between data points. For example, in a hierarchical data set, some nodes
are related to some others by the parent-child relationship. Therefore, whether
a node matches a given query or not might affect some other nodes. Specifically,
while searching a hierarchical data set in a top-down manner (i.e. parent first),
it makes sense to prune out all descendant nodes of nodes that do not match the
query. For example, if users are looking for ports on low-utilized LIMs, it makes
sense to not even consider those ports whose LIMs are over-utilized.

When criteria (like low LIM utilization, low error rate, high data rate, etc...)
exist at all or most levels in the hierarchy, stepwise refinement of the query
can be done to progressively reduce the initial (large) data set into a smaller set,
from which good choices may be made.

Dynamic queries applied to stepwise refinement of queries on hierarchical
data sets is a step forward from traditional approaches used in many existing
file managers / outliners. These systems allow users to explode / expand only
one node at a time to reveal the subtree below it. On the other hand, by using
dynamic queries, the user can find a suitable set of (more than one) nodes to be

exploded / expanded.

3.1.2 Dynamic Query Environments

The HomeFinder and the FilmFinder are examples of systems that provide hard-
coded graphical widgets for the user to manipulate in order to dynamically up-
date the visual display. If the user wanted to find homes that were within 2
miles of any hospital, the current HomeFinder interface would have to be repro-

grammed (Figure 2.7).

31

Therefore, the Dynamic Query Environment should allow users to customize
dynamic query control panels based on current interests. Users should be able to
select what combination of attributes they wish to query on, and have the appro-
priate widgets created, at run-time. The method of selecting the attributes and

creating widgets should be easy, and also allow for modifications / backtracking.

3.2 Description of features and operation

A number of interface design issues were considered and resolved during the
course of the design. This section describes the features and operation of the
Tree-browser. Section 3.5 looks at possible design alternatives.

The Tree-browser interface consists of two main parts as shown in Figure 2.2:

1. Data Display: The tree structure is visualized in two tightly-coupled
views. The detailed view on the right shows the node-link diagram fully
zoomed-in and the node names displayed, while the overview on the left
shows a miniature version of the node-link diagram without the node
names. A field-of-view (the yellow rectangle) inside the overview indi-
cates which part of the tree is seen in the detailed view, and can be moved
to pan the detailed view. Similarly, when the detailed view is scrolled by
using the scrollbars, the field-of-view moves inside the overview to provide
global context feedback. If the Tree-browser window is resized by the user,

the field-of-view shape and size is updated automatically.

2. Dynamic Query Panel: This panel consists of two parts, the Attributes
List on the left and the Widgets Panel on the right. Initially, there are

no query widgets in the Widgets Panel. Users select (by dragging-and-

32

dropping) up to three attributes from the Attributes List for each level in
the hierarchy (except the root level). This causes an appropriate widget
(range-slider for numerical attributes and Menu for textual attributes) to
be created and initialized (Figure 3.1). Queries (on up to 3 attributes)
at each level are AND-ed together. Users can replace an existing widget
with another by dropping a new attribute name over the original widget’s
attribute name. Existing widgets can be deleted by dropping “No Query”

onto the corresponding attribute name.

Figure 3.1: Range-slider and Menu widgets

If users manipulate a widget at the current lowest level displayed, the nodes at
that level are colored yellow if they match the query, and gray otherwise. These
updates of the data display are real-time (within 100 msec of updates to the
control widgets) in accordance with the principle of dynamic queries. Buffering
was done in order to make the updates as smooth and flicker-free as possible.

If users manipulate a widget at a level other than the current lowest level,
the tree visualization first “jumps” to that level, i.e. the level of the widget is
made the tree’s current lowest level. This is done so that the structure of the

tree during direct manipulation of the widgets remains constant and only the

33

colors of nodes change. Then the nodes at the new lowest level are updated (by
coloring yellow or gray) in real-time to show whether they match the query or
not.

The tree structure changes only when the current lowest level of the tree is

changed, which can be accomplished by users in any 1 or 3 ways:

1. By clicking on the corresponding level button (i.e. the buttons labeled
“Network”, “DPC”, “LIM” and “Port”) just below the data display (Fig-
ure 2.2).

2. By manipulating a widget at any level other than the current lowest level,

as explained above.

3. By clicking on the + or - buttons to either increase or decrease the levels

displayed.

When the current lowest level is changed so as to show more levels, pruning
of the tree is done so as to eliminate subtrees of nodes that do not match the
query at their own levels. For example, if the user manipulates the range slider
for Network ID such that Nets 1 and 2 do not match the query (Figure 3.2),
and then increases the lowest level displayed by 1, the children of nets 1 and 2
are not shown, while children of other nets are shown (Figure 3.3). Nets 1 and
2 now appear in gray, while all the other nets appear in orange, simply to show
that those nodes did match the query at their own level. This feedback enables
users to go back and change queries at higher levels, and thus iteratively refine
the selection subset.

As explained above, nodes at the current lowest level are colored either yellow

or gray, while nodes at higher levels are colored either orange or gray. Also, the

34

Figure 3.2: Illustrating Pruning - Nets 1 and 2 do not match query

level button corresponding to the current lowest level is colored yellow so as to
focus the attention of the user to that level. Buttons at other levels are colored
gray.

When the current lowest level is changed so as to show fewer levels, the tree
is simply “folded” back to the new lowest level, and then the nodes at that level
are colored either yellow or gray based on the query at that level.

Thus, users can easily jump back and forth between levels in order to fine
tune their search.

The Attributes List on the left shows only the attributes corresponding to
the current lowest level. Users can however access names of attributes at other
levels by choosing the appropriate level name (e.g. Network, DPC, etc.) from
the attributes menu just above the Attributes List (Figure 2.2).

There are four feedback indicators, one corresponding to each level (other

than the root level), that are updated in order to show the number and pro-

35

_HDPC19 |
HDPC 20

Figure 3.3: Illustrating Pruning - Subtrees of Nets 1 and 2 are not shown

portion of nodes that currently match the query (i.e. number of “hits”). The
proportion of the feedback indicator that is colored yellow corresponds to the
proportion of hits. This proportion is a proportion of the total number of nodes
nodes at that level, not of the number of nodes at that level currently displayed.
The actual number of hits is also displayed at the top of each feedback indica-
tor. Proportion indicators are displayed only from level 1 down till the current
lowest level, those for deeper levels are hidden (grayed out). This is because

calculating the number of nodes that would match the query at deeper levels is

36

computationally intensive and would slow down the dynamic queries on nodes
at the current level.

To summarize, the Tree-browser is a visualization tool for hierarchical data
that makes use of dynamic queries and pruning. The Tree-browser uses two
coordinated or tightly-coupled treeviews of the same tree, one a detailed view
and the other an overview. The user can select up to 3 attributes (numerical or
textual) for querying nodes at each level in the hierarchy. Subtrees of nodes that
do not match the query at their own level are pruned out of the visualization.
Thus, one can reduce a large data set (with thousands of nodes) to a much

smaller set, from which good selections can be made.

3.3 Example Applications

This section describes typical scenarios in two applications and steps through
sequences of actions that users might execute in order to solve the problem at

hand.

3.3.1 Network Management

Let us assume that the network operator is interested in finding the “best” 3

ports on the hub that match certain criteria. The criteria are as follows:

1. The port should have a baud rate between 4800 and 9600 AND should be

the 6th port on its LIM (i.e. the Name of the port should be “Port 6”).

2. The corresponding LIM should not be over-utilized, i.e. Utilization should

be no more than 45%.

37

3. The corresponding DPC should be running “STD” UPM software AND

its utilization should be no more than 60%.

4. Finally, only networks with IDs between 2692 and 3142 should be consid-

ered (because the customer owns only these networks).

The Tree-browser initially shows the first two levels of the tree. The root
node (Hub) is initialized to orange color while the first level nodes (Networks)
are initialized to yellow color. The tree is displayed from left-to-right. The tree
is medium-sized, with about 600 nodes, 488 of which are ports (leaf nodes).
24 screen-fulls are needed to show the entire tree in the detailed view, while
5 screens are required to even show the miniature version in the overview. In
our Tree-browser design, the overview was always to show the entire tree in
miniature so that no scrolling of the overview itself is needed. This, however,
was not enforced in our implementation. Since the overview itself does not fit
within one screen-full, the benefits of having the overview are reduced, but this
is still better than having no overview at all.

The operator finds the attribute “ID” in the Attributes List, and drags-and-
drops that onto one of the 3 empty text items under the Network button. A
range slider is created. The range slider is automatically initialized to the range
of IDs of all networks in the database. The user sets the lower thumb to 2692
and the upper thumb to 3142. Then, the user clicks on the DPC button.

This causes the tree to grow to the DPC level. Only networks with IDs
between 2692 and 3142 are exploded to the DPC level. Users apply a similar
drag-and-drop followed by query strategy at the DPC and LIM levels. At the

DPC level, 2 drags-and-drops are required, since a conjunction is required.

38

At the port level, the operator first performs the query on baud rate and then
on Name. The number of ports satisfying all the above criteria is about 10, but
a lot of screen space is taken by uninteresting gray ports (about 1.5 screen-fulls
of the overview as shown in Figure 3.4). The operator clicks on the “Hide Gray
Leaves” button and the gray ports (leaves) are totally removed from the data
display (Figure 2.2).

Now, the entire remaining tree fits in about half the overview and in 3 screen-
fulls of the detailed view! Hiding the gray leaves has made the visualization much
more compact. But there are 9 ports that match the criteria. So, the operator
decides that the LIM utilization requirement could be further improved. The
upper thumb of the LIM utilization slider is moved from 45% to 29%.

