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Abstract

In this paper, we develop new fast algorithms for 2-D integer circular convolutions and
2-D Number Theoretic Transforms (NTT). These new algorithms, which offers improved
computational complexity, are constructed based on polynomial transforms over Zp; these
transforms are Fourier-like transforms over Zy[z] which is the integral domain of polynomial
forms over Z,. Having defined such polynomial transforms over Zj,, we prove several
necessary and sufficient conditions for their existence. We then apply the existence
conditions to recognize two applicable polynomial transforms over Z,: One is for p equal
to Mersenne numbers and the other for Fermat numbers. Based on these two transforms,
referred to as Mersenne Number Polynomial Transforms (MNPT) and Fermat Number
Polynomial Transforms (FNPT), we develop fast algorithms for 2-D integer circular
convolutions, 2-D Mersenne Number Transforms, and 2-D Fermat Number Transforms.
As compared to the conventional row-column computation of 2-D NTT for 2-D integer
circular convolutions and 2-D N'T'Ts, the new algorithms give rise to reduced computational
complexities by saving more than 25% or 42% in numbers of operations for multiplying
2t 41 > 1; these percentages of savings also grow with the size of the 2-D integer circular

convolutions or the 2-D NTTs.






I Introduction

In the applications of image/video processing and coding, the computation of 2-D
(linear) convolutions are of considerable importance [1] [2]. For instance, in the well-known
subband image coding scheme, a full-band image is split into subbands by means of 2-D
filter bank before the encoding operations [3]. Due to the huge number of data samples
associated with these applications, direct-computation of 2-D convolutions is obviously
impossible, and, thus, various fast algorithms are used [4] [5]. A popular technique for
computing 2-D convolution is to convert the original 2-D convolution into a 2-D circular
convolution, and to utilize the fast transform algorithms to compute the 2-D circular
convolution [4]. In this paper, we will develop new transform-based fast algorithms for the

computation of 2-D circular convolutions.

In the digital signal processing applications, the values of signal samples are typically
represented using a finite alphabet. Because of this finite resolution, the number system
of finite rings, e.g., Zp, = {0,1,...,p — 1} [6], can be used for the calculations in digital

signal processing. More precisely, in the case of a convolution!:

yi= Y hyvi_,
k

where hj and z; assume integer values, the output y; also assume integer values. Supposing
the absolute values of y; are upper bounded by a positive number M, then if M < p/2, the
output, v; = ) hp;_ mod p, of the same convolution operated on Z, can be translated
uniquely to y;: y; = v; if v; < p/2; y; = v; — p if v; > p/2. Performing the calculations such
as convolutions on Zj, rather than on the ordinary integer set has several advantages: (i)
the residue arithmetic associated with the operations on Z, can be implemented relatively
cheaply and performed very efficiently, especially in parallel and pipeline systems [7], (ii)
there are no round-off errors, and (iii) there exist very efficient algorithms (e.g., Number
Theoretic Transforms (NTT)) [4] [5] [8], and more efficient algorithms, such as the ones
for 2-D circular convolutions presented in this paper, can be developed.

In this paper, we focus on the development of polynomial transforms over a specific

finite ring, namely, Zp, [6] whose definition will be stated later on, and the fast algorithms

! The computational operations needed in a convolution are additions, subtractions, and multiplications.



associated with these transforms for 2-D circular convolutions. These polynomial trans-
forms over Zp are Fourier-like transforms over Zp[z] of polynomial forms [6]. An existence
theorem for such Fourier-like transforms over arbitrary finite commutative rings with unity
is given by Dubois and Venetsanopoulos [9] with applications for 1-D circular convolutions.
However, the condition of the existence theorem in [9] is in general difficult to apply, due
to the computational difficulty of various parameters. Maher later pointed out in [10] that,
in most practical cases of concern, the rings may be characterized as algebraic extensions
of finite rings, and that in these cases there is an existence theorem which is much easier to
apply as compared to that of [9]. Maher also mentioned the computation of 2-D circular
convolutions as an application for such Fourier-like transforms, motivated by polynomial
transforms [11]; but the algorithm is very briefly described based on a special case, and it
is not clear whether or how much one can save in terms of computational complexity by
using the new technique as compared with the existing algorithms such as 2-D NTTs. In
this paper, we will follow the general direction of above while concentrating on the appli-
cation of 2-D circular convolutions. We will define a group of Fourier-like transforms over
Zp[z], called polynomial transformed over Z,, and will give several necessary and sufficient
conditions for their existence. These conditions will be applied in a rather straight forward
manner to obtain two specific groups of transforms, namely, Mersenne number polyno-
mial transforms (MNPT) and Fermat number polynomial transforms (FNPT) which are
of direct applications to the computation of 2-D circular convolutions. The complete algo-
rithms will be provided along with the computational complexity analysis and comparisons
against 2-D NTTs. New fast algorithms for 2-D NTTs are also developed based on MNP Ts
and FNPTs. The results of the complexity analysis show that new fast algorithms offer
reduced complexities in terms of numbers of computational operations. More precisely,
new fast algorithms give rise to savings on the numbers of the operation for multiplying
a number by 2¢, 1 > 1; these savings are more than 25% or 42% (and are growing with
the size of 2-D circular convolution or 2-D NTT) of the numbers of such operations in the
conventional row-column computation of 2-D NTTs. These complexity savings of the new

algorithms are also confirmed by a simulation experiment on the actual computing time.

The paper is organized as follows. Section II contains preliminaries. In Section III,

polynomial transforms over Z, are defined, their necessary and sufficient conditions of



existence are proved, and then the MNPTs and FNPTs are introduced. Applications of the
introduced transforms to the computations of 2-D circular convolutions and 2-D NTT's are
included in Section IV and V. The analysis and comparisons of computational complexity

are presented in Section VI. Finally, Section VII contains a summary and conclusions.

ITI Preliminaries

In this section, we introduce the notations, the basic definitions and a preliminary

theorem.

We denote the set of all integers by Z, and the commutative ring: {0,1,---,p — 1}
with addition and multiplication modulo the integer p > 2 by Zj [6]. The equality of two
numbers a and b in Zp are denoted by a = b mod p. We also use the notation (a);, for the
modulo p arithmetic on a, for example, (4)3 = 1. A polynomial f(z) with its coeflicients in
Zp is called a polynomial over Zp. The set of all polynomials over Z is denoted by Zp|x]
(which is an integral domain containing Z, [6]). The equality of two polynomials f(z) and
g(z) in Zp[z] are denoted by f(z) = g(z) mod p. If f(2),¢(x) € Zp[z] are congruent modulo
h(z) € Zp[z], i.e., f(z) — g(z) = h(z)m(z) mod p for some m(z) € Zy[z], we write

f(z) = g(z) modd p, h(z).

We will use “|” to denote the divisibility, e.g., a|b means b = ac for integers «, b and ¢; and
alb mod p indicates b = ac mod p for a,b and ¢ in Zp.

The following theorem is actually a version of the Chinese Remainder Theorem? stated

for polynomials in Z,[z], which will be referred repeatedly in the later discussions.

Theorem IL.1 (Chinese Remainder Theorem on Zp[z]): For a prime number p, let
m1(z), mo(z),...,mg(z) be k polynomials in Zp[z] which are coprime with each other,

i.e., their greatest common divisor is 1. Define

m(z) = mi(z)ma(z)-- - my(z) modp

m(x) = mi(z)M;(z) modp, i =1,2,--- k.

2 A proof of the Chinese Remainder Theorem for polynomials of real coefficients can be found in [5].



Then the following system of congruent equations
f(z) = bi(x) moddp,my(z)
f(@) = ba(z) modd p, ms(z)

......

(IL.1)

has the solution

F(x) = Mi(2)My(2)bi(z) + Ma(2) My(a)ba() + - - + Mg (z) My (2)bg(2) modd p, m(z)
(I1.2)

where

MZ(:C)M/(:IZ) =1 moddp,mi(z), 1 =1,2,---,k. (I1.3)

?

