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The long-term goal of this research is to provide kinematic data for the design

and validation of spatial models of collective behavior in animal groups. The specific

research objective of this dissertation is to apply methods from nonlinear estima-

tion and computer vision to construct multi-target tracking systems that process

multi-view calibrated video to reconstruct the three-dimensional movement of ani-

mals in a group. We adapt the tracking systems for the study of two animal species:

Danio aequipinnatus, a common species of schooling fish, and Anopheles gambiae,

the most important vector of malaria in sub-Saharan Africa. Together these track-

ing systems span variability in target size on image, density, and movement. For

tracking fish, we automatically initialize, predict, and reconstruct shape trajectories

of multiple fish through occlusions. For mosquitoes, which appear appear as faded

streaks on in-field footage, we provide methods to extract velocity information from

the streaks, adaptively seek missing measurements, and resolve occlusions within

a multi-hypothesis framework. In each case the research has yielded an unprece-

dented volume of trajectory data for subsequent analysis. We present kinematic

data of fast-start response in fish schools and first-ever trajectories of wild mosquito

swarming and mating events. The broader impact of this work is to advance the un-

derstanding of animal groups for the design of bio-inspired robotic systems, where,

similar to the animal groups we study, the collective is able to perform tasks far

beyond the capabilities of a single inexpensive robot.
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Chapter 1

Introduction

Generating three-dimensional trajectory of every individual in an animal group

from video is a multi-target tracking problem [1]. With targets that appear similar

and have no distinguishable features, the challenge lies in data association, namely

the matching of measurements and targets. This ambiguity exists across sensors

and through time [2]. Occlusions, target maneuverability, target variability, and the

presence of clutter and noise make the task of tracking every target through time

non-trivial—a nonlinear combinatorial optimization problem [3]. In this disserta-

tion we present methods to reconstruct three-dimensional trajectories of individual

animals in a group using multi-view calibrated video. Using these methods, we

design and validate tracking systems for two animal species Danio aequipinnatus,

a common species of schooling fish, and Anopheles gambiae, the most important

vector of malaria in sub-Saharan Africa. Fig. 1.1 shows sample outputs generated

using our tracking systems.

1.1 Motivation

In the past two decades, mathematical models have been proposed that repli-

cate collective behavior in nature. These have a few common characteristics [4, 1, 5]:

the interactions between neighboring individuals is a function of metric distance, and

an individual moves in an average agreement with each of its neighbors. These mod-

els form the first steps in replicating the vast array of collective motion patterns seen

in animal groups in multi-robotic systems. Indeed, the nearest-neighbor interactions

implicit in these models have inspired engineers to design distributed control laws

1



(b)(a)

Figure 1.1: Tracking Results. Tracking systems described in this dissertation are used
to reconstruct (a) full three-dimensional shape of startled fish in a school and (b) three-
dimensional position and velocity of mating mosquitoes (female=red, male=blue, cou-
ple=purple) in a wild swarm. Projection on the horizontal plane is shown in lighter
colors.

for possible implementation in mobile sensor networks [6, 7, 8]. Going forward, a

goal for both the engineer and the biologist interested in collective behavior is to

validate these and newer models against empirical data. While the engineer would

like to see adaptability in robotic systems akin to social animal behavior [9, 10], the

biologist would like to gain deeper insights by performing experiments that highlight

the role of an individual in the group [11, 12, 13].

The impracticality of manually digitizing long videos of large animal groups

limits the type of analysis and number of experiments that can be performed to

understand collective behavior. The strength of automation in generating such data

is evident from recent findings that have led to a better understanding of animal

groups. For example, it has been shown that coordinated motion in birds is a

function of topological distance [14] and consensus in fish schools is an effect of dy-

namically changing interaction rules [15]. Other results include validation of models

based on consensus [16] and interaction topologies [17, 18], and implementations

of multi-robot systems for collective transport [19]. In each case advancements in

estimation theory and computer vision have made it possible to use non-invasive

visual imaging to extract kinematic data.

Schooling fish and swarming mosquitoes are both instances of collective behav-

2



ior. While the fish schools responding to an external threat [11] represent heightened

coordination towards a single goal—to avoid predation, mosquito swarms are male

gatherings (leks) where group members compete to stay in the center [20]—possibly

to increase the chance of a successful mating [21]. Tracking individuals in schooling

fish presents opportunities to understand the flow of information transmission for

possible implementation in underwater robotic systems, and tracking wild swarm-

ing malarial mosquitoes is critical to expanding our understanding of the mating

behavior for analysis that may inform the first steps towards strategies of vector

control [22, 23].

1.2 Related Work

Significant advances in target tracking and computer vision over the past few

years have largely been applied towards automation in tracking humans [24, 25].

Most of these techniques aim to track point targets or full body shape without

markers. In that respect the challenges faced in tracking humans and animals are

alike: to reconstruct non-rigid shapes, automatically initialize models, and track

high density aggregations (for example crowds) [24].

Fish schools have been tracked in their natural environment [26] and in lab-

oratories [27, 5]. In [26], Handegard et el. measured sensor orientation, range,

and target strength (proportional to the size of the target [1]) using a split-beam

echosounder mounted on a moving platform to track individual fish position in a

school. Tracking is performed using an extended Kalman filter and targets are

matched to the nearest measurement based on Euclidean distance. In [27], Schell

et al. implemented a measurement-based tracking method called segmenting track

identifier to track positions of up to fourteen fish in two dimensions. They use a

modified probabilistic data association method to match measurements to tracks

and join broken segments using least-squares. In [5], Viscido et al. track groups of

four and eight fish in three dimensions filmed in a 1 m3 acrylic tank using two cam-

eras arranged orthogonally. Tracking is performed using custom software that joins

3
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Figure 1.2: Related work. We classify the problem of tracking animal groups in a two
dimensional space along number of targets and the size of the state space for each target.
Tracking systems described in this dissertation appear in bold.

individual fish tracks in each camera separately using nearest-neighbor distance.

Three-dimensional tracks are created by minimizing the least squares distance be-

tween projections of two dimensional tracks. In each instance, the fish are modeled

as point masses; orientation and shape information is ignored. Shape kinematics

for a single fish have been tracked manually [28] and automatically [29] in two di-

mensions. In [28] Hughes and Kelly use two cameras in a setup to film fish in

flowing water. The midline is a series of points marked manually and projected on

a plane of orientation from the side view. The plane of orientation projects from

the line joining the camera center, snout, and tail of the fish. In [29], Fontaine et al.

mark the midline manually in the first frame to fit a series of connected B-splines.

A two-dimensional Frenet frame and body outline is used to create a symmetrical

fish shape about the midline. Two dimensional shape of single zebrafish filmed at

high speed (1500 frames per second) are tracked automatically using an unscented

Kalman filter with edge points normal to the midline as measurements.

4



Multiple flying insects have been tracked in the laboratory [41, 42, 43, 34, 44],

as well as in the field [2]. In [34], Straw et al. track multiple fruit flies filmed with

up to eleven video cameras in a large arena, in real time. They use an extended

Kalman filter with nearest-neighbor data association to match target estimates to

measurements. Grover et al. [44] use similar technique on a smaller tracking vol-

ume to create visual hull of each fly as it is tracked. In [42], Zou et al. track

multiple fruit flies filmed at high speed (200 frames per second) in an acrylic box

by setting up the problem of data association across views and time in the form

of a global optimization problem solved at every step. In [2], Wu et al. track up

to a hundred bats with three cameras using a Kalman filter in conjunction with

a multi-dimensional assignment strategy similar to multiple hypothesis tracking.

Early attempts at localizing mosquito positions include the work of Gibson et al.

[45], where they manual digitize mosquito tracks in two dimensions on film. In [46],

Ikawa et al. built a three camera mobile setup that is used to take pictures of a

swarm at fixed intervals. They use camera flashlight to illuminate the mosquitoes so

that they show as bright spots. Correspondence between views is solved probabilis-

tically to localize three dimensional position. More recently, in [20], Manoukis et

al. use a mobile stereo setup with synchronized cameras to film mosquito swarms in

the wild. Across-view correspondence is solved manually by marking each mosquito

every 15 seconds and three dimensional position is obtained through triangulation.

In each case, the mosquito is an identity-less point in space and the analysis have

mainly focused on swarm density and structure.

1.3 Contributions

This research advances the current state of the art in tracking animal groups by

constructing multi-target tracking systems that process muli-view calibrated video

to reconstruct three-dimensional movement of every animal in a group. Together

these tracking systems span variability in target size on image, density, and move-

ment. The contributions of this dissertation are:

5



Automatic model initialization We model fish shape as a series of elliptical

cross sections about a flexible midline. To track hundreds of experimental videos

without the need to manually initialize every dataset we develop a method to au-

tomatically estimate the fish shape using multiple camera views (with at least one

overhead view) for eventual use in shape reconstruction.

Shape reconstruction through occlusions We design a tracking system that

reconstructs position, orientation, and shape of every fish in a dense school. We

solve the problem of resolving sustained occlusions by formulating a variable di-

mension cost function minimized using simulated annealing—a provably convergent

but slow optimization technique. We suggest a candidate generation function that

significantly improves the time to convergence.

Generation of high-volume trajectory datasets We evaluate the performance

of the shape-reconstruction algorithm and validate the tracking system on schools of

up to eight fish. The tracking system is currently being used to investigate fast-start

behavior of schooling fish in response to looming stimuli (see Fig. 1.3).

Velocity estimation from motion-blurred silhouettes We provide an end-

point based likelihood function to estimate mosquito velocity from motion-blurred

silhouettes appearing as streaks on the image plane. During target initialization, we

use this likelihood function to reduce uncertainty in predicting position in the next

frame.

Tracking through missing measurements and occlusions We design a track-

ing system that adaptively seeks faded streaks and resolves occlusions by splitting

occluded blobs on image into individual measurements. We develop a graphical in-

terface that assists a human for linking track segments output from the automated

tracker. We evaluate the performance of the tracking algorithm, and validate the

tracking system on stereo image sequences of wild mosquito swarms (see Fig. 1.4).
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500 ms

Figure 1.3: Startle response in a school of fish. In order to study information transmission
in a fish school we tracked the full body shape of every fish even as they occluded each
other. Time series data comprising position and heading quantifies the location of every
fish with respect to its neighbor as well as the order of startle.

Figure 1.4: Raw images of mosquito swarms. Three sample images from the Left camera
frame from three different days of swarming. A barely visible swarm is in center of each
image.

Three dimensional mosquito swarming and mating trajectories We present

validated tracking results in the form of three-dimensional trajectories of wild mosquito

swarming and mating events filmed in Mali in August 2010. To date, the tracking

system has been used to generate trajectory data of all mosquitoes in six swarms

and six different mating sequences which is an order of magnitude (97 trajectories

and 55,000 position points) larger than the last published result on reconstruction

of wild mosquito swarms [20], and the first to contain three-dimensional trajectories

rather than only positions.

Versions of the fish tracking system described in this dissertation have been

previously published in conference paper [38], where we track multiple fish in a 1135

liters (300 gallon) water tank and journal article [39] which describes the high-speed

tracking system detailed in this dissertation. A related model based tracking system

for underwater vehicles appeared in conference paper [47], and an application of the

tracking system in a virtual reality setup is published in conference paper [48]. An

7



earlier version of mosquito tracking system has appeared briefly in conference paper

[36], and in detail in journal article [37].

1.4 Outline

The dissertation is outlined as follows:

In Chapter 2 we formulate the motion reconstruction of animal groups as a

multi-target tracking problem. We divide the problem into design components and

review existing methods for each component in a separate section. Within each

section we put our animal study into context, and justify our choice. A summary

of our design choices and the reasons is provided in the end.

In Chapter 3 we apply the methods of nonlinear estimation and deformable

shape representation for tracking fish shape in three dimensions. We present meth-

ods for estimating shape, data association, and shape reconstruction. Finally, we

evaluate the performance of the tracking system on artificial and real datasets.1

Chapter 4 details the mosquito tracking system. Following an overview of the

tracking algorithm, we describe novel parts of the tracking system, namely the like-

lihood function and the modified multi-hypothesis tracker for resolving occlusions.

We evaluate the performance of the tracking algorithm and present representative

three dimensional trajectories of mosquito swarming and mating.

We conclude in Chapter 5 with a summary of the dissertation and suggestions

for future research.

Appendix A provides the linearization of nonlinear shape measurement model

for use in a Kalman filter; Appendix B describes the camera calibration method for

calibrating our multiview systems. Appendix C describes the optimal subpattern

assignment metric that we use to evaluate the mosquito tracking algorithm.

1All procedures were done according to protocols R08-68 and R11-53 ”Quantitative Analysis of

Schooling Behavior” approved by the University of Maryland, College Park Institutional Animal

Care and Use Committee.
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Chapter 2

Tracking Animal Groups

In this chapter we divide the problem of tracking multiple, possibly non-rigid

targets, into design components. For each component we review existing methods in

computer vision and estimation theory and justify our choice. We begin in Section

2.1 with problem formulation in discrete time state space for a single target and

extend the same to multiple targets. Motivated by nonlinearity in our measurement

models we reason and describe the use of particle filter and simulated annealing for

tracking in Section 2.2. In Section 2.3 we discuss methods to model deformable (non-

rigid) shapes including the use of curve framing for generating arbitrary shapes. In

Section 2.4 we bring attention to the maneuvering motion of our targets and review

dynamic models that approximate the same. Section 2.5 details data association

strategies to match measurements and targets and existing techniques to address

occlusions. In Section 2.6 we underline the need for automatic initialization in our

tracking algorithms to generate high volume datasets and discuss select approaches.

We summarize in Section 2.7 with a list of design choices available for each com-

ponent of the multi-target tracking system and our reasons for picking a particular

option as a starting point.

2.1 State Space Representation

A target t at time step k is described by the state vectorXt[k] ∈ Rn. Examples

of target state include the three-dimensional position and velocity in which case

n = 6. A measurement m at time k is denoted by Zm[k] ∈ Rm. In the case of

radar systems, the measurements typically consist of range and bearing in which
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case m = 2. In a camera image the measurement may be pixel location of the blob

centroid (m = 2) or the silhouette of the blob in which case m is variable. In a

Bayesian framework, the tracking algorithm recursively iterates through two steps,

the update step and the predict step. The update step uses a measurement model to

revise the estimate based on new observations. The predict step integrates a motion

model to obtain the target state at the time of the next measurement. Assuming

motion model F and measurement model H, the state of target t satisfies

Xt[k] = F (Xt[k − 1],w)

Zm[k] = H(Xt[k],n),
(2.1)

wherew and n denote disturbance and noise values respectively, and Zm[k] is known

to have been generated by target t. Because of noise, disturbances, and approxi-

mations in F and H, the state Xt[k] is a random quantity and (2.1) describes a

random process. The conditional probability density function (pdf) of Xt[k] given

all measurements from target t up to k, Zk
m, is called the filtering pdf. The filter-

ing pdf denoted by p(Xt[k]|Zk
m) is related to the likelihood of Zm[k] given Xt[k],

p(Zm[k]|Xt[k]), by Bayes’ rule

p(Xt[k]|Zk
m) =

p(Zm[k]|Xt[k])p(Xt[k]|Zk−1
m )

p(Zk
m|Zk−1

m )
, (2.2)

where p(Xt[k]|Zk−1
m ) is the prior pdf and p(Zk

m|Zk−1
m ) is a normalizing constant.

The prior pdf is related to the filtering pdf at k − 1 by

p(Xt[k]
∣∣Zk−1

m ) =

∫
p(Xt[k]

∣∣Xt[k − 1],Zk−1
m )p(Xt[k − 1]

∣∣Zk−1
m )dXt[k − 1]

=

∫
p(Xt[k]

∣∣Xt[k − 1])︸ ︷︷ ︸
transition pdf (F)

p(Xt[k − 1]
∣∣Zk−1

m )dXt[k − 1]. (Markov)

(2.3)

The Markov property (first order) implies that the current state at k depends only

on the previous state at k − 1.

For multiple targets the filtering pdf p(X[k]|Zk) is the probability of the joint

state X[k] of all targets given the set Zk of all measurements up to k. We make

two assumptions:
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a1) targets do not interact at short time-scales; and

a2) a target gives rise to one measurement only.

Based on these assumptions, the joint filtering pdf is

p(X[k]
∣∣Zk) = p(X1[k],X2[k], . . . ,Xnt [k]

∣∣Zk)

= p(X1[k]
∣∣Zk)p(X2[k]

∣∣Zk) . . . p(Xnt [k]
∣∣Zk) (non-interacting targets)

= p(X1[k]
∣∣Z[k],Zk−1)p(X2[k]

∣∣Z[k],Zk−1) . . . p(Xnt [k]
∣∣Z[k],Zk−1)

=

nt[k]∏
t=1

likelihood function︷ ︸︸ ︷
p(Z[k]

∣∣Xt[k]) p(Xt[k]
∣∣Zk−1)

p(Z[k]
∣∣Zk−1)

(Bayes rule, independent observations)

=

nt[k]∏
t=1

nm[k]∑
m

βtm
p(Zm[k]

∣∣Xt[k])p(Xt[k]
∣∣Zk−1)

p(Z[k]
∣∣Zk−1)

, (one measurement per target)

(2.4)

where βtm is the association probability of target t with measurement m, and nt[k]

and nm[k] are the number of targets and measurements at k respectively. We also

assume that the observation Z[k] is independent of previous observations. Together

(a1) and (a2) split the joint multi-target estimation problem (2.4) into multiple

single-target estimation problems (2.2).

