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ABSTRACT

Two detectors making independent observations which are the outputs of stochastic dynam-
ical systems driven by colored Gaussian noise must decide which one of two hypotheses is true.
Detection with a fixed observation interval (block detection) and sequential detection are con-
sidered. The decisions are coupled through a common cost function which for tests with a fixed
observation interval consists of the sum of the error probabilities while for sequential tests it
comprises the sum of the error probabilities and the expected stopping times. For the case of
block detection the time-varying parameters of the dynamical system belong to uncertainty
classes determined by 2-alternating capacities or to classes with minimal and maximal elements.
For the case of sequential detection the time-invariant parameters of the dynamical system

belong to classes with minimal and maximal elements.

A minimax robust (worst-case) design is pursued according to which the two detectors
employ tests with a fixed observation interval or sequential probability ratio tests whose likeli-
hood ratios and thresholds depend on the least-favorable parameters over the uncertainty class.
For the aforementioned cost function the optimal thresholds of the two detectors turn out to be
coupled. It is shown that, despite the uncertainty, the two detectors are thus guaranteed a

minimum level of acceptable performance.

This research was supported in part by the Systems Research Center at the University of Maryland, College Park, through Na-
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I. INTRODUCTION

In [1] and [2] distributed discrete-time fixed-sample-size (block) detection and
sequential detection problems, respectively, were formulated and solved. Continuous-
time distributed detection problems with known statistics are considered in [3]. The two
detectors collect independent observations and make decisions which are coupled
through a common cost function. Then, the optimal decisions are characterized by
thresholds which are coupled. The hypothesis testing models considered in [1], [2], and

(3] assume perfect knowledge of the statistics of the observations.

In this paper we investigate distributed detection with a fixed observation interval
and sequential detection in continuous time. The observations are the output of a sto-
chastic dynamical system driven by colored Gaussian noise. Due to modeling uncertain-
ties or partially known noise characteristics, the parameters of the stochastic differential
equation are only known to belong to uncertainty classes. Similar distributed discrete-
time problems with statistical uncertainty are treated in [4], the companion to this
paper.

Two distinct types of uncertainty classes are considered: (i) classes determined by
two alternating capacities and (ii) classes with minimal or maximal elements. These
uncertainty models have been very popular among the robust statisticians [5]-[8] because
they include several useful models of uncertainty and result in closed form expressions

for the least-favorable elements in the class.

The design philosophy that we pursue is that of minimax robustness. According to
it, the worst-case operational conditions are identified with regard to the error probabili-
ties of decision designs and the optimal such design for these conditions is derived. Sub-

sequently this decision design is employed independently of actual conditions (which are



not known, except for the fact that they belong to structured uncertainty classes of the
types (i) and (ii) above) and it is shown that it achieves desirable performance despite
the uncertainty. Minimax robust signal processing techniques have received considerable

attention in the past fifteen years (see the tutorial in [9)).

In this paper, we first consider distributed detection schemes with fixed observation
interval (block detection) and observations which are the output of two stochastic
dynamical systems (driven by mutually independent Wiener processes) whose time-
varying parameters (means and/or variances) belong to either 2-alternating capacity
classes or to classes with maximal or minimal elements. After the system and uncertainty
models are introduced, the least favorable operating conditions, as well as the minimax
robust likelihood ratio tests which are coupled through their thresholds, are derived. We
also examine the behavior of the Chernoff upper bounds on the joint cost function of the
test in the presence of uncertainty and show that the exponential convergence to zero (as
the duration of the observation interval increases) is guaranteed for statistical uncer-
tainty within the aforementioned classes. These problems are treated in Section II of the
paper.

In Section III sequential tests are employed. In this case we derive the least favor-
able operational conditions and the minimax robust sequential probability ratio test for
two stochastic dynamical systems, whose parameters belong to classes with minimal or
maximal elements. The joint performance criterion now includes--besides the error pro-
babilities of the tests--the expected values of the stopping time of each decision maker
under the two hypotheses. The sum of the asymptotic speeds of the two sequential tests
which are inversly proportional to the informational divergence (Kullback-Leibler dis-

tance) is also robustified.