Moreover, when p is not a prime number, (II.2) is the solution of (II.1) modd p, m(z) if
the leading coefficients of m(z),m;(z), 1 < ¢ < k, are the unity in Zj,, and polynomials
M;(z)M'i(z), 1 < i < k, defined in (I1.3) exist.
Proof: Since (m;(z),mj(z)) = 1 mod p, for i # j, we have (M;(z), m;(x)) = 1 mod p, for
all 2. Thus, from Theorem A.4 in Appendix A, for each M;(z), there exists ]\[Z/(:r) such
that Ml(w)M;(:zz) = 1 moddp, m;(z).

On the other hand, from m(z) = m;(2)M;(x) mod p, we have m;(z) | M;(z) modp,
¢ # 7, and, thus,

I

Mj(2)Mj(2)bj(z) = M;(2) M; (2)bi(<)
j=1

b;(z) modd p,m;(z),

for i = 1,2,---,k, ie., (IL2) is a solution of (II.1).

Now, suppose fi(x) and fo(z) are two solutions of (II.1).  Then fi(z) =
fo(z) moddp,m;(z), ¢ = 1,2,---,k. Since (mz(m),mj(a:)) = 1 modp,i # j, then
fi(z) = fa(x) moddp,m(z), i.e., the solution of (II.1) is unique modd p,m(z). QED.

IIT Polynomial Transforms Over Finite Rings

In this section, we define polynomial transforms over Z, and provide several necessary

and sufficient conditions for their existence.



Definition IIL.1: Let M(z),g(z)€ Zple], and {Hm(z)}) 2} € Z,[2]. We call

N-1
Hy(z) = Y Hp(2)[g(2)]™ moddp, M(z), k=0,1,---,N — 1, (IL.1)
m=0
a polynomial transform over Z, (or simply, a polynomial transform) of { Hy,(z )}m-—O modd
p, M(z). Its inverse transform is defined by
—1 Z Hyi(2)[g(z)] ™ moddp, M(z), I=0,1,---,N —1, (I11.2)

where N™IN = 1 mod p and [g(2)]"*[¢(2)]*" = 1 modd p, M(z). We denote such a
polynomial transform by (N, g(z),p, M(z)).

Theorem III.2: (A necessary and sufficient condition for polynomial transforms over Z)

Assuming p is prime, polynomial transform (N, g(z), p, M(z)) exists if and only if
Z[ {Nmoddp, (z) ifg=0mod N
g(x

, (I11.3)
0 moddp, M(z) ifqgZ#O0modN
and (p,N) = 1. Moreover, when the leading coefficient of M(z) is the unity in Z,, the

above statement is also true for p not being prime.

Proof: For p being prime, “if” part: when (II1.3) holds (assuming N > 1)
lg(@)]" = 1= (9(z) =1) D [9()] =0 modd p, M(z). (ITL.4)

Thus, [¢(z)]"! = [g(:c)]N_l modd p, .M(:c). Now substitute (III.1) into (I11.2), and define

Z Hp(z)N ™! Z [9(2))* D) modd p, M(x), (I11.5)
for {=0,1,---,N —1. From the condltlons in the theorem, we have
Rl(x) EHI(:C), l=0,1,'--,N—1. (HI.G)

“Only if” part: Suppose (N, g(z),p, M(x)) exists, i.e., (IIL.6) holds. Then the second case
of (II1.3) is true. Otherwise, there is some ¢,1 <t < N — 1, such that S(¢) # 0 modd
p, M(z). Then (III.6) can not always hold, e.g., let Hy(z) = 1 and H;(z) = 0 for i # ¢,
then (II1.5) becomes

N
Ry(z) = N1 [g(@)]*=D modd p, M(x),



for [=0,1,---,N — 1. Thus, Ry(z) = S(t) # 0 modd p, M(z), and this is a contradiction.
From the second case of (II1.3) and (II1.4), we have [¢g(z)]Y = 1 modd p, M(z), i.e., the
first case of (IT.3) holds. Finally, since the inverse transform exists, N™1 exists, thus
(p, N) = 1, because, otherwise, (p, N) = a > 1, i.e., p = bja and N = bya for some by and
bo; from NN~1=1mod p, we have NN~1 -1 = ep for some ¢, i.e., bya N~ — | = cbhja

or (bgN~1 — ¢b1)a = 1 which is a contradiction.

When p is not a prime number, the whole proof goes through unless we can carry

out arithmetic modulo M(z) on Zp,, while these operations is guaranteed if the leading

coefficient of M(z) is unit of Z,. QED.

There are two other theorems about the necessary and sufficient conditions of the
existence of the polynomial transforms over Z,, which are stated in the following and are
proved in Appendix B.

Theorem IIL3: Let M(z) = cblll(:c)b.lzz(:c)...bés(x), bi(z), 1 <7 < s, be distinct irre-

ducible polynomials with unity leading coefficients, and ¢ be a non-zero constant. Then
(N, g(z),p, M(z)) exists if and only if (i) [¢(z)]"Y =1 modd p, M(z), (ii) the order of g(z)
modd p,b;(x) is N, for 1 < i < s.

The next theorem is also a necessary and sufficient condition like the above two, but
only dealing with a special case of Theorem III.3, when M(x) is a product of distinct

irreducible polynomials mod p.

Theorem ITL.4: Let M(x) = b(z)ba(z)...bs(x) mod p, and b;(z) are distinct irreducible
polynomials. Then, (N,g(z),p, M(z)) exists for some g¢(z), if and only if N divides

the greatest common divisor of p™t — 1,p"2 — 1 ..., p" — 1, where n; is the degree of

bi(z),1 <@ < s.

The above necessary and sufficient conditions only tell us that if a given set of numbers
and polynomials: N, ¢(z),p and M(z), satisfies certain conditions, then polynomial trans-
form (N, g(z),p, M(z)) exists; they do not describe what these numbers and polynomials
are. In the next two subsections, we introduce two groups of such numbers and polyno-
mials, and then use the above conditions to show that they form polynomial transforms

over Zp.



III.A Mersenne Number Polynomaial Transforms

Theorem IIL5: There is (N,z, My, (e — 1)/(z — 1)), for each prime number N and

Mersenne number My = 2V — 1.

Proof: Since (¢ —1)/(z—1) is a factor of ¥ ~ 1, 5(q) = S emi = N modd
My, (¢ —1)/(zx — 1), when ¢ = 0 mod N. On the other hand,n\tv_lfen ¢ # 0 mod N,
{<mQ)N}£;3 is a permutation of {m}%;é, thus S(¢) = 0 modd My, (acN — 1)/($ —1).
We have (M, N) = 1 since 2 —2 = 0 mod N by Fermat theorem [12], i.e., N|(My — 1).
Thus, based on Theorem I11.2, we have (N,z, My, (z¥ —1)/(z — 1). QED.

The above polynomial transforms (N,z, My, (zV — 1)/(z — 1)) are called Mersenne
Number Polynomial Transforms (MNPT), whose applications will be described in the next
two sections.

Example 1: For N = 3, we have (3,2,7,(z® — 1)/(z — 1)). Given polynomial sequence
Ho(z) ==z +1, Hi(z) = 2 — 1 and Hy(z) = z, the corresponding MNPT are

2
Hy(z) = Z Hm(x):cmk modd 7,2% + z + 1,
m=0

for k = 0,1,2. The results are Hy(z) = 3z, Hi(z) = 6z + 1 and Ho(z) = = + 2. It can
be easily verified that

2
Hi(z) = 371 Zﬁk(:v)x”kl modd 7,22 + z + 1,
k=0

for | = 0,1,2, where 31 =5 mod 7 and z~! = (62 4+ 6) modd 7,2% + z + 1.

Some useful properties related to MNPT are given in Appendix C.

