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Firefighter protective clothing helps to defend the wearer against the harsh 

conditions experienced during fire response activities.  The equipment worn by 

firefighters and the physically demanding nature of their work often pulls the material 

of the firefighter protective clothing taunt, removing air gaps between the layers of 

materials.  This significantly decreases the effectiveness of the garments and can lead 

to contact burns on the skin.  The concept of a temperature activated shape memory 

material has been applied to the garments to combat this issue.  A computer program 

has been developed to analyze the heat transfer through different layers of materials.  

The program is capable of approximating the effects of a variable air gap in the 

garment which would result from the implementation of the temperature activated 

shape memory material.  Experiments and computer simulations confirm that a 

variable air gap improves the thermal performance of firefighter protective clothing. 

 
 



  

 
 
 
 
 
 
 
 

THE IMPACT OF A VARIABLE AIR GAP ON THE THERMAL 
PERFORMANCE OF FIREFIGHTER PROTECTIVE CLOTHING    

 
 
 

By 
 
 

Bryant W. Hendrickson 
 
 
 
 
 

Thesis submitted to the Faculty of the Graduate School of the  
University of Maryland, College Park, in partial fulfillment 

of the requirements for the degree of 
Master of Science 

2011 
 
 
 
 
 
 
 
 
 
 
Advisory Committee: 
Professor Marino di Marzo, Chair 
Professor Howard Baum 
Professor Amr Baz 
 
 
 



 

ii 
 

Acknowledgements 

I would like to extend extreme gratitude to Dr. Marino di Marzo for giving me 

this research opportunity.  His guidance and patience were the backbone of this 

project.  The governing equations for the expanding air gap were derived through 

heavy involvement by Dr. Howard Baum.  Dr. Amr Baz has been developing the 

shape memory material to be used in the firefighter protective clothing and provided 

valuable insight.  Thank you all for assisting in my research and serving on my thesis 

committee. 

This project was also made possible by assistance from colleagues in my 

research group.  Thank you to Justin Perry for your help throughout the entirety of 

this project.  Jimmy White conducted all of the baseline tests with the firefighter 

garments.  Lion Apparel supplied samples of firefighter protective clothing for 

testing.  This research was funded by the Department of Homeland Security.   

Special thanks go out to my family and friends for their encouragement during 

my time at the University of Maryland.  Mom and Dad raised me from day one, 

helping to prepare me for times such as these.  Thank you to my grandmother Mimi 

for her overwhelming support, and my sister Sherry for always being there for me.  

Thanks to Steph for your attentiveness and reassurance during this trying year. 

 

  



 

iii 
 

Table of Contents 

 
Acknowledgements ....................................................................................................... ii	
  
Table of Contents ......................................................................................................... iii	
  
List of Figures .............................................................................................................. iv	
  
Nomenclature ................................................................................................................ v	
  
Chapter 1: Introduction ................................................................................................. 1	
  

1.1 Problem Statement .............................................................................................. 2	
  
1.2 Previous Research ............................................................................................... 3	
  

Chapter 2: The Model ................................................................................................... 8	
  
2.1 Governing Equations .......................................................................................... 8	
  
2.2 Program Methodology ...................................................................................... 13	
  
2.3 Mathematical Validation ................................................................................... 17	
  

Chapter 3: Variable Air Gap Theory .......................................................................... 22	
  
3.1 Shape Memory Material ................................................................................... 24	
  
3.2 Revised Governing Equation ............................................................................ 29	
  
3.3 Time Constant Validation ................................................................................. 36	
  

Chapter 4: Experiments ............................................................................................... 40	
  
Chapter 5:  Results ...................................................................................................... 47	
  

5.1 Baseline Tests ................................................................................................... 48	
  
5.2 Introduction of the Variable Air Gap ................................................................ 54	
  

Chapter 6:  Conclusions .............................................................................................. 61	
  
Appendix A: Material Properties ................................................................................ 66	
  
Appendix B: MATLAB Codes ................................................................................... 67	
  
Bibliography ............................................................................................................... 97	
  
 
 
 
 
 
 
 
  



 

iv 
 

List of Figures 

2.1 Control volume   8 
2.2  Tri-diagonal solver   12 
2.3  Material properties at layer changes        14 
2.4  Temperature comparison at the midpoint of 2 mm of skin     18 
2.5  Temperature comparison at the surface of the first outer shell    20  
 
3.1  Garment configuration with shape memory material before activation   23 
3.2  Garment configuration with shape memory material activated    23 
3.3  Phase transformation of shape memory material      24 
3.4  Configuration of the shape memory material and pocket       25 
3.5  Snap ring in full martensite       26 
3.6  Snap ring in full austenite       26 
3.7  Possible arrangement of shape memory material in pockets   27 
3.8  Snap ring grid in full martensite      28 
3.9  Snap ring grid in full austenite      28 
3.10  Temperature of fabrics at boundaries confining the 2 mm air gap (R=1) 37 
3.11  4 mm air gap with R=2 altered by the time constant    38 
3.12  4 mm air gap with linearly expanding 2 mm air gap (R from 1 to 2)  39 
 
4.1  Heater stand assembly        41 
4.2  Test fabric placement        41 
4.3  Thermocouple probe below surface of heater     42 
4.4  Temperature controller       43 
4.5  Solid state relay        43 
4.6  Test fabrics         44 
4.7  Thermocouple placement       45 
4.8  Air gap support        46 
 
5.1  Garment configuration for baseline tests     48 
5.2  4 Layers of fusion-black outer shell (no air gap)    48 
5.3  MATLAB comparison (no air gap)      50 
5.4  4 Layers of fusion-black outer shell (7mm air gap)    51 
5.5  MATLAB comparison (7 mm air gap)     53 
5.6  6 Layer configuration with 1 mm air gap and ramping function (R=1) 55 
5.7  6 Layer configuration with 7 mm air gap and ramping function (R=1) 55 
5.8  Firefighter exposure temperature from house fire    56 
5.9  6 Layer configuration with 1 mm air gap and 410 K exposure (R=1) 58 
5.10  6 Layer configuration with 7 mm air gap and 410 K exposure (R=1) 58 
5.11  6 layer configuration with linearly expanding 1 mm air gap                      59 
5.12 Skin temperature during transient phase     60 

 
 
 

 



 

v 
  

Nomenclature 

! Density  
!!  Specific heat 
!  Temperature 
!  Time 
!  Thermal conductivity 
!  Distance from inner boundary 
Tcore  Inner boundary condition 
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!  Subscript, node of concern (number 1 at inner boundary condition) 
*  Superscript, current iteration 
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z  Fraction of the air gap 
R  Ratio of current air gap size to initial air gap size 
τ  Time constant 
!  Rate of increase of the air gap size (linear) 
!!""  Effective thermal conductivity of air 
ℎ  Convective heat transfer coefficient 
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Chapter 1: Introduction 

 Firefighters are exposed to harsh conditions during fire response activities.  

The temperature of their surroundings and the heat fluxes they experience vary 

greatly.  The wellbeing of the firefighter depends heavily on the thermal performance 

of their turnout gear.  Though research and development is being conducted by 

firefighter protective clothing manufacturers and regulation tests have been derived 

by the National Fire Protection Association (NFPA), injuries are still occurring during 

firefighter response activities.  Due to the nature of their work, firefighter injuries will 

never be eliminated.  However, measures can be taken to improve the effectiveness of 

firefighter protective clothing and extend the amount of time that firefighters can be 

safely exposed to harsh conditions.   

This thesis discusses the possibility of incorporating a temperature activated 

shape memory material into firefighter protective clothing in order to create a variable 

air gap within the garment.  The added thermal resistance of the air gap would better 

protect firefighters in the line of duty.  While some research has been done on the 

thermal effects of air gaps between layers of materials and on the thermal 

performance of firefighter protective clothing, these two topics have yet to be 

combined and examined in depth.  A Crank-Nicolson finite-difference method was 

used to put the governing equations for heat transfer through layers of firefighter 

protective clothing into MATLAB software.  This implicit method allowed for use of 

a tri-diagonal solver which greatly decreased the computational demands as compared 

to an explicit solution.  The program has shown agreement with both mathematical 

and experimental validation methods.   
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1.1 Problem Statement 
 
 Firefighter injuries and deaths are a harsh reality of the nature of their work.  

In the late 1970’s, an annual average of 151 firefighters were killed in duty.  This 

number dropped significantly over time to the 1990’s with an annual average of 97 

firefighter deaths [1].  The leading cause of deaths during firefighter response 

activities is sudden cardiac failure [2].  Main factors in the significant decrease of 

firefighter fatalities is likely improved physical fitness and training of the firefighters.  

Credit should also be given to enhanced firefighter protective clothing.  When you 

remove cardiac fatalities from the totals, about 19% of firefighter fatalities occur from 

burn injuries [1].  Further research and development is required to bring this number 

down.  One possible method is introducing a variable air gap within the firefighter 

protective clothing. 

 Research and development of firefighter protective clothing is not backed by 

rigorous scientific study.  Manufacturers are taxed with producing garment samples 

for testing since computational models are lacking.  The National Institute of 

Standards and Technology has developed a program called “Turnout Gear Selector” 

or “ToGS” for short [3].  Users are able to choose from 41 ensembles to evaluate the 

performance of firefighter protective clothing.  However, this is not helpful to 

manufacturers developing new materials.  The program developed from the research 

presented in this thesis allows the user to prescribe the number of layers, material 

properties, and exposure conditions in order to predict the temperature at any point in 

the ensemble.  This provides preliminary testing for NFPA standards as well as 

evaluation of skin temperature for firefighter safety.  
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1.2 Previous Research 

 The National Institute of Standards and Technology (NIST) has done 

extensive work in an attempt to better understand both the performance and 

limitations of firefighter protective clothing.  They have conducted experiments to 

determine the thermal properties of various components of firefighter protective 

clothing [4].  Ten different materials commonly used in firefighter protective clothing 

were acquired and tested to determine the thickness, density, thermal conductivity, 

and specific heat of each material.  The computer model presented later in this thesis 

needs input values for the thermal properties of each layer.  When these values are not 

available from the manufacturer of the test specimens, the values from NISTIR 6512 

are used.  These values can also be found in Appendix A. 

  An important consideration in the thermal performance of firefighter 

protective clothing is degradation of the material over time.  This is a function of 

thermal exposures as well as laundering.  NIST has tested the thermal conductivity of 

various layers of firefighter protective clothing after laundering and found no 

significant effects [5].  Further research by NIST revealed that current NFPA test 

methods cannot explain why firefighters are still being burned in average exposure 

scenarios [6].  As a result, they have developed new test methods that take into 

consideration the effects of moisture and garment compression.  They are continuing 

to work towards having NFPA tests consider these effects. 

 Current testing of firefighter protective clothing is dictated by NFPA 1971: 

Standard on Protective Ensembles for Structural Fire Fighting and Proximity Fire 

Fighting [7].  The standard was originally developed to introduce minimum 
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requirements for firefighter protective clothing to the industry.  It outlines original 

testing requirements as well as inspection and recertification.  The main test used for 

firefighter protective clothing certification is the “Thermal Protective Performance 

(TPP) Test.”  The test is performed as “ISO 17492, Clothing for protection against 

heat and flame – determination of heat transmission on exposure to both flame and 

radiant heat” with a radiant heat flux of 84 kW/m2.  This heat flux is supposed to 

represent a second degree burn to the skin.  Three like samples are tested and the 

average TPP score, reported as the heat flux in cal/cm2-sec, must be above 35.0.  As 

outlined by the NIST reports, this test does not consider moisture or compression and 

the current gear available to firefighters nationwide allows for thousands of burns per 

year. 

 The University of Maryland has become greatly involved in the search for a 

better understanding of the performance of firefighter protective clothing.  In 2008, 

Kevin Spangler completed his thesis on “Energy Transport in Firefighter Protective 

Clothing” [8].  He used a Crank-Nicolson finite difference model and tri-diagonal 

solver to resolve the governing equations for heat transfer through the garments using 

MATLAB software.  Spangler included air gaps in some simulations of the firefighter 

protective clothing.  The heat transfer through the air gap was based solely on 

conduction and the tests were not validated experimentally.  This research was 

extended by Lee McCarthy in 2010 to consider the presence of a phase change 

material to serve as a heat sink within the firefighter protective clothing [9].  Now, a 

similar application of the Crank-Nicolson finite difference method and Thomas 
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algorithm for the tri-diagonal solver has been modified to assess the impact of a 

variable air gap on the thermal performance of firefighter protective clothing.  

 Previous work has been done to quantify the thermal effects of air gaps 

between layers of materials.  However, the size of the air gap is always constant over 

time.  Torvi et al conducted several tests to assess the effects of the presence and 

absence of air gaps between heated fabrics in similar fashion to the TPP test from 

NFPA 1971 [10].  They developed an expression for the effective thermal 

conductivity of air that includes the effects of convection and radiation.  Their tests 

show that the onset of convection should occur around an air gap thickness of 

approximately 7 mm.  Research compiled from other groups suggests an optimal 

performance thickness ranging between 4-8.9 mm for horizontal configurations.  The 

optimal performance thickness is the critical value where a larger air gap does not 

yield improved thermal resistance.   

 Stoll et al found the optimal air gap thickness to be approximately 4 mm [11].  

They tested fabric specimens in a horizontal configuration with a Meker burner below 

as the heat source.  The temperature on the opposite side of the specimens was 

monitored by a radiometer and thermocouples.  Such a small optimal gap thickness 

was likely a result of the material used in the tests.  The fabric was about 3 oz/yd2, 

which is less than half that of most materials used in firefighter protective clothing.  

Further issues resulted from the burner flame penetrating the lower layer of fabric in a 

matter of seconds, rendering the rest of the test data useless since the air gap had been 

effectively removed.   
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 Stoll also performed tests with rat skin.  The same two layer assembly was 

used as in the previous test.  With no air gap between the layers, the rat skin burned in 

just 2 seconds.  With an air gap of 4 mm, the burn time was delayed to 5.5 seconds.  

Again the flame penetrated the lower layer of material at about this time, but their 

findings are similar to the goal of this research.  Stoll concluded that even a small, 

somewhat variable air gap between layers of fabric significantly reduces the heat 

transfer through the ensemble.   

 A more reasonable assessment of the thermal performance of air gaps between 

garments was conducted by Rees [12].  Test specimens were placed in a horizontal 

configuration between two copper plates, one hot and one cold.  Rees determined that 

the thermal performance of the ensemble increased steadily as the air gap approached 

a thickness of 8.9 mm, and then began to taper off.  The decrease in thermal 

performance was accredited to convection.   

 A shape memory material, specifically a combination of nickel and titanium 

wire, will be used to create such an air gap within the firefighter protective clothing.  

