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ABSTRACT

The “median phase” and “phase spread” of a matrix are defined and
properties are derived. The question of robust stability under uncertainty
with phase information is addressed and a corresponding necessary and
sufficient condition is given. This condition involves a “phase sensitive
singular value”. A computable upper bound to this quantity is obtained.
The case when the uncertainty is block-structured is also considered.
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1. INTRODUCTION

Extension of the concept of phase of a transfer function to multivariable sys-
tems has been considered by various authors in the last ten years (e.g., [1-5]). In
connection with this, various definitions have been proposed for the phase of a
complex matrix. In this note we consider a somewhat more general issue, that of
robustness under uncertainty with phase information.

As a starting point we define the concepts of “median phase” and “phase.
spread” of a matrix (the latter was previously considered by Owens [5]). We then
“consider linear time-invariant systems affected by uncertainty, in the now popular
““uncertainty in the feedback loop” setup. The “phase sensitive singular value” p°
of a matrix is defined (inspired by Doyle’s structured singular value), yielding a
necessary and sufficient condition for robust stability for an uncertainty set with
information on the phase. For block-structured uncertainty sets with phase infor-
mation, a similar condition is obtained, based on the phase sensitive “structured”
singular value p. Finally, computable upper bounds on p® and u& are obtained.
This extends results previously obtained in the scalar case [6].

2. MEDIAN PHASE AND PHASE SPREAD
Given a complex matrix A, let N(A) C C be its numerical range, i.e.,

N(A)={(z,4z): z€0B}CC

where 0B = {z € €" : ||z||2 = 1} and || ||z is the Euclidean norm. This set is known

“to be convex.

‘Definition 1. Let A be a complex square matrix such that 0 ¢ A(A). The median

phase MP(A) of A is the phase, taken in (—w, ], of the ray bisecting the convex

sector generated by M(A); the phase spread PS(A) of A is the measure of the arc
intercepted by this sector. [



Thus MP(A) € (==, 7] and PS(A) € [0,] (see Fig. 1). Below we will refer to

the pair (MP(A),PS(A)) as (matriz) phase of A. If 0 € N(A), the phase of A is

undefined. \
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Figure 1: Phase information of a matrix

Note that, in the case of a complex number a = pe’® with p > 0 and
¢ € (—m,x}, the (matrix) phase of a is (4,0). Also, clearly, the phase of a ma-
trix is invariant under multiplication of the matrix by a positive scalar and, if A is
Hermitian positive definite, both MP(A) and PS(A) are zero. Finally, it is readily
checked that the phase of a matrix is invariant under unitary similarity transforma-
tions.

Median phase and phase spread are related to the concept of principal phases
introduced by Postlethwaite et al. [1]. Namely, for any square complex matrix A,

MP(A) — %PS(A) < Prain(A) < Prax(A) < MP(A) + %PS(A)

where ¥yin(A) and ¥Ymax(A) are the minimum and maximum principal phases of A,
respectively. This result, stated differently, was obtained by Owens [5] (who also
used the term “phase spread”).

3. UNCERTAINTY WITH PHASE INFORMATION

Consider now a linear time-invariant model affected by uncertainty. It is well
known (see, e.g., [7]) that in many cases of interest such a system can be represented
in “feedback” form as shown in Fig. 2, with P(-) and A(:)in H2*" and ||Al|e < 1. If
no other information is available concerning A(-), a necessary and sufficient condition
for robust stability is that || Plle < 1.

A(s)

= P(s)

Figure 2: Feedback representation of uncertainty



In the classical structured singular value (SSV) framework the uncertainty A() 1s
assumed to be block diagonal. This reflects the assumption that the uncertainty is
“structured” in the sense that it is tied to specific subsystems. The necessary and
sufficient condition for robust stability becomes

sup ue(P(jw)) <1

where px is the structured singular value corresponding to the given block-structure K [3].