IIT.B Fermat Number Polynomial Transforms

Theorem IT1.8: There are (Qt"i+1, x,Ft,:cQt_i + 1), 0<:< ¢, and (Qt_i,:z:Q, Iy, 22 + 1),
0 < <t -1, for each positive number ¢ and Fermat number F} = 92" + 1.
Proof: We prove the case for (Qt—i'*l,m,Ft,a:Qt"i +1), 0 < <t; the other case can be
similarly proved. When ¢ = 0 mod 2t"i+1, since (:L'Qt_i+1 — 1) = (th—i + 1) (th—i — 1),
we have

2t ,
S(q) = Z 2™ = 2= modd Ft,szcglH + 1,

m=0



for 0 <i <t. When ¢ # 0 mod2~"+!, S(¢) = (th—iﬂq - 1)/(35‘1 —1). Since 2271

2t—i+1

has factors 24 — 1 and = — 1, if we can show that z¢ — 1 and 227 + 1 are coprime,

then S = 0 modd Ft,:c2t—i + 1. Indeed, we have (q,2t"i+1) < 2!~ in this case. Thus,
(:vq — 1,$2t—i+1 — 1) =22 -1l witha <t—i [12]. Therefore, 27 — 1 and 227 + 1 are
coprime, because z2 — 1, a < t — ¢, and 22 + 1 are coprime from Corollary C.5 in
Appendix C. Also we have (Qt“i+1)_1 = 92F1=(t=i+1) 04 Fy. Based on Theorem III1.2,
(2’5"""’1,:1:,Ft,:1:2t—i + 1) exists for 0 < ¢ < ¢. QED.

The above polynomial transforms (Qt_i'*'l, z, Ft,x2t_i + 1), 0 < ¢ < t, and
(2t_i,w2,Ft,x2t_i + 1), 0 << t—1, are called Fermat Number Polynomial Transforms
(FNPT); their applications will be investigated later on in sections IV and V.

Example 2: For ¢t = 1 and ¢ = 0, we have (4,:6,5,."1?2 + 1). Given polynomial sequence

Hyo(z) =241, Hi(z) =z — 1, Hy(z) = z and Hg(x) = 1, the corresponding FNPT are
3
Hi(z) = Z Hm(w)mmk modd 5,22 + 1,
m=0

for k = 0,1,2,3. The results are Hyo(z) = 3z + 1, Hi(z) = 3z Ho(z) = 2 + 1 and
F3(:1:) = 2z + 2. It can be easily verified that

3
Hy(z) =471 Z Fk(:v):c_kl modd 5,22 + 1,
k=0

for 1 = 0,1,2,3, where 4! = 4 mod 5 and z~! = 4z modd 5,22 + 1.

Some useful properties related to FNPT are given in Appendix C.

IV Fast Algorithms for 2-D Circular Convolutions

We now use the polynomial transforms over Z, to develope new fast algorithms for the

computation of 2-D circular convolutions (CC). Let us consider a 2-D N x N CC

N-1N-1
Y= D D hmad(omyy,(u—nyys b= 0,1, N =1, (IV.1)

m=0 n=0
of 2-D data {h;;} and {¢;;}, 4,7 = 0,1,---,N — 1, which are assumed to be integers

without loss of generality in digital signal processing practice. Apparently, this integer

8



2-D CC can be performed on Zj, if p is large enough; choices of p are given by

P N—-1N-1 N—-1N-1
9 > min |hma"|max Z E |Qrs Z Z lhm n' (IV.2)

r=0 s=0 n=0 m=0

This 2-D integer CC can be also written as a 1-D polynomial CC
= Y Hu(2)Quomy(z) moddp,a™ —1, (IV.3)

where

= hmpa", m=0,1,--- N1,

=Y grsa®,r=0,1,--,N -1, (IV.4)

=Yyt =01, N—1.

The above conversion from 2-D CC to 1-D polynomial CC can be easily verified [13]. Thus,
we can perform 2-D CC by evaluating the corresponding 1-D polynomial CC, which, in

turn, can be computed using polynomials transforms over Z, as described in the following.

IV.A Circular Convolution Property of Polynomial Transforms Over Finite Rings

Consider a 1-D polynomial CC as defined in (IV.3) with 2 — 1 being substituted by
M(z):

= Y Hn(2)Q(-myy(z) moddp, M(z), (IV.5)

and assume that N,g(z),p and M(z) form a polynomial transform (N, g(z),p, M(z)).
Define the corresponding transformed polynomials of {Yj(z)}, {H;(z)} and {Q;(x)} by
{Y;i(2)},{H;i(z)} and {Q;(z)}, respectively. Then,

T)= Z Yi(z)[g(z) lk modd p, M(x)
=0

2

—-1N-1

=D D Hn(@)Qu_myy (@)lg(@) ™ g(@))™ modd p, M(x)
=0 m=0
Ji/—ol N-1

Hin(@)[g(@)™ > Quuemyy (@)[g()]=™* modd p, M(2)
=0



where the fact: [¢(z)]Y = 1 modd p, M(z) from Theorem IT1.2 (equation (IIL.4)) is used to
recognize the summation ElNzal Q(l—m)N (:v)[g(x)](l_m)k as Qp(z), for k=0,1,---, N — 1.
Thus, in this case, the 1-D polynomial CC in (IV.5) can be computed by evaluating
(i) two polynomial transforms for {H;(z)} and {Q;(z)}, (ii) N polynomial products
{H;(z)}{Q;(z)} modd p, M(z), and (iii) one inverse polynomial transform for {Y¥;(z)}

from {Y;(z)}.

Using the above circular convolution property, we develop two classes of fast algorithms
for 2-D integer CC, or equivalently for 1-D polynomial CC, in the next two subsections.

The first class is related to MNPT, and the second to FNPT.
IV.B Fast Algorithms for 2-D Circular Convolutions Based on MNPT

For a Mersenne number My, we consider a 1-D polynomial CC of length N and

modulo My, z? — 1 as given in (IV.3):

N-1
Yi(2) = Y Hn(2)Q(_m, (&) modd My,z™ —1. (IV.6)
m=0

Because we do not have polynomial transform for this polynomial CC, we decompose it

into two 1-D polynomial CCs as follows,

N-1 N
z —1
Yiu() = D Him(2)Q1 (1—m)y (2) = Yi(z) modd My, —
m=0
N-1
Yor= Y Hy Qs (1-myy = Yi(z) modd My, (z—1), {=0,1,---,N — 1,
m=0
where
N —1 N -1
Hl,m(ac) = Hpy(z) modd My, ] : Ql,r(x) = Qr(xz) modd My, —;—_—-1—;

Hy py = Hpp(z) modd My, (z — 1); Qo2 = Qr(z) modd My, (z — 1),

)

for m,r = 0,1,...,N — 1. Note that {¥;} is simply a 1-D integer CC of length N which

can be computed using Mersenne Number Transform (MNT) (see [4]). The computation

10



of {¥] i(z)} can be done by using MNPT (N, z, My, (2N = 1)/(z — 1)) as follows,

N

—1

= E ler )z moddMN,?”'—l,
m_

N_l N -1
Hi(z) = Z Hl,m(w)zmk modd My, S
m=0 v (IV.7)
1V = \FF 2V -1
N—l_ wN 1
Yi(z) = N1 Yy (z)z™%* modd My, — T [=0,1,--- N —1.
k=0
We recover {Yj(z)} using Theorem II.1 and Lemma C.2 from {Y] j(z)} and {Y; }:

N

N
-1 ,
Yi(z) =Yy () (N— ’ 7 >N_1 + YQ,I:C:E 3 N1 modd My, — 1, (IV.8)

for I = 0,1,...,N — 1. The above is the basic structure for the computation of (IV.6)

and is summarized in Figure 1. The algorithms for the above each step are developed in

the following.
1V.B.1 Algorithm for product of two polynomials modulo My, (;rN - 1)/(1 —1)

As in (IV.7), we need to compute products of two polynomials modulo My, (2" —
1)/(xz — 1). We rewrite one of them as:

eV —1
Y(z) = H(2)Q(z) modd My, T (IV.9)

N-=2

where H(z) = Z hpma™, Q(z) = Z gnz", and Y(z) = 3 y;z'. Based on Lemma C.3,
=0

the following equatlon can be easﬂy Verlﬁed

Y-l E(m—?)(w—22)--- <$—2N_1) mod My .

z—1

Therefore, to compute (IV.9), we first compute

YkEHkaE ()moddMN, — 2k,

-2
for k =0,1,...,N — 1, where H}, = Z B2k Qr = Z g2 mod Mp . Then we get
=0 n=0
Y(z) from {Yk} using Theorem II.l:

-1
N —1 :L'N—~1 a xN~1
dd My .z — oF dd M
Z kx—l (@ —28) [(@—D(—2F) T A"

(IV.10)