Shape memory materials are used in a wide variety of applications, including 

eyeglass frames and blood clot filters [13].  Incorporation into firefighter protective 

clothing proves to be another application of shape memory materials.  Shape memory 

materials are trained to acquire a certain shape at an activation temperature by 

repetitive heating and quenching of the material.  As a result, changes in temperature 

that span the transformation points for the shape memory material change the 

crystalline structure of the material [14,13].  Therefore, below the activation 

temperature, the material is flexible and easily compressed.  Above the activation 
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temperature, the material assumes a crystalline structure making it very rigid 

providing the ability to create and maintain an air gap within the firefighter protective 

clothing.  This specific application of the shape memory material for firefighter 

turnout gear is discussed in further detail in Section 3.1. 
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Chapter 2: The Model 

The theoretical model used in this research was built with reference to the 

work done by Spangler discussed in Chapter 1.  This is a one-dimensional heat 

transfer model based on heat conduction.  The model performs calculations for heat 

transfer through various materials used in firefighter protective clothing.  No air gaps 

or fluids are present between the layers in the early models, therefore eliminating the 

effects of convection and radiation.  The program was written using MATLAB 

software and a tri-diagonal solver. 

2.1 Governing Equations 

 Consider the control volume presented in Figure 2.1.  The governing equation 

for conduction is given by the heat diffusion equation [15].   

 

 

 

Figure 2.1: Control volume 

Assuming one-dimensional heat transfer and dividing out the area term yields 

!!!∆!
!"
!" = !

−!"
!" !"

− !
−!"
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          (2.1) 

Where  T = Tcore at x = 0 

  T = Texposure at x = l 

  T = T0  at t = 0 
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!" !!"

 ! !!
−!"
!" !!"#
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Since the MATLAB code will be designed as a series of nodes, Equation 2.1 can be 

approximated by a Crank-Nicolson finite-difference method [5].  As a result, the left 

hand side of Equation 2.1 becomes 

!!!∆!
!"
!" !

≈ !!!∆!
!!∗ − !!
∆!  

          (2.2) 

Where the density and specific heat of the current and succeeding nodes are averaged 

!!! =
!!! !

+ !!! !!!
2  

          (2.3) 

Realizing that the temperature gradients are negative, the right hand side of Equation 

2.1 becomes 

!
!"
!" !"

− !
!"
!" !"# !

≈
!!!!!" !" !!!/! − !!!" !" !!!/!

∆!  

          (2.4) 

Further decomposition of Equation 2.4 yields 

!"
!" !!!/!

≈
!!!! − !!

∆!  

          (2.5a) 

!"
!" !!!/!

≈
!! − !!!!

∆!  

          (2.5b) 

To lessen computational demands, an implicit method is used.  This takes an average 

at the current and previous time step transforming Equation 2.4 to the following 
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!
!"
!" !"

− !
!"
!" !"# !

≈
1
2
!!!! !!!!∗ − !!∗ − !! !!∗ − !!!!∗

∆!

+
!!!! !!!! − !! − !! !! − !!!!

∆!  

          (2.6) 

Now Equation 2.1 may be expressed as 

!!∗ − !!
∆! =

1
2!!!∆!

!!!! !!!!∗ − !!∗ − !! !!∗ − !!!!∗

∆!

+
!!!! !!!! − !! − !! !! − !!!!

∆!  

          (2.7) 

Rearranging Equation 2.7 to separate the temperature terms for each node and 

equating the current and previous time steps yields 

−
!!∆!
2∆!! !!!!∗ + 1+

!!∆!
2∆!! !!∗ −

!!∆!
2∆!! !!!!∗

=
!!∆!
2∆!! !!!! + 1−

!!∆!
2∆!! !! +

!!∆!
2∆!! !!!!  

          (2.8) 

Where  !! =
!!
!!!

 

  !! =
!!!!!!!
!!!

 

  !! =
!!!!
!!!

 

The term ∆! corresponds to the discretization of the thickness of the 

materials.  One ∆! is equal to one interval n.  The subscript n represents the 
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temperature or thermal conductivity as a function of location.  A subscript of n-1 

suggests the previous node and n+1 suggests the subsequent node.  The presence of 

the asterisk indicates that it is the new temperature at that location, and the absence of 

the asterisk indicates that it is from the previous iteration.   

 Equation 2.8 defines the solution for the final node in a layer of material 

where thermal properties are changing from one node to the next.  Note that within a 

single layer the thermal conductivity, density, and specific heat do not change 

between nodes.  Therefore, for nodes within a layer 

  !! =
!
!!!

 

  !! =
!!
!!!

 

  !! =
!
!!!

 

Where the thermal properties are prescribed for that layer.  Having established F 

values for each node, coefficients of the temperature terms for Equation 2.8 may also 

be established for each node as 

  ! = − !!∆!
!∆!!

 

  ! = 1+ !!∆!
!∆!!

 

  ! = − !!∆!
!∆!!

 

 

  !" = !!∆!
!∆!!

 

  !" = 1− !!∆!
!∆!!

 

  !" = !!∆!
!∆!!
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Where the presence of p in the nomenclature of the coefficient refers to the previous 

iteration.  As a result, Equation 2.8 becomes 

! !!!!∗ + !!!∗ + ! !!!!∗ = !" !!!! + !" !! + ! !!!!  

          (2.9) 

The governing equation is solved by means of a tri-diagonal solver as 

illustrated by Figure 2.2 below.  The tri-diagonal solver was chosen because the 

system of equations resulting from this analysis yields three coefficients associated 

with three temperature values.  A tri-diagonal system is a banded matrix with a 

bandwidth of three [16].  This means that the main diagonal and one diagonal to 

either side are composed of numbers, while the rest of the matrix is composed of 

zeros.  The a, b, and c values are defined above where a corresponds to the 

coefficient of !!!!∗ , b to !!∗, and c to !!!!∗ .  The right hand side of the solver is the 

temperature at each location from the previous time step.  !! corresponds to the inner 

boundary condition, and !! corresponds to the outer boundary condition.  These 

temperatures are used in conjunction with the a, b, and c vectors to calculate new 

temperatures !!∗.  The tri-diagonal solver was incorporated into the MATLAB code 

based on the Thomas Algorithm [16].  All MATLAB codes are provided in  

Appendix B {Tri_diagonal.m page 67}. 

[b1  c1                             ] [!!∗  ] = [!!] 
[a2  b2  c2                        ] [!!∗  ] = [!!] 
[     a3  b3  c3                   ] [!!∗  ] = [!!] 
[           .     .     .              ] [  .  ] = [  . ] 
[                 .     .     .        ] [  .  ]   = [  . ] 
[                       .     .     .  ] [  .  ] = [  . ] 
[                            an   bn] [!!∗  ] = [!!] 

Figure 2.2: Tri-diagonal solver 
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2.2 Program Methodology 
 
 From the beginning, the MATLAB program was capable of performing heat 

transfer calculations for multiple layers.  Properties for materials used in the 

firefighter industry are provided in Appendix A.  These properties were calculated 

from testing at the National Institute of Standards and Technology (NIST) [4].  If the 

user knows the thermal properties of the particular layers of interest, they may enter 

these values rather than the properties provided in Appendix A.  This section 

describes the methodology used to validate the solver, which was the basis for 

subsequent variations of the program. 

 The first input to the program is specifying the time step and spatial 

resolution.  The time step determines the frequency with which the temperature 

calculations are run for each location.  Typically a time step of one second is used in 

the program.  This time step proves sufficient for mathematical validation of the 

program as discussed in Section 2.3, and is consistent with the frequency of 

temperature measurements during experimental testing of firefighter protective 

clothing (Chapter 4).  The user defines the total duration of the simulation in seconds 

and the program will calculate the number of iterations required. 

The spatial resolution will be used to discretize each layer into a certain 

number of nodes of equivalent size.  Breaking each layer into many small pieces with 

the same thermal properties as the actual material greatly increases the accuracy of 

the output.  As a result, the resolution of the temperature gradient in each layer is 

greatly increased.    
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The next step is to define the number of layers and the thermal properties of 

each layer.  The program requires the thermal conductivity, density, specific heat, and 

thickness of each material in the units defined in the program script.  The program 

automatically converts the layers to nodes depending on the thickness of each layer 

and the spatial resolution.  For example, a skin layer is typically 3 mm thick.  A 

spatial resolution of 5 microns yields 600 nodes in the skin layer.   

Note again that we are using the Crank-Nicolson finite difference method.  

This means that to calculate the temperature at a certain node, the solver is using the 

conditions and the preceding and succeeding node.  In a homogeneous layer, this is of 

no concern because the thermal properties at all of the nodes are the same.  However, 

in a multi-layer setting with different layers, the properties are not necessarily the 

same for three consecutive nodes.  When the node of concern is the last node within a 

layer, the properties of the preceding and succeeding nodes differ.  Therefore, the 

properties of the node of concern are an average of the properties for the two 

adjoining layers as defined in Section 2.1.  This offers an even weighting between the 

properties of the two layers.  Figure 2.3 illustrates this process for node n.  

 

Figure 2.3: Material properties at layer changes 

n n+1 n-1 

Δx 

Properties of 
Layer (i) 

Properties of 
Layer (i+1) 
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 After the material properties have been established and the program defined 

the properties at each node, the boundary conditions must be specified.  The 

validation of this program, shown in Section 2.3, used boundary conditions of 0 at 

x=0 and 1 at x=l.  This would be comparable to normalized exposure data.  Constant 

temperatures may also be assigned to the boundary conditions such as a core 

temperature of 37 degrees Celsius or 310 Kelvin at x=0.  Since the program is 

concerned with the change in temperature, ΔT, the boundary conditions may be given 

in either Celsius or Kelvin and the output will be in the same unit.  If the boundary 

conditions are in arrays such as an excel sheet, they could also be loaded into 

MATLAB using the xlsread function.  A function could also be used to change either 

boundary condition as a function of time, but this operation must be performed in the 

iteration loop for the line r(n) referring to the right hand side of the solver. 

 At this point, the iteration process begins within the program.  The F values 

contain the thermal diffusivities of any three consecutive points.  This could be done 

before the iteration process begins, but later versions of the program will be altering 

the thermal properties as a function of time.  For the last node in each layer, the 

properties are determined by the method shown in Figure 2.3.  The F terms correlate 

to the a, b, and c vectors as described previously.  Components b1 and bn have a value 

of 1 because they are correlated to the inner and outer boundary conditions which are 

prescribed.   

For the first iteration, the temperature at every node except the last is set to the 

inner boundary condition.  In subsequent iterations, the first node is held at the inner 

boundary condition and the last node is held at the outer boundary condition.  These 
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points are defined in the program as r(1) and r(ntotal) respectively.  Recall that the    

r vector is the right hand side of the tri-diagonal solver.  The subroutine for the solver 

is called in to utilize the a, b, c, and r vectors in determining  !!∗.  This iteration 

process repeats until the prescribed duration has been satisfied.  The output is a graph 

showing the surface temperature of each layer as a function of time.   
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2.3 Mathematical Validation 
 
 Having developed a working solver with reasonable results, it was necessary 

to validate the program with a mathematical solution.  Carslaw and Jaeger have 

performed extensive work on heat conduction in solids [17].  They have developed 

several equations for heat transfer between two parallel plates depending on the 

boundary conditions.  The following equation is given to determine the temperature at 

any point in a solid of thickness l with fixed boundary conditions 

! =
2
! !!!!!!!! !! sin

!"#
!

! !! sin
!"!!

! !"!
!

!

+
!"#
! !!!!!!! !! !! ! − −1 !!! ! !"

!

!

!

!!!

 

(2.10) 

Where  ! !! = 0 Initial temperature distribution 

  !! ! = 1 Outer boundary condition 

  !! ! = 0 Inner boundary condition 

  A layer of skin with a constant boundary condition on both sides is like a solid 

bounded by two parallel planes.  Therefore, using the thermal diffusivity of skin in 

Equation 2.10 would yield the temperature at any point x inside the skin layer. Setting 

x=l/2 gives the temperature at the midpoint of the skin as 

! =
sin !" 2
!" 2 1− !!!!!!!! !!

!

!!!,!,!…

 

         (2.11) 

The summation is only necessary over the odd values of n because the sine of any 

multiple of π is equal to zero.  With time, the temperature of the midpoint of the skin 
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will reach a steady state.  As n increases, two consecutive outputs of the equation will 

negate each other.  This is an indication that the solution has reached steady state and 

further summation is not necessary.  Since the boundary conditions are 0 and 1, the 

value of the midpoint is expected to be at 0.5 at steady state.  Hereafter, Equation 2.11 

shall be referred to as the closed form solution. 

This configuration is easily reproduced in the MATLAB program 

{Solver_Validation.m page 68}.  The time step in the program must match that of 

Equation 2.11 in order to compare the temperature readings at each instant in time. 

The boundary conditions are set at 0 and 1 for the inner and outer nodes, respectively.  

This concept is comparable to test data that has been normalized.  Two layers are 

created, each having the thermal properties of skin and a thickness of 1 mm.  The 

temperature between the layers was stored at each iteration and exported to the Excel 

file where Equation 2.11 was solved. 

   

 

Figure 2.4: Temperature comparison at the midpoint of 2 mm of skin 
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 The result of the closed form solution and the MATLAB code for the 

temperature of the midpoint of 2 mm of skin for the given boundary conditions is 

presented in Figure 2.4.  There is nearly perfect agreement between the two solutions.  

The steady state result is consistent between the two methods and reached the 

anticipated value of 0.5.  However, this steady state value is not of grave importance 

in analyzing the accuracy of the program.  The steady state solution could be 

achieved by a simple hand calculation.  The significance of this validation is that the 

rate of temperature increase of the midpoint of the skin is also consistent amongst the 

closed form solution and the MATLAB simulation.   

 As discussed previously, the MATLAB program utilizes an implicit method to 

minimize computational demands.  A second mathematical validation was performed 

using the explicit method.  This second validation was geared towards support of a 

multi-layer configuration with layers of different thermal properties.  The 

configuration was kept simple; a 2 mm air gap confined between two layers of outer 

shells (PBI was used in the program).  The boundary conditions of 0 and 1 were 

retained.  The explicit method has very high computational demands so it was also 

beneficial to have a configuration to quickly reach a steady state.  The air gap was 

treated as a conduction layer for this mathematical validation.  The effects of 

radiation and convection are discussed in Chapter 5. 

 The explicit solution uses the finite-difference method similar to the implicit 

method; however, the averaging presenting in Equation 2.6 is no longer necessary.  

As a result, the explicit solution is of the form 
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!!∗ − !!
∆! =

!!!!
2∆!! !!!! +

!!
2∆!! !! +

!!!!
2∆!! !!!! 

