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Temporal coherence of stimulus features is a key property of sounds that em-

anate from single source. Consequently, it is important to understand how it may

influence the direction and extent of the rapid plasticity postulated to occur dur-

ing the streaming of concurrent sounds. We postulated that when animals listen

attentively to coherent or incoherent stimuli, responses would adapt to effectively

encode the correlational structure of the stimuli. In this study, ferrets were trained

to attend globally to two-tone sequences which were played either simultaneously

(SYNC) or alternatively (ALT) on a trial-by-trial basis, and to detect a transition

to a random cloud of tones by licking a waterspout for reward. Neuronal activities

were collected in the primary auditory cortex during performing the task and pas-

sively listening to the same stimuli sequences. Compared with the passive condition,

neuronal responses changed distinctively between SYNC and ALT trials under the

effect of attention. These results provide neuronal evidence for the role of stimulus

temporal coherence in modulating responses during attentive listening to complex



sounds.
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Chapter 1: Introduction

Our daily environment is never noise free, and the useful signal conveying

information is always embedded in the background with all kinds of interference.

Fortunately, human beings are adept at following the specific sound they are inter-

ested in. One representative example is the cock-tail party problem [1], in which

the voice from a certain speaker one is paying attention to is interfered with voices

from other guests, music, and other kinds of ambient noise. Though it seems ef-

fortless for one to conduct informative communications in such harsh environment,

it is still quite challenging and beyond the ability of the best algorithms that have

been proposed to tackle this problem. In the engineering community, computational

auditory scene analysis (CASA) [2] has been a hot topic for several decades, aiming

at better modeling the human auditory system in order to push the performance of

computational models to match that of human beings. However, the performance

gap between a computational model and a human being results from our limited

knowledge about how our brain functions, and it might be necessary for us to have

a full understanding of this complicated computational unit before we can reach

our goal. The research in exploring the underlying neural mechanism of auditory

scene analysis has drawn great effort around the world, ranging from single-unit
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electrophysiological recordings in animals [3] [4] [5], to human experiments using

electroencephalography (EEG) [6] [7], magnetoencephalography (MEG) [8], func-

tional magnetic resonance imaging (fMRI) [9] and other non-invasive techniques.

Recent studies [10] [11] have demonstrated that responses in human auditory cortex

encode critical features of attended speech in listening tasks with two simultaneous

speakers.

Auditory streaming [12], a fundamental aspect of auditory scene analysis re-

lates to the perceptual organization of sounds into ”stream”, has been a fundamental

research direction [13] [14] [15]. A ”stream” is a group of components that the lis-

tener perceives as a coherent entity in the auditory stimulus, and it could be just

one sound or sounds from different sources. For example, in chorus, the voices from

different singles including male and females are usually perceived as a stream since

these voices are well-synchronized and temporal coherent. A classic psychoacoustic

experiment on auditory streaming is composed of repeating two tones at different

frequencies, A and B [1] [16]. By varying the frequency separation ∆F between A

and B, two different percepts could be evoked. When ∆F is small, subjects tend

to hear one stream; when ∆F is large, two separate streams are perceived, each

containing the tones of the same frequency. A natural hypothesis from this simple

experiment is that frequency separation is the main factor for auditory streaming,

and it is consistent with the tonotopic organization of the auditory system of differ-

ent kinds of species. Parallel sequences of repeating two tones with large frequency

separation would excite two isolated population of neurons in auditory cortex, which

could be correlated with streaming separation, and this ”population separation” hy-
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pothesis [17] [18] was widely adopted in previous model for sound segregation.

Notwithstanding the simplicity in explanation, the ”population separation”

hypothesis failed to take into account the relative timing of sounds. If A tone and B

tone are played synchronously no matter how large the frequency separation is, they

form a coherent sound object, i.e. one stream even though they evoke responses the

best in two different neuron population. Thus a model for streaming separation

should not only consider the frequency separation, but also the temporal coherence.