II. ROBUST DISTRIBUTED CONTINUOUS-TIME BLOCK DETECTION

II.A Problem Formulation and Models of Uncertainty

Consider the following hypothesis testing problem of two simple hypotheses Hg and
H, with two decision-makers. Decision-maker ¢ (¢ = 1, 2) is equipped with a sensor

and is faced with testing the hypotheses H, versus H:

Hy: dY,; = M;(dt )+ dW,;

Hy: dY,; =M (dt )+dW,; ,0<t < T (1)

In (1) M;; for j = 0,1 and ¢ =1, 2 are measures--defined on the sample space

2 = [0,T] and the associated o-field B--which belong to classes of the form

M;; :{Mj,i EM | M;; (A)<v;; (A)VAEB, M;; (Q) =y, (Q)}, (2)
where M is the class of measures on (2,B). The non-standard Wiener process W, ; are

mutually independent for ¢ = 1, 2, have zero means and variances

2
E{ [fA dW,,,-]}=Z,-(A), VA €EB . (3)
The measures X; belong to uncertainty classes of the form
ziz{ziEMtz; (4) < u(4), VA €B, %, (n)=v,~(m} (@)

The quantities v; ; in (2) and v; in (4) are 2-alternating capacities and will be defined

below.

The decision making of detectors 1 and 2 is coupled through the following cost

structure:



0 for dy=dyg=nh
C(dy,doh)=1{e for d,5#d, , (5)
f for dl - dziéh
where d;,do,h€{0,1}, ¢ and f are non-negative constants, and we assume that
J > 2e. Since the cost [C'(1,1;,0) = C(0,0;1)] of wrong decisions by both detectors is
expected to be considerably larger than the cost
[(C(0,1,0) = C(1,0;,0) = C(0,1;1) = C(1,0;1)] of a wrong decision by one of the detec-
tors, this assumption does not impose a serious restriction on the generality of our prob-

lem formulation.

Next we define the 2-alternating capacities:
Definition: A positive set function v on a sample space  and assosciated o-field B is
called a 2-alternating capacity if it is increasing, continuous from below, continuous
from above on closed sets, and satisfies the conditions v (¢ ) =0,
v(AUB)+v(ANB)<v(A)+v (B) Suppose now that M is the class
of measures on ( 2, B ) and m € M is any such measure. Consider the uncertainty
class which is determined by the 2-alternating capacity v as follows [compare with (2)

and (4)]:
Muz{mEM | m(A)<v(A), VAEB ,m(n)=v(n)}. (6

When §2 is compact several popular uncertainty models like e-contaminated neighbor-
hoods [5], total variation neighborhoods [5], band classes [6] and p-point classes [7] are
special cases of this model.

Example: The e-contaminated model [5]



AL={m€M|nWU=U—dm%M+dMALW4eﬁmmnzmm&ﬂn

fore€[0,1]. Thenv (A )=(1-€¢)m®° (A )+em?(Q)

Fundamental properties of these uncertainty models have been studied by Huber

and Strassen [8]. We will state the relevant properties as a Lemma.

Lemma 1: Suppose vy and v, are 2-alternating capacities on ( 2, B ) and My and M,
are the uncertainty classes determined by them as in (1). Then there exists a Lebesgue-

measurable function 7, : Q@ — [ 0, co | such that
bvo({my >0 +vi({my SO} S Ovo(A)+vi(A°) (8)

for all A € B and all § > 0. Furthermore there exist measures ( Mg, My ) in

My X M, such that

o ({m >0})=vo({m >0}) (9)

ﬁl’l({ﬂ.vso}):vl({wvse}) (10)

(that is, m, is stochastically largest over My under mg and stochastically smallest over
M under ;) and =, is a version of dii;/dm and is unique a.e. [ /iy |. The measures