Once again, the operator clicks on the “Port” and “Hide Gray Leaves” but-
tons. Now, there are only 5 ports that match the query. The operator proceeds
to get detailed information about each of these ports by clicking on each and
examining the details as they pop-up in a separate dialog box.

The best 3 ports are selected after some review of the detailed information

of each of the 5 “finalists”.

39

o e, 4
W "'i % '7511’” WA
W S

27’7,,

Jatw

an pvjy }, /

ji; M»Zwmyw,m,

m.w?%

L ks et e« e s
WA WP A SN 2

wmm;,,,,@. .
w9

A atE Y,

b Sataaeaty

ot & 2o

%‘nmfrfw

‘/7“ '; x»/wa %c ««,Wz
it

A
’é/////uc{/ﬁ%:%:g :

"f:? g ,«%z"'

PR

el ,,,Mm 4

’/’V‘V
: A E ’Wfﬁ Ity s
d }% yé«; yM,;,«/,%' ,

e ; i

.«;%mz%m,, K

@y U

Figure 3.4: Uninteresting leaf nodes hogging up screen-space

40

3.3.2 UniversityFinder

The Tree-browser was also applied to browsing a database that organizes uni-
versities hierarchically; we have regions of the world, then states, then universi-
ties, and finally, departments. The UniversityFinder demo is available on video-
tape [Kum95].

Let us say that I am a high-school senior looking for universities that best
match my needs. The Tree-browser initially shows all the regions in the world. I
ask to see the entire tree to get an idea of the size of the database. The feedback
indicators show that there are 740 departments in 286 universities in 62 states
in 5 regions of the world (Figure 3.5).

I realize that panning this entire tree is no mean task and return to the region
level. Since I am only interested in regions where English is the primary language,
I create a textual menu of primary languages by dragging-and-dropping the
attribute Primary Language on to one of the empty text items under the Region
level button. I select English from the menu and the South America turns gray,
while USA, Canada, Africa and Europe remain yellow.

I now proceed to the state level. South America’s subtree is not expanded.
That subtree was pruned out since South America did not satisfy our criterion
of primary language. However, South America is still shown in gray in order to
provide context feedback.

I would really like to study in a state that is relatively safe, so I choose
to query on the level of violence. I manipulate the range-slider to select only
states with no more a violence index than 65. 37 states now remain. I further
reduce the number of interesting states by choosing only those with good traffic

conditions. The number of states has now dropped to only 7 (Figure 3.6).

41

Now, I can look at the universities, but first I recapture space occupied by
uninteresting states by clicking on the Hide Gray Leaves button. This gives me
a more compact view. When I now go to the university level, only the remaining
7 states are expanded to show 25 universities.

I now reduce the number of universities by first eliminating those with high
tuition and then setting the average SAT scores to closely match mine. I hide
gray leaves once again and see that I am down to 7 universities: a couple in
Arkansas, a couple in Ontario etc.

Satisfied with this set of universities, I proceed to the department level to
closely look at departments (Figure 3.7) that best match my interests and needs

in terms of availability of financial aid etc.

43

Figure 3.6: The 7 selected states

44

e

21 oy ot

S N

Vot

prrp—

LT Tvp— e
B o
s an Do YR

(ke v ot s S

gt gt

7,,,.,%,»...‘,,»,”:3@“: 2 —1
Gt 5t 2, S P
%%m %o

33, ~% v v
s

Figure 3.7: The final 7 universities and 17 departments

45

3.4 Tree-browser Limitations

The UniversityFinder scenario demonstrates how the Tree-browser can be ap-
plied to everyday applications, in addition to complex applications like network
management. The tool itself is general and can be used for any hierarchical data
set with attributes for nodes at different levels of the hierarchy. However, the

current implementation does have the following limitations:

1. The Tree-browser interface has been “fine-tuned” for a tree of depth 5. The
underlying tree data structure and treeview widget place no constraints on
the depth of the tree, but the current interface has been customized to
look best for a tree of depth 5, e.g. the levels of the tree in the detailed

view align nicely with the corresponding buttons and query widgets. ‘

2. Users can select only up to 3 attributes to query on at each level, and these
queries can only be ANDed together. ORs and NOTs are not supported

currently.

3. Since the focus of this work was not on layout, the algorithm used pro-
duces an aesthetic tidy layout, but not the most compact one. Also, the
implementation does not enforce the overview to always show the entire

tree (so users might have to scroll the overview).

4. Users can not open subtrees of nodes by manually selecting (e.g. double-

clicking) them.

3.5 Possible design alternatives

There are some interesting design issues that deserve special mention here:

46

1. Pruning vs. graying out: The Tree-browser prunes out subtrees of nodes
that do not match the query at their own level. Another approach would
have been to show the entire subtree, but with all the nodes grayed out.
The possible advantage of this approach over the pruning approach would
be the increased constancy in the tree structure. Expert users might ex-
perience improved productivity as they get more and more familiar with
the tree structure. The disadvantage of this approach is that the tree is
displayed in its entirety at any level, even when most of the nodes that
take up a lot of screen space are uninteresting. This results in increased

overheads of scrolling and / or panning.

2. Whether to update the data display when a query widget is created or
replaced at a level different from the current lowest level: The Tree-browser
changes levels whenever widgets at levels other than the current lowest
level are manipulated. But it does not change levels when a new widget
is created or an existing widget replaced, at a level different from the
current lowest level. This design decision was based on the assumption
that users might create a number of widgets at different levels at the same
time (e.g. at the beginning), and not want the level to change each time.
The disadvantage of this approach is that the data display is potentially

inaccurate till the next time users go to that level.

3.6 Generalizing the design

This section attempts to generalize the Tree-browser design so as to overcome

some of its limitations and make it more generally applicable to trees of varying

47

structures and sizes. Ideas on extending the query interface to allow specifica-
tion of complex boolean queries are discussed. The Tree-browser illustrated the
advantages of using dynamic queries and pruning while visualizing trees as 2D
node-link diagrams. The same advantages are there to be had by other tree
visualizations as well, e.g. treemaps and cone-trees. In this section, we illustrate

this with examples.

3.6.1 Coping with varying structure and growing size

In this section, we examine some of the issues that need to be addressed in order

for our design to be extensible to trees of varying structure and size.

e Trees of arbitrary depth: Figure 3.8 shows how one might extend the
current Tree-browser interface to handle trees arbitrarily deep. Due to
screen space constraints, it will not be possible to see all the query widgets
at all levels in the hierarchy. In Figure 3.8, on the lower left corner, is a
list of levels in the hierarchy, from which users select the current lowest
level (level 2 in this case). The Attributes List then updates to show the
list of attributes for level 2. The query widgets for the current lowest level
and for the previous level visited (i.e. level 1 in this case) are shown in the

query panel.

e Trees of arbitrary size: As the size of the tree to be visualized becomes
larger and larger, performance would tend to deteriorate and the browsing
mechanism inadequate. But there are approaches that can be taken to

alleviate this problem:

48

Overview Detailed View

LIST OF LEVELS Currentlevel2 [=][+]

Level 0 name Attributes Level 2 Level 1
Level 1 name List — Level 2 query widgets | query widgets

Level 2 name

Level 3 name .E-a.

Level 4 name

Level 5 name
Leve! 6 name

Level 7 name

Figure 3.8: Extending the interface to trees of arbitrary depth

1. Performance issues: Section 4.2 describes the algorithms used in im-
plementing the Tree-browser. The node-link layout algorithm, in the
worst case (i.e. when all nodes are to be shown), requires 2 complete
traversals of the tree, Increasing levels displayed requires more than 3
traversals of the entire tree, in the worst case, etc. Dynamically query-
ing nodes at any level is more efficient in that is only requires traversal
of each node at that level (See Section 4.1.4 for details). Therefore,
the system is likely to slow down appreciably as the size of the tree

increases, especially for operations that require re-computation of the

49

structure and layout.

More sophisticated data structures and algorithms would be necessary
in order to minimize the performance deteriorations. For example, one
might only traverse the nodes visible in the detailed view to evaluate
dynamic queries. But this would mean that the overview would not
be in éynch with the detailed view. Algorithms for pruning could be
improved so that only subtrees that have been dynamically queried

since the last structure change need to be traversed.

It is clear that there are several interesting challenges that remain to

be solved, with respect to performance issues.

. Interface issues: Ideally, the overview would always show the entire
data display in miniature, even if it means that no details are visible;
and the overview provides only global context. However, when the
size of the tree gets huge (say 50,000 nodes), there is no way that
one overview would suffice. As reported in Section 2.3.1, Plaisant et
al. [PCH92] found that in some cases, it might even be useful to pro-
vide an intermediate view in addition to the overview and the detailed
view, when the detail-to-overview zoom ratio is high. An experiment
showed that users performance significantly degraded when no inter-
mediate view was provided for a detail-to-overview zoom ratio over
20:1.

Another feature that might be useful is to allow users to restrict the
nodes to be displayed before displaying them. For example, if the
user requests to see a new level with 20,000 nodes, the system should

present the user with the option of restricting this set (feedback might

a0

be provided by displaying the number of matching nodes) before dis-

playing it.

3.6.2 Specification of general boolean queries

The current Tree-browser implementation allows users to specify an AND of
queries on up to any 3 attributes. This flexibility should be sufficient for many
applications, but it would be better to have an interface that would allow any
number of ANDs, ORs and NOTs. It would be rather difficult to interpret a set
of graphical widgets, boolean operators and parentheses, even for experienced
users.