Recently, a model is proposed [19] [20], arguing the necessity of both temporal

coherence and attention in the formation of auditory streaming. The natural stimuli

consist of different kinds of features, pitch, timbre, location, and loudness and so

on, much more complex than the two-tone sequence. When attention is paid for

one specific feature, other features that are temporal coherent with the chosen one

automatically bind together to form one coherent sound object. An example is the

speech separation of co-channel speech mixture of one female and one male. A

good candidate of feature to pay attention to is naturally the pitch. This coherence

model successfully generalizes the hypotheses based on simple two-tone stimuli, and

is suited for analyzing real world stimuli.

However, the neural mechanism of auditory streaming still remains unclear,

and there is no direct neural evidence to support the coherence model. In this study,

we train ferrets in a behavior task, in which they are required to pay attention to

stimuli globally. The stimuli contain two parts, reference and target, and the ferrets

learn to detect the change from reference to target. In the design of reference, we use

the classic repeating two-tone sequences in which A and B are played either alter-

3



natively or synchronously, corresponding to the anti-coherent and coherent stimuli

respectively. Our hypothesis is that under the effect of attention, the neural re-

sponses could rapidly adapt to encode the temporal correlation structure of the

stimuli. Compared with neural responses in passive listening (no attention) with

the same stimuli played, we observe distinct changes for anti-coherent and coherent

stimuli in behavior, which might result from rapid reformation of neural connectiv-

ity under the effect of attention, driven by the intrinsic correlational structure in

stimuli.

The organization of this thesis is as follows. In Chap. 2, we focus on the

stimulus design and methods of data analysis. The results are presented in Chap.

3. In Chap. 4, several key issues are discussed. And we conclude this thesis with

Chap. 5.
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Chapter 2: Methods

2.1 Subject

A female ferret (Mustela Putorius) purchased from Marshall Farm was used

in the experiment. The ferret only had free access to dry food in the weekdays, and

access to water was restrained as reward in the behavior task. In the weekends,

free access was provided to the ferret, and wet food was also given to help it regain

weight. The weight of the ferret was carefully monitored, and maintained above 75%

of its ad libitum weight. The care and use of animals in this study was consistent

with NIH Guidelines. All procedures for behavioral testing of ferrets were approved

by the institutional animal care and use committee (IACUC) of the University of

Maryland, College Park.

2.2 Experimental Design

In order to explore the effect of global attention on the neural responses, the

ferret was trained to engage in a behavior task. The task is cast into a reference-

target paradigm [21], during each trial of which the ferret is required to pay attention

to the audio stimuli, and response to the change from reference sound to target sound
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by licking a spout. A reward window is placed after the onset of target sound, and

the ferret can the reward of water if it correctly detects the change and licks the

spout during this window. However, if she licks before the onset of target sound,

i.e. during the reference sound, the trial is aborted after the end of reference sound,

and there is a delay for the beginning of the next trial as a punishment.

To relate the task with streaming perception, the reference sound is designed

to consist of two repeating tone sequences, denoted as A tone sequence and B tone

sequence. These two sequences are played either synchronously or alternatively,

denoted as pattern SYNC and pattern ALT respectively. The pattern ALT is ex-

actly the classic ”ABAB” tone sequence frequently used to measure the threshold of

streaming perception of human subjects in psychoacoustic experiments [1]. While

the frequency of B tone is fixed, the frequency of A tone is varied in the tonotopic

axis to create different frequency gaps between them. As confirmed by the psychoa-

coustic experiments, human subjects tend to perceive one stream when the gap is

small and two separate steams when the gap is large. In [22], neural data from A1

was collected when the ferrets passively listened to the two tone sequences, and it

is shown that it is not enough to differentiate between ALT and SYNC patterns

by just considering the frequency separation. A computational model is proposed

to take the temporal coherence into consideration to predict the stream perception.