(g, 7, ) are termed the least-favorable measures over My X M;.
Example: The ¢-contaminated mixture uncertainty classes described by

associated with the 2-alternating capacities

UMA):{S-g)muAyﬂj,iiZ’ (12)



have the least-favorable distributions

((1-¢0)dmg /AN, dm{ /dm < c,
ding/d X =
¢ 1- 13
O gmP /AN, ey < dmP /dm (13)
C2
(
(1-¢)dm?/dN , ¢, < dm/dm
7 = 3 14
da/dn c1(1-¢)dmg /d\ , dm) /dm] < ¢, 1
\
and the Huber-Strassen derivative m,
1-
7, = dih,/dihg = N Zl min{ cg,max( ¢y, dm /dm{ )} (15)
~ €

where 0 < ¢; < ¢y < oo are such that i, () = Mgy ()= 1.

For the uncertainty classes in (2) and (4) we assume that the nominal measures
satisfy Mj?,- << M and £ << X (i.e., they are absolutely continuous with respect to X,
the Lebesgue measure on @ = [0,T|) so that the least-favorable measures M,-',- << X\
and £; << X and we define fi; ;(t) = (dM ; /d\)(t) and [6;(t)]* = (d £; /d N)(¢).

We also consider the hypothesis testing problem

Hy o dYy; = pyi(t) dt +o;(t) dW,;

Hy ; dY,; =po;(t)dt +o;(t)dW,; ,0<¢<T (16)
where W;; are mutually idependent standard Wiener processes (i = 1,2),
pii(t)(j =0,1,7 =0,1) belong to the following classes with minimal or maxi-

mal elements.

M,; = {Ih,i(t) | pyi(t) 2 Byi(t), 058 ST} (17)



M ; Z{ﬂo,i(t) | posi(t) < hoi(t),0< ¢t ST}, (18)

and o, (t) (1=1,2) belong to the classes

) ={o.-(t) | oit) < oi(t) , 0<t <T } (19)

For either the hypothesis testing problem (1) or that of (16) we assume that the a
priori probabilities for the hypotheses Hy and H, are A and 1-), respectively, and that

likelihood ratio tests are employed, the average cost is

J(Ly,L anyng) = Me [mo ({L1>M}) + moo({L 2>72})]
+ (f =2¢ )mo ({L1>m}) mos({L 2>7})}
+ (I-M){e [m 1 ,({L1<1}) + myo({L 2<5})]

+ (f —2¢)mya({L ) <)) moyo({L2<io})} (20)

In (20) m; ; are the probability measures induced by the Wiener processes of (1) [or (16)]

i
of the i-th decision-maker (i =1,2) under hypothesis H; (j =0,1). By

L; = dm,;/dmy; we denote the likelihood ratio based on observations of the ¢-th

decision-maker over the interval [0,T ] and by 7, its threshold.

The optimal thresholds for (20) are the pair (#;,7,) which minimizes the average

cost function J (L 1,L 9,71,7), that is

(m,m2) = arg min J(L L o7y,7,) (21)
'71:'72
Actually the likelihood ratio tests (LRTs) are the optimal policies for the two-

decision-maker problem formulated above as stated in the following proposition

Proposition 1: Likelihood ratio tests (LRTs) with thresholds which minimize

J(L ,L 571,n9) of (20) are optimal over all tests for the aforementioned common cost



structure
Proof: The proof follows closely the corresponding proof of [1] about the optimality of
the one-detector strategy (i.e., the likelihood ratio test) in this case of decision makers

with independent observations, and will be ommitted.