One possible interface that could be used in the Tree-browser to specify com-
plex boolean queries was proposed by Young and Shneiderman [YS93]. They
note that “extracting information using a boolean query is often too abstract
for novice users and problematic for many experienced users”. Filter/flow was
designed to present the boolean operators using a metaphor that graphically con-
veys the meaning of the operators. This interface is void of any logical operators,
parentheses, or any form of fixed syntax. Queries are shown as water streams
flowing through sequential filters for ANDs, parallel filters for ORs, and toggled
filters for NOTs. The decrease in the breadth of the water stream while passing
through a filter represents the reduction in the data set due to the corresponding
query.

Some minor modifications to the interface of Young and Shneiderman would
however, be necessary. In their interface, the initial tuples and resulting tuples
are displayed in textual lists. Since our data display already shows the results

as graphical trees, we can instead place feedback indicators on either end of the

51

filter /flow query panel, and this would further help users to refine their queries

based on current needs and interests.

3.6.3 Pruning applied to Treemaps

Figure 2.5 was in fact, one treemap that first highlighted the need for some
mechanism to hide subsets of nodes / prune subtrees that were not interesting
and recapture screen space. That figure shows a treemap of a network hub,
where the user had dynamically queried at the LIM level, resulting in some
LIMs graying out. Then, the user had proceeded to the port level, and all ports
on gray LIMs had remained gray. These ports, which were uninteresting to the
user took up about 40% of the total display space.

Figure 3.9 shows how pruning can help treemaps recapture screen space al-

located to uninteresting subtrees.

92

A B A
(a) Level 1 (b) Level 1 dynamically queried
Al At ci
c2
A2 A2
C3
C4

(c) Level 2 without pruning

(d) Level 2 with pruning

Figure 3.9: Pruning applied to treemaps

93

It is worth comparing at this point, the Tree-browser visualization and the
treemap visualization. Both have some advantages over the other as listed below:

Advantages of the Tree-browser over the treemap:

1. More comprehensible representation of tree structures: The traditional
node-link representation is more readily comprehensible to untrained users

than the space-filling sliced-and-diced representation of treemaps.

2. More general in terms of attributes at various levels in the hierarchy: The
Tree-browser requires nodes at each level in the hierarchy to share a com-
mon set of attributes. Each level can have a different set of attributes.
Attributes can also be shared among levels. Attribute values can be made
to aggregate up the hierarchy if desired (i.e. the attribute value for a parent
node would be the sum of values for its children), but this is not required.
The treemap, on the other hand, requires that there exist at least one
meaningful numerical attribute whose values aggregate up the tree. In the
absence of such an attribute, one has to resort to unit-sized leaf nodes, and

the power of the treemap visualization is reduced.

3. No aspect ratio confusions: Comparing areas of nodes in treemaps can be
difficult, especially when aspect ratios of nodes vary widely. Treemaps are
not effective for finding medium-valued nodes. Even if size-coding of nodes
is used in the Tree-browser, there will be no aspect ratio confusions because

only one dimension (either width or height) of nodes needs to be encoded.
Advantages of the treemap over the Tree-browser:

1. Much more efficient use of screen space: No scrolling or panning of the

data display is required since the entire data display is always visible.

54

Treemaps are good for providing compact overviews and rapid access to

detailed information.

2. Treemaps are good for data sets that have meaningful numerical attributes
that aggregate up the hierarchy. Significant variance in attribute values
of leaf nodes is good. The space-filling representation makes size-coding
effective while looking for extreme-valued nodes (i.e. large-valued nodes or
small-valued nodes with size inversion applied). Size-coding of node-link
diagrams would be helpful but not equally effective (since the representa-

tion is not space-filling).

3. While the Tree-browser is more general in that it allows different sets of
attributes at distinct levels in the hierarchy, such distinct levels do not
always exist. For example, a file system is a hierarchy that does not have
distinct levels (analogous to Region, State etc. in the UniversityFinder
tree). The number of levels itself is not fixed in a file system. In this
case, all levels share the same set of attributes. The Tree-browser is not as
attractive here, because users often are not looking for nodes at specific
levels, instead they are looking for nodes at any level satisfying certain

criteria (e.g. all files with size > 1 Meg).

3.6.4 Dynamic Queries applied to Cone-Trees

Robertson et al. [RMC91] describe “gardening operations” where the user can
manually prune and grow the view of the tree (Figure 2.6). Prune and grow
operations are done either by menu or by gestures directed at a node. We believe

that allowing users to make attributes-based subset specifications in addition to

55

these manual subset specifications will help make Cone-Trees more powerful and

useful.

56

Chapter 4

Software design

4.1 Software System Architecture and Data
Structures

The Tree-browser is implemented in about 8500 lines of C code, with Applica-
tion Programmer Interface (API) calls to Galaxy libraries (Version 2.0). It was
developed on the SUN SPARCStation / UNIX / X Windows platform.

The Tree-browser software system consists of 4 subsystems as shown in Fig-

ure 4.1:

1. Tree data structure subsystem
2. Treeview node-link diagramming subsystem
3. Tight-coupling of overview and detailed view subsystem

4. Query specification and evaluation subsystem

57

™~

Tree-browser software system
1.1 Query specification 1.2 Tight-coupling
and evaluation of overview and
subsystem detailed view
subsystem
13 Tree data SlI’UCtUI’e 14 Treeview node_"nk
subsystem diagramming subsystem

represents function calls

Figure 4.1: Tree-browser software system architecture

4.1.1 Tree data structure subsystem

Since there are numerous applications that make use of trees, and various visual-
izations (e.g. node-link, treemap etc.), a common tree data structure (henceforth
referred to as “tree”) was designed and developed. Figure 4.2 shows how the
nodes of the tree are stored and linked to parents, siblings and children. Any
m-ary tree can be stored in this data structure. Any number of visualizations
can make use of the same tree. This enables us to avoid duplication of node

data for each visualization. The tree data structure itself is independent of the

58

visualizations, in order to ensure modularity and extensibility. We have devel-
oped a node-link treeview widget and a treemap widget on top of this tree data
structure (Figure 4.3). More visualizations can easily be built on top of this tree,

by making use of its Application Programming Interface (API).

Root Node

FirstChild

Parent Parent Parent

NextSibling

NextSibling

PrevSibling

PrevSibling

FirstChild

Parent Parent

NextSibling

PrevSibling

Figure 4.2: Tree data structure

The tree can be loaded from a file, or created dynamically at run-time. The
tree data file uses a specific format to specify the tree structure in preorder (i.e.
parent first), which is described below.

Tree Data File Format: The tree data file contains two parts, the data

59

Treeview Treemap

Figure 4.3: Treeview and Treemap visualizations built on top of the tree data

structure

definition part, and the actual data part. The data definition part defines the
number of attributes for the nodes, and the names and data types of the at-
tributes. The actual data part then specifies the data for each node of the tree.

The data file starts with a file version string which should be ”'Tree Data File
1.0” (typed without quotation marks). If the file format is later improved, the
version number is used to differentiate the versions. This is followed by the tilde

character
)

which is the field delimiter used throughout the file.

Data Definition: The second field defines the number of attributes for all

the nodes. In the current implementation all nodes must have the same set of
attributes. If the set of attributes for some nodes is different from the set of
attributes for other nodes, the superset of all attributes must be specified for all
nodes. For attributes that are not valid for a given node, some distinct default

values can be used.

60

Next the file must list the data type and name of each attribute. This is
done by pairs of fields, the first one describes the type and the second the name
of the attribute. The data type is specified by a single character, I for integer
attribute, F for floating point number attribute, T for text attribute, and M
(miscellaneous) for any other type attribute. The fields containing values for
attributes of type M (see below, the part about actual data) are skipped, but
they must be present in the file. Number ”0” can be used as a place-holder for
such data. The name of an attribute can be any string, but it must be unique.

Therefore, the data definition part looks like this:

Tree Data File 1.0 <Number of Attributes>~ (<Attribute Type>
“<Attribute Name>~)

The parentheses () indicate that the enclosed parameters are to be repeated
< Number of Attributes > times, one for each attribute.

Actual Data: The actual data is formatted in a nested tree structure (pre-
order). Data for a single node is enclosed in brackets: ”[” and ”]”. Inside the
brackets the attribute values for the node must be listed in the same order as the
attributes were introduced in the data definition part. All the fields, including

the last one, must end with the field delimiter

n~n

If the node is a leaf node, the closing bracket ”]” follows. If the node has child
nodes, they are specified between the last delimiter character and the closing
bracket for that node. Each child node is also formatted as described above.

Therefore, the actual data part looks like this:

61

[valuel~value2~... valuen~[childl’s valuel~childl’s
value2”...%childl’s valuen”] [child2’s valuel”™ child2’s
value2”...%child2’s valuen~™]...]

if <Number of Attributes> = n.

Naturally the child nodes could have their own children, but they are not

shown in the above example for clarity. Characters
1w~ , " [u , n] " , and n\n

have special meaning and they cannot be used inside the fields as such. They

must be quoted using the backslash character
o

So they would appear as
"\, O\, "\DM, and M\\!

respectively.

The white-space characters (spaces, tabs, newlines, carriage returns) are
stripped from the beginning of the fields so that white-space can be used to
make the file more readable. If a field needs to start with white-space (only
spaces and tabs allowed), the first white-space character must be quoted using

the backslash character
n\n .
White-space can also be used in the file between two delimiter characters

(Il"'ll, II[II, and Il]ll).