In the case when (2.1) is linear and w and n are additive white noise Gaus-

sian processes, the filtering pdf is also Gaussian and is fully represented by the mean

and the covariance matrix. A Kalman filter gives the optimal (in the sense min-

imum mean square error) maximum a posteriori (MAP) estimate that maximizes

the filtering pdf. Nonlinear motion and measurement models make the computation

of the pdf (2.2) impractical due to the multi-dimensional integral (2.3). To sample

from the filtering pdf we must therefore resort to other methods. In the next section

we discuss two methods in detail: particle filtering, which indirectly samples from

the filtering pdf, and simulated annealing, a metaheuristic (local search based) opti-

mization technique that converges to the MAP of the filtering pdf with a sufficiently

slow annealing schedule [49, 50].
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2.2 Nonlinear Estimation

Suboptimal methods to sample from the filtering pdf include the extended

Kalman Filter (EKF), unscented Kalman filter (UKF) and the particle filter. The

EKF [51] retains the Gaussian assumption on noise and disturbance and performs

filtering using a first-order linearization of F and H. EKF performance depends

on the linearization error and diverges easily for moderately nonlinear motion and

measurement models [52]. The UKF marks a significant improvement over the

EKF by representing the random state by weighted sample points that capture the

pdf up to a third order linearization [53], but the UKF cannot handle multimodal

density functions and non-Gaussian noise and disturbance. Due to ambiguity in

orientation and shape of our targets, we encounter multimodal likelihood functions

in tracking fish [38] as well as mosquitoes [36]. A particle filter [54, 55] represents the

filtering pdf as a point-mass distribution and relaxes most restrictions on the target

and measurement models and the disturbance and measurement noise. However,

a particle filter can be computationally burdensome for a large state space. Based

on the assumption (a1) that the targets do not interact at short time-scales (<

40 ms), a separate filter for each target may be run. The particle filter recursively

samples from the filtering distribution by employing importance sampling, a method

we describe next.

Importance sampling

Importance sampling is a method to sample from a target distribution p(X[k]|Zk)

indirectly by instead sampling from a known, easy-to-sample, proposal distribution

[52, 55].1 Let X i be a sample generated from the proposal distribution π(X[k]|Zk).

The importance weight wi is

wi =
p(X i[k]|Zk)

π(X i[k]|Zk)
. (2.5)

1The proposal distribution is also referred to as the importance sampling distribution.
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The filtering pdf p(X[k]|Zk) can be approximated by

p̂(X[k]|Zk) =
Ns∑
i=1

w̃iδ(X i[k]−X[k]), (2.6)

where Ns is the number of samples generated, and w̃i = wj
(∑Ns

i=1w
i
)−1

is the nor-

malized weight. In order to implement importance sampling in recursive estimation

the proposal distribution π(X[k]|Zk) at k must admit the proposal distribution at

k − 1 as the marginal so that the following relation holds

π(X[k]|Zk) = π(X[k]|X[k − 1],Zk)π(X[k − 1]|Zk−1). (2.7)

This permits us to recompute the weights at k using the weights at k−1 and Bayes’

rule (2.2)

wi[k] ∝ wi[k − 1]
p(Z[k]|X i[k])p(X i[k]|Zk−1)

π(X i[k]|X i[k − 1],Zk)
. (2.8)

We recall (2.3) to realize that a choice of proposal distribution that also satisfies the

condition (2.7) is the prior pdf p(X[k]|Zk−1) at k which can be sampled from by

augmenting the filtering pdf at k − 1 with transition density. Therefore, beginning

with a guess for the prior at k = 0, the importance sampling algorithm propagates

particles and updates their associated weights every time a measurement is received.

This sampling strategy, however, is inefficient and quickly degenerates to a single

particle [55]. Degeneracy is mitigated by using normalized weights to redistribute

the particles according to their weights in a resampling step (also known as boot-

strapping) [54]. The resulting filter is known as the sampling importance resampling

filter (SIR). The SIR algorithm is listed in Table 2.1.

Other methods that improve the sampling efficiency include Rao-Blackwellization

[55, 56], unscented particle filter [57], and MCMC sampling [30, 55]. Rao-Blackwellization

is amenable to problems where the state can be partitioned so that a portion can

be computed analytically; thus effectively marginalizing out that part of the esti-

mate from the filtering pdf. The unscented particle filter uses the unscented trans-

formation to sample from a proposal distribution. This permits sampling from

heavy-tailed proposal distributions that admit the support of the filtering pdf and
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Table 2.1: Sampling Importance Resampling Particle Filter

Input: Set of particles {X i
t [k]}Ns

i=1, for each target t; an associated measure-

ment Zm[k] for each target, likelihood function P (Zm[k]
∣∣Xt[k]) and

motion model F .

Output: Mode or mean of the distribution from the particle set {X i
t [k+ 1]}Ns

i=1

1: Compute weights for each particle using the likelihood function P (Zm[k]
∣∣Xt[k])

as wi = P (Zm[k]
∣∣X i

t [k])

2: Normalize the weights w̃i = wi/(
∑Ns

i=1w
i).

3: Resample the particles using the cumulative distribution of normalized weights

{w̃i}Ns
i=1[54].

4: Predict: Use the motion model F to propagate each particle to the next time-step.

include recent observations which may have been missed by the prior distribution

[57]. Markov Chain Monte Carlo (MCMC) is a class of methods that sample from

the target distribution by simulating a Markov process (offline, as opposed to on-

line as in particle filtering) whose equilibrium density is the same as the target

distribution. In order to draw samples from the target distribution the Metropolis

Hastings algorithm is used [58], which accepts a sample generated from the proposal

distribution π(X i;Xj) with the probability α given by

α = min

(
p(Xj

∣∣Zk)π(X i;Xj)

p(X i
∣∣Zk)π(Xj;X i)

, 1

)
. (2.9)

The Metropolis Hastings algorithm is also used in a hill climbing optimization tech-

nique called simulated annealing [59].

Simulated Annealing

Simulated annealing (SA) mimics the thermodynamic annealing process by

accepting a jump out of a local minimum with a probability that decreases as the

temperature cools down according to a cooling schedule [59]. The probability of ac-
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ceptance is computed using the Metropolis Hastings algorithm described in MCMC

sampling (2.9). The main difference is that the SA algorithm simulates an inho-

mogeneous Markov chain (in contrast to a homogeneous Markov chain in MCMC

sampling) where the transition probabilities change as the temperature is lowered.

Instead of sampling from the target distribution, we extract the MAP estimate of

the distribution by casting the system (2.1) into a numerical optimization problem.

We minimize an objective function C(X) = ‖Z − H(X,n)‖, which evaluates the

match between measurements and the estimate. The main components of the SA

algorithm are the perturb function, which generates candidate solutions, the cost

function that evaluates the solutions, a cooling schedule that lowers the temperature

thereby reducing the probability of a jump, and a termination criteria. The general

algorithm is summarized in Table 2.2.

Table 2.2: Simulated Annealing Algorithm

Input: Cost function C : Rn → R, perturb function r : Rn → Rn, and a

non-increasing cooling schedule T : R× R→ R

Initialize: State estimate at current time-step, X1 = X[k]

Until a termination criteria is reached, iterate for j = 1, 2, . . .

1: Perturb X̃j = r(Xj). Let δC = C(Xj)− C(X̃j) be the change in cost.

2: Sample from a uniform distribution ρ ∼ U(0, 1) and update the state:

Xj+1 =

 X̃j if ρ ≤ min(1, exp(−δC/τ j))
Xj otherwise,

where τ j is the temperature.

3: Update the temperature τ j+1 = T (τ j, j).

One or more termination criteria may be used such as reaching a freezing tem-

perature, exceeding a maximum number of evaluations, or attaining a minimum

cost value. Note that we can simulate a homogeneous Markov chain by enforcing

an inner-loop criterion on steps 1 and 2, running them in a loop until additional
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criteria are satisfied (the temperature stays constant) [60].

While convergence results are proven for both homogeneous and inhomoge-

neous Markov chains [61], the time taken in each case is impractically slow. In [62]

convergence results are shown for a logarithmic cooling schedule T = τ 0/ log(1 + j)

with Gibbs sampling [63]. In [60] finite time behavior has been analyzed for inho-

mogeneous Markov chains. They suggest a cooling schedule T = rL/ log(1 + j + j0)

that depends on r, the radius of the underlying graph, and L a bound on the local

slope of the cost function; j0 is a design parameter. Simulated annealing algorithm

has been successfully applied to discrete optimization problems in image restora-

tion [49, 62]. A parallelized version known as the annealing particle filter has been

implemented in markerless motion capture [64].

In tracking fish shape, where the task is to fit a polynomial midline to a three-

dimensional region, the resulting optimization problem has multiple minima. This is

because similar curves can be attained with different parameter sets. We therefore

use simulated annealing to solve it. We adopt the following methods to improve

finite time behavior and verify convergence: (a) we downsample the search space

for the initial run and approach the actual resolution in successive runs; (b) we

modify the proposal distribution to generate solutions arising from approximate fish

motion; and (c) we verify convergence using synthetic images.

2.3 Deformable Shape Representation

Point mass representation of extended objects that deform on video leads to

loss of accuracy in position information because the location of centroid on the image

blob depends on instantaneous shape.

Deformable objects may be tracked using model-based methods that enforce

a pre-determined shape geometry on image blob features. An exoskeleton model

may be generated using cylinders and cones joined at their ends, where as a midline

skeleton may be constructed using lines [65]. Instead of using cylinders or cones,

shapes that can deform based on a parameter may also be used. These include
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quadrics [66, 67] and superquadrics [68].

Once a model is determined, two-dimensional features such as silhouettes [44]

and occluding contours [66, 29, 35] may be extracted using background subtraction

followed by contour tracing. Correspondingly, three-dimensional convex volume that

encloses the target may be extracted from volumetric pixels (voxels) in the filming

volume [69].

The last step in tracking deformable objects is to fit the shape model on to the

raw features. This can be done by computing the principal components of the feature

set as is done for tracking fruit fly in [69], or using a measurement model within a

filter to minimize the combined distance of the features from the model as is done in

tracking vehicles [70], hands [66], mice [71], and a fly [35]. Instead of directly using

raw features to enforce a model, intermediate steps that track deformable shapes

locally through a set of control points may be used. These include active contours,

which wrap a pre-defined contour based on a decreasing energy function around the

edges of regions of high-contrast [72, 73], mesh modeling, which constructs a 2D

triangular mesh model of the target [74], and medial axis transform, which finds

the set of points that are centers of circles tangent to two points on the occluding

contour [65]. In order to extract meaningful pose and shape data one must again

enforce a geometric model on the output of these methods. In [75] an unscented

Kalman filter is used to deform an active contour along specific control points to

track single targets through occlusions. The contours are then projected on to PCA

base generated from a training set of images.

Generative modeling provides a framework for modeling the shape of asym-

metrical objects. A generative model may be produced by rotating and translating a

shape along a trajectory [76]. Formally, a continuous set of transformations are ap-

plied on a shape (also called the generator) to build a generative model. A generator

of the form γ(v) : R→ R3 is transformed through a parameterized transformation,

δ(γ(v), s) : R3 × R → R3, to form a surface. For example, a cylinder with radius r
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Figure 2.1: Generative modeling. A cylinder, cone, and a goblet shape produced using
generative modeling.

is produced by choosing

γ(v) =


cos v

sin v

0

 and δ(γ(v), s) =


rγ1

rγ2

s

 , (2.10)

where s ∈ [0, 1] and v ∈ [0, 2π]. Similarly a cone is produced by decreasing

r = 1 − s linearly along the trajectory (see Fig. 2.1). Complex shapes about a

three-dimensional curve require a coordinate frame at each point on the curve for

projecting the generator.

In a curve framing setting [77] under the assumption that the curve f(s) ∈ R3

is twice differentiable, an orthogonal frame may be used to transform the generator

γ(v) onto a point on the curve. For tracking fish shapes we model each fish shape as

a series of elliptical cross sections about a flexible midline. Similar approximation of

fish cross section as an ellipse was done in [78]. Let N (s) and B(s) be the normal

and binormal vector to the curve f(s) at s. Beginning with a simple circle for the

generator γ(v) in (2.10), we add functions a(s), b(s) of scaling parameter s as ellipse

axes lengths to generate a surface

δ(γ, s) =
[
N (s)a(s) B(s)b(s) 03×1

]
γ + f(s), (2.11)

where the 03×1 entry denotes that the cross section is planar (zero thickness in the

direction tangent to the curve).
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Figure 2.2: Maneuvering targets. Position trajectories in each of the three dimensions for
(a) fish and (b) mosquitoes are shown for a randomly selected 2 second window of tracked
data.Both fish and mosquitoes exhibit maneuvering target motion that can hardly be
approximated by a simple motion model.

2.4 Maneuvering Targets

Individual animal motion within a group is characterized by rapid maneuvers

comprising quick turns and speed-ups to avoid collisions and predators, and to keep

up with the rest of the group. These sudden changes in kinematics are distinctly

different from regular motion and hard to model with a simple motion model. For

example, fish startles comprise quick turns and speed-ups up to ten times the regular

motion [79]. Three-dimensional reconstruction of mosquitoes reveal speeds ranging

between 1–4 m/s and accelerations up to 10 m/s2 [37]. Acceleration up to 2 m/s2

have been recorded previously for midges [80].

Maneuver models for tracking maneuvering targets include acceleration mod-

els that include acceleration in the state space, and turning models that incorporate

turn rates in the dynamics [81]. Examples of acceleration models include [51, 81]

white noise acceleration, and Singer acceleration models. Compared to the constant

velocity model, dṙ = dw, the white noise acceleration model where target accelera-

tion is a white noise process dr̈ = dw represents greater ambiguity in acceleration.

Another maneuver model called the Singer acceleration model approximates target

acceleration as a first order Markov process with correlation Ra(τ) = σ2 exp(−α|τ |),
where α is inversely proportional to the maneuver time constant: α is 1/60 for a
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lazy turn and 1 for sudden jerks.

In tracking mosquitoes where a maneuver typically lasts for a fraction of a

second, the Singer model reduces to constant velocity. We evaluate a constant

velocity model perturbed by a white noise Gaussian process whose variance was

computed empirically with white noise and Singer models and observe that the

constant velocity model produces less variance in the predicted estimates, which in

our case leads to better data association.

Acceleration maneuver models perform poorly in predicting turns [81] espe-

cially because turns are typically an effect of torque inputs in the body frame [81].

We model fish movement by modeling unknown turn rates in the body frame, as a

function of curvature in [38], and as independent disturbance processes that reflect

higher yaw movement compared to pitch in this dissertation.

2.5 Data Association

A multi-target tracking system must associate measurements and targets.

A target-based method associates each target to a measurement [51], whereas a

measurement-based method associates each measurement to a target [82]. The

difference is that a measurement-based method can inherently handle a variable

number of targets, which may appear and disappear from the field of view. The

reliability of the association depends on the proximity of the actual measurement to

the predicted measurement, which is produced from the target estimate using the

motion model and the measurement model; measurement proximity is determined

using a distance function.

2.5.1 Gating Measurements

A data association strategy begins with evaluating candidate associations prior

to making a match. The number of possible associations can be significantly reduced

by gating the measurements. The gating volume or validation region is generated

from the difference ν = Zm−f(Xt) between the position measurementZm ∈ Rm and
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Figure 2.3: Data association. To generate meaningful tracks, the identity of each target
must be maintained across camera views and through time.

the predicted position measurement f(Xt) ∈ Rn. Let S be the covariance of ν, which

is also called the innovation. If a measurement that is normally distributed about

the true value lies within the validation region, the weighted norm ‖ν‖2 = νTS−1ν

satisfies ‖ν‖ < tgate. (The quantity ‖ν‖ is also known as the Mahalanobis distance.)

For example, a threshold value tgate = 16 defines a region around a predicted two-

dimensional measurement (m=2) with 99.97% probability of containing the actual

measurement [51]. A large gating volume ensures a high probability that the true

association will be evaluated, but increases computational load and the possibility

of track switching. A small gating volume that misses the true measurement results

in track termination. The aim therefore is to gate true measurements as tightly as

possible. Methods to reduce the size of gating volume include weighted correlation

matching [83] and window warping [84].

We use a simple gating volume for tracking fish, but then associate targets to

measurements based on a midline distance function. For tracking mosquitoes, we

use the gating volume for two purposes: to evaluate possible associations, and to

seek missing measurements.

Across-view measurement associations can be gated based on the epipolar

constraint described as follows. Let cu ∈ R2 be the location of centroid of a blob in
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camera c. Let ũc = [(uc)T , 1]T be the homogeneous representation of uc. Assuming

without loss of generality that camera 1 is the inertial frame, a pair of measurements

with midpoints u1 and u2, one from each camera, must satisfy epipolar constraint

[85]: ∣∣(ũ2)TF ũ1
∣∣ < te, (2.12)

where F ∈ R3×3 is the fundamental matrix for the stereo camera calibration and

te � 1 is a value that depends on calibration accuracy. Only measurement pairs

from a true target should satisfy the constraint (2.12), noise and clutter should not.

2.5.2 Matching Measurements and Targets

Our choice of a data-association strategy is based on speed, variability, and

density of targets in the image. A nearest-neighbor association is target-based and

associates a target to the closest measurement based on Euclidean distance. Typi-

cally the distance is computed between the predicted measurement from the target

and the actual measurement. It works well in low-target densities with high frame

rates [33, 34], but results in duplicate tracks and incorrect associations at high

target densities. A global nearest-neighbor (GNN) association avoids duplicate as-

signments by minimizing a global assignment of all targets to measurements with the

constraint that a target be associated to only one measurement [86]. GNN has been

successful in tracking dense aggregations [31, 87] in which the number of targets

are fixed and move in two dimensions (so that target overlap is rare), however, the

possibility of a variable number of targets and frequent occlusions make it difficult

to use GNN without additional heuristics.

For tracking systems that track more than just position of the target, a nearest-

neighbor association may be improved by defining the distance function on shapes.