II.B Robust Distributed Block Detection

The expression for the average cost function in (20) is valid for the case that there
is no uncertainty in the statistics of the observations of the two decision makers. In the
presence of uncertainty within the 2-alternating classes M; ; and Z; of (2) and (4) [or
the classes with maximal or minimal elements of (17)-(19)], the likelihood ratios L; and
the thresholds #);, 1 = 1, 2, which are matched to the least-favorable mean and variance

measures M ;

;i and %; (singled out by Lemma 1) of the classes M; ; of (2) and I; of (4),

respectively, are employed. Similarly in the case of the uncertainty classes of (17)-(19).
In these cases the average cost function under mismatch--that is, when the statis-
tics of the observations are actually governed by the probability measures m; ; induced
by the Wiener processes with the means and variances above--is given by J(L1,L 5,11,710)
which is obtained from (20), if we replace L; by L; and u; by #;, for i = 1,2, and
these thresholds are the solution to the minimization problem:

(ﬁl;ﬁ?) = arg fn}n j(l: I?IA’ 2:7"1:}72) ’ (22)
e

where J(L L o,7,) is the average cost when the likelihood ratios L; (i =1, 2 for the
two detectors) are employed and the observations are distributed according to the proba-
bility measures ri; ; induced by the Wiener process with the aforementioned least-

favorable means and variances.



From the results presented in [10] we cite the following Lemma for a single detector

(say the ¢-th detector { =1, or 2)

Lemma 2: For either the hypothesis testing problem (1) [for the 7-th detector] and the
uncertainty models (2) and (4), or the problem of (16) and the uncertainty models of

(17)-(19), the likelihood ratio test based on

fg fiyi(t) = fo,(t) 1 fﬂ [y ()1 - (o (2))

InL; = - —
[6:(¢)) T2 CAOk

3

dt, (23)

is a minimax robust test; i.e., the error probabilities for this test under the two

hypotheses satisfy the inequalities

mo; ({Li > m}) < mgi({L; > mi}) < o ({Gi = mi}) (24)

my({Ly <mi}) < (L < mid) < ({6 < i) (25)

for all thresholds #; satisfying

QEMO

1 B
[Inn; | < gfn [6:(¢))?

In (24)-(25) i ; are the measures induced by the Wiener processes of (1) or (16) when
the parameters involved in these equations are the least-favorable elements of the
corresponding uncertainty classes.

Proof: See Propositions 3 and 6 of [10].

The main result of this section now follows:

Proposition 2: The LRTs of the two detectors based on the log-likelihood-ratio of (23)
for i = 1,2 are minimax robust with respect to the average cost function defined in
(20), for the problems (1) and (16) with parameters in the uncertainty classes (2) and (4)

or (17)-(19), respectively, that is
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J(I: lxﬁ 2:7711;’2) S j(LA 171: 21;71:7}\72) S ](GI’G2)771’772) (26)

where G; (¢ = 1, 2) are any decision statistics operating on the outputs of the dynami-
cal systems of (1) or (16).

Proof: The right-hand-side inequality in (26) 1s a straight{orward application of Propo-
sition 1 to the case characterized by rt; ; (j = 0,1 and ¢ = 1, 2) for which the likeli-

hood ratios are [; and the optimal thresholds are #; .

The left-hand-side inequality in (26) is a consequence of Lemma 2. Specifically we
apply the left-hand-side inequalities in (24) and (25) to the probability measures
(mo;, Mmos) and (my;, Mty ;), respectively, of the two detectors (i = 1, 2), and then
use the definitons of the mismatch average cost function J and the average cost function

J matched to the pair of probability measures (Mo, fy;) induced by the least-

favorable parameters of the classes (2) and (4) or (17)-(19).

Note: The optimal thresholds (#;,7s) can be determined from the error probabilities

&"ﬁ,- (#=1,2) for the least-favorable case of problem (1) by minimizing

min{x [ (@1 + dg) + (f 26 )ande | + (1) [e (B + B) + (7 -2¢)Bify ]}
under the constraints ; = f;(&;) [operating receiver characteristic (ROC) for detector

i], 0<&; <1,0<p; <1, and &; + B3; <1 for i =1,2.