11



where (zN — 1)/((z — 1)(z — 2)) and its inverse are given below.
Let (zV —1)/((z = 1)(z — 25)) = ay 92V 2 4+ ay_32¥ =3 + ..+ a1z + ap mod My.
Then, from the equation
(mN—l)/(m—l) E:L'N_1+$’N“2+--~+:L'+1E

(aN_Q:cN'—2+aN_3xN—3+---—|—a1:c+a0> (:v—2k> =

an_9z¥ 1 4 ay_quV 2 4

okgN=2 _ o ookgN=3 _

SR a13:2 + apgzr—
k k
an_9 cor—a12%r — a2, mod My,
and by equating the corresponding coefficients from both sides, we have
ay_9=1
an-3 ay—g=1l,ay_3=1+2

aN—4 ——QkaN_3 =lay_4=1 + 2k 4 o2k

...... (IV.11)
ay =142k 4. 4 oN=3)k
o =142k 4er a(N=Bk 4 o(N-2)k
—Qkao =1 mod My,
where the last two equations are consistent. Indeed,
9 a():_—'—(Q o AR S =1 mod My,

In the above, we need the fact: (?,Nk—l)/(Qk—l) = 0mod My, for k = 1,2,.., N—1, which
can be proved as follows. Since (:chl, :z:k——l) = 2—1,2V% 1 has factors ¥ —1 and 2V —1,
thus (zV = 1)/(z = 1) | (e¥F = 1)/(zF = 1), or My = 2N = 1)/(2-1) | @Yk —1)/(2k —1).

Now, using (IV.11), we have

N
' —1 Q .
( 1)(;13 2k) ExN_QJr—(1+2]€>$N~3+,,,+(1+2k+...+2(N 2)k>
T — —
eV —1
modd M), k=1,2,-- N —1,
x_.
and }
o modd My, z — 2F —
(z — 1)(z — 2k) N> =

[(N )22k (N =22V TR o ok 1] =

N~lgk (‘Zk — 1) mod M,
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for k =1,2,..., N — 1. In the practical cases, one data array, say Hm(z) (vef. (IV.6)), in
2-D integer CC is corresponding to the unit sample response of the filter to be implemented

and thus is fixed, we can combine the above N — 1 inverse numbers into {H}}. Then

(IV.10) becomes

p
—:—YI[$N—2+(1+2)$N_3+"'+(1+2+"'+2N_2)]
+Y2[£L'N_2+(1+22)xN_3-|—----|-(1+22_|_...+22(N—2)>J

We define

N-1
Y= Y, mod My
k=1
N-1
Yo = QkYk mod My
k=1
N-1
Vo1 = Y 2W-Dhy mod My,
k=1

then
Y(z) = ?1:L'N——2 + (71 + ?2)$N—3 4+ (Yl +Y94 -+ ?N—l)-
The number of multiplications (M), additions (A), and shifts ($), i.e., multiplying by 2!

for some 7 > 0, for computing a polynomial product using the above algorithm are

M=N-1
A=2(N-1)(N-2)+(N-2)
S=2(N-=1)(N-2).
1V.B.2 Algorithm for Computation of MNPT
The MNPT of {Q1 ,(z)} (see (IV.T)) can be written as

N
. =1
Qi(x) = Quo(x +Z@1r (2)" modd My, ——.

13



for k = 0,1,...,N — 1, where the degrees of Q1,-(z) are no more than N — 2, r =
0,1,..,N — 1. Define the second term of the above equation as Rj(z). Then, the
computation of Ry(z) needs (N — 2)(N — 1) additions.

For k # 0, N —1, we first compute Ry (z) modulo My, z" —1, then modulo My, (a:N —
1)/(z — 1). The computation needs N2 — 2N additions.

N-2
When r £ 0mod N, ¥ 2™ = —¢"(V=1) modd My, (:CN - 1)/(:): —1), thus

k=0
N-2N-1 N-2 N
Bya@)==> 3 Quee)a™ == Ri(z) modd My, ———,
k=0 r=1 k=0 -

which requires (N — 1)(N — 2) additions.

To get
_— eV —1
Qr(z) = Q1,0(z) + Bi(z), modd My, 1 k=0,1,---,N -1,
we need to do N(N — 1) additions. And the total computation for {Q(z)} is N3 — N2 —
3N + 4 additions.
N-2 ,
Similarly for the inverse MNPT (see (IV.7)), we have S z7"% = —2="(N=1) p15dd
k=0
My, (¥ —1)/(z - 1), for r # 0 mod N. Combining the factor N~ into Hy(z), the

computation of inverse MNPT is also N3 — N2 — 3N + 4 additions.

Now consider the reconstruction of Yj(z) using Theorem II.1 (see (IV.8)). Define

N
~1
T(z)= —2V"2 - 22N =3 ... (N =3)2% — (N = 2)z — (N — 1) modd My, 3”——1«.
.

It can be verified that

ddMy,z -1
(¢ —1)T(x)N"! = {O e A

1 modd My, (:I:N——l)/(x—l)’

N 1 ) 1 modd Mp,z—1

z—1 ~]0 moddMN,($N~1)/(m—1)'
Thus

1 -1 N
Yi(z) =Y (2)(z — )T (2)N™ + Yy, ! N7 modd My, 2" — 1,

) -

and, after combining T'(z)N~! into {Hy(z)}, N~} into {H2 m},
eV —1 N
Y}(:c) =Y l(w)(l'—— 1) + Yy, modd My ,z"" —1,1=0,1,---, N — 1.
) LA -

And this reconstruction requires 2N(N — 1) additions.

14



IV.B.3 Ezample

In this subsection, we provide an example of computing 2-D integer CC with the
above fast algorithm based on MNPT. Referring (IV.1), the 2-D data array are given in
the following,

0 10 0o 1 -1
{hmp}: =1 0 0 {gs}: 1 -1 0,
0 0 1 -1 0 1

and we want to compute

2 2
You = Z Z hm,”q(é—m)g,(u—n)y

m=0n=0
for ¢,u = 0,1,2. We choose N = 3 and M3 = T for the modulo arithmetic, which satisfy
the requirement (IV.2). Now we use MNPT to compute y;,, mod 7 as follows, where the
notations are based on the ones used before and, thus, their definitions can be located in

the above description of the algorithm.

N 1Hym: 2 5 5 Qup: 0 0 0

0 1 1 2
Hip(z): =1 0 Qr,: 1 -1
-1 -1 9
0 0 -2 0
Qp(z): 3 =1 Hp(z): 0 1
0 0 2 2
T(z)N~! = (—2z—2)5=2(z+2) mod7
2 1
N2 -
(N ) T(z)Hp(z): 4 3
-1 5

To compute Y (z) = Qp(2)(N~1)?T(2)H(2) modd 7,22 + 2 +1, for k =0, 1,2, we have

3
2 —1 _ 9
@)z =2 =z+142modd7,z°+z + 1,
@3 — 1
(z —1)(z —4)
N1202-1)=3mod7; N 14(4 —1) =4 mod 7.

E:c+1—|—22modd7,x2—i—x+1,

15



Referring to Subsection IV.B.1, for k = 0 and k¥ = 2, we have Yj(x) = 0 modd
7,2% 4+ z + 1, since the corresponding @ =0, Q9 = 0 all modd 7,22+« + 1. For k =1,
Vi) =22 +142)+(=1)(z+14+22)=2+1modd 7,22+ +1, since Q1 = 1, Qy = —
3H; =2,4Hy =1, and Y] =2, Y5 = —1. Then using the inverse MNPT on Y (z), we get

Yig(z): 0 —1.

Obviously, we also have Yy o : 0 0 0. Applying Theorem IL.1,
Yo(z) =Y p(z)(x + 1) + Y}g,g(:vQ +z+41) modd 7,z — 1,

for £ = 0,1,2, from which we obtain
-1 0 1

{veu: 0 1 -1
1 -1 0

IV.C Fast Algorithms for 2-D Circular Convolutions Based on FNPT

For a Fermat number Fy, we consider a 1-D polynomial CC (ref. (IV.3)) of length
N = 2t+1 and modulo Ft,xN - 1:

= Z Hp(z 1 mN(a:) moddFt,:EN — 1.