' In this paper we consider the case where phase information is available con-
cerning A(-). Specifically, given two continuous functions ® : R — (—m, 7] and
©: R — [0, 7], we assume that A(-) is known to lie in the set (see Fig. 3)

A% = {0} ULA € HE™ : MP(A(jw) + 2PS(A(ju)) < B(w) + O(w),
MP(A(jw)) = ~PS(A(jw)) = B(w) ~ O(w) Ve € R},
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Figure 3: Uncertainty with phase information '

To address the robustness question in this context, we introduce the concept of
“phase sensitive singular value” as follows (this concept was previously used in [6]

in the scalar case). Let omay denote the largest singular value of a matrix and, for
6 € [0, 7], let

X' ={AeC™ : MP(A) + %PS(A) <6, MP(A) — ﬁPS(A) > 6},

Definition 2. Given § € [0,x], the phase sensitive singular value p’(M) of M
€ €™ with respect to phase 0 is #?(M) = 0 if there is no A € X? such that
det(I — AM) =0, and

pf (M) = (,{’éi?e{am*‘;‘(A) vdet(I — AM) = 0}> B

otherwise. [

Theorem 1. The feedback system of Fig. 2 is well-formed and internally stable for
all A € X*° ||Alle < 11if, and only if,

sup @) (7 P(juw)) < 1.

O



The above can readily be extended to the case when A(:) is also known to be
block diagonal with, possibly, some real scalar blocks (corresponding to parametric
uncertainty). In Theorem 1, e/*®) must then be replaced by a diagonal matrix with
‘phase shifts corresponding to the specific structure, and x® must be replaced by the
phase sensitive structured singular value u%, where K is the block-structure.

4. COMPUTABLE UPPER BOUND

As is the case for the structured singular value, it appears that computation
of the phase sensitive singular value is a nontrivial issue. As a first step toward
addressing this issue, the phase sensitive SSV can be expressed as the optimal value
of a smooth constrained optimization problem as follows. Here z7 and A" indicate
the Hermitian transpose of vector z and matrix A, respectively.
Theorem 2.

, 0 if S*(M) = §;
p(M) = sup ||Mz|2 otherwise.
zeS(M)

where S%(M) is defined as follows:
(1) S® (M) ={z € 0B : (M — M)z =0, zH(M + MT)z > 0}
(¢2) for 0 € (0, %),
S (M) ={z € dB:z¥ (M + M)z >0,
H[(1+78)M + (1 - jB)MT]z 2 0 VB € {£cot 0}}
(iid) for 0 = T,
S (M) ={z €0B: ¥ (M + M)z >0}
(¢v) for 6 € (%, 7)
S*(M)={z€dB:jz (M- M)z >0,

(1 +P)M + (1 - jB)M"]zc > 0 B = —cot 6}
UA{ze OB : jz (M — M™)z <0,
H[(1+78M + (1 - j8IMT)z >0 B = cotb}.
[] .
Since 7 [(1 +jB)M + (1 — j8)M* ]z is affine in B, the region for 8 can be replaced

by the interval [~ cot 6, cot 8] for the case 8 € (0,%). For the case § € (3,7), the
two inequalities in each of the components of S?(M) are equivalent to

A1+ 58)M+ (1 —j8)MPz >0 V3 > —cot b,
and
1+ /M + (1 — )Mz >0 VB < cot 6,

respectively.

The expressions in Theorem 2 involve optimization problems that typically
have many local solutions. Thus they typically provide lower bounds on pf. Upper
bounds are obtained next. Here An.x denotes the largest eigenvalue (of a Hermitian
matrix), and @ denotes the complex conjugate of w.



Theorem 3.
pI(M) < VP(M) < Omax(M)

where for 6 € [0, §]

V(M) = \/ma,x{O, inf Amax(M7M +wM +wMH)}
we

with

W= {a(14+j8): >0, |8]<cotb}

and for § € (£, )

V(M) =

\/max{O, inf Ansx(MHM +wM +TMH), inf Amun (MM +wM +TMH))
weW] weW?

with

W ={a(14+j8): a>0, B> —coth)}

W ={a(1+j8): a>0, B < cotb}
O

5. DISCUSSION

The extension of Theorems 2 and 3 to the case when the uncertainty is block-
structured is straightforward (see also [9}). It is readily checked that for any structure
K, as in the case with no phase information, u% (M) satisfies u% (DM D) = p&(M)
for any nonsingular matrix D which commutes with all A € X£, and that further-

more inf vf-(DM D) is unaffected when D is restricted further to be Hermitian
positive definite. Thus

pre(M) < pi(M) :=inf{vL(DMD™"): D = D" >0, AD = DA}

The algorithm proposed in [10] can be modified to compute 2% (M).

We have considered only uncertainty matrices whose numerical range does not
contain the origin. Yet, if this is not the case, the results presented above can still
be applied, by making use of the property

NA+z2I)=NA)+2z VzeC

and of a simple loop transformation on the block diagram of Fig. 2. An upper bound
to the gain margin can be computed for each value of the shift z. By taking the
infimum over all possible shifts the upper bound can be reduced. This is under
investigation.
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