          (2.12) 

Where all temperature values on the right hand side are taken from the previous 

iteration.  Equation 2.12 can be written to find the temperature of node n for the 

current iteration as 

!!∗ =
!!!!∆!
2∆!! !!!! + 1−

!!∆!
2∆!! !! +

!!!!∆!
2∆!! !!!! 

          (2.13) 

In order for Equation 2.13 to be valid and avoid instabilities, the coefficient of !! 

must be a positive number [15].  The result was a very small time step on the order of 

10-5 seconds.   

 

 

Figure 2.5: Temperature comparison at the surface of the first outer shell  
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 Figure 2.5 presents the comparison of the explicit solution and the MATLAB 

code for the gear configuration with a 2 mm air gap confined between two layers of 

outer shells {Explicit.m page 71}.  This graph gives the temperature of the surface of 

the first layer of outer shell (layer nearest the 0 boundary condition) as a function of 

time.  The two solutions overlap completely with no discrepancies.  Therefore, the 

program and solver have proven to be accurate in a multi-layer configuration with 

different properties for each layer.  The program has been further developed to treat a 

variable air gap.  These methods are discussed in Chapter 3. 
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Chapter 3: Variable Air Gap Theory 

 Firefighters’ movement and equipment pulls the materials of their protective 

clothing taunt in some locations removing air gaps in their turnout gear.  It is the goal 

of this research to uncover plausible methods of maintaining air gaps in the garments 

despite movements and equipment.  The testing included in this research shows that 

introducing a shape memory material that is temperature activated could be effective 

in maintaining air gaps between layers of materials. 

 Figures 3.1 and 3.2 on the following page illustrate the concept of the 

expanding air gap.  These figures assume that the firefighter is wearing a cotton shirt 

under the standard garments.  Figure 3.1 shows the garment configuration at ambient 

conditions.  The shape memory material is below the activation temperature, 

rendering it flexible and easily compressed.  This ensures that the firefighter 

protective clothing would not be bulky or restrict motion when the added thermal 

protection of the air gap is not necessary.  However, it does introduce the presence of 

a small air gap between the garments.  Figure 3.2 shows the configuration after the 

shape memory material has been activated by elevated temperatures.  The activation 

temperature and size of the resulting air gap are results of the thermal training of the 

shape memory material and may vary.  These processes are discussed further in 

Section 3.1. 
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Figure 3.1: Garment configuration with shape memory material before activation  

 

 

Figure 3.2: Garment configuration with shape memory material activated 

 

Note: Figures 3.1 and 3.2 are not drawn to scale.  
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3.1 Shape Memory Material 
 
 The material selected for this application is a combination of nickel and 

titanium in a wire configuration.  Through many cycles of heating and quenching, the 

material can be trained to acquire any shape at the activation temperature.  The 

crystalline structure of the shape memory material is altered by the stresses imposed 

[14].  The change in stress is a function of mechanical stress, thermal stress, and the 

fraction of martensite [16].  The transformation process is illustrated in Figure 3.3.   

 

Figure 3.3: Phase transformation of shape memory material 

 

 The values of the temperature and stress have been normalized to simply 

represent an increase in either value.  Research by Tanaka et al shows that for a 

material with steady material constants, such as the nickel-titanium alloy proposed in 

this research, the transformation lines are linear and parallel [18].  The material is 

fully in a state of martensite to the left of the “Martensite Finish” line meaning that it 

is flexible.  As temperature increases, it must reach the “Austenite Start” curve to 
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begin the transformation.  The transformation spans the time between the two 

austenite curves as the crystalline structure of the shape memory material is altered.  

Beyond the “Austenite Finish” line, the material is fully austenite and rigid in its 

trained shape.  The cooling process is similar to the heating process in that no change 

will occur until the “Martensite Start” temperature is reached.  Transformation of the 

shape memory material can also occur as a function of stress even if the temperature 

remains steady, but this is not applicable to the research presented in this report.   

 For incorporation with the firefighter protective clothing, the shape memory 

material has been configured into a figure-eight shape shown in Figure 3.4.  It is a 

single wire held in place where the two rings connect.  The unit can be compressed to 

lay nearly flat in its martensite state.  As the transformation to austenite occurs, the 

junction in the middle begins to rise pulling in the outside edges.  The unit could be 

confined between two layers of fabric, such as a pocket as shown by the dotted line in 

Figure 3.4.  The pocket would lay nearly flat during the martensite phase, then rise 

expanding the size of the air gap between the fabrics during the transformation. 

 

Figure 3.4: Configuration of the shape memory material and pocket 
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 Figures 3.5 and 3.6 show samples of the “snap ring” assembly.  In Figure 3.5, 

the material is below the activation temperature and is in full martensite, where it is 

flexible and compressible.  Figure 3.6 shows the snap ring after it has been activated 

by an external heat source.  Observe how the center of the snap ring has risen, pulling 

the outer edges inward.  This would make the center the “high point” and the edges 

the “low point.”  If the snap ring were placed in the pocket upside down from what is 

shown in Figure 3.6, the outer edges would be the high point and the center the low 

point.  This method of expansion means that any pocket that confines the snap ring 

must be able to accommodate the assembly in both phases.   

 

Figure 3.5: Snap ring in full martensite (Courtesy Dr. Baz) 

 

 

Figure 3.6: Snap ring in full austenite (Courtesy Dr. Baz) 
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In order for the shape memory material to be incorporated into the firefighter 

protective clothing, there must be an efficient way of manufacturing the gear.  Figure 

3.4 shows one possible way of doing so.  The shape memory material can be trained 

off-site and shipped to the garment manufacturing facility.  Lengths of fabric with 

pockets for the expanding material could be prepared beforehand, as shown by the 

dotted lines in Figure 3.7.  The snap rings could be placed in the pockets in an 

alternating fashion as shown below.  The dark circles in Figure 3.4 denote high points 

on the snap rings when activated as described previously.  It is important for the 

orientation of the snap rings to alternate to establish a more level plane when the 

shape memory material reaches the austenite phase.  A row of stitching could go 

down either side of the ensemble to secure the units in place.  Testing of the shape 

memory material in this configuration was not possible at the time of this research, 

but is recommended in future study. 

 

Figure 3.7: Possible arrangement of shape memory material in pockets 
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 The snap rings have also been joined in what is called a “snap ring grid.”  

Figure 3.8 shows the snap ring grid in the martensite state.  In addition to each ring 

being joined at the center, they are now joined at the outer edges of each ring to form 

a series of snap rings.  Figure 3.9 shows the snap rings after they have been activated 

by an external heat source.  Note that the snap rings have been joined in an alternating 

fashion as shown in Figure 3.7.  This would establish a much more level plane with 

the garment above the snap ring.  This configuration would require one large pocket 

whereas the previous configuration would require many small pockets. 

 

Figure 3.8: Snap ring grid in full martensite (Courtesy Dr. Baz) 

 

Figure 3.9: Snap ring grid in full austenite (Courtesy Dr. Baz) 
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3.2 Revised Governing Equation 
 
 By introducing an air gap between the layers, a convective term is acquired.  

Further, the assumption of homogeneous thermal properties is no longer valid due to 

the introduction of the expanding layer.  The following process describes how the size 

of each node of the expanding layer will be increased to achieve the overall growth of 

the air gap.  This process begins with the following energy equation [5] 

!!!∆!
!"
!" + !!!∆! !

!"
!" = !

!"
!" !"

− !
!"
!" !"#

 

          (3.1) 

As the air gap expands, it is assumed that the inner boundary remains at the original 

location and the outer boundary moves outward.  The velocity at which the outer 

boundary moves is characterized by u in Equation 3.2.  Let H equal the size of the air 

gap at any point in time and the velocity becomes 

! =   
!
!
!"
!"  

          (3.2) 

Combining with Equation 3.1 yields 

!!!∆!
!"
!" + !!!∆!

!
!
!"
!"
!"
!" = !

!"
!" !"

− !
!"
!" !"#

 

          (3.3) 

Introduce a variable z such that   

! =
!
!   

          (3.4) 
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And Equation 3.3 becomes 

!!!∆!
!"
!" + !!!∆!

!"
!"
!"
!" + !!!∆!

!
!
!"
!"
!"
!"
!"
!" = !

!"
!" !"

− !
!"
!" !"#

 

          (3.5) 

Note that the !"
!"

 term has been expanded.  Temperature is dependent on both 

position and time.  The x term is independent of time and can be tracked in an 

Eularian sense where emphasis is placed on the temperature distribution in space.  In 

contrast, the z term is dependent on time.  It is addressed by a Lagrangian method that 

tracks one point as it moves through space and time, where this one point is the 

leading edge of the expanding air gap.  This process describes the transition of the 

dependent variable from x to z.   

The derivatives of Equation 3.4 give 

!"
!" = −

!
!!

!"
!"  

          (3.6a) 

!"
!" =

1
!     

          (3.6b) 

Rendering Equation 3.5 to be 

!!!∆!
!"
!" + !!!∆!

!"
!" −

!
!!

!"
!" + !!!∆!

!
!
!"
!"

!"
!"

1
!

= !
!"
!" !"

− !
!"
!" !"#

 

          (3.7) 
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Rearranging yields 

!!!∆!
!"
!" − !!!∆!

!
!!

!"
!"

!"
!" + !!!∆!

!
!!

!"
!"

!"
!" = !

!"
!" !"

− !
!"
!" !"#

 

          (3.8) 

Which reduces to 

!!!∆!
!"
!" = !

!"
!" !"

− !
!"
!" !"#

 

          (3.9) 

Equation 3.6b may be arranged such that 

!" = ∆! = !"# 

          (3.10) 

Which produces 

!!!!"#
!"
!" =

!
!
!"
!" !"

−
!
!
!"
!" !"#

 

          (3.11) 

Introduce a new parameter R such that 

! =
!
!!

 

          (3.12) 

Where R is the ratio of the size of the air gap at any instant in time to its initial size.  

This process transfers the time dependency from H to R.  Recognize that there is no 

change in z because as the air gap increases, the node spacing increases accordingly.  

Therefore 

!"# = !!!
∆!!
!!

= !∆!! 

          (3.13) 
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Resulting in 

!!!!∆!!
!"
!" =

!
!
!"
!"! !"

−
!
!
!"
!"! !"#

 

          (3.14) 

Note that the ratio R stays with the !" term.  This is necessary for R to serve as an 

expansion coefficient increasing the step size within the expanding layer, 

consequently increasing the overall size of the air gap.   Hereafter, this derivation will 

be referred to as the “R method.”   

Using the finite-difference method discussed previously gives the left hand 

side of Equation 3.15 as 

!"!!∆!!
!"
!" !

≈ !"!!∆!!
!!∗ − !!
∆!  

          (3.15) 

Where  

!"!! =
!"!! !

+ !"!! !!!
2  

          (3.16) 

Note that R=1 for any node outside of the expanding layer because the size of the 

layer is not changing.  The right hand side may be treated as before with R coupled 

with the thermal conductivity resulting in 

 

!
!
!"
!"! !"

−
!
!
!"
!"! !"# !

≈
! ! !!!!" !"! !!!/! − ! ! !!" !"! !!!/!

∆!!
 

          (3.17) 
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Further expansion by Equations 2.5a and 2.5b as before gives 

!
!
!"
!"! !"

−
!
!
!"
!"! !"# !

≈
1
2

! ! !!! !!!!∗ − !!∗ − ! ! ! !!∗ − !!!!∗

∆!!

+
! ! !!! !!!! − !! − ! ! ! !! − !!!!

∆!!
 

          (3.18) 

Now Equation 3.15 may be written as 

!!∗ − !!
∆! =

1
2!"!!∆!!

! ! !!! !!!!∗ − !!∗ − ! ! ! !!∗ − !!!!∗

∆!!

+
! ! !!! !!!! − !! − ! ! ! !! − !!!!

∆!!
 

          (3.19) 

Rearranging Equation 3.20 to separate the temperature terms for each node and 

equating the current and previous time steps yields Equation 2.8, but with different F 

values 

 

−
!!∆!
2∆!!!

!!!!∗ + 1+
!!∆!
2∆!!!

!!∗ −
!!∆!
2∆!!!

!!!!∗

=
!!∆!
2∆!!!

!!!! + 1−
!!∆!
2∆!!!

!! +
!!∆!
2∆!!!

!!!!  

          (2.8) 
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Where  !! =
!!
!"!!

 

  !! =
!!! ! ! !!!

!"!!
 

  !! =
! ! !!!
!"!!

 

For the last node of the layer previous to the expanding layer.  Note that thermal 

conductivity and R are coupled for the succeeding node, which is the introduction to 

the expanding layer.  For the last node of the expanding layer 

 

  !! =
! ! !
!"!!

 

  !! =
! ! !!!!!!

!"!!
 

  !! =
!!!!
!"!!

 

 

Where thermal conductivity and R are coupled for the current node n whose first half 

is contained in the expanding layer.  Note that for all nodes within the layer, the value 

of ! !  is constant and there is no need to average the term !"!!.  As a result, the R 

term may be moved to the denominator and the F values within the expanding layer 

are given by 

  !! =
!

!!!!!
 

  !! =
!!

!!!!!
 

  !! =
!

!!!!!
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This method alters the F values for the appropriate nodes associated with the 

expanding layer prior to establishing the a, b, and c vectors that go in to the solver.  

Therefore, these vectors and the tri-diagonal solver need not be changed to 

accommodate the expanding air gap.   

Refer back to Figure 2.3 to visualize the need for keeping the R in two 

separate terms.  Consider the last node previous to the expanding air gap, the last 

node of Layer i.  The half of the node to the right of the dotted line must be expanded 

as the air gap expands.  An R is coupled with density and specific heat because these 

values are averaged for all three F values as shown in Equation 3.17.  In this case, F1 

needs an R in the denominator to stretch the spatial resolution related with the 

expanding layer.  However, the thermal conductivity at this point is not linked to the 

expanding layer and need not include an R value.  In contrast, F2 and F3 have thermal 

conductivities associated with the expanding layer.  This is captured by coupling the 

thermal conductivity of Layer i+1 with R.  The final node in the expanding layer 

behaves similarly with the left hand side of the node needing to be expanded.  These 

boundary conditions must be defined rigorously to provide an accurate assessment of 

the heat transfer through the expanding air gap.  Note that all F values are established 

individually for each node as outlined. 
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3.3 Time Constant Validation 

 Further investigation of the results of the R method presented above shows 

that the rate of heat transfer through the firefighter protective clothing is characterized 

by a time constant.  This time constant is a perfect representation of the intention of 

this research.  The expanding air gap is intended to increase the time it takes for the 

heat flux to pass through the firefighter protective clothing and reach the skin of the 

firefighter.  This time constant describes how the expanding layer is slowing the 

advance of the heat wave through the protective clothing.   