The reference part of the stimulus design in this study is almost the same with the

second physiological experiment in [22]. ALT and SYNC trials are representatives of

anti-correlated and correlated stimuli. To conduct the similar analysis of the effect

of frequency gap of A tone and B tone on the neural responses, in this experiment,
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A tone is placed at distances of -2, -1, -0.5, -0.25, 0, 0.25, 0.5, 1, 2 octaves away to

the B tone in the tonotopic axis. When the sequence of A is equal to B, in ALT,

they form an iso-frequency sequence.

As an extension to [22], which only analyzed data under passive listening

(without the effect of attention), ALT and SYNC patterns with various frequency

separations are presented interleaved, followed by a target sound, requiring the

ferret to pay attention to the stimulus in order to get water reward. The design of

target sound is a random cloud of tones, making the transition from the reference to

target easy to detect. The change from regularly repeating tones to random tones

is so salient in the global statistics that the ferret is not required to pay attention

selectively to one sequence to do the task. The frequencies of tones in the target

sound are uniformly sampled to cover a range of 5 octaves, centered at the B tone.

The schematic diagram of the stimuli of the task is shown in Figure 2.1. In

each tone sequence, the duration of a tone is 75ms, and the gap between two tones is

125ms, which is consistent with the setup in [22]. In ALT, the offset of the beginning

of B tone sequence is 100ms. There are 64 tones in the target, and the duration of

each tone is 25ms. Their occurrence in the time axis is random but balanced, and

there are 16 tones per 200ms. 5ms cosine ramps are applied the start and end of

each tone played in the reference and target. For each trial, there is 100ms pre-trial

silence. The length of reference sound is varied trial by trial to prevent the ferret

from using timing strategy. There are 3 kinds of reference lengths, 1.6, 3.2, and 4.8

seconds, corresponding to 8, 16, and 24 tones in each tone sequence. And the length

of target is always 1.6 seconds.
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Figure 2.1: The schematic diagram of the stimulus design. The ALT
and SYNC patterns are plotted on the left and right respectively before
the green dash lines. There are 3 reference lengths, and here we only
highlight the temporal organization of the two sequences in ALT and
SYNC. An example of an exact spectrogram of target is shown in Figure
2.2.

2.3 Training Procedure

It took 3 months for the ferret to learn this task. In the beginning, the reference

was played at 60dB below (hardly audible) the target, letting the ferret to form the

association between the target and water reward. The intensity of reference was

gradually increased to the same sound level as target to remove the intensity cue.

In the first part of the training process, B tone was always fixed at 3kHz. Since in

physiology, the frequency of B tone should be chosen according the best frequency

of the neuron we find, in the second training stage, B tone was varied on a daily

basis to help the ferret generalize to wider frequency range.
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Figure 2.2: The spectrogram of a sample target.

2.4 Neurophysiological Recordings

After the ferret successfully learned the task, to ensure the stability of elec-

trophysiological recordings, a titanium headpost was implanted above the ferret’s

skull through a surgery [21]. 2 to 4 independently moveable tungsten electrodes

(FHC) were pushed to penetrate into the primary auditory cortex though small

craniotomies made prior to the recording sessions which usually lasted 6 to 8 hours.

Stimuli were played by a calibrated loud speaker which controlled by custom made

Matlab program in a double-walled acoustic chamber (IAC). Electrophysiological

data was recorded by an AlphaOmega system.
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2.5 Data Analysis

The best frequency of a neuron was estimated by a sequence of tones at dif-

ferent frequencies in an online fashion. The B tone was always placed at the best

frequency (BF) of the selected neuron. Since there was a slight mismatch between

the true BF after spike sorting, in the final analysis, units whose BFs are within

half octaves away from the B tone are selected to the following analysis. The data

analysis is conducted on the two parts of the stimuli, responses to the reference and

the target separately. There are in total 2 × 9 = 18 conditions (ALT and SYNC,

and 9 frequencies of A tone), and each conditioned was repeated 9 to 12 times in

which 3 kinds of trial lengths were uniformly sampled.