62

The following example helps understand the format better.
Example: The tree shown in Figure 4.4 would have the corresponding input

data file:

Tree Data File 1.07
3~
T Name™
I"ID~
T"Address”
[Company~0~12345 ABC St~
[Business~1712345 ABC St~
[John Smith~279574 XYZ Ave~]
[Rick Rogers~375345 XYZ Ave~]]
[Accounts™4712345 ABC St~]
[Marketing~5712345 ABC St~
[Bill Crighton"6"84 D St~]
[Wayne Palmer~7~8437 P Blvd~]
[Dan DeVoe~8784 D St~]]
[Engineering~9712345 ABC St~
[Mark Hunter~1076805 R Rd~™]
[Harry Chekov~11~3174 P Blvd~]]]

4.1.2 Treeview node-link diagramming subsystem

The Tree-browser uses two tightly-coupled treeviews, as described in section 3.2.
This subsystem is responsible for the automatic layout of each treeview. The
Treeview widget of the University of Maryland Widget Library”™ was used for
this purpose [CJKT94].

The treeview widget is a node-link visualization which takes as input a tree
data structure (Figure 4.2), generates the layout coordinates for the nodes and
links and renders them. The treeview data structure was designed to be flexible,

extensible and customizable to specific applications. For example, various layout

63

Company

_— T
_— —
Business Accounts Marketing Engineering
< v
\‘\\\\\) /
\\\\\ ,,///
John Smith || Rick Rogers Mark Hunter | | Harry Chekov
Bill Crighton | | Wayne Palmer|| Dan DeVoe

Figure 4.4: Tree Data File Format

parameters, e.g. node width, distance between nodes at adjacent levels, color
of nodes, width of links etc. can be manipulated by programmers via the API;
the same tree can be visualized in any number of treeviews and treemaps. For
details about the treeview widget AP, refer to [CJK194].

The treeview data structure is as shown in Figure 4.5. Each node in the tree
is attached to a list of treeviewNode structures, one for each treeview (Figure 4.5
assumes 1 treeview). Each treeviewNode contains the treeview-specific infor-
mation for that node, e.g. node display coordinates and color. Therefore, the
node-specific information (which is common) is reused across multiple treeviews
of the same tree. Each treeviewNode structure is attached to a treeviewLink

structure which contains the treeview-specific information for the link that con-

nects that node to its parent, for example, coordinates of link end-points and

64

link color.

Tree

Figure 4.5: Treeview Data Structure

4.1.3 Tight-coupling of overview and detailed view sub-

system

This subsystem is responsible for the tightly-coupled behavior of the two tree-
views. Whenever the field-of-view is dragged in the overview, the software re-
ceives notification of these events. This subsystem then scrolls the detailed view
after applying the appropriate scale factor to account for the differences in zoom.
Similarly, whenever the detailed view is scrolled by manipulating the scrollbars,

this subsystem is notified, and it updates the position of the field-of-view in the

65

overview to provide global context feedback. This subsystem is also responsible
for resizing the field-of-view appropriately, whenever the Tree-browser window is
resized by the user.

The T'ree-browser’s behavior as an image-browser can be specified using the

informal specification method proposed by Plaisant et al. [PCS95] (Figure 4.6).

é) [%=

- ;

_l&

. Detailed View
Overview

Figure 4.6: The Tree-browser as an Image-Browser

As per the notation used by Plaisant et al., the left window (Figure 4.6
is the source view and contains some image. The rectangle within the source
view represents the field-of-view. The image enclosed by the field-of-view is
projected on a second window which has scroll bars. The horizontal and vertical
scroll bars are linked with the corresponding movement constraint for the field-
of-view. Thus, moving the field-of-view will not only change the image in the
second window, but will change the scroll bar indicator position as well. In

addition, moving a scroll bar will change the position of the field-of-view and

this change will cause a new projection of the field-of-view to be displayed in the

66

second window.

4.1.4 Query specification and evaluation subsystem

This subsystem provides the functionality for the Dynamic Query Panel de-

scribed in Section 3.2. There are two main modules comprising this subsystem:

e Drag-and-drop modules for building the query panel: These modules are
responsible for updating the Attributes List with those of the current lowest
level displayed. Notification of drags of attribute names from the list and
drops onto the text items are handled by these modules. Special cases like
deleting or replacing existing widgets are also handled. Once the drop is
detected, the appropriate widget is created and initialized to the range of
values (range-slider) / values (menu) for nodes at that level. The arrays
of pointers to nodes stored in NodeArray (Figure 4.7) were used for this

purpose.

e Query evaluation and data display update modules: These modules evalu-
ate the queries as the widgets (range sliders and menus) are manipulated,
and update the data display accordingly. In order to enable fast updates
of the data display, arrays of pointers to nodes at each level are maintained
as shown in Figure 4.7. This enables us to search only the nodes at the
current lowest level when corresponding widgets are manipulated, with-
out having to search the entire tree. Buffering was also done to make the
data display updates as smooth and flicker-free as possible. Changing of
levels (and the corresponding pruning operations) is also handled by these

modules.

67

NodeArray to store arrays of pointers to nodes at each level

Root Node

Figure 4.7: Arrays of nodes at each level

4.2 Algorithms

This section presents the algorithms used in the implementation of the Tree-
browser, in pseudo-code form. Low-level details have been abstracted out and

function names have been made extra long and descriptive.

4.2.1 Node-Link Tree Layout

The node and link coordinates are generated by traversing the tree twice in
postorder, i.e. children first. The first traversal generates coordinates for each
node and the second generates those for each link. The values of coordinates are

based upon layout parameters such as node width, distance between leaf nodes

68

etc. (Figure 4.8). These layout parameters can be easily manipulated by the
programmer through APIT calls.

NODE_WIDTH
A }

NODE_HEIGHT

b(LEAF_DISTANCE)
. 'NODE_HEIGHT

LEAF_DISTANCE

1

[

|

|

|

|

|

i

| R
| l VERT_OFFSET
‘V i

Y ks -
7 f
0,00 x LEVEL_DISTANCE HORZ_OFFSET

Figure 4.8: Treeview Layout

Predefined constants: Let -
The width of each node be NODE_WIDTH,
The height be NODE_HEIGHT,
The distance between leaf nodes be LEAF_DISTANCE,
The distance between nodes at adjacent levels be LEVEL_DISTANCE,
The entire treeview maintain minimum offsets from
the boundaries of the drawing canvas of VERT_OFFSET
and HORZ_OFFSET.

Variables: Let -
The coordinates of the lower left corner of each
node be Node->X and Node->Y,
The level of each node in the tree be Node->Level,

69

The level of the previous node visited be PreviousLevel,
The Y coordinate of the previous node visited be PreviousY,
The first node visited be assigned Y = VERT_OFFSET,

The number of leaf descendents of each node which are
shown be Node->LeafDesc,

and Node->ShowAttr be a boolean variable that indicates

if the node is to be shown or not.

The link that joins each node to its parent be Node->Link,
and the coordinates of each link be Link->X1, Link->Y1,
Link->X2, Link->Y2.

Finally, TraversalNode and tmpNode are temporary node
pointers and Done is a boolean flag.

/* Generate the treeview layout, i.e. the coordinates of
each node and link (assuming left-to-right layout) */

GenerateTreeviewLayout (RootNode)

{

/* Generate Node Coordinates first */
Done = FALSE;

while(Done == FALSE)
{
while(TraversalNode->ShowAttr == 1 AND
TraversalNode->FirstChild exists)
TraversalNode = TraversalNode->FirstChild;

if (TraversalNode->ShowAttr == 1)
AssignNodeCoordinates (TraversalNode) ;

if (TraversalNode->NextSibling exists)
TraversalNode = TraversalNode->NextSibling;
else

{
while(TraversalNode->Parent exists AND
TraversalNode->Parent->NextSibling does not exist)

{

TraversalNode = TraversalNode->Parent;

70

if (TraversalNode->ShowAttr == 1)
AssignNodeCoordinates(TraversalNode);

+

if (TraversalNode->Parent == NULL)
Done = TRUE;

else if(TraversalNode->Parent->NextSibling exists)
{

TraversalNode = TraversalNode->Parent;

if (TraversalNode->ShowAttr == 1)
AssignNodeCoordinates(TraversalNode) ;

TraversalNode = TraversalNode->NextSibling;

}
}

/* Generate Link Coordinates */
Done = FALSE;

while(Done == FALSE)
{
while(TraversalNode->ShowAttr == 1 AND
TraversalNode->FirstChild exists)
TraversalNode = TraversalNode->FirstChild;

if (TraversalNode->ShowAttr == 1)
CalculateLinkCoordinates (TraversalNode) ;

if (TraversalNode->NextSibling exists)
TraversalNode = TraversalNode->NextSibling;
else
{
while(TraversalNode->Parent exists AND
TraversalNode->Parent->NextSibling does not exist)

{

TraversalNode = TraversalNode->Parent;

if (TraversalNode->ShowAttr == 1)
CalculatelLinkCoordinates (TraversalNode) ;

71

if (TraversalNode->Parent == NULL)

Done = TRUE;
else if(TraversalNode->Parent->NextSibling exists)
{

TraversalNode = TraversalNode->Parent;

if (TraversalNode->ShowAttr == 1)
CalculateLinkCoordinates (TraversalNode) ;

TraversalNode = TraversalNode->NextSibling;

}

}

/************************************/

/* Assign coordinates to given node */

AssignNodeCoordinates(Node)
{
/* X coordinate is easily determined from level */
Node->X = HORZ_OFFSET + Node->Level *
(NODE_WIDTH + LEVEL_DISTANCE) ;

if (Node->Level == PreviousLevel)