 The time constant is related to real time by 

!" =
1
!! !" 

          (3.20) 

Integrating over time gives 

! =
1
!! !"

!

!
 

          (3.21) 

Recall the second mathematical validation of the program by means of an 

explicit solution with a 2 mm air gap confined between two layers of outer shells.  

This configuration was reproduced using the R method shown in Figure 3.10 

{Explicit.m page 71}.  The air gap begins with R = 1 because it is at its original size 

and H = H0.  If R is unchanged, ! is equal to ! and there is no change in the rate of 

heat transfer through the garments.  The two curves in Figure 3.10 give the 

temperature at the top of the first layer of outer shell and the bottom of the second 
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layer of outer shell.  The temperature at the top of the first layer of outer shell 

matches that of Figure 2.5 as it should.  

 

Figure 3.10: Temperature of fabrics at boundaries confining the 2 mm air gap (R=1) 

 

 For the case of a constant ratio of R = 2, the air gap is swelled to twice its 

original size from the beginning resulting in a total gap size of 4 mm.  Equation 3.22 

becomes 

! =
1
!! !"

!

!
=

1
4!"

!

!
=
1
4 ! =

1
!! ! 

 

This means that if the real time for the case of R=2 is divided by R2, the solution 

should match that of a constant 4 mm air gap.  The solution to R = 2 and a 4 mm air 

gap are graphed together in Figure 3.11 {Explicit.m page 71}.  There is a slight 
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discrepancy between the solutions in the transient phase.  Its magnitude is considered 

negligible given the approximations of the finite-difference method and thermocouple 

errors accrued during the experiments discussed in Chapter 5.   

 

Figure 3.11: 4 mm air gap with R=2 altered by the time constant 

 

The rate at which the air gap expands depends on the training of the shape 

memory material and its activation temperatures.  For simplicity, consider a linear 

expansion of the air gap to illustrate this concept.  Let  

! = 1+ !" 

          (3.22) 

Where ! is the rate of increase of the size of the air gap.  The time constant τ 

becomes 
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! =
1

1+ !" ! !"
!

!
= −

1
! !" + 1 !

!

= −
1

! !" + 1 +
1
! =

!" + 1 − 1
! !" + 1

=
!"

! !" + 1 =
!

!" + 1 =
1
! ! 

This suggests that if the results for a linearly expanding air gap from 2 to 4 mm are 

altered by a time constant of !
!
, the curve should overlap that of a constant 4 mm air 

gap once the expansion is complete.  These curves are presented in Figure 3.12 

{Explicit_Rlinear.m page 75}.  There is a slight discrepancy in the transient phase as 

the surface temperatures for the expanding case are higher.  Such would be expected 

as the expanding air gap is still approaching 4 mm at this time.  The two curves 

converge at steady state.  Observe how the temperature profile of the first garment 

begins to increase like the 2 mm test, but is pushed down to the 4 mm steady state.  

 
Figure 3.12: 4 mm air gap with linearly expanding 2 mm air gap (R from 1 to 2) 
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Chapter 4: Experiments 

 Laboratory experiments were conducted to compare the output of the 

MATLAB program to the actual performance of firefighter protective clothing.  The 

main goal of this testing was to validate the program’s ability to predict the 

performance of various configurations of turnout gear.  Testing was conducted atop a 

guarded sweat plate so that the test setup could accommodate testing on the effects of 

moisture content within the gear that was occurring concurrently.  The sweat plate 

was not engaged during air gap testing.   

A Chromalox 3.6 kW radiant heater was selected as the heat source for testing 

the firefighter protective clothing.  This heater was chosen for its temperature range 

and easy mounting ability.  A heater stand was constructed out of 80/20 T-slot steel 

for easy adjustments to heater elevation.  Sheets of marinite were cut and wrapped in 

aluminum foil to serve as heat shields to the guarded sweat plate and the table.  A 

picture of the heater assembly is shown below in Figure 4.1.  The top sheet of 

marinite has a ten inch square hole below the heater exposing the test garments to the 

heat source.  Figure 4.2 has the top sheet of marinite removed showing where the test 

fabrics are placed.  The top marinite shield was not used for testing presented in this 

thesis as it greatly affected the temperature output of the thermocouples.  The size of 

the heater and test garments was approximately one square foot.   
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Figure 4.1: Heater stand assembly 

 

 

 

Figure 4.2: Test fabric placement 
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 The heater was controlled by a Type J thermocouple probe, a system of 

microprocessors, and a solid state relay.  The thermocouple probe was mounted on 

the heater stand so that it was just below the surface of the heater as shown in    

Figure 4.3.  It was connected to an Ogden temperature controller pictured in      

Figure 4.4.  The desired temperature is shown by the green numbers, while the actual 

temperature is shown by the red numbers.  The controller was connected to a solid 

state relay as shown in Figure 4.5.  The relay was mounted to a sheet of aluminum 

with conductive paste to serve as a heat sink for the relay.  The relay was the interface 

between the heater and the power source, determining the proper flow of electricity to 

achieve the desired temperature at the thermocouple probe.  This system caused the 

heater to ramp up to a temperature slightly higher than the set temperature, and then 

oscillate about this value.  Such an effect is desirable since the exposure of the 

firefighter protective clothing during fire response activities varies with time. 

 

 

Figure 4.3: Thermocouple probe below surface of heater 



 

 43 
 

 

 

Figure 4.4: Temperature controller 

 

 

 

Figure 4.5: Solid state relay 

 

 



 

 44 
 

Various materials were available for testing, some of which were provided by 

Lion Apparel.  Pictured left to right are two outer shells of different colors, both 

treated with a water repellent, a quilted thermal liner, moisture barrier, second 

thermal liner, cotton shirt, and another outer shell.  In addition to validating the 

MATLAB code, this testing was also intended to compare the performance of 

different gear configurations.  Current gear on the market does not have a thermal 

liner between the moisture barrier and outer shell.  The aforementioned research on 

moisture content is exploring options for split thermal liners for better moisture 

management.  Since human skin is not available for testing, a layer of outer shell was 

sometimes used beneath the cotton to represent the skin layer.   

 

 

Figure 4.6: Test fabrics 
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 Type K thermocouples were used to track the temperature between each layer 

as a function of time.  A thermocouple diameter of 0.005 inches was chosen to 

minimize gaps between layers of garments during testing.  These thermocouples have 

an individual error of 2.2 degrees Celsius, but greater deviations were experienced 

[19].  Four thermocouples were placed near the center of the test garments as shown 

in Figure 4.7.  Data from every thermocouple was collected once per second.  The 

four thermocouples in a single layer were averaged for the temperature of that layer 

as a function of time.  An extra layer of fabric was placed over the thermocouples on 

top of the outer shell, which is the top layer of the general test assembly.  This extra 

layer of fabric served as a radiation shield to the thermocouples.  The program 

requires the outer and inner boundary conditions.  The thermocouples placed at the 

top and bottom of the garment assembly serve this purpose, allowing the program to 

predict the temperatures of the layers in between as a function of time. 

 

 

Figure 4.7: Thermocouple placement 
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 A metal frame was constructed to hold a constant air gap between two layers 

of material.  Kevlar thread was used to create a grid that suspended the upper layer of 

fabric.  The air gap support is shown below in Figure 4.8.  A single thread of Kevlar 

was used to create the grid.  The Kevlar always comes around the metal frame from 

the top so to create a level plane.  This air gap support provides data to validate the 

MATLAB program at steady state for the given air gap, which is approximately          

7 mm.  The metal frame is outside the exposure area of the garments.  Heat losses to 

the frame and Kevlar thread are not accounted for in the MATLAB program. 

 

 

Figure 4.8: Air gap support 
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Chapter 5:  Results 

 The MATLAB program developed yielded results consistent with the 

experimental findings.  For the case of dry materials with no air gaps, the program 

was able to capture the time dependent profile of the temperature between the layers 

with excellent agreement.  The introduction of the air gap presents an issue because 

this is a one-dimensional conduction based program.  As a result, the thermal 

insulation value of the air gap is over predicted by the program.  A method for 

calculating an effective thermal conductivity of air is presented that accounts for all 

three modes of heat transfer.  While the shape memory material was not yet available 

for testing, garments with the air gap support pictured in Figure 4.8 were conducted to 

validate the steady state results of an air gap.  

 Having validated the expansion theory and incurred time constant 

mathematically, it is necessary to compare the results of the program to results of 

physical testing of the firefighter protective clothing.  Two baselines tests will be 

presented in this section.  Both tests will be simulated by the MATLAB program for 

the expanding layer with R=1.  The first test will be conducted with no air gaps to 

confirm that the thermal properties of the materials and the program methodology are 

correct.  The second test introduces an air gap, and thusly the presence of radiation 

and convection.  Once the program has been validated for these baseline tests,  

Section 5.2 will present predictions for the performance of firefighter turnout gear 

with a variable air gap. 
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5.1 Baseline Tests 

 The baseline tests are intended to validate the program for steady state 

conditions.  Therefore, a simple arrangement of firefighter protective garments has 

been selected to remove extraneous uncertainties from the MATLAB simulations.  

Four layers of Fusion-black outer shells supplied by Lion Apparel were tested as 

shown in Figure 5.1.  The first test was conducted with no air gaps.  The results of 

this test are presented below in Figure 5.2 showing plus/minus two standard 

deviations of the thermocouple output for the interior layers.   

 

Figure 5.1: Garment configuration for baseline tests (air gap optional, not to scale) 

 

Figure 5.2: 4 Layers of fusion-black outer shell (no air gap) 

Outer Shell 1 
Outer Shell 2 

Air Gap 
Outer Shell 3 

 

Outer Shell 4 
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 The series “Inner Boundary” is the temperature underneath the garments 

between the bottom layer of outer shell and the surface of the guarded sweat plate.  

“Outer Boundary” is the surface temperature of the top layer of outer shell.  Recall 

that a fabric was placed over top of these thermocouples to block the effects of 

radiation.  Temperatures were taken between layers 1 & 2, and between layers 3 & 4 

(numbering beginning with the bottom layer of material).  Temperatures were not 

taken between layers 2 & 3 because this is the future location of the air gap.  The 

presence of the air gap allows for the thermocouple beads to move more freely 

between the layers and their temperature readings would likely be taken at different 

planes within the air gap.  By not addressing the temperature in the air gap these 

uncertainties have been eliminated. 

 The MATLAB program needs inner and outer boundary conditions.  These 

will be met by the series “Outer Boundary” and “Inner Boundary” respectively, taken 

from the test data presented in Figure 5.2.  The results of the MATLAB simulation 

for no air gap are graphed along with the test data in Figure 5.3 shown by the dashed 

lines {Basline_0.m page 79}.  The predicted temperatures are within the error range 

and show strong agreement with the test data.  Note that the MATLAB simulation 

matches the test data perfectly at steady state.  This confirms that the material 

properties used for the outer shells are correct. 
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Figure 5.3: MATLAB comparison (no air gap) 

 

 This test was repeated with a 7 mm air gap located between the second and 

third layers of outer shells.  The results of this test are presented in Figure 5.4.  Where 

the previous test had a maximum temperature difference between the two temperature 

readings within the garments of approximately 50 degrees Celsius, introducing the    

7 mm air gap increased this temperature difference by 50%.  This is a representation 

of the desired effect of introducing air gaps to the firefighter protective clothing.  The 

test data presented in Figure 5.4 has an exposure temperature 10 degrees higher than 

the data in Figure 5.2.  However, there is no increase in temperature at the inner 

boundary.  Therefore, introducing an air gap to the firefighter protective clothing 

should allow the firefighter to be exposed to increased temperatures without increased 

effects at the skin level. 
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Figure 5.4: 4 Layers of fusion-black outer shell (7mm air gap) 

 

 Before the MATLAB program can be used to simulate the test configuration 

with the 7 mm air gap, the program must be expanded to treat the air gap as more 

than a simple conduction layer.  Torvi et al suggests using an effective thermal 

conductivity of air that accounts for the impact of radiation and convection within the 

air gap [10].  The expression for the effective thermal conductivity of the air gap has 

been modified to fit this configuration as 

!!"" =
! !!! + !!! !! + !!

!!
!!

1− !!
!!

+ 1
!" + 1− !!!!

+ ℎ ! 

          (5.1) 

Where  ! = Stefan-Boltzmann Constant (5.67×10-8 W/m2-K4) 

  T = Temperature (K) 

  A = Area of the fabric 

  ! = Emmissivity of the fabric 
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  !" = View factor 

  h = Convective heat transfer coefficient (W/m2-K) 

  ! = Thickness of the air gap (m) 

The subscripts h and c refer to hot and cold, respectively.  In this test configuration, 

the hot fabric would be the bottom of layer 3 and the cold fabric would be the top of 

layer 2.  These are the locations confining the air gap.  The area of the test fabrics are 

equal so the area ratio is 1 and can be removed from the equation.  An emissivity of 

0.9 is used for the fabric.  The view factor for two parallel plates centered with each 

other is given as [15] 

!" =
!! +!! ! + 4 !/! − !! −!!

! + 4 !/!

2!!
 

          (5.2) 

Where  !! =!! =
!!"#!  !"  !"#$%&

!"#$%&'(  !"#$""%  !"#$%&'
= !.!"#$  !

!
 

 

In this case, H, or the size of the air gap, is 0.007 m.  The result is a view factor of 

approximately 0.98.  The convective heat transfer coefficient is  

ℎ =
!!"#
!  

          (5.3) 

Equation 5.1 is calculated in the MATLAB program for each iteration.  

Equations 5.2 and 5.3 are also calculated in the MATLAB program.  The boundary 

conditions were taken from the test data in Figure 5.4.  Despite utilizing the effective 

thermal conductivity of the air gap, the MATLAB simulation still over predicts the 

thermal resistance of the air gap.  This alteration of the thermal conductivity is an 
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effort to synchronize the test data and MATLAB results.  Factors such as sagging and 

heat losses to the metal frame and Kevlar thread are likely causes of this discrepancy.  

The results of the MATLAB simulation for a 7 mm air gap using the expression for 

the effective thermal conductivity of air are presented in Figure 5.5 along with the 

original test data {Baseline_7.m page 82}.  

 

Figure 5.5: MATLAB comparison (7 mm air gap) 

 

 Altering the thermal conductivity of the air gap has yielded sufficient 

agreement between the test data and the MATLAB simulation.  The test data and 

MATLAB simulation converge at steady state confirming that the expression for the 

effective thermal conductivity of air yields a reasonable value.  The program is 

capable of producing the trend seen by adding the air gap to the test configuration.  