This makes a nearest-neighbor association reliable, even when the targets are close

to one another. Therefore, for tracking three-dimensional fish shapes we define the

shortest distance between predicted midline and silhouette as the distance function

to associate targets to measurements.

22



Among data association methods that make target-measurement assignments

probabilistically are the target-based joint probabilistic data association (JPDA)

[51] method and the measurement-based multiple-hypothesis tracker. The JPDA

algorithm assigns probability values to measurement-target associations based on

current measurements and state estimates. These values are then used to assign a

weight to each association. The final update to a target estimate during a time-step

is a weighted sum of all possible measurement updates. At any time-step k, the set of

all valid target-measurement associations, θ, is generated based on a gating volume.

A feasible event θ ∈ θ is created such that (a) each measurement has only one

source and (b) each target (excluding clutter) produces exactly one measurement or

no measurements at all. The joint measurement-target association probability βtm

between measurement m and target t is [51]

βtm =
∑
θ∈θ

P (θ|Zk), (2.13)

where Zk is again the set of all measurements up to time k. P (θ|Zk) as per

Bayes theorem is the product of the measurement-association likelihood function

P (Z[k]|θ,Zk−1) and the association prior P (θ). All unassigned measurements are

assumed to be uniformly distributed across the entire observation region. The prob-

ability of each association in a feasible event is computed using the measurement

likelihood function. Like GNN, JPDA also assumes fixed number of targets [51].

JPDA has been previously used to track multiple fish [27] in 2D. We use a particle

filtering version of JPDA to track multiple fish in 3D in an underwater 1135 liters

(300 gallon) tank filmed at 30 frames per second [38].

The multiple hypothesis tracker (MHT) looks into future assignment proba-

bilities before making a decision on the current assignment [82]. A hypothesis in

MHT is a combination of measurement-target assignments that satisfy the following

two rules [82]: (i) a target is not associated to more than one measurement and (i)

a target is only associated to a measurement that lies within its gating volume. A

measurement may be assigned to an existing target, a new target, or a false alarm.

As time progresses each hypothesis gives rise to successive hypotheses resulting in
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an exponential growth in time. Hypotheses reduction strategies include applying a

threshold on track probability, choosing a few best hypothesis [88], and clustering

the targets [82]. We describe salient features of the multiple hypothesis tracker [82].

For a detailed description of this algorithm, see [89, 82, 88].

Hypothesis generation: Based on the gating threshold, a gating volume is generated

for each target. A validation matrix V ∈ RNm[k]×(Nt[k]+1) is then constructed, where

Nm[k] is the number of measurement pairs and Nt[k] is the number of targets at

k. For each measurement m and target t Set V (t,m + 1) = 1 if the measurement

lies within the gating volume of target i. For example, a validation matrix with 3

targets and 3 measurements may look like (see Fig. 2.5)

V =


1 0 1 0

1 1 1 0

1 0 0 1

 (2.14)

The first column is all 1 which implies that a measurement can always be generated

from a false target. The hypotheses are generated based on the rules that a target

is not associated with more than one measurement. Fig. 2.4 shows two out of

thirty three possible hypotheses associating the measurements to targets based

on validation matrix (2.14). The number of possible hypotheses grow with the

number of measurements and targets raising the need to divide the measurement-

target groups into independent sets called clusters. Each cluster then generates

its own hypotheses based on associated measurements that fall within the gating

volume of any target within that cluster.

Clustering: We use the following strategies to cluster targets and measurements

[82]: (1) a measurement that does not lie within the gating volume of an existing

cluster is assigned its own cluster; (2) two clusters with a common measurement

are combined to form one cluster; and (3) a target that is assigned to a single

measurement in the past hypotheses is split to form its own cluster. A validation

matrix is created for clusters and measurements based on the gating volume. For

clusters that are combined, the resulting hypotheses are a product of the number
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Figure 2.4: Hypotheses generation. Possible hypotheses for the validation matrix (2.14)
with two time-steps into the future. Each column represents a measurement and each row
is a hypothesis denoting which target is assigned to that measurement. The highlighted
hypothesis is branched into child hypotheses in the next step. Target indices 1-3 are
existing and index 0 denotes a false target.

of hypotheses in each cluster. The validation matrix (2.14) shows that we can

form two clusters with targets and measurements (t1, t2, z1, z2) and (t3, z3), where

t denotes a target and z denotes a measurement with their respective subscripts.

z1

t1

z2

t2
t3

z3

Figure 2.5: Clustering measurements and targets. Targets t1 and t2 have common mea-
surements and can therefore be clustered together. Target t3 can form its own cluster.

Probability of a hypothesis: For each hypothesis, the following values must also be

computed: Nd, denoting the number of existing targets detected, Nt, the number

of previously known targets, Nf , the number of false targets, and Nn, the number
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of new targets. The total number of measurements are Nm[k] = Nd+Nf +Nn The

probability of a hypothesis Ωi[k] that arises from the parent hypothesis Ωj[k − 1]

is

P (Ωi[k]
∣∣Zk) =

1

C
PNd
D (1− PD)(Nt−Nd)β

Nf

f βNn
n ×

Nd∏
m=1

P (Zm

∣∣X(m))P (Ωj[k − 1]
∣∣Zk−1),

(2.15)

where C is the normalization constant and PD is the probability of detection.

βf is the density of false targets and βn is the density of new targets both of

which are set to 1/V where V is the volume of the sensor (width × height of

the image frames), and the subscript (m) denotes the target associated to a given

measurement m. For associating measurements to track mosquitoes, we use the

position likelihood function with the measurement ucm, predicted measurement

f c(r(m)) of the associated target, and the covariance S.

P (Zm

∣∣X(m)) = Ppos(u
1,2
m

∣∣r(m)) =
∏
c=1,2

N(ucm; f c(r(m)), S), (2.16)

where the covariance S = cov(f c(r(m))) computed over all samples in the particle

filter distribution.

Hypotheses reduction: The number of hypotheses in each step grow exponentially

and must be reduced. In addition to clustering, other methods for reducing the

number of hypotheses include N-scanback, and selecting few best hypotheses at

each step. The N-scanback method uses the probability of current hypotheses

(2.15) to resolve ambiguity at k − Ns step where Ns is the scanback value. A

set of hypotheses are then formed for each cluster which denote the collective

measurement-target association. Finally, the hypotheses may also be reduced based

on a numerical sort on probability values and selecting a few best.

In videos of mosquito swarms, the number of mosquitoes on the image vary

because new mosquitoes join the swarm and swarming mosquitoes appear and disap-

pear from the camera field of view. In addition birds, and other insects also appear

in the field of view. We therefore use the multi-hypothesis tracker (MHT) as a data
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Figure 2.6: Comparison of data association techniques. A test dataset in two-dimensions
was created with 20 targets moving randomly with noise equal to one-hundredth of area
of measurement. The final snap shot after fifty time steps is shown. Measurements (green
crosses) include those from real as well as false targets. Ground truth is shown in light
grey and estimated tracks are shown in color. The gating volume for all three methods,
(a) nearest neighbor, (b) global nearest neighbor and (c) MHT is set to 16. Only MHT is
able to track all targets (light grey) without switching or early terminations.

association strategy. Furthermore, because MHT runs online it also permits us to

use a motion model at each step to search for missing measurements.

2.5.3 Occlusions

Except the nearest-neighbor matching every data-association strategy dis-

cussed in this section assumes that a measurement is generated by a single tar-

get, and that motion coherence will automatically associate the right tracks in a

future time step [90, 91, 32]. For multiple target tracking with occlusions, a nearest-

neighbor matching invariably results in duplicate tracks.

We encounter sustained and frequent occlusions in our datasets both of which

prove challenging for a motion-coherence based approach. For example, a single fish

may successively occlude with other fish as well as self-occlude during the course of

the video. The fish may turn or startle while being occluded. Similarly, in mosquito

swarms, a mosquito may undergo frequent occlusions with multiple mosquitoes as it

passes through the center of the swarm resulting in track switches. Strategies that

address occlusions include increasing the number of views [34], model based tracking

[70, 29], and track linking of pre- and post-occlusion segmented tracks [92, 93].

The simplest strategy to reduce the number of occlusions in an animal group

is to have a large number of views of the tracking volume. This increases the
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probability of a target unoccluded in at least two camera views. Although multiple

cameras can be set up in the laboratory [34], it may not be practical for filming in

the wild.

For targets that appear extended on the image, model-based tracking mitigates

some of the occlusion effects by enforcing geometric constraints on the occluded

observations. In [70] vehicles filmed on a highway are modeled as rigid bodies. In

the case of an occlusion, overlapping regions within occluded blobs are identified

using shape estimates and constraints on motion of the vehicle. In [94] multiple

objects are tracked through occlusions by enforcing a rigid body motion constraint

on grouped features. In [71] multiple mice are tracked by modeling each mouse’s

contour as an ellipse that best fits a template library of B-spline contours, and in [87]

occlusions between fish are resolved by modeling the occluded blob as a Gaussian

mixture and finding the best fit using an Expectation minimization algorithm.

Long-duration occlusions last for more than several frames and can affect track

integrity. Depending on target movement, such occlusions can be overcome by

methods that minimize a global cost function over all measurements in a sliding

window [95]. The implicit assumption, however, is that the probability of detection

is close to one; it is unclear how a global optimization method can adaptively seek

missing measurements. Such track linking approaches [92, 93] work in an offline

fashion with the assumption that the probability of detection is close to one. Instead

MHT, which is an online implementation (as opposed to an offline method) allows

specialized methods to be incorporated for extracting missed measurements.

We use model based tracking to resolve occlusions in both fish and mosquitoes.

For occluded fish we perform optimization over a larger state-space that consists of

individual state of all fish in an occlusion. The silhouette of the occluded blob is used

as a measurement. For mosquitoes we model occlusions has a mixture of Gaussians

that are hard clustered based on predicted measurements. The clustered blobs are

then used as individual measurements.
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Figure 2.7: Sample occlusions in fish and mosquitoes. All data association methods assume
that each measurement corresponds to a single target, which is violated in the case of
occlusions.

2.6 Initialization

A target track must be initialized before the first time a measurement is re-

ceived. For point targets, a high variance may be set around each measurement rep-

resenting the lack of certainty in a possible track [88, 34]. However, high-dimensional

states such as target orientation and shape are difficult to initialize in this way,

mainly because a model must be generated to map the measurements to the state.

Existing methods ascertain shape geometries manually by selecting the target con-

tour by hand [29, 96]. In the event of a track termination, the target must again

be selected by hand for the tracking to continue. To track large datasets, manual

shape initialization presents a challenge that must be overcome. In human tracking,

for example, shape initialization is performed by fitting an existing model to the

target in view [24]. In [70], vehicles modeled as rigid objects, are tracked by running

the shape estimation and tracking algorithm in parallel. We apply the same general

framework for tracking non-rigid fish shapes. We parameterize fish shape surface

using a generative model and estimate the model parameters within an extended

Kalman filter that runs in parallel to the shape reconstruction algorithm.

In tracking swarming mosquitoes, due to appearance of individual mosquito as

faded streak, we are faced with a low signal-to-noise environment. One approach is

to run track-before-detect using raw sensor data [97]. The success for track-before-

detect relies on the low target density and relatively straight movement of targets in
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the measurement space [89]. Furthermore, using raw sensor data is impractical with

multiple sensors because they generate more false targets than observed in a single

noisy image. Setting a high variance on each detected measurement as before [88]

introduces large ambiguities regarding measurement origin in high target densities

and additional techniques must be used to reduce the same [83]. The multiple

hypothesis tracker uses a similar approach by deferring the decision of a confirmed

track until the probability is above a certain threshold [82]. We use the epipolar

constraint and velocity likelihood function to reduce the uncertainty in our initial

estimates.

2.7 Summary of Design Choices

Each component of a multi-target tracking system requires a design choice for a

starting point. The design choice is typically made on the basis of target appearance

and movement in the video sequence. Fig. 2.8 lists the different components of the

tracking system along with the criteria that were used to pick a particular approach.

In the design of fish tracking system, we picked generative modeling around a

polynomial curve representing the midline to approximate the fish body shape. We

assume that the fish bend laterally only and therefore a planar midline was suffi-

cient. Since we track in three-dimensions, the measurement model is nonlinear, and

therefore we resort to nonlinear estimation methods. Furthermore, our measurement

model is multimodal since there are multiple ways to obtain the same approximate

midline shape. We pick optimization over particle filtering due to (a) large state

space of n = 11 per fish that increases with occlusions, and (b) small time difference

between successive measurements; tracking therefore primarily entails processing the

measurements, and does not require an accurate motion model. Because the number

of targets are fixed, and occlusions are handled as a joint state estimation problem,

we use nearest-neighbor data association. We evaluate target-measurement matches

by measuring midline distance, which makes the process reliable. We implement an
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State Space Estimation Data association
Target rigidity Measurement Model Target variability
Target extent State-space size Target density
Position Time-step length Nearest neighbor
Pose Global nearest neighbor
Shape JPDA

MHT
Particle filter
Optimization

Motion model Initialization
Interaction Target density Tracking volume
Maneuverability State-space representation Target extent on image
Constant velocity Manual Target density
Constant acceleration Large variance Stereo parallel
Learned Automatic Stereo orthogonal
MRF Camera and mirror

Multiple cameras

Kalman filter
Extended Kalman filter
Unscented Kalman filter

Multi-view arrangement

Figure 2.8: Design choice. Factors such as target density, its extent on the image, and the
size of the tracking volume among other factors determine which data association method,
estimation tool and experimental setup must be used. Similar looking targets and absence
of distinguishable features preclude the use of appearance based models.

turning motion model to efficiently generate candidate solutions within the opti-

mization routine. To initialize fish shapes we run an extended Kalman filter that

uses automatic head, nose, and tail detection. Finally, to obtain accurate shape

reconstruction, and utilize the flexibility of a laboratory environment we place our

cameras orthogonally with one camera overhead.

In the design of the mosquito tracking system we use a stereo camera setup

that is calibrated onsite. Tracking challenges in the form of missing measurements,

variable number of targets, and elongated streak-like appearance on image motivate

our choice of particle filtering as the estimation method and multiple hypothesis

tracking for data association. Position is initialized with a low variance using tri-

angulation from the matched pair of measurements and uncertainty in velocity is

reduced by using a streak endpoint likelihood function.
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Chapter 3

Reconstructing Swimming Kinematics of Schooling

Fish

In studying fish schools we are specifically interested in the rapid transmission

of information via a nonverbal cue such as a fright response. An example of a fright

response is a fast start, which is often the precursor to an escape or attack [98]. Two

behaviors associated with fast-start swimming are C-starts and S-starts [99], named

for the corresponding body shape during the maneuvers, which take place in less

than 100 ms. The propagation of startle responses in a fish school may be indicative

of the social transmission of information [11]. By quantifying the shape kinematics

of each fish, properties of the school such as the first responder and its position

relative to the cue, and the spatio-temporal distribution of successive responders

may be extracted. Such information can reveal deeper insights into the decision

making process within fish schools.

Therefore, the requirements for the multi-target tracking system described in

this chapter were to track deformable targets that exhibit sudden movements and

often occlude each other in a given view. The fish tracking system enables auto-

matic shape reconstruction of individual fish in a school using calibrated multi-view

video with at least one overhead view. We begin in Section 3.1 with an overview

of the tracking framework. In Section 3.2, we describe the fish state comprising

position, heading, and locally defined shape. In Section 3.3 we present methods

to extract head, nose, and midline from fish silhouette after background subtrac-

tion. These features are used in estimating shape geometry. Section 3.4 details

parts of the tracking algorithm including shape estimation, shape reconstruction,
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data association, and filtering. Section 3.5 describes data collection procedure for

filming multiple fish in the laboratory. In Section 3.6 we evaluate the performance

of tracking algorithm including verification using an independent view. We validate

the tracking system on schools of up to eight fish. In Section 3.7, we compare shape

kinematics of a fast-start with regular swimming behavior.

3.1 Tracking Framework

The input to the fish tracking system is a sequence of synchronized images

from a calibrated multi-view setup in the laboratory. The tracking system consists

of the tracking algorithm which uses silhouettes as inputs to reconstruct fish shape

and a Kalman filter that smoothes the shape trajectories. The tracking algorithm

developed in MATLAB R© is run post-filming and begins by locating the frame that

has no occlusions in each view called the start frame. (We count the difference

between the number of blobs and the expected number of fish in each view. In

case no such frame is available we prompt the user to mark the outline of occluded

fish manually in the frame with least number of occlusions.) We use the epipolar

constraint on blobs in each view to initialize the target positions. The tracker first

runs forward, then backwards in time from the start frame; shape estimation, which

estimates fish shape geometry, and shape reconstruction, which tracks individual

fish shape are run in parallel. For data association, we compute silhouette-target

proximity in each view using a midline distance function. Shape estimation runs

until an error bound on the estimate is attained. Shape reconstruction continues

to use occluding contours of blob silhouettes to project lines into three-dimensional

space. Using the combined distance of the fish shape surface from all such lines, the

fish position, orientation, and shape is modified until a best fit is obtained. We find

the best fit using simulated annealing.
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Figure 3.1: Fish Tracking Framework. Generative modeling is used to parameterize a
shape model; these parameters are estimated using an iterated EKF. Shape reconstruction
is performed by matching measurements from segmented images in multiple cameras to a
three-dimensional shape estimate.

3.2 State Space Representation

The fish state consists of three-dimensional position r ∈ R3, heading h ∈ R3,

and shape parameters p ∈ Rp. In [38], we propose approximating fish shape by a

bendable ellipsoid (p = 1). We are able to track simple motion using this method,

but not C- or S-starts, which motivates the approach described here (p = 5).