II.C Asymptotic Performance

It is of interest to examine the behaviour of the joint cost function under the two
hypotheses as T, the length of the observation interval, increases. In particular, it is
desirable that the robust likelihood ratio tests described in Propositions 2 behave asymp-

totically (for large T') in an optimal way,
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For continuous-time problems with uncertain statistics the asymptotic performance
of the Chernofl bounds on the error probabilities of a single detector (say the ¢-th detec-
tor) with observations obeying (1) or (16), and uncertainty models (2) and (4) or (17)-
(19)-when the likelihood ratio test of (23) is employed-has been examined in [10]. The

next two Lemmas contain the results of [10] in a condensed form.

Lemma 3: The error probabilities for the hypothesis testing problems of (1) and (16)

[for the ¢-th detector| can be upperbounded as

moi({Li > % T}) < exp{-Tlsv + Cos(s,L;)]} (27)

and
my;({L; <% T} < exp{-Tl-sv; + Cy;(s,L;)]} (28)

for all s in (0,1).

In (27)-(28) the Chernoff distances C;i(s,L;) for
( =0,1) and ¢ = 1, 2)under mismatch are defined as
. 1 .
Cosls,Li) = —FInlEo; {L}] (29)
and
r 1 ;o
Cyi(s,Li) = —In[By {L;7}] (30)

and the threshold is #; = ~; T. For uncertainties in (2) and (4) the Chernoff distances

actually take the form

A

- 2 . .
Co,il(s L) = LT [_ %2—-[0{ I‘l,i{(;)‘ﬂo,i(t) } 5, (dt) - sfn B (t)-fo; () Mo, (dt) + L

(t))? 6:(t)® 2
(31)
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. 52 iy ()l ; 2 1, (8 )-io: s
Crils i) = LT[_ fn{ i, [(;.)(t”ﬁ'z(t) } i) + o [ 22 [(;_)(t")];(”Ml,,-(dt)— .

(32)

where

dt. (33)

For uncertainties in (17)-(19) we need to replace M; ;(dt) by p; ;(¢)dt and ¥;(dt) by
[0;(¢)]%dt, respectively, for j = 0,1 and ¢ =1, 2.

Proof: See Proposition 4 of [10].

Lemma 4: The Chernoffl upper bounds on the error probabilities of the hypothesis-

testing problems (1) and (16) with the uncertainty models of (2) and (4) and (17)-(19)
aproach zero exponentially with increasing T --despite the uncertainty--when the likeli-
hood ratio test of (23) is employed.

Proof: See Proposition 5 of [10].

The following proposition provides the desired asymptotic result for the mismatch
average cost function J(L,,L,7,,7,) as the length of the observations interval T
increases:

Proposition 3: Under the assumptions of Proposition 2, the average cost function
under mismatch converges to zero exponentially as the length of observations interval T
increases, despite the uncertainty; that is, J(I: l,ﬁ 2,i1,M12)—0, as T — oo for all values of
the parameters in the uncertainty class (2) and (4) or (17)-(19).

Proof: By applying Lemma 3 to the error probabilities of the hypothesis testing prob-
lem of each of the two detectors and using the definition of J(ﬁ L 2,711,712) we derive an

upper bound on the average cost under mismatch in terms of the Chernoff bounds. This
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takes the form

J(L 1L ofiniia) < Me lexp{=T [s 1+Con(s ,L1)]} + exp{-T [s 7+ Cosls ,.L o)}}]
+ (f -2¢)exp{~T [s 11+ Cou(s L 1)yexp{-T [s 1o+ Cosls ,.L 5)]}}
+ (1M e [exp{-T [-s n+C (s .L1)]} + exp{~T [-s 1+ C (s ,.L o)]}]
+ (f -2e)exp{-T [-s 1+ C (s L )]}exp{-T [-s 7o+ C (s L 5)]}}

(34)
where #; = 'A7,~ T is the threshold for the ¢-th detector (¢ = 1, 2). Finally we apply

Lemma 4 to (34) to complete the proof of Proposition 3.
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III. ROBUST DISTRIBUTED CONTINUOUS-TIME SEQUENTIAL