Define
N-1 .
Yi0(2) = Y Him(®@)Q1 1oy () = Vi) modd Fy, 22 +1,
m=0
N1 t (IV.12)
You(z) = Y Hym(2)Qy, (—myy (%) = Yi(@) modd Fy, 22 — 1,
m=0
[=0,1,---,N—1,
where

Him(@) = Hm(a) mOddFWQtH Qur( )~:~ Qr(z) modd Ft, 2 L
Hy pu(z) = Hyp(z) modd Fy, 22 — 1, Qo »(7) = Qp(r) modd Frz? =1,

)

rom=0,1,---,N —1.
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{Yi(z)} can be computed from {¥] j(z)} and {Y5(2)} by Theorem II.1:

Yi(z) Elﬁ’l(x)22t"1(a:2t——1) + Yo ()22 “1( +1) modd Fy, 22 — 1,
[=0,1,---, N —1.

We use FNPT (2t+1,x,Ft,w2t + 1) to compute {Y] ;}:

T) = Z Ql’r(az)xrk modd Ft,th +1,

. — t
Hy(z)= ) Him(e)e™ modd Fy,a® +1, (IV.13)

Yi(e) = Qple)Hy(z) modd Fy, a2 +1,k=0,1,--, N — 1,

Y (z) = N1 Z?k e % modd Fy, 22 +1,1=0,1,--- N —1,

where N™1 = (2011 = 92" =(t+1) mod Fy. For {Yy,}, we recognize that {3/2,1}1]\;61
corresponds to an N x (N/2) 2-D integer array with each row expressed in a polynomial
form, and is the result of an N x (N/2) 2-D integer CC (ref. (IV.12)); this N x (N/2) 2-D
integer CC can be also expressed as an (N/2) x N 2-D integer CC and, thus can be written
as a 1-D polynomial (of degree N — 1) CC of length N/2, denoted as follows,

2t—1

= Z H;n(x)Qla_mbt(:c) modd Ft,:z:QtH

—1

Y

1=0,1,---,2t — 1,

where the data array corresponding to {Y';(z)}, {H'm(z)} and {Q';(x)} are just the
transposes of those for {Y ;(z)}, {Hg m(z)} and {Qy i(z)}, respectively. Again, define

Yl,l(x)z Z Hl m( )Ql [(1—m), ( )EYll(:v) moddFt,;vT—{»l,

’ m=0
/ 2t_1 ! ! . / Qt
Yo (@)=Y Ty, (2)@) (1 m) , (%) = Y] (x) modd Fy,z® — 1,
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{Ylll(a:)} can be computed by FNPT (w2,2t,Ft,x2t +1):

L 9t_1
' T) = Z Qll,r(w)w%k modd Ft,th +1,

— 20—1

H’ H, g2k moddF,:czt +1,
A Z Lm(® ! (IV.14)

(:v)EQk(x) (w) moddFt,m2t+1, k=0,1,---,20 —1,
Yll ( ) ZY g2k moddFt,mQt—l-l,1:0,1,---,2t—1.
{YQI j(z)} corresponds a 2! x 2! 2-D integer CC, and, thus, has a similar computation

process as described above. The computation process is shown in Figure 2; the algorithm

for each step are developed in the following.
IV.C.1 Algorithm for product of two polynomials modulo FH_,',th +1

In (IV.13) and (IV.14), we need to compute products of two polynomials modulo

Fiy, 22’ + 1, for ¢ > 0. We write one of them in the following form for convenience:

Y(z) = H(z)Q(z) modd Fyyj,2? +1,1>0,

21 21 21

where H(z) = Y hpma™; Q(z) = Y. gna™; Y(z) = 3. y;2'. Define
= n=0 =0

20-1 201 201

=3 hma™22™; Q' Z gna"22 " Y Z yra'2
m=0

Since (22i)2t = —1 mod [} ;, we have Y/(:c) = H,(;r)Ql(x), modd FH,',:CQt — 1, which can
be computed using FNT with kernel 22“-1, length 2!, and modulus Fyii [4]. Define the
FNT as

2t—1 , . ~1
__k' = Z hn (2?) (222+1>nk = Z hn (-421)”(2]“_1) m 1+
”:Ozt_l n=0 (IV.15)
—Q—k‘ = (13( 21) (2k+1) mOd Fl—H? I" - 07 1a 1‘-‘t - 17
s=0
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which can be rewritten as

2t~1_1 21—1__1
_ i\ 25(2k+1) i\ 2k+1 i\ 25(2k+1)
Q= ) @ (22 ) + (22 ) Y @l (22 ) mod Iy,
s=0 s=0
211 25(2k+1) ak4+1 21 25(2k+1)
— 7 S 7 i S °
Qppoi-1 = Z 925 (22> - (22) Z QQs+1(22) mod Fyy;,
s=0 s=0

k=0,1,..- 9271 _1,

Thus {Q}} can be computed recursively with t2! additions and #2!~1 shifts.

Then we compute Y, = H,Qj mod Fiyi, k=0,1,--- 20 —1, and
20\ t ~A git1) ~hu t
yu(2 ) 5(2) Zyk@ ) mod Fyyg, w=10,1,---,2t —1.
k=0

If we combine (21)~! into {H}}, the above equation can be written as

2t—1
— i\ —u(2k+1
Yy = Z Yk<22) U( ) modFt+i,u=O,1,--~,21—1, (IV.16)
k=0

which can be decomposed into

2t-1_1
__ _ i\ —2u(2k+1)
vau= Y Vit Vigpr)(2?) mod Fyy;,
k=0
i S o\ ~(2k+1) /iy —2u(2k+1)
Yout+l = Z (ch“ylc—FQt"l)(Z ) (2 ) mod Fy;,

k=0
w=0,1,---,20=1 1.
To compute Y, + ?k+2t—~1 and (Y}, — ?k+2t-1)(22i)_(2k+1), for k =0,1,...,2"=1 — 1, we
need to do 2! additions and 2!~ shifts. The above process can be done again in the 2nd

stage for y9, and y9,41, and the additional computations are also 2! additions and 2!~!

shifts. There are t stages. Thus the total computation is t2! additions and #2!=! shifts.
IV.C.2 Algorithm for Computation of FNPT

For (Qt"i"'l,a:,Ft,mQt_i +1),7=0,1,...,t, the FNPT of {Q, ()} is
2t—i+1_1

ak(w) = Z Qr(w)IErk modd Ft,th“i +1,k=0,1,--- ’Qt——i—{-] 1,
r=0
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which can be decomposed into the following two cases

gt—i_ ot—i_1
—_— t—1
Q@)= > Q@)™ +2% > Qory1(2)2®* modd Fy,a* " +1,
=0 r=0
- 2t—i_q 9t—i_1 s (IV.17)
Qppo—i(@) = D Qop(x)2®F — 2 Z Q2r4+1(2)2?™* modd F, 2* " + 1,
r=0

k:QLu,?’—1

?

ot—it+l

where we have used the fact z = l,th—i = —1 modd Ft,:th—i + 1. (IV.17) is the

first stage of decoding for the computation of {Qr( )}. Similarly, we can perform further
2 —1_ t z_l

decomposition on the summations in (IV.17): . Qop(z)z2"%, }: Qort1(z)z?"k. For
r=0
each stage, we need 2 x 22(t=1) additions. Since there are ¢ — i + 1 stages, the total

computation is (t —7+ 1) X 2 x 22(t=1) additions.
For (201,22 Fy, 227 4 1),i=0,1,...,1 — 1, the FNPT of {Q,(¢)} is
ot—i_ 1 s '
) = Z Qr(z)z?*, modd F,2% 4+ 1, k=0,1,---,2/7" -1,
which is similar to the 1st term of the right-hand-side of (IV.17), and, thus, it can be

computed in the same way. The total computation is (¢ — i)22(t"i) additions.

V Fast Algorithms for 2-D Number Theoretic
Transforms

In this section, we develope fast algorithms for direct computation of 2-D MNTs and 2-
D Fermat Number Transforms (FNT) [4] [8] by using MNPTs and FNPTs. The traditional
way for computing 2-D NTTs of a 2-D data array is to apply the corresponding 1-D NTTs to
each row and then to each column (or vice versa) of the 2-D data array. The computational
complexity comparisons of the new technique presented in this section and the traditional

row-column scheme is given in the next section.