The shape geometry is modeled about the midline of the fish. There are several

ways to generate the midline. In [28], the midline is found by projecting the top-

view profile on a plane of orientation. In [79, 29], the midline is generated manually.

The midline in our tracking system is generated automatically when the fish is in

clear view of all cameras, i.e., when there are no occlusions and both head and tail

are visible. The shape geometry is automatically estimated about the midline using

an iterated extended Kalman Filter (EKF).

For the purpose of shape estimation and tracking we make the following as-

sumptions about fish motion observed in our experiments:
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A1) The fish in our tracking experiments bend laterally [28].

A2) The fish in our tracking experiments turn and pitch, but rarely roll.

A3) The portion of the body from the eyes to the nose (the head) does not bend.

A single fish is characterized by the position of the head, the orientation of

the head (the heading vector), and the midline. The midline is a curve that runs

from the head to the tail. A surface is generated around the midline to approximate

the shape. We define the shape locally using a body-fixed reference frame B. The

origin of frame B is the center of the head with one axis in the direction of the

nose. The heading h ∈ R3 is a unit vector pointing from the center of the head to

the tip of the nose (see Fig. 3.2). Based on assumption (A2), the body-frame axes

are completed by performing the cross product of the vertical g ,
[
0 0 1

]T
with

the heading h to get the pitching axis, followed by the cross product between the

heading and the pitching axis to get the yaw axis. 1 Given the position of the head

r ∈ R3, the complete body frame in the world-frame coordinates can be represented

by the transformation

WTB =

h g × h h× (g × h) r

0 0 0 1

 . (3.1)

The midline is parameterized in the body frame by f(s) =
[
f1(s) f2(s) f3(s)

]T
,

where s ∈ [0, 1]. We assume the functions fi(s) are differentiable, which permits us

to define an orthonormal frame at each point s on the midline. We use this frame

to define the body cross section at s. We use the following criteria to determine the

type of parameterization for f(s)

i. To model an S -start the curve parameterization must permit at least two in-

flection points, which implies that one of f1(s) or f2(s) should be a quartic

1Note that since the cross product covers the smaller angle between two vectors, the yaw axis

will change sign when the fish nose dives, which rarely happens in our experiments.
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h

Figure 3.2: Fish body frame. The body frame B is fixed to the head with the heading
vector h pointing towards the tip of the nose. The pitch (green), roll (blue), and yaw
(red) axes complete the frame.

polynomial. 2

ii. To model a C -shape, the curve parameterization must permit two values of

f2(s) for a value of f1(s). Therefore if f2(s) is a quartic, f1(s) should at least

be a quadratic in s.

iii. The curve at s = 0 must be continuous with the heading. Therefore the slope

∂f2
∂f1

∣∣
s=0

= 0. We therefore set the coefficient of s in f2 to zero.

Using the curve selection criteria and assumption A1 we model the fish midline as

f1(s) = p1s+ p2s
2

f2(s) = p3s
2 + p4s

3 + p5s
4

f3(s) = 0,

(3.2)

where p =
[
p1, . . . , p5

]T
are the polynomial coefficients. The midline generated us-

ing polynomial representation (3.2) is extensible. Inextensible curves can be created

by parameterizing the curve as a function of the bending angle in two [100, 29] and

2An inflection point occurs where the curvature of the curve changes sign. The sign of the

curvature is determined by the second derivative ∂f22 (s)/∂f21 (s). Therefore f2(s) should be a

fourth degree polynomial, so that the second derivative has two roots. We may choose any of f1

or f2 to be fourth degree depending on the framing we choose.
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three dimensions [101]. For example, a two dimensional inextensible curve should

satisfy ∂Wf1(s)/∂s = cos(θ(s)); ∂Wf2(s)/∂s = sin(θ(s)), where θ(s) is the bending

angle, and Wf1(s),Wf2(s) are in the world frame. An inextensible curve, however,

lends no flexibility to measurement noise such as variation in length due to incon-

sistent appearance of caudal fins. To ensure inextensibility while permitting minor

changes in length we instead place a constraint on total length within the cost func-

tion [39]. In this dissertation, we move the constraint to the perturb function that

generates a candidate solution thereby making the optimization process faster in

time.

3.3 Feature Extraction

The input to the shape-reconstruction algorithm is the silhouette of the blob

and the shape estimates. The input to the shape-estimation algorithm is the three-

dimensional position of head, nose, and tail of the fish, which we extract from blobs

in the top view and side view images.

We extract blobs using the regionprops routine in MATLAB, which performs

connected-component labeling to extract features such as centroid, area, silhouette,

and occluding contour. A second routine called bwboundaries, which implements a

contour tracing algorithm to arrange the pixels is used to determine curvature and

edge pixels. Finally, the distance transform routine bwdist calculates the distance of

each foreground pixel from the nearest background pixel. To automatically detect

head, nose, and tail for generating the midline, we make the following observations

(see Fig. 3.3):

(a) the center of the head is the center of the largest circle that fits inside the

silhouette. If more than one pixels satisfy this condition, then the one that is

farthest from the centroid is selected.

(b) the nose is modeled in the top view by fitting a half ellipse centered at the

head. The minor axis of the ellipse is same as the radius of the largest circle
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Figure 3.3: Extracting fish head, nose, and tail automatically. The head, nose, and tail of
unoccluded fish are extracted to create a midline

.

at the head, and the eccentricity is 0.74, which is determined empirically. The

best fit in the sense of orthogonal distance is found by an exhaustive search on

orientation angles with increasing resolution from 90◦–1◦.

(c) the tail marks the point of highest curvature on the occluding contour. Curva-

ture, defined in (3.19), represents the degree of bending.

The location of the nose expressed in pixels in camera 1 is denoted by 1un, the

tail by 1ut, and the center of the head by 1uh. The side views (cameras 2 and 3) give

orientation information as well as position information. Let cl , (clm,
clr) be a line

in camera c, where clm is the slope and clr is the intercept with the vertical axis of the

image plane. A least-squares fit on the silhouette in camera c establishes a line along

the body. The body frame is oriented so that the heading is aligned with this line

in the side view and with the vector from the head to the nose in the top view. Let

the camera projection matrix (Appendix B) be denoted by cP =
[
cP T

1
cP T

2
cP T

3

]T
with each row cPi, i = 1, 2, 3. For each point detected automatically in the top view

we may now use the following equations to find the three-dimensional position (in
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a least-squares sense) of a point

1P1,1−3r̂ = 1P1,4 − 1u1

1P2,1−3r̂ = 1P2,4 − 1u2

2P2,1−3r̂ = 2lm(2P1,1−3r̂ + 2P1,4) + 2lr

(3.3)

where c ∈ {2, 3}. The above three equations can be solved in either one of the side

cameras for the position of the head m(0) ∈ R3 and nose.

3.4 Tracking Algorithm

In this section we begin with estimating the midline in the initial frames and

then using that estimate to build a parameterized generative model around that

midline. The parameters of the generative model are then used in the shape-fitting

cost function in subsequent frames.

3.4.1 Estimating Shape Geometry

The midline is represented in world-frame coordinates using transformation

WTB, i.e, m(s)

1

 = WTB

f(s)

1

 . (3.4)

We model the fish cross section at point s on the midline by an ellipse E(s)

in the plane that is normal to the midline at s, and compute the ellipse planes at

each point using curve framing [77]. The tangent t(s) to the midline at s forms an

axis of a local orthogonal frame
[
x(s) y(s) t(s)

]
. The local frame at each point

on the midline is completed as follows: the normal axis x(s) is x(s) = g × t(s) and

the binormal is y(s) = t(s)× x(s) (see Fig. 3.4). A point on the cross section E(s)

can be represented in the world frame W using the transformation matrix

WTE =

x(s) y(s) t(s) m(s)

0 0 0 1

 , (3.5)
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where

t(s) =
[
∂m1

∂s
∂m2

∂s
∂m3

∂s

]T
.

The distance of a point i on the silhouette cZi ∈ R2 from any point on the projected

curve cm̂(s) ∈ R2 is given by ‖cZi − 1m̂(s)‖. The midline m(s) is projected onto

the image by perspective projection, which uses the camera calibration parameters

[102]. The projected midline cm̂(s) on camera c is [85]

cm̂(s) =
[

cw1
cw3

cw2
cw3

]T
,

where cw(s) = cPm(s).

We complete the body frame by applying the no-roll assumption (A2).

The estimated midline parameters p̂ are found using a nonlinear cost function

that measures the distance of the silhouette to the midline. Let q∗i be the distance

of the point 1Zi in the top-view silhouette to the closest point on the projected

midline 1m̂(s). The midline parameters p̂ are estimated by solving

p̂ = argmin
p

∑
i

q∗i , where

q∗i = min
s
‖1Zi − 1m̂(s)‖ subject to

1m̂(1) = 1ut.

(3.6)

We minimize (3.6) it by applying a two-stage optimization process consisting of

simulated annealing followed by a gradient based search using the MATLAB function

fmincon [103]. The output of the simulated annealing algorithm serves as the input

to the gradient based optimization search with the constraint described in (3.6).

Once a midline is estimated, a surface is generated around it to create a shape

model as described next.

To generate the body surface, we need the major axis a(s) and the minor

axis b(s) of each elliptical cross section, and an offset d(s) along the normal y(s).

Using candidate values for a(s), b(s), d(s), and the transformation matrix above, we

scale and transform the cross section γ(v) =
[
cos(v) sin(v) 0

]T
, where v ∈ [0, 2π]

[76, 35]. The transformation is defined as (see (2.10))

δ(γ, s) = M(s)γ + T (s), (3.7)
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(a) (b) (c)

Figure 3.4: Estimating fish shape geometry. To estimate fish shape geometry we (a) fit
a midline in the top view and side view. The white circles on the occluding contours are
the measurements and estimates are the red circles are the projected estimates of the end
points of the ellipse axes. (b) assign estimated major and minor axis values to a cross-
sectional ellipse normal to the midline. (c) generate the final surface using the top profile
and side profile. (The black ellipse partitions the head and rest of the body.)

where

M(s) =
[
x(s)a(s) y(s)b(s) 03×1

]
T (s) = m(s) + y(s)d(s).

(3.8)

The curve m(s) is formed using (3.4). Substituting (3.8) into (3.7), we obtain the

surface

S(s, v) , δ(γ(v), s) = m(s) + a(s) cos(v)x(s)+

(b(s) sin(v) + d(s))y(s),
(3.9)

where s ∈ [0, 1] and v ∈ [0, 2π].

To estimate the values E(s) =
[
a(s) b(s) d(s)

]T
using the top-view and

side-view observations, we measure the length of the line segment contained in the

occluding contour and normal to the midline (see Fig. 3.4). For the top view, we

substitute 1v = {0, π} in equation (3.9) to produce the end points of the major axis,

a(s); 2v = {π/2, 3π/2} for an orthogonal side-view produces the values for the minor

axis, b(s), and d(s). A perspective projection of a surface point S(s, v) on camera c

is denoted by cS(s, cv).3 The measurements cE(s) =
[
e1(s) e2(s)

]T
are related to

3For a side view camera oriented at an angle φ with the vertical the value of v = {φ, φ+ π}
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a(s), b(s), d(s) in the respective camera views by the nonlinear measurement model

4

cEE(s) = cHE(E(s)) + cne

=

 ‖cS(s,cv1)−cS(s,cv2)‖
2∥∥∥ cS(s,cv1)+cS(s,cv2)

2
− cû(s)

∥∥∥
+ cne

(3.10)

where ‖·‖ is the 2-norm and ne ∈ R2 is the measurement noise. The side-view

camera had greater noise due to lower resolution and straight line assumption A1

of the midline, which although compensated by the use of the offset d(s), causes

measurement errors near the nose and tail. The nonlinear measurement model

(3.10) is used on multiple views to estimate the size of elliptical cross sections using

a gradient based optimization method. Since the measurements depend on fish

position and orientation, we run the shape estimation algorithm for multiple frames

in an iterated EKF to obtain an accurate estimate of the shape geometry. (See

Appendix A for linearization of the measurement model.)

As a fish moves, the change in thickness of a its cross section is in sub-

millimeters [104]. We approximate the change in the thickness of a fish cross section

as a constant value Gaussian disturbance model

dE(s) = dwE (3.11)

where ẇE ∈ R3 is Gaussian white noise process.

The EKF is initialized on the start frame with unoccluded fish. Across-view

data association for the start frame is solved using the Hungarian method [86] on

the value of epipolar constraint (2.12) for blob centroid pairs. The EKF runs in

parallel with the shape reconstruction algorithm until the error norm of the state

covariance matrix PE is less than a threshold tE . The EKF update is run at each step

by linearizing the measurement model about the current estimate. (A single update

4Note that the above measurement model assumes that the occluding contour of a fish is a

projection of the extreme ends of the elliptical cross sections. Since the camera distance (1 m) is

much larger than the fish cross section (2.5 cm), this assumption introduces sub-pixel measurement

error.
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of the EKF is equivalent to a single step of a Gauss-Newton optimization method

[105].) The EKF given in Table 3.1 iterates at each frame until the improvement in

successive iterations is less than a threshold tEk .

Table 3.1: EKF Algorithm for Shape Estimation

Input: Motion model (3.11), measurement model HE (3.10), covariance ma-

trices for measurement noise RE and disturbance QE

Initialize: State estimate E [0]−, and covariance matrix PE [0]−, prior to the first

measurement (we drop the s dependence for clarity)

For each time step k = 1, 2, . . .

i. Iterate until ‖PE − P−E ‖ >= tEk

1: Compute gain matrix: W = P−E [k]HTS−1, where S = HPE [k]−H+RE is the

measurement prediction covariance, and H = ∂HE
∂E (Ê [k]−)

2: Update state estimate: Ê [k] = Ê [k]− +W (E[k]−H(Ê [k]−,n))

3: Update state covariance: PE [k] = (1−WH)PE [k]−

4: Reassign state and covariance: Ê [k]− = Ê [k], PE [k]− = PE [k].

ii. Predict state prior to next measurement: Ê [k + 1]− = F ( ˆE [k],w)

iii. Compute covariance: PE [k + 1]− = FPE [k]F T +QE , where F = ∂F
∂E (Ê [k])

3.4.2 Fitting Shape to Measurements

Once a model is generated we produce a three-dimensional line from each point

on the occluding contour O. The distance of each line to the model surface S is

used to optimize the state estimate [106]. We represent a line L in three dimensions

by Plücker coordinates [106]. The advantage of this representation is that it defines

a line uniquely and its distance to a point is a straightforward operation. Let

L ,
[
lTv lTm

]T
, where lv ∈ R3 is the unit vector representing the direction of the

line and lm = lr × lv is the moment of any point lr ∈ R3 on the line. The distance
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Figure 3.5: Shape fitting cost function. Any point on the line L (a), L1, L2, ..., represented
in a frame O will have ds = 0; here lm is the projection of the position vector (w.r.t O) of
any point on the line. The distance of a point s from the line L is simply the projection of
r minus lm. The shape fitting cost function (b) is the sum of the distances of each point
on the surface from the lines projected out from the each view.

of point r from the line L is given by ‖r× lv − lm‖. The cost function is a measure

of the total distance of a surface from an occluding contour. We denote a point on

the surface S by Si. The state estimate X̂t is obtained by solving

X̂t = argmin
Xt

∑
c∈(1,2)

∑
o∈cO

cD∗o where

cD∗o = min
i∈S
‖Si(Xt)× clv,o − clm,o‖.

(3.12)

In [39] we added a non-decreasing function of ∆l, the difference in length between

the midline as computed from shape-estimation and from the candidate state Xt,

g(∆l), to the cost function (3.12). The value g(∆l) = Kg‖∆l‖2, where Kg > 0,

served as a penalty on change in length. Here we an upper bound of 2 mm on ∆l

by modifying the perturb function.

To resolve occlusions using (3.12) we minimize the cost for the joint stateXt =

{Xo}, o = 1, . . . , No, where No is the number of targets in an occlusion. The surface

S is the combined surface generated from all targets in the joint state. Similarly,

the Plücker lines are generated from the occluding contours of the associated blobs

of all targets in the occlusion.

To implement simulated annealing for solving (3.12), we note that the cost
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function, which measures the total distance between three-dimensional lines from

a camera and a surface, is a bounded distance function. Convergence is shown for

a bounded cost function in a logarithmic cooling schedule [61]. In [39] we ran a

geometrically decreasing cooling schedule with an inner loop criterion to simulate

a homogeneous Markov chain. Much of the time was lost in evaluating candidate

solutions that did not satisfy the length constraint or were generally far from the

initial solution. In this dissertation we sample candidate solutions more efficiently

from an alternative perturb function described next.

Perturb function

In a simulated annealing algorithm, the perturb function r : Rn → Rn selects

a possible candidate solution in each iteration. In [39] we used a simple additive

Gaussian distribution function with unit variance to perturb the current solution.

This generated a large number of candidate solutions that were unrealistic, for

example, rolling motion (which violates assumption A2), large pitch and yaw angles,

and an increase in length of the midline. Since the shape is defined within the body

frame, a realistic perturbation can be described as a sum of a rigid-body motion

about the head and a local shape change.

We use the group of rigid body motions called the special Euclidean group,

SE(3), to define a random disturbance in orientation and position of the fish and

tune the variance in each of the six degrees of freedom to represent a realistic fish

motion. We also verify length of the midline before proposing a candidate solution.