These baseline tests show that with R=1, the program predicts the temperature 

profiles of the firefighter protective clothing with and without an air gap to 

appropriate levels of accuracy.   
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5.2 Introduction of the Variable Air Gap 

 The MATLAB program for the variable air gap has now been validated 

mathematically to account for the time constant incurred from the mathematical 

derivations of the expanding air gap, as well as baseline tests performed on actual 

samples of firefighter protective clothing.  At this time, it is appropriate to extend the 

program to predict the performance of more diverse configurations of firefighter 

protective clothing and different methods of expansion.   

 The first series of tests uses a ramping function developed by Spangler during 

his research of firefighter exposure temperatures [8].  It begins at a core body 

temperature of 37 degrees Celsius (310 K) and ramps up to a maximum exposure of 

450 degrees Kelvin.  This simulation was conducted on a six layer model consisting 

of a layer of skin, a cotton shirt, air gap, thermal liner, moisture barrier, and outer 

shell.  The temperature of the air gap is not graphed in any subsequent figures.  The 

surface temperature of the 5 other layers is graphed with time.  With R=1, this test 

was conducted for an air gap of 1 mm and 7 mm to compare the difference.   

The results of these two simulations are presented in Figures 5.6 and 5.7 

{6Layer_Ramping.m page 87}.  Observation of these figures show the benefit of an 

increased air gap with decreased temperatures felt at the cotton shirt and skin 

surfaces.  Human skin tends to experience burns at approximately 44 degress Celsius 

(317 K) [20].  With an air gap of 1 mm, the skin reaches the burn temperature in 154 

seconds.  With the 7 mm air gap, this time is delayed to 190 seconds.  Given the 

relatively short exposure times during firefighter response activities, an added 36 

seconds of exposure without experiencing burns would be a benefit to the firefighter.  
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Figure 5.6: 6 Layer configuration with 1 mm air gap and ramping function (R=1) 

 

Figure 5.7: 6 Layer configuration with 7 mm air gap and ramping function (R=1) 
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 Figure 5.8 is a sample of the exposure temperatures experienced by 

firefighters during a house fire in February of 2010.  This data was collected by 

attaching thermocouples to the shoulder straps of a firefighter SCBA with continuous 

data collection.  For this exposure, the temperature readings for the left and right 

shoulder were very consistent.  A running average is presented below.  The rate of 

temperature rise is very similar to the ramping function developed by Spangler.  

However, there is a sharp decline after the peak temperature reflecting the 

suppression of the fire.  This figure represents why the focus of this research is on the 

transient phase for short durations. 

 

 

Figure 5.8: Firefighter exposure temperature from house fire 
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 Over the course of this research, it was not feasible to combine the expanding 

air gap with a changing exposure boundary condition.  Since the expanding layer 

introduces a time constant, it is necessary to treat the time constant and real time 

separately.  For the expanding layer, the program would have to calculate the time 

constant and appropriate point in real time.  Then find the input value at that time and 

perform the heat transfer calculations through the different layers of firefighter 

protective clothing assigned in the program.  On the following time step, the change 

in the time constant would have to be calculated and the process repeated.  The 

MATLAB software was not found to have an efficient way of performing this 

process. 

 As a result, the following simulations will consist of a constant boundary 

condition.  These calculations will not be performed under normalized temperature 

conditions in order to satisfy the expression for the effective thermal conductivity of 

the air gap.  Using the same 6 layer configuration discussed previously, observe now 

the results of a constant exposure of 410 degrees Kelvin.  This offers a 100 degree 

temperature difference between the core temperature and the exposure temperature.  

The results for a constant air gap of 1 mm are presented in Figure 5.9, and that of a    

7 mm air gap in Figure 5.10 {410_Exposure.m page 92}.  With the increased air gap, 

the temperature of the layers above the air gap have been increased, while the 

temperature of the layers below the air gap have been decreased.  This is clearly a 

desireable effect for the condition of the firefighter.   
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Figure 5.9: 6 Layer configuration with 1 mm air gap and 410 K exposure (R=1) 

 

Figure 5.10: 6 Layer configuration with 7 mm air gap and 410 K exposure (R=1) 
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 Now consider an air gap that is linearly expanding from 1 mm to 7 mm in 

approximately one minutes time.  As discussed in Section 3.3, this process introduces 

a time constant of 1/R.  The simulation is fairly consistent with the results of the        

7 mm air gap.  Given the discrepancies between the MATLAB simualtion and the test 

results for the 7 mm air gap presented in Section 5.1, these inconsistencies are 

negligible.  The important concept is the impact of the variable air gap.  Without the 

added protection of the increasing air gap, the skin temperature approaches 320 

degrees Kelvin, leading to certain skin damage.  The introduction of the variable air 

gap decreases the skin temperature at steady state, but more importantly increases the 

time it takes for burn conditions to reach the skin level.   

 

Figure 5.11: 6 layer configuration with linearly expanding 1 mm air gap                  
and 410 K exposure (R from 1 to 7) 
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 Further examination of the surface temperature of the skin for the previous 

three scenarios demonstrates the impact of the variable air gap.  Figure 5.12 graphs 

the skin temperature during the transient phase for the 1 mm, 7 mm, and expanding 

air gap simulations with a constant expousure of 410 K.  Observe how the skin 

temperature for the case of the expanding layer is initially consistent with that of the  

1 mm air gap.  As the air gap expands, the temperature of the skin surface is 

decreased to the temperature experienced during the 7 mm simulation.  This exercise 

captures how the size of the air gap is changing from 1 mm to 7 mm.  

 

 

Figure 5.12: Skin temperature during transient phase 
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Chapter 6:  Conclusions 

 Despite improved research and development behind the manufacturing of 

today’s firefighter protective clothing, firefighters are still experiencing thousands of 

injuries in the line of duty.  While the very nature of their work renders injuries 

inevitable, improved firefighter protective clothing can reduce the number of fire 

response injuries.  One method of improving the thermal performance of firefighter 

protective clothing is to incorporate a shape memory material that is temperature 

activated.  The shape memory material would help to create and maintain an air gap 

within the gear.  The high thermal resistance of air and the lightweight of the shape 

memory material make this a desirable combination for improving firefighter turnout 

gear.   

The industry currently lacks computational models to predict the performance 

of new configurations of firefighter protective clothing.  A MATLAB program has 

been developed to calculate the heat transfer through user prescribed layers of turnout 

gear.  The program uses a Crank-Nicolson finite-difference method to transfer the 

governing equations into a nodal system.  A tri-diagonal solver was developed to 

solve the resulting system of equations.  This program was validated against a closed 

form solution for a homogeneous material, as well as an explicit solution for a multi-

layered configuration.   

 The introduction of a variable air gap produces new boundary conditions and 

limitations of the program.  The work presented provides a method of expanding the 

size of the nodes that make up the air gap, therefore increasing the overall size of the 

air gap.  In doing so, standard forms of the heat transfer equation do not apply 
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because the governing equation must consider both the change in thermal properties 

from layer to layer and the expansion of nodes associated with the variable air gap.  

Derivations began at the basic energy conservation equation where the energy stored 

is equal to the heat flux in less the heat flux out.  Several mathematical 

transformations occurred to relate the expansion of the layer to a ratio of the size of 

the air gap at any point in time to its initial size.  The nodes bounding the expanding 

layer need careful consideration because not only do the thermal properties differ 

from one half to the other, but one half is growing in size.   

 The mathematical transformations made to shift the time dependency from the 

size of the air gap to the ratio R introduces a time constant.  Therefore, the 

transformation occurs in terms of the time constant τ rather than actual time.  This 

time constant is of great interest because it is a representation of how the expanding 

air gap slows the heat transfer through the garments.  A larger time constant implies a 

greater reduction in the rate of heat transfer through the materials.  It is important to 

note that the time constant is not the cause of the decreased rate of heat transfer, but a 

mechanism by which this effect may be assessed.  Using the current MATLAB 

program, the exposure temperature is limited to a constant value when the time 

constant is involved. 

 Baseline tests were performed to confirm that the results of the mathematical 

simulations of the MATLAB program are consistent with the actual performance of 

the firefighter protective clothing.  Samples were provided by Lion Apparel and 

subjected to a radiant heat flux.  Temperature recordings were taken between each 

layer of material using 0.005 inch Type K thermocouples.  These very small 
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thermocouples helped ensure there were no air gaps between the different layers of 

materials, but produced somewhat inconsistent data for the temperature of each layer 

as evident by error bars in excess of 10 degrees Celsius.    

 The MATLAB program displayed excellent agreement with tests of the 

firefighter garments in the absence of air gaps.  The predicted rate of temperature rise 

of the layers was consistent between the tests and the simulations.  The two data sets 

converged at steady state confirming that the material properties used were correct.  

The introduction of the air gap posed a significant obstacle to this one-dimensional 

heat transfer simulation.  An effective thermal conductivity of the air gap was used to 

consider the effects of radiation and convection.  While the results of the simulation 

were within the range of error of the test data, the program tends to over predict the 

thermal insulation value of the air gap.   

 The research presented in this thesis confirms that the presence of air gaps 

within firefighter protective clothing can enhance the thermal performance of the 

gear.  Not only are lower temperatures experienced at the skin level through the 

addition of air gaps, but the time to reach skin burning conditions is elongated.  Since 

firefighters oftentimes experience harsh conditions for a short period of time, the 

addition of an extra 30 seconds to a minute of exposure without burns could greatly 

improve the safety of firefighters.  A lightweight, temperature activated shape 

memory material should be a highly considered candidate for achieving this effect. 

 While the research and baseline tests presented in this thesis capture the 

effects of introducing an air gap to the turnout gear configuration, more accurate 

testing of the materials should be pursued.  For the testing presented here, it is not 
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uncommon for thermocouples within one layer to vary by more than 10 degrees 

Celsius.  Also, a better method for introducing an air gap to the test gear 

configuration should be considered.  The current metal frame likely serves as a heat 

sink and the Kevlar grid is not impervious to sagging.   

 Most of the thermal properties used in this thesis were taken from NIST 

reports.  The thermal conductivity and specific heat of the materials were determined 

experimentally, while the thickness and density were measured.  There is a great 

discrepancy between the thicknesses of the materials reported by NIST and the 

physical thickness of the test garments supplied by Lion Apparel.  Testing should be 

conducted on these garments to determine their actual thermal properties.  Further, 

the materials do not lay perfectly flat which could increase the effective thickness of 

the materials.  A better understanding of the effective thickness of the test samples 

would greatly reduce the uncertainties associated with the MATLAB program.    

Testing of the firefighter protective clothing should be continued to include 

the presence of the shape memory material.  The possible configuration presented in 

Figure 3.7 should be tested, as well as that of Figure 3.8 and other configurations.  

Researchers should collaborate with firefighter protective clothing manufacturers to 

develop feasible methods of incorporating the shape memory material into current 

turnout gear designs.  Also, the shape memory material should be developed with 

various activation temperatures to see find a level of peak performance.   

More research is required to better understand the impact of an air gap on the 

thermal performance of firefighter protective clothing.  It would be interesting to 

explore the possibilities of addressing this issue as a convolution.  Layers of material 
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between the exposure condition and the air gap could be treated as one-dimensional 

conduction layers as performed in this research.  A heat flux would then be calculated 

from the hot layer confining the air gap to the cooler layer, which could be converted 

to a temperature at that surface.  Layers beneath the air gap could be treated in the 

same manner as those above the air gap.  This approach seems promising because the 

MATLAB program has shown excellent agreement with test data for materials 

without an air gap.  This method would remove the time constant and thermal 

conductivity issues experienced during this research.   
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Appendix A: Material Properties 

Layer Material Thermal 
Conductivity Density Specific 

Heat Thickness 

  W/m-K kg/m3 J/kg-K m 
Outer 
Shell PBI 0.073 321.8 890 0.0007976 

Moisture 
Barrier 

Nomex E89 
Crosstech 0.0479 143.1 1900 0.0009627 

Thermal 
Liner Aralite 0.0462 74.2 1620 0.00359 

Air 
Gap Air 0.0271 1.13 1005 Varies 

Cotton 
 Shirt Hanes 0.04 317 1500 0.00084 

Skin 
Layer Epidermis 0.21 1200 3558 0.003 

 
[4, 8] 
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Appendix B: MATLAB Codes 
 

%Tri-diagonal_Solver.m 
  
%[b_1 c_1        ][Tout_1]=[Tin_1] 
%[a_2 b_2 c_2    ][Tout_2]=[Tin_2] 
%[  a_3 b_3 c_3  ][Tout_3]=[Tin_3] 
%[   . . .       ][  .   ]=[ .   ]  
%[     . . .     ][  .   ]=[ .   ] 
%[       . . .   ][  .   ]=[ .   ] 
%[        a_n b_n][Tout_n]=[Tin_n] 
  
%Note: x and y are dummy arrays 
%      f array is overwritten by solution 
%      a, b and c are preserved 
  
function tempout= triaa(a,b,c,r) 
 m = length(b); 
  
 %forward sweep 
 for w = 2:(m) 
     a(w) = a(w)/(b(w-1)); 
     b(w) = b(w)-a(w)*c(w-1); 
     r(w) = r(w)-a(w)*r(w-1); 
 end 
  
 %backwards sweep 
 tempout(m) = r(m)/b(m); 
  
 for w = (m-1):-1:1 
     tempout(w) = (r(w)-c(w)*tempout(w+1))/b(w); 
 end 
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%Solver_Validation.m 
  
dt = 2; %sec 
dx = .000005; %m 
  
%define time 
total_time = 200; 
  
%defining iterations from times 
total_iterations = total_time/dt;  %total number of iterations 
  
%boundary conditions 
inner = 0; 
outer = 1; 
  
%total number of layers 
layers = 2; 
  
%establish thermal properties of each layer (innermost to outermost) 
  
    for i = 1  %Skin   
        k(i) = .21;            %W/m-K 
        density(i) = 1200;     %kg/m3 
        Csp(i) = 3558;         %J/kg-K 
        thickness(i) = 0.001;  %m 
    end 
     
    for i = 2  %Skin 
        k(i) = .21; 
        density(i) = 1200; 
        Csp(i) = 3558; 
        thickness(i) = 0.001; 
    end 
     
%establishing beginning and end node for each layer     
for i = 1 
    ys(i) = 2; 
    ye(i) = ys(i)+round(thickness(i)/dx)-1; 
end 
for I = 2:layers 
    ys(i) = ye(i-1)+1; 
    ye(i) = ys(i)+round(thickness(i)/dx)-1; 
end     
     
%define total thickness of all layers 
ntotal = ye(layers); 
  
%set all nodes equal to inner boundary condition 
for n = 1:ntotal 
    tempout(n) = inner; 
end 
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for p = 1:total_iterations 
    time(p) = p*dt; 
     