/* Single increment for Y */

Node->Y = PreviousY + (NODE_HEIGHT + LEAF_DISTANCE);
else if(Node->Level > PreviousLevel)

/* Double increment for Y since new subtree */

Node->Y = PreviousY + 2%(NODE_HEIGHT + LEAF_DISTANCE);
else

/* Center node above all its leaf descendents

that are shown */
Node->Y = PreviousY - (Node->LeafDesc / 2)*
(NODE_HEIGHT + LEAF_DISTANCE);
}

/***/

/* Calculate the end-points of the link that joins the

72

given node to its parent */

CalculateLinkCoordinates (Node)

{
Node->Link->X1 = Node->X;
Node->Link->Y1 = Node->Y + (Node->H)/2;
tmpNode = Node->Parent;
Node->Link->X2 = tmpNode->X + tmpNode->W;
Node->Link->Y2 = tmpNode->Y + (tmpNode->H)/2;
}

4.2.2 Dynamic Querying and Tree Pruning

Each node in the tree shown in Figure 4.2 has some attributes. The algorithms
for automatic tree layout, dynamic querying and tree pruning make use of two

special restricted attributes, ShowAttr and MatchesAttr, defined as follows:

o ShowAttr: This value of this attribute is 1 for nodes that are to be shown

in the treeview. For hidden nodes, the value is 0.

o MatchesAttr: This attribute makes sense only for nodes with ShowAttr
equal to 1. The value of this attribute is 1 if the node matches the current

query at its own level, else the value is 0.

These attributes are added to the tree in the Tree-browser initialization code.
Depending on the initial levels to be displayed, all nodes from the root to the
lowest level displayed are initialized with ShowAttr and MatchesAttr equal to
1, while nodes at deeper levels are initialized with ShowAttr and MatchesAttr

equal to 0.

73

The need for using these two attributes, rather than deleting the nodes that
do not match the query from the tree data structure is that the system has to
allow users to back-track and iterate. By using these attributes, we are éble to
remove nodes from the visualization without actually removing them from the
tree data structure.

The algorithms related to dynamic querying and tree pruning are as follows:

1. Callback function executed when widgets (range-sliders and menus) are
manipulated. This function searches NodeArray (Figure 4.7) at that level,
queries nodes based on the widget states and updates the node colors

accordingly.

Variables:
WidgetLevel: Tree level corresponding to widget
Level: Tree-browser current lowest level

WidgetNotify(WidgetLevel, Level)
{
if (WidgetLevel > Level)
/* Increase Tree-browser level */
IncreaselevelsProc(Level, WidgetLevel);
else if(WidgetLevel < Level)
/* Decrease Tree-browser level */
DecreaseLevelsProc(Level, WidgetLevel);
else if(WidgetLevel == Level)
{
/* Update node color for all nodes at level Level
based on query */
QueryNodesAndSetColor(Level) ;
UpdateFeedbackIndicators();
}

74

Note: The function QueryNodesAndSetColor() called from this function
is similar to the function QueryNodesAndSetShowAttr(), specified later in

this section.

. Function to execute whenever the levels displayed are to be decreased:

Variables:
OldLevel: Previous level
Level: New level to change to (Level < OldLevel)

DecreaseLevelsProc(0ldLevel, Level)

{

integer i;

/* Set ShowAttr to 0 for all nodes deeper than the
lowest level to be displayed */

for(i = Level + 1; i <= OldLevel; i++)
SetShowAttrToFalseForAllNodes (i) ;

/* Set ShowAttr for each node in the new lowest
level based on query */
if(Level !'= 0)
QueryNodesAndSetShowAttr(Level) ;

/* Grow and prune the tree till level Level,
one level at a time */
GrowAndPruneTree (Level) ;

/* Recreate the Tree-browser till the level Level */
CreateTreeBrowser (Level) ;

/* Update the color of nodes at all displayed levels
based on the value of ShowAttr: 1 maps to yellow or
orange (depending on level), O maps to gray */

for(i = 1; i <= Level; i++)

SetColorBasedOnShowAttr(i);

/* Update other interface objects, e.g. level label,
Attributes List, feedback indicators etc.x*/

75

UpdateInterfaceObjects();
3

3. Function to execute whenever the levels displayed are to be increased:

Variables:
OldLevel: Previous level
Level: New level to change to (Level > OldLevel)

IncreaselLevelsProc(0ldLevel, Level)

{
integer i;

/*Set ShowAttr for each node at the level OldLevel

based on its color. Yellow maps to 1 and gray to O */

SetShowAttrBasedOnNodeColor (01dLevel);

/* For nodes in the new levels displayed, set ShowAttr
based on the query at the respective levels */

for(i = OldLevel + 1; i <= Level; i++)

QueryNodesAndSetShowAttr(i);

/* Grow and prune the tree till level Level,
one level at a time */

GrowAndPruneTree (Level) ;

/* Recreate the Tree-browser till the level Level */

CreateTreeBrowser(Level);

/* Update the color of nodes at all displayed levels
based on the value of ShowAttr: 1 maps to yellow or
orange (depending on level), O maps to gray */

for(i = 1; i <= Level; i++)

SetColorBasedOnShowAttr(i);

/* Update other interface objects, e.g. level label,
Attributes List, feedback indicators etc.*/

UpdateInterfaceObjects();

}

76

4. Function to grow and prune the tree till level TillLevel, one level at a time.

Variables:
CurrentNode: A pointer to a tree node, initialized to the
root.
TillLevel: The level till which the tree is to be grown.
NumChildren: A variable to store the number of children
of each node. This is required since this function uses
a preorder (parent-first) recursive tree search.

GrowAndPruneTree (CurrentNode, TillLevel)
{

integer NumChildren, 1i;

/* If node is within levels to be displayed */
if (Level of CurrentNode <= TillLevel) {
/* If node is to be shown at all or not */
if (GetShowAttr (CurrentNode) == 1) {
/* If the node’s descendents are to be shown or not */
if (GetMatchesAttr (CurrentNode) == 1) {
NumChildren = GetChildCount (CurrentNode) ;
/* Repeat for children */
For each child do (i.e. from 1 to NumChildren)
{
/* Set CurrentNode to point to each child node
in turn */
GrowAndPruneTree (CurrentNode, TillLevel);
}
}
else if(GetMatchesAttr(CurrentNode) == 0) {
/* Show current node */
SetShowAttrToTrue (CurrentNode) ;

NumChildren = GetChildCount (CurrentNode) ;
/* Hide all subtrees of current node */
For each child do (i.e. from 1 to NumChildren)

{
/* Set CurrentNode to point to each child node

T7

in turn */
SetShowAttrToFalseForSubtree (CurrentNode) ;
}
}
}
else if (GetShowAttr (CurrentNode) == 0)
SetShowAttrToFalseForSubtree (CurrentNode) ;
}
else
SetShowAttrToFalse (CurrentNode) ;

5. Function to query all nodes at a given level and set the ShowAttr for each

based on results of the query:

Variables:
conditionl, condition2, condition3: The results of
querying each node on the basis of each of the 3
query widgets. These boolean values are AND-ed
together in the following function.
CurrentNode: Current node for which query is being
evaluated.

QueryNodesAndSetShowAttr (Level)
{

integer j;

/* Evaluate the query for each node at that level by
accessing the array of pointers to nodes at that
level */

for(j = 0; j < NodesAtThatLevel; j++)

{

CurrentNode = NodeArray[Levell] [j];

conditionl = DoQueryOnNode(CurrentNode, widgetl);
condition2 = DoQueryOnNode(CurrentNode, widget2);
condition3 = DoQueryOnNode(CurrentNode, widget3);

if(conditionl AND condition2 AND condition3) {

78

/* Set ShowAttr to TRUE and MatchesAttr to TRUE x/
SetShowAttrToTrue (CurrentNode) ;
SetMatchesAttrToTrue (CurrentNode) ;

}

else {
/* Set ShowAttr to TRUE and MatchesAttr to FALSE */
SetShowAttrToTrue (CurrentNode) ;
SetMatchesAttrToFalse (CurrentNode) ;

}

79

Chapter 5

Usability Testing

In order to assess and improve the usability of the Tree-browser, semi-formal us-
ability evaluations were performed, in which subjects were given some training
and then asked to perform some tasks using the Tree-browser. The Universi-
tyFinder data (Section 3.3.2) was used in the testing. This chapter describes the

testing goal, methods, subjects, tasks and results obtained.

5.1 Goal

The goal of undertaking the Usability Testing was to assess the strengths and
weaknesses of the Tree-browser. It was hoped that subjects’ comments and
suggestions would help refine the Tree-browser design and implementation, and

enhance our understanding of tree-browsing issues.

5.2 Methods

With each subject, the following procedures were followed:

80

1. Introduction: The experiment was introduced to the subjects by explaining

the UniversityFinder scenario (Section 3.3.2).

2. Description of features: Tree-browser features were demonstrated one by

one and subjects were given the opportunity to try each one.

3. Tasks: Subjects were asked to perform 7 tasks. The initial tasks focussed
on specific features, while later tasks were designed to evaluate the tool
as a whole (See Section 5.4 for details). Subjects were encouraged to
think aloud while performing the tasks. Comments and suggestions were
recorded as they were made. Interesting actions and sources of confusion

were also recorded.

4. Subjective evaluation: Subjects were asked to rate specific features of the
system (on a scale of 1 to 9), identify what they liked and disliked most

about the Tree-browser and make suggestions for improvement.

5. Analysis: Finally, all comments and suggestions made by subjects were
compiled into one list (Section 5.5). The mean and standard deviation

were computed for each rating and some graphs were plotted.