To sample shape parameters p =
[
p1, . . . , p5

]T
we note that in a straight midline,

p1 represents the length of the fish and p2, . . . , p5 are all zero. A bent midline

corresponds to non-zero values in p2, . . . , p5. We model the fish midline as having

constant length with the tendency to straighten out. We therefore model changes in

p1 using Gaussian white noise ẇp,i, and model p2, . . . , p5 as exponentially decaying

variables with rate λ > 0. Let the fish body frame (3.1) be represented by g =

WTB ∈ SE(3). The stochastic perturb function (with matrix multiplication as the
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composition rule for SE(3)) can be represented as [107, 47]

dg = gdWg (3.13a)

dp1 = dwp,1 (3.13b)

dpi = −λpidt+ dwp,i, i = 2, . . . , 5, (3.13c)

where dWg is a standard Wiener process on se(3) [108] that denotes a disturbance

input on each degree of freedom of a target. Let Ei, i = {1, 2...6}, be the basis

elements of se(3), the Lie algebra of SE(3) [109] and εi = N(0, σ2
ε,i) be a zero-

mean Gaussian random variable representing the corresponding variance. The basis

elements represent motion along each of the six degrees of freedom in the body frame

and are given as [109]:

roll = E1 =


0 0 0 0

0 0 −1 0

0 1 0 0

0 0 0 0

 ; pitch = E2 =


0 0 1 0

0 0 0 0

−1 0 0 0

0 0 0 0

 ;

yaw = E3 =


0 −1 0 0

1 0 0 0

0 0 0 0

0 0 0 0

 ; surge = E4 =


0 0 0 1

0 0 0 0

0 0 0 0

0 0 0 0

 ;

sway = E5 =


0 0 0 0

0 0 0 1

0 0 0 0

0 0 0 0

 ; heave = E6 =


0 0 0 0

0 0 0 0

0 0 0 1

0 0 0 0

 . (3.14)

The variance σ2
ε,i of each degree of freedom is set so that the fish yaws more than

it pitches and does not roll. The first-order Euler discretized version of (3.13) for a
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small time-step ∆ is [110, 108]

g̃j = gj exp(
6∑
i=1

Ei
√

∆εi) (3.15a)

p̃j1 = pj1 + wp,1
√

∆ (3.15b)

p̃ji = pji exp(−λ∆) + wp,i
√

∆, i = 2, . . . , 5. (3.15c)

Note that (3.15a) assumes that the motion along each degree of freedom is indepen-

dent. Equations (3.15b and 3.15c) are run in a loop until the length of the midline

is within 2 mm of the actual length measured during shape estimation. This form

also ensures that the orthonormality of the body-fixed frame is preserved at every

time step. We compare the performance of simulated annealing algorithm using the

modified perturb function in Section 3.6.

3.4.3 Data Association

To associate targets to measurements across views and through time we use

nearest-neighbor matching, which associates each target to a measurement based

on Euclidean distance. However, the Euclidean distance between centroid positions

may not provide an accurate association when the fish are close to one another, so

we establish another metric described here.

The measurements in our case are silhouettes on a camera frame. Let the set

of measurements on a camera frame be indexed by j. Zj denotes a silhouette on the

camera frame. The points in a silhouette are indexed by i, i.e, Zi
j ∈ Zj. Note that

Zi
j ∈ R2 is measured in pixels. To match a silhouette with a target, we project the

midline from each target onto the camera image plane. We then assign a silhouette

to the target if it is the “closest” silhouette to the midline. The generalized distance

metric computes the sum of the minimum distance of each point on the midline to

a silhouette. Let cm̂t(s) denote the predicted midline of target t. The measurement

index jt of the measurement that is assigned to target t in frame c is computed by
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solving

jt = argmin
j

∑
s

q∗s where

q∗s = min
i
‖cZi

j − cm̂t(s)‖.
(3.16)

Note that in (3.16) the minimum distance from the midline is computed. This

is because we are not attempting to fit the midline to a silhouette, but rather to

find how far it is from a given silhouette.

In the case of an occlusion, two or more targets are assigned the same silhou-

ette. Since different targets may occlude in each view, an occlusion consists of all

targets that share a silhouette in any view. The occluded blob is used as a combined

measurement across views to fit shapes of all fish involved in an occlusion.

3.4.4 Smoothing

The optimization output is rarely smooth because errors in the measurements

are absorbed into the estimates. We smooth the estimates by passing the output

state through a Kalman filter. Fish movement comprises change in position, ori-

entation, and shape. We model velocity and heading vector as being subject to

Gaussian disturbance

dṙ = dwr, dh = dwh, (3.17)

where ẇr, ẇh ∈ R3 indicate white noise processes. Based on the reasoning for

perturb function we model the change in shape according to (3.13c). Since the state

equations for r,h and p are decoupled the Kalman filter can be run separately for

each.

3.5 Data Collection

In order to test our tracking framework, we filmed trials of one, two, four,

and eight giant danio (Danio aequipinnatus) in a 0.61 m × 0.30 m × 0.40 m

(24"×12"×16"), 20 gallon tank. Each trial lasted for 1–3 seconds. Three cameras
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Figure 3.6: Smoothing optimized data. Time series plots of position, orientation, and total
curvature for a single fish. The plots are shown before filtering (dashed lines) and after
filtering (solid lines). The two peaks in the total curvature correspond to turns. κtotal is
defined in Section 3.7

were used to film the fish (see Fig. 3.7). Two cameras were used for tracking and

the third camera was used for validation. A DRS Lightning RDT high-resolution

camera was placed above the tank to capture the top view at 250 frames per second

(fps) and 1280 × 1024 pixel resolution. Two Casio EX-F1 Pro cameras were placed

orthogonal to each other facing the tank sides. These cameras captured images at

300 fps and 512 × 384 pixel resolution. To ensure an adequately lit background, the

remaining three sides of the tank were back-lit by a 150W fluorescent light source

diffused by 1/4 stop with a diffuser fabric. Videos from the three cameras were

synced by marking a frame in each video with a distinct common event. Simulta-

neous events during a trial were generated in the field of view of all three cameras

by a string of flashing LEDs. The full videos were then synced and verified using a

custom Linux shell script. (Every fifth frame in the 250 fps video was repeated.)

At the beginning of each experiment, a short video of the tank was recorded

49



Table 3.2: Parameter Values for Tracking Fish

Parameter Value Description

α 0.05 Background update coefficient (initial)

α 0.0001 Background update coefficient (final)

λ 5 Coefficient of decay for midline parameters p

ΣE diag{1,1,1} Disturbance variance in elliptical cross section (mm)

tE 3 Threshold on shape covariance matrix norm for EKF

tEk 0.02 Threshold on shape covariance improvement for iEKF

RE diag{1, 1, 2, 2} Noise covariance for shape estimation (pixels2)

C1

C2

W

C3

Figure 3.7: Setup and framing. Camera views C1, C2, and C3, and world frameW. Cameras
C1 and C2 are used for tracking; Camera C3 is used for validation purposes.
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without any fish, so that we could model the background for background subtrac-

tion. Each tracking sequence starts with a set of background images, wherein the

background is modeled as a running average with a tuning parameter cα [111]:

cBk+1 = cBk(1− cα) + cαcIk+1, (3.18)

where cB0 is the first background image and cIk is the current image of camera c.

The value of cα was kept high initially to characterize lighting fluctuations and was

lowered when there were fish present. (See Table 3.2 for parameter values used for

tracking.)

Camera calibration was performed using the MATLAB calibration toolbox

[112]. A planar checkerboard was filmed underwater at different orientations inside

the tank. Extrinsic calibration was performed by moving the checkerboard between

the cameras and propagating the extrinsic parameters between overlapping cam-

era views until all camera positions and orientations were known with respect to

the world frame. The reprojection error during calibration for each camera was in

subpixels. In three dimensions, the error was computed by comparing the known

distance between checkerboard points (ranging between 30 mm and 210 mm apart)

with the distance between estimated position. The average error over 50 such ob-

servations was 0.7 ± 0.37 mm. The world frame was chosen to be directly below

the top camera such that the vertical axis pointed up (see Fig. 3.7). The top-view

camera and the tank were aligned using a bubble level.

Once the calibration was performed, fish were introduced into the tank from

a separate tank in sets of 1, 2, 4 and 8. Three trials were conducted for each set.

Filming was started approximately ten minutes after the fish were introduced. The

input to the tracking system was a set of synced frames from each camera (top and

side) and the calibration parameters for each camera. The output is a time series of

the state vector X for each fish. The number of fish was constant during each trial.
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3.6 Performance and Validation

We analyze convergence and finite time behavior of the simulated annealing al-

gorithm on artificial data. An estimate from experimental data is used as the initial

value for the SA algorithm. A goal state is created by changing the position, orienta-

tion and shape parameters of the initial shape by random values that are recorded.

The SA algorithm is run for four cases representing two choices each for perturb

function and cooling schedule. For the perturb function we chose random Gaussian

distribution with unit variance [39], denoted by G1 and (3.15) denoted by G2. We

compute the values of σε,i = {0◦, 10◦, 24◦, 56mm, 27mm, 14mm} corresponding to

roll, pitch, yaw, and forward, sideways, and downward motion from existing trajec-

tory data. For cooling schedule we chose a geometric cooling schedule τ j+1 = 0.9τ j

[39] denoted by C1 and logarithmic cooling schedule τ j+1 = τ 0/ log(j + 1) denoted

by C2. For C1 we also include an inner loop criteria to run perturb and update the

solution (steps 1 and 2 in 2.2) 100 times before the current temperature is updated.

(Not doing so quickly brings the temperature down significantly without a signifi-

cant change in cost.) τ 0 = 10 in each case, and the freezing temperature is 0.01 for

C1 and 1.25 for C2.

Fig. 3.8 shows a single run of the SA algorithm for each of the four combi-

nations. We note that the perturb function (3.15) significantly improves finite time

performance for both types of cooling schedule. All combinations eventually attain

the same cost as the ground truth data but the combination G1C2 took about 20,000

evaluations compared to average 1648 evaluations by G2C2 combination. We now

describe the results of validation of the tracking system on real data.

Results for the tracking system are reported here for five out of the twelve

trials. In every trial, we were able to track multiple fish shapes even during occlu-

sions. The maximum density of the fish schools that we tracked was one fish per 2.5

gallons. (The actual density was higher because the fish schooled in only a fraction

of the tank volume.) We used two methods to determine the accuracy of our track-

ing algorithm. First, the estimated shape and track reconstruction were verified
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Figure 3.8: Finite time behavior of simulated annealing for shape reconstruction. We
compare finite time behavior of simulated annealing for different choice of cooling schedules
and perturb functions. An artificial shape fitting problem consists of the initial shape
(blue) and measurements generated from the goal shape (gray). The final fit (red) is
shown. Simulated annealing runs are shown for four different cases. The final stopping
temperature for each run is shown at the end. (Combination G1C2 which stopped after
20,000 evaluations is cut short for clarity.) The cost function value (black dash line) for
ground truth is also shown.

using an independent camera. Fig. 3.9 illustrates the accuracy of the tracker using

the projected estimate on the third camera. Second, we randomly selected a set

of frames across multiple videos and manually marked ten control points along the

midline in the top view. The midline was then manually generated by interpolating

a curve between the ten marked points. The orthogonal distance between each point

on the estimated midline and the manually generated midline was computed at each

point. Fig. 3.10 depicts the average, maximum, and minimum error on the midline.

Comparing the manually generated midline and tracked midline in the top view for

a single fish shows a maximum average error of five pixels at the tip of the tail. The

tail error is primarily due to the inconsistent appearance of the semi-transparent

caudal fin in the silhouette measurements.

The maximum total variation in length observed in eight fish that undergo a

series of startle responses is less than 1 mm while the maximum change in distance

between two elliptical cross section is 0.5 mm. Occlusions of two and three fish were

tracked reliably as evidenced by Figures 3.11 and 3.12.

Since the tracking process depends on the silhouettes in each camera frame to

estimate the fish position, orientation, and shape, the tracking accuracy is affected
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(c)(b)(a)

Figure 3.9: Validation using independent camera. The shape estimated from the (a) top
and (b) side camera is projected onto a (c) multi-exposure image from the independent
camera.

by the number of fish in an occlusion. In our setup, with the low-resolution side

cameras, we found loss of accuracy in occlusions with four or more fish (See Fig.

3.13). There were no data association errors, although these are expected for dense

occlusions. We intend to address this problem by increasing the camera resolution

and number so that the views with the fewest occlusions can be used to estimate

shape. The inaccuracies in the tracker result primarily from (a) the modeling as-

sumption that the fish midline lies on an inclined plane; (b) dense occlusions, during

which the limited resolution of the cameras make it difficult to resolve the silhouettes

into individual shapes; and (c) the curve parameterization which may be insufficient

to represent complex curves. The accuracy of the tracker can be further improved

by segregating the head and orientation tracking from shape tracking when there

are no occlusions. A particle filter may be run to track the head and orientation

while simulated annealing can be used to estimate shape.

Inaccuracies may also result due to refraction between air and water. In the

case of our setup where the camera image plane was parallel to the water surface

and centered with respect to the face of the tank, errors due to refraction were low

(Section 3.5; also see Appendix B), however, mounting the cameras at an angle to

the water surface would require compensation for refraction effects.
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Figure 3.10: Error in midline fit. The midline was manually selected on a random set
of 100 top-view frames. The distance between the projected estimate and the manually
generated midline as measured in the top camera frame. For comparison with previous
work, we also computed the mean error (dashed line) for a fish shape modeled as a bent
ellipsoid [38].

3.7 Kinematic Data of Fast Start Response

The shape-tracking system described in this paper yields a new opportunity

to study fish behavior. The full-body reconstruction at every step allows one to

automatically detect and quantify fast-start behavior, which we are doing in ongoing

work outside the scope of this paper. Fig. 3.14 compares the curvature profile for a

coasting motion with the profile for a fright response. We compute curvature and

total curvature from the midline f(s) as [113]

κ =
|f ′1f ′′2 − f ′2f ′′1 |
(f ′21 + f ′22 )3/2

and κtotal =

∫ 1

0

κ(s)ds. (3.19)

In the first case, the fish was filmed without any disturbance. The second case is a

midline reconstruction of a single fish from a multi-fish trial during which the fish

was startled by a visual stimulus.

When no fright stimulus was presented, the curvature is high towards the tail.

A coasting turn takes more than one hundred milliseconds and the curvature profile

is flat. In the case of a fright response (an S-start), high curvature appears along the

midline. The turn occurs in approximately 40 ms and appears as a dark band at 450
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Figure 3.11: Tracking two fish. Sequence of frames showing shape tracking during an
occlusion.

ms. A thin dark region near body length 0.9 appears in the curvature plots due to the

combined effect of tail beat movement and inaccuracy in the tail reconstruction due

to inconsistent appearance of the caudal fin. The three-dimensional reconstruction

of each of these turns shows the distance travelled by each fish during the turn. The

coasting fish travels 54 mm in 500 ms where as the startled fish travelled 160 mm

in the same time.

The kinematic parameters that can be extracted from a dataset largely depend

on the type of input video. We show that with a relatively-close range high-speed

video it is possible to reconstruct shape of individual fish in a school. The same

school of fish filmed from a larger distance with low resolution cameras [38] provides

data for a different type of analysis that require longer time-scales and larger indi-

vidual distances travelled. With the increase in the number of targets and larger

distances covered within a single frame, the challenges now shift to frequent occlu-

sions and highly unpredictable motion. To extract long trajectories it makes sense

to use motion coherence to resolve occlusions. This can be done probabilistically
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(a) (b)

Figure 3.12: Tracking four fish. Top and side views of (a) four and (b) eight fish tracked
through 500 and 250 frames. Due to low resolution, the tracking accuracy is reduced (blue
midline) in the side-view camera for eight fish during dense occlusions.

as the targets are tracked or offline using an optimization method that joins track

segments over multiple frames. In contrast from fish schools, videos of mosquito

swarms present a different challenge where motion-blurred point-mass targets move

in a random fashion. In that sense, techniques developed for tracking mosquito

swarms described in the next chapter may be readily adapted to track a large school

of fish from a distance.
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(a) (b)

Figure 3.13: Tracking eight fish. Top and side views of (a) four and (b) eight fish tracked
through 500 and 250 frames. Due to low resolution, the tracking accuracy is reduced (blue
midline) in the side-view camera for eight fish during dense occlusions.
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using the three-dimensional reconstruction at fixed intervals (blue ticks). Curvature profile
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marks the beginning and end of the turn. The time in ms denotes the duration of the
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Chapter 4

Reconstructing Flight Kinematics of Swarming

Mosquitoes

Quantitative observations of the flight patterns of wild mosquitoes are critical

to expanding our understanding of swarming and mating behavior [21, 45, 46, 22,

20, 114]. Female Anopheles gambiae find male swarms in order to mate [115, 20]. A

single mating event results in all of the fertilized eggs that a female mosquito lays

in her lifetime [23, 116]. Although the basis of mate selection has generated much

interest [115, 117, 118, 23, 114], generation of three-dimensional trajectory data of

mosquitoes in wild swarms has not been previously accomplished.

This chapter describes an automated multi-target tracking system that re-

constructs the three-dimensional flight kinematics of individual mosquitoes in wild

swarms. We collect data using two cameras operating synchronously at 25 frames

per second. (The frame rate is limited by the ambient light.) The cameras and a

laptop are powered by an uninterrupted power supply (UPS) for up to thirty min-

utes. The mosquitoes appear as dark streaks or dots on a light background. At high

speeds, the mosquito streaks fade, making them hard to detect, and even harder to

track. Because the swarms are dense, occlusions are frequent, and often appear in

both camera frames. We tested the system by filming swarms and mating events

of An. gambiae in a rural village in Mali in August 2010. Fig. 4.1 shows a pair of

magnified and enhanced sample frames from this field experiment.