2.5.1 Analysis on Spikes from Reference

Auditory streaming is never static, and the dynamic evolvement along the

time axis is essential for the formation of steaming perception. On the contrary, if

only two pure tones are played either simultaneously or alternatively, there is no

stream but just sound tokens. Thus it is necessary that in the stimulus design, two

pure tones are repeated for enough times to allow the buildup of streams. In the

first part of data analysis, we focus on how the neural responses change along the

time axis. For ALT, there is no overlap between A sequence and B sequence, while

for SYNC, they are totally overlapped. Hence in ALT trials, neural responses to

A and B tone sequences are analyzed separately, which in SYNC trials, the neural

responses to two sequences are analyzed as one object.
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The typical response of neurons in A1 to pure tone stimuli is characterized

by the onset and offset responses. Since each tone in reference has a duration

of 75ms. The main contribution to responses at 10 - 40ms, and 80 - 100ms are

neurons’ intrinsic onset and offset responses. In order to focus on the interaction

between neurons which is correlated with the temporal coherence between the two

tone sequences, we specifically focus on the window around 40 - 70ms after the onset

of each tone. The neural response in this window is more likely being affected by

the interaction between neurons, which is consistent with the finding in [23].

Note that there are 9 different frequencies for A tone in each experiment ses-

sion, and the range is from 0 to 2 octaves to B tone. In psychoacoustic experiments,

the gap of 0.5 octaves between two tones is found to be a coarse threshold for

streaming perception. Thus we generally divide these 9 pairs of tones into two

groups, NEAR and FAR. The FAR group contains pairs with gaps larger than 0.5

octaves, i.e. 1 octave and 2 octaves, and the NEAR group contains the rest. Also

note that there are 3 trials lengths for each pair, and the first 8 tones for each se-

quence are common for all these three lengths. So we first plot the average firing

rate within the late window for each of the first 8 tones. Each unit is normalized

by the maximum firing rate in the first 100ms of the iso-frequency pair of ALT

pattern in the passive state. There is no particular physical meaning of this kind

of normalization, and we just want to make the statistics for each unit comparable.

To compare the firing rate between passive and active, we subtract the normalized

firing rate curves for both NEAR and FAR groups.

After the rapid adaption from the onset of each trial, the average firing rate
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within the late window reaches a steady state response. Here in order to visualize

the change in a finer scale, we average the responses in each 200ms period from the

5th note in each trial, and we call it the steady state Post-Stimulus Time Histogram

(PSTH).

2.5.2 Analysis on Spikes from Target

To reconstruct the receptive fields (RFs) after the neuron adapts to the refer-

ence, we consider the correlation between the spike trains in target with the onset

of each tone in target. Recall that there are 64 unique pure tones covering 5-octave

range around the center at the B tone, one tone per semitone and representing 61

unique channels. In the reconstruction, each channel is treated independently, and

in each channel, the cross correlation between onsets of tones and average firing rate

is computed, normalized by the number of tones. This normalized cross correlation

is very similar with spike triggered average (STA), but in an opposite way. Here,

each event (the triggered spike in STA) is the onset of a pure tone in the channel we

consider. The reconstructed RF describes the response pattern in two-dimensional

space. Here, we show an example of the reconstructed RF of a single unit.

2.5.3 Same analysis on Local Field Potentials

We mainly use single unit data (SUA) to do the analysis in this study. Addi-

tionally, we also apply the same analysis on the local field potentials (LFPs) recorded

simultaneously with spike data. While SUA represents the action potentials of indi-
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Figure 2.3: An example of the reconstructed RF of a single unit. Left:
The reconstructed RF. Right: The averaged one-dimensional tuning
curve by collapsing the RF along spectral axis.

vidual neurons, the components of LFPs are much more complicated. Simply put,

they reflect the synchronized activities in related broaden volume around the tip of

the electrode. The lower the frequency range, the wider the area the LFP covers but

at the same time, the more complex the phenomenon is. In this study, we focus the

frequency band from 30 to 200Hz, and divide it into 3 bands, 30-60Hz, 60-100Hz,

and 100-200Hz, denoted as low gamma band, middle gamma band, and high gamma

band. 4th order Butterworth IIR filters are designed, and MATLAB function filtfilt

is adopted to obtain zero phase shift in each frequency band. Since LFPs are essen-

tially bipolar (the spike count is always positive), instead of applying the analysis
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on the filtered signal, Hilbert Transform is applied to abstract the envelop of the

oscillation which is correlated with the energy of overall neural activities.
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Chapter 3: Results

In this chapter, the main results of analysis introduced in the Sec. 2.5. For

SUA, there are Ns = 86 units. For LFPs, since each LFP corresponds to one

electrode, the number of units is the same with multi-unit activity (MUA) Nm = 47.