5.3 Subjects

First, pilot testing was done with 2 fellow graduate students at the HCIL, in
order to try out the tasks and get preliminary reactions. Based on the pilot
tests, the tasks were refined and the subjective evaluation questionnaire was

designed.

81

The software was then tested with 6 subjects. Familiarity / experience with

the following were prerequisites for subjects who participated in the study:
e Tree structures and pruning.
e Database querying.
e GUIs and direct manipulation widgets.

The subjects ranged from graduate students and undergraduate seniors in
Computer Science / Electrical Engineering to a faculty research assistant at the
HCIL. Most of them had some familiarity with the Tree-browser, but only one

of them had used the Tree-browser before.

5.4 Tasks

In order to come up with as complete a set of test tasks as possible, the testing

was classified as follows:
e Feature-based testing: Testing the specific features of the Tree-browser.

1. Tight-coupling of overview and detailed view: 2D browsing of the
node-link diagrams using panning, scrolling and changing levels fea-
tures only.

2. Dynamic Query Environments: Building and modifying dynamic query
panels using drags-and-drops. Directly manipulating the widgets to

produce real-time color updates of the nodes.

3. Tree Dynamics: Tree pruning and associated structure and layout

changes. Issues relating to getting familiar with the tree structure

82

and dis-orientation due to structural changes. Ability to iteratively

refine queries, by jumping back and forth between levels.

e Task-based testing: Testing queries of varying complexity and type. This
classification of queries is general and independent of this particular Tree-

browser design and implementation.

1. Simple “attributes-based” queries: For example, how many states

have a level of violence index <= 60 and good traffic conditions?

2. Complex associative “structure-based” queries: For example, how
many states satisfy all the following constraints: regions with stan-
dard of living >= 50 but <= 95, states with population density
<= 72 and good traffic conditions, public universities with out-of-
state full-time tuition <= $3000 per semester and average SAT scores

of >= 1100 and at least one department.

7 tasks of the above types were used in the testing.

5.5 Results

The subjective evaluations brought out some very interesting results. Subjects
agreed on most issues, and that increased our confidence in the results obtained.

Several features were liked and some were disliked.

5.5.1 Most liked features

When asked what was the one thing they liked the most about the Tree-browser,

subjects said things like:

83

1. “Dynamic querying and pruning to get multiple views based on current

interests.”
2. “Easy to learn, convenient and straight-forward to use.”
3. “The ability to locate interesting parts of large trees.”
4. “Easy to create complex multi-level queries.”

5. “I liked seeing the tree structure of the data, which would usually be tab-

ular.”
6. “Shows adequate information.”

7. “Tightly-coupled overview and detailed view.”

5.5.2 Subjective ratings

Users rated 22 aspects of the Tree-browser on scales of 1 to 9, where 1 was the
worst rating and 9 the best rating. They also rated 3 possible features. Table 5.1

gives the mean and standard deviations for each rating (sample size was 6).

84

ASPECT RATED MEAN RATING JSTD DEVIATION OF RATING
Ease of panning using field—of-view 7.2 1.2
Usetuliness of overview 8.5 05
Adequacy of Browsing technique 6.7 1.8
Ease of creating / modifying query panel 8 1.5
Ease of range—slider manipulation 4.8 24
Speed of range-slider manipulation 5 23
Ease of menu manipulation 8.5 0.8
Speed of menu manipulation 8.5 0.5
Usefullness of color updates during 8.2 1
manipulation of widgets
Speed of color updates during 6.3 0.8
manipulation of widgets
Non-disorientation due to tree structure changes 8.2 1
Usefullness of pruning 8.7 0.5
Speed of changing levels 53 21
Usefullness of hide gray leaves feature 8.5 0.8
Ease of learning to operate the system 85 0.5
How satisfying? 7.8 0.8
How stimulating? 7.8 1
How easy? 7.7 0.8
Adequacy of system power 6.8 1.2
Flexibility of system 7.8 1
Speed of system 6 1.3
How wonderful? 78 1
Ability to click on a node to see the subtree 8.7 0.5
below it
Ability to also type in query values 7.5 2.7
Usefullness of hide all gray nodes feature 8.3 1.2

Table 5.1: Subjective ratings

85

5.5.3 Suggestions for improvement

The following is a listing of all the suggestions for improvement made by subjects,

ranked by the number of subjects who made each suggestion:

1. Ability to click on a node to open the subtree below it. Subjects were
unanimous that the ability to click on a node to expand its subtree was
very intuitive and wanted that feature. This can be generalized to the

ability to manually specify a subset of nodes to expand, or not to expand

(throw out).

2. The range-slider needs to be redesigned and re-implemented. Subjects
were unanimous that manipulating the slider was a frustrating experience,
especially, while trying to fine-tune the query. The redesigned slider should

allow coarse adjustment and fine adjustment and also be faster.

3. Pruning and the Hide Gray Leaves feature were clearly big hits with the
subjects. Most of them used the latter frequently to recapture screen space
from uninteresting gray nodes and focus the search. Removing nodes like
this also made the system faster. Many subjects agreed that a Hide All
Gray Nodes feature would be very useful. Some subjects also felt that
the default behavior could be to hide gray nodes (when levels changed)
and users could ask to see gray nodes (for context) if they were interested.
This suggestion should help make the views even more compact. But the
prefered default behavior depends on the structure of the tree (fan-out at
each level) and also the type of tasks; therefore this requires more investi-
gation. In fact, one subject liked seeing the gray nodes at higher levels and

used the Hide Gray Leaves feature only once. He said the presence of the

86

gray nodes at higher levels helped in visually separating disjoint groups of

nodes.

. Subjects found the response time of some Tree-browser features to be slow,
especially increasing levels when the number of nodes was high. This
was sometimes frustrating to the users. It is important to make changing
levels faster, and also allow users to cancel a change level request if needed
(sometimes subjects hit a change level button by mistake and then had
to wait a long time before they could undo it). The cursor should also
change to a busy cursor whenever the user is expected to wait. Updates of
the data display as widgets or field-of-view were manipulated were for the

most part fast, but sometimes were slow.

. It was observed that subjects get somewhat disoriented when the level of
the tree was changed. This is because the layout algorithm generates a
fresh layout whenever the tree structure changes, i.e. whenever more or
less levels are requested to be seen. It is felt that this problem can be
significantly alleviated by retaining the same current focus. Users could be
allowed to choose before changing levels, what part of the tree the detailed
view should display. For example, if the user asks to see the university
level after specifying Florida as the current focus, the new Tree-browser

view should be initialized to show universities within Florida.

. Ability to type in query values, especially when exact values (like violence
index <= 61) are to be specified. Even in the case of textual menus, if
there are too many items in the list, it might be easier and faster just to

type in the string.

87

10.

11.

. Panning the detailed view by dragging the field-of-view in the overview

was useful, but some improvements to the design are required. One subject
emphasized the need to always fit the overview into one screen only, so that
no scrolling of the overview is required. As mentioned in Section 3.4, this
is what we had designed, but it wasn’t enforced in this implementation.
Another subject suggested that users should be able to click anywhere in
the overview and have the field-of-view jump to that position. This would
enable fast coarse navigation. Fine-tuning could then be accomplished by

dragging the field-of-view.

. The catchiest quote received from one of the subjects was this: “Drag-

1” Some other

and-drop becomes a drag for experienced users, so drop it
subjects also echoed the feeling that it might be easier and faster to just
replace each drop area with a menu of attributes at that level. Some other

subjects enjoyed the drag-and-drop mechanism to create and modify query

panels.

. Another comment related to drags-and-drops relates to the feedback pro-

vided to show when it is OK to drop. Some subjects felt that this feedback

was ambiguous and needed to be improved.

Ability to specify complex boolean queries involving ORs and NOTs, in

addition to the ANDs allowed currently.

One task (Task 6) required subjects to look for departments within 3 states,
Wyoming, Wisconsin and Washington. This is basically restricting states
to Wyoming OR Wisconsin OR Washington. The menu allows users to

select 1-of-n textual values. A widget to select m-of-n textual values needs

88

12.

13.

14.

15.

16.

to be designed and implemented.

A couple of subjects objected to the fact that widgets at each level were
initialized to impossible values sometimes. For example, even if one chose
to see only the states inside USA, states of all regions would appear in
the menu of state names. This was, in fact, a decision we made during
the implementation. Due to the dynamic nature of the remaining nodes
at each level, there would be a large run-time overhead associated with
keeping the widgets always up-to-date to the range of values taken by the
remaining nodes at that level (instead of range of values taken by all nodes

at that level).

One subject wished that there was a way to search upwards in the tree, i.e.
to be able to query on universities and then see the states which contained
the selected universities. Another subject made an interesting suggestion,
that the Tree-browser should allow users to hide certain levels on demand.
For example, if users are interested in looking at all universities in USA,
and do not care about the states they are in, it should be possible to remove

the State level totally and then get it back when desired.

Sometimes the field-of-view goes partially off the left edge of the overview.

This needs to be fixed.
The Attributes List should be sorted alphabetically.

The nodes should not be embossed, especially since they are are not click-
able. The embossed effect gives users wrong visual cues. A debossed effect

would be more suitable. One subject preferred having plain clickable rect-

89

angles, without neither embossing nor debossing.
17. Ability to do regular-expression searches on strings.

18. Querying on an internal (non-leaf) node should not make the deeper levels
vanish from the screen. This was a design decision based on run-time
overhead considerations and desirability of tree structure constancy during
dynamic querying. It is felt that this subject was surprised at this behavior
because it was not explained to him during training. None of the other
subjects, who were informed beforehand of this behavior, had any problems

with it.