The tracking system is implemented in MATLAB R© and consists of two parts:

an automated component that outputs track segments called tracklets and a human-

supervised component that is used to verify and combine the tracklets into full-length
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L R

Figure 4.1: Stereo images of a mosquito swarm. The pair of images above are magnified
and enhanced versions of raw footage obtained from the author’s field work in Mali.

tracks. Tracklets produced by the automated component typically range between

15–25 frames (0.6–1 s) long and can be used to extract position and velocity data

for 80% of the swarm. The human-supervised component uses a particle filter to

combine tracklets into individual mosquito tracks. It takes up to 20 minutes to

generate a 10-second track (250 frames). When validated using data filmed in Mali

in August 2010, the tracking system produced 30–40 second trajectories of individual

mosquitoes in swarms of 6–25 mosquitoes. We have reconstructed six swarms and

six mating events from these data. We evaluate the performance of the automated

component of the tracking system using an established metric based on position error

and target cardinality; tracking accuracy was also evaluated using two independent

rigs to track the same swarm.

Section 4.1 provides an overview of the tracking framework and lists the track-

ing algorithm. Section 4.2 assigns the state and measurements for each mosquito.

Section 4.3 presents foreground segmentation method including adaptive seeking of

missing measurements. Section 4.4 describes the tracking algorithm including the

likelihood function and the multi-hypothesis data association. Section 4.5 describes

the human supervised track linking and verification tool. Section 4.6 presents the

data collection methods including a description of stereo camera setup and the de-

sign parameters used in filming and tracking. Section 4.7 evaluates the performance

of the tracking algorithm. Section 4.8 presents representative kinematic data of

swarming and mating events. The data presented in this chapter was collected
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with assistance from Dr. Nicholas Manoukis from U.S. Department of Agriculture,

Moussa Diallo from Malaria Research and Training center, Bamako, Mali, and with

support from residents of the village of Donéguébogou, Mali.

4.1 Tracking Framework

Our aim in designing the mosquito tracking system is to combine nearly indis-

tinguishable measurements available from stereo images recorded at discrete times

into trajectories that represent real mosquitoes (targets). The mosquito tracking sys-

tem takes a sequence of stereo image pairs as input and produces three-dimensional

tracks as output. Fig. 4.2 depicts a block diagram of the tracking system. The

automated component models blobs as straight lines and extracts the midpoint and

endpoint of each blob as measurements. We find missing blobs using a gating vol-

ume generated around predicted measurements. Measurement pairs, i.e., one from

each camera, that satisfy the epipolar constraint (2.12) are selected for data as-

sociation. We again use gating volumes to group targets and measurements into

independent sets called clusters. Instead of generating definite tracks, hypotheses

connecting measurements to targets are propagated to the next step using a parti-

cle filter. Based on the probability of each hypothesis at the current time step, the

number of hypotheses at a previous time step are reduced to a single assignment. A

single target particle filter verifies and combines tracklets under human supervision;

the combined tracks are passed through a Kalman smoother [119]. The tracking

algorithm is summarized in Table 4.1.

4.2 State Space Representation

We represent target t at time step k by the state vector Xt[k] ∈ R6, which

contains the target’s instantaneous three-dimensional position and velocity. The

measurement Zm[k] ∈ R6 in our case consists of the two-dimensional positions of

the midpoint and two endpoints of an elongated blob in an image that corresponds
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Figure 4.2: Block-diagram of the mosquito tracking system.

to the motion-blurred silhouette of a flying mosquito in each of the two images.

4.3 Feature Extraction

During observation of mosquito swarms, which may appear silhouetted in front

of trees under a cloudy sky, it may not be possible to use a static (mosquito-free)

background to segment the mosquitoes out of the image stream. Instead we create a

dynamic background by choosing the highest intensity point within a sliding window

[120]. Let Bu,v be the background image value at the pixel position (u, v) and

twin = 2d + 1 be the width of the sliding window centered at time step k. The

background value at time k is

Bu,v[k] = max
i∈[k−d,k+d]

Bu,v[i]. (4.1)
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The binarized foreground F is obtained by subtracting the background B from the

current image I and applying an intensity threshold tint, i.e., Fu,v[k] = max(Iu,v[k]−
Bu,v[k], tint) − tint. We automatically select the value of tint by running the back-

ground subtraction algorithm recursively on different segments of the image se-

quence until the number of blobs detected are within an acceptable range of the

expected number of mosquitoes. We extract blobs using the regionprops routine in

MATLAB R©, which performs connected-component labeling to extract features such

as centroid, area, and bounding ellipse. We remove large insects and birds from the

foreground by applying a threshold on the blob area. (See Table 4.2 for the values

of the threshold parameters.)

Due to the duration of the camera exposure (δte = 25 ms)1, fast mosquitoes

(1–4 m/s) appear as elongated image blobs or streaks. Depending on the mosquito

speed, the streaks may fail to appear in the foreground for a given value of tint.

Existing strategies for low signal-to-noise environments include the track-before-

detect approach [97], which permits raw sensor data as the input. The success for

track-before-detect relies on the low target density and relatively straight movement

of targets in the measurement space [89]. However, using raw sensor data is not a

viable option for mosquito tracking, because it generates more false targets than

observed in a single noisy image. Instead, we search for the missing streak in a

new foreground generated using a threshold of 0.75tint. The search is performed

within the gating volume of the predicted measurement. If a missing measurement

is found, it is added to the list of existing measurements.

A measurement Zc = [ec−,u
c, ec+]T from camera c contains the image locations

of a streak’s start ec−, midpoint uc, and end ec+. These values are extracted by

performing a least-squares fit on the pixel positions of the blob by modeling it

as a straight line. The streak therefore represents a perspective projection of the

mosquito trajectory for the duration of exposure δte. To gate three-dimensional

points arising from measurement pairs, we apply the epipolar constraint (2.12) on

1The duration of exposure (25 ms) is less than the time between frames at (40 ms). The

remaining time (15 ms) is for image processing.
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midpoints, one from each camera. Only measurement pairs from a true target should

satisfy the above constraint; clutter or mismatched measurement pairs should not.

We use the midpoint and endpoint locations to define a likelihood functions for

position and velocity.

4.4 Tracking Algorithm

The tracking algorithm is a multi-hypothesis tracker that associates every

measurement to a hypothesized target. This section describes the likelihood function

and data association methods.

4.4.1 Likelihood Function

A constant-velocity model suffices to describe the mosquito motion during

the exposure (δte = 25 ms). Let r ∈ R3 be the three-dimensional location of the

midpoint of a streak. The start and end of the streak are located at r− = r − ṙ δte
2

and r+ = r + ṙ δte
2

, respectively. The corresponding point on the image plane is

given by the perspective projection model [85],

f c(r) =
(w1

w3

,
w2

w3

)
, (4.2)

where w = Pr ∈ R3, and P is the camera projection matrix. Let N(u; f(r),Σ)

denote a normal density function evaluated at u with mean f(r) and covariance

matrix Σ ∈ R2×2. Assuming that the measurement is normally distributed about

the true value, the likelihood of midpoint uc given r is

P c
mp(u

c
∣∣r) = N(uc; f c(r),Σmp), (4.3)

We set the diagonal entries of Σmp equal to the length of the major and minor axes

of the streak’s bounding ellipse in the streak frame; the off-diagonal entries are zero.

As with the midpoint likelihood function, we assume the endpoint likelihood

function is based on a normal density function. However, due to uncertainty in

the labelling of the start and end of the streak, the endpoint likelihood function is
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bimodal. The directional ambiguity is described by a sum of conditional probabilities

on the order of endpoints. Let Σep be the covariance of the endpoint position in

pixels (computed empirically). The endpoint likelihood function is

P c
ep(e

c
−, e

c
+

∣∣r, ṙ) = 1−

(1− N(ec−; f c(r−),Σep)N(ec+; f c(r+),Σep))

(1− N(ec−; f c(r+),Σep)N(ec+; f c(r−),Σep)),

(4.4)

where r± = r ± ṙ(δte/2). The combined effect of using a pair of points in the

endpoint likelihood function (4.4) is to reduce the set of velocity values along the

camera axis, which is otherwise unobservable.

The combined position and velocity likelihood function is

P (Z|X) =
∏
c=1,2

P (ec−,u
c, ec+|r, ṙ)

=
∏
c=1,2

P c
mp(u

c
∣∣r)P c

ep(e
c
−, e

c
+

∣∣r, ṙ).
(4.5)

Fig. 4.3 shows the combined position and velocity likelihood function. The

likelihood function (4.5) is used to assign weights to particles prior to resampling

in the particle filter. We update the position estimates using triangulation [121],

thereby effectively marginalizing out the position from the combined position and

velocity filtering pdf.

A velocity likelihood function improves the reliability of data association by

placing predicted measurements closer to actual measurements. We compared the

absolute velocity estimation error between a stand-alone position likelihood function

and the combined position and velocity likelihood function (4.5). To create ground-

truth data we isolate a single mosquito track in both camera frame for 8 seconds. We

then interpolate the position values to every 1/800th of a second. These values were

then used to create an artificial mosquito streak during the time of exposure δte with

from a 1 cm sphere. We then project the streak on a synthetic left and right camera

white image with 1392 × 1024 pixel resolution that matches our experimental setup.

To achieve the same faded streak effect, when the mosquito flies across the image,

we reduce the intensity value of a pixel by 30 every time it is visited on the screen
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Figure 4.3: Velocity likelihood function. Top-down view of the (a) position and (b) velocity
likelihood functions on a plane orthogonal to the image and parallel to the camera axis.
The camera is located at (r1, r2) = (0, 0).

during exposure. We track this dataset using multiple Monte-Carlo runs of a particle

filter. The combined position and velocity likelihood function performed better than

the stand-alone position likelihood function, with an average improvement of 27%

(see Fig. 4.4). We update the position in both cases using triangulation. Average

position error was 5.78 ± 4.26 mm.

4.4.2 Data Association

Prior to weighting a target distribution with a likelihood function, we must

first address the data-association problem. The mosquito data-association problem

is challenging due to the variable number of targets. To address the uncertainty in

association (for example, did the paths of two mosquitoes cross each other, or was

it a close encounter?), we use a deferred-logic method called the multiple hypothesis

tracker (MHT) [82]. Each assignment of measurements to targets is set aside as a

hypothesis and acted upon in a future time-step when we are more certain. The

certainty is computed using the probability of a hypothesis that depends on the

innovation νc = uc−f c(r) of each measurement-target assignment in the hypothesis,
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probability of detection, and the covariance of the predicted measurement S

Ppos(u
1,2
m

∣∣r(m)) =
∏
c=1,2

N(ucm; f c(r(m)), S), (4.6)

where the covariance S = cov(f c(r(m))) computed over all samples in the particle

filter distribution.2

We reduce the number of hypotheses by clustering and prune them by select-

ing a few best hypotheses based on their probability at each step. Clustering is

performed by dividing the measurement and hypothesized targets at each step into

independent sets. At each time step, measurements are associated to each cluster

based on the combined gating volume of all targets within the cluster. Measure-

ments that do not belong to any cluster form their own clusters. Two clusters that

consist of the same measurement are combined to form a single cluster. Similarly,

we split clusters that consist of targets only assigned to a single measurement. Hy-

potheses are computed for each cluster independently. Hypotheses within a large

cluster (more than 10 measurements) are limited to a single localized global nearest

neighbor assignment [86]. (Such an assignment can generate a few more hypotheses

2Note that this is an approximation since the particle distribution may not be truly Gaussian.

67



by using the Murty’s algorithm [88]. Using a single scanback [82] at each step, we

choose the hypothesis with the highest probability to reduce to one the number of

hypotheses at the previous step. Child hypotheses resulting from a pruned parent

hypotheses are also removed.

New targets are automatically initialized from unassigned measurements and

automatically confirmed as a threshold is applied on hypotheses probability. New

target distributions are sampled from a normal distribution with a low standard

deviation (5 mm) in position about the triangulated point, and a large standard

deviation (500 mm/s) in velocity about zero. The combined likelihood function

resamples the distribution to equally favor particles getting projected on either side

of the streak in the next timestep.

Occlusions are not directly addressed as part of any data-association strategy,

because existing strategies assume that each measurement can at most arise from a

single target and that motion coherence will automatically associate the right tracks

in a future timestep. In our case, occlusions undermine the velocity estimate, making

future associations less reliable. An occlusion is detected if (a) two measurement

pairs within a hypothesis consist of the same measurement from a single camera, or

(b) multiple hypotheses assign the same measurement to two or more targets. We

interpret an occlusion as a combination of individual streaks, which are then used

to extract velocity information as described in Section 4.4.

In order to cluster the pixels in an occlusion blob we use the information about

the number of mosquitoes hypothesized in the occlusion as well as their position and

velocity estimates to model the blob as a mixture of Gaussians. We use MATLAB R©

file exchange function emgm [122] to run the expectation maximization algorithm

[123] with position estimates for initial means and velocity estimates for diagonalized

covariance matrix to hard-cluster the pixels into individual streaks. This set of

individual streaks are used as an initial guess to soft-cluster3 the pixels into more

accurate overlapping streaks. Using the shortest distance of a pixel from the line

3Soft clustering allows a single pixel to be assigned to more than one cluster, whereas hard-

clustering assigns each pixel to exactly one cluster.
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that passes through the split streak, we allow multiple assignments of each pixel to

individual streaks. Fig. 4.5 shows four instances of splitting an occluded blob into

individual mosquito streaks.

Figure 4.5: Resolving occlusions by clustering blobs. Four examples of occlusion resolution
by clustering pixels of each blob into individual mosquito streaks. Each streak is denoted
by a different marker type.

4.5 Track Linking and Verification Tool: trackone

We experienced track splits due to missed or dropped measurements (see dis-

cussion in Section 4.7). The resulting track segments called tracklets are combined

under human supervision one mosquito at a time in a GUI script that called track-

one.

Trackone comprises of a particle filter that runs in the background and a GUI

to display the output (see Fig. 4.6). The particle filter operates on the three-

dimensional tracklet data as a restricted state space to track a single mosquito and

uses a constant velocity motion model and nearest-neighbor matching to find the

closest measurements at the end of a tracklet. (The nearest-neighbor match is less

restrictive that MHT and allows for quicker visual verification of the match by the

user.) The GUI displays left and right camera frames with the option to switch

between raw and segmented images. Intensity and area thresholds can be varied

for each camera. Once a mosquito is selected in a camera frame, an epipolar line

centered on the current estimate is drawn in the other camera frame to highlight

possible matches. The closest tracklet at the current time step within 25 mm is

automatically combined to the current estimate. The GUI permits overriding the

tracklet suggestion, or, verifying the same by fast-forwarding to the end of the track-
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let. Forward and backward tracking is allowed. At the end of a tracklet the user may

press next to associate with the nearest measurement pair or mark the mosquito

manually in any one frame. To aid verification, speed and three-dimensional po-

sition of currently tracked mosquito is displayed online with the option of viewing

a segment of the trajectory in each frame. All mosquitoes tracked can be viewed

to check for possible track switches. Tracks can be switched, deleted, and created

by specifying the unique mosquito id assigned at the first instance the mosquito is

selected. The amount of time spent in generating a 10-second track ranges between

5-20 minutes based on the track segmentation.

Figure 4.6: GUI tool for verification and linking of track segments. We develop a
MATLAB R© graphical user interface called trackone to combine tracklets under human
supervision.
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4.6 Data Collection

To validate the mosquito-tracking system in the field, we used a pair of phase-

locked Hitachi KP-F120CL cameras in a stereo configuration. Fig. 4.7 shows a

schematic of the data collection system. The video streams were recorded using a

2.8 GHz quad core laptop, an Imperx FrameLink Express frame grabber (Imperx Inc,

Boca Raton, FL USA), and Streampix 5 software (Norpix Inc, Quebec, Canada).

Each camera was calibrated onsite using a checkerboard and the MATLAB R© Cali-

bration Toolbox [112]. Reprojection error, which is a measure of calibration accu-

racy, was in sub-pixels for each camera. Relative camera orientation and position

was determined by extrinsic calibration by taking multiple pictures of a stationary

checkerboard with both cameras. During filming, the camera height, azimuth and

elevation were recorded to create a ground-fixed reference frame. We used a Kestrel

4500 portable weather station (Nielsen-Kellerman, Boothwyn, PA USA) to sample

other environmental factors such as wind velocity and humidity at 0.1 Hz.

Filming was done in the village of Donéguébogou, Mali in Western Africa.

Donéguébogou is 29 km north of Bamako and has been the site of previous research

on An. gambiae mosquitoes [20, 117]. Swarms formed approximately 20 minutes

after subset, initially with only one or two males then increasing in numbers, and

lasted for 20 minutes. Most couples were seen 5-10 minutes after the swarm was

first observed. Couples formed only for a few minutes during this period, then were

no longer observed, though the males continued to swarm for many minutes after

the last couple had formed. We filmed swarms of An. gambiae that formed over

bare ground or markers.

We filmed twenty-one swarms and thirteen mating events between August 17,

2010 and September 3, 2010. Out of the twenty-one swarms, eighteen formed over

bare ground and three formed over natural markers. (A natural marker is an area

of high contrast with the rest of the ground such as a patch of grass.) An. gambiae

can be divided into two incipient species namely the M and S molecular forms. In

[117] a strong association between the swarming marker type and molecular form
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has been found. The M form was found to swarm over natural markers, whereas

the S form swarmed over bare ground [117]. We collected a few mosquitoes from

each swarm and performed a polymerase chain reaction (PCR) test to determine

the molecular form. All sequences presented here were of type S. Each day two

teams of 3–5 people with identical camera rigs selected separate swarming sites

for filming. The swarming sites were usually within a few hundred meters of each

other. Swarming sites were surveyed the day before to record average swarm size and

location. Filming locations spread throughout the village (see Fig. 4.8) were chosen

based on swarm size (less than about 100 mosquitoes for tractability in tracking)

and the presence of few trees or houses in the background (i.e., in the direction of

the setting sun). Once filming began, 60–90s stereo video sequences were recorded

as 10-bit synchronized tiff images on separate solid state drives. (The drives were
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backed up daily on to two separate disks.) A filming session typically produced 5–8

video sequences before it became too dark to film.