3.1 Behavior Performance in the Recording Sessions

The behavior performance is measured by the discrimination rate, which is

defined as the product of hit rate and false alarm rate. The distribution of discrimi-

nation rate across the days during which the physiology experiments were conducted

is shown in Figure 3.1(a). Please note that for random guess, the discrimination

rate is 0.5 × 0.5 = 0.25. As seen in Figure 2.2, the performance was way above

chance level. Another way to visualize the performance is to summarize the time at

which the ferret licked the spout the first time in each trial. The result is shown in

Figure 3.1(b). We can see that there are 3 peaks, each corresponding to the target

for each trail length respectively. The clear phase locking of the peaks to the onset

of targets indicates that the ferret had a good understanding of the task, and that

the performance was good.
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(a) (b)

Figure 3.1: The behavior performance: (a) The distribution of Discrim-
ination Rate of behavior performance. The dash blue line represents the
performance at chance level. (b) The distribution of the time the first
lick happened for three trial lengths. The two dash blue lines for each
row mark the edges of reward window.

3.2 Data Analysis on electrophysiological data

3.2.1 Response Changes to Alternating and Synchronous Tone Se-

quences During Behavior

In the first row of Figure 3.2, the averaged firing rates (SUA) in the late window

for each of the first 8 tones for both passive and behavior are shown, grouped by

NEAR and FAR. The adaptation trends for both passive and active are very similar.

The average firing rate goes down gradually as the repetition continues, and the

adaptation quickly reaches a flat region after 3-4 notes, and we call this region the

steady state response. The adaptation also agrees with the fact that it takes several

repetitions for humans for form clear stream separation. For a better visualization,
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group NEAR and group FAR are not presented aligned, but shown paralleled.
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Figure 3.2: First row: The adaption of normalized average firing rates.
Second row: The difference between passive and behavior. Colored cir-
cles indicate signicant (paired t-test, p < 0.05).

The second row of Figure 3.2, shows the difference between passive and be-

havior. There is a clear enhancement for both ALT and SYNC in the first several

notes in behavior, and we postulate that this enhancement is mainly contributed

by the effect of attention. What’s interesting is that in the steady state response,

There is a conspicuous difference in the changes for ALT and SYNC in NEAR. For

SYNC, the responses are enhanced for both NEAR and FAR, and the changes in

the last several tones, which represent the changes in the steady state response, are

significant. While for ALT, the responses to both A tone and B tone are suppressed
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or not changed. This clear difference between ALT and SYNC supports the assump-

tion that the late window encodes the effect of neuron interaction modulated by the

correlational structure of components in the stimuli.

We also do the same comparison with MUA and LFPs in the three bands. The

changes between passive and active in different scenarios are listed in Figure 3.3. We

see that the changes in MUA are very similar with the ones of SUA. The high gamma

band is also very similar with SUA, though the responses in behavior for both ALT

and SYNC are enhanced, the enhancement for SYNC is much stronger that ALT.

The middle band gamma begins to show some difference, and in low gamma band,

the patterns of changes are quite different from SUA. So the high gamma band

can provide similar information as MUA since it is nearer to the frequency band

the spikes are identified. This provides a valuable alternative for neural response

analysis when the quality of spikes is not good.