19. Subjects sometimes tried to use the left mouse button (instead of middle)
to drag-and-drop, since the left button was otherwise used for clicking. But
they always quickly realized their mistake and corrected it. Thus, this is

not a real problem but just a matter of getting used to the interface.

One common problem subjects had was that the sibling nodes were ordered
reverse-alphabetically, i.e. Virginia appeared above Maryland, instead of below
it. However, this order is not controlled by the Tree-browser, which merely
displays all nodes in the order in which they are specified in the input data file
(provided by the application). But this is nevertheless an interesting guideline
for application programmers to follow when they prepare the Tree-browser input

data file.

90

5.6 Discussion

The Usability Testing provided us with a good insight of what users would like
to see in Tree-browsers and in dynamic query interfaces.. Our findings can be

summarized as follows:

e Tree-browser design refinements: In addition to the ability to specify selec-
tion subsets on the basis of attributes, which the users found very useful,
users should also be able to specify selection subsets manually: by clicking,
marque rectangles etc. Users should also be able to manually override sub-
sets specified via attributes-based queries, e.g. all universities with SAT
scores more than 1100, but put the University of Maryland in anyways.
Being able to remove certain nodes manually is also required. The user
might be able to perform these specifications using ORs and NOTs, or
might prefer to do it manually by clicking on nodes. But this would lead
to problems of keeping track of these nodes, and overriding the original
query might lead to complications later in the query process, if the design

is not done carefully.

The default behavior of the Tree-browser could be to hide all gray leaves
whenever levels are increased. The user would then be able to see gray
nodes at higher levels (for context) upon request. The Tree-browser should
attempt to retain the current focus of the user while changing levels, so

that dis-orientation is minimized.

It should be possible to click anywhere in the overview (which always shows
everything) and have the field-of-view jump to that location. This would

allow fast coarse navigation and then users could fine-tune their searches

91

by dragging the field-of-view.

e General GUI refinements: Users want GUI systems to be fast. At the same
time, they want to have flexibility in their interactions. For example, they
want to be able to specify ranges of numbers using range-sliders as well
as by typing in values. The range-slider needs to be redesigned to allow
coarse and fine adjustment and needs to be re-implemented to be faster.

A m-of-n textual list selection widget needs to be designed and developed.

5.7 A controlled experiment

With my guidance, three students, Robert Ross, Zhijun Zhang and Eun-Mi Choi,
conducted a controlled experiment to compare 3 behavior alternatives for the
Tree-browser [RZC94]. These behavior alternatives related to pruning subtrees
of nodes that did not match the query at their own levels. The 3 treatments

were as follows: (two of these were discussed in Section 3.5)

1. Subtrees of unselected nodes are shown in their entirety, but are colored

gray.

2. Subtrees of unselected nodes are pruned out but the nodes themselves are
shown in gray (This is the behavior option that the Tree-browser currently

uses).

3. Subtrees of unselected nodes and the unselected nodes themselves are

pruned out.

The UniversityFinder database (Section 3.3.2) was used in this experiment.

92

The authors hypothesized that subjects using interface 1 would take longer
than those using 2 or 3. Although 1 allows for a static display of the tree, it’s
inclusion of all irrelevant nodes would probably slow down the response time,
add too much useless information to the user’s visual field, and create a need
for excessive scrolling/panning of the displays to get to relevant nodes. Due to
the longer task completion times and more difficult/ complex searching required,
they postulated that users would also have lower subjective ratings for interface
1 than for 2 or 3.

They hypothesized that the completion times and subjective ratings for in-
terfaces 2 and 3 would be approximately equal (differences would not be sig-
nificant). It was postulated that interface 3 promised the most compact views,
while 2 offered additional context feedback that might help in tasks requiring
several iterations (to refine the query).

24 subjects were randomly assigned to use one (and only one) of these three
treatments (between-groups experimental design). They performed a set of seven
standard tasks. Afterwards, they filled out an electronic questionnaire (QUIS)
to subjectively evaluate the treatment that they had used.

The results showed that the times to complete the set of seven tasks were
significantly different at the 0.05 level with interface 1 being slower than 2, which
was slower than 3. In terms of subjective satisfaction, 2 rated higher than 3,
which was preferred to interface 1.

For total task completion time, an ANOVA gave F = 25.2 which was signifi-
cant at the 0.01 level. Then, using pairwise t-tests, it was found that all results
were significant at the 0.05 level. Therefore, in this controlled experiment, 3 was

the fastest interface while 1 was the slowest. The differences between 1 and the

93

other two interfaces were also significant at the 0.01 level, but the differences
between 2 and 3 were not. For subjective ratings also, the ANOVA produced
an F that was significant at the 0.01 level. Also, all of the pairwise t-tests were
significant at the 0.05 level. Users liked interface 2 the best and disliked 1 the
most. Differences between 1 and 2 and between 1 and 3 were also significant at
the 0.01 level although differences between 2 and 3 were not. In addition to the
overall times for each interface, the authors also compared the times to complete
each task.

The authors note that the poor performance times of subjects using interface
1 might be partly due to poor system response times. Specifically, interface 1
had consistently (noticeably) slower response times, especially when expanding
to the lower levels (“University” and “Department” levels).

The differences between interfaces 2 and 3 were not as clear cut; task perfor-
mance was faster with interface 3 but interface 2 got higher subjective ratings. I
feel that the authors failed to consider one important factor while discussing the
differences in performance between interfaces 2 and 3, i.e. the fan-out. Specifi-
cally, the UniversityFinder tree has a large fan-out (50 states in USA) from the
Region level to the State level, and this might help explain why interface 3 had
faster performance times than interface 2 (a significant proportion of states were
gray and thus took up a significant proportion of screen space). It would be
interesting to repeat the experiment with trees of varying fan-out.

The authors conclude that interface 1 is best avoided, and that the system

should ideally allow users to switch between behavior alternatives 2 and 3.

94

Chapter 6

Conclusions

This chapter highlights the major contributions of this work and suggests possi-

ble future directions.

6.1 Contributions

The major contributions of this work are as follows:

e Extension of dynamic queries to hierarchical data sets: Using the parent-

children interrelationship between nodes to facilitate browsing of the HDS,

e Dynamic query environments: A more flexible and powerful mechanism to

specify selection subsets of large data sets.

The concepts of dynamic querying and pruning are general enough that they
can be applied effectively to other existing tree visualizations like treemaps and
Cone-Trees. These concepts are also extensible to graph structures, but that

would require careful thinking and design.

95

6.2 Future Directions

In this section, future directions are suggested. These include direct extensions

to our Tree-browser and also other open tree-browsing research issues.

6.2.1 Extensions to our work

o Tree-browser refinements:

1. Ability to manually add or remove 1 or more nodes to the selection
subset resulting from the dynamic queries. Thus, the ideal subset
specification mechanism would allow both query-based specification
as well as manual specification. Some issues relating to keeping track
of these nodes and avoiding complications later in the query process

need to be addressed.

2. Query specification: The current Tree-browser implementation allows
users to specify an AND of queries on up to any 3 attributes. This
flexibility should be sufficient for many applications, but it would be
better to have an interface that would allow any number of ANDs,

ORs and NOTs.

3. The Tree-browser interface has been “fine-tuned” for a tree of depth 5
(See Section 3.4 for details). The interface could be extended to cope
with varying structure and growing size by following the suggestions

in section 3.6.1 or otherwise.

4. Further study of which approach is better in terms of hiding vs. show-

ing gray nodes (at higher levels) by default is needed (to extend the

work of [RZC94]). This investigation should take into consideration

96

different types of tasks, applications and tree structures (fan-out,
depth, breadth, size) and attempt to identify when either approach is

better.

o General GUI extensions: Newer widgets need to be developed to enable
users to specify multiple selections on textual attributes easily. Extending
the concept of a 2-box slider to a n-box slider-cum-legend would enable

users to specify visual queries on several ranges of numerical attributes.

e Extension to Graph Structures: The Tree-browser extended dynamic queries
to one class of non-flat data sets, i.e. hierarchical data sets. The most
general form of any data set, is the arbitrary graph. Graphs have nodes
connected via an arbitrary number of links of different types. Each link rep-
resents a relationship between (among) the connected nodes. We believe
that Tree-browser concepts of dynamic querying and pruning / selective
growing can be extended to graph structures as well. Instead of distinct
levels in the hierarchy, we would then think of distinct classes of nodes (and
even links). Implementing a Graph-browser that extends the concepts of
our Tree-browser would help to come up with a more complete theory of

browsing graphs that what exists today.

6.2.2 Other open tree-browsing research issues

e Semantics-based browsing: Generic 2D browsers [PCS95] treat the infor-
mation space being browsed as images only. We believe that browsing of
trees can be facilitated by taking advantage of the underlying structure

of the tree. Fast navigation between siblings, up to parents and grand-

97

parents etc., without having to manually scroll and pan would be useful
options. Traversal of the tree in preorder, postorder and inorder, and tours
of nodes marked either manually or by a query are interesting topics for

investigation.

Layout issues: As the size and complexity of a tree increases, the problem
of visualizing it effectively becomes more and more challenging. If tightly-
coupled detailed views and overviews are used, there is a clear need for
layout guidelines. As the aspect ratio (fan-in / fan-out) of a tree varies,
new layout strategies are needed. For example, if the tree is wider than
deep (as was the case in the network management and University-Finder
scenarios) then it makes sense to have the tree drawn from left-to-right (or
right-to-left) and the overview to the left (or right) of the detailed view.
On the other hand, if the tree is deeper than it is wide, then it might be
better to have the tree drawn from top to bottom and the overview below
the detailed view. If the tree structure changes frequently and has to be
redrawn, then it might be a good strategy to utilize the overview optimally
by making the remaining tree occupy the entire overview space. But this

might lead to some dis-orientation, as the zoom ratio will keep varying.