Figure 4.8: Filming locations in Mali, Africa. GPS measurements of filming locations in
Mali, Africa c©2012 Google, c©2012 DigitalGlobe.

Female mosquitoes are difficult to detect and track because they fly faster

than the average male (see tracking results), and appear as a faint streak much of

the time. A mosquito couple is distinguishable to the human eye due to its distinct

flying pattern and darker appearance against the sky. Upon spotting a couple we

noted the frame number displayed on the laptop screen. The couples were located

after filming for the evening was complete by manually reviewing the video footage

at the designated frame. Out of the two mating mosquitoes, the female mosquito

was identified as the mosquito that entered the swarm last by playing the sequence

backwards and tracking the pair, first as a couple and then individually. Parameter

values used for data collection and tracking are described below and in Table 4.2.

The evaluation of tracking performance and validation follow.
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4.7 Performance and Validation

The camera baseline b, i.e., the distance between cameras, affects the disparity

∆u in pixel positions of an object in a stereo camera setup [85]. A large disparity

reduces uncertainty along the camera axis, which in turn improves accuracy as well

as the ability to resolve occlusions. For a stereo-camera configuration with focal

length f and no vertical offset between centers, the baseline and disparity are related

according to ∆u = (bf)/z [85], where z is the distance along the camera axis of the

target from the stereo setup. The overlap between camera views is (Iw − ∆u)/Iw,

where Iw is the image width resolution in pixels. A large overlap is desirable for

maximum coverage. Since the majority of swarms were filmed with 1.5 ≤ z ≤ 2.5 m,

we selected a baseline of 20 cm to achieve 80–90% overlap and 3–5 pixel difference

between two mosquitoes that are 3 cm apart (approx. 2 body lengths) along the

camera axis.

In addition to the intensity threshold tint described in Section 4.3, foreground

segmentation requires setting the sliding window twin and a threshold on area of the

blobs tarea. We selected twin = 7 frames centered on the current frame, although

swarms filmed at short ranges required a sliding window in the range of 3–5. We

computed the area-threshold limits 20 ≤ tarea ≤ 150 from several different swarms

to achieve the best rejection of noise as well as large insects.

The covariance Σep = diag{4, 4} pixels2 for endpoints was computed by manu-

ally selecting the endpoints of streaks in a random sampling of frames and comparing

with the calculated value. The disturbance w for the constant-velocity model was

sampled from N(0, 100 m2/s4), whose covariance was found by fitting a normal dis-

tribution to the acceleration values of manually generated tracks.

We tested the position accuracy of our tracking system using a calibration

checkerboard with squares of known dimensions by manually clicking pairs of points

whose separation distance was in the range 3–40 cm. This method yielded an error

of 5 ± 5 mm for 50 pairs. We also reconstructed tracks from a single swarming

event on Aug. 29 using two independent stereo camera rigs. We created a common
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reference frame by measuring the height, azimuth and elevation of the cameras. The

videos were time-synced using a laser pointer flashed at the end of the sequence. The

mean distance between independent tracks of the same mosquito (200 data points)

was 4.4 ± 1.3 cm, although up to 3 cm error can be attributed to the inter-frame

time difference between the camera systems (caused due to delay within a single

frame that was used to match the laser flash). A mosquito flying at an average

speed of 1.5 m/s will cover 3 cm in 1/50th of a second.

Fig. 4.9 shows the results of using the OSPA metric (see Appendix, equation

(C.1)) to compare tracks from the multi-target tracking system to the manually

generated ground-truth. We tested two swarms with 10 and 20 mosquitoes, respec-

tively. The order parameter and the cut-off parameter for computing OSPA values

were set 2 and 50 mm respectively. Decomposing OSPA into position and cardinal-

ity errors shows that the average root mean square (RMS) position errors in the 10-

and 20-mosquito swarms were 2.17 ± 0.58 cm and 2.3 ± 0.46 cm, respectively. Cor-

respondingly, average absolute position errors for the 10- and 20-mosquito swarms

were 1.74 ± 0.56 cm and 2.03 ± 0.47 cm, respectively. A low cardinality error was

often accompanied by relatively high position error during periods when the swarm

was dense, because of occlusions and false tracks. As would be expected for a stereo

setup, position error was highest (44%) in the range measurement (along the camera

optical axis) as compared to either of the other two dimensions. OSPA was larger

for the 20-mosquito swarm, mainly due to cardinality errors. The position error is

likely a consequence of image noise, which resulted in partially segmented streaks.

(We mitigate this problem by filtering trajectory data using a Kalman smoother.)

Average reprojection error on the images was less than 2 pixels.

The labeling error, which captures track continuity and identity swaps, was

computed separately. An identity swap results in a labeling error of 2 before or

after the swap in the sequence. Track fragmentation results in a labeling error of 1

after the disconnect occurs. We randomly selected 100 instances of 25 continuous

frames in a swarm of 10 mosquitoes. The average labeling error (most of which

was due to track fragmentation) was 2.1 ± 1.4 tracks. A simple average of track
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lengths across six swarms ranged between 15–25 frames corresponding to 0.6–1 s.

Track fragmentation occurs due to early terminations, which can be caused by the

following (see Fig. 4.10):

• Partially segmented streaks due to noise, cloudy background, and clutter.

Partially segmented streaks in one frame often violate the epipolar constraint.

Decreasing the intensity threshold to get full streaks adds noise to the mea-

surements. (A possible solution that we are exploring in ongoing work is to

reconstruct the streak using velocity estimates.)

• Occlusion between a tracked and untracked target. Occlusions between a

tracked (known) targets and an as yet uninitialized target are not detected.

The success rate of surviving such an occlusion depends on the motion of the

tracked target after the occlusion. A maneuver or successive occlusion may

terminate the track.

4.8 Kinematic Data of Mating Behavior

This section presents a subset of the three-dimensional trajectory data gener-

ated using the mosquito tracking system.

To create representative trajectory dataset, we selected six video sequences

that contain a mating event. We call these the mating sequences. We refer to the

mating mosquitoes as the female and the focal male. We also selected six other

video sequences with no female present, called the male-only sequences, to produce

full-length trajectories of swarming behavior. Trajectory data presented here are

from swarms filmed on August 20, 21, 25, 26, 28, and 29 and September 1. Male-

only sequences last between 20–35 seconds, whereas mating sequences start a few

seconds prior to the detection of female within the field of view and end when the

couple flies out of field of view (0–5 s).

Fig. 4.11 shows the position and velocity of a randomly selected male An.

gambiae in the Aug. 29 male-only sequence, which was a swarm that formed over
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bare ground (S form). The swarm consisted of 20 mosquitoes at the beginning of

the sequence and dropped to 19 after 10 seconds. The mosquito movement is char-

acterized by quasi-periodic motion in each of the three spatial dimensions. The

instantaneous mean position of the mosquitoes in the swarm, i.e., the swarm cen-

troid, is also shown. The inertial frame (0,0,0) is located at ground level under the

camera rig; the inertial frame is oriented along east-west, north-south, and vertical

directions. The 3σ bounds for position and velocity of all of mosquitoes in this

swarm are shown in gray. Swarm size (twice the 3σ bounds) averaged 1.17 m in

the horizontal plane and 0.56 m in the vertical. The average swarm size across all

planes ranged between 0.52–1.86 m. The average height of the swarm was 1.89 m.

The average velocity along each dimension is close to zero with a highest standard

deviation in the east-west direction (0.514 m/s) followed by the north-south (0.332

m/s) and the vertical (0.281 m/s).

Fig. 4.12 shows the ratio between horizontal and vertical speed for each swarm.

The Aug. 28 sequence was filmed on a day with relatively high wind (approx. 0.8

m/s) as compared to other sequences. The mosquito movement for that swarm was

characterized by a rolling motion in the direction of the wind and relatively higher

vertical velocities. In five out of the six swarms that we used to generate male-

only sequences, we witnessed mating events at a later time. The horizontal and

vertical speeds of female mosquito that formed couples are also plotted in Fig. 4.12.

Non-parametric Kruskal-Wallis tests on each dataset show that the average male

and female speeds in the same sequence are significantly different for each sequence.

The maximum p-value among all mating sequences was 0.0003. (In contrast the

maximum p-value for male speeds during the same mating sequence was 0.051.)

Fig. 4.13 shows the position and velocity of a female mosquito that formed a

successful couple in the Aug. 29 sequence. The mating sequence was filmed about

a minute after the male-only sequence on the same date. The female appeared in

the field of view 5 seconds prior to couping. The movement of the female crosses

the 3σ boundaries of the swarm in the north-south dimension. The average speed

of the female was higher than the male mosquito until just before the couple forms,
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when the focal male speeds up. The vertical movement shows that the female

stayed in the lower half of the swarm. A three-dimensional reconstruction of the

mating mosquitoes in six mating sequences is shown in Fig. 4.14. Across all mating

sequences, the female mosquito covered an average 59% more distance than the focal

male during the same time interval.

Fig. 4.15 shows the separation distance and speeds from six mating sequences.

The amount of time we observed the females in the swarm before forming a couple

was up to 5 seconds. In each mating sequence that lasted longer than 0.5 seconds,

the number of close encounters (moments when the separation distance between the

mating mosquitoes dropped below 3 body lengths, or 4 cm) with the successful male

mosquito was in the range 3–6.
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Table 4.1: Mosquito Tracking Algorithm

Input: Sequence of synced images from a stereo-camera setup, camera cali-

bration matrices, parameters in Table 4.2

Output: Estimated three-dimensional mosquito trajectories

For each time step k:

1: Extract measurements: Model each blob as a straight line and find the midpoint

and endpoints.

2: Find missing measurements, if any: Ensure that each hypothesized target has

at least one measurement within the gating volume; if not, lower the intensity

threshold. If a measurement is found append it to the existing set of measure-

ments.

3: Validate: Use the epipolar constraint (2.12) to generate valid measurement pairs,

one from each camera view.

4: Cluster: Use gating volume of each target within a cluster to add measurements

to that cluster. A cluster is the smallest set of measurements and targets that

exist independently; combine/divide existing clusters as needed.

5: Compute hypotheses: Generate hypotheses for each cluster, and compute proba-

bilities.

↪→ Resolve occlusions: If an occlusion is detected split the image blob into

individual streaks as described in §III-C and recompute the hypotheses.

6: Hypothesis reduction: Based on the most probable hypothesis at k and scanback

range Ns, reduce the number of hypotheses at k −Ns to a single assignment.

7: Initialize & update: Initialize tentative targets from unassociated measurement

pairs; resample target states based on hypotheses using the three-dimensional

estimate and velocity likelihood function (4.5). Each new target forms a new

cluster.

8: Predict: Use the constant velocity motion model with random (Gaussian) dis-

turbance to propagate hypotheses to timestep k + 1.79



Table 4.2: Parameter Values Tracking Mosquitoes

Parameter Value Description

b 20 cm Stereo camera configuration baseline

twin 7 frames Sliding window for segmentation

Σep diag{4,4} pixels2 Covariance of endpoint error

σw 100 m2/s4 Covariance of disturbance

δte 25 ms Duration of camera exposure

tgate 16 Threshold for gating volume

te .5 Threshold on epipolar constraint

tarea (20, 150) Minimum and maximum blob areas

Ns 1 frame Scanback for MHT

Np 200 Number of samples in particle filter
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Figure 4.9: Tracking performance. (a) Position (dashed blue) and cardinality error (solid
green) for a swarm of 10 mosquitoes. (b) OSPA error for different methods and swarm
sizes: nearest neighbor [36] (dotted) for a swarm of 20 mosquitoes and single-scan MHT
for two swarms of sizes 10 (crosses) and 20 (circles), respectively.
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71

(a) (b)

partially segmented streak

undetected target

Figure 4.10: Track terminations. Track terminations due to (a) partially segmented streak
and (b) occlusion with a yet undetected target. The predicted velocity of the terminated
target is shown in cyan.

(a) (b)

Figure 4.11: 3D position and velocity of a single male mosquito. Instantaneous three-
dimensional (a) position and (b) velocity tracks of a male mosquito (black solid) in the
Aug. 29 sequence (S molecular form). Mean (dotted blue) and 3 σ bounds (gray) for all
mosquitoes also shown.
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Figure 4.12: Horizontal versus vertical speeds of all mosquitoes. Instantaneous horizontal
versus vertical speed of male mosquitoes in six sequences (black dots). Female speeds (red
circles) and average wind speed (blue dashed lines) are shown if available.

(a) (b)

Figure 4.13: 3D position and velocity of a single female mosquito. Instantaneous three-
dimensional position (a) and velocity (b) of a female mosquito that coupled in the Aug. 29
sequence filmed 70 seconds later than the male position and velocity shown in Fig. 4.11.
Mean (dotted blue) and 3σ bounds (gray) of all males are also shown.
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Figure 4.14: 3D reconstruction of mosquito mating events. Three-dimensional reconstruc-
tion of the An. gambiae mating events in the wild. The female mosquito track (red) and
male mosquito track (blue) are shown. The couple is shown in purple. Pre-coupling tracks
are projected on to two-dimensional planes on each side. The magnetic direction for all
swarms is the same (shown in Aug. 21 mating sequence).
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Figure 4.15: Distance and speeds of mating mosquitoes. Relative distance (a) and speeds
(b) of mating male and female An. gambiae mosquitoes (a) in six mating sequences.
Time 0 s occurs when the separation distance first drops below 2 cm. Arrows depict close
encounters (separation distance less than 4 cm).
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Chapter 5

Conclusion

5.1 Summary

In this dissertation we describe multi-target tracking systems for studying fish

schools and mosquito swarms. Together these systems span variability in target

density, extent on image, and movement. The tracking systems are constructed on

a Bayesian framework and are adapted to address occlusions and missed detections.

In each case, the research has yielded an unprecedented volume of trajectory data

for subsequent analysis.

The input to the fish tracking system is a sequence of synchronized high-speed

video images from a top-view and a side-view camera. We automatically initialize

the tracker so that high-volume datasets may be generated without the need to

manually set a prior. In a multi-layered framework, we use simulated annealing

(SA) to reconstruct fish shape through occlusions and smooth the shape trajectories

using a Kalman filter. We provide a perturb function to inform the local search and

improve finite time behavior of the SA algorithm. Performance is evaluated using an

independent camera view, as well as manually generated ground truth. The tracking

system is validated on schools of up to eight fish in a 37.8 liters (10 gallon) tank

and is currently in use to study information transmission in fish schools.

The mosquito tracking system is designed to address noisy, low frame-rate

(25 frames per second) video streams from a stereo camera system. We provide an

adaptive algorithm to search for faded mosquito streaks across the image plane and

a likelihood function that utilizes streak endpoints to extract velocity information.

A modified multi-hypothesis tracker probabilistically addresses occlusions and a
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particle filter estimates the trajectories. The output of the tracking algorithm is a

set of track segments with an average length of 0.6–1 seconds. The segments are

verified and combined under human supervision to create individual tracks up to the

duration of the video (90s). We evaluate tracking performance using an established

metric for multi-target tracking and validate the accuracy using independent stereo

measurements of a single swarm. Three-dimensional reconstructions of An. gambiae

swarming and mating events are presented. In ongoing work, we are investigating

these trajectories to characterize swarming and mating behavior.

5.2 Suggestions for Future Research

The ability to track multiple animals in a group can be extended in at least

two different directions: (a) interactive experiments with animal groups, and (b)

higher level interaction models that assist and inform the tracking algorithm

5.2.1 Interactive Experiments with Animal Groups

A desired goal would be to interact with animal groups as they are filmed,

possibly by subjecting a single individual or a subgroup to external stimuli. For

biologists interactive experiments where they are able to modify the animal’s en-

vironment and study its response will allow quicker analysis of different decision

making strategies. For engineers interactive systems close the loop for studying re-

sponse of an animal group to specific inputs for system identification. The stimulus

may be presented in the form of an artificial robot that interacts with the group

[87, 124] or on a computer screen in a virtual reality setup [48, 34]. To be able to

interact with an animal we must track its position and orientation in real-time.

The primary design challenge in performing interactive experiments is to be

able to close the loop on target tracking by using the estimates to drive the ma-

nipulation of the group. The tracking systems described in this dissertation are

post-filming tools, because the computational time for processing each image and

tracking each target is more than the frame rate. At the same time, components
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of the tracking system such as automatic head and nose detection and subsequent

three-dimensional localization that we use to estimate the midline can be used for

tracking fish pose in real time [48].

In ongoing work [48], we design a virtual-reality framework for investigating

startle-response behavior in a single fish. Using real-time three-dimensional tracking

at 15 frames per second, we generate looming stimuli at a specific location on a com-

puter screen, such that the shape and size of the looming stimuli change according

to the fish’s perspective and location in the tank. To attain real-time speeds we

use a MicrosoftTM Cinema Lifecam at low resolution of 640 × 480 pixels mounted

above a fish tank looking straight below. Computational load is further reduced by

obtaining the second perspective through a mirror mounted at an angle to the side

of the tank. Fish pose and velocity were validated at each time step to ensure that

(1) the fish heading and direction of motion was aligned (2) the fish was moving at

a speed less than 150 cm/s (3) the fish was more than one body length away from

the tank walls. We demonstrate the effectiveness of the setup through experiments

on Giant danio and compute the success rate in eliciting a startle response by pre-

senting the stimulus to 39 individual fish from different orientations. Fig. 5.1 shows

a schematic of the test environment.

Extending this setup to multiple fish will again be driven by the requirements.