V.A Fast Algorithm of 2-D Mersenne Number Transforms Using MNPT

Consider a 2-D MNT of size N x N, where N is a prime number,
N—-1N-1
Qe = D Y nyny2™2F272 mod My, by, kg = 0,1, N ~ 1.

n1:0 n2:0
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Define

in an1n2:c modMN,nlz(),l,---,N—l,
ng=(
N-1
le(x) = Z in(x)2n1k1 IIlOddMN,ZL'N -1, kl = 0717' t 7N -1,
TLI:O
then _
@kl,kQ = @k’](x) mOddMN,.’B - 2k2a k? = 0’ ]-a' o aN - 1.
When k9 = 0,

-0

N—
= Z (@ny (z) modd My, & — 1)2"*1 mod My, ky = 0,1,---, N — |

which is a 1-D MNT.
When kg # 0, define

! N -1
QTLI( )E 1(.’1?) mOddMN') T — ni _0313" vN“‘la
— N— N _
) = Z z)2mk moddMN, by =0,1,--- N —1,
then
by oy = @1, (2) modd My, z — 22, fy = 1,2,--- N —1.

Since {(k2k1)n} is a permutation of {k1} when k9 #£ 0,
N _

Je 1 modd My, 1
T —

§<k1k2) Z Qm z)embths = Z in )

n10

lv]-—o,l, aN_la

which is a MNPT.3

,N —1, is p reconstruction

*The computation of Qska) ks = Q' (kika)y (@) modd My, 2 —2F2 ky =12 .
processes of (IV.10).
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V.B Computation of 2-D Fermat Number Transforms Using FNPT

Consider a 2-D FNT of size 201! x 9t+l
ot+1_1 gtl_g
Qk1,k‘2 = Z Z anq, n22k1n12k2n2 mod Fy, ki, kg = 0,1, - 2t+1 _1

n1=0 ny=0

Define
2+l
in Z qnl n2$ :0’1’...’2t+1 __1’
no= =0
2011
le E Z Q 2]‘71“1 mOddFt7 *17 kl 20717"'72t+1 _17
ng= 0
then

@k’l,kg E@k’](x) mOddFtax - 2k2a klakQ =0,1,--- 72t+1'

When kg = 2u + 1,u = 0,1,...,2¢ — 1

Q;ll(x) = (n,(z) modd Ft,$2t +1,n;=0,1,--- 72"f+1 1,

2t+1_1 2t+l_l

— , ) ;

Q <k1k2>2t+1 E E : in 2k1k2nl = g in ($)$klnl modd Ft, .’13'2 -+ 1,
ny=0 ny1=0

kp =0,1,.--, 21 _ 1,

When k9 = 2u,u = 0,1,...,2¢ — 1

gt+1_1 9t_q
= k 2
Q kou(z) = Z Z (in ng +4p,. n2+2t)2 17192412 mod Fy,

nyp= 0 no= 0
u,ky =0,1,---, 2141 1.

Define
2ttl_g
an(.'li) = Z (qnl)nZ + qnl,n2+2t)xnl7 ng =0, 17 e 72t — 1,
ny1=0
2t_1
Q2u(2) = ) Qny(2)2°"™ modd Fy, 2’ T u=01 2 -
no=— 0
Then

Qy,2u = Q2u(2) modd Fyz =21, ky = 0,1, 2F — 1.
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In this case, for k] = 2v+1,v = 0,1,..,2" — 1, we define

Q,le(m)EQTW(x) mOddexzt_{"la n220717"'32t_1a
L 2t—1 , .
Q/<2uk1>2t+1 = Z an(:c)xQuM modd Fy, 22 +1,u=0,1,...,2t — 1,

n2:0

where in last equation is FNPT (2¢, 22, Ft,a:Qt + 1). Then we compute?

Qk1,<2uk1>2t+1 = Q <2uk1>2t+1 (.’IJ) modd Fta r—2 1>

for kf =2v+1,0=0,1,..,28 — 1. For k; = 2v,v =0,1,..,2t =1,

2t—1 2t—1

a) _ 2 2u
Q2u2u(2) = ) Z [(qnl’"z + qnl,n2+2t) + (qﬂ1+2t,n2 + qn1+2t,n2+2tﬂ2 Y22 mod Iy,
n1=0n,=0

v,u:O,l,---,Qt——l,

which is a 2-D FNT of size 2! x 2!, and can be computed similarly.

VI Computational Complexity and Comparisons

The computational complexities for the algorithms in the last two sections will be
described in terms of numbers of multiplications (M), additions (A) and shifts (S), where
shifts are the operations of multiplying a number by 2¢ for some 7 > 1. Note that this
definition of shifts is slightly different from the regular one which corresponds to multiplying
a number by 2. One shift (><2i) here is actually ¢ consecutive regular shifts. Therefore,
we will treat shifts and additions as if they are in the same category in the following for
simplicity.

Now we summarize the results of the analysis of computational complexities as follows,
whose details can be found in the appendixes. To compute an N x N 2-D integer CC using

MNPT, we need to perform the following numbers of operations:
M = N?,
S =2N3 —4N? 42, (IV.1)
A=4N% - N? 10N +8.

4 These operations are 2! computing processes of the form (IV.15).
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To compute a oitl yottl ¢ >1 9D integer CC using FNPT, we have the computational

complexity:

4
M=1+) 3x24,

q=0
i
S=Z3><q><22‘1, (IV.2)
q=0
{
A=Y (3 x g x 224+2 4 22‘1+4).
q=0

We compare the above computational complexities with those for computing the same
2-D integer CCs using the corresponding NTTs with row-column scheme in Table 1 and
Table 2. In Table 1, the first two columns under “Parameters” are the sizes N of 2-D
integer CCs and the Mersenne number My = 2V — 1 used. The next two groups of three
columns are the corﬁputational complexities for MNPT and 2-D MNT with row-column
scheme, respectively. Notice that both algorithms need the same number of multiplications;
using MNPT saves some numbers of shifts, listed in column “S” of the last three columns,
and needs more numbers of additions which are listed as negative numbers in the last
column “A”. However, the saving on shifts for MNPT are much larger and growing faster
with NV than the corresponding spending on additions in terms of numbers of operations.
To get an approximate overall comparison between these two algorithm, we subtract the
extra-spendings on additions from the saving on shifts for MNPT and enter the resulting
numbers in the last column under “S+A” along with their percentages with respect to the
corresponding numbers of shifts for the row-column scheme. With the above simplification,

we conclude that using MNPT saves more than 42% of shifts as compared with the other

algorithm.

In Table 2, which is similar to Table 1 in style, we compare the computational com-
plexities of FNPT and 2-D FNT with row-column scheme. The numbers of multiplications
and additions are the same for both algorithms, while less numbers of shifts are needed for

FNPT; the savings are more than 25% and are growing when ¢ is increasing (see Table 2).
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The computational complexity of an N x N 2-D MNT using MNPT is
S=N3—2N? 41,
A=2N3 — N? 4N 44,
where S is half of the S in (IV.1), and A is less than half of the A in (IV.1) by an amount of

(IV.3)

0.5N2—N. The computational complexities®, § and A, for computing the same N x N 2-D
MNT using row-column scheme are halves of those for N x N 2-D integer CCs, and thus
can be obtained directly from Table 1. The conclusion for the computational complexity
comparison 1s similar to the one for N x N 2-D integer CCs.

The computational complexity of a 20+ x2(+1 ¢ > 1, 2-D FNT using FNPT are exactly
halves of those in (IV.2), and the savings of using FNPT with respect to the row-column
scheme are the same as those percentages in Table 2. We have conducted a simulation
experiment in which 2-D FNTs are programed in FORTRAN with the algorithm of FNPT
and with the row-column scheme. We use general integer multiplications in FORTRAN to
realize the shift operations in the algorithms. Since the general integer multiplication are
more time-consuming than addition, the difference of the compuing-times for the above
two programs to complete the same 2-D FNT can be an indicator for the difference of
shifts used in the two algorithms. The resulting compuing-times, on a personal computer,
as a function of the sizes of 2-D FNTs are shown in Figure 3 which indicates that using
FNPT reduces compuing-times by about 50%. This matches with the above computational

complexity assessment for these cases.