%establish thermal diffusivity within each layer 
for i = 1:layers 
    for n = ys(i):ye(i)-1 
        F1(n) = k(i)/(density(i)*Csp(i)); 
        F2(n) = 2*k(i)/(density(i)*Csp(i)); 
        F3(n) = k(i)/(density(i)*Csp(i)); 
    end 
     
    %average properties of the final node of each layer 
    for n = ye(i) 
        if i ~= layers 
           F1(n) =  

k(i)/(((density(i)*Csp(i))+(density(i+1)*Csp(i+1)))/2); 
           F2(n) =  

(k(i)+k(i+1))/(((density(i)*Csp(i))+(density(i+1)* 
Csp(i+1)))/2); 

           F3(n) =  
k(i+1)/(((density(i)*Csp(i))+(density(i+1)*Csp(i+1)))/2) 

        else 
            
        end 
    end 
end 
  
 %defining a,b,c vectors 
 a(1) = 0; 
 b(1) = 1; 
 c(1) = 0; 
 a(ntotal) = 0; 
 b(ntotal) = 1; 
 c(ntotal) = 0; 
  
 for n = 2:ntotal-1 
     a(n) = (-F1(n)*dt)/(2*dx*dx); 
     b(n) = 1+(F2(n)*dt)/(2*dx*dx); 
     c(n) = (-F3(n)*dt)/(2*dx*dx); 
      
     ap(n) = (F1(n)*dt)/(2*dx*dx); 
     bp(n) = 1-(F2(n)*dt)/(2*dx*dx); 
     cp(n) = (F3(n)*dt)/(2*dx*dx); 
      
     %define right hand side for the tri-diagonal solver 
     r(1) = inner; 
     r(n) = ap(n)*tempout(n)+bp(n)*tempout(n)+cp(n)*tempout(n); 
     r(ntotal) = outer; 
 end 
  
    %invoke tri-diagonal solver 
    tempout = triaa(a,b,c,r); 
    tempout(1) = inner; 
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    %establish graphing points 
    for n = 2:ntotal-1   
        output(p,n) = tempout(n);  %every node at each time step 
        temp_Skin(p) = tempout(ye(1));  %midpoint of skin 
         
    end 
end 
  
%graph properties 
figure (1) 
grid on 
axis([0 total_time 0 1]); 
hold on 
plot(time,temp_Skin,'k');  
title('Temperature of Layers'); 
xlabel('Time(sec)'); 
ylabel('Temperature (K)'); 
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%Explicit.m 
  
dt = .1; %sec 
dx = .00001; %m 
  
%define time 
total_time = 10; 
  
%defining iterations from times 
total_iterations = total_time/dt;   %total number of iterations 
  
%boundary conditions 
inner = 0; 
outer = 1; 
  
%total number of layers 
layers = 3; 
  
%establish thermal properties of each layer (innermost to outermost) 
  
    for i = 1 %PBI 
        k(i) = 0.073;           %W/m-K 
        density(i) = 321.8;     %kg/m3 
        Csp(i) = 890;           %J/kg-K 
        thickness(i) = 0.0008;  %m 
    end 
     
    for i = 2 %Air 
        k(i) = 0.0271; 
        density(i) = 1.13; 
        Csp(i) = 1005; 
        thickness(i) = 0.002; %0.004 for 4 mm case 
    end 
     
    for i = 3 %PBI 
        k(i) = 0.073; 
        density(i) = 321.8; 
        Csp(i) = 890; 
        thickness(i) = 0.0008; 
    end 
     
%establish beginning and end node for each layer 
for i = 1 
    ys(i) = 2; 
    ye(i) = ys(i)+round(thickness(i)/dx)-1; 
end 
for i = 2:layers 
    ys(i) = ye(i-1)+1; 
    ye(i) = ys(i)+round(thickness(i)/dx)-1; 
end     
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%define total thickness of all layers 
ntotal = ye(layers);     
  
%set all nodes equal to inner boundary condition 
for n = 1:ntotal 
    tempout(n) = inner; 
end 
  
for p = 1:total_iterations 
     
    %R must equal 1 for explicit solution validation 
    R = 1 ;  %establish constant R 
    trackR(p) = R;  %storing R to recall previous values for solver 
     
    time(p) = (p*dt)/(R^2);  %establish time 
  
%establish thermal diffusivity within each layer     
for i = 1:layers 
    for n = ys(i):ye(i)-1 
        F1(n) = k(i)/(density(i)*Csp(i)); 
        F2(n) = 2*k(i)/(density(i)*Csp(i)); 
        F3(n) = k(i)/(density(i)*Csp(i)); 
    end 
end 
     
    %average properties of the final node of each layer 
    for i = 1 
    for n = ye(1) 
           F1(n) =  

k(i)/(((density(i)*Csp(i))+(density(i+1)*Csp(i+1)* 
trackR(p)))/2); 

           F2(n) =  
(k(i)+(k(i+1)/trackR(p)))/(((density(i)*Csp(i))+ 
(density(i+1)*Csp(i+1)*trackR(p)))/2); 

           F3(n) =  
(k(i+1)/trackR(p))/(((density(i)*Csp(i))+(density(i+1)* 
Csp(i+1)*trackR(p)))/2); 

    end 
    end 
 
    for i = 2 
    for n = ye(2) 
           F1(n) =  

(k(i)/trackR(p))/(((density(i)*Csp(i)*trackR(p))+ 
(density(i+1)*Csp(i+1)))/2); 

           F2(n) =  
((k(i)/trackR(p))+k(i+1))/(((density(i)*Csp(i)* 
trackR(p))+(density(i+1)*Csp(i+1)))/2); 

           F3(n) =  
k(i+1)/(((density(i)*Csp(i)*trackR(p))+(density(i+1)* 
Csp(i+1)))/2); 

    end 
    end 
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for n = 2:ntotal-1 
    %alter F values for the expanding layer 
     if ys(2)<= n <ye(2) && p>1 
         F1new(n)=F1(n)/(trackR(p)^2); 
         F2new(n)=F2(n)/(trackR(p)^2); 
         F3new(n)=F3(n)/(trackR(p)^2); 
         F1old(n)=F1(n)/(trackR(p-1)^2); 
         F2old(n)=F2(n)/(trackR(p-1)^2); 
         F3old(n)=F3(n)/(trackR(p-1)^2); 
          
    %F values for all other layers remain the same 
     else 
         F1new(n)=F1(n); 
         F2new(n)=F2(n); 
         F3new(n)=F3(n); 
         F1old(n)=F1(n); 
         F2old(n)=F2(n); 
         F3old(n)=F3(n); 
     end 
      
     %define initial a,b, and c vectors 
     a(1) = 0; 
     b(1) = 1; 
     c(1) = 0; 
     a(ntotal) = 0; 
     b(ntotal) = 1; 
     c(ntotal) = 0; 
      
     %define a, b, and c vectors for subsequent iterations 
     a(n) = (-F1new(n)*dt)/(2*dx*dx); 
     b(n) = 1+(F2new(n)*dt)/(2*dx*dx); 
     c(n) = (-F3new(n)*dt)/(2*dx*dx); 
      
     ap(n) = (F1old(n)*dt)/(2*dx*dx); 
     bp(n) = 1-(F2old(n)*dt)/(2*dx*dx); 
     cp(n) = (F3old(n)*dt)/(2*dx*dx); 
      
     %define right hand side for the tri-diagonal solver 
     r(1) = inner; 
     r(n) = ap(n)*tempout(n-1)+bp(n)*tempout(n)+cp(n)*tempout(n+1); 
     r(ntotal) = outer; 
end 
     
    %invoke tri-diagonal solver 
    tempout = triaa(a,b,c,r); 
    tempout(1) = inner;    
     
    %establish graphing points     
    for n = 2:ntotal-1 
        output(p,n) = tempout(n); %every node at each time step 
        temp_innershell(p) = tempout(ye(1)); %top of inner layer 
        temp_outershell(p) = tempout(ys(3)); %bottom of outer layer 
    end 
end 
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%graph properties 
figure (1) 
grid on 
axis([0 10 0 1]); 
hold on 
plot(time,temp_innershell,'g'); 
plot(time,temp_outershell,'r'); 
title('Temperature of Layers'); 
xlabel('Time (sec)'); 
ylabel('Normalized Temperature'); 
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%Explicit_Rlinear.m 
  
dt = .1; %sec 
dx = .00001; %m 
  
%define time 
total_time = 200; %input increased due to time constant 
  
%defining iterations from times 
total_iterations = total_time/dt;   %total number of iterations 
  
%boundary conditions 
inner = 0; 
outer = 1; 
  
%total number of layers 
layers = 3; 
  
%establish thermal properties of each layer (innermost to outermost) 
  
    for i = 1 %PBI          
        k(i) = 0.073;           %W/m-K 
        density(i) = 321.8;     %kg/m3 
        Csp(i) = 890;           %J/kg-K 
        thickness(i) = 0.0008;  %m 
    end 
     
    for i = 2 %Air 
        k(i) = 0.0271; 
        density(i) = 1.13; 
        Csp(i) = 1005; 
        thickness(i) = 0.002; 
    end 
     
    for i = 3 %PBI 
        k(i) = 0.073; 
        density(i) = 321.8; 
        Csp(i) = 890; 
        thickness(i) = 0.0008; 
    end 
     
%establish beginning and end node for each layer 
for i = 1 
    ys(i) = 2; 
    ye(i) = ys(i)+round(thickness(i)/dx)-1; 
end 
for i = 2:layers 
    ys(i) = ye(i-1)+1; 
    ye(i) = ys(i)+round(thickness(i)/dx)-1; 
end     
  
%define total thickness of all layers 
ntotal = ye(layers);     
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%set all nodes equal to inner boundary condition 
for n = 1:ntotal 
    tempout(n) = inner; 
end 
  
for p = 1:total_iterations 
     
    B = 0.01; 
     
    R = min(1+B*p, 2);  %method for increasing R from 1 to 2 
    trackR(p) = R;  %storing R to recall previous values for solver 
     
    time(p) = (p*dt)/trackR(p);  %establish time 
  
%establish thermal diffusivity within each layer     
for i = 1:layers 
    for n = ys(i):ye(i)-1 
        F1(n) = k(i)/(density(i)*Csp(i)); 
        F2(n) = 2*k(i)/(density(i)*Csp(i)); 
        F3(n) = k(i)/(density(i)*Csp(i)); 
    end 
end 
     
    %average properties of the final node of each layer 
    for i = 1 
    for n = ye(1) 
           F1(n) =  

k(i)/(((density(i)*Csp(i))+(density(i+1)*Csp(i+1)* 
trackR(p)))/2); 

           F2(n) =  
(k(i)+(k(i+1)/trackR(p)))/(((density(i)*Csp(i))+ 
(density(i+1)*Csp(i+1)*trackR(p)))/2); 

           F3(n) =  
(k(i+1)/trackR(p))/(((density(i)*Csp(i))+(density(i+1)* 
Csp(i+1)*trackR(p)))/2); 

    end 
    end 
    for i = 2 
    for n = ye(2) 
           F1(n) =  

(k(i)/trackR(p))/(((density(i)*Csp(i)*trackR(p))+ 
(density(i+1)*Csp(i+1)))/2); 

           F2(n) =  
((k(i)/trackR(p))+k(i+1))/(((density(i)*Csp(i)* 
trackR(p))+(density(i+1)*Csp(i+1)))/2); 

           F3(n) =  
k(i+1)/(((density(i)*Csp(i)*trackR(p))+(density(i+1)* 
Csp(i+1)))/2); 

    end 
    end 
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for n = 2:ntotal-1 
    %alter F values for the expanding layer 
     if ys(2)<=n<ye(2) && p>1 
         F1new(n)=F1(n)/(trackR(p)^2); 
         F2new(n)=F2(n)/(trackR(p)^2); 
         F3new(n)=F3(n)/(trackR(p)^2); 
         F1old(n)=F1(n)/(trackR(p-1)^2); 
         F2old(n)=F2(n)/(trackR(p-1)^2); 
         F3old(n)=F3(n)/(trackR(p-1)^2); 
          
    %F values for all other layers remain the same 
     else 
         F1new(n)=F1(n); 
         F2new(n)=F2(n); 
         F3new(n)=F3(n); 
         F1old(n)=F1(n); 
         F2old(n)=F2(n); 
         F3old(n)=F3(n); 
     end 
      
     %define initial a,b, and c vectors 
     a(1) = 0; 
     b(1) = 1; 
     c(1) = 0; 
     a(ntotal) = 0; 
     b(ntotal) = 1; 
     c(ntotal) = 0; 
      
     %define a, b, and c vectors for subsequent iterations 
     a(n) = (-F1new(n)*dt)/(2*dx*dx); 
     b(n) = 1+(F2new(n)*dt)/(2*dx*dx); 
     c(n) = (-F3new(n)*dt)/(2*dx*dx); 
      
     ap(n) = (F1old(n)*dt)/(2*dx*dx); 
     bp(n) = 1-(F2old(n)*dt)/(2*dx*dx); 
     cp(n) = (F3old(n)*dt)/(2*dx*dx); 
      
     %define right hand side for the tri-diagonal solver 
     r(1) = inner; 
     r(n) = ap(n)*tempout(n-1)+bp(n)*tempout(n)+cp(n)*tempout(n+1); 
     r(ntotal) = outer; 
end 
     
    %invoke tri-diagonal solver 
    tempout = triaa(a,b,c,r); 
    tempout(1) = inner;    
     
    %establish graphing points     
    for n = 2:ntotal-1 
        output(p,n) = tempout(n); %every node at each time step 
        temp_innershell(p) = tempout(ye(1)); %top of inner layer 
        temp_outershell(p) = tempout(ys(3)); %bottom of outer layer 
    end 
end 
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%graph properties 
figure (1) 
grid on 
axis([0 10 0 1]); 
hold on 
plot(time,temp_innershell,'g'); 
plot(time,temp_outershell,'r'); 
title('Temperature of Layers'); 
xlabel('Time (sec)'); 
ylabel('Normalized Temperature'); 
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%Baseline_0.m 
  
dt = 1; %sec 
dx = .00001; %m 
  
%define time 
total_time = 600; 
  
%defining iterations from times 
total_iterations = total_time/dt;   %total number of iterations 
  
%boundary conditions from test data 
inner = xlsread('0mmgap.xls','A2:A632'); 
outer = xlsread('0mmgap.xls','B2:B632'); 
  
%total number of layers 
layers = 4; 
  