An experiment where the stimulus is presented based on the fish school properties

may not require maintaining long trajectories of each fish. In the case where longer

trajectories are needed we must resort to occlusion resolution. Although shape in-

formation helps in resolving occlusions, detailed shape required for analysis may

not be needed until after the experiment. (In our virtual reality setup, for exam-

ple, we record with a high-speed camera in parallel for later analysis.) To resolve

occlusions we may track shape selectively with a lower resolution model such as

Gaussian mixtures [87]. Fig. 5.2 shows two such attempts on existing datasets. We

see that although accurate shape information is difficult to extract, it is possible to

determine position and orientation of relatively straight fish.
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Figure 5.1: Schematic of the virtual reality setup. Reference frames V (viewer), S (stim-
ulus), L (screen) and I (inertial). The azimuth (a) and elevation (h) of the stimulus with
respect to the fish are also shown.

Figure 5.2: Resolving fish occlusions modeled as Gaussian mixtures. We cluster fish
occlusions modeled as Gaussian mixtures using an expectation minimization algorithm.
It took 0.4 seconds to cluster seven fish (left) and 0.1 seconds to cluster three fish (right).
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5.2.2 Interacting Motion Models for Robust Tracking

In Chapter 1 we motivate the need to quantify trajectory data in order to

validate models of collective behavior. In turn, a dynamic model of collective be-

havior can be used to improve tracking performance by predicting individual motion

in response to other members of the group. The general idea of using higher-order

models for an improved tracking performance is not new: In [125] a Markov Random

Field (MRF) motion prior is used to model interactions between multiple ants. A

particle filter with MCMC sampling tracks the joint space of of multiple targets.

They identify the failure modes when a unique behavior—overlapping targets due

to carrying behavior in ants—occurs and suggest incorporating the same into the

tracker. In [96], bees are tracked using a multi-scale Markov model to track waggle

dance in honeybees. Simple behaviors such as straight motion, turns, waggle, and

staying still are learnt and then incorporated into the tracker to obtain improved

performance. Each behavior is independent and the authors suggest incorporating

transition between behaviors into the model.

The first step to incorporate such models into tracking would be to characterize

and detect behaviors. This falls into the general category of activity recognition in

humans [126, 127] and flies [31, 128]. In fish, for example, we characterize fast-start

behavior in Section 3.7 by a sudden change in body shape, position and orientation.

Using this information and relative position of the fish in the school, the shape

kinematics of the first responder can be used to predict the motion of others. Such

behaviors can also be used to selectively assign tracking resources to different parts of

the image. For example, the tracking system may switch between a lower-resolution

coarse shape description and high-resolution shape description based on activity

cues that are of interest to the researcher.

Existing models of collective behavior can also be used to assist and improve

tracking accuracy. For example, it has been shown previously in swarming that

each insect interacts with the rest of the swarm in the form of an attractive force

towards the centroid and a drag force due to its speed. Kinematic reconstructions
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of mosquitoes in Section 4.8 show that every mosquito tends to move in and out of

the swarm in a periodic pattern. Such motion is characteristic of grouping behavior

which can be characterized in terms of velocity autocorrelation [129, 80]. Further

analysis of trajectory data in mosquitoes can motivate simple models that adaptively

increase acceleration noise based on position relative to the centroid. Going further,

once an interaction topology or a time-dependent model thereof is established, a

model that would include the positions of other mosquitoes within an interacting

distance may be used in the prediction step of the tracking system.
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Appendix A

Linearizing Shape Estimation Measurement Model

We linearize the shape-estimation measurement model for the purpose of using

in an extended Kalman filter. The measurement model defined in (3.10) is

cHE(E(s)) =

ce1(s)

ce2(s)

 =

 ‖cS(s,cv1)−cS(s,cv2)‖
2∥∥∥ cS(s,cv1)+cS(s,cv2)

2
− cû(s)

∥∥∥
 (A.1)

where cS(s, v) is a point S(s, v) on elliptical cross section as defined in (3.9) at the

midline s and angle v projected on camera 1. The first order approximation of ∂Hs

is the Jacobian of Hs evaluated at the current estimate Ê(s) and is given by (we

drop the s dependency for clarity)

∂HE
∂E =

∂e1
∂a

∂e1
∂b

∂e1
∂d

∂e2
∂a

∂e2
∂b

∂e2
∂d

 . (A.2)

where, each element is given by

∂Hs

∂E (1, 1) =
∂e1

∂a
=

∂e1

∂1Sv1
∂1Sv1
∂a

+
∂e1

∂1Sv2
∂1Sv2
∂a

=
∂e1

∂1Sv1
∂1Sv1
∂Sv1

∂Sv1
∂a

+
∂e1

∂1Sv2
∂1Sv2
∂Sv2

∂Sv2
∂a

∂Hs

∂E (1, 2) =
∂e1

∂b
=

∂e1

∂1Sv1
∂1Sv1
∂Sv1

∂Sv1
∂b

+
∂e1

∂1Sv2
∂1Sv2
∂Sv2

∂Sv2
∂b

∂Hs

∂E (1, 3) =
∂e1

∂d
=

∂e1

∂1Sv1
∂1Sv1
∂Sv1

∂Sv1
∂d

+
∂e1

∂1Sv2
∂1Sv2
∂Sv2

∂Sv2
∂d

∂Hs

∂E (2, 1) =
∂e2

∂a
=

∂e2

∂1Sv1
∂1Sv1
∂Sv1

∂Sv1
∂a

+
∂e2

∂1Sv2
∂1Sv2
∂Sv2

∂Sv2
∂a

∂Hs

∂E (2, 2) =
∂e2

∂b
=

∂e2

∂1Sv1
∂1Sv1
∂Sv1

∂Sv1
∂b

+
∂e2

∂1Sv2
∂1Sv2
∂Sv2

∂Sv2
∂b

∂Hs

∂E (2, 3) =
∂e2

∂d
=

∂e2

∂1Sv1
∂1Sv1
∂Sv1

∂Sv1
∂d

+
∂e2

∂1Sv2
∂1Sv2
∂Sv2

∂Sv2
∂d

. (A.3)
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Using the above relations the Jacobian can be written as

∂HE
∂E =

∂e

∂1Sv
∂1Sv
∂Sv

∂Sv
∂E

=

 ∂e1
∂1Sv1

∂e1
∂1Sv2

∂e2
∂1Sv1

∂e2
∂1Sv2

∂1Sv1
∂Sv1 02×3

∂1Sv2
∂Sv2 02×3

∂Sv1

∂E
∂Sv2

∂E

, (A.4)

where 02×3 is a 2 × 3 zero matrix. The partial derivatives are computed by using

the chain rule. These are ∂e
∂1Sv which is a 2 × 4 matrix relating the measurements

e ∈ R2 to the projection of two surface end points given by

∂e1

∂1Sv1

=
(

∂e1
∂1Sv1,1

∂e1
∂1Sv1,2

)
=
(

(1Sv1,1−1Sv2,1)

4e1

(1Sv1,2−1Sv2,2)

4e1

)
;

∂e2

∂1Sv1

=
(

∂e2
∂1Sv1,1

∂e2
∂1Sv1,2

)
=
(

(1Sv1,1+1Sv2,1)

4e1

(1Sv1,2+1Sv2,2)

4e1

)
;

(A.5)

the perspective projection model ∂1Sv
∂Sv , which is a 4 × 6 matrix relating the three

dimensional surface endpoints to their projections on the image. The top 2 × 3

matrix is

∂1Sv1

∂Sv1

=

∂1Sv,1
∂Sv,1

∂1Sv,1
∂Sv,2

∂1Sv,1
∂Sv,3

∂1Sv,2
∂Sv,1

∂1Sv,2
∂Sv,2

∂1Sv,2
∂Sv,3

 , (A.6)

where each element in the partial derivative ∂1Sv1
∂Sv1 is computed using the distortion-

free perspective projection model (B.1). Using u ∈ R2 to represent the camera

measurement of the three-dimensional point r ∈ R3 (u, r correspond to 1Sv1,Sv1

respectively).

∂u

∂r
= K2×2

 1
1r3

0 − 1r1
1r23

0 1
1r3
− 1r2

1r23

R, (A.7)

where K2×2 is first two rows and columns of the camera matrix K ∈ R3×3, R ∈ R3×3

is the rotation matrix, and 1ri is the transformed position coordinate in camera

frame 1; and the generative model relation ∂Sv

∂E , which is a 6× 3 matrix connecting
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the ellipse parameters to the the end points. The top 3× 3 matrix is

∂Sv1

∂E =
(
∂Sv1

∂a
∂Sv1

∂b
∂Sv1

∂d

)

=


x1 cos(v1) y1 sin(v1) y1

x2 cos(v1) y2 sin(v1) y2

x3 cos(v1) y3 sin(v1) y3

 .
(A.8)

The first order series expansion of the nonlinear measurement model described

in this section is decoupled at every s, which allows running a separate filter for each

point on the midline.
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Appendix B

Multiple-view Camera Geometry

Camera Calibration

We use perspective projection to model a camera. Let r ∈ R3 be a three-

dimensional point mapped to a two-dimensional pixel position u ∈ R2. Using the

camera’s intrinsic parameters called focal length f , principal point [u0, v0]T , and

distortion coefficients {k1, k2}, and the extrinsic parameters position t ∈ R3 and

orientation R ∈ SO3 the three-dimensional position and it’s distortion-free pixel

image are related by a nonlinear mapping [102]

sũ = K
[
R t

]
r̃, (B.1)

where K is the 3× 3 camera matrix, s is a scaling factor and ũ = [uT , 1]T denotes

the homogeneous representation. The 3 × 4 matrix P = K
[
R t

]
is called the

projection matrix [85]. Solving the camera calibration problem requires estimating

the values of R, t and r given a set of points ui. This is a under-determined nonlinear

optimization problem that requires additional constraints in order to be solved. In

addition, for a multi-view setup the values of R, t must be transformed to a common

inertial frame.

In [130] these values are found by performing an optimization over a large

number of points imposing constraints in the form of known positions of each point.

This method has been utilized in calibrating cameras that cover a large volume

[47, 131]. The multi-camera self-calibration method in [132] uses image sequence of

a single light source in a dark environment to automatically calibrate each camera

in a multi-view setup. Constraints are implemented in the form of nearness of

points in successive images in a sequence. At least three cameras are required for
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Figure B.1: Camera calibration. The checkerboard frame represents the position and
orientation of the checkerboard in each camera. We use the extrinsic calibration from two
views to define a new inertial frame.

this technique to work. The MATLAB calibration toolbox [112] which is based

on the technique described in [102] uses multiple images of a planar checkerboard

to accurately calibrate the camera parameters. Homography constraints based on

planar set of points are used to solve the optimization problem.

For all of our setups we used the MATLAB calibration toolbox. The toolbox

comes with features that output the calibration error as well as distortion coefficients

giving an estimate of the cost of ignoring distortion in the measurement model. The

toolbox can be easily extended for a multi-view setup by placing the checkerboard

for extrinsic calibration in full view of all cameras [39, 36]. Fig. B.1 shows the

extrinsic calibration frame projected onto the checkerboard for both setups. When

this is not possible, the checkerboard may be waved such that it is in at least two

camera views at all times. Extrinsic calibration is then performed by propagating

the extrinsic parameters between overlapping cameras until all camera positions and

orientations are known with respect to a common inertial frame [38]. A world frame

may be extracted by locating the checkerboard corner with respect to ground and

magnetic direction [36].

The refraction error in our experiments is small because of the relatively small

working volume [133].
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Appendix C

Optimal Subpattern Assignment Metric

Consider the joint target estimate (X1[k],X2[k]) at timestep k from datasets

1 and 2 in which the number of targets is m and n, respectively. We denote the

distance between estimates Xi and Xj by dc(Xi,Xj) , min(c, d(X1
i ,X

2
j )), where

c > 0 is the cut-off distance that determines the penalty on cardinality errors and

d(Xi,Xj) is the Euclidean distance between Xi, and Xj. Let Πn denotes the

set of permutations of {1, . . . , n} and π(i) denotes the element of π assigned to i

that achieves the global minimum mean-square error, such as obtained using the

Hungarian method [86]. The OSPA metric dcp(X
1[k],X2[k]) at timestep k is [134]

dcp(X
1[k],X2[k]) =(

1

n

(
min
π∈Πn

m∑
i=1

dc(X1
i [k],X2

π(i)[k])p + cp(n−m)
))1/p

.
(C.1)

The OSPA metric consists of two parameters that weight the cardinality and

position accuracy in a multi-target tracking system. These are the cut-off parameter

c, which determines the penalty on cardinality mismatch, and the order parameter

p, which penalizes outliers. A high value of c results in mis-assignments construed

as large position errors and should only be used if such errors are expected. A

modification to the OSPA metric [135] includes a measure of labeling error to cap-

ture track-fragmentation and identity swaps. To compute the modified metric let

dc(Xi,Xj) , d(Xi,Xj) + lδ̄(i, j), where δ̄(i, j) is the Kronecker delta function and

l ∈ [0, c] is the penalty on labeling error. Track labels are assigned in a global opti-

mum sense using the Hungarian method [86] to estimated tracks that are closest to

the ground truth.
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emergent properties of fish schools: A comparison of observation and theory,”
Marine Ecology Progress Series, vol. 10.3354/me, pp. 239–249, 2004.

[6] A. Jadbabaie and A. Morse, “Coordination of groups of mobile autonomous
agents using nearest neighbor rules,” in IEEE Transactions on Automatic
Control, vol. 48, no. 6, Jun. 2003, pp. 988–1001.

[7] W. Ren and R. Beard, “Consensus seeking in multiagent systems under dy-
namically changing interaction topologies,” IEEE Transactions on Automatic
Control, vol. 50, no. 5, pp. 655–661, May 2005.

[8] R. Olfati-Saber, J. Fax, and R. Murray, “Consensus and cooperation in net-
worked multi-agent systems,” Proceedings of the IEEE, vol. 95, no. 1, pp.
215–233, 2007.

[9] T. Balch and F. Dellaert, “How multirobot systems research will accelerate our
understanding of social animal behavior,” Proceedings of the IEEE, vol. 94,
no. 7, pp. 1445–1463, 2006.

[10] H. Min and Z. Wang, “Design and analysis of Group Escape Behavior for
distributed autonomous mobile robots,” in Int. Conf. on Robotics and Au-
tomation. IEEE, 2011, pp. 6128–6135.

[11] D. V. Radakov, Schooling in the ecology of fish. J. Wiley, 1973.

[12] D. J. T. Sumpter, “The principles of collective animal behaviour,” Phil. Trans.
of the Royal Society B: Biological Sciences, vol. 361, no. 1465, pp. 5–22, 2006.

98



[13] A. Ward, J. Herbert-Read, D. Sumpter, and J. Krause, “Fast and accurate
decisions through collective vigilance in fish shoals,” Proc. of the National
Academy of Sciences, vol. 108, no. 6, p. 2312, 2011.

[14] M. Ballerini, N. Cabibbo, R. Candelier, A. Cavagna, E. Cisbani, I. Giardina,
V. Lecomte, A. Orlandi, G. Parisi, A. Procaccini, M. Viale, and V. Zdravkovic,
“Interaction ruling animal collective behavior depends on topological rather
than metric distance: Evidence from a field study,” Proc. Nat. Acad. Sciences,
vol. 105, no. 4, pp. 1232–1237, 2008.

[15] Y. Katz and K. Tunstrø m, “Inferring the structure and dynamics of inter-
actions in schooling fish,” Proceedings of the National Academy of Sciences,
2011.

[16] D. A. Paley, N. E. Leonard, R. Sepulchre, D. Grunbaum, and J. K. Parrish,
“Oscillator models and collective motion,” IEEE Control Systems Magazine,
vol. 27, no. 4, pp. 89–105, 2007.

[17] R. Lukeman, Y.-X. Li, and L. Edelstein-Keshet, “Inferring individual rules
from collective behavior.” Proceedings of the National Academy of Sciences of
the United States of America, vol. 107, no. 28, pp. 12 576–80, Jul. 2010.

[18] N. Abaid and M. Porfiri, “Fish in a ring: spatio-temporal pattern formation
in one-dimensional animal groups,” J R Soc Interface, 2010.

[19] S. Berman, Q. Lindsey, M. S. Sakar, V. Kumar, and S. C. Pratt, “Experimental
Study and Modeling of Group Retrieval in Ants as an Approach to Collective
Transport in Swarm Robotic Systems,” Proceedings of the IEEE, vol. 99, no. 9,
pp. 1470–1481, 2011.

[20] N. C. Manoukis, A. Diabate, A. Abdoulaye, M. Diallo, A. Dao, A. S. Yaro,
J. M. C. Ribeiro, and T. Lehmann, “Structure and Dynamics of Male Swarms
of Anopheles gambiae,” J. Medical Entomology, vol. 46, no. 2, pp. 227–235,
2009.

[21] J. Charlwood and M. Jones, “Mating in the mosquito, Anopheles gambiae sl,”
Physiological Entomology, vol. 5, no. 4, pp. 315–320, 1980.

[22] J. Charlwood, J. Pinto, C. Sousa, H. Madsen, C. Ferreira, and V. do Rosario,
“The swarming and mating behaviour of Anopheles gambiae ss (Diptera: Culi-
cidae) from Sao Tome Island,” J. of Vector Ecology, vol. 27, no. 2, pp. 178–183,
2002.

[23] J. Thailayil, K. Magnusson, H. Godfray, A. Crisanti, and F. Catteruccia,
“Spermless males elicit large-scale female responses to mating in the malaria
mosquito Anopheles gambiae,” Proceedings of the National Academy of Sci-
ences, vol. 108, no. 33, pp. 13 677–13 681, 2011.

99



[24] T. B. Moeslund, A. Hilton, and V. Krüger, “A survey of advances in vision-
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