DETECTION

III.A Problem Formulation and Model of Uncertainty

The distributed sequential detection problem that we consider in this section has a
lot of sismilarities with the problem considered in the previous section. The two decision

makers are faced with the hypothesis testing problem

Hy: dY,; = po; dt +o0; dW;;

Hy: dY,;=p,;dt +o;,dW,; , 0<t <1 (35)

where 7; is the stopping time [11] of the i-th detector and uy; , poy , 0; are time-
invariant parameters which belong to the following uncertainty classes characterized by

their minimal or maximal elements (for which fi;; > fig ;).
M, “—“{ Bii | B 2 B }, (36)
Mg; ={ toi | Hoi < Ros }, (37)

z.-={a,- | a;sa,-}. (39)

The cost function C(-,;) of (5) remains the same as in section II. However, now there is
also a cost for collecting data, which for the i-th decision maker (¢ = 1, 2) is defined

by:
ki[NEo;i {7} + (1I-NE ;i {7 }], (39)

where k; (¢ = 1, 2) are nonnegative constants, E; ; denotes expectation with respect to
the probability measure m; ; (under the hypothesis H;, j = 0,1, and for the i-th

detector, i = 1, 2) induced by the Wiener process W, ; of (35), the a priori probabilities
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for the hypotheses Hy and H, are X\ and 1-), respectively, and the random variable 7; is
the stopping time of the ¢-th detector; i.e., the necessary length of the observation inter-

val in order to reach a decision in favor of one of the two hypotheses.

Recall [11)-[12] that for a single sequential detector, the optimal test, termed the
sequential probability ratio test (SPRT), consists of keep collecting observations till the
likelihood ratio L, based on the observation interval [0,7] exceeds B or falls below A --
the two thresholds (0<<A <1< B )--in which case a decision is made in favor of H; or

H, respectively.

Assuming that SPRTs are employed by both detectors, we can write the average

cost as

J(L1,LyA B, A LBy = >\{/‘715‘0,1{7'1 | L1} + kg Ego{rz| Lo}
+e [m{} ({L 1,11231}) + mo(,;) ({Lz,rgzbz})]
Hf -20)md) (L1, 2BrY) mid ({L%sz})}
A b1 1 ) + k2 Bral L)
+e [m 1(;) ({L 1,113;1 )+ ml(,;) ({L 2,72SA 2})]

(/26 ) {D) (Lan <A1} m D) (L 2,725212})}
(40)
where 7; (i = 1, 2) are stopping times for the two detectors, that is, if the likelihood
ratio L; ,, which is based on observations in the interval [0,7], is larger than or equal to

B;, it is decided that H, is true, the test terminates and 7; = 7; if it is smaller than or



i6

equal to A;, it is decided that H, is true, the test again terminates and 7; = 7; other-
wise, more observations are collected ([0,7] increases) and the procedure continues. mj(,:)
is the probability measure which governs the observations of the i-th detector under
hypothesis H; (j = 0, 1) when the SPRT terminates after the interval [0,7;] has been
processed. The notation E; ; {r; | L; } has been preferred over the notation E; ; {r; } for
the expected value of 7; under the probability measure m; ; and an SPRT employing
the likelihood ratio L; == dm,;/dmg;, because it allows us to consider situations of
mismatch, that is, when the likelihood ratio employed is not the one corresponding to

the operating probability measures.

The optimal thresholds for (40) are the quadruple (A ,,B,,A 5,B,) which minimizes

the average cost function J(L 1, 5,4 1,B1,A4 5,B,), that is

(AI:BI:A 2,32) == arg _ min
A,B,A

L& 1y 2:B2

J(L I)L 2:A 1"~B l)A 2IB 2) (4]_)

Actually the sequential probability ratio tests (SPRTs) are the optimal policies for the
two-decision-maker problem formulated above as stated in the following proposition
Proposition 4: SPRTs with thresholds which minimize J(L1,L 4,4 1,B 1,4 3,B ) of (40)
are optimal over all tests for the aforementioned common cost structure.