The analysis of PSTH of SUA is shown in Figure 3.4. The shapes of PSTHs

are consistent to the grouping criteria. For ALT, in NEAR there are two salient

components corresponding to the A tone and B tone in one period, while in FAR,

the component for A tone almost disappears since A tone is far away from the BF

of the unit, and sometimes it is out of the receptive field. For SYNC, in both NEAR

and FAR, we can see it strong component which corresponds to the overlapped A

tone and B tone in each period. The bars at each sample index are the standard

errors.

The difference between passive and behavior is presented in the last column of

Figure 3.4. The late window is shown as the grey green region. What’s clear in the
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Figure 3.3: Response changes in different bands of data. First row: SUA.
Second row: MUA. Third row: high gamma band. Fourth row: middle
gamma band. Last row: low gamma band. Colored circles indicate
signicant (paired t-test, p < 0.05).

behavior induced change is that in the shaded region, there is clear enhancement for

SYNC and the enhancement is much stronger in NEAR, while for ALT, we can see

clearly the suppression in NEAR, and the suppression region extends beyond the
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Figure 3.4: PSTH of SUA. First row: ALT. Second row: SYNC. First
column: NEAR. Second column: FAR. Third column: behavior-passive.
Grey green shade: the late window.

shaded region. Additionally, there is also clear enhancement at the onset of each

tone for ALT, and suppression at the offset for SYNC. The neural mechanism and

explanation are beyond the scope of this report, and we would further explore this

in future research.

Besides SUA, we also analyze the LFP in high gamma band. The shade around

the mean is the standard error. We can see similar trend as SUA. Even though the

baseline change has been corrected, there is still overall enhancement after the onset

of trials. The enhancement for SYNC is much stronger than ALT.
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3.2.2 Changes in the Reconstructed Receptive Fields

Firstly, we describe the results of SUA. The simplest way to group the trials

is still by ALT and SYNC. Since the units pulled together have BFs near to the

B tone, their BFs are almost aligned. In Figure 3.6, we can see that the responses

are the strongest around the B tone, and responses are weak in the channels that

are far away from B tone, which is consistent with one-dimensional tuning curve of

neurons in A1. In time axis, the STRF has a peak around 25ms, which is caused by

the physical delay in response to pure tone.
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Figure 3.6: Changes in Reconstructed RFs of SUA. The left colorbar
is shared by the left two columns, and the right colorbar the right two
columns.

The last two columns show the change between passive and behavior and cor-

responding significant parts. The change of each unit is normalized to the standard

deviation. The difference between ALT and SYNC is very salient. Around the B

tone where the responses are the strongest, there is a big suppression for ALT, while

for SYNC, there is also a slight suppression but it is not significant. Paired t-test

is applied to each pixel of the RF at p-value = 0.05. The correction for multiple

test is conducted for each pixel is that only when the four neighbor pixels are also

significant by the t-test, the central pixel is considered as significant.

The effect of frequency separation is also investigated by further grouping the

trials into NEAR and FAR. The changes between passive and behavior is shown in
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Figure 3.7. It is easy to see that in FAR, there is almost no difference between ALT

and SYNC, and neither of them has significant change around the B tone. However,

there is a big difference in NEAR. The suppression for ALT is very strong, while

for SYNC, there is no significant change. The comparison emphases that in A1, the

effect is strong when A tone is near to the B tone, which is consistent to the result

of analysis on data from reference.
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Figure 3.7: Changes in Reconstructed RFs of SUA further grouped by
NEAR and FAR.

The RFs are also reconstructed with the high gamma band of LFP. Different

from SUA, we observe consistent overall gains in the responses level. The histograms

of average changes of RFs of SUA and high gamma band are shown in Figure 3.8.
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It is clear to see that there is no significant gain between behavior and passive for

SUA, while for high gamma band, the gains are significant in both ALT and SYNC.