%establish thermal properties of each layer (innermost to outermost) 
  
    for i = 1 %Fusion-Black 
        k(i) = 0.06;            %W/m-K 
        density(i) = 637;       %kg/m3 
        Csp(i) = 1600;          %J/kg-K 
        thickness(i) = 0.0004;  %m 
    end 
     
    for i = 2 %Fusion-Black 
        k(i) = 0.06; 
        density(i) = 637; 
        Csp(i) = 1600; 
        thickness(i) = 0.0004; 
    end 
     
    for i = 3 %Fusion-Black 
        k(i) = 0.06; 
        density(i) = 637; 
        Csp(i) = 1600; 
        thickness(i) = 0.0004; 
    end 
     
    for i = 4 %Fusion-Black 
        k(i) = 0.06; 
        density(i) = 637; 
        Csp(i) = 1600; 
        thickness(i) = 0.0004; 
    end 
     
%establish beginning and end node for each layer 
for i = 1 
    ys(i) = 2; 
    ye(i) = ys(i)+round(thickness(i)/dx)-1; 
end 
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for i = 2:layers 
    ys(i) = ye(i-1)+1; 
    ye(i) = ys(i)+round(thickness(i)/dx)-1; 
end     
  
%define total thickness of all layers 
ntotal = ye(layers);     
  
%set all nodes equal to inner boundary condition 
for n = 1:ntotal 
    tempout(n) = 22.9;  %average temperature at beginning of test 
end 
  
for p = 1:total_iterations 
     
    R = 1 ;  %establish constant R 
    trackR(p) = R;  %storing R to recall previous values for solver 
     
    time(p) = (p*dt)/(R^2);  %establish time 
     
    H = R*thickness(3); 
  
%establish thermal diffusivity within each layer     
for i = 1:layers 
    for n = ys(i):ye(i)-1 
        F1(n) = k(i)/(density(i)*Csp(i)); 
        F2(n) = 2*k(i)/(density(i)*Csp(i)); 
        F3(n) = k(i)/(density(i)*Csp(i)); 
    end 
     
    for n = ye(i) 
        if i ~= layers 
           F1(n) =  

k(i)/(((density(i)*Csp(i))+(density(i+1)*Csp(i+1)))/2); 
           F2(n) =  

(k(i)+k(i+1))/(((density(i)*Csp(i))+(density(i+1)* 
Csp(i+1)))/2); 

           F3(n) =  
k(i+1)/(((density(i)*Csp(i))+(density(i+1)*Csp(i+1)))/2) 

        else 
            
        end 
    end 
end 
  
for n=2:ntotal-1 
    %alter F values for the expanding layer 
     if ys(2)<= n <ye(2) && p>1 
         F1new(n) = F1(n)/(trackR(p)^2); 
         F2new(n) = F2(n)/(trackR(p)^2); 
         F3new(n) = F3(n)/(trackR(p)^2); 
         F1old(n) = F1(n)/(trackR(p-1)^2); 
         F2old(n) = F2(n)/(trackR(p-1)^2); 
         F3old(n) = F3(n)/(trackR(p-1)^2); 
          



 

 81 
 

    %F values for all other layers remain the same 
     else 
         F1new(n) = F1(n); 
         F2new(n) = F2(n); 
         F3new(n) = F3(n); 
         F1old(n) = F1(n); 
         F2old(n) = F2(n); 
         F3old(n) = F3(n); 
     end 
      
     %define initial a,b, and c vectors 
     a(1) = 0; 
     b(1) = 1; 
     c(1) = 0; 
     a(ntotal) = 0; 
     b(ntotal) = 1; 
     c(ntotal) = 0; 
      
     %define a, b, and c vectors for subsequent iterations 
     a(n) = (-F1new(n)*dt)/(2*dx*dx); 
     b(n) = 1+(F2new(n)*dt)/(2*dx*dx); 
     c(n) = (-F3new(n)*dt)/(2*dx*dx); 
 
     ap(n) = (F1old(n)*dt)/(2*dx*dx); 
     bp(n) = 1-(F2old(n)*dt)/(2*dx*dx); 
     cp(n) = (F3old(n)*dt)/(2*dx*dx); 
      
     %define right hand side for the tri-diagonal solver 
     r(1) = inner(p); 
     r(n) = ap(n)*tempout(n-1)+bp(n)*tempout(n)+cp(n)*tempout(n+1); 
     r(ntotal) = outer(p); 
end 
     
    %invoke tri-diagonal sover from trid.m 
    tempout = triaa(a,b,c,r); 
    tempout(1) = inner(p);    
     
    %establish graphing points     
    for n = 2:ntotal-1 
        output(p,n) = tempout(n); %every node at each time step 
        temp_innershell(p) = tempout(ye(1)); %top of inner layer 
        temp_outershell(p) = tempout(ye(3)); %bottom of outer layer 
    end 
end 
  
%graph properties 
figure (1) 
grid on 
axis([0 total_time 0 200]); 
hold on 
plot(time,temp_innershell,'g'); 
plot(time,temp_outershell,'r'); 
title('Temperature of Layers'); 
xlabel('Time (sec)'); 
ylabel('Temperature (K)'); 
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%Baseline_7.m 
  
dt = 1; %sec 
dx = .00001; %m 
  
%define time 
total_time = 600; 
  
%defining iterations from times 
total_iterations = total_time/dt;   %total number of iterations 
  
%boundary conditions from test data 
inner = xlsread('7mmgap_new.xls','A2:A632'); 
outer = xlsread('7mmgap_new.xls','B2:B632'); 
  
%total number of layers 
layers = 5; 
  
%establish thermal properties of each layer (innermost to outermost) 
  
    for i = 1 %Fusion-Black 
        k(i) = 0.06;            %W/m-K 
        density(i) = 637;       %kg/m3 
        Csp(i) = 1600;          %J/kg-K 
        thickness(i) = 0.0004;  %m 
    end 
     
    for i = 2 %Fusion-Black 
        k(i) = 0.06; 
        density(i) = 637; 
        Csp(i) = 1600; 
        thickness(i) = 0.0004; 
    end 
     
    for i = 3 %Air 
        ko(i) = 0.0271; 
        density(i) = 1.13; 
        Csp(i) = 1005; 
        thickness(i) = 0.007; 
    end 
     
    for i = 4 %Fusion-Black 
        k(i) = 0.06; 
        density(i) = 637; 
        Csp(i) = 1600; 
        thickness(i) = 0.0004; 
    end 
     
    for i = 5 %Fusion-Black 
        k(i) = 0.06; 
        density(i) = 637; 
        Csp(i) = 1600; 
        thickness(i) = 0.0004; 
    end 
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%establish beginning and end node for each layer 
for i = 1 
    ys(i) = 2; 
    ye(i) = ys(i)+round(thickness(i)/dx)-1; 
end 
for i = 2:layers 
    ys(i) = ye(i-1)+1; 
    ye(i) = ys(i)+round(thickness(i)/dx)-1; 
end     
  
%define total thickness of all layers 
ntotal = ye(layers);     
  
%set all nodes equal to inner boundary condition 
for n = 1:ntotal 
    tempout(n) = 27.2;  %average temperature at beginning of test 
end 
  
for p = 1:total_iterations 
     
    R = 1 ;  %establish constant R 
    trackR(p) = R;  %storing R to recall previous values for solver 
    time(p) = (p*dt)/(R^2);  %establish time 
     
    H = R*thickness(3); 
  
sig = 5.67*10^-8;  %stefan-boltzmann constant 
em = 0.9;   %emissivity of fabric 
wi = .3048;        %width of heater (m) 
l = H;             %size of air gap 
W = wi/l; 
VF = (sqrt(4*W^2+4)-2)/(2*W);  %view factor 
  
for i = 3 
    if p<2 
        k(i) = ko(i); 
        h = ko(i)/H; 
    else 
        h = ko(i)/H; 
        Th = tempout(ys(4))+273; %convert Celsius to Kelvin 
        Tc = tempout(ye(2))+273; 
        k(i) = 2*(((sig*(Th^2+Tc^2)*(Th+Tc))/(2*( 

(1-em)/em)+(1/VF)))+h)*H; 
    end 
end 
  
%establish thermal diffusivity within each layer     
for i = 1:layers 
    for n = ys(i):ye(i)-1 
        F1(n) = k(i)/(density(i)*Csp(i)); 
        F2(n) = 2*k(i)/(density(i)*Csp(i)); 
        F3(n) = k(i)/(density(i)*Csp(i)); 
    end 
end 
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    %average properties of the final node of each layer 
    for i = 1 
    for n = ye(1) 
        F1(n) =  

k(i)/(((density(i)*Csp(i))+(density(i+1)*Csp(i+1)))/2); 
        F2(n) =  

(k(i)+k(i+1))/(((density(i)*Csp(i))+(density(i+1)* 
Csp(i+1)))/2); 

        F3(n) =  
k(i+1)/(((density(i)*Csp(i))+(density(i+1)*Csp(i+1)))/2) 

    end 
    end 
     
    for i = 2 
    for n = ye(2) 
           F1(n) =  

k(i)/(((density(i)*Csp(i))+(density(i+1)*Csp(i+1)* 
trackR(p)))/2); 

           F2(n) =  
(k(i)+(k(i+1)/trackR(p)))/(((density(i)*Csp(i))+ 
(density(i+1)*Csp(i+1)*trackR(p)))/2); 

           F3(n) =  
(k(i+1)/trackR(p))/(((density(i)*Csp(i))+(density(i+1)* 
Csp(i+1)*trackR(p)))/2); 

    end 
    end 
  
    for i = 3 
    for n = ye(3) 
           F1(n) =  

(k(i)/trackR(p))/(((density(i)*Csp(i)*trackR(p))+ 
(density(i+1)*Csp(i+1)))/2); 

           F2(n) =  
((k(i)/trackR(p))+k(i+1))/(((density(i)*Csp(i)* 
trackR(p))+(density(i+1)*Csp(i+1)))/2); 

           F3(n) =  
k(i+1)/(((density(i)*Csp(i)*trackR(p))+(density(i+1)* 
Csp(i+1)))/2); 

    end 
    end 
  
    for i = 4 
    for n = ye(4) 
        F1(n) =  

k(i)/(((density(i)*Csp(i))+(density(i+1)*Csp(i+1)))/2); 
        F2(n) =  

(k(i)+k(i+1))/(((density(i)*Csp(i))+(density(i+1)* 
Csp(i+1)))/2); 

        F3(n) =  
k(i+1)/(((density(i)*Csp(i))+(density(i+1)*Csp(i+1)))/2) 

    end 
    end 
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for n = 2:ntotal-1 
    %alter F values for the expanding layer 
     if ys(2)<= n <ye(2) && p>1 
         F1new(n) = F1(n)/(trackR(p)^2); 
         F2new(n) = F2(n)/(trackR(p)^2); 
         F3new(n) = F3(n)/(trackR(p)^2); 
         F1old(n) = F1(n)/(trackR(p-1)^2); 
         F2old(n) = F2(n)/(trackR(p-1)^2); 
         F3old(n) = F3(n)/(trackR(p-1)^2); 
          
    %F values for all other layers remain the same 
     else 
         F1new(n) = F1(n); 
         F2new(n) = F2(n); 
         F3new(n) = F3(n); 
         F1old(n) = F1(n); 
         F2old(n) = F2(n); 
         F3old(n) = F3(n); 
     end 
      
     %define initial a,b, and c vectors 
     a(1) = 0; 
     b(1) = 1; 
     c(1) = 0; 
     a(ntotal) = 0; 
     b(ntotal) = 1; 
     c(ntotal) = 0; 
      
     %define a, b, and c vectors for subsequent iterations 
     a(n) = (-F1new(n)*dt)/(2*dx*dx); 
     b(n) = 1+(F2new(n)*dt)/(2*dx*dx); 
     c(n) = (-F3new(n)*dt)/(2*dx*dx); 
 
     ap(n) = (F1old(n)*dt)/(2*dx*dx); 
     bp(n) = 1-(F2old(n)*dt)/(2*dx*dx); 
     cp(n) = (F3old(n)*dt)/(2*dx*dx); 
      
     %define right hand side for the tri-diagonal solver 
     r(1) = inner(p); 
     r(n) = ap(n)*tempout(n-1)+bp(n)*tempout(n)+cp(n)*tempout(n+1); 
     r(ntotal) = outer(p); 
end 
     
    %invoke tri-diagonal solver 
    tempout = triaa(a,b,c,r); 
    tempout(1) = inner(p);    
     
    %establish graphing points     
    for n = 2:ntotal-1 
        output(p,n) = tempout(n); %every node at each time step 
        temp_innershell(p) = tempout(ye(1)); %top of inner layer 
        temp_outershell(p) = tempout(ye(4)); %bottom of outer layer 
    end 
end 
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%graph properties 
figure (1) 
grid on 
axis([0 total_time 0 200]); 
hold on 
plot(time,temp_innershell,'g'); 
plot(time,temp_outershell,'r'); 
title('Temperature of Layers'); 
xlabel('Time (sec)'); 
ylabel('Temperature (K)'); 
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%6Layer_Ramping.m 
  
dt = 1; %sec 
dx = .00001; %m 
  
%define time 
total_time = 600; 
  
%defining iterations from times 
total_iterations = total_time/dt;   %total number of iterations 
  
%boundary conditions 
inner = 310; 
outer = 450; 
  
%total number of layers 
layers = 6; 
  
%establish thermal properties of each layer (innermost to outermost) 
  
    for i = 1 %Skin  
        k(i) = 0.21;           %W/m-K 
        density(i) = 1200;     %kg/m3 
        Csp(i) = 3558;         %J/kg-K 
        thickness(i) = 0.003;  %m 
    end 
     
    for i = 2 %Cotton Shirt 
        k(i) = 0.04; 
        density(i) = 316; 
        Csp(i) = 1500; 
        thickness(i) = 0.00056; 
    end 
     
    for i = 3 %Air 
        ko(i) = 0.0271; 
        density(i) = 1.13; 
        Csp(i) = 1005; 
        thickness(i) = 0.001; %increased to 0.007 for 7 mm case 
    end 
     
    for i = 4 %Thermal Liner 
        k(i) = 0.0462; 
        density(i) = 74.2; 
        Csp(i) = 1620; 
        thickness(i) = 0.00359; 
    end 
     
    for i = 5 %Crosstech Moisture Barrier 
        k(i) = 0.0479; 
        density(i) = 143.1; 
        Csp(i) = 1900; 
        thickness(i) = 0.0009627; 
    end 
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    for i = 6 %PBI Outer Shell 
        k(i) = 0.073; 
        density(i) = 321.8; 
        Csp(i) = 890; 
        thickness(i) = 0.0007976; 
    end 
     
%establish beginning and end node for each layer 
for i = 1 
    ys(i) = 2; 
    ye(i) = ys(i)+round(thickness(i)/dx)-1; 
end 
for i = 2:layers 
    ys(i) = ye(i-1)+1; 
    ye(i) = ys(i)+round(thickness(i)/dx)-1; 
end     
  
%define total thickness of all layers 
ntotal = ye(layers);     
  