Proof: The proof is provided in [2] for discrete-time sequential detection and in (3] for
continuous-time sequential detection and it establishes the optimality of the one-detector
strategy (i.e., the SPRT) in this case of decision makers with independent observations.

It will be ommitted.

II.B Robust Distributed Sequential Detection

The expression for the average cost function in (40) is valid for the case that there

is no uncertainty in the statistics of the observations of the two decision makers. In the



17

presence of uncertainty within the classes of (36)-(38), the likelihood ratios L; and the
thresholds (/i, B; ), ¢+ =1, 2, which are matched to the measures 7; ; induced by the
least-favorable parameters in the above classes are employed. In this case the average
cost function under mismatch--that is, when the statistics of the observations are
actually governed by m;; induced by any parameters in (36)-(38)-is given by
J(L,,L 4,4 1,B,,A 5,B,) which is obtained from (40), if we replace L; by L; and (4;,B;)

by (A;,B;), for i = 1,2. These thresholds are the solution to the minimization prob-

lem:

(/{,i I»B lr/{i 2yB 2) = arg _ min ‘7(1: I:L\ 2’;4 1’~Ber 2;~B 2) ’ (42)
A,B,A

where J(L,,L,A ,B,,A,B,) is the average cost when SPRTs based on the likelihood
ratios [; and the thresholds (4;,B;) (i =1, 2 for the two detectors) are employed and
the observations are governed by the probability measure #; ; which is induced by the

least-favorable parameters (j = 0, 1 for the two hypotheses).

From [10] we cite the following two results for a single sequential detector:

Lemma 5: Suppose 7; is the stopping time of the SPRT associated with (35) and the

SPRT employs a likelihood ratio

- By —fo 7
InL,' g T T 2 Yi,r - "
g 20’;

7 (43)
based on observations over [0,7] and thresholds (A ,B) which are matched to the case
(fBo; » By ,8; ) [the least-favorable parameters in the uncertainty classes (36)-(38))

while the actual operating conditions are determined [through (35)] by ( #o; , #1i » o3 )-

Then the following identities are true for the error probabilities under mismatch:
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where
~ 2 A
o; ( 2 Ho,;i — ”1,1 .uO,: )
To, 2/ ~ ~
g (l‘l,i — Bo; )
and
) B -1
Bi = my;({Li;, < A;}),=— -1'A -
(A;,7B;) ™ -1
where

5'52 ( 2 Uy — ﬂl,i - ﬂo,i )
Uiz ( ﬁ1,i - f‘o,i )

LW

For the expected stopping times under mismatch the following identities hold:

—26','20.1(&,',&,',01' )

(By,i—froi) (2 moi — By — oy )

Eoi |7 | Li | =

and
R 262w A~,£v-, :
El’i[’r" IL']= - - ) (163 tABt)A
(Byi—io;) (2 my; — By — foyi )
where
w(, g,2)=(1-2)ln —% +z I 2,
y 1-9
and
) R 1-A;
&; = tg;({L;, > B;}) = —F,
0illliy 2 BY = 55
and
R R R . A; (B;-1)
IB: - ml,z({Li,f. S Al })= I‘A?;—;i. ’

(44)

(45)

(47)

(49)

(50)

(51)

(52)

are the error probabilities in the matched case. The thresholds fi; and E’i are given by
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[11]
. Bi
A, =
C S T (53)
. 1-B; _
B~ =
Iy (54)

Proof: See Lemmas 3 and 2 of [10].

lemma 8: Consider the hypothesis testing problem of (35) [for the 7-th detector] with

parameters in the sets (36)-(38). Suppose that the following assumptions are satisfied:

(1) By = By (5)

~ A

1 -5 ;
&; (1-6;)(1-5) "

(¢¢) In (56)

a; = mo;({L;; > Bi}) < g ({Li, > Bi})=a , (57)

ﬂi = ml,i({f’i,-rl S /ii }): < ﬁ"l,t({LAl T, < /it }) = 31 ) (58)
and

E],x[rz lf/,-]SE‘j’,-[T|L,], J =01 (59)

Proof: See Proposition 8 of {10].