VII Summary and Conclusions

In this paper, we developed new fast algorithms for 2-D integer circular convolutions
and 2-D NTTs. These new algorithms are constructed based on polynomial transforms
over Z, introduced here. Several necessary and sufficient conditions for the existence
of polynomial transforms over Zp are stated and proved. By applying these existence
conditions, we have obtained two important polynomial transforms over Zp: MNPT and
FNPT, based on which we then developed fast algorithms for 2-D integer CCs, 2-D MNTs
and 2-D FNTs. Comparing to the conventional row-column computation of 2-D NTTs for

2-D integer CCs and 2-D N'T'Ts, the new algorithms save more than 25% or 42% of numbers

5 There are no multiplications for computation of NTTs.
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of operations for multiplying 2¢, i > 1; these percentages of savings also grow with the size
of the 2-D integer CCs or the 2-D NTTs. These complexity savings of the new algorithms

are also indicated by the computing-time results of a simulation experiment on computer.
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Appendix A

This appendix contains some rather basic theorems and definitions required in the

proofs of many lemmas and theorems presented in this paper.

Theorem A.1: For any two polynomials f(z) and g(z) in Zp[z], there exist polynomials:
m(z),n(z) in Zp[z], such that

m(z)f(z) + n(z)g(z) = (f(2),9(z)) mod p, (A.1)

where (f(z),g(z)) denotes the greatest common divisor of f(z) and ¢(z), (its leading

coefficient is assumed to be unity in Z,) [12].

Theorem A.2: Any polynomial in Zy[z] can be expressed as a product of a constant and
irreducible polynomials in Zp[z]|, where the irreducible polynomials are of unity leading

coeflicients [12].

Theorem A.3: Let a(z),b(x),c(z) be given polynomials in Zy[@]. The congruent equation

a(z)py(z) + b(z)pa(z) = ¢(z) mod p (A.2)

has solutions p(z),p1(z) in Zp[z], if and only if (a(z), b(z))|c(x) mod p.
Proof: The “Only if” part is obvious.

“If” part: Supposing (a(z),b(z))|c(z), then ¢(z) = ¢i(z)(a(z), b(z)) mod p for some

polynomial ¢j(z). From Theorem A.1, we have m(z),n(z), such that

ci(z)m(z)a(z) + c1(z)n(2)b(e) = c1(x)(e(z), b(z)) mod p
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where we have used the fact: if f1(z) = g1(2), fo(z) = go(z) mod p, then fi(2)f2(z) =
g1(z)ga(z) mod p [12]. Therefore, equation (A.2) has solutions: pi(z) = cq(z)m(z),
pa(z) = ci1(x)n(z) mod p. QED.

Theorem A.4: The following first order congruent equation
a(z)p(z) = b(z) modd p, m(x) (A.3)

has solution p(z), if and only if (a(z),m(z))|b(z) mod p.

Proof: By definition, (A.3) has solution if and only if a(z)p(z) — m(z)p1(z) = b(z) mod p
has solutions p(z),p1(z). Then by Theorem A.3, (A.3) has solution if and only if
(a(z),m(z))|b(z) mod p. QED.

Definition A.5: (Complete Residue System) Let the degree of a given polynomial M(x)
in Zp[z] be n. Then every polynomial is congruent, modd p, M(z), to one of the following
polynomials

a1+a2$+-i-+anxn—1,Ogai§p~1,1§i§7z, (A.4)

which express p™ polynomials, among which no two of them are congruent p, M(z). We
call these p" polynomials the complete residue system modd p, M (z).

Definition A.6: (Reduce Residue System) A reduced residue system is derived from
a complete residue system by discarding those polynomials which are not coprime with
M(z) mod p.

Definition A.7: Euler Function ¢(p, M(z)) is defined to be the number of polynomials
in the reduced residue system modd p, M(z).

Theorem A.8: (Euler Theorem on Zp) If (M(z), f(x)) = 1 mod p, then

[f(2)]?PM () = 1 modd p, M(x).

Proof: Let fi(z), fa(z),- - 7f<p(p,M(.z’))(I) be a reduced residue system modd p, M(z) in
some order. Then clearly f(z)fi(z), f(z)fo(z),- - ,f(x)fso(p,M(x))(m) modd p, M(z) is also
a reduced residue system, modd p, M(z) [12]. Therefore,

e(p,M(z)) o(p,M(x))

II 5@
i=1

Il

fi(z)f(z) moddp, M(x),

i=1
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- ¢(p,M(2))
@M@ —1] T fie) =0 moddp, M(a).
1=1

Thus, [f(z)]?®M®) = 1 modd p, M(z). QED.
If M(z) is an irreducible polynomial of degree n, mod p, then ¢(p, M(z)) = p" — 1,

and we have the following Fermat theorem [12].

Theorem A.9: Let f(z) be a polynomial not divisible by M(z) mod p. Then [f(;v)]pn"1 =
1 modd p, M(z). Given any polynomial f(z), we have [f(a:)]pn = f(«) modd p, M(z) and,
in particular, z¥" = ¢ modd p, M(z).

Definition A.10: The least positive integer [ such that [f(:v)]l = 1 modd p, M(z) is called
the order of f(z) modd p, M(z).

Theorem A.11: Let f(z) have order [ modd p, M(z). If [f(2)]" = 1 modd p, M(z), then
l|m.

Proof: Supposing the theorem is not true, then we have two integers ¢,r, such that
m = ql +r where ¢ > 0 and 0 < r < [, and 1 = [f(2)]” = [f(2)]¢"" = [f(2)]" modd
p, M(z). This contradicts the definition of I. QED.

Theorem A.12 [12]: The number of roots of f(X) = 0 modd p, M(x) does not exceed
the degree of f(X).5

Theorem A.13: For an irreducible polynomial M(z) in Zp[z], if the order of a given

polynomial g(z) is [ modd p, M(z), then there are only (I)7 distinct polynomials with
order [ modd p, M(z).

Proof: From Theorem IL.12, there are at most ! different solutions for [f(z)]’ = 1 modd
p, M(z). But we have the following [ different solutions: g(z), [g(w)]Z, .., [g(2)]". Thus they
are the solutions of [f(z)]' = 1 modd p, M(z).

Denote the order of [g(z)]" as I, for 1 < r < L. Since [¢g(z)]"" = 1 modd p, M(z),
| rl. Assuming (r,l) = 1, then [’ | I. But [g(;v)]rl, = 1 modd p, M(z), then [ | ', and
['| . Therefore, | = I

6 Note: f(X) is a polynomial in X, and a polynomial g(z) is called a root of f(X) = 0 moddp, M(z), if

i f(g(x)) = 0 modd p, M ().

“(1) is the Euler function which is defined to be the number of positive integers smaller than [ and being
coprime with [.
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Conversely, if the order of [¢(z)]" is [, then (r,l) = 1. Otherwise, (r,{) = d > 1, then,
[g(:c)]rl/d = 1 modd p, M(z), and this is a contradiction. QED.

Theorem A.14: Let [ | (p" —1). For an irreducible polynomial M(z) of degree n in Zy[x],
the number of distinet polynomials with order [ modd p, M(z), is ¢({).

Proof: Let ¢(I) be the number of polynomials of order [ modd p, M(z) in the reduced

residue system modd p, M(z). Then ). ¢({) = p" — 1 from Theorem A.9 and A.11.
lipn—1
It can be easily verified that >, ¢(I) = p" — 1 [13]. Thus, > (¢(I) —¢(l)) = 0.
llpr-1 llpr—1
Therefore, ¢(1) = ¢(1), since, by Theorem A.13, ¢(I) < ¢({). QED.

Appendix B

In this appendix, two additional necessary and sufficient conditions for the existence

of polynomial transforms over Z;, are proved, where p is assumed to be a prime number.

Proof of Theorem II1.3: The decomposition expression of M(z) is supported by
Theorem A.2. From (i), we get S(0) = N modd p,M(z). We denote the degree of
bi(z) by n;j, for 1 < i < s. Obviously, n; > 1. From (ii) and Theorems A.9 and A.11,
we have N | p™ — 1, ie., p" — 1 = Nk;. Thus, p does not divide N, for otherwise,
N = pky for some ky, and then, p™ — 1 = pk;ky, which is not true. When ¢ # 0
mod N, ([¢(2)]? — 1)S(¢) = [9(z)]%V =1 = 0 modd p, M(z). From (ii), we also have
([g(2)]? =1, M(z)) = 1, mod p. Thus, S(¢) = 0 modd p, M(z), if ¢ Z 0 mod N. Therefore,
(N,g(z),p, M(z)) exists, from Theorem III.2.