In order to make a meaningful comparison, the mean of each reconstructed RF is

normalized to 0, and the result is shown in Figure 3.9. The changes after removing

the mean are very similar with SUA.
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Figure 3.8: Histograms of average changes per unit in Reconstructed
RFs. (a): Histograms of average changes per unit of SUA. The average
changes are not significant. (b): Hisograms of average changes per unit
of high gamma band of LFP. The average changes are significant.
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Chapter 4: Discussions

4.1 Rapid Plasticity in A1

With a clear tonotopic axis, tuning curves and BFs are the simplest statistics

to characterize neurons in A1, and they can be easily estimated by pure tone se-

quences. In real life, the sound we hear is much most complex than pure tones. The

rich spectral and temporal modulations in speech and music make them suitable at

communicating information [24]. Various studies have explored how these modula-

tions correlate with the quality and intelligibility of speech [25] [26]. At the very

low level module in auditory cortex, neurons in A1 could be modeled as linear two-

dimensional filters which are quasi-separable into two one-dimensional filters [27]

determining neurons’ responses to complex sound. The diverse characteristics of

neurons in A1 could be represented by the frequency responses in the spectral and

temporal filters. For real neural data, the spectrotemporal characteristics could be

estimated by reverse correlation between spikes with specially designed stimuli [28].

TORC is frequently used to estimate the STRF of neurons in A1, and it is mathe-

matically optimized to abstract the linear relationship. Nonlinear relationship could

also be estimated by using more natural stimuli like speech [29], and it is shown that

STRF estimated in this way has a better prediction power. Recently, a generalized
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nonlinear model [30] is proposed to model the excitatory and inhibitory components

in STRF separately.

In the previous decade, various animal experiments have been conducted to

explore the effect of attention on the neural responses in A1 [31] [32] [33] [34]and

STRF is a natural candidate to describe the change induced by behavior when

compared with passive condition. It has been demonstrated that responses of A1

neurons could be modulated by attention, and that the changes are related with

the specific tasks. These changes might help subjects to better focus or ignore

certain features in stimuli, leading to desirable behavioral reactions. In our study,

the changes are analyzed from different perspectives. The salient difference between

active and passive confirmed the effect of attention on the neural responses in A1,

arguing for the necessity of the electrophysiological experiments with animals in

active conditions when analyzing neural mechanism of auditory streaming. The

distinct difference in changes between ALT and SYNC confirm our hypothesis that

the temporal coherence is coded and reflected in the neural responses in A1. It is

worth pointing out that the plasticity we observe in this study is very rapid. Recall

that in the experiment design, ALT and SYNC trials were interleaved. Thus the

plasticity is essentially evolving in the scale of seconds. From the analysis on the

changes in the reconstructed receptive fields, we see no clear difference between

different trial lengths. And it is also observed that the adaptation could reach

steady state responses in several repetitions of tones in the reference. Thus this

rapid plasticity can happen and fade away in less than 1 second.
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4.2 Attention and Temporal Coherence for Auditory Streaming

It is argued that both attention and temporal coherence are both indispensable

for the streaming perception. In [22], electrophysiological experiments on the passive

listening ferrets led to results that questioned the previous argument about ”pop-

ulation separation” hypothesis for streaming separation. Without taking temporal

coherence into account, there is no clear difference between ALT and SYNC trials.

However without the effect of attention, the study in [22] is not able to predict what

will happen when ferrets are actively engaging in streaming tasks. Though many

psychoacoustic experiments are trivial for human subjects to perform, the current

non-invasive recording techniques like EEG, MEG are only capable of observing the

group effect in a global sense. Either bad temporal resolution or bad spatial reso-

lution renders these techniques weak in studying the rapid plasticity when brain is

functioning. The exact neural network for streaming perception still remains unclear

under the limitation of current technology. Nevertheless the invasive electrophysio-

logical technique leads closer to the final goal, and allows researchers to investigate

the neural mechanism in the single unit level. The limitation of traditional chron-

icle recording is the small number of channels that could sample the brain at the

same time, but it is gradually improved by new technology like multi-channel array

recoding and two photon imaging. In this study, we successfully train one ferret to

pay attention to the stimuli, and results are very promising for future research in

this direction.