98

Bibliography

[AS94]

[AWS92]

[BETTS9]

[BI90]

[BMMS91]

C. Ahlberg and B. Shneiderman. Visual information seeking: Tight
coupling of dynamic query filters with starfield displays. In Pro-

ceedings of the ACM Conference on Human Factors in Computing

Systems, pages 313-317, ACM, New York, 1994.

C. Ahlberg, C. Williamson, and B. Shneiderman. Dynamic queries
for information exploration: An implementation and evaluation. In
Proceedings of the ACM Conference on Human Factors in Comput-
ing Systems, pages 619-626, ACM, New York, 1992.

G.D. Battista, P. Eades, R. Tamassia, and I.G. Tollis. Algorithms for
drawing graphs: An annotated bibliography. Unpublished Technical

Report, Computer Science Department, Brown University, October

19809.

David V. Beard and John Q. Walker II. Navigational techniques
to improve the display of large two-dimensional spaces. Behavior &

Information Technology, 9(6):451-466, 1990.

A. Buja, J.A. McDonald, J. Michalak, and W. Stuetzle. Interactive

data visualization using focusing and linking. In Proceedings of the

99

[CGPZ93]

[CIK+94]

[CS94]

[CZP93]

[DMY0]

IEEE Visualization ’91 Conference, pages 156-163. IEEE Computer

Society Press, October 1991.

M.H. Chignell, G. Golovchinsky, F. Poblete, and S. Zuberec. In-
formation visualization and interactive querying for online docu-
mentation and electronic books. In Proceedings of CASCON ’93,
IBM Canada Center for Advanced Studies, pages 1011-1020, Octo-
ber 1993.

David A. Carr, Ninad Jog, Harsha P. Kumar, Marko Teittinen, and
Christopher Ahlberg. Using interation object graphs to specify and
develop graphical widgets. Technical Report CS-TR-3344, Depart-
ment of Computer Science, University of Maryland, College Park,

Maryland, September 1994.

Richard Chimera and Ben Shneiderman. An exploratory evaluation
of three interfaces for browsing hierarchical tables of contents. ACM

Transactions on Information Systems, 1994.

M. Chignell, S. Zuberec, and F. Poblete. An exploration in the
design space of three dimensional hierarchies. In Proceedings of the

Human Factors Society, Santa Monica, California, 1993.

Chen Ding and Prabhaker Mateti. A framework for the automated
drawing of data structure diagrams. IEEE Transactions on Software

Engineering, 16(5):543-557, May 1990.

100

[Fur86)

[Ged88]

[HCMMS9]

[Hen92]

[HHO1]

[J591]

[3594]

George W. Furnas. Generalized fisheye views. In Proceedings of the
ACM Conference on Human Factors in Computing Systems, pages

16-23, ACM, New York, 1986.

D. Gedye. Browsing the tangled web. Master’s thesis, University of
California at Berkeley, May 1988.

J. G. Hollands, T. T. Carey, M. L. Matthews, and C. A. McCann.
Presenting a graphical network: A comparison of performance using
fisheye and scrolling views. In G. Salvendy and M. J. Smith, editors,
Designing and Using Human-Computer Interfaces and Knowledge

Based Systems, pages 313-320. Elsevier Science, Amsterdam, 1989.

Tyson Henry. Interactive Graph Layout: the Exploration of Large
Graphs. PhD thesis, University of Arizona, Tucson, Arizona, May
1992.

Tyson R. Henry and Scott E. Hudson. Interactive graph layout. In
Proceedings of the ACM SIGGRAPH Symposium on User Interface

Software and Technology, pages 55-64, ACM, New York, 1991.

Brian Johnson and Ben Shneiderman. Tree-maps: A space-filling
approach to the visualization of hierarchical information structures.
In Proceedings of the IEEE Conference on Visualization, pages 284—
291, October 1991.

Ninad Jog and Ben Shneiderman. User controlled smooth zooming

for information visualization with a starfield display. Technical Re-

101

[JT92]

[KPTS94]

[Kum95)

[Mas92]

[Moe90)

[MRHO91]

port CS-TR-3286, Department of Computer Science, University of
Maryland, College Park, Maryland, June 1994.

W.A. Jungmeister and D. Turo. Adapting treemaps to stock port-
folio visualization. Technical Report CS-TR-2996, Department of
Computer Science, University of Maryland, College Park, Maryland,
1992.

Harsha P. Kumar, Catherine Plaisant, Marko Teittinen, and Ben
Shneiderman. Visual information management for network config-
uration. Technical Report ISR-TR-94-45, Institute for Systems Re-

search, University of Maryland, College Park, Maryland, June 1994.

Harsha Kumar. Visualizing hierarchical data with dynamic queries
and pruning — the tree-browser. In Catherine Plaisant, editor, HCIL
Open House ’95 Video. hcil, June 1995.

Toshiyuki Masui. Graphic object layout with interactive genetic
algorithms. In Proceedings of the 1992 IEEE Workshop on Visual
Languages, pages 74-80. IEEE Computer Society Press, September
1992.

Sven Moen. Drawing dynamic trees. IEEE Software, 6(3):21-28,
July 1990.

Eli B. Messinger, Lawerence A. Rowe, and Robert R. Henry. A
divide-and-conquer algorithm for the automatic layout of large di-
rected graphs. IEEE Transactions on Systems, Man, and Cybernet-

ics, 21(1):1-12, January 1991.

102

[PCHY2]

[PCS95]

[P1ag3)

[RDSS]

[Rit91]

[RMC91]

[RT81]

C. Plaisant, D. Carr, and H. Hasegawa. When an intermediate view
matters — a 2d-browser experiment. Technical Report CS-TR-2980,
Department of Computer Science, University of Maryland, College

Park, Maryland, October 1992.

C. Plaisant, D. Carr, and B. Shneiderman. Image browsers: Taxon-
omy, guidelines, and informal specifications. IFEE Software, 1995.

to appear.

C. Plaisant. Facilitating data exploration: Dynamic queries on a
health statistics map. In Proceedings of the 1993 American Statis-

tical Association conference, pages 18-23, August 1993.

Gerald M. Radack and Tejas Desai. Akrti: A system for drawing
data structures. IEEE Languages and Automation, pages 116120,
1988.

Ken Ritchie. A general method for visualizing abstract structures.
In Proceedings of the IEEE International Conference on Systems,
Man, and Cybernetics, pages 1237-1246, October 1991.

George G. Robertson, Jock D. Mackinlay, and Stuart K. Card. Cone
trees: Animated 3d visualizations of hierarchical information. In
Proceedings of the ACM Conference on Human Factors in Comput-
ing Systems, pages 189-194, ACM, New York, 1991.

E.M. Reingold and J.S. Tilford. Tidier drawings of trees. IEEE
Transactions on Software Engineering, 7(2):223-228, March 1981.

103

[RZC94]

[SB92]

[Shn92]

[Shn94]

[SMo1]

[STTS1]

[SZB+92)

Robert Ross, Zhijun Zhang, and Eun-Mi Choi. Using the tree-
browser to visualize information for database queries. Term project

for CMSC 434, December 1994.

Manojit Sarkar and Marc H. Brown. Graphical fisheye views of
graphs. In Proceedings of the ACM Conference on Human Factors

in Computing Systems, pages 83-91, ACM, New York, May 1992.

B. Shneiderman. Tree visualization with treemaps: 2-d space-filling
approach. ACM Transaction on Graphics, 11(1):92-99, January
1992.

Ben Shneiderman. Dynamic queries for visual information seeking.

IEEE Software, 11(6):70-77, 1994.

Kozo Sugiyama and Kazuo Misue. Visualization of structural infor-
mation: Automatic drawing of compound digraphs. IEEE Transac-

tions on Systems, Man, and Cybernetics, 21(4):876-892, July 1991.

Kozo Sugiyama, Shojiro Tagawa, and Mitsuhiko Toda. Methods for
visual understanding of hierarchical system structures. IEEE Trans-
actions on Systems, Man, and Cybernetics, 11(2):109-125, February
1981.

Doug Schaffer, Zhengping Zuo, Lyn Bartram, John Dill, Shell Dubs,
Saul Greenberg, and Mark Roseman. Comparing fisheye and full-
zoom techniques for navigation of hierarchically clustered networks.
Technical Report 92/491/29, Department of Computer Science, Uni-

versity of Calgary, November 1992. 12 pages.

104

[WF94]

[WS79]

[WS92]

[YS93]

Colin Ware and Glenn Franck. Viewing a graph in a virtual reality
display is three times as good as a 2d diagram. In 199/ conference

on Visual Languages, pages 182-183, October 1994.

C. Wetherell and A. Shannon. Tidy drawings of trees. IEEE Trans-
actions on Software Engineering, SE-5(9):514-520, September 1979.

C. Williamson and B. Shneiderman. The dynamic homefinder: Eval-
uating dynamic queries in a real-estate information exploration sys-
tem. In Proceedings of the 15th Annual ACM SIGIR conference,
pages 338-446, ACM, New York, 1992.

Degi Young and Ben Shneiderman. A graphical filter/flow repre-
sentation of boolean queries: A prototype implementation and eval-
uation. Journal of the American Society for Information Science,

44(6):327-339, February 1993.

105