On the other hand, when (N, g(2),p, M(z)) exists, from (II1.3) and (II1.4), we have
[g(:v)]N = 1 modd p, M(z), [¢9(z) N =1 modd p, b;(z), and S(g) = 0 modd p,b;(z), for
g # 0 mod N. Thus, [¢(2)]? — 1 # 0, modd p, b;(x), for ¢ # 0 mod N for otherwise, p | N,
and this contradicts the requirement (p, N) = 1. QED.

Proof of Theorem III.4: Suppose (N, g(x),p, M(z)) exists for some g(x). Then, from
Theorems I11.3, A.9 and A.11, we know N | (p™i —~1),1 < i < s. Conversely, from N divides
the greatest common divisor of p*1 —1,p"2 —1,...,p" — 1, we have N | (p"i —1),1 <7 < s.
From Theorem A.14, for each i, there is g;(z) with order N modd p, b;(x). Thus, we have
g(z), such that, g(z) = g;(z), modd p, b;(z), from Theorem II.1. Since [g,(m)]N =1, modd
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2, bi(z), [g(z)]Y = 1, modd p,b;(z). Thus [g(z)]¥ = 1, modd p, M(z). Then based on
Theorem II1.3, we proved this Theorem. QED.

Appendix C

The lemmas in this appendix are related to MNPT and FNPT, and will be used in the
development of the fast algorithms for 2-D integer CCs.

Lemma C.1: z — 1 and (¥ — 1)/(z — 1) are coprime, mod N.

Proof: Suppose that this is not true, i.e., they have a common non-trivial factor, then
(V¥ —1)/(z — 1) must have the factor  — 1. Thus (¥ —1)/(z —1) = ¥ T4V 24 4
t+1= N =0 modd My,z —1 which is a contradiction since My |N can not hold. QED.

Lemma C.2:

N _q N moddMpy,z—1
0 moddMN,(xN—l)/(m~1)’
N 1 B 0 moddMpy,z -1
“\N moddMN,(:rN—l)/(x——l)'

Proof: Obvious. QED.

Lemma C.3: Let {a;}5 | C Z, be k distinct solutions of the equation
flz)=a"+ an_la:"_I + -+ +ag =0, mod p,
and (e; — aj,p) = 1 for + # j. Then
J(z) = (2 —ar)(z — ag) - (z — a)fi(x) modp,

where f(z) is a polynomial of degree n — k and with the leading coefficient 1, and p is

not necessarily a prime number.

Proof: Since f(a1) = 0 modp, then

f(z) = f(z)—f(a1) = 2" —of +a,1 (»’U"_l - a?—1)+' tap(z — o) = (@ — o) fi(z) modp,

where f1(z) is a polynomial of degree n — 1 and with the leading coefficient 1. Since we
also have f(ag) =0 modp, and (o1 — ag9,p) = 1, then fi(a9) = 0 modp. By repeating the

above argument, the Lemma is proved. QED.
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Lemma C.4:
2T o1= (o= (w2t (2 - 22) o (o - 22T Y) mod A

Proof: It can be easily shown that the order of 2 modulo Fy is 2t+!. Thus
90,91 92 ... 92—l (C.1)

are 2t11 incongruent numbers mod Fy. Let p|F¢ be a prime number. Then the order of 2
modulo p is also 281 [14]. Thus, the 2+! numbers in (C.1) are also incongruent modulo

p, l.e., (Qi — 2j,Ft) =1,for¢ # 3, 1,5 = 0,1,...,241 — 1. Since the 21! numbers in

2t+1

(C.1) are solutions of the equation z — 1 = 0 mod Fy, from Lemma C.3 we proved

the lemma. QED.

.. 22t+1—2

In (C.1), the numbers with even power: 20 92 . are also solutions of 22 — 1 =

0 mod F;. Thus, from 22 1 = (:L‘Qt - 1) (th e 1), we have the following corollary
Corollary C.5:

2t—1
¥ 1= (z—2) (:c — 23) (m — 22t+1"1> = Z (:1: - 22k0+1> mod [,
ko=0
and (w2t + 1,:c2t — 1) = 1 mod F;. More generally,
s 21 .
22 41 = Z (:c — 9(2ki+1)2 ) mod F},
k;=0

and

(:cQt“Z + 1,:62t—2 - 1) =1 mod F},
for 0 <: <t

Lemma C.6: .
» 1 modd Fy, 22" — 1
9211 (m2t n 1) _ modd f't, @ . 7
0 modd F},z2  +1
i 0 modd £ ,:cQt—z -1
(27 1) = e
1 modd Fy,z? " +1

Proof: Because that
227 + 1 =2 modd Ft,:cchz -1

?

i

:cQt_i —1=-2=22+1 odd Ft,:czt" + 1,

. 1 .
and 2,22t+1 have inverse 227 "1,22t_1, respectively, mod F;. QED.
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Parameters MNPT 2-D MNT (row-column | Savings by using MNPT
scheme)

My M S A M S A S A S+A

3 7 9 20 77 9 48 72 28 -9 23
(48%)

) 31 25 152 733 25 320 400 168 -33 135
(42%)

7 127 49 492 1261 49 1008 1176 516 -85 431
(43%)

13 8191 169 3720 8497 169 7488 8112 3768 -385 3383
(45%)

17 131071 | 289 8672 | 19201 286 17408 | 18496 | 8736 =705 8031
(46%)
19 524287 | 361 12276 | 26893 361 24624 | 25992 | 12348 -901 11447
(46%)

Table 1: Comparison of computation complexity for computing 2-D integer circular convolu-
tions using MNPT and 2-D Mersenne Number Transform (MNT) with row-column scheme.



Savings

Parameters FNPT 2-D FNT (row-column by
scheme) using
FNPT
t F 9t+1 M S A M S A S
1 5 4 16 12 128 16 16 128 4
(25%)
2 17 8 64 108 768 64 160 768 52
(33%)
3 257 16 256 684 4096 256 1088 4096 404
(37%)
4 65537 32 1024 3756 20480 1024 6272 20480 2516
(40%)

Table 2: Comparison of computation complexity for computing 2-D integer circular convolu-
tions using FNPT and 2-D Fermat Number Transform (FNT) with row-column scheme.




{drs ) . .
——— arrange into polynomial form

Q %)
modd My, (x”-1)/(x-1) |+ ~| modd Mp, x-1
‘Ql,r(X) Q,;
P
MNPT (p, x, Mp, (x”-1)/(x-1)) }_Ifi“. CC of length p

Qk (x)

p products of polynomials | Hi()
modd M, (@-1/(x-1) [

' {(k(x)

Inverse MNPT
(P, X, Mp, (x*-1)/(x-1))

Yl,l(x)

reconstruct Y; (X)

'y

Figure 1: Block diagram of the algorithm for computing 2-D integer circular convolution

using MNPT.



{q. ) o arrange into polynomial form

- Q:(x) -
modd F, , x% +1 ~modd F, , x? -1
Q) [ Q)
<,
FNPT Reorganizing
2+ x, F, , x2t+1) length 7t -
~ modd F, , x~ -1
' Q. (x) !
2t+1prodqcts of ﬁk(x) Qr(x)
polynomials | % | modd F, , x* +1 +—» modd F, , x?-1
modd F, , x2 +1
? (X) . Ql,r(x) Q’Z,r(x)
k FNPT v
Inverse FNPT 2',x%,F,, x2+1) 2-DCCof | -
2L x, Fy , x2441) = size:2'py2' | .
t Qk(x)
2! products of | _ 1
polynomials Hy(x)
modd F, , x2+1
| Yi o
Inverse ENPT
Y.
113 2!, x4, F,, x?+1)
Yyl - Y7,/(X)
<« reconstruct Yl (x) - reconstruct Y5 ;(x)

Figure 2: Block Diagram of the algorithm for computing 2-D integer circular convolution

using FNPT.
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