The temporal coherence within each stream binds the components together
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and segregates them out of the background. Under the effect of attention, ALT and

SYNC trials differ substantially in their induced neural representation in A1. The

coherence of A and B sequences in SYNC leads to enhancement in neural responses

while anti-coherence in ALT leads to suppression. Though various algorithms have

been proposed to model the brain in streaming perception, the responses of real

brains are essentially data driven. The intrinsic coherence property in stimuli can

quickly modulate the neural connections, resulting in the rapid plasticity. Thus our

study supports the theory and temporal coherence model introduced in [20].

4.3 Global Attention versus Selective Attention

From the classic psychoacoustic experiments using two tone sequences to the

latest speech separation experiment on human subjects, streaming tasks have always

been easy to conduct. The biggest advantages of using human subjects are the short

training time and consistent and believable performance. However, it is extremely

hard to train animals to performance similar tasks. To solve the cock-tail party

problem, selective attention is required for a listener to focus on a particular speaker

despite the noisy environment. Though this ability is trivial for most people with

normal listener, it is impossible for animals to do as higher level knowledge is used

besides the intrinsic temporal coherence in segregating and understanding one’s

speech. Even simple tasks like paying attention to one tone sequence in the mixture

of alternating two tone sequences is very hard to train animals to perform. The

problem is that there is no good way to make animals understand what the task is
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about, and it is hard to verify if animals are performing the task in the way we are

interested instead of other irrelevant cues. In this study, we made a compromise to

get around the hardness of directing animals to pay selective attention, and global

attention which only requires the ferret to listen to the stimuli in a global sense is

explored.

However, our observation is also restrained by the specific attention the ferret

paid during experiment. In ALT, the two sequences competed with each other under

global attention. It is not possible for a subject to pay attention to two separate

streams at the same time. Thus when the gap between A and B is large, there

might be a back and forth in the attention of the ferret, alternating between the

two sequences. What’s more, the reference of SYNC trials is essentially one stream,

there is no well-defined streams in ALT trials. Without selective attention , A and B

sequences were never separate. The general suppression in ALT trials could be the

result of competition of the two sequences. In future research, selective attention

should eventually be explored to fully verity the temporal coherence model. Our

current hypothesis about selective attention is that in ALT, the attended stream

will be enhanced while the ignored the sequence will be suppressed.

4.4 Auditory Streaming in A1 and Beyond

A1 is the lowest module in auditory cortex, and its main function is to de-

compose the input from the early auditory stage. The perception of streaming is

a complex activity and sometimes requires high level knowledge to make full use
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available cues in the stimuli. Thus higher level modules in auditory cortex are also

important in streaming separation. Since we restrain the analysis in A1, we could

not have a full picture of the underlying mechanism. One clear limitation of our

current study is that the strongest changes happened when A and B sequences are

near which is a direct result of relatively narrow tuning of A1 neurons. Perceiving

complex stimuli like speech and music requires broad spectral integration that be-

yond the functionality of A1. In future research, neural responses in secondary area

would be sampled.
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Chapter 5: Conclusions

In this study, we successfully trained one ferret with a global attention task.

Based on the analysis with SUA, we observed large changes in firing rate between

passive and behavior responses near the onset of the tone sequences for both ALT

and SYNC which could be attributed to the effect of attention. The changes in

firing rate to SYNC and ALT sequences significantly diverged during the later part

(> 4 tones) - or ”steady state” portion of the sequences. During the steady sate,

SYNC responses were enhanced compared with the passive state and ALT responses

were suppressed (or no changes) compared to the passive state in the 40-70ms late

window. And changes were most striking when frequency separation between the

two tones was small (in NEAR group). The changes of RFs occurred very quickly

(within the duration of a trial, or in less than 1-2 seconds). This extremely rapid

plasticity is quite extraordinary, and occurred despite the fact that different trial

conditions were interleaved in a random order. Additional analysis on the high

gamma band of LFP shared similar trends with that of SUA. In summary, rapid

task-related RF plasticity occurs within seconds over the course of single trials, and

is profoundly influenced by stimulus temporal coherence.

In future research, we would like to explore the effect of attention beyond A1
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and design selective attention tasks to further verify the temporal coherence model.
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