%set all nodes equal to inner boundary condition 
for n = 1:ntotal 
    tempout(n) = inner; 
end 
  
for p = 1:total_iterations 
     
    R = 1;   %establish constant R 
    trackR(p) = R;  %storing R to recall previous values for solver 
     
    time(p) = (p*dt)/(R^2);  %establish time 
     
    H = R*thickness(3); 
  
sig = 5.67*10^-8;  %stefan-boltzmann constant 
em = 0.9;          %emissivity of fabric 
wi = .3048;        %width of heater (m) 
l = H;             %size of air gap 
W = wi/l; 
VF = (sqrt(4*W^2+4)-2)/(2*W);  %view factor 
  
for i = 3 
    if p<2 
        k(i) = ko(i); 
        h = ko(i)/H; 
    else 
        h = ko(i)/H; 
        Th = tempout(ys(4)); 
        Tc = tempout(ye(2)); 
        k(i) = 2*(((sig*(Th^2+Tc^2)*(Th+Tc))/(2*( 

(1-em)/em)+(1/VF)))+h)*H; 
    end 
end 
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%establish thermal diffusivity within each layer     
for i = 1:layers 
    for n = ys(i):ye(i)-1 
        F1(n) = k(i)/(density(i)*Csp(i)); 
        F2(n) = 2*k(i)/(density(i)*Csp(i)); 
        F3(n) = k(i)/(density(i)*Csp(i)); 
    end 
end 
     
    %average properties of the final node of each layer 
    for i = 1 
    for n = ye(1) 
        F1(n) =  

k(i)/(((density(i)*Csp(i))+(density(i+1)*Csp(i+1)))/2); 
        F2(n) =  

(k(i)+k(i+1))/(((density(i)*Csp(i))+(density(i+1)* 
Csp(i+1)))/2); 

        F3(n) =  
k(i+1)/(((density(i)*Csp(i))+(density(i+1)*Csp(i+1)))/2) 

    end 
    end 
     
    for i = 2 
    for n = ye(2) 
           F1(n) =  

k(i)/(((density(i)*Csp(i))+(density(i+1)*Csp(i+1)* 
trackR(p)))/2); 

           F2(n) =  
(k(i)+(k(i+1)/trackR(p)))/(((density(i)*Csp(i))+ 
(density(i+1)*Csp(i+1)*trackR(p)))/2); 

           F3(n) =  
(k(i+1)/trackR(p))/(((density(i)*Csp(i))+(density(i+1)* 
Csp(i+1)*trackR(p)))/2); 

    end 
    end 
  
    for i = 3 
    for n = ye(3) 
           F1(n) =  

(k(i)/trackR(p))/(((density(i)*Csp(i)*trackR(p))+ 
(density(i+1)*Csp(i+1)))/2); 

           F2(n) =  
((k(i)/trackR(p))+k(i+1))/(((density(i)*Csp(i)* 
trackR(p))+(density(i+1)*Csp(i+1)))/2); 

           F3(n) =  
k(i+1)/(((density(i)*Csp(i)*trackR(p))+(density(i+1)* 
Csp(i+1)))/2); 

    end 
    end 
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    for i = 4:layers-1 
    for n = ye(i) 
        F1(n) =  

k(i)/(((density(i)*Csp(i))+(density(i+1)*Csp(i+1)))/2); 
        F2(n) =  

(k(i)+k(i+1))/(((density(i)*Csp(i))+(density(i+1)* 
Csp(i+1)))/2); 

        F3(n) =  
k(i+1)/(((density(i)*Csp(i))+(density(i+1)*Csp(i+1)))/2) 

    end 
    end 
  
for n = 2:ntotal-1 
    %alter F values for the expanding layer 
     if ys(2)<= n <ye(2) && p>1 
         F1new(n) = F1(n)/(trackR(p)^2); 
         F2new(n) = F2(n)/(trackR(p)^2); 
         F3new(n) = F3(n)/(trackR(p)^2); 
         F1old(n) = F1(n)/(trackR(p-1)^2); 
         F2old(n) = F2(n)/(trackR(p-1)^2); 
         F3old(n) = F3(n)/(trackR(p-1)^2); 
          
    %F values for all other layers remain the same 
     else 
         F1new(n) = F1(n); 
         F2new(n) = F2(n); 
         F3new(n) = F3(n); 
         F1old(n) = F1(n); 
         F2old(n) = F2(n); 
         F3old(n) = F3(n); 
     end 
      
     %define initial a,b, and c vectors 
     a(1) = 0; 
     b(1) = 1; 
     c(1) = 0; 
     a(ntotal) = 0; 
     b(ntotal) = 1; 
     c(ntotal) = 0; 
      
     %define a, b, and c vectors for subsequent iterations 
     a(n) = (-F1new(n)*dt)/(2*dx*dx); 
     b(n) = 1+(F2new(n)*dt)/(2*dx*dx); 
     c(n) = (-F3new(n)*dt)/(2*dx*dx); 
      
     ap(n) = (F1old(n)*dt)/(2*dx*dx); 
     bp(n) = 1-(F2old(n)*dt)/(2*dx*dx); 
     cp(n) = (F3old(n)*dt)/(2*dx*dx); 
      
     %define right hand side for the tri-diagonal solver 
     r(1) = inner; 
     r(n) = ap(n)*tempout(n-1)+bp(n)*tempout(n)+cp(n)*tempout(n+1); 
     r(ntotal) = outer-(outer-inner)*exp(-0.011*time(p));  

%ramping function 
end 
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    %invoke tri-diagonal solver 
    tempout = triaa(a,b,c,r); 
    tempout(1) = inner;    
     
    %establish graphing points     
    for n = 2:ntotal-1 
        output(p,n) = tempout(n); %every node at each time step 
        temp_skin(p) = tempout(ye(1));  
        temp_cotton(p) = tempout(ye(2));  
        temp_liner(p) = tempout(ye(4));  
        temp_moisture(p) = tempout(ye(5));  
        temp_outer(p) = tempout(ye(6));  
    end 
     
end 
  
%graph properties 
figure (1) 
grid on 
axis([0 600 300 460]); 
hold on 
plot(time,temp_skin,'k'); 
plot(time,temp_cotton,'m'); 
plot(time,temp_liner,'b'); 
plot(time,temp_moisture,'g'); 
plot(time,temp_outer,'r'); 
title('Temperature of Layers'); 
xlabel('Time (sec)'); 
ylabel('Temperature (K)'); 
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%410_Exposure.m 
  
dt = 1; %sec 
dx = .00001; %m 
  
%define time 
total_time = 300; %Must be increased when R not equal to 1 
  
%defining iterations from times 
total_iterations = total_time/dt;   %total number of iterations 
  
%boundary conditions 
inner = 310; 
outer = 410; 
  
%total number of layers 
layers = 6; 
  
%establish thermal properties of each layer (innermost to outermost) 
  
    for i = 1 %Skin 
        k(i) = 0.21;           %W/m-K 
        density(i) = 1200;     %kg/m3 
        Csp(i) = 3558;         %J/kg-K 
        thickness(i) = 0.003;  %m 
    end 
     
    for i = 2 %Cotton Shirt 
        k(i) = 0.04; 
        density(i) = 316; 
        Csp(i) = 1500; 
        thickness(i) = 0.00056; 
    end 
     
    for i = 3 %Air 
        ko(i) = 0.0271; 
        density(i) = 1.13; 
        Csp(i) = 1005; 
        thickness(i) = 0.001; 
    end 
     
    for i = 4 %Thermal Liner 
        k(i) = 0.0462; 
        density(i) = 74.2; 
        Csp(i) = 1620; 
        thickness(i) = 0.00359; 
    end 
     
    for i = 5 %Crosstech Moisture Barrier 
        k(i) = 0.0479; 
        density(i) = 143.1; 
        Csp(i) = 1900; 
        thickness(i) = 0.0009627; 
    end 
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    for i = 6 %PBI Outer Shell 
        k(i) = 0.073; 
        density(i) = 321.8; 
        Csp(i) = 890; 
        thickness(i) = 0.0007976; 
    end 
     
%establish beginning and end node for each layer 
for i = 1 
    ys(i) = 2; 
    ye(i) = ys(i)+round(thickness(i)/dx)-1; 
end 
for i = 2:layers 
    ys(i) = ye(i-1)+1; 
    ye(i) = ys(i)+round(thickness(i)/dx)-1; 
end     
  
%define total thickness of all layers 
ntotal = ye(layers);     
  
%set all nodes equal to inner boundary condition 
for n = 1:ntotal 
    tempout(n) = inner; 
end 
  
for p = 1:total_iterations 
     
    R = min(1+.01*p, 7);  %method for increasing R from 1 to 7 
                          %R could also be set to 1 or 7 
    trackR(p) = R;  %storing R to recall previous values for solver 
     
    time(p) = (p*dt)/R;   %establish time 
                          %if R=7, time(p)=(p*dt)/(R^2) 
    H = R*thickness(3); 
  
sig = 5.67*10^-8;  %stefan-boltzmann constant 
em = 0.9;          %emissivity of fabric 
wi = .3048;        %width of heater (m) 
l = H;             % size of air gap 
W = wi/l; 
VF = (sqrt(4*W^2+4)-2)/(2*W);  %view factor 
  
for i = 3 
    if p<2 
        k(i) = ko(i); 
        h = ko(i)/H; 
    else 
        h = ko(i)/H; 
        Th = tempout(ys(4)); 
        Tc = tempout(ye(2)); 
        k(i) = 2*(((sig*(Th^2+Tc^2)*(Th+Tc))/(2*( 

(1-em)/em)+(1/VF)))+h)*H; 
    end 
end 
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%establish thermal diffusivity within each layer     
for i = 1:layers 
    for n = ys(i):ye(i)-1 
        F1(n) = k(i)/(density(i)*Csp(i)); 
        F2(n) = 2*k(i)/(density(i)*Csp(i)); 
        F3(n) = k(i)/(density(i)*Csp(i)); 
    end 
end 
     
    %average properties of the final node of each layer 
    for i = 1 
    for n = ye(1) 
        F1(n) =  

k(i)/(((density(i)*Csp(i))+(density(i+1)*Csp(i+1)))/2); 
        F2(n) =  

(k(i)+k(i+1))/(((density(i)*Csp(i))+(density(i+1)* 
Csp(i+1)))/2); 

        F3(n) =  
k(i+1)/(((density(i)*Csp(i))+(density(i+1)*Csp(i+1)))/2) 

    end 
    end 
     
    for i = 2 
    for n = ye(2) 
           F1(n) =  

k(i)/(((density(i)*Csp(i))+(density(i+1)*Csp(i+1)* 
trackR(p)))/2); 

           F2(n) =  
(k(i)+(k(i+1)/trackR(p)))/(((density(i)*Csp(i))+ 
(density(i+1)*Csp(i+1)*trackR(p)))/2); 

           F3(n) =  
(k(i+1)/trackR(p))/(((density(i)*Csp(i))+(density(i+1)* 
Csp(i+1)*trackR(p)))/2); 

    end 
    end 
  
    for i = 3 
    for n = ye(3) 
           F1(n) =  

(k(i)/trackR(p))/(((density(i)*Csp(i)*trackR(p))+ 
(density(i+1)*Csp(i+1)))/2); 

           F2(n) =  
((k(i)/trackR(p))+k(i+1))/(((density(i)*Csp(i)* 
trackR(p))+(density(i+1)*Csp(i+1)))/2); 

           F3(n) =  
k(i+1)/(((density(i)*Csp(i)*trackR(p))+(density(i+1)* 
Csp(i+1)))/2); 

    end 
    end 
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    for i = 4:layers-1 
    for n = ye(i) 
        F1(n) =  

k(i)/(((density(i)*Csp(i))+(density(i+1)*Csp(i+1)))/2); 
        F2(n) =  

(k(i)+k(i+1))/(((density(i)*Csp(i))+(density(i+1)* 
Csp(i+1)))/2); 

        F3(n) =  
k(i+1)/(((density(i)*Csp(i))+(density(i+1)*Csp(i+1)))/2) 

    end 
    end 
  
for n = 2:ntotal-1 
    %alter F values for the expanding layer 
     if ys(2)<= n <ye(2) && p>1 
         F1new(n) = F1(n)/(trackR(p)^2); 
         F2new(n) = F2(n)/(trackR(p)^2); 
         F3new(n) = F3(n)/(trackR(p)^2); 
         F1old(n) = F1(n)/(trackR(p-1)^2); 
         F2old(n) = F2(n)/(trackR(p-1)^2); 
         F3old(n) = F3(n)/(trackR(p-1)^2); 
          
    %F values for all other layers remain the same 
     else 
         F1new(n) = F1(n); 
         F2new(n) = F2(n); 
         F3new(n) = F3(n); 
         F1old(n) = F1(n); 
         F2old(n) = F2(n); 
         F3old(n) = F3(n); 
     end 
      
     %define initial a,b, and c vectors 
     a(1) = 0; 
     b(1) = 1; 
     c(1) = 0; 
     a(ntotal) = 0; 
     b(ntotal) = 1; 
     c(ntotal) = 0; 
      
     %define a, b, and c vectors for subsequent iterations 
     a(n) = (-F1new(n)*dt)/(2*dx*dx); 
     b(n) = 1+(F2new(n)*dt)/(2*dx*dx); 
     c(n) = (-F3new(n)*dt)/(2*dx*dx); 
      
     ap(n) = (F1old(n)*dt)/(2*dx*dx); 
     bp(n) = 1-(F2old(n)*dt)/(2*dx*dx); 
     cp(n) = (F3old(n)*dt)/(2*dx*dx); 
      
     %define right hand side for the tri-diagonal solver 
     r(1) = inner; 
     r(n) = ap(n)*tempout(n-1)+bp(n)*tempout(n)+cp(n)*tempout(n+1); 
     r(ntotal) = outer; 
end 
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    %invoke tri-diagonal solver 
    tempout = triaa(a,b,c,r); 
    tempout(1) = inner;    
     
    %establish graphing points     
    for n = 2:ntotal-1 
        output(p,n) = tempout(n);  %every node at each time step 
        temp_skin(p) = tempout(ye(1));  
        temp_cotton(p) = tempout(ye(2));  
        temp_liner(p) = tempout(ye(4));  
        temp_moisture(p) = tempout(ye(5));  
        temp_outer(p) = tempout(ye(6));  
    end 
     
end 
  
%graph properties 
figure (1) 
grid on 
axis([0 300 300 420]); 
hold on 
plot(time,temp_skin,'k'); 
plot(time,temp_cotton,'m'); 
plot(time,temp_liner,'b'); 
plot(time,temp_moisture,'g'); 
plot(time,temp_outer,'r'); 
title('Temperature of Layers'); 
xlabel('Time (sec)'); 
ylabel('Temperature (K)'); 
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