The main result of this section now follows:
Proposition 5: The SPRTs which employ thresholds (4;,B;) and likelihood ratios [A/,-,,
defined as in Lemma 5 [equation (43)] (for the two detectors 7 = 1, 2) are minimax

robust with respect to the average cost function defined in (40), that is

~

J(IA’ I’I: 2;AA 17Bl7/£i 2732) S ‘7([: le: 27/’i er I)A 2!32) S j(Gl’G2»A erl»A 2132) (60)

where G; (i =1, 2) is any decision statistic operating on the observations over the

interval [0,7;], if for ¢ = 1,2 &; and B; of (53)-(54) satisfy the condition (56).
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Note: The optimal thresholds (4;,5;) (1 =1,2) can be determined from equations

(53)-(54) where the error probabilities &; and B; are solutions to the minimization prob-

lem:
. w(&l’Bl?&l) w(&2r32’&2) N
min 17— 2 ——————— + € (&1+0!2) + (f -2e )&1612
Eoy{~inL,,} Eoo{-InL,,}

w(Blr&bBl) W(BQ,&%B?)
1% ~ + k2 ~ ~
£y {lnL 1,1,} E1,2{1nL 2,72}

+(1-X) [k + e (BytBo) + (f ~2¢ By, (61)

under the constraints 0 < &; < 1,0 < B; <1, and & +B; <1fori = 1, 2. In (61)

the quantities in the denominators satisfy the inequalities:

7 (i o K200 i— Bryi— fro i [ i fin o )2
Ey; {“I"Li,r,} — (l‘l,: Ho,i X lfOz,t My /40,1) > (ﬂl,: A[;(),,)
203' 20,’

= Eo,i {""I:i,r,} (62)

(- Bos )?
26}

(i = o N2m1i— fryg— By )
26}

>

E,; {I"I:i,r,} = = £, {inL; , } (63)

which are valid because of the definition of the log-likelihood ratios lnl:,-',' and of the

inequalities that define the uncertainty classes (36)-(38).

ITII.C Asymptotic Performance

The following proposition provides a result on the common asymptotic speed--
which is defined as the sum of the asymptotic (for small error probabilities) stopping
times of the two detectors--of the robust sequential test.

Proposition 6: Suppose that for the problem (35) with the uncertainty classes (36)-(38)
and under the mismatch conditions of Lemmas 5, 6 and Proposition 5 above, the error
probabilities &; and f; (for i=1,2) approach zero. Then the sum of the asymptotic

expected stoppong times--under mismatch and for the least-favorable case--satisfy the
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inequalities

—inA —inA InB InB
k[kl—ﬂ—+k2——————2+}+(l—>\) [kl e S O 1
Eo {-inL } Egof-InL o} Ey {inL} Eyo{inL o}

k

+ (1))

lnBl I‘RB2 :l
173 ~—— + ko

Ey {InL } E,o{inL o}
<X [k 1Eo,1{7'1 | Gy} + k2Eo,2{72 | G} ] + (1-)) [k1E1,1{71 | G} + k?El,z{Tz | Gz}]

(64)

where G'; and G4 are any other sequential tests different from the SPRT; Ej,,' denotes
the limit of the expectation E‘_,-,,- as &; —0 and j; —0.

Proof: As &; —0 and (3;—0, then o; and B; approach zero as well, since a; <&, and
B; <B; . Thus J(L,LyA,,B1,AqB,) (the joint cost function under mismatch) reduces
to the first sum in (64), whereas J (L ,,[ 5,A ;,B,A4 5,B5) (the joint cost function matched
to the least-favorable case) reduces to the second sum in (64). The first sum is smaller
than the second sum because of the inequalities (62)-(63). The second inequality in (64)
holds because of a theorem by Wald [12] (for the matched single detector case) which
states that the SPRT has the minimum asymptotic speed (expected stopping time)

among all sequential tests.
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